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Abstract

A MapReduce framework abstracts distributed system issues, integrating a dis-
tributed file system with an application’s needs. However, the lack of determinism
in distributed system components and reliability in the network may cause appli-
cations errors that are difficult to identify, find, and correct. This paper presents a
method to create a set of fault cases, derived from a Petri net (PN), and a frame-
work to automate the execution of these fault cases in a distributed system. The
framework controls each MapReduce component and injects faults according to
the component’s state. Experimental results showed the fault cases are represen-
tative for testing Hadoop, a MapReduce implementation. We tested three versions
of Hadoop and identified bugs and elementary behavioral differences between the
versions. The method provides network reliability enhancements as a byproduct
because it identifies errors caused by a service or system bug instead of simply
assigning them to the network.
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1. Introduction

Massive data processing (e.g., big data) requires an efficient and reliable net-
work service and connection in order to use a large number of machines. Hence,

ICorresponding author, tel.: +55 41 32711669, fax: +55 41 32712121, e-mail: jeuge-
nio@ppgia.pucpr.br (J.E. Marynowski). A preliminary version of this work appeared in the Pro-
ceedings of the 16th International Conference on Enterprise Information Systems (ICEIS) [1].

Preprint submitted to Computer Networks February 14, 2015



some computational systems become fundamental network services. For instance,
MapReduce [2] is a service that enables the storage and processing of large amount
of data used by various applications, such as social networks or research and busi-
ness applications. MapReduce offers a programming environment based on two
high-level functions, map and reduce. It also offers a runtime environment to ex-
ecute these functions on a computer cluster and addresses abstracting issues such
as processing distribution, data partition, replication, and fault tolerance.

The MapReduce architecture includes several worker components and one
master component that schedules the map and reduce tasks to run on the workers.
As with other network services that use thousands of machines, a MapReduce
system often faces failures caused by various conditions, e.g., network connection
delays, power outages, hardware problems, and updates or software defects. The
MapReduce fault tolerance mechanism identifies faulty workers by timeout, and
reschedules their tasks to a healthy worker. The fault handling differs between
tasks and their status. For example, if a worker fails when it is executing a map
task, the master only reassigns its task to another worker. However, if a workerx
fails after executing a map task, the master reassigns the task to another worker
(workery) and informs all workers executing reduce tasks that they must read the
map result from the new workery.

It is essential to ensure that failures do not interfere or interrupt the execution
of a MapReduce system. Fault tolerance testing aims to find errors in the imple-
mentation or specification of fault tolerant mechanisms [3, 4]. For this purpose,
the system is executed in a controlled testing environment with the injection of
known faults. A fault case is a set of requirements for the complete execution and
validation of the system under test when faults are injected [5, 6]. There are two
main issues concerning the testing of fault tolerance on network services: how to
choose representative elements from the potentially infinite and partially unknown
set of possible fault cases, and the automation of fault case executions.

Representative fault cases can be generated (derived) from the model of the
system’s fault tolerance mechanism. However, modeling a distributed fault tol-
erance mechanism requires a formal model that represents the concurrent and
distributed behavior of the system. The model must represent components as
dynamic items, to be easily inserted or removed, without substantial changes in
the model. Furthermore, the model should represent the system components with-
out specifying their actions and states, allowing an action to be performed by any
enabled component.

An important issue regarding the provisioning of network services occurs
when a user faces some performance issues. Usually, users do not have enough
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information to disambiguate whether the problem occurs in the network connec-
tion or in the provided service. When the network service is tested, it is easier
identify in each circumstance whether the problem is in the network service, or
connection. In this paper, we work with the hypothesis that is possible to enhance
network reliability by disambiguating the situation using service tests.

We present an approach for testing MapReduce fault tolerance based on the
generation and execution of representative fault cases. Representative fault cases
are derived from the reachability graph of a Petri net (PN) that models the fault
tolerance mechanism. A reachability graph consists of all possible sequences of
transition firings from a PN. The PN model represents MapReduce components
as dynamic items, enabling them to be easily removed or inserted without sub-
stantial model changes and without specifying their actions, allowing an action to
be executed by any enabled component. HadoopTest is a testing framework that
automates the execution of representative fault cases in a distributed environment,
controlling and monitoring each system component and injecting faults according
to their status.

We apply our approach to test three versions of an open-source MapReduce
implementation called Hadoop [7]. Experimental results show that the fault cases
derived from the PN model are representative for testing Hadoop by injecting
faults according to the fault tolerance mechanism and identifying some errors.
HadoopTest automates the execution of representative fault cases in a distributed
environment and has the required properties of a test framework: controllability,
time measurement, non-intrusiveness, repeatability, and efficacy.

We organized the remainder of the paper as follows. Section 2 describes re-
lated work. Section 3 presents the modeling of the MapReduce fault tolerance
mechanism and the process used to generate fault cases. Section 4 presents the
framework to automate the execution of fault cases. Section 5 describes the ex-
perimental results of Hadoop testing. Section 6 concludes the paper.

2. Related Work

Dean and Ghemawat [2], Abouzeid et al. [8], and Sangroya et al. [9] ad-
dressed MapReduce fault tolerance testing, but they assigned the generation of
fault cases to the test engineer. In general, the generated fault cases disregard the
internals of the MapReduce fault tolerance mechanism, e.g., they inject faults in
some nodes for a defined period (e.g., failing 3 of 10 nodes for 10 s, 30 s after the
execution beginning). Thus, the fault cases used do not consider the various fault
handling behaviors of the MapReduce fault tolerance mechanism.
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Bernardi et al. [10], Jacques-Silva et al. [11], and Lefever et al. [12] tested
other distributed systems also using fault cases provided by the test engineer.
Leaving the fault case generation to the test engineer results in a test that is limited
by their knowledge. Benso et al. [13], Chandra et al. [14], and Henry [15] gener-
ate fault cases randomly in order to fulfill this deficiency. However, even random
fault cases cannot find the errors that appear only when faults are injected into a
specific sequence of failures that are not executed randomly. Joshi et al. [16], and
Fu et al. [17] systematically generated fault cases from the source code. However,
the approach is too costly and limits the fault cases to a few concurrent faults.

