

SDMX Technical Working Group

VTL Task Force

VTL – version 2.1

(Validation & Transformation Language)

Part 1 – User Manual

July 2024

VTL User Manual - Version 2.1 Page: 2

Foreword

The Task force for the Validation and Transformation Language (VTL), created in 2012-2013
under the initiative of the SDMX Secretariat, is pleased to present the version 2.1 of VTL.

The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the
consideration that SDMX already had a package for transformations and expressions in its
information model, while a specific implementation language was missing. To make this
framework operational, a standard language for defining validation and transformation rules
(operators, their syntax and semantics) has been adopted.

The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM
communities and the work started in summer 2013. The intention was to provide a language
usable by statisticians to express logical validation rules and transformations on data,
described as either dimensional tables or unit-record data. The assumption is that this logical
formalization of validation and transformation rules could be converted into specific
programming languages for execution (SAS, R, Java, SQL, etc.), and would provide at the same
time, a “neutral” business-level expression of the processing taking place, against which various
implementations can be mapped. Experience with existing examples suggests that this goal
would be attainable.

An important point that emerged is that several standards are interested in such a kind of
language. However, each standard operates on its model artefacts and produces artefacts
within the same model (property of closure). To cope with this, VTL has been built upon a
very basic information model (VTL IM), taking the common parts of GSIM, SDMX and DDI,
mainly using artefacts from GSIM, somewhat simplified and with some additional detail. In this
way, existing standards (GSIM, SDMX, DDI, others) would be allowed to adopt VTL by
mapping their information model against the VTL IM. Therefore, although a work-product of
SDMX, the VTL language in itself is independent of SDMX and will be usable with other
standards as well. Thanks to the possibility of being mapped with the basic part of the IM of
other standards, the VTL IM also makes it possible to collect and manage the basic definitions
of data represented in different standards.

For the reason described above, the VTL specifications are designed at logical level,
independently of any other standard, including SDMX. The VTL specifications, therefore, are
self-standing and can be implemented either on their own or by other standards (including
SDMX).

The first public consultation on VTL (version 1.0) was held in 2014. Many comments were
incorporated in the VTL 1.0 version, published in March 2015. Other suggestions for
improving the language, received afterwards, fed the discussion for building the draft version
1.1, which contained many new features, was completed in the second half of 2016 and
provided for public consultation until the beginning of 2017.

The high number and wide impact of comments and suggestions induced a high workload on
the VTL TF, which agreed to proceed in two steps for the publication of the final
documentation. The first step has been dedicated to fixing some high-priority features and
making them as much stable as possible; given the high number of changes, it was decided that
the new version should be considered as a major one and thus named VTL 2.0.

VTL User Manual - Version 2.1 Page: 3

The second step, taking also into consideration that some VTL implementation initiatives are
already in place, is aimed at acknowledging and fixing other features considered of minor
impact and priority, without affecting the features already published or the possible relevant
implementations.

In parallel with the work for designing the new VTL version, the task force has been involved
in the SDMX implementation of VTL, aiming at defining formats for exchanging rules and
developing web services to retrieve them; the new features have been included in the SDMX 3.0
package.

The present VTL 2.1 package contains the general VTL specifications, independently of the
possible implementations of other standards; it includes:

a) The User Manual, highlighting the main characteristics of VTL, its core assumptions and
the information model the language is based on;

b) The Reference manual, containing the full library of operators ordered by category,
including examples;

c) eBNF notation (extended Backus-Naur Form) which is the technical notation to be used
as a test bed for all the examples;

d) A Technical Notes document, containing some guidelines for VTL implementation.

The latest version of VTL is freely available online at https://sdmx.org/?page_id=5096

Acknowledgements

The VTL specifications have been prepared thanks to the collective input of experts from Bank
of Italy, Bank for International Settlements (BIS), European Central Bank (ECB), Eurostat, ILO,
INEGI-Mexico, INSEE-France, ISTAT-Italy, OECD, Statistics Netherlands, and UNESCO. Other
experts from the SDMX Technical Working Group, the SDMX Statistical Working Group and the
DDI initiative were consulted and participated in reviewing the documentation.

The list of contributors and reviewers includes the following experts: Sami Airo, Foteini
Andrikopoulou, David Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio Capaccioli,
Franck Cotton, Vincenzo Del Vecchio, Fabio Di Giovanni, Jens Dossé, Heinrich Ehrmann, Bryan
Fitzpatrick, Tjalling Gelsema, Luca Gramaglia, Arofan Gregory, Gyorgy Gyomai, Edgardo
Greising, Dragan Ivanovic, Angelo Linardi, Juan Munoz, Chris Nelson, Stratos Nikoloutsos,
Antonio Olleros, Stefano Pambianco, Marco Pellegrino, Michele Romanelli, Juan Alberto
Sanchez, Roberto Sannino, Angel Simon Delgado, Daniel Suranyi, Olav ten Bosch, Laura Vignola,
Fernando Wagener and Nikolaos Zisimos.

Feedback and suggestions for improvement are encouraged and should be sent to the SDMX
Technical Working Group (twg@sdmx.org).

https://sdmx.org/?page_id=5096
mailto:twg@sdmx.org

VTL User Manual - Version 2.1 Page: 4

Table of contents

FOREWORD ... 2

TABLE OF CONTENTS .. 4

INTRODUCTION ... 7

Structure of the document ... 7

GENERAL CHARACTERISTICS OF THE VTL ... 9

USER ORIENTATION ... 9

INTEGRATED APPROACH .. 10

ACTIVE ROLE FOR PROCESSING ... 11

INDEPENDENCE OF IT IMPLEMENTATION .. 12

EXTENSIBILITY, CUSTOMIZABILITY .. 14

LANGUAGE EFFECTIVENESS ... 14

EVOLUTION OF VTL 2.0 IN RESPECT TO VTL 1.0 ... 16

THE INFORMATION MODEL .. 16

STRUCTURAL ARTEFACTS AND REUSABLE RULES .. 16

THE CORE LANGUAGE AND THE STANDARD LIBRARY ... 17

THE USER DEFINED OPERATORS... 17

THE VTL DEFINITION LANGUAGE ... 17

THE FUNCTIONAL PARADIGM .. 18

THE OPERATORS ... 19

CHANGES FOR VERSION 2.1... 19

VTL INFORMATION MODEL ... 20

INTRODUCTION.. 20

GENERIC MODEL FOR DATA AND THEIR STRUCTURES ... 22

Data model diagram ... 23

Explanation of the Diagram .. 23

Functional Integrity ... 25

Examples ... 25

The data artefacts .. 28

GENERIC MODEL FOR VARIABLES AND VALUE DOMAINS .. 30

Variable and Value Domain model diagram ... 30

VTL User Manual - Version 2.1 Page: 5

Explanation of the Diagram .. 31

Relations and operations between Code Items ... 33

Conditioned Code Item Relations .. 36

The historical changes .. 36

The Variables and Value Domains artefacts .. 38

GENERIC MODEL FOR TRANSFORMATIONS .. 40

Transformations model diagram .. 43

Explanation of the diagram ... 43

Examples ... 44

Functional paradigm .. 45

Transformation Consistency .. 45

VTL DATA TYPES ... 47

DATA TYPES OVERVIEW .. 48

Data Types model diagram .. 48

Explanation of the diagram ... 49

General conventions for describing the types .. 49

SCALAR TYPES ... 50

Basic Scalar Types .. 50

Value Domain Scalar Types ... 53

Set Scalar Types ... 54

External representations and literals used in the VTL Manuals... 54

Conventions for describing the scalar types ... 57

COMPOUND DATA TYPES ... 59

Component Types .. 59

Data Set Types .. 61

Product Types ... 63

Operator Types ... 64

Ruleset Types... 64

Universal Set Types .. 65

Universal List Types ... 66

VTL TRANSFORMATIONS ... 67

THE EXPRESSION .. 68

THE ASSIGNMENT ... 69

VTL User Manual - Version 2.1 Page: 6

THE RESULT .. 70

THE NAMES .. 71

The artefact names .. 71

The environment name .. 72

The connection to the persistent storage .. 73

VTL OPERATORS ... 74

THE CATEGORIES OF VTL OPERATORS ... 74

THE INPUT PARAMETERS ... 75

THE INVOCATION OF VTL OPERATORS ... 76

LEVEL OF OPERATION .. 77

THE OPERATORS’ BEHAVIOUR .. 78

The Join operators .. 78

Other operators: default behaviour on Identifiers, Measures and Attributes .. 80

The Identifier Components and the Data Points matching ... 80

The operations on the Measure Components ... 83

Operators which change the basic scalar type ... 88

Boolean operators .. 90

Set operators ... 90

BEHAVIOUR FOR MISSING DATA .. 91

BEHAVIOUR FOR ATTRIBUTE COMPONENTS .. 93

The Attribute propagation rule ... 93

Properties of the Attribute propagation algorithm.. 96

GOVERNANCE, OTHER REQUIREMENTS AND FUTURE WORK .. 98

RELATIONS WITH THE GSIM INFORMATION MODEL ... 99

Data Sets and Data Structures .. 99

Value Domains .. 101

Transformation model and Business Process Model ... 101

ANNEX 1 – EBNF .. 102

PROPERTIES OF VTL GRAMMAR.. 102

VTL User Manual - Version 2.1 Page: 7

Introduction

This document presents the Validation and Transformation Language (also known as ‘VTL’)
version 2.1.

The purpose of VTL is to allow a formal and standard definition of algorithms to validate
statistical data and calculate derived data.

The first development of VTL aims at enabling, as a priority, the formalisation of data validation
algorithms rather than tackling more complex algorithms for data compilation. In fact, the
assessment of business cases showed that the majority of the institutions ascribes (prescribes)
a higher priority to a standard language for supporting the validation processes and in
particular to the possibility of sharing validation rules with the respective data providers, in
order to specify the quality requirements and allow validation also before provision.

This document is the outcome of a second iteration of the first phase, and therefore still
presents a version of VTL primarily oriented to support the data validation. However, as the
features needed for validation also include simple calculations, this version of VTL can support
basic compilation needs as well. In general, validation is considered as a particular case of
transformation; therefore, the term “Transformation” is meant to be more general, including
validation as well. The actual operators included in this version of VTL are described in the
Reference Manual.

Although VTL is developed under the umbrella of the SDMX governance, DDI and GSIM users
may also be highly interested in adopting a language for validation and transformation. In
particular, organizations involved in the SDMX, DDI and GSIM communities and in the High-
Level Group for the Modernisation of Official Statistics (HLG-MOS) expressed their wish of
adopting VTL as a unique language, usable in SDMX, DDI and GSIM.

Accordingly, the task-force working for the VTL development agreed on the objective of
adopting a common language, in the hope of avoiding the risk of having diverging variants.

Consequently, VTL is designed as a language relatively independent of the details of SDMX, DDI
and GSIM. It is based on an independent information model (IM), made of the very basic
artefacts common to these standards. Other models can inherit the VTL language by
unequivocally mapping their artefacts to those of the VTL IM.

Structure of the document

The following main sections of the document describe the following topics:

The general characteristics of the VTL, which are also the main requirements that the VTL is
aimed to fulfil.

The changes of VTL 2.x in respect to VTL 1.0 and a section for changes for version 2.1.

The Information Model on which the language is based. In particular, it describes the generic
model of the data artefacts for which the language is aimed to validate and transform the
generic model of the variables and value domains used for defining the data artefacts and the
generic model of the transformations.

The Data Types that the VTL manipulates, i.e. types of artefacts i.e. types of artefacts that can be
passed in input to or are returned in output from the VTL operators.

VTL User Manual - Version 2.1 Page: 8

The general rules for defining the Transformations, which are the algorithms that describe how
the operands are transformed into the results.

The characteristics, the invocation and the behaviour of the VTL Operators, taking into account
the perspective of users that need to learn how to use them.

A final part highlights some issues related to the governance of VTL developments and to future
work, following a number of comments, suggestions and other requirements that were
submitted to the task force in order to enhance the VTL package.

A short annex gives some background information about the BNF (Backus-Naur Form) syntax
used for providing a context-free representation of VTL.

The Extended BNF (EBNF) representation of the VTL 2.1 package is available at
https://sdmx.org/?page_id=5096.

https://sdmx.org/?page_id=5096

VTL User Manual - Version 2.1 Page: 9

General characteristics of the VTL

This section lists and briefly illustrates some general high-level characteristics of the validation
and transformation language. They have been discussed and shared as requirements for the
language in the VTL working group since the beginning of the work and have been taken into
consideration for the design of the language.

User orientation

 The language is designed for users without information technology (IT) skills, who
should be able to define calculations and validations independently, without the
intervention of IT personnel;

o The language is based on a “user” perspective and a “user” information model
(IM) and not on possible IT perspectives (and IMs)

o As much as possible, the language is able to manipulate statistical data at an
abstract/conceptual level, independently of the IT representation used to store
or exchange the data observations (e.g. files, tables, xml tags), so operating on
abstract (from IT) model artefacts to produce other abstract (from IT) model
artefacts

o It references IM objects and does not use direct references to IT objects

 The language is intuitive and friendly (users should be able to define and understand
validations and transformations as easily as possible), so the syntax is:

o Designed according to mathematics, which is a universal knowledge;

o Expressed in English to be shareable in all countries;

o As simple, intuitive and self-explanatory as possible;

o Based on common mathematical expressions, which involve “operands”
operated on by “operators” to obtain a certain result;

o Designed with minimal redundancies (e.g. possibly avoiding operators
specifying the same operation in different ways without concrete reasons).

 The language is oriented to statistics, and therefore it is capable of operating on
statistical objects and envisages the operators needed in the statistical processes and in
particular in the data validation phases, for example:

o Operators for data validations and edit;

o Operators for aggregation, even according to hierarchies;

o Operators for dimensional processing (e.g. projection, filter);

o Operators for statistics (e.g. aggregation, mean, median, variance …).

VTL User Manual - Version 2.1 Page: 10

Integrated approach

 The language is independent of the statistical domain of the data to be processed;

o VTL has no dependencies on the subject matter (the data content);

o VTL is able to manipulate statistical data in relation to their structure.

 The language is suitable for the various typologies of data of a statistical environment
(for example dimensional data, survey data, registers data, micro and macro,
quantitative and qualitative) and is supported by an information model (IM) which
covers these typologies;

o The IM allows the representation of the various typologies of data of a statistical
environment at a conceptual/logical level (in a way abstract from IT and from
the physical storage);

o The various typologies of data are described as much as possible in an
integrated way, by means of common IM artefacts for their common aspects;

o The principle of the Occam’s razor is applied as an heuristic principle in
designing the conceptual IM, so keeping everything as simple as possible or, in
other words, unifying the model of apparently different things as much as
possible.

 The language (and its IM) is independent of the phases of the statistical process and
usable in any one of them;

o Operators are designed to be independent of the phases of the process, their
syntax does not change in different phases and is not bound to some
characteristic restricted to a specific phase (operators’ syntax is not aware of
the phase of the process);

o In principle, all operators are allowed in any phase of the process (e.g. it is
possible to use the operators for data validation not only in the data collection
but also, for example, in data compilation for validating the result of a
compilation process; similarly it is possible to use the operators for data
calculation, like the aggregation, not only in data compilation but also in data
validation processes);

o Both collected and calculated data are equally permitted as inputs of a
calculation, without changes in the syntax of the operators/expression;

o Collected and calculated data are represented (in the IM) in a homogeneous way
with regard to the metadata needed for calculations.

 The language is designed to be applied not only to SDMX but also to other standards;

o VTL, like any consistent language, relies on a specific information model, as it
operates on the VTL IM artefacts to produce other VTL IM artefacts. In principle,
a language cannot be applied as-is to another information model (e.g. SDMX,
DDI, GSIM); this possibility exists only if there is an unambiguous
correspondence between the artefacts of those information models and the VTL
IM (that is if their artefacts correspond to the same mathematical notion);

VTL User Manual - Version 2.1 Page: 11

o The goal of applying the language to more models/standards is achieved by
using a very simple, generic and conceptual Information Model (the VTL IM),
and mapping this IM to the models of the different standards (SDMX, DDI, GSIM,
…); to the extent that the mapping is straightforward and unambiguous, the
language can be inherited by other standards (with the proper adjustments);

o To achieve an unambiguous mapping, the VTL IM is deeply inspired by the GSIM
IM and uses the same artefacts when possible1; in fact, GSIM is designed to
provide a formal description of data at business level against which other
information models can be mapped; a very small subset of the GSIM artefacts is
used in the VTL IM in order to keep the model and the language as simple as
possible (Occam’s razor principle); these are the artefacts strictly needed for
describing the data involved in Transformations, their structure and the
variables and value domains;

o GSIM artefacts are supplemented, when needed, with other artefacts that are
necessary for describing calculations; in particular, the SDMX model for
Transformations is used;

o As mentioned above, the definition of the VTL IM artefacts is based on
mathematics and is expressed at an abstract user level.

Active role for processing

 The language is designed to make it possible to drive in an active way the execution of
the calculations (in addition to documenting them)

 For the purpose above, it is possible either to implement a calculation engine that
interprets the VTL and operates on the data or to rely on already existing IT tools (this
second option requires a translation from the VTL to the language of the IT tool to be
used for the calculations)

 The VTL grammar is being described formally using the universally known Backus Naur
Form notation (BNF), because this allows the VTL expressions to be easily defined and
processed; the formal description allow the expressions:

o To be parsed against the rules of the formal grammar; on the IT level, this
requires the implementation of a parser that compiles the expressions and
checks their correctness;

o To be translated from the VTL to the language of the IT tool to be used for the
calculation; on the IT level, this requires the implementation of a proper
translator;

o To be translated from/to other languages if needed (through the
implementation of a proper translator).

1 See the section “Relationships between VTL and GSIM”

VTL User Manual - Version 2.1 Page: 12

 The inputs and the outputs of the calculations and the calculations themselves are
artefacts of the IM

o This is a basic property of any robust language because it allows calculated data
to be operands of further calculations;

o If the artefacts are persistently stored, their definition is persistent as well; if
the artefacts are non-persistently stored (used only during the calculation
process like input from other systems, intermediate results, external outputs)
their definition can be non-persistent;

o Because the definition of the algorithms of the calculations is based on the
definition of their input artefacts (in particular on the data structure of the input
data), the latter must be available when the calculation is defined;

o The VTL is designed to make the data structure of the output of a calculation
deducible from the calculation algorithm and from the data structure of the
operands (this feature ensures that the calculated data can be defined according
to the IM and can be used as operands of further calculations);

o In the IT implementation, it is advisable to automate (as much as possible) the
structural definition of the output of a calculation, in order to enforce the
consistency of the definitions and avoid unnecessary overheads for the definers.

 The VTL and its information model make it possible to check automatically the overall
consistency of the definitions of the calculations, including with respect to the artefact
of the IM, and in particular to check:

o the correctness of the expressions with respect to the syntax of the language

o the integrity of the expressions with respect to their input and output artefacts
and the corresponding structures and properties (for example, the input
artefacts must exist, their structure components referenced in the expression
must exist, qualitative data cannot be manipulated through quantitative
operators, and so on)

o the consistency of the overall graph of the calculations (for example, in order to
avoid that the result of a calculation goes as input to the same calculation, there
should not be cycles in the sequence of calculations, thus eliminating the risk of
producing unpredictable and erroneous results).

Independence of IT implementation

 According to the “user orientation” above, the language is designed so that users are not
required to be aware of the IT solution;

o To use the language, the users need to know only the abstract view of the data
and calculations and do not need to know the aspects of the IT implementation,
like the storage structures, the calculation tools and so on.

VTL User Manual - Version 2.1 Page: 13

 The language is not oriented to a specific IT implementation and permits many possible
different implementations (this property is particularly important in order to allow
different institutions to rely on different IT environments and solutions);

o The VTL provides only for a logical/conceptual layer for defining the data
transformations, which applies on a logical/conceptual layer of data
definitions

o The VTL does not prescribe any technical/physical tool or solution, so that it is
possible to implement the VTL by using many different IT tools

o The link between the logical/conceptual layer of the VTL definitions and the IT

implementation layer is out of the scope of the VTL;

 The language does not require to the users the awareness of the storage data structure;
the operations on the data are specified according to the conceptual/logical structure,
and so are independent of the storage structure; this ensures that the storage structure
may change without necessarily affecting the conceptual structure and the user
expressions;

o Data having the same conceptual/logical structure may be accessed using the
same statements, even if they have different IT structures;

o The VTL provides commands for data storage and retrieval at a
conceptual/logical level; the mapping and the conversion between the
conceptual and the storage structures of the data is left to the IT implementation
(and users need not be aware of it);

o By mapping the logical and the storage data structures, the IT implementations
can make it possible to store/retrieve data in/from different IT data stores (e.g.
relational databases, dimensional databases, xml files, spread-sheets,
traditional files);

 The language is not strictly connected with some specific IT tool to perform the
calculations (e.g. SQL, statistical packages, other languages, XML tools...);

o The syntax of the VTL is independent of existing IT calculation tools;

o On the IT level, this may require a translation from the VTL to the language of
the IT tool to be used for the calculation;

o By implementing the proper translations at the IT level, different institutions
can use different IT tools to execute the same algorithms; moreover, it is
possible for the same institution to use different IT tools within an integrated
solution (e.g. to exploit different abilities of different tools);

o VTL instructions do not change if the IT solution changes (for example following
the adoption of another IT tool), so avoiding impacts on users as much as
possible.

VTL User Manual - Version 2.1 Page: 14

Extensibility, customizability

 The language is made of few “core” constructs, which are the fundamental building
blocks into which any operation can be decomposed, and a “standard library”, which
contains a number of standard operators built from the core constructs; these are the
standard parts of the language, which can be extended gradually by the VTL
maintenance body, enriching the available operators according to the evolution of the
business needs, so progressively making the language more powerful;

 Other organizations can define additional operators having a customized behaviour and
a functional syntax, so extending their own library by means of custom-designed
operators. As obvious, these additional operators are not part of the standard VTL
library. To exchange VTL definitions with other institutions, the possible custom
libraries need to be pre-emptively shared.

 In addition, it is possible to call external routines of other languages/tools, provided
that they are compatible with the IM; this requisite is aimed to fulfil specific calculation
needs without modifying the operators of the language, so exploiting the power of the
other languages/tools if necessary for specific purposes. In this case:

o The external routines should be compatible with, and relate back to, the
conceptual IM of the calculations as for its inputs and outputs, so that the
integrity of the definitions is ensured

o The external routines are not part of the language, so their use is subject to some
limitations (e.g. it is impossible to parse them as if they were operators of the
language)

o The use of external routines compromises the IT implementation
independence, the abstraction and the user orientation. Therefore external
routines should be used only for specific needs and in limited cases, whereas
widespread and generic needs should be fulfilled through the operators of the
language;

 Whilst an Organisation adopting VTL can extend it by defining customized parts, on its
own total responsibility, in order to improve the standard language for specific
purposes (e.g. for supporting possible algorithms not permitted by the standard part),
it is important that the customized parts remain compliant with the VTL IM and the VTL
fundamentals. Adopting Organizations are totally in charge of any activity for
maintaining and sharing their customized parts. Adopting Organizations are also totally
in charge of any possible maintenance activity to maintain the compliance between
their customized parts and the possible VTL future versions.

Language effectiveness

 The language is oriented to give full support to the various typologies of data of a
statistical environment (for example dimensional data, survey data, registers data,
micro and macro, quantitative and qualitative, …) described as much as possible in a
coherent way, by means of common IM artefacts for their common aspects, and relying
on mathematical notions, as mentioned above. The various types of statistical data are

VTL User Manual - Version 2.1 Page: 15

considered as mathematical functions, having independent variables (Identifiers) and
dependent variables (Measures, Attributes 2), whose extensions can be thought as
logical tables (DataSets) made of rows (Data Points) and columns (Identifiers,
Measures, Attributes).

 The language supports operations on the Data Sets (i.e. mathematical functions) in
order to calculate new Data Sets from the existing ones, on their structure components
(Identifiers, Measures, Attributes), on their Data Points.

