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1 Recap

During last week’s section, we began our study of convexr optimization, the study of
mathematical optimization problems of the form,

minimize f(z)

TeR™

subject to ¢;(x) <0, i=1,...,m, (1)
hi(x) =0, i=1,...,p,

where z € R" is the optimization variable, f : R — R and g; : R" — R are convex functions,
and h; : R™ — R are affine functions. In a convex optimization problem, the convexity of both
the objective function f and the feasible region (i.e., the set of z’s satisfying all constraints)
allows us to conclude that any feasible locally optimal point must also be globally optimal.
This fact provides the key intuition for why convex optimization problems can in general be
solved efficiently.

In these lecture notes, we continue our foray into the field of convex optimization. In
particular, we will introduce the theory of Lagrange duality for convex optimization problems
with inequality and equality constraints. We will also discuss generic yet efficient algorithms
for solving convex optimization problems, and then briefly mention directions for further
exploration.

2  Duality

To explain the fundamental ideas behind duality theory, we start with a motivating example
based on CS 229 homework grading. We prove a simple weak duality result in this setting,
and then relate it to duality in optimization. We then discuss strong duality and the KKT
optimality conditions.

2.1 A motivating example: CS 229 homework grading

In CS 229, students must complete four homeworks throughout the quarter, each consisting
of five questions apiece. Suppose that during one year that the course is offered, the TAs



decide to economize on their work load for the quarter by grading only one problem on
each submitted problem set. Nevertheless, they also require that every student submit
an attempted solution to every problem (a requirement which, if violated, would lead to
automatic failure of the course).

Because they are extremely cold-hearted!, the TAs always try to ensure that the students
lose as many points as possible; if the TAs grade a problem that the student did not attempt,
the number of points lost is set to 400 to denote automatic failure in the course. Conversely,
each student in the course seeks to minimize the number of points lost on his or her assign-
ments, and thus must decide on a strategy—i.e., an allocation of time to problems—that
minimizes the number of points lost on the assignment.

The struggle between student and TAs can be summarized in a matrix A = (a;;) € R™*™,
whose columns correspond to different problems that the TAs might grade, and whose rows
correspond to different strategies for time allocation that the student might use for the
problem set. For example, consider the following matrix,

5 5 5 5 5
A=1| 8 8 1 8 8 |,
400 400 400 0 400

Here, the student must decide between three strategies (corresponding to the three rows of
the matrix, A):

e | = 1: she invests an equal effort into all five problems and hence loses at most 5 points
on each problem,

e ; = 2: she invests more time into problem 3 than the other four problems, and

e ¢ = 3: she skips four problems in order to guarantee no points lost on problem 4.

Similarly, the TAs must decide between five strategies (j € {1,2,3,4,5}) corresponding to
the choice of problem graded.

If the student is forced to submit the homework without knowing the TAs choice of
problem to be graded, and if the TAs are allowed to decide which problem to grade after
having seen the student’s problem set, then the number of points she loses will be:

p* = minmax a;; (=5 in the example above) (P)
i

where the order of the minimization and maximization reflect that for each fixed student time
allocation strategy i, the TAs will have the opportunity to choose the worst scoring problem
max; a;; to grade. However, if the TAs announce beforehand which homework problem will
be graded, then the the number of points lost will be:

d* = maxmin a;; (= 0 in the example above) (D)

J 1

where this time, for each possible announced homework problem j to be graded, the student
will have the opportunity to choose the optimal time allocation strategy, min; a,;, which loses

LClearly, this is a fictional example. The CS 229 TAs want you to succeed. Really, we do.



her the fewest points. Here, (P) is called the primal optimization problem whereas (D) is
called the dual optimization problem. Rows containing +oo values correspond to strategies
where the student has flagrantly violated the TAs demand that all problems be attempted;
for reasons, which will become clear later, we refer to these rows as being primal-infeasible.