Echtle et al. [5], Ambrosio et al. [6], and Bernardi et al. [10] generated fault
cases from an abstraction of the fault tolerance mechanism. However, these exist-
ing proposals are not applicable to MapReduce systems because they are specific
and limited to single-machine systems.

Pan et al. [18], Butnaru et al. [19], Zhou et al. [20], and Almeida et al. [21]
presented testing frameworks for distributed systems to control distributed com-
ponents and validate the system behavior. However, these frameworks do not con-
trol the system-specific circumstance for injecting a fault according to the com-
ponent processing. Jacques-Silva et al. [11], Pham et al. [22], Lefever et al. [12],
and Hoarau et al. [23] presented fault injection frameworks, but with the same
problem. They support the execution of fault cases with the injection of various
multiple faults, but they do not consider the system processing stages.

Herriot [24] is a testing framework that provides a set of interfaces to validate
small system parts, e.g., a method or function. Csallner et al. [25] presented
an approach to systematically search for MapReduce application faults based on
badly defined map and reduce functions. Pan et al. [18], Tan et al. [26], and
Huang et al. [27] evaluated MapReduce execution logs to detect MapReduce per-
formance problems. Although these approaches evaluate system functionality and
performance, they do not automatically execute fault cases and validate the system
considering its fault tolerance.

3. Generating Representative Fault Cases

This section presents Petri Net-based Fault Cases Generation (PbGen), our
approach to model the system fault tolerance mechanism and create representative
fault cases from a PN model.

A fault case is a set of requirements for the complete execution, fault injection,
and validation of a system under test. In a distributed system, a fault case is a set
of actions that must be executed by a set of testers. A coordinator controls a fault

4



case execution, and each tester controls a system component while executing fault
case actions.

Definition 3.1 (Fault case). A fault case is a 4-tupleF = (TF , AF , RF ,O) where:
TF = {t0, t1, . . . , tn} is a list of testers that control the system components,
AF = {a0, a1, . . . , am} is a list of actions that can involve fault injections, RF =
{ra0 , . . . , ram} is a list of action results, and O is an oracle.

The oracle is the mechanism responsible for verifying the system behavior
during a fault case execution, and associating a test result, called a verdict with
it. A fault case verdict can be: pass, fail, or inconclusive. Further, each action
execution can have the result: success, failure, or timeout (no response over a
period of time). The F verdict is pass if all action executions are a success. The
F verdict is fail if any action execution is a failure. The F verdict is inconclusive
if at least one action execution is a timeout, meaning that the test is inaccurate and
the fault case must be rerun.

Definition 3.2 (Fault case action). A fault case action of AF is a 7-tuple ai =
(h,D, n, T ′,W, θ, I), where:

– h ∈ N | h 6 |A| is a hierarchical order in which action ai must be executed
(actions with the same h execute in parallel);

– D ⊆ A | ∀aj ∈ D : raj = success is a set of actions that must be
successfully executed before ai, otherwise the action result rai is failure;

– n ∈ N | n 6 |C ′| is the number of success action results, i.e., the number of
testers that must execute ai and get success as result;

– T ′ ⊆ TF is a set of testers that can execute ai;
– W is a trigger, i.e., an optional instruction or command that is executable

by testers and is required to execute ai;
– θ is the time to execute ai;
– I is a set of instructions or commands that are executable by testers.

The representative fault cases for testing fault tolerant network services are
the fault cases generated from the model of the system fault tolerance mechanism.
In our use case, the model must represent the MapReduce components, a master
and various workers, as dynamic items to be easily inserted or removed without
substantial changes in the model. Furthermore, the model should represent the
components without specifying their actions and states, allowing an action to be
performed by any enabled component.
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3.1. PN Modeling for the MapReduce Fault Tolerance Mechanism
A PN is a graphical and mathematical tool that is able to represent a system

considering its distributed properties, such as parallelism, distribution, asynchro-
nism, and non-determinism [28, 29]. A PN graph consists of circles representing
places, bars representing transitions, and arcs connecting places and transitions.
An arc may have an associated number that represents its weight (1 when absent).
Inside the places, there are small black circles, called tokens, that are removed
from one place and added to another place after a transition has been fired. A
marking is any distribution of tokens and represents a system state. A transition
fires only when there are enough tokens in the places of the input arcs that are
connected by the transition.

Traditionally, a token represents a message or datum for modeling distributed
system using PN. A token assumes several states (places) that are altered by ac-
tions (transitions). This approach represents distinct and parallel actions, however,
it does not model the independence of the states and actions with respect to the
system components.

Marynowski et al. [1, 30] used tokens to represent MapReduce components,
places to represent system states or components status, and transitions to represent
fault case actions. MapReduce components are easily added and removed from
the system by simply changing the number of tokens in the PN, and any available
component (worker or nodes) can execute an action, i.e., any token can be used
to fire a transition. Here, we present an extended version of the MapReduce fault
tolerant model to represent the complete process of an application execution and
to test and validate the master behavior where there are no available workers.

Figure 1 shows a PN that models a fragment of the MapReduce fault tolerance
mechanism. The model represents the process to start the master and workers,
start an application, and stop the components afterward. Additionally, the model
represents the handling of faults that occur while a worker executes a map or
reduce task, or when all workers fail, causing the application to fail.