 The algorithms are specified by means of mathematical expressions which compose the
operands (Data Sets, Components …) by means of operators (e.g. +,-,*,/,>,<) to obtain a
certain result (Data Sets, Components …);

 The validation is considered as a kind of calculation having as an operand the Data
Sets to be validated and producing a Data Set containing information about the result
of the validation;

 Calculations on multiple measures are supported by most operators, as well as
calculations on the attributes of the Data Sets and calculations involving missing values;

 The operations are intended to be consistent with the real world historical changes
which induce changes of the artefacts (e.g. of the code lists, of the hierarchies …);
however, because different standards may represent historical changes in different
ways, the implementation of this aspect is left to the standards (e.g. SDMX, DDI …), to
the institutions and to the implementers adopting the VTL and therefore the VTL
specifications does not prescribe any particular methodology for representing the
historical changes of the artefacts (e.g. versioning, qualification of time validity);

 Almost all the VTL operators can be nested, meaning that in the invocation of an
operator any operand can be the result of the invocation of other operators which
calculate it;

 The results of the calculations can be permanently stored or not, according to the
needs.

2 The Measures bear information about the real world and the Attributes about the Data Set or some part of it.

VTL User Manual - Version 2.1 Page: 16

Evolution of VTL 2.0 in respect to VTL 1.0

Important contributions gave origin to the work that brought to the VTL 2.0 and now to this
VTL 2.1 version.

Firstly, it was not possible to acknowledge immediately - in VTL 1.0 - all of the remarks received
during the version 1.0 public review. Secondly, the publication of VTL version 1.0 triggered the
launch of other reviews and proofs of concepts, by several institutions and organizations, aimed
at assessing the ability of VTL of supporting properly their real use cases.

The suggestions coming from these activities had a fundamental role in designing the new
version of the language.

The main improvements are described below.

The Information Model

The VTL Information Model describes the artefacts that VTL manipulates (i.e. it provides
generic models for defining Data and their structures, Variables, Value Domains and so on) and
how the VTL is used to define validations and transformations (i.e. a generic model for
Transformations).

In VTL 2.0 some mistakes of VTL 1.0 have been corrected and new kinds of artefacts have
been introduced in order to make the representation more complete and to facilitate the
mapping with the artefacts of other standards (e.g. SDMX, DDI …).

As already said, VTL is intended to operate at logical/conceptual level and independently of the
implementation, actually allowing different implementations. For this reason, VTL-IM provides
only for a core abstract view of data and calculations and leaves out the implementation aspects.

Some other aspects, even if logically related to the representation of data and calculations, are
intentionally left out because they can depend on the actual implementation too. Some of them
are mentioned hereinafter (for example the representation of real-world historical changes
that impact model artefacts).

The operational metadata needed for supporting real processing systems are also out of VTL
scope.

The implementation of the VTL-IM abstract model artefacts needs to take into account the
specificities of the standards (like SDMX, DDI …) and the information systems for which it is
used.

Structural artefacts and reusable rules

The structural artefacts of the VTL IM (e.g. a set of code items) as well as the artefacts of other
existing standards (like SDMX, DDI, or others) are intrinsically reusable. These so-called
“structural” artefacts can be referenced as many times as needed.

VTL User Manual - Version 2.1 Page: 17

In order to empower the capability of reusing definitions, a main requirement for VTL 2.0 has
been the introduction of reusable rules (for example, validation or aggregation rules defined
once and applicable to different cases).

The reusable rules are defined through the VTL definition language and applied through the
VTL manipulation language.

The core language and the standard library

VTL 1.0 contains a flat list of operators, in principle not related to one another. A main
suggestion for VTL 2.0 was to identify a core set of primitive operators able to express all of the
other operators present in the language. This was done in order to specify the semantics of
available operators more formally, avoiding possible ambiguities about their behaviour and
fostering coherent implementations. The distinction between ‘core’ and ‘standard’ library is
not important to the VTL users but is largely of interest of the VTL technical implementers.

The suggestion above has been acknowledged, so VTL 2.0 manipulation language consists of a
core set of primitive operators and a standard library of derived operators, definable in term
of the primitive ones. The standard library contains essentially the VTL 1 operators (possibly
enhanced) and the new operators introduced with VTL 2.0 (see below).

In particular, the VTL core includes an operator called “join” which allows extending the
common scalar operations to the Data Sets.

The user defined operators

VTL 1.0 does not allow defining new operators from existing ones, and thus the possible
operators are predetermined. Besides, thanks to the core operators and the standard library,
VTL 2.0 allows to define new operators (also called “user-defined operators”) starting from
existing ones. This is achieved by means of a specific statement of the VTL-DL (the “define
operator” statement, see the Reference Manual).

This a main mechanism to enforce the requirements of having an extensible and customizable
language and to introduce custom operators (not existing in the standard library) for specific
purposes.

As obvious, because the user-defined operators are not part of the standard library, they are
not standard VTL operators and are applicable only in the context in which they have been
defined. In particular, if there is the need of applying user-defined operators in other contexts,
their definitions need to be pre-emptively shared.

The VTL Definition Language

VTL 1.0 contains only a manipulation language (VTL-ML), which allows specifying the
transformations of the VTL artefacts by means of expressions.

A VTL Definition Language (VTL-DL) has been introduced in version 2.0.

VTL User Manual - Version 2.1 Page: 18

In fact, VTL 2.0 allows reusable rules and user-defined operators, which do not exist in VTL
1.0 and need to be defined beforehand in order to be invoked in the expressions of the VTL
manipulation language. The VTL-DL provides for their definition.

Second, VTL 1.0 was initially intended to work on top of an existing standard, such as SDMX,
DDI or other, and therefore the definition of the artefacts to be manipulated (Data and their
structures, Variables, Value Domains and so on) was assumed to be made using the
implementing standards and not VTL itself.

During the work for the VTL 1.1 draft version, it was proposed to make the VTL definition
language able to define also those VTL-IM artefacts that have to be manipulated. A draft
version of a possible artefacts definition language was included in VTL 1.1 public consultation,
held until the beginning of 2017. The comments received and the following analysis evidenced
that the artefact definition language cannot include the aspects that are left out of the IM (for
example the representation of the historical changes of the real world impacting the model
artefacts) yet are:

i. needed in the implementations;
ii. influenced by other implementation-specific aspects;
iii. in real applications, bound to be extended by means of other context-related

metadata and adapted to the specific environment.

In conclusion, the artefact definition language has been excluded from this VTL version and
the opportunity of introducing it will be further explored in the near future.

In respect to VTL 1.0, VTL 2.0 definition language (VTL-DL) is completely new (there is no
definition language in VTL 1.0).

The functional paradigm

In the VTL Information Model, the various types of statistical data are considered as
mathematical functions, having independent variables (Identifiers) and dependent variables
(Measures, Attributes), whose extensions can be thought of as logical tables (Data Sets) made
of rows (Data Points) and columns (Identifiers, Measures, Attributes). Therefore, the main
artefacts to be manipulated using VTL are the logical Data Sets, i.e. first-order mathematical
functions3.

Accordingly, VTL uses a functional programming paradigm, meaning a paradigm that treats
computations as the evaluation of higher-order mathematical functions4, which manipulate
the first-order ones (i.e., the logical Data Sets), also termed “operators” or “functionals”. The
functional paradigm avoids changing-state and mutable data and makes use of expressions for
defining calculations.

It was observed, however, that the functional paradigm was not sufficiently achieved in
VTL 1.0 because in some particular cases a few operators could have produced non- functional

3 A first-order function is a function that does not take other functions as arguments and does not provide another
function as result.

4 A higher-order function is a function that takes one or more other functions as arguments and/or provides
another function as result.

VTL User Manual - Version 2.1 Page: 19

results. In effects, even if this regarded only temporary results (not persistent), in specific
cases, this behaviour could have led to unexpected results in the subsequent calculation chain.

Accordingly, some VTL 1.0 operators have been revised in order to enforce their functional
behaviour.

The operators

The VTL 2.0 manipulation language (VTL-ML) has been upgraded in respect to the VTL 1.0. In
fact VTL 2.0 introduces a number of new powerful operators, like the analytical and the
aggregate functions, the data points and hierarchy checks, various clauses and so on, and
improve many existing operators, first of all the “join”, which substitutes the “merge” of the
VTL 1.0. The complete list of the VTL 2.0 operators is in the reference manual.

Some rationalisations have brought to the elimination of some operators whose behaviour
can be easily reproduced using other operators. Some examples are the “attrcalc” operator
which is now simply substituted by the already existing “calc” and the “query syntax” that was
allowed for accessing a subset of Data Points of a Data Set, which on one side was not coherent
with the rest of the VTL syntax conventions and on the other side can be easily substituted by
the “filter” operator.

Even in respect to the draft VTL 1.1 many rationalisations have been applied, also following
the very numerous comments received during the relevant public consultation.

Changes for version 2.1

The VTL 2.1 version is a minor one and contains the following changes in respect to 2.0:

i. typos and errors in the text and/or in the examples have been fixed;

ii. new operators have been defined: time operators (datediff, dateadd,
year/month/quarter/dayofmonth/dayofyear, daystoyear, daystomonth,
durationtodays), case operator (simple extension of if-then-else), random operator
(generating a random decimal number >= 0 and < 1)

iii. some changes have been introduced: the cast operator will have only explicit or
implicit mask (no optional mask not allowed), some assumptions have been taken in
the ordering for some use cases, the default window clause for analytic operators has
been changed to be compliant with the SQL standard behaviour.

A new document (Technical Notes) has been added to the documentation to support VTL
implementation.

VTL User Manual - Version 2.1 Page: 20

VTL Information Model

Introduction

The VTL Information Model (IM) is a generic model able to describe the artefacts that VTL can
manipulate, i.e. to give the definition of the artefact structure and relationships with other
artefacts.

The knowledge of the artefacts definition is essential for parsing VTL expressions and
performing VTL operations correctly. Therefore, it is assumed that the referenced artefacts are
defined before or at the same time the VTL expressions are defined.

The results of VTL expressions must be defined as well, because it must always be possible to
take these results as operands of further expressions to build a chain of transformations as
complex as needed. In other words, VTL is meant to be “closed”, meaning that operands and
results of the VTL expressions are always artefacts of the VTL IM. As already mentioned, the
VTL is designed to make it possible to deduce the data structure of the result from the
calculation algorithm and the data structure of the operands.

VTL can manage persistent or temporary artefacts, the former stored persistently in the
information system, the latter only used temporarily. The definition of the persistent artefact
must be persistent as well, while the definition of temporary artefacts can be temporary5.

The VTL IM provides a formal description at business level of the artefacts that VTL can
manipulate, which is the same purpose as the Generic Statistical Information Model (GSIM)
with a broader scope. In fact, the VTL Information Model uses GSIM artefacts as much as
possible (GSIM 2.0 version)6. Note that the description of the GSIM 2.0 classes and relevant
definitions can be consulted in the GSIM section of the UNECE site7. However, the detailed
mapping between the VTL IM and the IMs of the other standards is out of the scope of this
document and is left to the competent bodies of the other standards8.

The VTL IM provides for model at a logical/conceptual level, which is independent of the
implementation and allows different possible implementations.

The VTL IM provides for an abstract view of the core artefacts used in the VTL calculations
and intentionally leaves out implementation aspects. Some other aspects, even if logically
related to the representation of data and calculations, are also left out because they can
depend on the actual implementation too (for example, the textual descriptions of the VTL
artefacts, the representation of the historical changes of the real world).

5 The definition of a temporary artefact can be also persistent, if needed.

6 See also the section “Relations with the GSIM Information model”

7 https://unece.org/statistics/modernstats/gsim

8 Some initiatives have been started by UNECE High-Level Group for the Modernisation of Official Statistics (HLG-

MOS); see for example https://unece.org/statistics/documents/2023/11/working-documents/hlg2023-ssg-

sdmxvtlddi-implement-gsim.

https://unece.org/statistics/networks-of-experts/high-level-group-modernisation-statistical-production-and-services
https://unece.org/statistics/networks-of-experts/high-level-group-modernisation-statistical-production-and-services

VTL User Manual - Version 2.1 Page: 21

The operational metadata needed for supporting real processing systems are also left out
from the VTL scope (for example the specification of the way data are managed, i.e. collected,
stored, validated, calculated/estimated, disseminated ...).

Therefore, the VTL IM cannot autonomously support real processing systems, and for this
purpose needs to be properly integrated and adapted, also adding more metadata (e.g., other
classes of artefacts, properties of the artefacts, relationships among artefacts …).

Even the possible VTL implementations in other standards (like SDMX and DDI) would
require proper adjustments and improvements of the IM described here.

The VTL IM is inspired to the modelling approach that consists in using more modelling levels,
in which a model of a certain level models the level below and is an instance of a model of the
level above.

For example, assuming conventionally that the level 0 is the level of the real world to be
modelled and ignoring possible levels higher than the one of the VTL IM, the VTL modelling
levels could be described as follows:

Level 0 – the real world

Level 1 – the extensions of the data that model some aspect of the real world. For
example, the content of the data set “population from United Nations”:

 Year Country Population

2016 China 1,403,500,365

2016 India 1,324,171,354

2016 USA 322,179,605

…

2017 China 1,409,517,397

2017 India 1,339,180.127

2017 USA 324,459,463

…

Level 2 – the definitions of specific data structures (and relevant transformations) which
are the model of the level 1. An example: the data structure of the data set “population
from United Nations” has one measure component called “population” and two identifier
components called Year and Country.

Level 3 – the VTL Information Model, i.e. the generic model to which the specific data
structures (and relevant transformations) must conform. An example of IM rule about
the data structure: a Data Set may be structured by just one Data Structure, a Data
Structure may structure any number of Data Sets.

A similar approach is very largely used, in particular in the information technology and for
example by the Object Management Group9, even if the terminology and the enumeration of the
levels is different. The main correspondences are:

VTL Level 1 (extensions) – OMG M0 (instances)

VTL Level 2 (definitions) – OMG M1 (models)

9 For example in the Common Warehouse Metamodel and Meta-Object Facility specifications

VTL User Manual - Version 2.1 Page: 22

VTL Level 3 (information model) – OMG M2 (metamodels)

Often the level 1 is seen as the level of the data, the level 2 of the metadata and the level 3 of the
meta-metadata, even if the term metadata is too generic and somewhat ambiguous. In fact,
“metadata” is any data describing another data, while “definition” is a particular metadata
which is the model of another data. For example, referring to the example above, a possible
other data set which describes how the population figures are obtained is certainly a metadata,
because it gives information about another data (the population data set), but it is not at all its
definition, because it does not describe the information structure of the population data set.

The VTL IM is illustrated in the following sections.

The first section describes the generic model for defining the statistical data and their
structures, which are the fundamental artefacts to be transformed. In fact, the ultimate goal of
the VTL is to act on statistical data to produce other statistical data.

In turn, data items are characterized in terms of variables, value domains, code items and
similar artefacts. These are the basic bricks that compose the data structures, fundamental to
understand the meaning of the data, ensuring harmonization of different data when needed,
validating and processing them. The second section presents the generic model for these
kinds of artefacts.

Finally, the VTL transformations, written in the form of mathematical expressions, apply the
operators of the language to proper operands in order to obtain the needed results. The third
section depicts the generic model of the transformations.

Generic Model for Data and their structures

This Section provides a formal model for the structure of data as operated on by the Validation
and Transformation Language (VTL).

For each Unit (e.g. a person) or Group of Units of a Population (e.g. groups of persons of a certain
age and civil status), identified by means of the values of the independent variables (e.g. either
the “person id” or the age and the civil status), a mathematical function provides for the values
of the dependent variables, which are the properties to be known (e.g. the revenue, the
expenses …).

A mathematical function can be seen as a logical table made of rows and columns. Each
column holds the values of a variable (either independent or dependent); each row holds the
association between the values of the independent variables and the values of the dependent
variables (in other words, each row is a single “point” of the function).

In this way, the manipulation of any kind of data (unit and dimensional) is brought back to the
manipulation of very simple and well-known objects, which can be easily understood and
managed by users. According to these assumptions, there would no longer be the need of
distinguishing between unit and dimensional data, and in fact VTL does not introduces such a
distinction at all. Nevertheless, even if such a distinction is not part of the VTL IM, this aspect is
illustrated below in this document in order to make it easier to map the VTL IM to the GSIM IM
and the DDI IM, which have such a distinction.

VTL User Manual - Version 2.1 Page: 23

Starting from this assumption, each mathematical function (logical table) may be defined
having Identifier, Measure and Attribute Components. The Identifier components are the
independent variables of the function, the Measures and Attribute Components are the
dependent variables. Obviously, the artefacts “Data Set” and “Data Set Structure” have to be
strictly interpreted as logical artefacts on a mathematical level, not necessarily corresponding
to physical data sets and physical data structures.

In order to avoid any possible misunderstanding with respect to SDMX, also take note that the
VTL Data Set in general does not correspond to the SDMX Dataset. In fact, a SDMX dataset is a
physical set of data (the data exchanged in a single interaction), while the VTL Data Set is a
logical set of data, in principle independent of its possible physical representation and handling
(like the exchange of part of it). The right mapping is between the VTL Data Set and the SDMX
Dataflow.

Data model diagram

White box: same artefact as in GSIM 2.0

Light grey box: similar to GSIM 2.0

Explanation of the Diagram

Data Set: a mathematical function (logical table) that describes some properties of some
groups of units of a population. In general, the groups of units may be composed of one or more
units. For unit data, each group is composed of a single unit. For dimensional data, each group
may be composed of any number of units. A VTL Data Set is considered as a logical set of
observations (Data Points) having the same logical structure and the same general meaning,
independently of the possible physical representation or storage. Between the VTL Data Sets

Data Point

Data Set

Data Structure

Data Structure
Component

Identifier

Attribute

Measure

has

structured
by

0..N

1..1

0..N

0..N

0..N

0..N

1..1

has
Is super-type of

VTL User Manual - Version 2.1 Page: 24

and the physical datasets there can be relationships of any cardinality: for example, a VTL Data
Set may be stored either in one or in many physical data sets, as well as many VTL Data Sets
may be stored in the same physical datasets (or database tables). The mapping between the
VTL logical artefacts and the physical artefacts is left to the VTL implementations and is out of
scope of this document.

Data Point: a single value of the function, i.e. a single association between the values of the
independent variables and the values of the dependent variables. A Data Point corresponds to
a row of the logical table that describes the function; therefore, the extension of the function
(Data Set) is a set of Data Points. Some Data Points of the function can be unknown (i.e. missing
or null), for example, the possible ones relevant to future dates. The single Data Points do not
need to be individually defined, because their definition is the definition of the function (i.e. the
Data Set definition).

Data Structure: the structure of a mathematical function, having independent and dependent
variables. The independent variables are called “Identifier components”, the dependent
variables are called either “Measure Components” or “Attribute Components”. The distinction
between Measure and Attribute components is conventional and essentially based on their
meaning: the Measure Components give information about the real world, while the Attribute
components give information about the function itself.

Data Structure Component: any component of the data structure, which can be either an
Identifier, or a Measure, or an Attribute Component.

Identifier Component (or simply Identifier): a component of the data structure that is
an independent variable of the function.

Measure Component (or simply Measure): a component of the data structure that is a
dependent variable of the function and gives information about the real world.

Attribute Component (or simply Attribute): a component of the data structure that is a
dependent variable of the function and gives information about the function itself. In
case the automatic propagation of the Attributes is supported (see the section
“Behaviour for Attribute Components”), the Attributes can be further classified in
normal Attributes (not automatically propagated) and Viral Attributes (automatically
propagated).

There can be from 0 to N Identifiers in a Data Structure. A Data Set having no identifiers can
contain just one Data Point, whose independent variables are not explicitly represented.

There can be from 0 to N Measures in a Data Structure. A Data Set without Measures is
allowed because the Identifiers can be considered as functional dependent from themselves (so
having also the role of Measure). In an equivalent way, the combinations of values of the
Identifiers can be considered as “true” (i.e. existing), therefore it can be thought that there is
an implicit Boolean measure having value “TRUE” for all the Data Points10.

10 For example, this is the case of a relationship that does not have properties: imagine a Data Set containing the
relationship between the students and the courses that they have followed, without any other information: the
corresponding Data Set would have StudentId and CourseId as Identifiers and would not have any explicit
measure

VTL User Manual - Version 2.1 Page: 25

The extreme case of a Data Set having no Identifiers, Measures and Attributes is allowed. A Data
Set of this kind contains just one scalar Value whose meaning is specified only through the Data
Set name. As for the VTL operations, these Data Sets are managed like the scalar Values.

Note that the VTL may manage Measure and Attribute Components in different ways, as
explained in the section “The general behaviour of operations on datasets” below, therefore the
distinction between Measures and Attributes may be significant for the VTL.

Represented Variable: a characteristic of a statistical population (e.g. the country of birth)
represented in a specific way (e.g. through the ISO numeric country code). A represented
variable may contribute to define any number of Data Structure Components.

Functional Integrity

The VTL data model requires a functional dependency between the Identifier Components and
all the other Components of a Data Set. It follows that a Data Set can also be seen as a tabular
structure with a finite number of columns (which correspond to its Components) and rows
(which correspond to its individual Data Points), in fact for each combination of values of the
Identifier Components’ columns (which identify an individual Data Point), there is just one
value for each Measure and Attribute (contained in the corresponding columns).

The functional dependency translates into the following functional integrity requirements:

 Each Component has a distinct name in the Data Structure of the Data Set and contains

one scalar value for each Data Point.

 All the Identifier Components of the Data Set must contain a significant value for all the

Data Points (i.e. such value cannot be unknown (“NULL”)).

 In a Data Set there cannot exist two or more Data Points having the same values for all

the Identifier Components (i.e. the same Data Point key).

 When a Measure or Attribute Component has no significant value (i.e. “NULL”) for a

Data Point, it is considered unknown for that Data Point.

 When a Data Point is missing (i.e. a possible combination of values of the independent

variables is missing), all its Measure and Attribute Components are by default

considered unknown (unless otherwise specified).

The VTL expects the input Data Sets to be functionally integral and is designed to ensure that
the resulting Data Set are functionally integral too.

Examples

As a first simple example of Data Sets seen as mathematical functions, let us consider the
following table:

VTL User Manual - Version 2.1 Page: 26

Production of the American Countries

This table is equivalent to a proper mathematical function: in fact, it fulfils the functional
integrity requirements above. The Table can be defined as a Data Set, whose name can be
“Production of the American Countries”. Each row of the table is a Data Point belonging to the
Data Set. The Data Structure of this Data Set has five Data Structure Components:

 Reference Date (Identifier Component)
 Country (Identifier Component)
 Measure Name (Identifier Component - Measure Identifier)
 Measure Value (Measure Component)
 Status (Attribute Component)

As a second example, let us consider the following physical table, in which the symbol “###”
denotes cells that are not allowed to contain a value or contain the “NULL” value.

Institutional Unit Data

Ref.Date Country Meas.Name Meas.Value Status

2013 Canada Population 50 Final

2013 Canada GNP 600 Final

2013 USA Population 250 Temporary

2013 USA GNP 2400 Final

… … … … …

2014 Canada Population 51 Unavailable

2014 Canada GNP 620 Temporary

… … … … …

Row Type I.U. ID Ref.Date
I.U.
Name

I.U.

Sector
Assets Liabilities

I A ### AAAAA Private ### ###

II A 2013 ### ### 1000 800

II A 2014 ### ### 1050 750

I B ### BBBBB Public ### ###

II B 2013 ### ### 1200 900

II B 2014 ### ### 1300 950

I C ### CCCCC Private ### ###

II C 2013 ### ### 750 900

II C 2014 ### ### 800 850

… … … … … … …

VTL User Manual - Version 2.1 Page: 27

This table does not fulfil the functional integrity requirements above because its rows (i.e. the
Data Points) either have different structures (in term of allowed columns) or have null values
in the Identifiers. However, it is easy to recognize that there exist two possible functional
structures (corresponding to the Row Types I and II), so that the original table can be split in
the following ones:

Row Type I - Institutional Unit register

Row Type II - Institutional Unit Assets and Liabilities

Each one of these two tables corresponds to a mathematical function and can be represented
like in the first example above. Therefore, these would be two distinct logical Data Sets
according to the VTL IM, even if stored in the same physical table.