In the example, the value of the dual problem is lower than that of the primal problem,
ie., d =0 < 5 = p*. This intuitively makes sense: the second player in this adversarial
game has the advantage of knowing his/her opponent’s strategy. This principle, however,
holds more generally:

Theorem 2.1 (Weak duality). For any matriz A = (a;;) € R™*", it is always the case that

maxmina;; = d* < p* = min max a;.

i [
Proof. Let (iq, ja) be the row and column associated with d*, and let (i), j,) be the row and
column associated with p*. We have,

4" = aigjy < Giyjy < Qiyj, =P
Here, the first inequality follows from the fact that a;,;, is the smallest element in the j;th
column (i.e., iy was the strategy chosen by the student after the TAs chose problem j,, and
hence, it must correspond to the fewest points lost in that column). Similarly, the second
inequality follow from the fact that a,,;, is the largest element in the i,th row (i.e., j, was
the problem chosen by the TAs after the student picked strategy 4,, so it must correspond
to the most points lost in that row). ]

2.2 Duality in optimization

The task of constrained optimization, it turns out, relates closely with the adversarial game
described in the previous section. To see the connection, first recall our original optimization
problem,

minimize f(x)
subject to ¢;(z) <0, i=1,...,m,
hl(.ilf):(), Z:L,p

Define the generalized Lagrangian to be
m p
i=1 i=1

Here, the variables A and v are called the the dual variables (or Lagrange multipliers).
Analogously, the variables x are known as the primal variables.

The correspondence between primal/dual optimization and game playing can be pictured
informally using an infinite matrix whose rows are indexed by z € R™ and whose columns



are indexed by (\,v) € R x RP (i.e., \; >0, for i = 1,...,m). In particular, we have
A= |- Lz, \v)

Here, the “student” manipulates the primal variables x in order to minimize the Lagrangian
L(xz, A\, v) while the “TAs” manipulate the dual variables (\,r) in order to maximize the
Lagrangian.

To see the relationship between this game and the original optimization problem, we
formulate the following primal problem:

p*=min max Lz, \,v)

T A >0
=min 0Op(z) (P)
x
where 0p(x) := maxy,.\,>0 L(x, A, ). Computing p* is equivalent to our original convex

optimization primal in the following sense: for any candidate solution x,
o if g;(x) > 0 for some i € {1,...,m}, then setting \; = 0o gives Op(z) = 0.
e if h;(z) # 0 for somei € {1,...,m}, then setting \; = co-Sign(h,(x)) gives Op(x) = oco.

e if z is feasible (i.e., x obeys all the constraints of our original optimization problem),
then 0p(z) = f(x), where the maximum is obtained, for example, by setting all of the
Ai;’s and v;’s to zero.

Intuitively then, 0p(x) behaves conceptually like an “unconstrained” version of the original
constrained optimization problem in which the infeasible region of f is “carved away” by
forcing 0p(r) = oo for any infeasible x; thus, only points in the feasible region are left
as candidate minimizers. This idea of using penalties to ensure that minimizers stay in the
feasible region will come up later when talk about barrier algorithms for convex optimization.
By analogy to the CS 229 grading example, we can form the following dual problem:

d*= max min L(x,\,v)

AviN>0 T
=, max = Op(Av) (D)
where 0p(\,v) := min, L(z,\,v). Dual problems can often be easier to solve than their

corresponding primal problems. In the case of SVMs, for instance, SMO is a dual optimiza-
tion algorithm which considers joint optimization of pairs of dual variables. Its simple form
derives largely from the simplicity of the dual objective and the simplicity of the correspond-
ing constraints on the dual variables. Primal-based SVM solutions are indeed possible, but
when the number of training examples is large and the kernel matrix K of inner products
K =K (x@, 29 is large, dual-based optimization can be considerably more efficient.
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Using an argument essentially identical to that presented in Theorem (2.1), we can show
that in this setting, we again have d* < p*. This is the property of weak duality for
general optimization problems. Weak duality can be particularly useful in the design of
optimization algorithms. For example, suppose that during the course of an optimization
algorithm we have a candidate primal solution z and dual-feasible vector (), v) such that
Op(z) — O0p(\,v) < e. From weak duality, we have that

Op(\,v) < d" <p* < Op(x),

implying that x and (A, v) must be e-optimal (i.e., their objective functions differ by no more
than e from the objective functions of the true optima x* and (\*,v*).