Places begin, nodes, and end represent the initial state with some nodes avail-
able (the number of tokens in place nodes) and the final state with the system
offline. Places master.online and worker.online represent the number of master
and worker components that were started. Places worker.runningMap and wor-
ker.runningReduce represent a worker running a map and a reduce task. Place
master.endApp represents the end of the application that can be a successful appli-
cation, where the expected result is correct, even if some workers fail, or a failed
application, when all workers fail. Place lastWorker represents the case when
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there is only one worker on-line, and place noWorker represents the case when all
workers fail.

Figure 1: PN of the MapReduce fault tolerance mechanism.

Transitions master.start and worker.start represent the master and worker ini-
tializations, respectively. Transition master.startJob represents the start of a Map-
Reduce application by the master. Transitions worker.fail.runningMap and wor-
ker.fail.runningReduce represent a fault injection in a worker while it executes a
map or reduce task, respectively. Transition nextTask represents the assignment of
a reduce task to a worker by the master. Transition master.successJob represents
the successful end of the application and that the result is available to be vali-
dated. Transitions worker.fail.runningMap2 and worker.fail.runningReduce2 are
mutually exclusive because of the place lastWorker – only one of these transitions
can be executed. Transition master.successJob represents the end of the applica-
tion and that the result is available. Transition master.failJob represents the end of
the application without an available result, since all workers failed. Finally, tran-
sitions worker.stop and master.stop represent the stopping of the online workers
and master, respectively.

PN initial marking consists of one token in the place begin, one token in last-
Worker, and, for the sake of simplicity, we considered only three tokens in nodes.
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This marking enables only the firing of transition master.start. When master.start
fires, it removes one token from begin and one from nodes, and adds one token
to master.online. Transition worker.start is then enabled, and at every firing, it
removes one token from nodes and one from master.online. It then returns one
token to master.online and adds one to worker.online. Transition master.startJob
is enabled only when there are no tokens in nodes because there is an inhibitor
arc between them. When transition master.startJob fires, it removes one token
from master.online, removes one token from worker.online, and adds one token to
worker.runningMap.

At this point, two transitions can fire, nextTask and worker.fail.runningMap. If
nextTask fires, it removes one token from worker.runningMap and adds one token
to worker.runningReduce. If transition worker.fail.runningMap fires, it removes
one token from worker.runningMap, removes one token from worker.online, and
returns one token to worker.runningMap. The marking after worker.fail.running-
Map fires presents only one token in worker.runningMap and one token in last-
Worker, enabling worker.fail.runningMap2 to fire.

When worker.fail.runningMap2 fires, it removes one token from worker.run-
ningReduce, removes one token from lastWorker, and adds one token to noWorker.
Now, only master.failJob is enabled, and when it fires, it removes one token
from noWorker and adds one token to master.endApp. This behavior can occur
both with worker.fail.runningReduce and worker.fail.runningReduce2. However,
if master.successJob fires, it removes one token from worker.runningReduce and
adds one token each to worker.online and master.endApp. Transition worker.stop
fires sometimes, removing tokens from worker.online if it has any. Finally, transi-
tion master.stop fires to remove one token from master.endApp and add one token
to end, representing the end of the MapReduce execution.

PN extensions also enable us to model behaviors that are implicitly specified
in the fault tolerance mechanism, such as the expected master behavior when it is
impossible to complete a job. Moreover, we intend to use colored and temporal
PN extensions to represent other kinds of faults for distributed systems, such as
omission, timing, and response faults [31].

3.2. Generating Representative Fault Cases
Representative fault cases are derived from a reachability graph of the PN that

models the system fault tolerance mechanism. A reachability graph consists of
the set of all possible sequence of transitions firings from a PN. Vertices represent
PN markings, and edges represent executed transitions.
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Figure 2: Reachability graph for the PN of Figure 1 with three tokens in the nodes place.

Figure 2 shows a reachability graph derived from the PN of the MapReduce
fault tolerance mechanism (Figure 1). The graph initial vertex S0 represents the
initial PN marking, with one token in begin, three tokens in nodes, and one token
in lastWorker. The master.start firing creates the S1 vertex, the second possible
marking of the PN, i.e., one token in master.online, two tokens in nodes, and
one token in lastWorker. The worker.start firing creates S2 vertex that enables
the worker.start to fire, reaching S3. The S3 vertex represents the marking with
one token in master.online and two token in worker.online. The master.startJob
firing creates the S4 vertex that represents one token in worker.runningMap, one
in worker.online, and one in lastWorker.

From vertex S4, two transitions can fire and, consequently, at least two paths
are possible. The nextTask transition firing creates the S5 vertex and worker.fail.run-
ningMap creates S17. Following the nextTask path, two transitions can also fire.
The master.successJob creates S6, following through worker.stop that creates S7,
worker.stop that creates S8, and master.stop that creates S9. Returning to S5 ver-
tex, worker.fail.runningReduce creates S10, following through master.successJob
that creates S11, worker.stop that creates S12, and master.stop that creates S13.
Other path from the S10 vertex is the worker.fail.runningReduce2 transition that
creates S14, master.failApp that creates S15, and master.stop that creates S16. Re-
turning to the S4 vertex, worker.fail.runningMap firing creates S17 that can follow
to S10 with a nextTask firing, or to S14 with a worker.fail.running-Map2 firing.

Any change in the PN model requires the creation of a new reachability graph
for mapping all new possible transition firings. For example, changing only the
number of tokens in the nodes place from three to four at the PN in Figure 1,
the resulting reachability graph has twenty three vertices instead of eighteen, as
shown in Figure 2.