In correspondence to one physical table (the former), there are two logical tables (the latter),
so that the definitions will be the following ones:

VTL Data Set 1: Record type I - Institutional Units register

Data Structure 1:
 I.U. ID (Identifier Component)
 I.U. Name (Measure Component)
 I.U. Sector (Measure Component)

VTL Data Set 2: Record type II - Institutional Units Assets and Liabilities

Data Structure 2:

I.U. ID I.U. Name I.U. Sector

A AAAAA Private

B BBBBB Public

C CCCCC Private

… … …

I.U. ID Ref.Date Assets Liabilities

A 2013 1000 800

A 2014 1050 750

B 2013 1200 900

B 2014 1300 950

C 2013 750 900

C 2014 800 850

… … … …

VTL User Manual - Version 2.1 Page: 28

 I.U. ID (Identifier Component)
 Reference Date (Identifier Component)
 Assets (Measure Component)
 Liabilities (Measure Component)

These examples clarify the meaning of “logical” table or Data Set in VTL, that is a set of data
which can be considered as the extensional form of a mathematical function, whichever
technical format is used, regardless it is stored or not and, in case, wherever it is stored.

In the example above, one physical data set corresponds to more than one logical VTL Data Sets,
with a 1 to many correspondence. In the general case, between physical and logical data sets
there can be any correspondence (1 to 1, 1 to many, many to 1, many to many).

The data artefacts

The list of the VTL artefacts related to the manipulation of the data is given here, together
with the information that the VTL may need to know about them11.

For the sake of simplicity, the names of the artefacts can be abbreviated in the VTL manuals
(in particular the parts of the names shown between parentheses can be omitted).

As already mentioned, this list provides an abstract view of the core metadata needed for the
manipulation of the data structures but leaves out implementation and operational aspects. For
example, textual descriptions of the artefacts are left out, as well as any specification of
temporal validity of the artefacts, procedural metadata (specification of the way data are
processed, i.e., collected, stored, validated, calculated/estimated, disseminated ...) and so on.
In order to support real systems, the implementers can conveniently adjust this model to their
environments and integrate it by adding additional metadata (e.g. other properties of the
artefacts, other classes of artefacts, other relationships among artefacts …).

Data Set

Data Set name name of the Data Set

Data Structure name reference to the data structure of the Data Set

Data Structure

Data Structure name name of the Data Structure (the Structure Components are
specified in the following artefact)

(Data) Structure Component

Data Structure name the data structure, which the Data Structure Component
belongs to

Component name the name of the Component

Component Role IDENTIFIER or MEASURE or ATTRIBUTE (or also VIRAL
ATTRIBUTE if the automatic propagation is supported)

11 For example, for ensuring correct operations, the knowledge of the Data Structure of the input Data Sets is
essential at parsing time, in order to check the correctness of the VTL expression and determine the Data
Structure of the result, and at execution time to perform the calculations

VTL User Manual - Version 2.1 Page: 29

Represented Variable the Represented Variable which defines the Component
(see also below)

The Data Points have the same information structure of the Data Sets they belong to; in fact
they form the extensions of the relevant Data Sets; VTL does not require defining them
explicitly.

VTL User Manual - Version 2.1 Page: 30

Generic Model for Variables and Value Domains

This Section provides a formal model for the Variables, the Value Domains, their Values and the
possible (Sub)Sets of Values. These artefacts can be referenced in the definition of the VTL Data
Structures and as parameters of some VTL Operators.

Variable and Value Domain model diagram

White box: same as in GSIM 2.0

Light grey: similar to GSIM 2.0

Dark grey additional detail (in respect to GSIM 2.0)

Data Set
Component

includes
as

match to

0..N 1..1

Value Domain

Represented
Variable

measures

1..1

0..N

Value Domain
Subset (Set) 1..1 0..N 1..1

0..N

Takes values
in

1..N

Is super-class of
classtype of

Is super-class of

Has

1..1

1..1

0..N

1..1

1..1

Enumerated
Value Domain

Described
Value Domain

Code Item

1..1

1..N

Code List

Has

Contains

 Described
Set

Enumerated
Set

Set List

Has

Contains

Value

Is super-class of

Has

1..1 1..1

1..N 1..N

Data Set

1..N

Has

Data Structure
Component

1..1 0..N

defined by

Set Item

1..1

1..1

VTL User Manual - Version 2.1 Page: 31

Explanation of the Diagram

The VTL IM distinguishes explicitly between Value Domains and their (Sub)Sets in order to
allow different Data Set Components relevant to the same aspect of the reality (e.g. the
geographic area) to share the same Value Domain and, at the same time, to take values in
different Subsets of it. This is essential for VTL for several operations and in particular for
validation purposes. For example, it may happen that the same Represented Variable, say the
“place of birth”, in a Data Set takes values in the Set of the European Countries, in another one
takes values in the set of the African countries, and so on, even at different levels of details
(e.g. the regions, the cities). The definition of the exact Set of Values that a Data Set Component
can take may be very important for VTL, in particular for validation purposes. The
specification of the Set of Values that the Data Set Components may assume is equivalent, on
the mathematical plane, to the specification of the domain and the co-domain of the
mathematical function corresponding to the Data Set.

Data Set: see the explanation given in the previous section (Generic Model for Data and their
structures).

Data Set Component: a component of the Data Set, which matches with just one Data Structure
Component of the Data Structure of such a Data Set and takes values in a (sub)set of the
corresponding Value Domain12; this (sub)set of allowed values may either coincide with the set
of all the values belonging to the Value Domain or be a proper subset of it. In respect to a Data
Structure Component, a Data Set Component bears the important additional information of the
set of allowed values of the Component, which can be different Data Set by Data Set even if their
data structure is the same.

Data Structure: a Data Structure; see the explanation already given in the previous section
(Generic Model for Data and their structures)

Data Structure Component: a component of a Data Structure; see the explanation already
given in the previous section (Generic Model for Data and their structures). A Data Structure
Component is defined by a Represented Variable.

Represented Variable: a characteristic of a statistical population (e.g. the country of birth)
represented in a specific way (e.g. through the ISO code). A represented variable may take value
in (or may be measured by) just one Value Domain.

Value Domain: the domain of allowed values for one or more represented variables. Because
of the distinction between Value Domain and its Value Domain Subsets, a Value Domain is the
wider set of values that can be of interest for representing a certain aspect of the reality like the
time, the geographical area, the economic sector and so on. As for the mathematical meaning, a
Value Domain is meant to be the representation of a “space of events” with the meaning of the
probability theory13. Therefore, a single Value of a Value Domain is a representation of a single
“event” belonging to this space of events.

12 This is the Value Domain which measures the Represented Variable, which defines the Data Structure
Component, which the Data Set Component matches to

13 According to the probability theory, a random experiment is a procedure that returns a result belonging a
predefined set of possible results (for example, the determination of the “geographic location” may be considered
as a random experiment that returns a point of the Earth surface as a result). The “space of results” is the space of

VTL User Manual - Version 2.1 Page: 32

Described Value Domain: a Value Domain defined by a criterion (e.g. the domain of the
positive integers).

Enumerated Value Domain: a Value Domain defined by enumeration of the allowed
values (e.g. domain of ISO codes of the countries).

Code List: the list of all the Code Items belonging to an enumerated Value Domain,
each one representing a single “event” with the meaning of the probability theory. As
for its mathematical meaning, this list is unique for a Value Domain, cannot contain
repetitions (each Code Item can be present just once) and cannot contain ambiguities
(each Code Item must have a univocal meaning, i.e., must represent a single event of
the space of the events). The multiplicity of the relationship with the Enumerated Value
Domain is 1:1 because, as it happens for the Data Set, the VTL considers the Code
List as an artefact at a logical level, corresponding to its mathematical meaning. A
logical VTL Code List, however, may be obtained as the composition of more physical
lists of codes if needed: the mapping between the logical and the physical lists is out of
scope of this document and is left to the implementations, provided that the basic
conceptual properties of the VTL Code List are ensured (unicity, no repetitions, no
ambiguities). In practice, as for the VTL IM, the Code List artefact matches 1:1 with the
Enumerated Value Domain artefact, therefore they can be considered as the same
artefact.

Code Item: an allowed Value of an enumerated Value Domain. A Code Item is the association of
a Value with the relevant meaning. An example of Code Item is a single country ISO code (the
Value) associated to the country it represents (the category). As for the mathematical meaning,
a Code Item is the representation of an “event” of a space of events (i.e. the relevant Value
Domain), according to the notions of “event” and “space of events” of the probability theory (see
the note above).

Value: an allowed value of a Value Domain. Please note that on a logical / mathematical level,
both the Described and the Enumerated Value Domains contain Values, the only difference is
that the Values of the Enumerated Value Domains are explicitly represented by enumeration,
while the Values of the Described Value Domains are implicitly represented through a criterion.

The following artefacts are aimed at representing possible subsets of the Value Domains. This
is needed for validation purposes, because very often not all the values of the Value Domain are
allowed in a Data Structure Component, but only a subset of them (e.g. not all the countries but
only the European countries). This is needed also for transformation purposes, for example to
filter the Data Points according to a subset of Values of a certain Data Structure Component (e.g.
extract only the European Countries from some data relevant to the World Countries).

Value Domain Subset (or simply Set): a subset of Values of a Value Domain. Hereinafter a
Value Domain Subset is simply called Set, because it can be any set of Values belonging to the
Value Domain (even the set of all the values of the Value Domain).

all the possible results. Instead an “event” is a set of results (going back to the example of the geographic location,
the event “Europe” is the set of points of the European territory and more in general an “event” corresponds to a
“geographical area”). The “space of events” is the space of all the possible “events” (in the example, the space of
the geographical areas).

VTL User Manual - Version 2.1 Page: 33

Described Value Domain Subset (or simply Described Set): a described (defined by a
criterion) subset of Values of a Value Domain (e.g. the countries having more than 100
million inhabitants, the integers between 1 and 100).

Enumerated Value Domain Subset (or simply Enumerated Set): an enumerated
subset of a Value Domain (e.g. the enumeration of the European countries).

Set List: the list of all the Values belonging to an Enumerated Set (e.g. the list of the ISO
codes of the European countries), without repetitions (each Value is present just once).
As obvious, these Values must belong to the Value Domain of which the Set is a subset.
The Set List enumerates the Values contained in the Set (e.g. the European country
codes), without the associated categories (e.g. the names of the countries), because the
latter are already maintained in the Code List / Code Items of the relevant Value Domain
(which enumerates all the possible Values with the associated categories). In practice,
as for the VTL IM, the Set List artefact coincides 1:1 with the Enumerated Set artefact,
therefore they can be considered as the same artefact.

Set Item: an allowed Value of an enumerated Set. The Value must belong to the same Value
Domain the Set belongs to. Each Set Item refers to just one Value and just one Set. A Value can
belong to any number of Sets. A Set can contain any number of Values.

Relations and operations between Code Items

The VTL allows the representation of logical relations between Code Items, considered as
events of the probability theory and belonging to the same enumerated Value Domain (space
of events). The VTL artefact that allows expressing the Code Item Relations is the Hierarchical
Ruleset, which is described in the reference manual.

As already explained, each Code Item is the representation of an event, according to the notions
of “event” and “space of events” of the probability theory. The relations between Code Items
aim at expressing the logical implications between the events of a space of events (i.e. in a Value
Domain). The occurrence of an event, in fact, may imply the occurrence or the non-occurrence
of other events. For example:

 The event UnitedKingdom implies the event Europe (e.g. if a person lives in UK he/she
also lives in Europe), meaning that the occurrence of the former implies the occurrence
of the latter. In other words, the geo-area of UK is included in the geo-area of the Europe.

 The events Belgium, Luxembourg, Netherlands are mutually exclusive (e.g. if a person
lives in one of these countries he/she does not live in the other ones), meaning that the
occurrence of one of them implies the non-occurrence of the other ones (Belgium AND
Luxembourg = impossible event; Belgium AND Netherlands = impossible event;
Luxembourg and Netherlands = impossible event). In other words, these three geo-areas
do not overlap.

 The occurrence of one of the events Belgium, Netherlands or Luxembourg (i.e. Belgium
OR Netherlands OR Luxembourg) implies the occurrence of the event Benelux (e.g. if a
person lives in one of these countries he/she also lives in Benelux) and vice-versa (e.g.
if a person lives in Benelux, he/she lives in one of these countries). In other words, the
union of these three geo-areas coincides with the geo-area of the Benelux.

VTL User Manual - Version 2.1 Page: 34

The logical relationships between Code Items are very useful for validation and transformation
purposes. Considering for example some positive and additive data, like for example the
population, from the relationships above it can be deduced that:

 The population of United Kingdom should be lower than the population of Europe.
 There is no overlapping between the populations of Belgium, Netherlands and

Luxembourg, so that these populations can be added in order to obtain aggregates.
 The sum of the populations of Belgium, Netherlands and Luxembourg gives the

population of Benelux.

A Code Item Relation is composed by two members, a 1st (left) and a 2nd (right) member. The
envisaged types of relations are: “is equal to” (=), “implies” (<), “implies or is equal to” (<=), “is
implied by” (>), and “is implied by or is equal to” (>=). “Is equal to” means also “implies and is
implied”. For example:

UnitedKingdom < Europe means (UnitedKingdom implies Europe)

In other words, this means that if a point of space belongs to United Kingdom it also
belongs to Europe.

The left members of a Relation is a single Code Item. The right member can be either a single
Code Item, like in the example above, or a logical composition of Code Items: these are the Code
Item Relation Operands. The logical composition can be defined by means of Operators,
whose goal is to compose some Code Items (events) in order to obtain another Code Item
(event) as a result. In this simple algebra, two operators are envisaged:

 the logical OR of mutually exclusive Code Items, denoted “+”, for example:

Benelux = Belgium + Luxembourg + Netherlands

This means that if a point of space belongs to Belgium OR Luxembourg OR Netherlands
then it also belongs to Benelux and that if a point of space belongs to Benelux then it also
belongs either to Belgium OR to Luxembourg OR to Netherlands (disjunction). In other
words, the statement above says that territories of Belgium, Netherland and
Luxembourg are non-overlapping and their union is the territory of Benelux.
Consequently, as for the additive measures (and being equal the other possible
Identifiers), the sum of the measure values referred to Belgium, Luxembourg and
Netherlands is equal to the measure value of Benelux.

 the logical complement of an implying Code Item in respect to another Code Item
implied by it, denoted “-“, for example:

EUwithoutUK = EuropeanUnion - UnitedKingdom

In simple words, this means that if a point of space belongs to the European Union and
does not belong to the United Kingdom, then it belongs to EUwithoutUK and that if a
point of space belongs to EUwithoutUK then it belongs to the European Union and not
to the United Kingdom. In other words, the statement above says that territory of the
United Kingdom is contained in the territory of the European Union and its complement
is the territory of EUwithoutUK. Consequently, considering a positive and additive
measure (and being equal the other possible Identifiers), the difference of the measure

VTL User Manual - Version 2.1 Page: 35

values referred to EuropeanUnion and UnitedKingdom is equal to the measure value of
EUwithoutUK.

Please note that the symbols “+” and “-“ do not denote the usual operations of sum and
subtraction, but logical operations between Code Items seen as events of the probability theory.
In other words, two or more Code Items cannot be summed or subtracted to obtain another
Code Item, because they are events (and not numbers), and therefore they can be manipulated
only through logical operations like “OR” and “Complement”.

Note also that the “+” also acts as a declaration that all the Code Items denoted by “+” are
mutually exclusive (i.e. the corresponding events cannot happen at the same time), as well as
the “-“ acts as a declaration that all the Code Items denoted by “-” are mutually exclusive.
Furthermore, the “-“ acts also as a declaration that the relevant Code item implies the result of
the composition of all the Code Items denoted by the “+”.

At intuitive level, the symbol “+” means “with” (Benelux = Belgium with Luxembourg with
Netherland) while the symbol “-“ means “without” (EUwithoutUK = EuropeanUnion without
UnitedKingdom).

When these relations are applied to additive numeric Measures (e.g. the population relevant to
geographical areas), they allow to obtain the Measure Values of the left member Code Items (i.e.
the population of Benelux and EUwithoutUK) by summing or subtracting the Measure Values
relevant to the component Code Items (i.e. the population of Belgium, Luxembourg and
Netherland in the former case, EuropeanUnion and UnitedKingdom in the latter). This is why
these logical operations are denoted in VTL through the same symbols as the usual sum and
subtraction. Please note also that this is valid whichever the Data Set and the additive Measure
are (provided that the possible other Identifiers of the Data Set Structure have the same Values).

These relations occur between Code Items (events) belonging to the same Value Domain (space
of events). They are typically aimed at defining aggregation hierarchies, either structured in
levels (classifications), or without levels (chains of free aggregations) or a combination of these
options. These hierarchies can be recursive, i.e. the aggregated Code Items can in their turn be
the components of more aggregated ones, without limitations to the number of recursions.

For example, the following relations are aimed at defining the continents and the whole world
in terms of individual countries:

 World = Africa + America + Asia + Europe + Oceania
 Africa = Algeria + … + Zimbabwe
 America = Argentina + … + Venezuela
 Asia = Afghanistan + … + Yemen
 Europe = Albania + … + Vatican City
 Oceania = Australia + … + Vanuatu

A simple model diagram for the Code Item Relations and Code Item Relation Operands is the
following:

VTL User Manual - Version 2.1 Page: 36

This diagram tells that a Code Item Relation has a first and a second member. The first member
(the left one) refers to just one Code Item, the second member (the right one) may refer to one
or more Code Item Relation Operands; each Code Item Relation Operand refers to just one Code
Item.

Conditioned Code Item Relations

The Code Items (coded events) of a Code Item Relation can be conditioned by the Values
(events) of other Value Domains (spaces of events). Both the Code Items belonging to the first
and the second member of the Relation can be conditioned.

A common case is the conditioning relevant to the reference time, which allows expressing the
historical validity of a Relation (see also the section about the historical changes below). For
example, the European Union (EU) changed its composition in terms of countries many times,
therefore the Code Item Relationship between EU and its component countries depends on the
reference time, i.e. is conditioned by the Values of the “reference time” Value Domain.

The VTL allows to express the conditionings by means of Boolean expressions which refer to
the Values of the conditioning Value Domains (for more details, see the Hierarchical Rulesets in
the Reference Manual).

The historical changes

The changes in the real world may induce changes in the artefacts of the VTL-IM and in the
relationships between them, so that some definitions may be considered valid only with
reference to certain time values. For example, the birth of a new country as well as the split or
the merge of existing countries in the real world would induce changes in the Code Items
belonging to the Geo Area Value Domain, in the composition of the relevant Sets, in the
relationships between the Code Items and so on. The same may obviously happen for other
Value Domains.

A correct representation of the historical changes of the artefacts is essential for VTL, because
the VTL operations are meant to be consistent with these historical changes, in order to ensure
a proper behaviour in relation to each time. With regard to this aspect, VTL must face a complex
environment, because it is intended to work also on top of other standards, whose assumptions
for representing historical changes may be heterogeneous. Moreover, different institutions may
use different conventions in different systems.

Code Item

Code Item
Relation

Code Item Rel.
Operand

1..1 1..N

Contains in
2nd member

Refers

Refers as the
1st member

0..N

1..1 1..1

0..N

VTL User Manual - Version 2.1 Page: 37

Naturally, adopting a common convention for representing the historical changes of the
artefacts would be a good practice, because the definitions made by different bodies would be
given through the same methodology and therefore would be easily comparable one another.
In practice, however, different conventions are already in place and have to be taken into
account, because there can also be strong motivations to maintain them. For this reason, the
VTL does not impose any definite representation for the historical changes and leaves users
free of maintaining their own conventions, which are considered as part of the data content to
be processed rather than of the language.

Actually, the VTL-IM intentionally does not include any mechanism for representing historical
changes and needs to be properly integrated to this purpose. This aspect is left to the
standards and the institutions adopting VTL and the implementers of VTL systems, which can
adapt and enrich the VTL-IM as needed.

Even if presented here for association of ideas with the relations between Code Items whose
temporal dependency is intuitive, these considerations about the temporal validity of the
definitions are valid in general.

Moreover, as already mentioned, the possibility of integrating the VTL-IM with additional
metadata is needed also for other purposes, and not only for dealing with the temporal validity.

It is appropriate here to highlight some relationships between the VTL artefacts and some
possible temporal conventions, because this can guide VTL implementers in extending the VTL-
IM according to their needs.

First, we want to distinguish between two main temporal aspects: the so-called validity time
and operational time. Validity time is the time during which a definition is assumed to be true
as an abstraction of the real world (for example, Estonia belongs to EU “from 1st May 2004 to
current date”). Operational time is the time period during which a definition is available in the
processing system and may produce operational effects. The following considerations refers
only to the former.

The assignment of identifiers to the abstractions of the real world is strictly related to the
possible basic temporal assumptions. Two main options can be considered:

a) The same identifier is assigned to the abstraction even if some aspects of such an
abstraction change in time. For example, the identifier EU is assigned to the European
Union even if the participant countries change. Under this option, a single identifier
(e.g. EU) is used to represent the whole history of an abstraction, following the intuitive
conceptualization in which abstractions are identified independently of time and
maintain the same identity even if they change with time. The variable aspects of an
abstraction are therefore described by specifying their validity periods (for example, the
participation of Estonia in the EU can be specified through the relevant start and end
dates).

b) Different Identifiers are assigned to the abstraction when some aspects of the
abstraction change in time. For example, more Identifiers (e.g. EU1, … EU9) represent
the European Union, one for each period during which its participant countries remain
stable. This option is based on the conceptualization in which the abstractions are
identified in connection with the time period in which they do not change, so that a Code
Item (e.g. EU1) corresponds to an abstraction (e.g. the European Union) only for the time

VTL User Manual - Version 2.1 Page: 38

period in which the abstraction remains stable (e.g. EU1 represents the European Union
from when it was created by the founder countries, to the first time it changed
composition). An example of adoption of this option b) is the common practice of giving
versions to Code Lists or Code Items for representing time changes (e.g. EUv1,… , EUv9
where v=version), being each version assumed as invariable.

Therefore, the general assumptions of VTL for the representation of the historical changes are
the following:

 The choice of adopting the options described above is left to the implementations.
 The VTL Identifiers are different depending on the two options above; for example in

the option a) there would exist one Identifier for the European Union (e.g. EU) while in
the option b) there would exist many different Identifiers, corresponding to the different
versions of the European Union (e.g. EU1, … EU9).

 If the Code Items are versioned for managing temporal changes (option b), the version
is considered part of the VTL univocal identifier of the Code Item, and therefore
different versions are equivalent to different Code Items. As explained above, in fact,
the European Union would be represented by many Code Items (e.g. EUv1, … EUv9).
The same applies if the Code Items are versioned by means of dates (e.g. start/end
dates …) or other conventions instead than version numbers. As obvious, the temporal
validity of EUv1 … EUv9, if represented, should not overlap.

The implementers of VTL systems can add the temporal validity (through validity dates or
versions) to any class of artefacts or relations of the VTL-IM (as well as any other additional
characteristic useful for the implementation, like the textual descriptions of the artefacts or
others). If the temporal validity is not added, the occurrences of the class are assumed valid
“ever”.

The Variables and Value Domains artefacts

The list of the VTL artefacts related to Variables and Value Domains is given here, together with
the information that the VTL need to know about them. For the sake of simplicity, the names of
some artefacts are often abbreviated in the VTL manuals (in particular the parts of the names
shown between parentheses can be omitted).

As already mentioned, this model provides an abstract view of the core metadata supporting
the definition of the data structures but leaves out implementation and operational aspects. For
example, the textual descriptions of the artefacts are left out, as well as the specification of the
temporal validity of the artefacts, the procedural metadata (the specification of the way data
are processed i.e. collected, stored, validated, calculated/estimated, disseminated ...) and so on.
In order to support real systems, the implementers can conveniently adjust this model and
integrate it by adding other metadata (e.g. other properties of the artefacts, other classes of
artefacts, other relationships among artefacts …).

