
SDMX Technical Working Group

VTL Task Force

VTL – version 2.1

(Validation & Transformation Language)

Part 2 – Reference Manual

July 2024

VTL Reference Manual - Version 2.1 Page: 2

Foreword

The Task force for the Validation and Transformation Language (VTL), created in 2012-2013
under the initiative of the SDMX Secretariat, is pleased to present the version 2.1 of VTL.

The SDMX Secretariat launched the VTL work at the end of 2012, moving on from the
consideration that SDMX already had a package for transformations and expressions in its
information model, while a specific implementation language was missing. To make this
framework operational, a standard language for defining validation and transformation rules
(operators, their syntax and semantics) has been adopted.

The VTL task force was set up early in 2013, composed of members of SDMX, DDI and GSIM
communities and the work started in summer 2013. The intention was to provide a language
usable by statisticians to express logical validation rules and transformations on data,
described as either dimensional tables or unit-record data. The assumption is that this logical
formalization of validation and transformation rules could be converted into specific
programming languages for execution (SAS, R, Java, SQL, etc.), and would provide at the same
time, a “neutral” business-level expression of the processing taking place, against which various
implementations can be mapped. Experience with existing examples suggests that this goal
would be attainable.

An important point that emerged is that several standards are interested in such a kind of
language. However, each standard operates on its model artefacts and produces artefacts
within the same model (property of closure). To cope with this, VTL has been built upon a
very basic information model (VTL IM), taking the common parts of GSIM, SDMX and DDI,
mainly using artefacts from GSIM, somewhat simplified and with some additional detail. In this
way, existing standards (GSIM, SDMX, DDI, others) would be allowed to adopt VTL by
mapping their information model against the VTL IM. Therefore, although a work-product of
SDMX, the VTL language in itself is independent of SDMX and will be usable with other
standards as well. Thanks to the possibility of being mapped with the basic part of the IM of
other standards, the VTL IM also makes it possible to collect and manage the basic definitions
of data represented in different standards.

For the reason described above, the VTL specifications are designed at logical level,
independently of any other standard, including SDMX. The VTL specifications, therefore, are
self-standing and can be implemented either on their own or by other standards (including
SDMX).

The first public consultation on VTL (version 1.0) was held in 2014. Many comments were
incorporated in the VTL 1.0 version, published in March 2015. Other suggestions for
improving the language, received afterwards, fed the discussion for building the draft version
1.1, which contained many new features, was completed in the second half of 2016 and
provided for public consultation until the beginning of 2017.

The high number and wide impact of comments and suggestions induced a high workload on
the VTL TF, which agreed to proceed in two steps for the publication of the final
documentation. The first step has been dedicated to fixing some high-priority features and
making them as much stable as possible; given the high number of changes, it was decided that
the new version should be considered as a major one and thus named VTL 2.0.

The second step, taking also into consideration that some VTL implementation initiatives are
already in place, is aimed at acknowledging and fixing other features considered of minor
impact and priority, without affecting the features already published or the possible relevant
implementations.

VTL Reference Manual - Version 2.1 Page: 3

In parallel with the work for designing the new VTL version, the task force has been involved
in the SDMX implementation of VTL, aiming at defining formats for exchanging rules and
developing web services to retrieve them; the new features have been included in the SDMX 3.0
package.

The present VTL 2.1 package contains the general VTL specifications, independently of the
possible implementations of other standards; it includes:

a) The User Manual, highlighting the main characteristics of VTL, its core assumptions and
the information model the language is based on;

b) The Reference manual, containing the full library of operators ordered by category,
including examples;

c) eBNF notation (extended Backus-Naur Form) which is the technical notation to be used
as a test bed for all the examples;

d) A Technical Notes document, containing some guidelines for VTL implementation.

The latest version of VTL is freely available online at https://sdmx.org/?page_id=5096

Acknowledgements

The VTL specifications have been prepared thanks to the collective input of experts from Bank
of Italy, Bank for International Settlements (BIS), European Central Bank (ECB), Eurostat, ILO,
INEGI-Mexico, INSEE-France, ISTAT-Italy, OECD, Statistics Netherlands, and UNESCO. Other
experts from the SDMX Technical Working Group, the SDMX Statistical Working Group and the
DDI initiative were consulted and participated in reviewing the documentation.