The process to generate fault cases from a PN model consists of traversing all
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Table 1: Action list of a fault case example generated from the model.
h D n T ′ W θ I

a0 1 ∅ 1 {t0} 9000 startMaster
a1 2 {a0} 2 {t1, t2} 1000 startWorker
a2 3 {a1} 1 {t0} 900000 startJob
a3 3 {a1} 1 {t1, t2} runningMap 1000 failWorker
a4 3 {a1} 1 {t1, t2} runningReduce 1000 failWorker
a5 4 {a2} 1 {t0} 10000 assertResult
a6 5 {a0} 1 {t0} 1000 stopMaster

possible paths in a reachability graph, and then mapping each path as the action
list AF of fault case F . The action list AF is obtained from the edges that connect
the graph vertices and from the number of tokens in the places represented by the
vertices. The set of testers TF is obtained from the number of tokens in the nodes
place from vertex S0. The other fault case components (RF and O) are provided
by the testing framework, as described in Section 4.

Returning to the reachability graph shown in Figure 2, we have six possible
paths from vertex S0. We map the action list of a fault case from the set of tran-
sitions of each path, i.e., the path master.start, worker.start, worker.start, mas-
ter.startJob, worker.fail.runningMap, nextTask, master.successJob, worker.stop,
and master.stop. Similarly, as explained in the modeling section, there are transi-
tions that are represented in a reachability graph but are not used to generate an
action list. These transitions are not mapped as fault case actions because they
represent system events that do not need to be validated. Transitions that com-
pose a fault case are represented by arcs that are initially labeled with master and
worker.

Each fault case action ai = (h,D, n, T ′,W, θ, I) of the action list AF is
mapped as follows. Hierarchical order h is obtained from the numerical sequence
of transitions on each path, whereas the actions to start a job and inject a fault
have the same h value. Required action set D is obtained from the sequence of
transitions. The number of successful action results n is obtained from the mark-
ing, i.e., the number of tokens in the places. The tester set T ′ is obtained from
the transition identification and the marking. Instruction I and trigger W also are
obtained from the transition label. Time limit θ is set manually, since we do not
model temporal characteristics at this time.

Table 1 shows the action list AF of a generated fault case F that aims to val-
idate the MapReduce execution if two components fail: one when it executes a
map task and another when it executes a reduce task. Actions {a0, . . . , a6} are
executed in this sequence, starting with action a0 and following their hierarchical
level (attribute h). However, actions {a2, a3, a4} are executed in parallel because
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they have the same hierarchical level, h = 3. Action a0 that starts the master
component is only executed by tester t0. If action a0 has the result success and
Da1 = a0, the other testers {t1, t2, t3} execute action a1 to start the worker com-
ponents. Otherwise, if action a0 has the result failure, action a1 finishes and is
assigned the result failure. This behavior occurs with all actions that have a de-
pendency relation with an action that has the result failure, recursively.

Without failed actions, the process continues and three actions are executed in
parallel, {a2, a3, a4}. Action a2 is executed by tester t0, who submits a MapRe-
duce application to the master. Concurrently, actions a3 and a4 are executed by
all testers from {t1, t2}. Both actions a3 and a4 inject an interruption fault (crash)
in the worker of each tester. However, only the first tester that executes a map task
fails, since na3 = 1 and Wa3=runningMap. Similarly, the first tester that executes
a reduce task fails, since na4 = 1 and Wa4=runningReduce. Action a4 is executed
by tester t0, where the system behavior is validated using the instruction assertRe-
sult(). The assertResult() instruction verifies whether the application result is the
expected result. If it is, the action result is success, otherwise, the action result is
failure. However, if t0 is not able to retrieve any results from the system within
the time limit θa4 = 1000, the action result is timeout. The timeout result also is
attributed to all actions that do not finish within their time limit. Finally, action a6
is executed by tester t0 to stop the master component, since there are no workers
to stop because both failed during the fault case execution.

If the system behavior while testing is as expected, i.e., all actions results are
success, the fault case verdict is pass. The fault case verdict is fail if any action
result is failure, and is inconclusive if neither of the foregoing statements is true.

4. Automating the Execution of Representative Fault Cases

HadoopTest is a testing framework that helps researchers and practitioners au-
tomating the execution of representative fault cases. HadoopTest controls the ex-
ecution of different MapReduce components on several machines, ensures faults
are injected in the correct components and circumstances, monitors the system be-
havior, and validates it by observing whether it behaved as expected. HadoopTest
is based on PeerUnit [21], a testing framework for P2P systems [32],that controls
the execution of distributed test cases (sequential actions executed by different
components). HadoopTest extends PeerUnit to (i) control different MapReduce
components, (ii) allow the parallel execution of actions, and (iii) dynamically
identify testers that must execute actions according to the status of each Map-
Reduce component.
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Figure 3: HadoopTest controlling the execution of a fault case.

The HadoopTest architecture consists of two components: a coordinator and
several testers. The coordinator controls the execution of distributed testers, co-
ordinates the fault case actions, and generates the fault case verdict based on the
testers’ results. Each tester controls a MapReduce component: it receives coordi-
nation messages, executes fault case actions, and returns the results.

Figure 3 represents HadoopTest executing a fault case for which the action list
is described in Table 1. This execution involves the control of three MapReduce
components: one master and two workers (worker0 and worker1). The coordina-
tor individually controls the execution of three testers, identified by {t′0, t1, t2}.
Tester t′0 controls the master, and each tester {t1, t2} controls a worker. Tester
t′0 submits a MapReduce job to the master that coordinates the execution and as-
signs map and reduce tasks to the workers. Tester t2 injects a fault on worker1
while it executes a map task. Tester t1 also injects a fault, but on worker0 while it
executes a reduce task. The job cannot be processed and the master must return a
job fail.