(Represented) Variable

Variable name name of the Represented Variable

VTL User Manual - Version 2.1 Page: 39

Value Domain name reference to the Value Domain that measures the Variable,
i.e. in which the Variable takes values

(Data Set) Component

Data Set name the Data set which the Component belongs to

Component name the name of the Component

(Sub) Set name reference to the (sub)Set containing the allowed values for
the Component

Value Domain

Value Domain name name of the Value Domain

Value Domain sub-class if it is an Enumerated or Described Value Domain

Basic Scalar Type the basic scalar type of the Values of the Value Domain,
for example string, number … and so on (see also the section
“VTL data types”)

Value Domain Criterion a criterion for restricting the Values of a basic scalar type,
for example by specifying a max length of the
representation, an upper or/and a lower value, and so on

Code List this artefact is comprised in the previous one, in fact it
corresponds one to one to the enumerated Value Domain (see
above)

Value this artefact has no explicit representation, because the
Values of described Value Domains are not represented by
definition, while the Values of the enumerated Value Domains
are represented through the Code Item artefact (see below)

Code Item this artefact defines the Code Items of the Enumerated Value
Domains

Value Domain name the Value Domain, which the Value belongs to

Value the univocal name of the Value within the Value Domain
it belongs to

(Value Domain Sub)Set

Value Domain name the Value Domain, which the set belongs to

Set name the name of the Set, which must be univocal within the
Value Domain

Set sub-class if it is an Enumerated or Described Set

Set Criterion a criterion for identifying the Values belonging to the Set

Set List this artefact is comprised in the previous one, in fact it
corresponds one to one to the enumerated Set

VTL User Manual - Version 2.1 Page: 40

Set Item this artefact specifies the Code Items of the Enumerated Sets

Value Domain name reference to the Value Domain which the Set and the Value
belongs to

Set name the Set that contains the Value

Value Value element of the Set

Code Item Relation

1stMember Domain name Value Domain of the first member of the Relation; e.g.
Geo_Area

1stMemberValue the first member of the Relation; e.g. Benelux

1stMemberComposition conventional name of the composition method, which
distinguishes possible different compositions methods
related to the same first member Value. It must be univocal
within the 1stMember. Not necessarily, it has to be
meaningful; it can be simply a progressive number, e.g. “1”

Relation Type type of relation between the first and the second member,
having as possible values =, <, <=, >, >=

Code Item Relation Operand

1stMember Domain name Value Domain of the first member of the Relation; e.g.
Geo_Area

1stMember Value the first member of the Relation; e.g. Benelux

1stMember Composition see the description already given above

2ndMember Value an operand of the Relation; e.g. Belgium

Operator the operator applied on the 2ndMember Value, it can be “+”
or ”- “; the default is “+”

Generic Model for Transformations

The purpose of this section is to provide a formal model for describing the validation and
transformation of the data.

A Transformation is assumed to be an algorithm to produce a new model artefact (typically a
Data Set) starting from existing ones. It is also assumed that the data validation is a particular
case of transformation; therefore, the term “transformation” is meant to be more general and
to include the validation case as well.

VTL User Manual - Version 2.1 Page: 41

This model is essentially derived from the SDMX IM14, as DDI and GSIM do not have an explicit
transformation model at the present time15. In its turn, the SDMX model for Transformations is
similar in scope and content to the Expression metamodel that is part of the Common
Warehouse Metamodel (CWM) 16 developed by the Object Management Group (OMG).

The model represents the user logical view of the definition of algorithms by means of
expressions. In comparison to the SDMX and CWM models, some technical details are omitted
for the sake of simplicity, including the way expressions can be decomposed in a tree of nodes
in order to be executed (if needed, this detail can be found in the SDMX and CWM
specifications).

The basic brick of this model is the notion of Transformation.

A Transformation specifies the algorithm to obtain a certain artefact of the VTL information
model, which is the result of the Transformation, starting from other existing artefacts, which
are its operands.

Normally the artefact produced through a Transformation is a Data Set (as usual considered at
a logical level as a mathematical function). Therefore, a Transformation is mainly an algorithm
for obtaining derived Data Sets starting from already existing ones.

The general form of a Transformation is the following:

result assignment_operator expression

meaning that the outcome of the evaluation of expression in the right-hand side is assigned to
the result of the Transformation in the left-hand side (typically a Data Set). The assignment
operators are two, ”:=” and “<-“ (for the assignment to a persistent or a non-persistent result,
respectively). A very simple example of Transformation is:

Dr <- D1 (Dr , D1 are assumed to be Data Sets)

In this Transformation the Data Set D1 is assigned without changes (i.e. is copied) to Dr, which
is persistently stored.

In turn, the expression in the right-hand side composes some operands (e.g., some input Data
Sets, but also Sets or other artefacts) by means of some operators (e.g. sum, product …) to
produce the desired results (e.g. the validation outcome, the calculated data).

For example: Dr := D1 + D2 (Dr , D1 , D2 are assumed to be Data Sets)

In this example, the measure values of the Data Set Dr are calculated as the sum of the measure
values of the Data Sets D1 and D2, by composing the Data Points having the same Values for the
Identifiers. In this case, Dr is not persistently stored.

14 The SDMX specification can be found at https://sdmx.org/?page_id=5008 (see Section 2 - Information Model,

package 13 - “Transformations and Expressions”).

15 The Transformation model described here is not a model of the processes, like the ones that both SDMX and
GSIM have, and has a different scope. The mapping between the VTL Transformation and the Process models is
not covered by the present document.

16 This specification can be found at http://www.omg.org/cwm.

http://www.omg.org/cwm

VTL User Manual - Version 2.1 Page: 42

A validation is intended to be a kind of Transformation. For example, the simple validation that
D1 = D2 can be made through an “If” operator, with an expression of the type:

Dr := If (D1 = D2 , then TRUE, else FALSE)

In this case, the Data Set Dr would have a Boolean measure containing the value TRUE if the
validation is successful and FALSE if it is unsuccessful.

These are only fictitious examples for explanation purposes. The general rules for the
composition of Data Sets (e.g. rules for matching their Data Points, for composing their
measures …) are described in the sections below, while the actual Operators of the VTL and
their behaviours are described in the VTL reference manual.

The expression in the right-hand side of a Transformation must be written according to a formal
language, which specifies the list of allowed operators (e.g. sum, product …), their syntax and
semantics, and the rules for composing the expression (e.g. the default order of execution of the
operators, the use of parenthesis to enforce a certain order …). The Operators of the language
have Parameters 17 , which are the a-priori unknown inputs and output of the operation,
characterized by a given role (e.g. dividend, divisor or quotient in a division).

Note that this generic model does not specify the formal language to be used. In fact, not only
the VTL but also other languages might be compliant with this specification, provided that they
manipulate and produce artefacts of the information model described above. This is a generic
and formal model for defining Transformations of data through mathematical expressions,
which in this case is applied to the VTL, agreed as the standard language to define and exchange
validation and transformation rules among different organizations

Also, note that this generic model does not actually specify the operators to be used in the
language. Therefore, the VTL may evolve and may be enriched and extended without impact on
this generic model.

In the practical use of the language, Transformations can be composed one with another to
obtain the desired outcomes. In particular, the result of a Transformation can be an operand of
other Transformations, in order to define a sequence of calculations as complex as needed.

Moreover, the Transformations can be grouped into Transformations Schemes, which are sets
of Transformations meaningful to the users. For example, a Transformation Scheme can be the
set of Transformations needed to obtain some specific meaningful results, like the validations
of one or more Data Sets. A Transformation Scheme is meant to be the smaller set of
Transformations to be executed in the same run.

A set of Transformations takes the structure of a graph, whose nodes are the model artefacts
(usually Data Sets) and whose arcs are the links between the operands and the results of the
single Transformations. This graph is directed because the links are directed from the operands
to the results and is acyclic because it should not contain cycles (like in the spreadsheets),
otherwise the result of the Transformations might become unpredictable.

The ability of generating this graph is a main feature of the VTL, because the graph documents
the operations performed on the data, just like a spreadsheet documents the operations among
its cells.

17 The term is used with the same meaning of “argument”, as usual in computer science.

VTL User Manual - Version 2.1 Page: 43

Transformations model diagram

White box: same as in GSIM 2.0

Dark grey box: additional detail (in respect to GSIM 2.0)

Explanation of the diagram

Transformation: the basic element of the calculations, which consists of a statement that
assigns the outcome of the evaluation of an Expression to an Artefact of the Information Model;

Expression: a finite combination of symbols that is well formed according to the syntactical
rules of the language. The goal of an Expression is to compose some Operands in a certain order
by means of the Operators of the language, in order to obtain the desired result. Therefore, the
symbols of the Expression designate Operators, Operands and the order of application of the
Operators (e.g. the parenthesis); an expression is defined as a text string and is a property of a
Transformation;

Transformation Scheme: a set of Transformations aimed at obtaining some meaningful
results for the user (like the validation of one or more Data Sets); the Transformation Scheme
is meant to be the smaller set of Transformation to be executed in the same run and therefore
may also be considered as a VTL program;

0..N

Operand

uses

1..1

Operator Transformation

1..1

0..N

 Identifiable
Artefact

Result

Transformation
Scheme

references

1..N

produces acts on
poonas

references

Parameter

0..N 1..1

input output

0..N 0..1

1..1 1..1

1..1

0..N

Is sub-type of Is sub-type of

Non Persistent
Operand

Persistent
Operand

Non Persistent
Result

Persistent
Result

VTL User Manual - Version 2.1 Page: 44

Operator: the specification of a type of operation to be performed on some Operands (e.g. sum
(+), subtraction (-), multiplication (*), division (/));

Parameter: a-priori unknown input or output of an Operator, having a definite role in the
operation (e.g. dividend, divisor or quotient for the division) and corresponding to a certain
type of artefact (e.g. a “Data Set”, a “Data Structure Component” …), for a deeper explanation
see also the Data Type section below. When an Operator is invoked, the actual input passed in
correspondence to a certain input Parameter, or the actual output returned by the Operator,
is called Argument.

Operand: a specific Artefact referenced in the expression as an input (e.g. a specific input Data
Set); a Persistent Operand references a persistent artefact, i.e. an artefact maintained in a
persistent storage, while a Non Persistent Operand references a temporary artefact, which is
produced by another Transformation and not stored.

Result: a specific Artefact to which the result of the expression is assigned (e.g. the calculated
Data Set); a Persistent Result is put away in a persistent storage while a Non Persistent Result
is not stored.

Identifiable Artefact: a persistent Identifiable Artefact of the VTL information model (e.g. a
persistent Data Set); a persistent artefact can be operand of any number of Transformation but
can be the result of no more than one Transformation.

Examples

Imagine that D1, D2 and D3 are Data Sets containing information on some goods, specifically: D1
the stocks of the previous date, D2 the flows in the last period, D3 the current stocks. Assume
that it is desired to check the consistency of the Data Sets using the following statement:

Dr := If ((D1 + D2) = D3 , then “true”, else “false”)

In this case:

The Transformation may be called “basic consistency check between stocks and flows” and is
formally defined through the statement above.

 Dr is the Result
 D1, D2 and D3 are the Operands
 If ((D1 + D2) = D3 , then TRUE, else FALSE) is the Expression
 “:=”, “If”, “+” , “=” are Operators

Each operator has some predefined parameters, for example in this case:

 input parameters of “+”: two numeric Data Sets (to be summed)
 output parameters of “+”: a numeric Data Sets (resulting from the sum)
 input parameters of “=”: two Data Sets (to be compared)
 output parameter of “=”: a Boolean Data Set (resulting from the comparison)
 input parameters of “If”: an Expression defining a condition, i.e. (D1+D2)=D3
 output parameter of “If”: a Data Set (as resulting from the “then”, “else” clauses)

VTL User Manual - Version 2.1 Page: 45

Functional paradigm

As mentioned, the VTL follows a functional programming paradigm, which treats
computations as the evaluation of mathematical functions, so avoiding changing-state and
mutable data in the specification of the calculation algorithm. On one side the statistical data
are considered as mathematical functions (first order functions), on the other side the VTL
operators are considered as functions as well (second order functions), applicable to some
data in order to obtain other data.

According to the functional paradigm, the output value of a (second order) function depends
only on the input arguments of the function, is calculated in its entirety and once for all by
applying the function, and cannot be altered or modified once calculated (immutable) unless
the input arguments change.

In fact, the VTL operators, and the expressions built using these operators, specify the
algorithm for calculating the results in their entirety, once for all, and never for updating
them. When some change in the operands occurs (e.g. the input data change), the VTL
assumes that the results are recalculated in their entirety according to the correspondent
expressions18.

Coherently, a VTL artefact can be result of just one Transformation and cannot be updated by
other Transformations, a Transformation cannot update either its own operands or the result
of other Transformations and the result of a new Transformation is always a new artefact.

Transformation Consistency

The Transformation model requires that the Transformations follow some consistency rules,
similar to the ones typical of the spreadsheets; in fact, there is a strict analogy between the
generic models of Transformations and spreadsheets.

In this analogy, a VTL artefact corresponds to a non-empty cell of a spreadsheet, a
Transformation to the formula defined in a cell (which references other cells as operands), a
Result to the content of the cell in which the formula is defined19.

The model artefacts involved in Transformations can be divided into “collected / primary” or
“calculated / derived” ones. The former are original artefacts of the information system, not
result of any Transformation, fed from some external source or by the users (they are analogous
to the spreadsheet cells that are not calculated). The latter are produced as results of some
Transformations (they are analogous to the spreadsheet cells calculated through a formula).

As already said, a Transformation calculates just one result (“derived” model artefact) and a
result is calculated by just one Transformation. Both “primary” and “derived” model artefacts
can be operands of any number of Transformations. An artefact cannot be operand and result
of the same Transformation.

18 At the implementation level, which is out of the scope of this document, the update operations are obviously
possible

19 The main difference between the two cases is the fact that a cell of a spreadsheet may contain only a scalar value
while a VTL artefact may have also a more complex data structure, being typically a Data Set

VTL User Manual - Version 2.1 Page: 46

A Transformation belongs to just one Transformation Scheme, which is analogous to a whole
spreadsheet; in fact, it is a set of Transformations executed in the same run and may contain
any number of Transformations, in order to produce any number of results.

Because a “derived” model artefact is produced by just one Transformation and a
Transformation belongs to just one Transformation Scheme, it follows also that a “derived”
model artefact is produced in the context of just one Transformation Scheme.

The operands of a Transformation may come either from the same Transformation Scheme
which the Transformation belongs to or from other ones.

Within a Transformation Scheme, it can be built a graph of the Transformations by assuming
that each model artefact is a node and each Transformation is a set of arcs, starting from the
Operand nodes and ending in the Result node.

This graph must be a directed acyclic graph (DAG): in particular, each arc is oriented from the
operand to the result; the absence of cycles makes it possible to calculate unambiguously the
“derived” nodes by applying the Transformations by following the topological order of the
graph.

Therefore, like in the spreadsheet, not necessarily, the Transformations are performed in the
same order as they are written, because the order of execution depends on their input-output
relationships (a Transformation that calculates a result, which is operand of other
Transformations must be executed first).

In the analogy between VTL and a spreadsheet, the correspondences would be the following:

 VTL model artefact non-empty cell of a spreadsheet;
 VTL “collected / primary” model artefact non-empty cell of a spreadsheet whose

value is fed from an external source or by the user;
 A “calculated / derived” model artefact a non-empty cell of a spreadsheet whose

value is calculated by a formula;
 A VTL Transformation A spreadsheet formula assigned to a cell
 a VTL Transformation Scheme A whole spreadsheet

VTL User Manual - Version 2.1 Page: 47

VTL Data types

The possible operations in VTL depend on the data types of the artefacts. For example,
numbers can be multiplied but text strings cannot.

When an Operator is invoked, for each (formal) input Parameter, an actual argument
(operand) is passed to the Operator, and for the output Parameter, an actual argument
(result) is returned by the Operator. The data type of the argument must comply with
the allowed data types of the corresponding Parameter (the allowed data types of each
Parameter for each Operator are specified in the Reference Manual).

Every possible argument for a VTL Operator (with special attention to artefacts of the
Information Model, e.g., Values, Sets, Data Sets) must be typed and such type
deterministically inferable.

In other words, VTL Operators are strongly typed and type compliance is statically
checked, i.e., violations result in compile-time errors.

Data types can be related one another, and in particular, a data type can have sub-types
and super-types. For example integer number is a sub-type of the type number, and
number is in turn a super-type of integer number: this means that any integer number
is also a number but not the reverse, because there is no guarantee that a generic number
is also an integer number. More in general, an object of a certain type is also of the
respective super-types, but there is no guarantee that an object of a super-type is of any
of its sub-types.

As a consequence, if a Parameter is required to be of certain type, the arguments have
either this very type or any of its sub-types; arguments of its super-types are not allowed
(e.g. if a Parameter is a number, an argument of type integer is accepted; vice versa, if
it is an integer, an argument of type number will not be accepted).

The data types depend on two main factors: the kind of values adopted for the
representation (e.g. text strings, numbers, dates, Boolean values) and the kind of
structure of the data (e.g. elementary scalar values or compound values organized in
more complex structures like Sets, Components, Data Sets …).

The data types for scalar values also called “scalar types” (e.g. the scalar 15 is of the
scalar type “number”, while “hello” is of the scalar type “string”). The scalar types are
elementary because they are not defined in term of other data types. All the other data
types are compound.

For the sake of simplicity, hereinafter the term “data type” is sometimes abbreviated to
“type” and the term “scalar type” to “scalar”.

A particular meta-syntax is used to specify the type of the Parameters. For example,
the symbol :: means “is of the type …” or simply “is a …” (e.g. “15 :: number” means
“15 is of the type number”).

In the following sections, the classes of the VTL types are illustrated, as well as some
relationships between the types and the artefacts of the Information Model.

VTL User Manual - Version 2.1 Page: 48

Data Types overview

Data Types model diagram

0..N

1..1

1..1

Scalar Value
Domain

Refers
to

Is subset
 of

0..N

Is super-class of

Data Type

Is super-class of

Scalar Type
Compound

Type

Is sub-type of

0..N

0..N

Universal Set
Type

Product
Type

Component
Type

Data Set
Type

Operator
Type

Universal List
Type

Scalar Set

Basic Scalar
Type

Is super-class of

Ruleset
Type

VTL User Manual - Version 2.1 Page: 49

Explanation of the diagram

Data Type: this is the class of all the data types manipulated by the VTL. As already said, the
actual data type of an object depends on its kind of representation and structure. As for the
structure, a Data Type may be a Scalar Data Type or a Compound Data Type.

Scalar Type: the class of all the scalar types, i.e., the possible types of scalar Values. The scalar
types are elementary because they are not defined in terms of other types. The Scalar Types
can be Basic Scalar Types, Value Domain Scalar Types and Set Scalar Types.

Compound Data Type: the class of the compound types, i.e. the types that are defined
in terms of other types.

Basic Scalar Type: the class of the scalar types which exist by default in VTL (namely,
string,number, integer, time, date, time_period, duration, boolean).

Value Domain Scalar Type: the class of the scalar types corresponding to all the scalar
Values belonging to a Value Domain.

Set Scalar Type: the class of the scalar types corresponding to all the scalar Values belonging
to a Set (i.e., Value Domain Subset).

Component Type: the class of the types that the Components of the Data Sets belong to, i.e.
Represented Variables that assume a certain Role in the Data Set Structure.

Data Set Type: the class of the Data Sets’ types, which are the more common input types of
the VTL operators.

Operator Type: the class of the Operators’ types, i.e., the functions that convert the types
of the input operands in the type of the result.

Ruleset Type: the class of the Rulesets’ types, i.e. the set of Rules defined by users that
specify the behaviour of other operators (like the check and the hierarchy operators).

Product Type: the class of the types that contain Cartesian products of artefacts belonging
to other generic types.

Universal Set Type: the class of the types that contain unordered collections of other
artefacts that belong to another generic type and do not have repetitions.

Universal List Type: the class of the types that contain ordered collections of other artefacts
that belong to another generic type and can have repetitions.

General conventions for describing the types

 The name of the type is written in lower cases and without spaces (for example the
Data Set type is named “dataset”).

 The double colon :: means “is of the type …” or simply “is a …”; for example the
declaration

operand :: string

means that the operand is a string.

 The vertical bar | indicates mutually exclusive type options, for example

 operand :: scalar | component | dataset

VTL User Manual - Version 2.1 Page: 50

means that “operand” can be either scalar, or component, or dataset.

 The angular parenthesis < type2 > indicates that type 2 (included in the
parenthesis) restricts the specification of the preceding type, for example:

operand :: component <string>

 means “the operand is a component of string basic scalar type”.

If the angular parenthesis are omitted, it means that the preceding type is already
completely specified, for example:

operand :: component

means “the operand is a component without other specifications” and therefore it
can be of any scalar type, just the same as writing operand :: component<scalar>
(in fact as already said, “scalar” means “any scalar type”).

 The underscore _ indicates that the preceding type appears just one time, for example:

measure<string> _

indicates just one Measure having the scalar type string; the underscore also mean
that this is a non-predetermined generic element, which therefore can be any (in the
example above, the string Measure can be any).

 A specific element_name in place of the underscore denotes a predetermined
element of the preceding type, for example:

measure<string not null> my_text

means just one Measure Component, which is a not-null string type and whose name
is “my_text”.

 The symbol _+ means that the preceding type may appear from 1 to many times,
for example:

measure<string> _+

means one or more generic Measures having the scalar type string (these Measures
are not predetermined).

 The symbol _* means that the preceding type may appear from 0 to many times,
for example:

measure<string> _*

means zero or more generic Measures having the scalar type string (these Measures
are not predetermined).

Scalar Types

Basic Scalar Types

The Basic Scalar Types are the scalar types on which VTL is founded.

VTL User Manual - Version 2.1 Page: 51

The VTL has various basic scalar types (namely, string, number, integer, time, date,
time_period, duration, boolean). The super-type of all the scalar types is the type scalar, which
means “any scalar value”. The type number has the sub-type integer and the type time has two
independent sub-types, namely date and time_period.

The hierarchical tree of the basic scalar types is the following:

Scalar

String

Number

Integer

Time

Date

Time_period

Duration

Boolean

A scalar Value of type string is a sequence of alphanumeric characters of any length. On scalar
Values of type string, the string operations can be allowed, like concatenation of strings, split
of strings, extraction of a part of a string (substring) and so on.

A Scalar Value of type number is a rational number of any magnitude and precision, also used
as approximation of a real number. On values of type number, the numeric operations are
allowed, such as addition, subtraction, multiplication, division, power, square root and so on.
The type integer (positive and negative integer numbers and zero) is a subtype of the type
number.

A Scalar Value of type time denotes time intervals of any duration and expressed with any
precision. According to ISO 8601 (ISO standard for the representation of dates and times), a
time interval is the intervening time between two time points. This type can allow operations
like shift of the time interval, change of the starting/ending times, split of the interval,
concatenation of contiguous intervals and so on (not necessarily all these operations are
allowed in this VTL version).

The type date is a subtype of the type time which denotes time points expressed at any
precision, which are time intervals starting and ending in the same time point (i.e.
intervals of zero duration). A value of type date includes all the parts needed to identify
a time point at the desired precision, like the year, the month, the day, the hour, the
minute and so on (for example, 2018-04-05 is the fifth of April 2018, at the precision of
the day).

The type time_period is a subtype of the type time as well and denotes non-
overlapping time intervals having a regular duration (for example the years, the
quarters of years, the months, the weeks and so on). A value of the type time_period is
composite and must include all the parts needed to identify a regular time period at
the desired precision; in particular, the time-period type includes the explicit indication
of the kind of regular period considered (e.g., “day”, “week”, “month”, “quarter” …). For

VTL User Manual - Version 2.1 Page: 52

example, the value 2018M04, assuming that “M” stands for “month”, denotes the month
n.4 of the 2018 (April 2018). Moreover, 2018Q2, assuming that “Q” stands for “quarter”,
denotes the second quarter of 2018. In these examples, the letters M and Q are used to
denote the kind of period through its duration.

A Scalar Value of type duration denotes the length of a time interval expressed with any
precision and without connection to any particular time point (for example one year, half
month, one hour and fifteen minutes). According to ISO 8601, in fact, a duration is the amount
of intervening time in a time interval. The duration is the scalar type of possible Value
Domains and Components representing the period (frequency) of periodical data.

A Scalar Value of type boolean denotes a logical binary state, meaning either “true” or “false”.
Boolean Values allow logical operations, such as: logical conjunction (and), disjunction (or),
negation (not) and so on.

All the scalar types are assumed by default to contain the conventional value “NULL”, which
means “no value”, or “absence of known value” or “missing value” (in other words, the scalar
types by default are “nullable”). Note that the “NULL” value, therefore, is the only value of
multiple different types (i.e., all the nullable scalar types).

The scalar types have corresponding non-nullable sub-types, which can be declared by adding
the suffix “not null” to the name of the type. For example, string not null is a string that
cannot be NULL, as well as number not null is a number that cannot be NULL.

The VTL assumes that a basic scalar type has a unique internal representation and more
possible external representations.