In practice, the dual objective 0p (A, ) can often be found in closed form, thus allowing
the dual problem (D’) to depend only on the dual variables A and v. When the Lagrangian is
differentiable with respect to x, then a closed-form for (A, v) can often be found by setting
the gradient of the Lagrangian to zero, so as to ensure that the Lagrangian is minimized
with respect to .2 An example derivation of the dual problem for the L; soft-margin SVM
is shown in the Appendix.

2.3 Strong duality

For any primal/dual optimization problems, weak duality will always hold. In some cases,
however, the inequality d* < p* may be replaced with equality, i.e., d* = p*; this latter
condition is known as strong duality. Strong duality does not hold in general. When it
does however, the lower-bound property described in the previous section provide a useful
termination criterion for optimization algorithms. In particular, we can design algorithms
which simultaneously optimize both the primal and dual problems. Once the candidate
solutions z of the primal problem and (A, v) of the dual problem obey 0p(z) — 0p(\, v) <,
then we know that both solutions are e-accurate. This is guaranteed to happen provided
our optimization algorithm works properly, since strong duality guarantees that the optimal
primal and dual values are equal.

Conditions which guarantee strong duality for convex optimization problems are known
as constraint qualifications. The most commonly invoked constraint qualification, for
example, is Slater’s condition:

Theorem 2.2. Consider a convex optimization problem of the form (1), whose corresponding
primal and dual problems are given by (P’) and (D). If there ezists a primal feasible x for

20ften, differentiating the Lagrangian with respect to x leads to the generation of additional requirements
on dual variables that must hold at any fixed point of the Lagrangian with respect to z. When these
constraints are not satisfied, one can show that the Lagrangian is unbounded below (i.e., 0p(A,v) = —0).

Since such points are clearly not optimal solutions for the dual problem, we can simply exclude them from
the domain of the dual problem altogether by adding the derived constraints to the existing constraints of the
dual problem. An example of this is the derived constraint, 221 a;y® =0, in the SVM formulation. This
procedure of incorporating derived constraints into the dual problem is known as making dual constraints
explicit (see [1], page 224).



which each inequality constraint is strictly satisfied (i.e., g;(x) <0), then d* = p*.3

The proof of this theorem is beyond the scope of this course. We will, however, point out
its application to the soft-margin SVMs described in class. Recall that soft-margin SVMs
were found by solving

1 m
minigr%ize §Hw||2 +CY &

i=1
subject to Yy (wTz® +b) >1-¢&, i=1,....m
& >0, i=1,...,m.

Slater’s condition applies provided we can find at least one primal feasible setting of w, b,
and £ where all inequalities are strict. It is easy to verify that w = 0, b =0, £ = 2- 1 satisfies
these conditions (where 0 and 1 denote the vector of all 0’s and all 1’s, respectively), since

yD(wz® +b) =y D072 4+ 0)=0>-1=1-2=1-&, i=1,...,m,

and the remaining m inequalities are trivially strictly satisfied. Hence, strong duality holds,
so the optimal values of the primal and dual soft-margin SVM problems will be equal.

2.4 The KKT conditions

In the case of differentiable unconstrained convex optimization problems, setting the gradient
to “zero” provides a simple means for identifying candidate local optima. For constrained
convex programming, do similar criteria exist for characterizing the optima of primal/dual
optimization problems? The answer, it turns out, is provided by a set of requirements known
as the Karush-Kuhn-Tucker (KKT) necessary and sufficient conditions (see [1],
pages 242-244).

Suppose that the constraint functions gi, ..., gm, b1, ..., h, are not only convex (the h;’s
must be affine) but also differentiable.