4.1. Action Executions by Testers
A tester follows four steps to execute a fault case action. First, the tester re-

ceives a message to execute an action. Second, it waits for the right circumstances
to execute the action. Third, it verifies whether it can execute the action. Fourth,
the tester executes the instructions or commands that are specified by the action.

Algorithm 1 shows the detail of these related four steps. The process starts
when a message is received to execute action ai. If triggerWai is defined, the tester
waits for its execution. After the trigger execution or if the trigger is not defined,
the tester verifies if the number of required action results nai is greater than zero.
If it is, the tester executes instruction Iai and returns the results. Otherwise, the
tester returns failure, informing the coordinator that it cannot execute the action.
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Algorithm 1: Fault case action execution
Data: ai, a fault case action.
Output: an action result.
begin

ai ← Receive message to execute an action
if Wai

6= NULL then
Run Wai

if nai
> 0 then

return Run Iai

return failure

4.2. Fault Case Coordination
The fault case execution consists of coordinating and controlling testers to

execute actions in a distributed, parallel, and synchronized way. Algorithm 2
presents the main steps to coordinate testers to execute actions of a fault case F .
For each hierarchical level h that exists in action list AF , the coordinator executes
three steps: (1) verifies failures in the action dependencies and sends messages to
testers to execute the actions in parallel; (2) ensures the action execution time and
receives the local action results from the testers; (3) sets action results RF based
on the local results obtained from the testers. After executing the actions at all
levels, oracle O assigns a fault case verdict based on the action results.

Algorithm 2: Fault case coordination
Input: F , a fault case;M, a map function between AF and the hierarchical level of its

actions.
Data: nr, a number of actions results with success; Rl, a local results list for each tester

after executing its actions.
Output: a verdict.
begin

foreach h ∈M(AF ) do
nr ←SendMessages(M−1(h), RF )
Rl ←ReceiveAnswers(M−1(h), nr)
RF ←ProcessResults(M−1(h), Rl)

return O(RF )

Algorithm 3 shows the SendMessages operation that sends messages to the
testers with the actions that each one needs to execute. This operation receives
an action list with the same hierarchical level, verifies its relations dependencies,
and, if there are no related failure action results, sends messages to the testers to
execute the related actions. At the end of the process, SendMessages returns the
number of action results with success.

The SendMessages input is an action list that must be executed in parallel,
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Algorithm 3: SendMessages
Input: A′, a list of actions at the same hierarchical level; RF , a list of action results.
Output: nr, the number of successful action results.
begin

nr ← 0
foreach ai ∈ A′ do

if RF [aj ] = success,∀aj ∈ Dai then
Send message to execute ai for all t ∈ T ′ai

nr ← nr + nai

else
RF [ai]← failure

return nr

A′, and an actions results list, RF . For each ai action of A′, it is verified if all
actions in its dependency relation list, Dai , have the result success. In such a case,
the messages to execute ai are sent to all testers in T ′

ai
, and the number of required

results, nr, is updated. Otherwise, i.e., ai cannot be executed because at least
one action in its dependency relation list has the result failure, then the ai result
is failure. This process ends by returning the number of required results for the
actions in execution by the testers.

Algorithm 4 shows theReceiveAnswers operation, which consists of the sec-
ond step to coordinate the testers to execute the actions of a fault case. This op-
eration receives the action results while either the required number of successful
executions or the time limit has not yet been reached. When a result is received,
the operation checks the required number of successful executions against the re-
lated action to verify if the result can be considered, and returns the result list of
the testers’ local results.

The ReceiveAnswers operation receives actions results while either the number
of required results or the greater time limit of the actions in execution has not yet
been reached. The coordinator identifies which action ai refers to action result
r, and classifies it according to the number of required results. If the number of
required results nai is smaller than the size of T ′

ai
, the result is verified. If it is

success, nai is decremented, otherwise the result is neglected. If the number of
required results is the same as the size of T ′

ai
, the local result is stored in the local

results list Rt, which is returned for subsequent validation.
Finally, algorithm 5 shows the ProcessResults operation that is the last step

for coordinating the execution of actions in parallel. This operation processes the
local actions results that were executed in parallel and assigns a single result to
each action. All obtained action results comprise the action results list RF that
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Algorithm 4: ReceiveAnswers
Input: A′, the action list; nr, the number of successful action results.
Output: Rl, the local results list of each tester after executing its actions.
begin

while (nr > 0) ∧ (clock < θai ,∀ai ∈ A′) do
Receive result r of t and identify its action ai
if (nai

= |T ′ai
|) then

nr ← nr − 1
Rl[t]← r

else
if (nai > 0) then

if (r = success) then
nr ← nr − 1
nai
← nai

− 1
Rl[t]← r

return Rl

is returned to the fault case execution. The action results list is used to verify the
action dependency relations and generate the fault case verdict.

The ProcessResults operation starts by checking if the local results of all
testers are success, i.e., if the number of required results is zero. If so, the ac-
tion result is also success. If any local result is failure, the action result is also
failure. However, if the operation has not received any result by the time limit, the
action result is timeout.

4.3. HadoopTest Implementation
HadoopTest provides an interface for testing three Hadoop versions, but can be

adapted to test other MapReduce systems or other distributed systems. HadoopTest
is open-source and available by request from the authors. HadoopTest is imple-
mented in Java and makes intensive use of dynamic reflection and annotations. It
uses these characteristics to select and execute the fault case actions.