The list of contributors and reviewers includes the following experts: Sami Airo, Foteini
Andrikopoulou, David Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio Capaccioli,
Franck Cotton, Vincenzo Del Vecchio, Fabio Di Giovanni, Jens Dossé, Heinrich Ehrmann, Bryan
Fitzpatrick, Tjalling Gelsema, Luca Gramaglia, Arofan Gregory, Gyorgy Gyomai, Edgardo
Greising, Dragan Ivanovic, Angelo Linardi, Juan Munoz, Chris Nelson, Stratos Nikoloutsos,
Antonio Olleros, Stefano Pambianco, Marco Pellegrino, Michele Romanelli, Juan Alberto
Sanchez, Roberto Sannino, Angel Simon Delgado, Daniel Suranyi, Olav ten Bosch, Laura Vignola,
Fernando Wagener and Nikolaos Zisimos.

Feedback and suggestions for improvement are encouraged and should be sent to the SDMX
Technical Working Group (twg@sdmx.org).

https://sdmx.org/?page_id=5096
mailto:twg@sdmx.org

VTL Reference Manual - Version 2.1 Page: 4

Table of contents

FOREWORD ..2

TABLE OF CONTENTS ...4

INTRODUCTION ..9

OVERWIEW OF THE LANGUAGE AND CONVENTIONS .. 10

Introduction .. 10

Conventions for writing VTL Transformations .. 11

Typographical conventions ... 12

Abbreviations for the names of the artefacts ... 12

Conventions for describing the operators’ syntax .. 13

Description of the data types of operands and result .. 15

VTL-ML Operators ... 17

VTL-ML - Evaluation order of the Operators ... 29

Description of VTL Operators .. 29

VTL-DL - RULESETS .. 31

define datapoint ruleset ... 31

define hierarchical ruleset .. 34

VTL-DL – USER DEFINED OPERATORS .. 43

define operator ... 43

Data type syntax ... 44

VTL-ML - TYPICAL BEHAVIOURS OF THE ML OPERATORS .. 46

Typical behaviour of most ML Operators ... 46

Operators applicable on one Scalar Value or Data Set or Data Set Component .. 46

Operators applicable on two Scalar Values or Data Sets or Data Set Components 48

Operators applicable on more than two Scalar Values or Data Set Components 50

Behaviour of Boolean operators ... 51

Behaviour of Set operators ... 51

Behaviour of Time operators .. 51

Operators changing the data type .. 52

Type Conversion and Formatting Mask .. 54

The Numbers Formatting Mask .. 54

The Time Formatting Mask ... 54

Attribute propagation ... 58

VTL-ML - GENERAL PURPOSE OPERATORS ... 59

VTL Reference Manual - Version 2.1 Page: 5

Parentheses : () .. 59

Persistent assignment : <- .. 60

Non-persistent assignment : := .. 61

Membership : # ... 62

User-defined operator call .. 64

Evaluation of an external routine : eval .. 65

Type conversion : cast ... 66

VTL-ML - JOIN OPERATORS ... 72

Join : inner_join, left_join, full_join, cross_join .. 72

VTL-ML - STRING OPERATORS ... 83

String concatenation : || ... 83

Whitespace removal : trim, rtrim, ltrim... 84

Character case conversion : upper/lower .. 85

Sub-string extraction : substr ... 86

String pattern replacement: replace ... 88

String pattern location : instr ... 89

String length : length .. 92

VTL-ML - NUMERIC OPERATORS ... 94

Unary plus : + .. 94

Unary minus: - ... 95

Addition : + .. 96

Subtraction : - ... 98

Multiplication : * ... 100

Division : / ... 102

Modulo : mod .. 104

Rounding : round .. 106

Truncation : trunc ... 108

Ceiling : ceil ... 110

Floor: floor .. 111

Absolute value : abs ... 112

Exponential : exp .. 114

Natural logarithm : ln .. 115

Power : power .. 116

Logarithm : log... 118

Square root : sqrt ... 119

VTL Reference Manual - Version 2.1 Page: 6