The internal representation is the reference representation of a scalar type in a VTL system,
used to process the scalar values. The use of a unique internal representation allows to
operate on values possibly having different external formats: the values are converted in the
reference representation and then processed. Although the unique internal representation
can be very important for the operation of a VTL system, not necessarily users need to know
it, because it can be hidden in the VTL implementation. The VTL does not prescribe any
predefined internal representation for the various scalar types, leaving different VTL systems
free to using they preferred or already existing ones. Therefore, the internal representations
to be used for the VTL scalar types are left to the VTL implementations.

The external representations are the ones provided by the Value Domains which refer to a
certain scalar type (see also the following sections). These are also the representations used
for the Values of the Components defined on such Value Domains. As obvious, the users have
to know the external representations and formats, because these are used in the Data Point
Values. Obviously, the VTL does not prescribe any predefined external representation, leaving
different VTL systems free to using they preferred or already existing ones.

Examples of possible different choices for external representations:

 for the strings, various character sets can be used;
 for the numbers, it is possible to use the dot or the comma as decimal separator, a fixed

or a floating point representation; non-decimal or non-positional numeral systems and
so on;

 for the time, date, time_period, duration it can be used one of the formats suggested by
the ISO 8601 standard or other possible personalized formats;

VTL User Manual - Version 2.1 Page: 53

 the “boolean” type can use the values TRUE and FALSE, or 0 and 1, or YES and NO or
other possible binary options.

It is assumed that a VTL system knows how to convert an external representation in the
internal one and vice-versa, provided that the format of the external representation is known.

For example, the external representation of dates can be associated to the internal one
provided that the parts that specify year, month and day are recognizable20.

Value Domain Scalar Types

This is the class of the scalar Types corresponding to the scalar Values belonging to the same
Value Domains (see also the section “Generic Model for Variables and Value Domains”).

The super-type of all the Value Domain Scalar Types is valuedomain, which means any Value
Domain Scalar Type. A specific Value Domain Scalar Type is identified by the name of the
Value Domain.

As said in the IM section, a Value Domain is the domain of allowed Values for one or more
represented variables. In other words, a Value Domain is the space in which the abstractions
of a certain category of the reality (population, age, country, economic sector …) are
represented.

A Value Domain refers to one of the Basic Scalar Types, which is the basic type of all the
Values belonging to the Value Domain. A Value Domain provides an external representation
of the corresponding Basic Scalar Type and can also restrict the possible (abstract) values of
the latter. Therefore, a Value Domain defines a customized scalar type.

For example, assuming that the “population” is represented by means of numbers from zero
to 100 billion, the (possible) “population” Value Domain refers to the “integer” basic scalar
type, provides a representation for it (e.g., the number is expressed in the positional decimal
number system without the decimal point) and allows only the integer numbers from zero up
to 100 billion (and not all the possible numbers). Numeric operations are allowed on the
population Values.

As another example, assuming that the “classes of population” are represented by means of
the characters from A to C (e.g. A for population between 0 and 1 million, B for population
greater that 1million until 1 billion, C for population greater than 1 billion), the “classes of
population” Value Domain refers to the “string” basic scalar type and allows only the strings
“A”, “B” or “C”. String operations are possible on these values.

As usual, even if many operations are possible from the syntactical point of view, not necessarily
they make sense on the semantical plane: as usual, the evaluation of the meaningfulness of the
operations remains up to the users. In fact, the same abstractions, in particular if enumerated
and coded, can be represented by using different possible Value Domains, also using different
scalar types. For example, the country can be represented through the ISO 3166-1 numeric
codes (type number), or ISO alpha-2 codes (type string), or ISO alpha-3 codes (type string), or

20 This can be achieved in many ways that depend on the data type and on the adopted internal and external
representations. For example, there can exist a default correspondence (e.g., 0 means always False and 1 means
always True for Boolean), or the parts of the external representation can be specified through a mask (e.g., for
the dates, DD-MM-YYYY or YYYYMMDD specify the position of the digits representing year, month and day).

VTL User Manual - Version 2.1 Page: 54

other coding systems. Even if numeric operations are possible on ISO 3166-1 country numeric
codes, as well as string operations are possible on ISO 3166-1 alpha-2 or alpha-3 country codes,
not necessarily these operations make sense.

While the Basic Scalar Types are the types on which VTL is founded and cannot be changed,
all the Value Domains are user defined, therefore their names and their contents can be
assigned by the users.

Some VTL Operators assume that a VTL system have certain kinds of Value Domains which are
needed to perform the correspondent operations21. In the VTL manuals. Definite names and
representations are assigned to such Value Domains for explanatory purposes; however, these
names and representations are not mandatory and can be personalised if needed. If VTL
rules are exchanged between different VTL systems, the partners of the exchange must be
aware of the names and representations adopted by the counterparties.

Set Scalar Types

This is the class of the scalar types corresponding to the scalar Values belonging to the same
Sets (see also the section “Generic Model for Variables and Value Domains”).

The super-type of all the Set Scalar Types is set, which means any Set Scalar Type. A specific Set
Scalar Type is identified by the name of the Set.

A Set is a (proper or improper) subset of the Values belonging to a Value Domain (the Set of
all the values of the Value Domain is an improper subset of it). A scalar Set inherits from its
Value Domain the Basic Scalar Type and the representation and can restrict the possible
Values of its Value Domain (as a matter of fact, except the Set which contains all the values of
its Value Domain and can also be assumed to exist by default, the other Sets are defined just to
restrict the Values of the Value Domain).

External representations and literals used in the VTL Manuals

The Values of the scalar types, when written directly in the VTL definitions or expressions, are
called literals.

The literals are written according to the external representations adopted by the specific VTL
systems for the VTL basic data types (i.e., the representations of their Value Domains). As
already said, the VTL does not prescribe any particular external representation.

In these VTL manuals, anyway, there is the need to write literals of the various data types in
order to explain the behaviour of the VTL operators and give proper examples. The
representation of these literals are not intended to be mandatory and are not part of the VTL
standard specifications, these are only the representations used in the VTL manuals for
explanatory purposes and many other representations are possible and legal.

The representations adopted in these manuals are described below.

The string values are written according the Unicode and ISO/IEC 10646 standards.

21 For example, at least one default Value Domain should exist for each basic scalar type, the Value Domains
needed to represent the results of the checks should exist, and so on.

VTL User Manual - Version 2.1 Page: 55

The number values use the positional numeral system in base 10.

o A fixed-point number begins with the integer part, which is a sequence of
numeric characters from 0 to 9 (at least one digit) optionally prefixed by
plus or minus for the sign (no symbol means plus), a dot is always present
in the end of the integer part and separates the (possible) fractional part,
which is another sequence of numeric characters.

o A floating point number, has a mantissa written like a fixed-point number,
followed by the capital letter E (for “Exponent”) and by the exponent,
written like a fixed-point integer;

For example:

- Fixed point numbers: 123.4567 +123.45 -8.901 0.123 -0.123
- Floating point numbers: 1.23E2 +123.E-2 -0.89E1 0.123E0

The integer values are represented like the number values with the following
differences:

o A fixed-point integer is written like a fixed-point number but without the
dot and the fractional part.

o A floating point integer is written like a floating-point number but cannot
have a negative mantissa.

For example:

- Fixed point integers: 123 +123 -123
- Floating point integers: 123E0 1E3

The time values are conventionally represented through the initial and final Gregorian dates
of the time interval separated by a slash. The accuracy is reduced at the level of the day
(therefore omitting the time units shorter than the day like hours, minutes, seconds, decimals
of second). The following format is used (this is one of the possible options of the ISO 8601
standard):

YYYY-MM-DD/YYYY-MM-DD

where YYYY indicates 4 digits for the year, MM indicates two digits for the month, DD
indicates two digits for the day. For example:

2000-01-01/2000-12-31 the whole year 2000

2000-01-01/2009-12-31 the first decade of the XXI century

The date values are conventionally represented through one Gregorian date. The
accuracy is reduced at the level of the day (therefore omitting the time units shorter
than the day like hours, minutes, seconds, decimals of second). The following format is
used (this is one of the possible options of the ISO 8601 standard):

YYYY-MM-DD

The meaning of the symbols is the same as above. For example:

2000-12-31 the 31st December of the year 2000

2010-01-01 the first of January of the year 2010

VTL User Manual - Version 2.1 Page: 56

The time_period values are represented for sake of simplicity with accuracy equal
to the day or less (week, month …) and a periodicity not higher than the year. In the
VTL manuals, the following format is used (this is a personalized format not compliant
with the ISO 8601 standard):

YYYYPppp

where YYYY are 4 digits for the year, P is one character for specifying which is the
duration of the regular period (e.g. D for day, W for week, M for month, Q for quarter,
S for semester, Y for the whole year, see the codes of the duration data type below),
ppp denotes from zero two three digits which contain the progressive number of the
period in the year. For example:

2000M12 the month of December of the year 2000

2010Q1 the first quarter of the year 2010

2020Y the whole year 2010

The duration values in these manuals are conventionally restricted to very few predefined
durations that are codified through just one character as follows:

Code Duration
 D Day
 W Week
 M Month
 Q Quarter
 S Semester
 A Year (Annual)

This is a very simple format not compliant with the ISO 8601 standard, which allows
representing durations in a much more complete, even if more complex, way. As mentioned,
the real VTL systems may adopt any other external representation.

The boolean values used in the VTL manuals are TRUE and FALSE (without quotes).

When a literal is written in a VTL e x p r e s s i o n , its basic scalar type is not explicitly
declared and therefore is unknown.

For ensuring the correctness of the VTL operations, it is important to assess the scalar type of
the literals when the expression is parsed. For this purpose, there is the need for a mechanism
for the disambiguation of the literals types, because often the same literal might itself
belong to many types, for example:

- the word “true” may be interpreted as a string or a boolean,
- the symbol “0“ may be interpreted as a string, a number or a boolean,
- the word “20171231” may be interpreted as a string, a number or a date.

The VTL does not prescribe any predefined mechanism for the disambiguation of the scalar
types of the literals, leaving different VTL systems free to using they preferred or already
existing ones. The disambiguation mechanism, in fact, may depend also on the conventions
adopted for the external representation of the scalar types in the VTL systems, which can be
various.

VTL User Manual - Version 2.1 Page: 57

In these VTL manuals, anyway, there is the need to use a disambiguation mechanism in order
to explain the behaviour of the VTL operators and give proper examples. This mechanism,
therefore, is not intended to be mandatory and, strictly speaking, is not part of the VTL
standard.

If VTL rules are exchanged between different VTL systems, the partners of the exchange must
be aware of the external representations and the disambiguation mechanisms adopted by the
counterparties.

The disambiguation mechanism adopted in these VTL manuals is the following:

- The string literals are written between double quotes, for example the literal “123456”
is a string, even if its characters are all numeric, as well as “I am a string! “.

- The numeric literals are assumed to have some pre-definite patterns, which are the
numeric patterns used for the external representation of the numbers described
above.
A literal having one of these patterns is assumed to be a number.

- The boolean literals are assumed to be the values TRUE and FALSE (capital letters
without quotes).

In these manuals, it is also assumed that the types time, date, time_period and duration do not
directly support literals. Literal values of such types can be anyway built from literals of other
types (for example they can be written as strings) and converted in the desired type by the
cast operator (type conversion). In some cases, the conversion can be made automatically,
(i.e., without the explicit invocation of the cast operator – see the Reference Manual for more
details).

As mentioned, the VTL implementations may personalize the representation of the literals
and the disambiguation mechanism of the basic scalar types as desired, provided that the
latter work properly and no ambiguities in understanding the type of the literals arise. For
example, in some cases the type of a literal can also be deduced from the context in which it
appears. As already pointed out, the possible personalised mechanism should be
communicated to the counterparties if the VTL rules are exchanged.

Conventions for describing the scalar types

- The keywords which identify the basic scalar types are the following: scalar, string,
number, integer, time, date, time_period, duration, boolean.

- By default, the basic scalar types are considered as nullable, i.e., allowing NULL values.

- The keyword not null following the type (and the “literal” keyword if present), means that
the scalar type does not allow the NULL value, for example:

 operand :: string literal not null

means that the operand is a literal of string scalar type and cannot be NULL; if not null is
omitted the NULL value is meant to be allowed.

- An expression within square brackets following the previous keywords, means that the
preceding scalar type is restricted by the expression. This is a VTL boolean expression22

22 I.e., an expression whose result is boolean

VTL User Manual - Version 2.1 Page: 58

(whose result can be TRUE or FALSE) which specifies a membership criterion, that is a
condition that discriminates the values which belong to the restriction (sub-type) from the
others (the value is assumed to belong to the sub-type only if the expression evaluates to
TRUE). The keyword “value” stands for the generic value of the preceding scalar type and
is used in the expression to formulate the restrictive condition. For example:

integer [value <= 6]

is a sub-type of integer which contains only the integers lesser than or equal to 6.

The following examples show some particular cases:

o The generic expression [between (value, x, y)]23 restricts a scalar type by
indicating a closed interval of possible values going from the value x to the value y,
for example

integer [between (value, 1, 100)]

is the sub-type which contains the integers between 1 and 100.

o The generic expression [(value > x) and (value < y)] restricts a scalar type by
indicating an open interval of possible values going from the value x to the value y,
for example

integer [(value > 1) and (value < 100)]

means integer greater than 1 and lesser than 100 (i.e., between 2 and 99).

o By using >= or <= in the expressions above, the intervals can be declared as open
on one side and closed on the other side, for example

integer [(value >= 1) and (value < 100)]

means integer greater than or equal to one and lesser than 100.

o The generic expressions [value >= x] or [value > x] or [value <= y] or [value
< y] restrict a scalar type by indicating an interval having one side unbounded, for
example

integer [value >= 1]

means integer equal to or greater than 1, while “integer[value < 100]” means an
integer lesser than 100.

o The generic expression [value in { v1, … , vN }]24 restricts a scalar type by
specifying explicitly a set of possible values, for example

integer {1, 2, 3, 4, 5, 6}

means an integer which can assume only the integer values from 1 to 6. The same
result is obtained by specifying [value in set_name], where in is the “Element of”

23 “between (x, y, z)” is the VTL operator which returns TRUE if x is comprised between y and z

24 “in” is the VTL operator which returns TRUE if an element (in this case the value) belongs to a Set; the symbol
{… , … , … } denotes a set defined as the list of its elements (separated by commas)

VTL User Manual - Version 2.1 Page: 59

VTL operator and set_name is the name of an existing Set (Value Domain Subset)
of the VTL IM.

o By using in the expression the operator length25 it is possible to restrict a scalar
type by specifying the possible number of digits that the values can have, for
example

integer [between (length (value), 1, 10)]

means an integer having a length from one to 10 digits.

As obvious, other kinds of conditions are possible by using other VTL operators and more
conditions can be combined in the restricting expression by using the VTL boolean
operators (and, or, not …)

- Like in the general case, a restricted scalar type is considered by default as including the
NULL value. If the NULL value must be excluded, the type specification must be followed
by the symbol not null; for example

integer [between (length (value), 1, 10)] not null

means a not-null integer having from one to 10 digits.

Compound Data Types

The Compound data types are the types defined in terms of more elementary types.

The compound data types are relevant to artefacts like Components, Data Sets and to other
compound structures. For example, the type Component is defined in terms of the scalar
type of its values, besides some characteristics of the Component itself (for example the role
it assumes in the Data Set, namely Identifier, Measure or Attribute). Similarly, the type of a
Data Set (i.e. of a mathematical function) is defined in terms of the types of its Components.

The compound Data Types are described in the following sections.

Component Types

This is the class of the Component types, i.e. of the Components of the Data Structures (for
example the country of residence used as an Identifier, the resident population used as a
Measure …).

A Component is essentially a Variable (i.e. an unknown scalar Value with a certain meaning, e.g.
the resident population) which takes Values in a Value Domain or a Set and plays a definite role
in a data structure (i.e. Identifier, Measure or Attribute). A Component inherits the scalar type
(e.g. number) from the relevant Value Domain.

The main sub-types of the Component Type depend on the role of the Component in the data
structure and are the identifier, measure and attribute types (if the automatic propagation of
the Attributes is supported, another sub-type is the viral attribute). These types reflect the

25 “length” is the VTL Operator that returns the length of a string (in the example, the integer operand of the
length operator is automatically cast to a string and its length is determined)

VTL User Manual - Version 2.1 Page: 60

fact that the VTL behaves differently on Components of different roles. Their common super-
type is component, which means “a Component having any role”.

Moreover, a Component type can be restricted by an associated scalar type (e.g. number,
string …), therefore the complete specification of a Component type takes the form

role_type < scalar_type >

where the scalar type included in angular parenthesis, restricts the specification of the
preceding type (the role type); omitted angular parenthesis mean “any scalar type”, which is
the same as writing <scalar>. Examples of Component types are the following:

component (or component<scalar>) any Component

o component<number> any Component of scalar type number

o identifier (or identifier<scalar>) any Identifier

 identifier<time not null> Identifier of scalar type time not null

o measure (or measure<scalar>) any Measure

 measure<boolean> Measure of scalar type Boolean

o attribute (or attribute<scalar>) any Attribute

 attribute<string> Attribute of scalar type string

In the list above, the more indented types are sub-types of the less indented ones.

According to the functional paradigm, the Identifiers cannot contain NULL values, therefore
the scalar type of the Identifiers Components must be “not null”.

In summary, the following conventions are used for describing Component types.

- As already said, the more general type is “component” which indicates any component,
for example:

operand :: component

means that “operand” may be any component.

- The main sub-types of the component type correspond to the roles that the Component
may assume in the Data Set, i.e., identifier, measure, attribute; for example:

operand :: measure

means that the operand must be a Measure.

The additional role viral attribute exists if the automatic propagation of the Attributes is
supported26. The type viral_attribute is a sub-type of attribute.

- By default, a Component can be either specified directly through its name or indirectly
through a sub-expression that calculates it.

- The optional keyword name following the type keyword means that a component name
must be specified and that the component cannot be obtained through a sub-expression;
For example:

26 See the section “Behaviour for Attribute Components”

VTL User Manual - Version 2.1 Page: 61

operand :: measure name <string>

means that the name of a string Measure must be specified and not a string sub-
expression27. If the name keyword is omitted the sub-expression is allowed.

- The symbol < scalar type > means that the preceding type is restricted to the scalar type
specified within the angular brackets”, for example:

operand :: component < string >

means that the operand is a Component having any role and belonging to the string scalar
type; if the restriction is not specified, then the scalar type can be any (for
example operand:: attribute means that the operand is an Attribute of any scalar type).

- In turn, the scalar type of a Component can be restricted; for example:

operand:: measure < integer [value between 1 and 100] not null >

means that the operand can be a not-null integer Measure whose values are comprised
between 1 and 100.

Data Set Types

This is the class of the Data Sets types. The Data Sets are the main kind of artefacts manipulated
by the VTL and their types depend on the types of their Components.

The super-type of all the Data Set types is dataset, which means “any dataset” (according to the
definition of Data Set given in the IM, as obvious).

A sub-type of dataset is the Data Sets of time series, which fulfils the following restrictive
conditions:

- The Data Set structure must contain one Identifier Component that acts as the reference
time, which must belong to one of the basic scalar types time, date or time_period.

- The possible values of the reference time Identifier Component must be regularly spaced

o For the type time, the time intervals must start (or end) at a regular periodicity and
have the same duration

o For the type date, the time values must have a regular periodicity
o For the type time_period there are no additional conditions to fulfil, because the

time_period values comprise by construction the indication of the period and
therefore are regularly spaced by default

- It is assumed that it exists the information about which is Identifier Components that acts
as the reference time and about which is the period (frequency) of the time series and that
such information is represented in some way in the VTL system. The VTL does not
prescribe any predefined representation, leaving different VTL systems free to using they
preferred or already existing ones. It is assumed that the VTL operators acting on time
series know which is the reference time Identifier and the period of the time series and
use this information to perform correct operations.

27 I.e., a sub-expressions whose result is string

VTL User Manual - Version 2.1 Page: 62

Usually, the information about which is the reference time is included in the data structure
definition of the Data Sets or in the definition of the Data Set Components.
Some commonly used representations of the periodicity are the following:

o For the types time and date, the period is often represented through an additional
Component of the Data Set (of any possible role) or an additional metadata relevant
to the whole Data Set or some parts of it. This Component (or other metadata) is of
the “duration” type and is often called “frequency”.

o For the type time_period, the periodicity is embedded in the time_period values.

In any case, if some periodical data exist in the system, it is assumed that a Value Domain
representing the possible periods exists and refers to the duration scalar type.

Within a Data Set of Time Series, a single Time Series is the set of Data Points that have the same
values for all the Identifier Components except the reference time28. A Data Set of time series
can also contain more time series relevant to the same phenomenon but having different
periodicities, provided that one or more Identifiers (other than the reference time) distinguish
the Time Series having different periodicity.

The Data Sets of time series are the possible operands of the time series operators (they are
described in the Reference Manual).

More specific Data Set Types can be defined by constraining the dataset type, for example by
specifying the number and the type of the possible Components in the different roles
(Identifiers, Measures and Attributes), and even their names if needed. Therefore the general
syntax is:

dataset { type_constraint } or dataset_ts { type_constraint }

where the type_constraint may assume many different forms which are described in detail in
the following section. Examples of Data Set types are the following:

dataset Any Data Set (according to the IM)

dataset { measure <number> _* } A Data Set having one or more Measures
of type number, without constraints on
Identifiers and Attributes

dataset { measure <boolean> _ , attribute<string> _* }

A Data Set having one boolean Measure, one
or more string Attributes and no constraints
on Identifiers

In summary, the following conventions are used for describing Data Set types.

- The more general type is “dataset” which means any possible Data Set of the VTL IM (in
other words, a Data Set having any possible components allowed by the IM integrity rules)

- By default, a Data Set can be either specified directly through its name or indirectly
through a sub-expression which calculates it.

28 Therefore each combination of values of the Identifier Components except the reference time identifies a Time
Series

VTL User Manual - Version 2.1 Page: 63

- The optional keyword name following dataset means that a Data Set name must be
specified and that the Data Set cannot be obtained through a sub-expression; for
example:

operand :: dataset name

means that a Data Set name must be specified and not a sub-expression. If the name
keyword is omitted the sub-expression is allowed.

- The symbol dataset { type_constraint } indicates that the type_constraint included
in curly parenthesis restricts the specification of the preceding dataset type without
giving a complete type specification, but indicating only the constraints in respect to the
general structure of the artefact of the Information Model corresponding to such type.
For example, given that the generic structure of a Data Set in the IM may have any number
of Identifiers, Measures and Attributes and that these Components may be of any scalar
type, the declaration:

operand :: dataset { measure<string> _ }

means that the operand is of type Data Set having any number of Identifiers (like in the
IM), just one Measure of string type (as declared in the type declaration) and any number
of Attributes (like in the IM).

- Some or all the Data Set Components can also be predetermined. For example writing:

operand:: dataset { identifier<st_Id1> Id1, …, identifier<st_IdN> IdN,

measure<st_Me1> Me1, … , measure<st_MeL> MeL, attribute<st_At1> At1, …

, attribute<st_AtK> AtK }

means that the operand is of Data Set type and has the identifier, measure and attribute
types and names specified within the curly brackets (in the example, <st_Id1> stands for
the scalar type of the Component named Id1 and so on). This is the example of an
extremely specific Data Set type in which all the component types and names are fixed in
advance.

- If a certain role (i.e. identifier, measure, attribute) is not specified, it means that there are
no restrictions on it, for example:

operand :: dataset { me<st_Me1 > Me1, … , me<st_MeL > MeL }

means that the operand is of Data Set type and has the measure types and names specified
within the curly brackets, while the Identifier and Attribute components have no
restrictions and therefore can be any.

Product Types

This is the class of the Cartesian products of other types; a product type is written in the form
t1 * t2 * … * tn where ti (1 < i <= n) is another arbitrary type; the elements of a Product type
are n-tuples whose ith element belongs to the type ti. For instance, the product type:

string * integer * boolean

VTL User Manual - Version 2.1 Page: 64

includes elements like29 ("PfgTj", 7, true), ("kj-o", 80, false), ("", 4, false) but does not include
for example ("qwe", 2017-12-31, true), ("kj-o", 80, 92).

The superclass is product, which means any product type.