A fault case F is implemented as a Java class, where methods marked with the
notation @TestStep compose the action list AF . The notation @TestStep has the
following attributes: Order is the element hai , a positive integer, and defines the
ai hierarchical level. Depend is the element Dai , an optional string, composed of
an identifier’s action list (methods with notation @TestStep) that must be success-
fully executed before ai. Answers is the element nai , an optional positive integer,
that defines the number of successful required results; Range is the element T ′

ai
, a

string composed of a testers’ identifier list (positive integers) separated by comma,
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Algorithm 5: ProcessResults
Input: A′, an action list; Rl, a local result list of each tester after executing its actions.
Output: RF , an action results list.
begin

foreach ai ∈ A′ do
if nai

= 0 then
RF [ai]← success

if Rl[t] = success,∀t ∈ T ′ai
then

RF [ai]← success

else
if ∃r ∈ Rl[t] : r = failure,∀t ∈ T ′ai

then
RF [ai]← failure

else
RF [ai]← timeout

return RF

or a positive integer range (e.g., “1–3”), or an asterisk, for which all testers ex-
ecute ai; When is the element Wai , a string composed of a command that must
be executed to enable ai execution; Timeout is the element θai , a positive integer
interpreted as milliseconds that is the time limit for ai execution.

4.4. Writing a Fault Case
HadoopTest simplifies the description of a fault case, only requiring a descrip-

tion of its action list AF that is a Java class with methods with the annotation
@TestStep. Listing 1 shows a part of the Java class FaultCase1 that describes the
action list of the representative fault case described in Table 1.

Class FaultCase1 is a subclass of AbstractMR that implements the MapReduce
library and provides the methods that abstract the complexity of the MapReduce
manipulation, such as method startWorker that starts a worker component. The
starting and stopping of MapReduce components are implemented using Hadoop
scripts. Scripts runningMap.sh and runningReduce.sh were implemented using
the Hadoop log file. Each script waits until a specific string occurs. Method fail-
Worker injects an interruption fault and is implemented by the kill bash command.
Method assertResult validates the application result by comparing it with the ex-
pected result.

The first method is a0 and describes a fault case action, since it has the notation
@TestStep. The purpose of the method is to start the component master, and the
notation attributes indicate that the method a0 must: be initially executed (order =
1), has no dependency relation (depend = “”), have one successful result (answers
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= 1), be executed by tester t0 (range = 0), has no trigger (when = “”), and be
executed until time 100 (timeout = 100).
public class FaultCase1 extends AbstractMR{
@TestStep(order=1, depend="", answers=1, range="0", when="", timeout=100)
public void a0() { startMaster(); }
@TestStep(order=2, depend="a0", answers=3, range="1-2", when="", timeout=1000)
public void a1() { startWorker(); }
@TestStep(order=3, depend="a1", answers=1, range="0", when="", timeout=900000)
public void a2() { startJob(); }
@TestStep(order=3, depend="a1", answers=1, range="1-2",

when="runningMap.sh", timeout=1000)
public void a3() { failWorker(); }
@TestStep(order=3, depend="a1", answers=1, range="1-2",

when="runningReduce.sh", timeout=1000)
public void a4() { failWorker(); }
@TestStep(order=4, depend="a2", answers=1, range="0", when="", timeout=10000)
public void a5() { assertResult(); }
@TestStep(order=5, depend="a0", answers=1, range="0", when="", timeout=1000)
public void a6() { stopMaster(); }
}

Listing 1: First part of class FaultCase1.

The second method of class FaultCase1 is a1. The purpose of this method a1
is to start a worker component, and the attributes of its annotation indicate that
method a1 must: be executed after the previous method (order = 2), be executed
only if action a0 is executed successfully (depend = “a0”), have three success
results (answers = 3), be executed by testers t1, t2, t3 (range = “1–3”), has no
trigger (when = “”), and be executed up to a time limit of 1000 (timeout = 1000).

The following methods, a2, a3, and a4, must be executed in parallel because
they have the same hierarchical level (order = 3) and after the successful exe-
cution of method a1 (depend = a1). Method a2 sends an application, and must
be executed by tester t0, who controls the master. Method a3 injects a fault on
the worker, and must be executed by the first tester that executes trigger running-
Map.sh. Method a4 injects a fault on the worker and must be executed by the first
tester that executes trigger runningReduce.sh.

Method a5 validates the application result, and must be executed by tester t0,
who controls the master, and after the successful execution of method a2 (depend
= a2) . Method a6 stops the component master and must be executed by tester t0.

4.5. Running a Fault Case
To run a fault case in HadoopTest, is necessary for Hadoop to already be

configured on the set of machines to be used during the test. In addition, the
HadoopTest configuration files (peerunit.properties and hadoop.properties) must
be adequately updated. The next step is to run the HadoopTest coordinator and
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one tester in the machine in which the Hadoop master component was configured.
The test machines then run the HadoopTest tester on each of the other machines
and wait for the completion of the fault case execution. The fault case verdict is
presented by the coordinator at the standard output and in the HadoopTest log file.

5. Experimental Results

This section presents the experimental results for testing Hadoop[7] using
our two main contributions: PbGen, an approach to generate representative fault
cases, and HadoopTest, a testing framework to automate the execution of fault
cases. The results are described and grouped according to six testing framework
requirements: controllability, time measurement, non-intrusiveness, repeatability,
reproducibility, and efficacy.

5.1. Cluster Setup and Workload
In a previous study [1], initial experiments were presented using two hun-

dred machines on the Grid’5000 1, demonstrating the scalability and time non-
intrusiveness of HadoopTest. In this study, we conducted experiments on a blade
with five nodes (virtual machines), to remove potential interference or network
connectivity problems. Each node has two virtual cores, 2 GB memory, and a 50
GB disk. All nodes ran Ubuntu 12.04.4 LTS (Precise Pangolin), Java 1.6.0 45
64 bit, Hadoop-0.22.0 (hadoop0), Hadoop-1.2.1 (hadoop1), and Hadoop-2.2.0
(hadoop2) with default configuration parameters.