Random : random .. 120

VTL-ML - COMPARISON OPERATORS .. 122

Equal to : = .. 122

Not equal to : <> ... 123

Greater than : > >= .. 125

Less than : < <= ... 127

Between : between ... 128

Element of: in / not_in ... 129

match_characters match_characters .. 132

Isnull: isnull... 133

Exists in : exists_in ... 134

VTL-ML - BOOLEAN OPERATORS.. 137

Logical conjunction: and ... 137

Logical disjunction : or .. 139

Exclusive disjunction : xor .. 140

Logical negation : not ... 142

VTL-ML - TIME OPERATORS ... 145

Period indicator : period_indicator .. 145

Fill time series : fill_time_series ... 147

Flow to stock : flow_to_stock .. 152

Stock to flow : stock_to_flow ... 155

Time shift : timeshift ... 159

Time aggregation : time_agg .. 163

Actual time : current_date .. 165

Days between two dates: datediff .. 165

Add a time unit to a date: dateadd ... 166

Extract time period from a date: year, month, dayofmonth, dayofyear ... 168

Number of days to duration: daytoyear, daytomonth ... 169

Duration to number of days: yeartoday, monthtoday ... 170

VTL-ML - SET OPERATORS .. 172

Union: union .. 172

Intersection : intersect .. 174

Set difference : setdiff .. 175

Simmetric difference : symdiff... 177

VTL-ML - HIERARCHICAL AGGREGATION ... 179

VTL Reference Manual - Version 2.1 Page: 7

Hierarchical roll-up : hierarchy ... 179

VTL-ML - AGGREGATE AND ANALYTIC OPERATORS ... 184

Aggregate invocation .. 185

Analytic invocation .. 189

Counting the number of data points: count ... 192

Minimum value : min .. 193

Maximum value : max ... 195

Median value : median ... 196

Sum : sum ... 197

Average value : avg ... 198

Population standard deviation : stddev_pop ... 199

Sample standard deviation : stddev_samp .. 200

Population variance : var_pop .. 202

Sample variance : var_samp ... 203

First value : first_value ... 204

Last value : last_value .. 206

Lag : lag .. 207

lead : lead ... 209

Rank : rank ... 210

Ratio to report : ratio_to_report ... 212

VTL-ML - DATA VALIDATION OPERATORS ... 214

check_datapoint ... 214

check_hierarchy .. 216

check ... 222

VTL-ML - CONDITIONAL OPERATORS... 225

if-then-else : if .. 225

case: case .. 227

Nvl : nvl .. 229

VTL-ML - CLAUSE OPERATORS .. 231

Filtering Data Points : filter ... 231

Calculation of a Component : calc .. 232

Aggregation : aggr .. 233

Maintaining Components: keep ... 237

Removal of Components: drop .. 238

Change of Component name : rename .. 239

VTL Reference Manual - Version 2.1 Page: 8

Pivoting : pivot ... 240

Unpivoting : unpivot .. 241

Subspace : sub ... 242

VTL Reference Manual - Version 2.1 Page: 9

Introduction

This document is the Reference Manual of the Validation and Transformation Language (also
known as ‘VTL’) version 2.0.

The VTL 2.0 library of the Operators is described hereinafter.

VTL 2.0 consists of two parts: the VTL Definition Language (VTL-DL) and the VTL Manipulation
Language (VTL-ML).

This manual describes the operators of VTL 2.0 in detail (both VTL-DL and VTL-ML) and is
organized as follows.

First, in the following Chapter “Overview of the language and conventions”, the general
principles of VTL are summarized, the main conventions used in this manual are presented and
the operators of the VTL-DL and VTL-ML are listed. For the operators of the VTL-ML, a table
that summarizes the “Evaluation Order” (i.e., the precedence rules for the evaluation of the VTL-
ML operators) is also given.