Theorem 2.3. If i is primal feasible and (\, D) are dual feasible, and if

V. L(E, N, D)

AiGi (j )

0, (KKT1)
0, i=1,...,m, (KKT2)

then T is primal optimal, (5\, V) are dual optimal, and strong duality holds.

Theorem 2.4. If Slater’s condition holds, then conditions of Theorem 2.3 are necessary for
any (x*, \*,v*) such that x* is primal optimal and (\*,v*) are dual feasible.

30ne can actually show a more general version of Slater’s inequality, which requires only strict satisfaction
of non-affine inequality constraints (but allowing affine inequalities to be satisfied with equality). See [1],
page 226.



(KKT1) is the standard gradient stationarity condition found for unconstrained differentiable
optimization problems. The set of inequalities corresponding to (KKT2) are known as the
KKT complementarity (or complementary slackness) conditions. In particular,
if x* is primal optimal and (A*,v*) is dual optimal, then (KKT2) implies that

A >0 = g(2")=0
gi(z") <0 = X' =0

That is, whenever A} is greater than zero, its corresponding inequality constraint must be
tight; conversely, any strictly satisfied inequality must have have A} equal to zero. Thus, we
can interpret the dual variables A} as measuring the “importance” of a particular constraint
in characterizing the optimal point.

This interpretation provides an intuitive explanation for the difference between hard-
margin and soft-margin SVMs. Recall the dual problems for a hard-margin SVM:

maxilﬁnize Z a—g Z Z ooy Dyl <x(i), x(j)>
@ i=1 i=1j=1
subject to «a; > 0, i=1,...,m, (2)

=1

and the L; soft-margin SVM:

maxi/rgnize > o — 5 >N ooy Dy (20 20
o i=1 i=1 j=1
subject to 0 < «; < C, i=1,...,m, (3)

> ay® =0.
i=1

Note that the only difference in the soft-margin formulation is the introduction of upper
bounds on the dual variables ;. Effectively, this upper bound constraint limits the influence
of any single primal inequality constraint (i.e., any single training example) on the decision
boundary, leading to improved robustness for the L, soft-margin model.

What consequences do the KKT conditions have for practical optimization algorithms?
When Slater’s conditions hold, then the KK'T conditions are both necessary and sufficient for
primal/dual optimality of a candidate primal solution & and a corresponding dual solution
(5\, V). Therefore, many optimization algorithms work by trying to guarantee that the KKT
conditions are satisfied; the SMO algorithm, for instance, works by iteratively identifying
Lagrange multipliers for which the corresponding KKT conditions are unsatisfied and then
“fixing” KKT complementarity.*

4See [1], pages 244-245 for an example of an optimization problem where the KKT conditions can be
solved directly, thus skipping the need for primal/dual optimization altogether.



3 Algorithms for convex optimization

Thus far, we have talked about convex optimization problems and their properties. But
how does one solve a convex optimization problem in practice? In this section, we describe
a generic strategy for solving convex optimization problems known as the interior-point
method. This method combines a safe-guarded variant of Newton’s algorithm with a “bar-
rier” technique for enforcing inequality constraints.

3.1 Unconstrained optimization
We consider first the problem of unconstrained optimization, i.e.,
minimize f(x).

In Newton’s algorithm for unconstrained optimization, we consider the Taylor approxi-
mation f of the function f, centered at the current iterate z;. Discarding terms of higher
order than two, we have

o) = Fle) + Vel @) (@ = 2) + 50— 2) V2 ()a — 20)

To minimize f (x), we can set its gradient to zero. In particular, if x,; denotes the minimum

of f(z), then

Vaf (ze) + Vaf(z) (@ —2) =0
V2 f (@) (ar — 21) = = Vo f (1)
Tnt — Ty = —Vif(37t)7lvxf($t)
Tnt = Ty — Vif(xt)_lvwf(xt)

assuming V2 f ()7 is positive definite (and hence, full rank). This, of course, is the standard
Newton algorithm for unconstrained minimization.