Hadoop-2 splits into separated entities the two major facilities of the MapRe-
duce master component, (i) a resource manager to handle the use of resources
across the cluster, and (ii) an application master to deal with the life-cycle of jobs
running on the cluster. Therefore, despite of improving scalability and resource
management, Hadoop-2 demands at least three components (i, ii and a worker) to
execute a job – little different from a master and a worker of Hadoop-1.

The workload was composed of a 5 MB file with network traffic logs and
the WordCount MapReduce application, which calculates the number of distinct
words in files. WordCount is bundled with all Hadoop versions and has been
broadly adopted to analyze network traffic and logs [33, 34, 35]. The map function
receives as input the filename and its content, and for each word, the function
outputs a pair composed of the word and the numeral one (1). The reduce function

1https://www.grid5000.fr
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Table 2: Fault distribution by execution and Hadoop version.
execution hadoop0† hadoop1† hadoop2†

KillMap1 worker3 worker3 worker2
KillMap2 worker2 worker2 worker2
KillMap3 worker1 worker2 worker3
KillReduce1 worker1 worker2 worker2
KillReduce2 worker3 worker3 worker2
KillReduce3 worker1 worker2 worker2

†All executions received a PASS verdict.

sums the values found for each word and outputs a pair composed of the word and
its number of occurrences.

5.2. Controllability
Testing a MapReduce system requires a framework that individually controls

all distributed components to determine in which of them (where) and in which
state (when) the component is. The where and when data are only available at
running time because Hadoop schedules map and reduce tasks differently at each
execution.

Table 2 shows the Hadoop components in which HadoopTest injected faults
at each fault case execution, considering two fault cases and three Hadoop ver-
sions. None of the executions have errors, consequently, they received a PASS
verdict, showing that the three Hadoop versions tolerated the injected faults. The
KillMap1 refers to the first execution of the KillMap fault case that aims to validate
the Hadoop execution with three workers and while a worker fails when it exe-
cutes a map task. The worker1 failed on hadoop0, and worker2 failed on hadoop1
and hadoop2. The behavior is similar for the other executions of KillMap, except
for hadoop2 on KillMap2 where worker2 failed. A similar behavior occurs when
executing the KillReduce fault case. In the first execution, worker2 failed on all
hadoop versions. The worker2 also failed for all executions on hadoop2. How-
ever, worker1 failed in the second and third KillReduce executions on hadoop0,
and worker1 failed in the third execution on hadoop1.

Table 3 also shows the Hadoop components in which HadoopTest injected
faults for each fault case execution. However, in this case, the fault cases involved
three workers and a fault injection on two of them. The KillMapReduce fault
case aims to validate the Hadoop execution with three workers. In this case, two
workers fail, one when it executes a map task and another when it executes a re-
duce task. The 2KillMap fault case aims to validate the Hadoop execution with
two workers that fail when they execute a map task. In addition to the different
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Table 3: Task distribution of different executions and Hadoop versions.
execution hadoop0† hadoop1† hadoop2‡

KillMapReduce1 worker1, worker3 worker1, worker2 worker1, worker2
KillMapReduce2 worker1, worker2 worker1, worker3 worker1, worker2
KillMapReduce3 worker1, worker3 worker2, worker3 worker2, worker3
2KillMap1 worker1, worker2 worker2, worker3 worker3, worker2
2KillMap2 worker1, worker3 worker2, worker3 worker1, worker3
2KillMap3 worker2, worker3 worker1, worker3 worker2, worker3

†All executions received a PASS verdict. ‡All executions received a FAIL verdict.

distribution of task and faults that occurred on the executions, the Hadoop ver-
sions presented different job results. The hadoop0 and hadoop1 executions did
not presented errors, achieving a PASS verdict and showing that they tolerated the
injected faults. However, the hadoop2 executions achieved a FAIL verdict, be-
cause it stayed without workers to execute the job after HadoopTest failed its two
workers.

Although the hadoop2 executions received a FAIL verdict for the KillMapRe-
duce and 2KillMap fault cases, the behavior was expected, requiring us to execute
a different fault case. We executed the 2KillMapWaitJobFail fault case that fails
two workers when they execute a map task, and validates if the master assigns
a fail job when there is no worker available. We executed 2KillMapWaitJobFail
on four nodes to test hadoop2, and this received a PASS verdict on all fault case
executions. The hadoop0 and hadoop1 were tested considering the 2KillMap-
WaitJobFail fault case, but with three nodes (keeping only the master running
after workers failed). Both hadoop0 and hadoop1 executions received a FAIL ver-
dict because they did not interrupt the job execution for ten hours, at which point
the HadoopTest interrupted the fault case by timeout.

The Hadoop versions scheduled tasks differently, considering the different job
executions, and HadoopTest followed this behavior, controlling the fault case exe-
cution accordingly. Moreover, HadoopTest injected faults according the status of
each component and validated the Hadoop behavior correctly.

5.3. Time Measurement
HadoopTest is able to test Hadoop considering its temporal information, ei-

ther to evaluate component behaviors or the overall system status. For example,
HadoopTest is able to evaluate the detection latency of a failed component or use
a time-related parameter. Note that when a time parameter is altered and the sys-
tem does not follow the specified actions, the user can attribute the problem to
a network error. System testing enables us to find, identify, and correct errors,
improving the system development and deployment as well as enhancing the net-
work service reliability.
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(a) (b)
Figure 4: KillMap fault case runtimes for three Hadoop versions with different parameters (a) and
Hadoop and HadoopTest runtimes running on three, four, and five nodes (b).