Product types can be used in practice for several reasons. They allow:

i. the natural expression of exclusion or inclusion criteria (i.e., constraints) over values of
two or more dataset components;

ii. the definition of the domain of the Operators in term of types of their Parameters
iii. the definition of more complex data types.

Operator Types

This is the class of the Operators’ types, i.e., the higher-levels functions that allow
transformations from the type t1 (the type of the input Parameters), to the type t2 (the type of
the output Parameter). An Operator Type is written in the form ‘t1 -> t2’, where t1 and t2 are
arbitrary types. For example, the type of the following operator says that it takes as input two
integer Parameters and returns a number:

Op1 :: integer * integer -> number

The superclass is operator, which means any operator type.

Ruleset Types

The class of the Ruleset types, i.e. the set of Rules that are used by some operators like
“check_hierarchy”, “check_datapoint”, “hierarchy”, “transcode”. The general syntax for
specifying a Ruleset type is main_type_of_ruleset {type_constraint}.

The main Rulesets types are the datapoint and the hierarchical Rulesets. Their super-type is
ruleset that means “any Ruleset”. Moreover, Rulesets can be defined either on Value domains
or on Variables, therefore the main_type_of_rulesets are:

ruleset

o datapoint
 datapoint_on_value domains
 datapoint_on_variables

o hierarchical
 hierarchical_on_value_domains
 hierarchical_on_variables

In the list above, the more indented types are sub-types of the less indented ones.

The type_constraint is optional and may assume many different forms that depends on the
main_type_of_ruleset. If the type_constraint is present, the main_type_of_ruleset must specify
if the ruleset is defined on Value Domains or Variables (i.e., it must be one of the more indented
types above).

29 In the VTL syntax the symbol () allows to define a tuple in-line by enumeration of its elements

VTL User Manual - Version 2.1 Page: 65

A datapoint Ruleset is defined on a Cartesian product of Value Domains or Variables, therefore
the type_constraint can contain such a list. Examples of constrained datapoint types are:

datapoint on value domains {(geo_area * sector * time_period * numeric_value)}

datapoint on variables {(ref_date * import_currency * import_country)}

datapoint on value domains {date * _+}

The last one is the type of the Data Point Rulesets that are defined on the “date” Value Domain
and on one to many other Value Domains (“_+” means “one or more”).

A hierarchical Ruleset is defined on one Value Domain or Variable and can contain conditions
referred to other Value Domains or Variables; therefore, the type_constraint for hierarchical

Rulesets can take one of the following forms:

{value_domain * (conditioningValueDomain1 * … * conditioningValueDomainN)}

{variable * (conditioningVariable1 * … * conditioningVariableN)}.

Examples of hierarchical types are:

hierarchical on value domains {geo_area * (time_period)}

hierarchical on variables { currency * (date * country) }

hierarchical on value domains { _ }

hierarchical on value domains { _ * (reference_date)}

The last one is the type of the Data Point Rulesets that are defined on the “date” Value Domain
and on one to many other Value Domains (in the meta-syntax “_+” means “one or more”).

The last one is the type of the Hierarchical Rulesets that are defined on any Value Domain and
are not conditioned by other Value Domains.

Universal Set Types

The Universal Sets are unordered collections of other objects that belong to the same type t
and do not have repetitions (each object can belong to a Set just once). The Universal Sets are
denoted as set<t>, where t is another arbitrary type. If < t > is not specified it means any
universal set type.

Possible examples are the Sets of product types. For instance the Universal Set Type:

set < string * integer * boolean >

includes the sets30:

{ ("PfgTj", 7, true), ("kj-o", 80, false), ("", 4, false) }

{ ("duo9", 67, true), ("io/p", 540, true) }

But does not includes the sets:

{ ("PfgTj", 7, true), 80, ("", 4, false) } in fact 80 is not a product type

30 In the VTL syntax, the symbol {…} denotes a set defined as the list of its elements (separated by commas).

VTL User Manual - Version 2.1 Page: 66

{ ("duo9", 67, true), (50, true) } in fact (50, true) is not the right product type

{ ("", 4, false), (“F”, 8, true), ("", 4, false) } in fact ("", 4, false) is repeated

Universal List Types

The Universal Lists are ordered collections of other objects that belong to the same type t and
can have repetitions (an object can appear in a list more than once). The Universal Lists are
denoted as list<t>, where t is an arbitrary type. If < t > is not specified it means any
universal list type.

For instance the following Universal List type:

list < component>

includes elements like31 [reference date, import, export] but does not include elements like
[dataset1, country, sector] and [import, “text”] because dataset1 and “text” are not Components.

31 In the VTL syntax, the symbol [] allows to define a List in-line by enumeration of its elements.

VTL User Manual - Version 2.1 Page: 67

VTL Transformations

This section describes the key concepts, assumptions and characteristics of the VTL which are
needed to a VTL user to define Transformations. As mentioned in the section about the general
characteristics above, the language is oriented to users without deep information technology
(IT) skills, who should be able to define calculations and validations independently, without the
intervention of IT personnel. Therefore, the VTL has been designed to make the definition of
the Transformations as intuitive as possible and to reduce the chances of errors.

As already said, a Transformation consists of a statement that assigns the outcome of the
evaluation of an Expression to an Artefact of the Information Model. Then, Transformations are
made of the following components:

● A right side, which contains the expression to be evaluated, whose inputs are the
operands of the Transformation

● An assignment operator
● A left side, which specifies the Artefact which the outcome of the expression is assigned

to (this is the result of the Transformation)

Examples of assignments are (assuming that Di (i=1…n) are Data Sets):

 D1 := D2

 D3 := D4 + D5

Assuming that E is the expression, R is the result and IOi (i=1,… n) the input Operands, the
mathematical form of a Transformation based on E can be written as follows:

 R := E (IO1, IO2, … , IOn)

The expression uses any number of VTL operators in combination to specify a compound
operation. Because all the VTL operators are functional, the whole expression is functional too.

Transformations are properly chained for their execution; in fact, the result Ri of a
Transformation Ti can be referenced as operand of another Transformation Tj. In this case, the
former Transformation is evaluated first in order to provide the input for the latter. To enforce
the consistency of the results, the cycles are not allowed, therefore in the case above the result
Rj of the Transformation Tj cannot be operand of the Transformation Ti and cannot contribute
to the calculation of any operand of Ti, even indirectly through a chain of other Transformations.

The order in which the user defines the Transformations may be important for a better
understanding but cannot override the order of execution determined according their input-
output relationships.

For the rules for the Transformation consistency, see also the section “Generic Model for
Transformation” above.

A VTL program is a set of Transformations executed in the same run, which is defined as a
Transformation Scheme.

VTL User Manual - Version 2.1 Page: 68

The Expression

A VTL expression constitutes the right side of a Transformation. It takes one or more input
operands and returns one output artefact.

An expression is the invocation of one or more operators in combination, in which the result of
an operator is passed as input parameter to another operator, and so on, in a tree structure.
The root of the tree structure is last operator to be applied and gives the final result.

For example, for the expression a + b - c the result of the addition a+b is passed to the following
subtraction, which gives the final result.

An expression is built from the following ingredients:

 Operators, which specify the operation to be performed (e.g. +, - and so on). As
mentioned, the standard VTL operators are described in detail in the Reference Manual,
moreover the VTL allows defining and then invoking “user defined operators” (see the
Reference Manual, the VTL-DL for the definition and the VTL-ML for the invocation).
Each operator envisages a certain number of input parameters of definite data types and
produces an outcome having a definite data type (the types parameter are described in
detail in the Reference Manual for each operator).

● Operands, which are the actual arguments passed to the invoked Operators, for
example writing D1 + D2 the Operator “+” is invoked and the Operands D1 and D2 are
passed to it. The Operands can be:

o Named artefacts, which are VTL artefacts specified through their names. Their
actual values are obtained either referring to an external persistent source
(persistent artefacts) or as result of previous Transformations (non-persistent
artefacts) of the same Transformation Scheme; they are identified by means of a
symbolic name (e.g. in D1 + D2 the Operands D1 and D2 are identified by the
names D1 and D2). Examples of identified artefacts are the Data Sets (like D1 and
D2 above) and the Data Set Components (like D1#C1, D1#C2, D1#C3, where # means
that Cj is a Component of the Data Set Di).

o Literals, which are VTL artefacts whose actual values are directly written in the
expression; for example, in the invocation D1 + 7 the second operand (7) is a
literal, in this case a scalar literal. Also other kind of artefacts can be written in
the expressions, for example the curly brackets denote the value of a Set (for
example {1, 2, 3, 4, 5, 6} is the set of the integers from 1 to 6) and the square
brackets denote a list (for example [7, 5, 3, 6, 3] is a list of numbers).

 Parenthesis, which specify the order of evaluation of the operators; for example in the
expression D1 * (D2 + D3) first the sum D2 + D3 is evaluated and then their product
for D1. In case the parenthesis are not used, the default order of evaluation (described
in the Reference Manual) is applied (in the example, first the product and then the sum).

An expression implies different steps of calculation, for example the expression:

R := O1 + O2 / (O3 – O4 / O5)

can be calculated in the following steps:

I. (O4 / O5)

VTL User Manual - Version 2.1 Page: 69

II. (O3 - I)
III. (O2 / II)
IV. (O1 + III)

The intermediate and final results (I, II, III, IV) of the expression are assumed to be non-
persistent (temporary). The persistency of the result Data Set R is controlled by the assignment
operator, as described below.

An intermediate result within the expression can be only the input of other operators in the
same expression.

In general, unless differently specified in the Reference Manual, in the invocation of an operator
any operand can be the result of a sub-expression that calculates it. For example, taking the
exponentiation whose syntax is

power(base, exponent),

the invocation power(D1 + D2 , 2) is allowed and means that first D1 + D2 is calculated and then
the result is squared. As usual, the data type of the calculated operand must comply with the
allowed data types of the corresponding Parameter (in the example above, D1 + D2 must have a
numeric data type, otherwise it cannot be squared).

The nesting capabilities allow writing from very simple to very complex expressions. The
complexity of the expressions can be managed by the users by splitting or merging
transformations. For example, taking again the example above, the following two options would
give the same result:

Option 1:

Dr := power(D1 + D2 , 2)

Option 2:

D3 := D1 + D2

Dr := power(D3 , 2)

In both cases, in fact, first D1 + D2 is evaluated and then the power operator is applied to obtain
Dr.

In general, it is possible either to have simpler expressions by splitting and chaining
Transformations or to have a minor number of Transformations by writing more complex
expressions.

The Assignment

The assignment of an expression to an artefact is done through an assignment operator. The
VTL has two assignment operators, the persistent and the non-persistent assignment:

<- persistent assignment

:= non-persistent assignment

VTL User Manual - Version 2.1 Page: 70

The former assigns the outcome of the expression on the left side to a persistent artefact, the
latter to a non-persistent one; therefore, the choice of the assignment operator allows
controlling the persistency of the artefact that is result of the Transformation.

The only artefact that can be made persistent is the result (the left side artefact). In fact, as
already mentioned, the intermediate and final results of the right side expression are always
considered as non-persistent.

For example, taking again the example of Transformation above:

Dr := power(D1 + D2 , 2)

The result Dr can be declared as persistent by writing:

Dr <- power(D1 + D2 , 2)

Instead, to make persistent also the intermediate result of D1 + D2 it is necessary to split the
Transformation like in the option 2 above:

D3 <- D1 + D2

Dr <- power(D3 , 2)

The persistent assignment operator is also called Put, because it is used to specify that a result
must be put in a persistent store. The Put has two parameters, the first is the final result of the
expression on the right side that has to be made persistent, the second is the reference to the
persistent Data Set which will contain such a result.

The Result

The left side artefact, i.e. the result of the Transformation, is always a named Data Set (i.e. a Data
Set identified by means of a symbolic name like explained in the previous section).

The data type and structure of the left side Data Set coincide with the data type and structure
of the outcome of the expression, which must be a Data Set as well.

Almost all VTL operators act on Data Sets. Many VTL operators can act also on Data Set
Components to produce other Data Set Components, however even in this case the outcome of
the expression is a new Data Set that contains the calculated Components.

An expression can result also in scalar Value; because many VTL operators can act on scalar
Values to obtain other scalar Values, furthermore some particular operations on Data Sets can
eliminate Identifiers, Measures and Attributes and obtain scalar Values (see the Reference
Manual). The result of such expressions is considered as a named Data Set that does not have
Components (Identifiers, Measures and Attributes) and therefore contains just one scalar
Value. The Data Sets without Components can be manipulated and possibly stored like any
other Data Set. Because the VTL notion of Data Set is logical and not physical, more Data Set
without Components can be stored in the same physical Data Set if appropriate.

The current VTL version does not include operators that produce other output data types, for
example, there are not operators that manipulate Sets (however this is a possible future
development).

VTL User Manual - Version 2.1 Page: 71

In fact, the Data Set at the moment is the only type of Artefact that can be produced and stored
permanently through a command of the language.

The names

The artefact names

The names are the labels that identify the “named” artefacts that are operands or result of the
transformations.

For ensuring the correctness of the VTL operations, it is important to distinguish the names
from the scalar literals when the expression is parsed. For this purpose, the disambiguation
mechanism that distinguishes the types of the scalar literals must also be able of
distinguishing names and scalar literals.

As already mentioned in the section about the scalar literals, the VTL does not prescribe any
predefined disambiguation mechanism, leaving different VTL systems free to using they
preferred or already existing ones. In these VTL manuals, anyway, there is the need to use
some disambiguation mechanisms in order to explain the behaviour of the VTL operators and
give proper examples. These mechanisms are not intended to be mandatory and therefore,
strictly speaking, they are not part of the VTL standard specifications. If no drawbacks exist,
however, their adoption is encouraged to foster the convergence between possible different
practices. If VTL rules are exchanged, the disambiguation mechanisms should be
communicated to the counterparties, at least if they are different from the one suggested
hereinafter.

The general rules for the names are given below. As said above, these rules can be
personalized (for example restricted) in some implementations (e.g. a particular
implementation can require that a name starts with a letter).

The names are strings of characters no more than 128 characters long and are classified in
regular and non-regular names.

The regular names:

 can contain alphabetic and numeric characters and the special characters underscore (_)
and dot (.) ,

 must begin with an alphanumeric character and not with a special character
 must contain at least one alphabetic character
 cannot be a VTL reserved word

Examples or regular names are abcdef, 1ab_cde, a.b.c_d_e, 1234_5.

The regular names are:

 written in the Transformations / Expressions without delimiters
 case insensitive

The non-regular names:

 can contain alphanumeric characters and, in addition to the underscore and the dot, any
other Unicode character

VTL User Manual - Version 2.1 Page: 72

 can contain blanks
 can begin with special characters
 can contain only numeric characters
 can be equal to the VTL reserved words

The non-regular names are:

 written in the Transformations / Expressions with single quotes as delimiters
 case sensitive

Examples of non-regular names, which therefore are enclosed in single quotes, are ’_abcdef’,
‘1ab-cde’, ‘12345’, ‘power’ (the first begins with a special character, the second contains the “-“
character that is not allowed, the third contains only numeric characters, the fourth coincides
to a VTL reserved word (the name of the exponentiation operator). These names would not
be recognized by VTL if not enclosed between single quotes.

The VTL reserved words (and symbols) are:

 the keywords of the VTL-ML and VTL-DL operators and of their parameters (e.g. <,
= , # , inner_join, as, using, filter, apply, rename, to, + , - , power, and, or, not, group by,
group except, group all, having …)

 the names of the classes of VTL artefacts of the VTL-IM (e.g., value, value domain, value
domain subset, set, variable, component, data set, data structure, operator, operand
parameter, transformation …)

 additional keywords for possible future use like get, put, join, map, mapping, merge,
transcode and the names of commonly used mathematical and statistical functions.

The environment name

In order to ensure non-ambiguous definitions and operations, the names of the artefacts must
be unique, meaning that an identifier cannot be assigned to more than one artefact.

In practice, the unicity of the names is ensured in a certain environment, that can be also called
namespace (i.e. the space in which the names are assigned without ambiguities). For examples,
more Institutions (agencies) which operate independently can assign the same name to
different artefacts, therefore they are cannot be considered as part of the same environment.

The artefacts input to a Transformation can come also from other environments than the one
in which the Transformation is defined. In these cases, the artefact identifier must be
accompanied by a Namespace, which specifies the Data Set environment, to univocally identify
the artefact to retrieve (for example the Data Set).

Therefore, the reference to an artefact belonging to a different environment assume the
following form:

Namespace\Name

Namespace is the identifier of the environment and Name is the identifier of the artefact within
the environment. The separator is the backslash (\).

When the Namespace is not specified, the artefact is assumed to belong to the same
environment as the Transformation.

VTL User Manual - Version 2.1 Page: 73

The result of a Transformation is always assumed to belong to the same environment as the
Transformation, therefore the specification of the namespace of the result is not allowed.

Within a given environment, the names of all the VTL artefacts (such as Value Domains, Sets,
Variables, Components, Data Sets) are assigned by the users.

Some VTL Operators assume that a VTL environment have certain default names for some
kinds of Variables or Value Domains which are needed to perform the correspondent
operations (for example, the operators which transform the data type of the Measure of the
input Data Sets assign a default name to the resulting Measure, the check operators assign
default names to Components and Value Domains needed to represent the results of the
checks). In the VTL manuals, some definite default names are adopted for explanatory
purposes, however these names are not mandatory and can be personalised if needed. If VTL
rules are exchanged between different VTL systems, the partners of the exchange must be
aware of the names adopted by the counterparties.

The connection to the persistent storage

As described in the VTL IM, the Data Set is considered as an artefact at a logical level, equivalent
to a mathematical function. A VTL Data Set contains the set of Data Points that are the
occurrences of the function. Each Data Point is interpreted an association between a
combination of values of the independent variables (the Identifiers) and the corresponding
values of the dependent variables (the Measures and Attributes).

Therefore, the VTL statements reference the conceptual/logical Data Sets and not the objects
in which they are persistently stored. As already mentioned, there can be any relationships
between the VTL logical Data Sets and the corresponding persistent objects (one VTL Data Set
in one storage object, more VTL Data Sets in one storage object, one VTL Data Set in more
storage objects, more VTL Data Sets in more storage objects). The mapping between the VTL
Data Sets and the storage objects is out of the scope of the VTL and is left to the
implementations.

VTL User Manual - Version 2.1 Page: 74

VTL Operators

As mentioned, the VTL is made of Operators, which are the basic operations that the language
can do. For example, the VTL has mathematical operators (e.g. sum (+), subtraction (-),
multiplication (*), division (/) …), string operators (e.g. string concatenation, substring …),
comparison operators (e.g. equal (=), greater than (>), lesser than (<) …), logical operators (e.g.
and, or, not …) and so on.

An Operator has some input and output Parameters, which are its a-priori unknown operands
and result, have a definite role in the operation (e.g. dividend, divisor or quotient for the
division) and correspond to a certain type of artefact (e.g. a “Data Set”, a “Data Set Component”,
a “scalar Value” …).

The VTL operators are considered as functions (high-order functions32), which manipulate one
or more input first-order functions (the operands) to produce one output first-order function
(the result).

Assuming that F is the function corresponding to an operator, that Po is its output parameter
and that Pi (i=1,… n) are its input parameters, the mathematical form of an operator can be written
as follows:

 Po = F (P1, … , Pn)

The function F composes the Parameters Pi to obtain Po (as mentioned, Pi (i=1,…,n) and Po must be
first order functions). In the common case in which the Parameters are Data Sets, F composes
the Data Points of the input Data Sets Di (i=1,… n) to obtain the Data Points of the output Data Set
Do.

When an Operator is invoked, for each input Parameter an actual argument (operand) is passed
to the Operator, which returns an argument (result) for the output Parameter.

Each parameter has a type, which is the data type of the possible arguments that can be passed
or returned for it. For example, the parameters of a multiplication are of type number, because
only the numbers can be multiplied (in fact for example the strings cannot). For a deeper
explanation of the data types see the corresponding section.

The categories of VTL operators

The VTL operators are classified according to the following categories.

1. The VTL standard library contains the standard VTL operators: they are described in
detail in the Reference Manual.

On the technical perspective, the standard VTL operations can be divided into the following
two sub-categories:

32 A high-order function is a function which takes one or more other functions as arguments and/or provides

another function as result.

VTL User Manual - Version 2.1 Page: 75

a. The core set of operations; these are the primitive ones, so that all the other
operations can be defined in terms of them. The core operations are:

i. The operations that accept scalar arguments as operands and return a scalar
value (for example the sum between numeric scalar values, the concatenation
between string scalar values, the logical operation between boolean scalar
values …).

ii. The various kinds of Join operators, which allow to apply the scalar
operations at the Data Set level, i.e. to compose Data Sets with scalar values
or with other Data Sets.

iii. Other special operators which cannot be defined by means of the previous
two categories (for example the analytical functions).

b. The non-core standard operations; they are standard VTL operations as well but
are not “primitive” and can be derived from the core operations. Examples of these
operations are the ones that allow to compose Data Sets and scalar values or Data
Sets and other Data Sets (besides the various kinds of Join operators and the special
operators mentioned above). Examples of non-core operations are the sum between
numeric Data Sets, the concatenation between string Data Sets, the logical operations
between boolean Data Sets, the union operator, some postfix operators like calc,
filter, rename (see the Reference Manual).

Most VTL Operators of the standard library (for example numerical, string, logical
operators and others) can operate both on scalar Values and on Data Sets, an thus they
have two variants: a scalar and a data set variant. The scalar variant is part of the VTL
core, while the Data Set variant usually not.

Anyway, the VTL users do not need distinguish between core and non-core operators,
because in the practice the use of both these categories of Operators is the same.

2. The user-defined operators are non-standard VTL operators that can be defined by the
users in order to enhance and personalize the language if needed. VTL provides a special
operator, called “define operator” (see the Reference Manual), for the creation of user-
defined operators as well as a special syntax to invoke them.

The input parameters

The input parameters may have various goals and in particular:

 identify the model artefacts to be manipulated
 specify possible options for the operator behaviour
 specify additional scalar values required to perform the operator’s behaviour.

For example, in the “Join” operator, the first N parameters identify the Data Sets to be joined
while the “using” parameter specifies the components on which the join must operate.

Depending on the number of the input parameters, the Operators can be classified in:

Unary having just one input parameter

Binary having two input parameters

VTL User Manual - Version 2.1 Page: 76

N-ary having more input parameters

Examples of unary Operators are the change of sign, the minimum, the maximum, the absolute
value. Examples of binary Operators are the common arithmetical operators (+, -, *, /).
Examples of N-ary operators are the substring, the string replacement, the Join. It is also
possible the extreme case of operators having zero input parameters (e.g. an operator returning
the current time).

The invocation of VTL operators

Operators have different invocation styles:

o Prefix, only for unary operators, in which the operator is written before the operand;
the general forms of invocation is:

Operator Operand (e.g. -D2 which changes the sign of D2)

o Infix, only for binary operators. The operator symbol appears between the operands;
the general form of invocation is:

FirstOperand Operator SecondOperand (e.g. D1 + D2)

o Postfix, only for unary operators. The operator symbol appears after the operand in
square brackets and follows its operand; the general forms of invocation is:

Operand [Operator]

(e.g. DS2 [filter M1>0] which selects from Data Set DS2 only the Data Points having
values greater than zero for measure M1 and returns such values in the result Data
Set.)

Postfix operators are also called “clause operators” or simply “clauses”.

o Functional, for N-ary operators. The operator is invoked using a functional notation;
the general form of invocation is:

 Operator(IO1, … , ION) where IO1, … , ION are the input operands;

For example, the syntax for the exponentiation is power(base, exponent) and a possible
invocation to calculate the square of the numeric Data Set D1 is power(D1, 2).

The comma (“,”) is the separator between the operands. Parameter binding is fully
positional: in the invocation, actual parameters are passed to the Operator in the same
positional order as the corresponding formal parameters in the Operator syntax.
Parameters can be mandatory or optional: usually the mandatory ones are in the first
positions and the optional ones in the last positions. An underscore (“_”) must be used
to denote that optional operand is omitted in the invocation; for example, this is a
possible invocation of Operator1(P1, P2, P3), where P2, P3 are optional and P2 is omitted:

Operator1 (IO1, _ , IO3).