While Newton’s method converges quickly if given an initial point near the minimum, for
points far from the minimum, Newton’s method can sometimes diverge (as you may have
discovered in problem 1 of Problem Set #1 if you picked an unfortunate initial point!). A
simple fix for this behavior is to use a line-search procedure. Define the search direction d
to be,

d:= V3 f(x) Vo f ().

A line-search procedure is an algorithm for finding an appropriate step size v > 0 such that
the iteration

Tpp1 =24 — - d

will ensure that the function f decreases by a sufficient amount (relative to the size of the
step taken) during each iteration.



One simple yet effective method for doing this is called a backtracking line search.
In this method, one initially sets v to 1 and then iteratively reduces v by a multiplicative
factor B until f(x; + v - d) is sufficiently smaller than f(x;):

Backtracking line-search

Choose a € (0,0.5), 5 € (0,1).

Set v« 1.

While f(z; +7-d) > f(z) + 7 aV,f(z)"d, dovy« Bv.
Return 7.

Since the function f is known to decrease locally near z; in the direction of d, such a
step will be found, provided ~ is small enough. For more details, see [1], pages 464-466.

In order to use Newton’s method, one must be able to compute and invert the Hessian
matrix V2 f(x;), or equivalently, compute the search direction d indirectly without forming
the Hessian. For some problems, the number of primal variables x is sufficiently large
that computing the Hessian can be very difficult. In many cases, this can be dealt with
by clever use of linear algebra. In other cases, however, we can resort to other nonlinear
minimization schemes, such as quasi- Newton methods, which initially behave like gradient
descent but gradually construct approximations of the inverse Hessian based on the gradients
observed throughout the course of the optimization.> Alternatively, nonlinear conjugate
gradient schemes (which augment the standard conjugate gradient (CG) algorithm for
solving linear least squares systems with a line-search) provide another generic blackbox tool
for multivariable function minimization which is simple to implement, yet highly effective in
practice.’

3.2 Inequality-constrained optimization

Using our tools for unconstrained optimization described in the previous section, we now
tackle the (slightly) harder problem of constrained optimization. For simplicity, we consider
convex optimization problems without equality constraints’, i.e., problems of the form,

minimize f(x)
x

subject to g¢;(x) <0, i=1,...,m.

5For more information on Quasi-Newton methods, the standard reference is Jorge Nocedal and Stephen
J. Wright’s textbook, Numerical Optimization.

6For an excellent tutorial on the conjugate gradient method, see Jonathan Shewchuk’s tutorial, available
at: http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

"In practice, there are many of ways of dealing with equality constraints. Sometimes, we can eliminate
equality constraints by either reparameterizing of the original primal problem, or converting to the dual
problem. A more general strategy is to rely on equality-constrained variants of Newton’s algorithms which
ensure that the equality constraints are satisfied at every iteration of the optimization. For a more complete
treatment of this topic, see [1], Chapter 10.



We will also assume knowledge of a feasible starting point z, which satisfies all of our
constraints with strict inequality (as needed for Slater’s condition to hold).®
Recall that in our discussion of the Lagrangian-based formulation of the primal problem,

min max  L(z, A).
T A:\>0
we stated that the inner maximization, maxy.,,>0 £(x,\), was constructed in such a way
that the infeasible region of f was “carved away”, leaving only points in the feasible region
as candidate minima. The same idea of using penalties to ensure that minimizers stay in the
feasible region is the basis of barrier-based optimization. Specifically, if B(z) is the barrier
function

(
0 0
B(Z) _ z <
oo z2>0,
then the primal problem is equivalent to
min  f(z) +)_ B(gi(x))- (4)
i=1

When g;(z) < 0, the objective of the problem is simply f(x); infeasible points are “carved
away” using the barrier function B(z).