The following two Chapters illustrate the operators of VTL-DL, specifically for:

 the definition of rulesets and their rules, which can be invoked with appropriate VTL-
ML operators (e.g. to check the compatibility of Data Point values …);

 the definition of custom operators/functions of the VTL-ML, meant to enrich the
capabilities of the VTL-ML standard library of operators.

The illustration of VTL-ML begins with the explanation of the common behaviour of some
classes of relevant VTL-ML operators, towards a good understanding of general language
characteristics, which we factor out and do not repeat for each operator, for the sake of
compactness.

The remainder of the document illustrates each single operator of the VTL-ML and is structured
in chapters, one for each category of Operators (e.g., general purpose, string, numeric …). For
each Operator, there is a specific section illustrating the syntax, the semantics and giving some
examples.

VTL Reference Manual - Version 2.1 Page: 10

Overwiew of the language and conventions

Introduction

The Validation and Transformation Language is aimed at defining Transformations of the
artefacts of the VTL Information Model, as more extensively explained in the User Manual.

A Transformation consists of a statement which assigns the outcome of the evaluation of an
expression to an Artefact of the IM. The operands of the expression are IM Artefacts as well. A
Transformation is made of the following components:

 A left-hand side, which specifies the Artefact which the outcome of the expression is
assigned to (this is the result of the Transformation);

 An assignment operator, which specifies also the persistency of the left hand side. The
assignment operators are two, the first one for the persistent assignment (<-) and the
other one for the non-persistent assignment (:=).

 A right-hand side, which is the expression to be evaluated, whose inputs are the
operands of the Transformation. An expression consists in the invocation of VTL
Operators in a certain order. When an Operator is invoked, for each input Parameter,
an actual argument (operand) is passed to the Operator, which returns an actual
argument for the output Parameter. In the right hand side (the expression), the
Operators can be nested (the output of an Operator invocation can be input of the
invocation of another Operator). All the intermediate results in an expression are non-
persistent.

Examples of Transformations are:

DS_np := (DS_1 - DS_2) * 2 ;

DS_p <- if DS_np >= 0 then DS_np else DS_1 ;

(DS_1 and DS_2 are input Data Sets, DS_np is a non persistent result, DS_p is a persistent
result, the invoked operators (apart the mentioned assignments) are the subtraction (-) the
multiplication (*) the choice (if…then…else), the greater or equal comparison (>=) and the
parentheses that control the order of the operators’ invocations.

Like in the example above, Transformations can interact one another through their operands
and results; in fact the result of a Transformation can be operand of one or more other
Transformations. The interacting Transformations form a graph that is oriented and must be
acyclic to ensure the overall consistency, moreover a given Artefact cannot be result of more
than one Transformation (the consistency rules are better explained in the User Manual, see
VTL Information Model / Generic Model for Transformations / Transformations consistency).
In this regard, VTL Transformations have a strict analogy with the formulas defined in the cells
of the spreadsheets.

A set of more interacting Transformations is usually needed to perform a meaningful and self-
consistent task like for example the validation of one or more Data Sets. The smaller set of
Transformations to be executed in the same run is called Transformation Scheme and can be
considered as a VTL program.

Not necessarily Transformations need to be written in sequence like a classical software
program, in fact they are associated to the Artefacts they calculate, like it happens in the
spreadsheets (each spreadsheet’s formula is associated to the cell it calculates).

Nothing prevents, however, from writing the Transformations in sequence, taking into account
that not necessarily the Transformations are performed in the same order as they are written,
because the order of execution depends on their input-output relationships (a Transformation

VTL Reference Manual - Version 2.1 Page: 11

which calculates a result that is operand of other Transformations must be executed first). For
example, if the two Transformations of the example above were written in the reverse order:

(i) DS_p <- if DS_np >= 0 then DS_np else DS_1 ;

(ii) DS_np := (DS_1 - DS_2) * 2 ;

All the same the Transformation (ii) would be executed first, because it calculates the Data Set
DS_np which is an operand of the Transformation (i).

When Transformations are written in sequence, a semicolon (;) is used to denote the end of a
Transformation and the beginning of the following one.

Conventions for writing VTL Transformations

When more Transformations are written in a text, the following conventions apply.