One or more unspecified operands in the last positions can be simply omitted (including
the relevant commas); for example, if both P2, P3 are omitted, the invocation can be
simply:

VTL User Manual - Version 2.1 Page: 77

Operator1 (IO1).

o Functional with keywords (a functional syntax in which some parameters are denoted
by special keywords); in this case each operator has its own form of invocation, which is
described in the reference manual. For example, a possible invocation of the Join
operator is the following:

inner_join (D1 , D2 using [Id1, Id2])

In this example, the Data Sets D1 and D2 are joined on their Identifiers Id1 and Id2. The
first two parameters do not have keywords, then the keyword “using” is used to specify
the list of Components to join (the square brackets denote a list). A keyword can be
composed of more words, substitutes the comma separator and identifies the actual
parameter of the Operator. The unspecified optional parameters identified by keywords
can be simply omitted (including the relevant keywords, i.e., the underscore “_” is not
required). The actual syntax of this kind of operators and the relevant keywords are
described in detail in the Reference Manual.

The syntax for the invocation of the user-defined operators is functional.

Independently of the kind of their syntax, the behaviour of the VTL operators is always
functional, i.e. they behave as high-order mathematical functions, which manipulate one or
more input first-order functions (the operand Data Sets) to produce one output first-order
function (the result Data Set).

Level of operation

The VTL Operators can operate at various levels:

 Scalar level, when all the operands and the result are scalar Values
 Data Set level, when at least one operand is a Data Set
 Component level, when the operands and the result are Data Set Components

At the scalar level, the Operators compose scalar literals to obtain other scalar Values. The
sum, for example, allows summing two scalar numbers and obtaining another scalar number.
The behaviour at the scalar level depends on the operator, does not need a general explanation
and is described in detail in the Reference Manual. Examples of operations at the scalar level
are:

Dr := 3 + 7 3 and 7 are scalar literals of number type
Dr := “abcde” || “fghij” “abcde” and “fghij” are scalar literals of string type

As already mentioned, the outcome of an operation at the scalar level is a Data Set without
Components that contains only a scalar Value.

At the Data Set level, the Operators compose Data Sets and possibly scalar literals in order to
obtain other Data Sets. As mentioned, the VTL is designed primarily to operate on Data Sets and
produce other Data Sets, therefore almost all VTL operators can act on Data Sets, apart some
few trivial exceptions (e.g. the parenthesis). The behaviour at the Data Set level deserves a
general explanation that is given in the following sections. Examples of operations at the Data
Set level are:

VTL User Manual - Version 2.1 Page: 78

Dr := D1 + 7 D1 is a Data Set with numeric Measures, 7 is a scalar number
Dr := D1 + D2 D1 and D2 are Data Sets having Measures of number type
Dr := D3 || “fghij” D3 is a Data Set with string Measures, “fghij” is a scalar string
Dr := D3 || D4 D3 and D4 are Data Sets having Measures of string type

At the Component level, the Operators compose Data Set Components and possibly scalar
literals in order to obtain other Data Set Components. A Component level operation may
happen only in the context of a Data Set operation, so that the calculated Component belongs to
the calculated Data Set. The behaviour at the Data Set level deserves a general explanation that
is given in the following sections. Examples of operations at the Component level are:

Dr := D1 [calc C3 := C1 + C2] C1 and C2 are numeric Components of D1
Dr := D1 [calc C3 := C1 + 7] C1 is a numeric Component of D1, 7 is a scalar number
Dr := D3 [calc C6 := C4 || C5] C4 and C5 are string Components of D3
Dr := D3 [calc C6 := C4 || “fghij”] C4 is a string Component of D3, “fghij” is a scalar

string

In these examples, the postfix operator calc is applied to the input Data Sets D1 and D3, takes in
input some their components and produces in output the components C3 and C6 respectively,
which become part of the result Data Set Dr.

The operations at a component level are performed row by row and in the context of one
specific Data Set, so that one input Data point results in no more than one output Data Point.

In these last examples the assignment is used both at the Data Set level (when the outcome of
the expression is assigned to the result Data Set) and at the Component level (when the outcome
of the operations at the Component level is assigned to the resulting Components). The
assignment at Data Set level can be either persistent or non-persistent, while the assignment at
the Component level can be only non-persistent, because a Component exists only within a Data
Set and cannot be stored on its own.

The Operators’ behaviour

As mentioned, the behaviour of the VTL operators is always functional, i.e., they behave as
higher-order mathematical functions, which manipulate one or more input first-order
functions (the operands) to produce one output first-order function (the result).

The Join operators

The more general and powerful behaviour is supplied by the Join operators, which operates at
Data Set level and allow to compose one or more Data Sets in many possible ways.

In particular, the Join operators allow to:

 match the Data Points of the input Data Sets by means of various matching options
(inner/left/full/cross join) and by specifying the Components to match (“using” clause).
For example the sentence:

inner_join D1, D2 using [reference_date, geo_area]

VTL User Manual - Version 2.1 Page: 79

matches the Data Points of D1, D2 which have the same values for the Identifiers

reference_date and geo_area.

 filter the result of the match according to a condition, for example the sentence

filter D1#M1 > 0

maintains the matched Data Points for which the Measure M1 of D1 is positive.

 aggregate according to the values of some Identifier, for example the sentence

group by [Id1 , Id2]

eliminates the Identifiers save than Id1 and Id2 and aggregate the Data Points having the
same values for Id1 and Id2

 combine homonym measures of the matched Data Points according to a formula, for
example the sentence

apply D1 + D2

sums the homonymous measures of the matched Data Points of D1 and D2

 calculate new Components (or new values for existing Components) according to the
desired formulas, also assigning or changing the Component role (Identifier, Measure,
Attribute), for example:

calc measure M3 := M1 + M2 , attribute A1 := A2 || A3

calculates the measure M3 and the Attribute A1 according to the formulas above

 keep or drop the specified Measures or Attributes, for example the sentence

 keep [M1 , M3, A1]

maintains only the specified measures and attributes, instead the sentence

drop [M2 , A2, A3]

drops only the specified measures and attributes

 rename the specified Components, for example:

rename [M1 to M10 , I1 to I10]

As shown above, the Join operator, together with the other operators applied at scalar or at
Component level, allows to reproduce the behaviour of the other operators at a Data Set level
(save than some special operator) and also to achieve many other behaviours which are
impossible to achieve otherwise.

Anyway, even if the join would cover most of the VTL manipulation needs, the VTL provides for
a number of other Operators that are designed to support the more common manipulation
needs in a simpler way, in order to make the use of the VTL simpler in the more recurrent
situations. Their features are naturally more limited than the ones of the join and a number of
default behaviours are assumed.

The following sections explain the more common default behaviours of the Operators other
than the Join.

VTL User Manual - Version 2.1 Page: 80

Other operators: default behaviour on Identifiers, Measures and Attributes

The default behaviour of the operators other than the Join, when they operate at Data Set level,
is different for Identifiers, Measures and Attributes.

In fact, unless differently specified, the Operators at Data Set level act only on the Values of the
Measures. The Values of Identifiers are usually left unchanged, save for few special operators
specifically aimed at manipulating Identifiers (for example the operators which make
aggregations, either dropping some Identifiers or according the hierarchical links between the
Code Items of an Identifier). The Values of the Attributes, instead, are manipulated by default
through specific Attribute propagation rules explained in a following section.

For example, considering the Transformation Dr := ln (D1), the operation is applied for each Data
Point of D1, the values of the Identifiers are left unchanged and the values of all the Measures
are substituted by their natural logarithm (it is assumed that the Measures of D1 are all
numerical).

Similarly, considering the simple operation Dr := D1 + 7, the addition is done for each Data Point
of D1, the values of the Identifiers are left unchanged and the number 7 is added to the values
of all the Measures (it is assumed that the Measures of D1 are all numerical).

As for the structure, like in the examples above, the Identifiers of the result Data Set Dr are the
same as the Identifiers of the input Data Set D1 (save for the special operators specifically aimed
at manipulating Identifiers), and by default also the Measures of Dr remain the same as D1 (save
for the operator which change the basic scalar type of the operand, this case is described in a
following section). The Attribute Components of the result depend instead on the Attribute
propagation rule.

In the previous examples, only one Data Set is passed in input to the Operator (other possible
operands are not Data Sets). The operations on more Data Sets, like Dr := D1 + D2, behave in the
same way than the operations on one Data Set, save that there is the additional need of a
preliminary matching of the Identifiers of the Data Points of the input Data Sets: the operation
applies on the matched Data Points.

For example, the addition D1 + D2 above happens between each couple of Data Points, one from
D1 and the other from D2, whose Identifiers match according to a default rule (which is better
explained in a following section). The values of the homonymous Measures of D1 and D2 are
added, taken respectively from the D1 and D2 Data Points (the default rule for composing the
measure is better explained in a following section).

The Identifier Components and the Data Points matching

This section describes the default Data Points matching rules for the Operators which operate
at Data Set level and which do not manipulate the Identifiers (for example, the behaviour of the
Operators which make aggregations is not the same, and is described in the Reference Manual).

As shown in the examples above, the actual behaviour depends also on the number of the input
Data Sets.

If just one input Data Set is passed to the operator, the operation is applied for each input Data
Point and produces a corresponding output Data Point. This case happens for all the unary
operators, which have just on input parameter and therefore cannot operate on more than one

VTL User Manual - Version 2.1 Page: 81

Data Set (e.g. ln (D1)), and for the invocations of unary operators in which just one Data Set is
passed to the operator (e.g. D1 + 7).

If more input Data Sets are passed to the operator (e.g. D1 + D2), a preliminary match between
the Data Points of the various input Data Sets is needed, in order to compose their measures
(e.g. summing them) and obtain the Data Points of the result (i.e. Dr). The default matching rules
envisage that the Data Points are matched when the values of their homonymous
Identifiers are the same.

For example, let us assume that D1 and D2 contain the population and the gross product of the
United States and the European Union respectively and that they have the same Structure
Components, namely the Reference Date and the Measure Name as Identifier Components, and
the Measure Value as Measure Component:

D1 = United States Data

D2 = European Union Data

The desired result of the sum is the following:

Dr = United States + European Union

In this operation, the Data Points having the same values for the Identifier Components are
matched, then their Measure Components are combined according to the semantics of the
specific Operator (in the example the values are summed).

Ref.Date Meas.Name Meas.Value

2013 Population 200

2013 Gross Prod. 800

2014 Population 250

2014 Gross Prod. 1000

Ref.Date Meas.Name Meas.Value

2013 Population 300

2013 Gross Prod. 900

2014 Population 350

2014 Gross Prod. 1000

Ref.Date Meas.Name Meas.Value

2013 Population 500

2013 Gross Prod. 1700

2014 Population 600

2014 Gross Prod. 2000

VTL User Manual - Version 2.1 Page: 82

The example above shows what happens under a strict constraint: when the input Data Sets
have exactly the same Identifier Components. The result will also have the same Identifier
Components as the operands.

However, various Data Set operations are possible also under a more relaxed constraint, that
is when the Identifier Components of one Data Set are a superset of those of the other Data
Set33.

For example, let us assume that D1 contains the population of the European countries (by
reference date and country) and D2 contains the population of the whole Europe (by reference
date):

D1 = European Countries

D2 = Europe

In order to calculate the percentage of the population of each single country on the total of
Europe, the Transformation will be:

Dr := D1 / D2 * 100

The Data Points will be matched according to the Identifier Components common to D1 and D2
(in this case only the Ref.Date), then the operation will take place.

The result Data Set will have the Identifier Components of both the operands:

Dr = European Countries / Europe * 100

When the relaxed constraint is applied, therefore, the Data Points are matched when the values
of their common Identifiers are the same.

33 This corresponds to the "outer join" form of the join expressions, explained in details in the Reference Manual.

Ref.Date Country Population

2012 U.K. 60

2012 Germany 80

2013 U.K. 62

2013 Germany 81

Ref.Date Population

2012 480

2013 500

Ref.Date Country Population

2012 U.K. 12.5

2012 Germany 16.7

2013 U.K. 12.4

2013 Germany 16.2

VTL User Manual - Version 2.1 Page: 83

More formally, let F be a generic n-ary VTL Data Set Operator, Dr the result Data Set and Di (i=1,…
n) the input Data Sets, so that:

Dr := F(D1, D2, … , Dn)

The “strict” constraint requires that the Identifier Components of the Di (i=1,… n) are the same.
The result Dr will also have the same Identifier components.

The “relaxed” constraint requires that at least one input Data Set Dk exists such that for each Di
(i=1,… n) the Identifier Components of Di are a (possibly improper) subset of those of Dk. The
output Data Set Dr will have the same Identifier Components than Dk.

The n-ary Operator F will produce the Data Points of the result by matching the Data Points of
the operands that share the same values for the common Identifier Components and by
operating on the values of their Measure Components according to its semantics.

The actual constraint for each operator is specified in the Reference Manual.

Naturally, it is possible that not all the Data Sets contain the same combinations of values of the
Identifiers to be matched. In the cases the match does not happen, the operation is not
performed and no output Data Point is produced. In other words, the measures corresponding
to of the missing combinations of Values of the Identifiers are assumed to be unknown and to
have the value NULL, therefore the result of the operation is NULL as well and the output Data
Point is not produced.

This default matching behaviour is the same as the one of the inner join Operator, which
therefore is able to perform the same operation. The join operation equivalent to D1 + D2 is:

inner_join (D1 , D2 apply D1 + D2)

Different matching behaviours can be obtained using the other join Operators, for example
writing:

 full_join (D1 , D2 apply D1 + D2)

the full join brings in the output also the combination of Values of the Identifiers which are only
in one Data Set, the operation is applied considering the missing value of the Measure as the
neutral element of the operation to be done (e.g. 0 for the sum, 1 for the product, empty string
for the string concatenation …) and the output Data Point is produced.

The operations on the Measure Components

This section describes the default composition of the Measure Components for the Operators
which operate at Data Set level and which do not change the basic scalar type of the input
Measure (for example, the behaviour of the Operators which convert one type in another, say
for example a number in a string, is not the same and is described in a following section).

As shown in the examples below, the actual behaviour depends also on the number of the input
Data Sets and the number of their Measures.

An Operator applied to one mono-measure Data Set is intended to be applied to the only
Measure of the input Data Set. The result Data Set will have the same Measure Component,
whose values are the result of the operation.

For example, let us assume that D1 contains the salary of the employees (the only Identifier is
the Employee ID and the only Measure is the Salary):

VTL User Manual - Version 2.1 Page: 84

D1 = Salary of Employees

The Transformation Dr := D1 * 1.10 applies to the only Measure (the salary) and
calculates a new value increased by 10%, so the result will be:

Dr = Increased Salary of Employees

In case of Operators applied to one multi-measure Data Set, by default the operation is
performed on all its Measures. The result Data Set will have the same Measure Components as
the operand Data Set.

For example, given the import, export, and number of operations by reference date:

D1 = Import, Export, Operations

The Transformation Dr := D1 * 0.80 applies to all the Measures (e.g. to the
Import, the Export and the Balance) and calculates their 80%:

Dr = 80% of Import & Export

Employee ID Salary

A 1000

B 1200

C 800

D 900

Employee ID Salary

A 1100

B 1320

C 880

D 990

Ref.Date Import Export Operations

2011 1000 1200 5000

2012 1300 1100 6400

2013 1200 1300 4800

Ref.Date Import Export Operations

2011 800 960 4000

2012 1040 880 5120

2013 960 1040 3840

VTL User Manual - Version 2.1 Page: 85

An Operator can be applied only on Measures of a certain basic data type, corresponding to its
semantics34. For example, the multiplication requires the Measures to be of type number, while
the substring will require them to be string. Expressions that violate this constraint are
considered an error.

In general, all the Measures of the Operand Data Set must be compatible with the allowed data
types of the Operator, otherwise (i.e. if at least one Measure is incompatible) the operation is
not allowed. The possible input data types of each operator are specified in the Reference
Manual.

Therefore, the operation of the previous example (Dr := D1 * 0.80) , which is assumed to act on
all the Measures of D1, would not be allowed and would return an error if D1 would contain also
a Measure which is not number (e.g. string).

In case of inputs having Measures of different types, the operation can be done either using the
join operators, which allows to calculate each measure with a different formula (see the calc
operator) or, in two steps, first keeping only the Measures of the desired type and then applying
the desired compliant operator; the explanation, as explained in the following cases.

If there is the need to apply an Operator only to one specific Measure, the membership (#)
operator can be used, which allows keeping just one specific Components of a Data Set. The
syntax is: dataset_name#component_name (for a better description see the corresponding
section in the Part 2).

For example, in the Transformation Dr := D1#Import * 0.80

the operation keeps only the Import and then calculates its 80%):

Dr = 80% of the Import

 If there is the need to apply an Operator only to some specific Measures, the keep operator
(or the drop)35 can be used, which allows keeping in the result (or dropping) the specified
Measures (or also Attributes) of the input Data Set. Their invocations are:

dataset_name [keep component_name , component_name …]
dataset_name [drop component_name, component_name …]

For example, in the Transformation Dr := D1[keep Import, Export] * 0.80

the operation keeps only the Import and the Export and then calculates its 80%):

34 As obvious, the data type depends on the parameter for which the Data Set is passed

35 to preserve the functional behaviour keep and drop can be applied only on Measures and Attributes, for a deeper
description of these operators see the corresponding section in the Reference Manual

Ref.Date Import

2011 800

2012 1040

2013 960

VTL User Manual - Version 2.1 Page: 86

Dr = 80% of the Import

If there is the need to perform some operations on some specific Measures and keep the
others measures unchanged, the calc operator can be used, which allows to calculate each
Measure with a dedicated formula leaving the other Measures as they are. A simple kind of
invocation is36:

dataset_name [calc component_name ::= cmp_expr, component_name ::= cmp_expr …]

The component expressions (cmp_expr) can reference only other components of the input Data
Set.

For example, in the Transformation Dr := D1 [calc Import * 0.80, Export * 0.50]

the operations apply only to Import and Export (and calculate their 80% and 50% respectively),
while the Operations values remain unchanged:

Dr = 80% of the Import, 50% of the Export and Operations

In case of Operators applied on more Data Sets, by default the operation is performed
between the Measures having the same names (in other words, on the same Measures). To
avoid ambiguities and possible errors, the input Data Sets must have the same Measures and
the result Data Set is assumed to have the same Measures too.

For example, let us assume that D1 and D2 contain the births and the deaths of the United States
and the European Union respectively.

D1 = Births & Deaths of the United States

36 The calc Operator can be used also to calculate Attributes: for a more complete description of this operator see
the corresponding section in the Reference Manual

Ref.Date Import Export

2011 800 960

2012 1040 880

2013 960 1040

Ref.Date Import Export Operations

2011 800 1200 5000

2012 1040 1100 6400

2013 960 1300 4800

Ref.Date Births Deaths

2011 1000 1200

2012 1300 1100

2013 1200 1300

VTL User Manual - Version 2.1 Page: 87

D2 = Birth & Deaths of the European Union

The Transformation Dr := D1 + D2 will produce:

Dr = Births & Deaths of United States + European Union

The Births of the first Data Set will be summed with the Births of the second to calculate the
Births of the result (and the same for the Deaths).

If there is the need to apply an Operator on Measures having different names, the “rename”
operator can be used to make their names equal (for a complete description of the operator see
the corresponding section in the Part 2).

For example, given these two Data Sets:

D1 (Residents in the United States)

D2 (Inhabitants of the European Union)

A Transformation for calculating the population of United States + European Union is:

Dr := D1[rename Residents to Population] + D2[rename Inhabitants to Population]

Ref.Date Births Deaths

2011 1100 1000

2012 1200 900

2013 1050 1100

Ref.Date Births Deaths

2011 2100 2200

2012 2500 2000

2013 2250 2400

Ref.Date Residents

2011 1000

2012 1300

2013 1200

Ref.Date Inhabitants

2011 1100

2012 1200

2013 1050

VTL User Manual - Version 2.1 Page: 88

The result will be:

Dr (Population of United States + European Union)

Note again that the number and the names of the Measure Components of the input Data Sets
are assumed to match (following their possible renaming), otherwise the invocation of the
Operator is considered an error.

To avoid a potentially excessive renaming, and only when just one component is explicitly
specified for each dataset by using the membership notation, the VTL allows the operation even
if the names are different. For instance, this operation is allowed:

Dr := D1#Residents + D2#Inhabitants

The result Data Set would have a single Measure named like the Measure of the leftmost
operand (i.e. Residents), which in turn can be renamed, if convenient:

Dr := (D1#Residents + D2#Inhabitants)[rename Residents to Population]

The following options and prescription, already described for the operations on just one
multi-measure Data Sets, are valid also for operations on two (or more) multi-measure Data
Sets and are repeated here for convenience:

- If there is the need to apply an Operator only to specific Measures, it is possible first to
apply the membership, keep or drop operators to the input Data Sets in order to maintain
only the needed Measures, like explained above for the case of a single input Data Set, and
then the desired operation can be performed.

- If there is the need to apply some Operators to some specific Measures and keep the
other ones unchanged, one of the join operators can be used (the choice depends on the
desired matching method). The join operations, in fact, provides also for a calc option
which can be invoked and behaves exactly like the calc operator explained above.

- Even in the case of operations on more than one Data Set, all the Measures of the input
Data Sets must be compatible with the allowed data types of the Operator37, otherwise (i.e.
even if only one Measure is incompatible) the operation is not allowed.

In conclusion, the operation is allowed if the input Data Sets have the same Measures and these
are all compliant with the input data type of the parameter that the Data Sets are passed for.

Operators which change the basic scalar type

Some operators change the basic data type of the input Measure (e.g. from number to string,
from string to date, from number to boolean …). Some examples are the cast operator that

37 As obvious, the data type depends on the parameters for which the Data Set are passed

Ref.Date Population

2011 2100

2012 2500

2013 1250

VTL User Manual - Version 2.1 Page: 89

converts the data types, the various comparison operators whose output is always boolean, the
length operator which returns the length of a string.

When the basic data type changes, also the Measure must change, because a Variable (in this
case used with the role of Measure in a Data Structure) has just one type, which is the same
wherever the Variable is used38.

Therefore, when an operator that changes the basic scalar type is applied, the output Measure
cannot be the same as the input Measure. In these cases, the VTL systems must provide for a
default Measure Variable for each basic data type to be assigned to the output Data Set, which
in turn can be changed (renamed) by the user if convenient.

The VTL does not prescribe any predefined name or representation for the default Measure
Variable of the various scalar types, leaving different organisations free to using they preferred
or already existing ones. Therefore, the definition of the default Measure Variables
corresponding to the VTL basic scalar types is left to the VTL implementations.

In the VTL manuals, just for explanatory purposes, the following default Measures will be used:

Basic Scalar Types Default Measure Variable

 String string_var

 Number num_var

 Integer int_var

 Natural nat_var

 Time time_var

 Time-instant date_var

 Time-period period_var

 Boolean bool_var

In some cases, in the examples of the Manuals, the default Boolean variable is also called
“condition”.

When the operators that change the basic data type of the input Measure are applied directly
at Data Set level, the VTL do not allow performing multi-Measure operation. In other words, the
input Data Set cannot have more than one Measure. In case it has more Measures, a single
Measure must be selected, for example by means of the membership operator (e.g.
dataset_name#measure_name).

The multi-measure operations remain obviously possible when the operators that change the
basic data type of the input Measure are applied at Component Level, for example by using the
calc operator.

For example, taking again the example of import, export and number of operations by reference
date:

38 In fact according to the IM, a Variable takes values in one Value Domain which represents just one basic data
type, independently of where the Variable or the Value Domain are used (e.g. if they have the same type
everywhere)

VTL User Manual - Version 2.1 Page: 90

D1 = Import_Export_Operations

And assuming that the conversion from number to string of all the Measure Variables is desired,
the following statement expressed at Data Set level cast (D1, string) is not allowed because the
Data Set D1 is multi-measure, while the following one, which makes the conversion at the
Component level, is allowed:

 D1 [calc
 import_string := cast (import, string)
, export_string := cast (export, string)
, operations_string := cast (operations, string)
]

For completeness, it is worth to say that also the various Join operators allow the same
operation that, for example for the inner join, would be written as:

inner_join (D1 calc
 import_string := cast (import, string)
, export_string := cast (export, string)
, operations_string := cast (operations, string)

)
The join operators is designed primarily to act on many Data Sets and allow applying these
operations also when more Data Sets are joined.