While conceptually correct, optimization using the straight barrier function B(z) is nu-
merically difficult. To ameliorate this, the log-barrier optimization algorithm approximates
the solution to (4) by solving the unconstrained problem,

minimize f(z) — 1ilog(—gi(:c)).

for some fixed ¢ > 0. Here, the function —(1/t)log(—z) ~ B(z), and the accuracy of the
approximation increases as t — co. Rather than using a large value of ¢ in order to obtain
a good approximation, however, the log-barrier algorithm works by solving a sequence of
unconstrained optimization problems, increasing ¢ each time, and using the solution of the
previous unconstrained optimization problem as the initial point for the next unconstrained
optimization. Furthermore, at each point in the algorithm, the primal solution points stay
strictly in the interior of the feasible region:

8For more information on finding feasible starting points for barrier algorithms, see [1], pages 579-585.
For inequality-problems where the primal problem is feasible but not strictly feasible, primal-dual interior
point methods are applicable, also described in [1], pages 609-615.
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Log-barrier optimization

e Choose u>1,t> 0.
o T «— Ip.
e Repeat until convergence:

1 m
(a) Compute z’ = min f(z) — i > log(—g;(x)) using x as the initial point.
i=1

(b) t —p-t,x—a'.

One might expect that as ¢ increases, the difficulty of solving each unconstrained minimiza-
tion problem also increases due to numerical issues or ill-conditioning of the optimization
problem. Surprisingly, Nesterov and Nemirovski showed in 1994 that this is not the case
for certain types of barrier functions, including the log-barrier; in particular, by using an
appropriate barrier function, one obtains a general convex optimization algorithm which
takes time polynomial in the dimensionality of the optimization variables and the desired
accuracy!

4 Directions for further exploration

In many real-world tasks, 90% of the challenge involves figuring out how to write an opti-
mization problem in a convex form. Once the correct form has been found, a number of
pre-existing software packages for convex optimization have been well-tuned to handle dif-
ferent specific types of optimization problems. The following constitute a small sample of
the available tools:

e commerical packages: CPLEX, MOSEK

e MATLAB-based: CVX, Optimization Toolbox (linprog, quadprog), SeDuMi
e libraries: CVXOPT (Python), GLPK (C), COIN-OR (C)

e SVMs: LIBSVM, SVM-light

e machine learning: Weka (Java)

In particular, we specifically point out CVX as an easy-to-use generic tool for solving convex
optimization problems easily using MATLAB, and CVXOPT as a powerful Python-based
library which runs independently of MATLAB.? If you're interested in looking at some of the
other packages listed above, they are easy to find with a web search. In short, if you need a
specific convex optimization algorithm, pre-existing software packages provide a rapid way
to prototype your idea without having to deal with the numerical trickiness of implementing
your own complete convex optimization routines.

9CVX is available at http://www.stanford.edu/~boyd/cvx and CVXOPT is available at http://www.
ee.ucla.edu/~vandenbe/cvxopt/.
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Also, if you find this material fascinating, make sure to check out Stephen Boyd’s class,
EE364: Convex Optimization I, which will be offered during the Winter Quarter. The
textbook for the class (listed as [1] in the References) has a wealth of information about
convex optimization and is available for browsing online.
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Appendix: The soft-margin SVM

To see the primal/dual action in practice, we derive the dual of the soft-margin SVM primal
presented in class, and corresponding KKT complementarity conditions. We have,

1 m
minimize = |w|*+ C>_¢
w,b,€ 2 —i
subject to y@(wTz® +b) >1-¢&, i=1,...,m,
51207 Z:L,m

First, we put this into our standard form, with “< 0” inequality constraints and no equality
constraints. That is,

1 m
minimize = |w|*+ C>_¢
w,b,€ 2 ]
subject to 1 —& —yD(wTz® +b) <0, i=1,...,m,
=& <0, i=1,...,m.