Transformations:

 A Transformation can be written in one or more lines, therefore the end of a line does
not denote the end of a Transformation.

 The end of a Transformation is denoted by a semicolon (;).

Comments:

Comments can be inserted within VTL Transformations using the following syntaxes.

 A multi-line comment is embedded between /* and */ and, obviously, can span over
several lines:

/* multi-line

 comment text */

 A single-line comment follows the symbol // up to the next end of line:

// text of a comment on a single line

 A sequence of spaces, tabs, end-of-line characters or comments is considered as a single
space.

 The characters /* , */ , // and the whitespaces can be part of a string literal (within double
quotes) but in such a case they are part of the string characters and do not have any
special meaning.

Examples of valid comments:

Example 1:

/* this is a multi-line

 Comment */

Example 2:

// this is single-line comment

Example 3:

DS_r <- /* A is a dataset */ A + /* B is a dataset */ B ;

(for the VTL this statement is the Transformation DS_r <- A + B ;)

Example 4:

DS_r := DS_1 // my comment

 * DS_2 ;

(for the VTL this statement is the Transformation DS_r := DS_1 * DS_2 ;)

VTL Reference Manual - Version 2.1 Page: 12

Typographical conventions

The Reference Manual (this manual) uses the normal font Cambria for the text and the other
following typographical conventions:

Convention Description

Italics Cambria
Basic scalar data types (in the text)

e.g. “…must have one Identifier of type time_period. If the Data Set….”

Bold Arial

Keywords (in the description of the syntax and in the text)

e.g. Rule ::={ ruleName : } { when antecedentCondition then }
 consequentCondition
 { errorcode errorCode }

 { errorlevel errorLevel }

e.g. “…..The rename operator allows to rename one or more Components…”

Italics Arial
Optional Parameter (in the description of the syntax)

e.g. substr (op, start, length)

Underlined Arial Sub-expressions

Normal font Arial

 The operator’s syntax (excluded the keywords, the optional Parameters
and the sub-expressions)

e.g. length ("Hello, World!")

 The examples of invocation of the operators

e.g. length ("Hello, World!")

 Optional and Mandatory Parameters (in the text)

 e.g. “……If comp is a Measure in op, then in the result …..”

Abbreviations for the names of the artefacts

The names of the artefacts operated by the VTL-ML come from the VTL IM. In their turn, the
names of the VTL IM artefacts are derived as much as possible from the names of the GSIM IM
artefacts, as explained in the User Manual.

If the complete names are long, the VTL IM suggests also a compact name, which can be used in
place of the complete name in case there is no ambiguity (for example, “Set” instead than “Value
Domain Subset”, “Component” instead than “Data Set Component” and so on); moreover, to
make the descriptions more compact, a number of abbreviations, usually composed of the
initials (in capital case) or the first letters of the words of artefact names, are adopted in this
manual:

VTL Reference Manual - Version 2.1 Page: 13

Complete name Compact name Abbreviation

Data Set Data Set DS

Data Point Data Point DP

Identifier Component Identifier Id

Measure Component Measure Me

Attribute Component Attribute At

Data Set Component Component Comp

Value Domain Subset Subset or Set Set

Value Domain Domain VD

A positive integer suffix (with or without an underscore) can be added in the end to distinguish
more than one instance of the same artefact (e.g., DS_1, DS_2, …, DS_N, Me1, Me2, …MeN). The
suffix “r” stands for the result of a Transformation (e.g., DS_r).

Conventions for describing the operators’ syntax

Each VTL operator has an explanatory name, which recalls the operator function (e.g., “Greater
than”) and a syntactical symbol, which is used to invoke the operator (e.g., “>”). The operator
symbol may also be alphabetic, always lowercase (e.g., round).

In the VTL-DL, the operator symbol is the keyword define followed by the name of the object
to be defined. The complete operator symbol is therefore a compound lowercase sentence (e.g.
define operator).

In the VTL-ML, the operator symbol does not contain spaces and may be either a sequence of
special characters (like +, -, >=, <= and so on) or a text keyword (e.g., and, or, not). The keyword
may be compound with underscores as separators (e.g., exists_in).