Boolean operators

The Boolean operators (And, Or, Not …) take in input boolean Measures and return booolean
Measures. The VTL Boolean operators behave like the operators that change the basic scalar
type: if applied at the Data Set level they are allowed only on mono-measure Data Sets, if
applied at the Component level they are allowed on mono and multi-measure Data Sets.

Set operators

The Set operators (union, intersection …) apply the classical set operations (union, intersection,
difference, symmetric differences) to the input Data Sets, considering them as mathematical
functions (sets of Data Points).

These operations are possible only if the Data Sets to be operated have the same data structure,
i.e. the same Identifiers, Measures and Attributes.

For these operators the rules for the Attribute propagation are not applied and the Attributes
are managed like the Measures.

Ref.Date Import Export Operations

2011 1000 1200 5000

2012 1300 1100 6400

2013 1200 1300 4800

VTL User Manual - Version 2.1 Page: 91

The Data Points common (or not common) to the input Data Sets are determined by taking into
account only the values of the Identifiers: the common Data Points are the ones, which have the
same values for all the Identifiers.

If for a common Data Point one or more dependent variables (Measures and Attributes) have
different values in different Data Sets, the Data Point of the leftmost Data Set are returned in
the result.

Behaviour for Missing Data

The awareness of missing data is very important for correct VTL operations, because the
knowledge of the Data Points of the result depends on the knowledge of the Data Points of the
operands. For example, assume Dr := D1 + D2 and suppose that some Data Points of D2 are
unknown, it follows that the corresponding Data Points of Dr cannot be calculated and are
unknown too.

Missing data are explicitly represented when some Measures or Attributes of a Data Point
have the value “NULL”, which denotes the absence of a true value (the “NULL” value is not
allowed for the Identifier Components, in order to ensure that the Data Points are always
identifiable).

Missing data may also show as the absence of some expected Data Point in the Data Set. For
example, given a Data Set containing the reports to an international organization relevant to
different countries and different dates, and having as Identifier Components the Country and
the Reference Date, this Data Set may lack the Data Points relevant to some dates (for example
the future dates) or some countries (for example the countries that didn’t send their data) or
some combination of dates and countries.

The absence of Data Points, however, does not necessarily denote that the phenomenon under
measure is unknown. In some cases, in fact, it means that a certain phenomenon did not
happen.

The handling of missing Data Points in VTL operations can be handled in several ways. One way
is to require all participating Data Points used in a computation to be present and known; this
is the correct approach if the absence of a Data Point means that the phenomenon is unknown
and corresponds with the matching method of the inner join operator. Another way is to allow
some, but not all, Data Points to be absent, when the absence does not mean that the
phenomenon is unknown; this corresponds to the behaviour of the left and full join Operator.

On the basic level, most of the scalar operations (arithmetic, logical, and others) return NULL
when any of their arguments is NULL.

The general properties of the NULL are the following ones:

 Data type. The NULL value is the only value of multiple different types (i.e., all the
nullable scalar types).

 Testing. A built-in Boolean operator is null can be used to test if a scalar value is NULL.

 Comparisons. Whenever a NULL value is involved in a comparison (>, <, >=, <=, in, not
in, between) the result of the comparison is NULL.

VTL User Manual - Version 2.1 Page: 92

 Arithmetic operations. Whenever a NULL value is involved in a mathematical

operation (+, -, *, /, …), the result is NULL.

 String operations. In operations on Strings, NULL is considered an empty String (“”).

 Boolean operations. VTL adopts 3VL (three-valued logic). Therefore the following
deduction rules are applied:

TRUE or NULL → TRUE

FALSE or NULL → NULL

TRUE and NULL → NULL

FALSE and NULL → FALSE

 Conditional operations. The NULL is considered equivalent to FALSE; for example in
the control structures of the type (if (p) -then -else), the action specified in –then is
executed if the predicate p is TRUE, while the action -else is executed if the p is FALSE or
NULL.

 Filter clauses. The NULL is considered equivalent to FALSE; for example in the filter
clause [filter p], the Data Points for which the predicate p is TRUE are selected and
returned in the output, while the Data Points for which p is FALSE or NULL are discarded.

 Aggregations. The aggregations (like sum, avg and so on) return one Data Point in
correspondence to a set of Data Points of the input. In these operations, the input Data
Points having a NULL value are in general not considered. In the average, for example,
they are not considered both in the numerator (the sum) and in the denominator (the
count). Specific cases for specific operators are described in the respective sections.

 Implicit zero. Arithmetic operators assuming implicit zeros (+,-,*,/) may generate NULL
values for the Identifier Components in particular cases (superset-subset relation
between the set of the involved Identifier Components). Because NULL values are in
general forbidden in the Identifiers, the final outcome of an expression must not contain
Identifiers having NULL values. As a momentary exception needed to allow some kinds
of calculations, Identifiers having NULL values are accepted in the partial results. To
avoid runtime error, possible NULL values of the Identifiers have to be fully eliminated
in the final outcome of the expression (through a selection, or other operators), so that
the operation of “assignment” (:=) does not encounter them.

If a different behaviour is desired for NULL values, it is possible to override them. This can be
achieved with the combination of the calc clauses and is null operators.

For example, suppose that in a specific case the NULL values of the Measure Component M1 of
the Data Set D1 have to be considered equivalent to the number 1, the following Transformation
can be used to multiply the Data Sets D1 and D2, preliminarily converting NULL values of D1.M1
into the number 1. For detailed explanations of calc and is null refer to the specific sections in
the Reference Manual.

Dr := D1 [M1 := if M1 is null then 1 else M1] * D2

VTL User Manual - Version 2.1 Page: 93

Behaviour for Attribute Components

Given an invocation of one Operator F, which can be written as Dr := F(D1, D2, … , Dn), and
considering that the input Data Sets Di (i=1,… n) may have any number of Attribute
Components, there can be the need of calculating the desired Attribute Components of Dr.
This Section describes the general VTL assumptions about how Attributes are handled (the
specific behaviours of the various operators are described in the Reference Manual).

It should be noted that the Attribute Components of a Data Set are dependent variables of the
corresponding mathematical function, just like the Measures. In fact, the difference between
Attribute and Measure Components lies only in their meaning: it is implicitly intended that the
Measures give information about the real world and the Attributes about the Data Set itself
(or some part of it, for example about one of its measures), however the real uses of the
Attribute Components are very heterogeneous.

The VTL has different default behaviours for Attributes and for Measures, to comply as much
as possible with the relevant manipulation needs.

At the Data Set level, the VTL Operators manipulate by default only the Measures and not the
Attributes.

At the Component level, instead, Attributes are calculated like Measures, therefore the
algorithms for calculating Attributes, if any, can be specified explicitly in the invocation of the
Operators. This is the behaviour of clauses like calc, keep, drop, rename, and so on, either
inside or outside the join (see the detailed description of these operators in the Reference
Manual).

The Attribute propagation rule

The users that want also to automatize the propagation of the Attributes’ Values when no
operation is explicitly defined can optionally enforce a mechanism, called Attribute
Propagation rule, whose behaviour is explained here. The adoption of this mechanism is
optional, users are free to allow the attribute propagation rule or not. The users that do not
want to allow Attribute propagation rules simply will not implement what follows.

The Attribute propagation rule is made of two main components, namely the “virality” and
the “default propagation algorithm”.

The “virality” is a characteristic to be assigned to the Attributes Components which
determines if the Attribute is propagated automatically in the result or not: a “viral” Attribute
is propagated while a “non-viral” Attribute is not (being a default behaviour, the virality is
applied when no explicit indication about the keeping of the Attribute is provided in the
expression). If the virality is not defined, the Attribute is considered as non-viral.

The virality is also assigned to the Attribute propagated in the result Data Set. By default, a viral
Attribute in the input generates a homonymous viral Attribute also in the result. Vice- versa, by
default a non-viral Attribute in the input generates a non-viral Attribute also in the result (this
happens when the Attribute in the result is calculated through an explicitly expression but
without specifying explicitly its virality). The default assignation of the virality can be
overridden by operations at Component level as mentioned above, for example keep (i.e., to

VTL User Manual - Version 2.1 Page: 94

keep a non-viral Attribute or not to keep a viral one) and calc to alter the virality in the result
Data Set, (from viral to non-viral or vice-versa)39.

Hence, the default Attribute propagation rule behaves as follows:

 the non-viral Attributes are not kept in the result and their values are not considered;

 the viral Attributes of the operand are kept and are considered viral also in the result; in
other words, if an operand has a viral Attribute V, the result will have V as viral Attribute
too;

 the Attributes, like the Measures, are combined according to their names, e.g. the
Attributes having the same names in multiple Operands are combined, while the
Attributes having different names are considered as different Attributes;

 whenever in the application of a VTL operator the input Data Points are not combined
as for their Measures (i.e., one input Data Point can result in no more than one output
Data Point), the values of the viral Attributes are simply copied from the input Data
Point to the (possible) output Data Point (obviously, this applies always in the case of
unary Operators which do not make aggregations);

 Whenever in the application of a VTL operator two or more Data Points (belonging to
the same or different Data Sets) are combined as for their Measures to give one output
Data Point, the default propagation algorithm associated to the viral Attribute is
applied, producing the Attribute value of the output Data Point. This happens for
example for the unary Operators which aggregate Data Points and for Operators which
combine the Data Points of more input Data Sets; in the latter case, the Attributes
having the same names in such Data Sets are combined.

Extending an example already given for unary Operators, let us assume that D1 contains the
salary of the employees of a multinational enterprise (the only Identifier is the Employee ID,
the only Measure is the Salary, and there are two other Components defined as viral Attributes,
namely the Currency and the Scale of the Salary):

D1 = Salary of Employees

The Transformation Dr := D1 * 1.10 applies only to the Measure (the salary) and
calculates a new value increased by 10%, the viral Attributes are kept and left unchanged, so
the result will be:

39 In particular, the keep clause allows the specification of whether or not an attribute is kept in the result while
the calc clause makes it possible to define calculation formulas for specific attributes. The calc can be used both
for Measures and for Attributes and is a unary Operator, e.g. it may operate on Components of just one Data Set to
obtain new Measures / Attributes.

Employee ID Salary Currency Scale

A 1000 U.S. $ Unit

B 1200 € Unit

C 800 yen Thousands

D 900 U.K. Pound Unit

VTL User Manual - Version 2.1 Page: 95

Dr = Increased Salary of Employees

The Currency and the Scale of Dr will be considered viral too and therefore would be kept also
in case Dr becomes operand of other Transformations.

Another example can be given for operations involving more input Data Sets (e.g. Dr := D1 +
D2). Let us assume that D1 and D2 contain the births and the deaths of the United States and
the Europe respectively, plus a viral Attribute that qualifies if the Value is estimated or not
(having values True or False).

D1 = Births & Deaths of the United States

D1 = Births & Deaths of the European Union

Suppose that the default propagation algorithm associated to the “Estimate” variable works
as follows:

 each value of the Attribute is associated to a default weight;

 the result of the combination is the value having the highest weight;

 if multiple values have the same weight, the result of the combination is the first in
lexicographical order.

Assuming the weights 1 for “false” and 2 for “true”, the Transformation Dr := D1 + D2
will produce:

Dr = Births & Deaths of United States + European Union

Employee ID Salary Currency Scale

A 1100 U.S. $ Unit

B 1320 € Unit

C 880 yen Thousands

D 990 U.K. Pound Unit

Ref.Date Births Deaths Estimate

2011 1000 1200 False

2012 1300 1100 False

2013 1200 1300 True

Ref.Date Births Deaths Estimate

2011 1100 1000 False

2012 1200 900 True

2013 1050 1100 False

VTL User Manual - Version 2.1 Page: 96

Note also that:

 if the attribute Estimate was non-viral in both the input Data Sets, it would not be kept
in the result

 if the attribute Estimate was viral only in one Data Set, it would be kept in the result with
the same values as in the viral Data Set

In an expression, the default propagation of the Attributes is performed always in the same
order of execution of the Operators of the expression, which is determined by their
precedence and associativity rules, as already explained in the relevant section.

For example, recalling the example already given example:

Dr := D1 + D2 / (D3 – D4 / D5)

The evaluation of the Attributes will follow the order of composition of the Measures:

I. A(D4 / D5) (default precedence order)
II. A(D3 - I) (explicitly defined order)

III. A(D2 / II) (default precedence order)
IV. A(D1 + III) (default precedence order)

Properties of the Attribute propagation algorithm

An Attribute default propagation algorithm is a user-defined operator that has a group of
Values of an Attribute as operands and returns just one Value for the same Attribute.

An Attribute default propagation algorithm (here called A) must ensure the following
properties (in respect to the application of a generic Data Set operator “§” which applies
on the measures):

Commutative law (1)

A(D1 § D2) = A(D2 § D1)

The application of A produces the same result (in term of Attributes) independently of
the ordering of the operands. For example, A(D1 + D2) = A(D2 + D1). This may seem quite
intuitive for “sum”, but it is important to point out that it holds for every operator, also
for non-commutative operations like difference, division, logarithm and so on; for
example A(D1 / D2) = A(D2 / D1)

Associative law (2)

A(D1 § A(D2 § D3) = A(A(D1 § D2) § D3)

Within one operator, the result of A (in term of Attributes) is independent of the
sequence of processing.

Ref.Date Births Deaths Estimate

2011 2100 2200 False

2012 2500 2000 True

2013 2250 2400 True

VTL User Manual - Version 2.1 Page: 97

Reflexive law (3)

A(§(D1)) = A(D1)

The application of A to an Operator having a single operand gives the same result (in
term of Attributes) that its direct application to the operand (in fact the propagation rule
keeps the viral attributes unchanged).

Having these properties in place, it is always possible to avoid ambiguities and circular
dependencies in the determination of the Attributes’ values of the result. Moreover, it is
sufficient without loss of generality to consider only the case of binary operators (i.e. having
two Data Sets as operands), as more complex cases can be easily inferred by applying the VTL
Attribute propagation rule recursively (following the order of execution of the operations in the
VTL expression).

VTL User Manual - Version 2.1 Page: 98

Governance, other requirements and future work

The SDMX Technical Working Group, as mandated by the SDMX Secretariat, is responsible for
ensuring the technical maintenance of the Validation and Transformation Language through a
dedicated VTL task force. The VTL task force is open to the participation of experts from other
standardisation communities, such as DDI and GSIM, as the language is designed to be usable
within different standards.

The governance of the extensions

According to the requirements, it is envisaged that the language can be enriched and made more
powerful in future versions according to the evolution of the business needs. For example, new
operators and clauses can be added, and the language syntax can be upgraded.

The VTL governance body will take care of the evolution process, collecting and prioritising the
requirements, planning and designing the improvements, releasing future VTL versions.

The release of new VTL versions is considered as the preferred method of fulfilling the
requirements of the user communities. In this way, the possibility of exchanging standard
validation and transformation rules would be preserved to the maximum extent possible.

In order to fulfil specific calculation features not yet supported, the VTL provides for an
operator which allows to define new custom operators by means of the existing ones and
another operator (Evaluate) whose purpose is to invoke an external calculation function
(routine), provided that this is compatible with the VTL IM, basic principles and data types.

As already mentioned, because the user-defined operators does not belong to the standard
library, they are not standard VTL operators and are applicable only in the context in which
they have been defined. In particular, if there is the need of applying user-defined operators
in other contexts, their definitions need to be pre-emptively shared.

The operator “Evaluate” (also “Eval”) allows defining and making customized calculations (also
reusing existing routines) without upgrading or extending the language, because the external
calculation function is not considered as an additional operator. The expressions containing
Eval are standard VTL expressions and can be parsed through a standard parser. For this
reason, when it is not possible or convenient to use other VTL operators, Eval is the
recommended method of customizing the language operations.

However, as explained in the section “Extensibility and Customizability” of the “General
Characteristics of VTL” above, calling external functions has some drawbacks in respect to the
use of the proper VTL operators. The transformation rules would be not understandable unless
such external functions are properly documented and shared and could become dependent on
the IT implementation, less abstract and less user oriented. Moreover, the external functions
cannot be parsed (as if they were built through VTL operators) and this could make the
expressions more error-prone. External routines should be used only for specific needs and in
limited cases, whereas widespread and generic needs should be fulfilled through the operators
of the language.

VTL User Manual - Version 2.1 Page: 99

While the “Eval” operator is part of VTL, the invoked external calculation functions are not.
Therefore, they are considered as customized parts under the governance, and are
responsibility and charge of the organizations that use it.

Organizations possibly extending VTL through non-standard operators/clauses would
operate on their own total risk and responsibility for any possible maintenance activity
deriving from VTL modifications.

As mentioned, whilst an Organisation adopting VTL can extend its own library by defining
customized parts and by implementing external routines, on its own total responsibility, in
order to improve the standard language for specific purposes (e.g. for supporting possible
algorithms not permitted by the standard part), it is important that the customized parts
remain compliant with the VTL IM and the VTL fundamentals. Adopting Organizations are
totally in charge of any activity for maintaining and sharing their customized parts. Adopting
Organizations are also totally in charge of any possible maintenance activity to maintain the
compliance between their customized parts and the possible standard VTL future evolution.

Relations with the GSIM Information Model

As already said, GSIM artefacts are used as much as possible for the VTL IM. Some differences
between this model and GSIM are due to the fact that, in the VTL IM, both unit and dimensional
data are considered as first-order mathematical functions having independent and dependent
variables and are treated in the same way.

As explained later, VTL is inspired by GSIM as much as possible, in order to provide a formal
model at business level against which other information models can be mapped, and to facilitate
the implementation of VTL with standards like SDMX, DDI and possibly others.

GSIM faces many aspects that are out of the VTL scope; the latter uses only those GSIM artefacts
that are strictly related to the representation of validations and transformations. The
referenced GSIM artefacts have been assessed against the requirements for VTL and, in some
cases, adapted or improved as necessary, as explained earlier. No assessment was made about
those GSIM artefacts that are out of the VTL scope.

In respect to GSIM, VTL considers both unit and dimensional data as mathematical functions
having a certain structure in term of independent and dependent variables. This leads to a
simplification, as unit and dimensional data can be managed in the same way, but it also
introduces some slight differences in data representation. The aim of the VTL Task Force is to
propose the adoption of this adjustment for the next GSIM versions.

Data Sets and Data Structures

The VTL Data Set and Data Structure artefacts are similar to the corresponding GSIM artefact.
VTL, however, does not make a distinction between Unit and Dimensional Data Sets and Data
Structures.

In order to explain the relationships between VTL and GSIM, the distinction between Unit and
Dimensional Data Sets can be introduced virtually even in the VTL artefacts. In particular, the

VTL User Manual - Version 2.1 Page: 100

GSIM Data Set may be a GSIM Dimensional Data Set or a GSIM Unit Data Set, while a VTL Data
Set may (virtually) be:

either a (virtual) VTL Dimensional Data Set: a kind of (Logical) Data Set describing
groups of units of a population that may be composed of many units. This (virtual)
artefact would be the same as the GSIM Dimensional Data Set;

or a (virtual) VTL Unit Data Set: a kind of (Logical) Data Set describing single units of a
population. This (virtual) artefact would be the same as the Unit Data Record in GSIM,
which has its own structure and can be thought of as a mathematical function. The
difference is that the VTL Unit Data Set would not correspond to the GSIM Unit Data Set,
because the latter cannot be considered as a mathematical function: in fact, it can have
many GSIM Unit Data Records with different structures.

A similar relationship exists between VTL and GSIM Data Structures. In particular, introducing
in VTL the virtual distinction between Unit and Dimensional Data Structures, while a GSIM Data
Structure may be a GSIM Dimensional Data Structure or a GSIM Unit Data Structure, a VTL Data
Structure may (virtually) be:

either a (virtual) VTL Dimensional Data Structure: the structure of (0...n) Dimensional
Data Sets. This artefact would be the same as in GSIM;

or a (virtual) VTL Unit Data Structure: the structure of (0...n) Unit Data Sets. This
artefact would be the same as the Logical Record in GSIM, which corresponds to a single
structure and can be thought as the structure of a mathematical function. The difference
is that the VTL Unit Data Structure would not correspond to the GSIM Unit Data
Structure, because the latter cannot be considered as the structure of a mathematical
function: in fact, it can have many Logical Records with different structures.

The following diagram summarizes the relationships between the GSIM and the VTL Data Sets
and Data Structures, according to the explanation given above.

Please take into account that the distinction between Dimensional and Unit Data Set and Data
Structure is not used by the VTL language and is not part of the VTL IM. This virtual distinction
is highlighted here and in the diagram below just for clarifying the mapping of the VTL IM with
GSIM and DDI.

VTL User Manual - Version 2.1 Page: 101

GSIM – VTL mapping diagram about data structures:

Value Domains

The VTL IM allows defining the Value Domains (as in GSIM) and their subsets (not explicitly
envisaged in GSIM), needed for validation purposes. In order to be compliant, the GSIM artefacts
are used for modelling the Value Domains and a similar structure is used for modelling their
subsets. Even in this case, the VTL task force will propose the explicit introduction of the Value
Domain Subsets in future GSIM versions.

Transformation model and Business Process Model

VTL is based on a model for defining mathematical expressions that is called "Transformation
model". GSIM does not have a Transformation model, which is however available in the SDMX
IM. The VTL IM has been built on the SDMX Transformation model, with the intention of
suggesting its introduction in future GSIM versions.

Some misunderstanding may arise from the fact that GSIM, DDI, SDMX and other standards also
have a Business Process model. The connection between the Transformation model and the
Business Process model has been neither analysed nor modelled in VTL. One reason is that the
business process models available in GSIM, DDI and SDMX are not yet fully compatible and
univocally mapped.

It is worth nothing that the Transformation and the Business Process models address different
matters. In fact, the former allows defining validation and calculation rules in the form of
mathematical expressions (like in a spreadsheet) while the latter allows defining a business
process, made of tasks to be executed in a certain order. The two models may coexist and be
used together as complementary. For example, a certain task of a business process (say the
validation of a data set) may require the execution of a certain set of validation rules, expressed
through the Transformation model used in VTL. Further progress in this reconciliation can be
part of the future work on VTL.

VTL
Data Set

VTL
Data Structure

structured by

1..1

0..N

GSIM
Unit DataRecord

GSIM
Logical Record

GSIM Dimens.
Data Set

GSIM Dimens.
Data Structure

VTL Unit Data
Set

VTL Unit Data
Structure

VTL Dimens.
Data Set

VTL Dimens.
Data Structure

Virtual VTL artefacts

mappings

VTL User Manual - Version 2.1 Page: 102

Annex 1 – EBNF

The VTL language is also expressed in EBNF (Extended Backus-Naur Form).

EBNF is a standard40 meta-syntax notation, typically used to describe a Context-Free grammar
and represents an extension to BNF (Backus-Naur Form) syntax. Indeed, any language
described with BNF notation can also be expressed in EBNF (although expressions are typically
lengthier).

Intuitively, the EBNF consists of terminal symbols and non-terminal production rules. Terminal
symbols are the alphanumeric characters (but also punctuation marks, whitespace, etc.) that
are allowed singularly or in a combined fashion. Production rules are the rules governing how
terminal symbols can be combined in order to produce words of the language (i.e. legal
sequences).

More details can be found at http://en.wikipedia.org/wiki/Extended_Backus–Naur_Form

Properties of VTL grammar

VTL can be described in terms of a Context-Free grammar41, with productions of the form V
w, where V is a single non-terminal symbol and w is a string of terminal and non-terminal
symbols.

VTL grammar aims at being unambiguous. An ambiguous Context-Free grammar is such that
there exists a string that can be derived with two different paths of production rules, technically
with two different leftmost derivations.

In theoretical computer science, the problem of understanding if a grammar is ambiguous is
undecidable. In practice, many languages adopt a number of strategies to cope with ambiguities.
This is the approach followed in VTL as well. Examples are the presence of associativity and
precedence rules for infix operators (such as addition and subtraction), and the existence of
compulsory else branch in if-then-else operator.

These devices are reasonably good to guarantee the absence of ambiguity in VTL grammar.
Indeed, real parser generators (for instance YACC42), can effectively exploit them, in particular
using the mentioned associativity and precedence constrains as well as the relative ordering of
the productions in the grammar itself, which solves ambiguity by default.

40 ISO/IEC 14977

41 http://en.wikipedia.org/wiki/Context-free_grammar

42 http://en.wikipedia.org/wiki/Yacc

http://en.wikipedia.org/wiki/Terminal_symbol
http://en.wikipedia.org/wiki/Extended_Backus–Naur_Form
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Yacc