Next, we form the generalized Lagrangian,'

1 m m ) A m
=1 =1 =1

which gives the primal and dual optimization problems:

Op(a, B) where Op(a, () := mgrgl L(w, b, &, o, B), (SVM-D)

max
a,ﬂlﬂéi Zo)ﬂl ZO

min  Op(w,b,§) where Op(w,b,§) :=

max
w7b7§ O‘7B:ai207ﬁi20

L(w,b,&, e, ).  (SVM-P)

To get the dual problem in the form shown in the lecture notes, however, we still have a
little more work to do. In particular,

0Here, it is important to note that (w,b, &) collectively play the role of the z primal variables. Similarly,
(a, B) collectively play the role of the A dual variables used for inequality constraints. There are no “v” dual
variables here since there are no affine constraints in this problem.
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1. Eliminating the primal variables. To eliminate the primal variables from the dual
problem, we compute 6p(a, 3) by noticing that

QD(aaﬁ) = minw,b,{ ‘C(wvb7§7aa/6)

is an unconstrained optimization problem, where the objective function L(w,b,& a,f)
is differentiable. Therefore, for any fixed (o, (), if (w, b, £) minimize the Lagrangian,
it must be the case that

Vo L(,b,€,a,8) =w— Y ayPa® =0 (5)
=1

*Qaw@£aﬂ»:—zkw@=o (6)

b i=1

o . . s

6§z£(w7 b7£7 Oé, /6) — — Oy — 6@ - 0 (7)

Adding (6) and (7) to the constraints of our dual optimizaton problem, we obtain,
Op (e, B) = L(,b,€)
1 mo m . ] ) R m .
=5l + O3 &+ 3 a1 =&~y @Ta 4 ) =3 6

*HwH2+CZ§+Z% (1-&— Zﬁz&

=1 =

= §HU9H2 + Z ai(1 =y ("2 ™).
i=1

where the first equality follows from the optimality of (i,b,&) for fixed (o, (), the
second equality uses the definition of the generalized Lagrangian, and the third and
fourth equalities follow from (6) and (7), respectively. Finally, to use (5), observe that

-r"qs

*|| ||2+Zaz 1=y (@"2)) IIwIIQ—wTZ&zy” ©

i=1 =1
_ — 1 A 112 )
=2 ai + ol - [l

=1

m 1 R
=> a5l

=1
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Therefore, our dual problem (with no more primal variables) is simply

maximize Y a; — L SN iy Dy (2@ 20
B i=1 i=1j5=1
subject to a; > 0, 1=1,...,m,
5120, 1= g ey 1M,
ai—l—ﬁi:C, izl,...,m,

Z aiy(i) =0
i=1
2. KKT complementary. KKT complementarity requires that for any primal optimal
(w*, b*,£*) and dual optimal (a*, 5*),
a;(1 =& =y (w2 +07)) =
Gi& =0

for© =1,...,m. From the first condition, we see that if o; > 0, then in order for the
product to be zero, then 1 — & — y® (w*Tx® + b*) = 0. It follows that

since £* > 0 by primal feasibility. Similarly, if 5 > 0, then £ = 0 to ensure comple-
mentarity. From the primal constraint, y@ (w?z® +b) > 1 — &, it follows that

Finally, since 7 > 0 is equivalent to af < C (since a* + 3F = ('), we can summarize
the KKT conditions as follows:

=0 = yDw2® 47

0<af<C = yDwTz® b

a =C = y(i)(w*Tx(i) +b")

v

1
L
1

IN

3. Simplification. We can tidy up our dual problem slightly by observing that each pair
of constraints of the form

B >0 o+ =C

is equivalent to the single constraint, «; < ('; that is, if we solve the optimization
problem

m 1 m m
max%mze > o — ZZ@Z oy Dy (2@ 20))
i=1 =1 j=1
subject to OgaiSC’ i=1,...,m, (8)

Z ay? =
i=1
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and subsequently set 3; = C' — «, then it follows that («, 3) will be optimal for the
previous dual problem above. This last form, indeed, is the form of the soft-margin
SVM dual given in the lecture notes.
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