To evaluate whether Hadoop reschedules faulty tasks within the specified fault
detection time, we set the mapreduce.task.timeout (timeout) and mapreduce.job-
tracker.expire.trackers.interval (interval) attributes to 60 s. We then executed a
KillMap fault case and present the runtimes obtained in Figure 4a. The timeout
parameter did not change the runtime of any hadoop version. The fault case ver-
dict was FAIL for hadoop0 and hadoop1, indicating that these versions did not
reschedule a faulty task within the specified detection time. However, the interval
parameter was considered by hadoop0 but not by hadoop1, which continued to
not reschedule a faulty task within the specified detection time.

Figures 5a and 5b show the average runtimes of different fault cases running
on three Hadoop versions. The WordCount was a job execution controlled by
HadoopTest, but without fault injection. Other fault cases are as described in Sec-
tion 5.2. Figure 5a shows the runtimes considering three nodes, and Figure 5b
shows the runtimes considering four nodes. Both figures show a large difference
between the executions with and without faults on hadoop0 and hadoop1 com-
pared to hadoop2. In addition, to demonstrate the effectiveness of injecting faults,
the differences enable us to evaluate the latency needed to identify a failed wor-
ker. On hadoop0 and hadoop1, the latency is about 800 s, while on hadoop2 the
latency is about 20 s.

We also evaluated the latency needed to identify a faulty job, i.e., when the
master identifies that all workers have failed. We set the timeout to 3600 s for the
sendJob action of the 2KillMapWaitJobFail fault case. The hadoop0 and hadoop1
achieved an INCONCLUSIVE verdict, because both executions were interrupted
by HadoopTest without a master answer.
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(a) (b)

Figure 5: Fault case runtimes for three Hadoop versions and three nodes (a), and four nodes (b).

5.4. Non-intrusiveness
HadoopTest does not require the alteration of the Hadoop source code to exe-

cute fault cases. HadoopTest uses Hadoop scripts to start and stop its components,
and uses bash scripts to analyze logs to activate the fault injection. HadoopTest
also uses the kill bash command to inject interruption faults. This approach,
instead of instantiating objects and altering the source-code [36], improves per-
formance and maintainability, and allows us to test other Hadoop versions or
Hadoop-based systems without worrying about implementation details.

HadoopTest minimal overhead and scalability were shown in a previous work[1].
HadoopTest increased the Hadoop runtime in less than 2 seconds, controlling a
distributed system running up to 200 nodes. Moreover, all results obtained for
Hadoop executions were equal to those obtained through HadoopTest.

Here, we present a twofold new evaluation for HadoopTest in a blade en-
vironment. First, we executed Hadoop with the default configuration parame-
ters to establish an execution time baseline. Second, we executed Hadoop using
HadoopTest to evaluate the overhead produced during a fault case execution. We
varied the hadoop versions (hadoop0, hadoop1, and hadoop2), and tested from
three to five nodes (3N to 5N). Again, all results obtained using Hadoop were
equal to those obtained through HadoopTest, and Figure 4b shows the average ex-
ecution times of WordCount running directly on Hadoop and through HadoopTest.
HadoopTest overloaded hadoop0 between 3 and 4 s, hadoop2 between 0.5 and 2
s, and hadoop1 only by 0.01–0.03 s. Moreover, the standard deviation was lower
than 2 s, confirming that HadoopTest has minimal runtime intrusiveness that can
even be lower for some systems, as was the case for hadoop1.
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5.5. Repeatability and Reproducibility
HadoopTest presents high repeatability and reproducibility because all fault

cases executions that we presented are accurately repeatable and reproducible.
HadoopTest is able to repeat the execution that reveals an error, making it pos-
sible to identify and remove the defect that generates the error. In spite of the
fact that the tests were executed in LAN inside a blade architecture, we repeated
them at least three times for all proposed fault cases, and we obtained the same
quantitative results for all executions.

5.6. Efficacy
All fault cases generated from the model of the MapReduce fault tolerance

mechanism are considered representative for testing because they inject a fault
only in a component that is running a MapReduce task. PbGen has high efficacy
because it only generates representative fault cases. HadoopTest is able to test
Hadoop when executing representative fault cases and evaluate its reliability and
availability. Furthermore, the presented approach is efficacious because errors
were identified in Hadoop using the HadoopTest execution of the representative
fault cases.

6. Conclusion
We exposed and analyzed issues related to testing MapReduce fault tolerance

based on generating and executing representative fault cases. We generated (de-
rived) the representative fault cases from the reachability graph of a PN model
for the MapReduce fault tolerance mechanism. The fault case executions were
automated by HadoopTest, the proposed testing framework that individually con-
trols and monitors each Hadoop distributed component, ensures the fault injection
on specified components and their status, and validates the system behavior ac-
cording to the expected behavior. Experimental results showed that the generated
fault cases were representative for testing Hadoop, allowing us to identify some
Hadoop errors. We demonstrated that HadoopTest presents the required properties
for a testing framework: controllability, time measurement, non-intrusiveness, re-
peatability, and efficacy. HadoopTest uses a simplified fault case description and
is freely available to be used and adapted to test other systems. Furthermore, the
testing method obtained, as a byproduct, the network reliability, which will ease
the network services development and deployment. We intend to automate the
fault tolerance testing as well as the generation and execution of the representa-
tive fault cases derived from the PN model. We also intend to enrich the fault
tolerance mechanism model and test other fault-tolerant systems by applying the
presented method.
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