Each operator has a syntax, which is a set of formal rules to invoke the operator correctly. In
this document, the syntax of the operators is formally described by means of a meta-syntax
which is not part of the VTL language, but has only presentation purposes.

The meta-syntax describes the syntax of the operators by means of meta-expressions, which
define how the invocations of the operators must be written. The meta-expressions contain the
symbol of the operator (e.g., “join”), the possible other keywords to denote special parameters
(e.g., using), other symbols to be used (e.g., parentheses, commas), the named formal
parameters (e.g., multiplicand and multiplier for the multiplication).

As for the typographic stile, in order to distinguish between the syntax symbols (which are used
in the operator invocations) and meta-syntax symbols (used just for explanatory purposes, and
not actually used in invocations), the syntax symbols are in boldface (i.e., the operator symbol,
the special keywords, the possible parenthesis, commas an so on). The names of the generic
operands (e.g., multiplicand, multiplier) are in Roman type, even if they are part of the syntax.

The meta-expression can be very simple, for example the meta-expression for the addition is:

op1 + op2

This means that the addition has two operands (op1, op2) and is invoked by specifying the
name of the first addendum (op1), then the addition symbol (+) followed by the name of the
second addendum (op2).

In this example, all the three parts of the meta-expression are fixed. In other cases, the meta-
expression can be more complex and made of optional, alternative or repeated parts.

In the simple cases, the optional parts are denoted by using the italic face, for example:

VTL Reference Manual - Version 2.1 Page: 14

substr (op, start, length)

The expression above implies that in the substr operator the start and length operands are
optional. In the invocation, a non-specified optional operand is substituted by an underscore
or, if it is in the end of the invocation, can be omitted. Hence the following syntaxes are all
formally correct:

substr (op, start, length)

substr (op, start)

substr (op, _ , length)

substr (op)

In more complex cases, a regular expression style is used to denote the parts (sub-
expressions) of the meta-expression that are optional, alternative or repeated. In particular,
braces denote a sub-expression; a vertical bar (or sometimes named “pipe”) within braces
denotes possible alternatives; an optional trailing number, following the braces, specifies the
number of possible repetitions.

 non-optional : non-optional sub-expression (text without braces)

 {optional} : optional sub-expression (zero or 1 occurrence)

 {non-optional}1 : non-optional sub-expression (just 1 occurrence)

 {one-or-more}+ : sub-expression repeatable from 1 to many occurrences

 {zero-or-more}* : sub-expression repeatable from 0 to many occurrences

 { part1 | part2 | part3 } : optional alternative sub-expressions (zero or 1 occurrence)

 { part1 | part2 | part3 }1 : alternative sub-expressions (just 1 occurrence)

 { part1 | part2 | part3 }+: alternative sub-expressions, from 1 to many occurrences

 { part1 | part2 | part3 }* : alternative sub-expressions, from 0 to many occurrences

Moreover, to improve the readability, some sub-expressions (the underlined ones) can be
referenced by their names and separately defined, for example a meta-expression can take the
following form:

sub-expr1-text sub-expr2-name … sub-exprN-1-name sub-exprN-text

sub-expr2-name ::= sub-expr2-text

... possible others ...

sub-exprN-1-name ::= sub-exprN-1-text

In this representation of a meta-expression:

 The first line is the text of the meta-expression

 sub-expr1-text, sub-exprN-text are sub-expressions directly written in the meta-
expression

 sub-expr2-name, … sub-exprN-1-name are identifiers of sub-expressions.

 sub-expr2-text, … sub-exprN-1-text are subexpression written separately from the
meta-expression.

 The symbol ::= means “is defined as” and denotes the assignment of a sub-expression-
text to a sub-expression-name.

The following example shows the definition of the syntax of the operators for removing the
leading and/or the trailing whitespaces from a string:

Meta-expression ::= { trim | ltrim | rtrim }1 (op)

VTL Reference Manual - Version 2.1 Page: 15

The meta-expression above synthesizes that:

 trim, ltrim, rtrim are the operators’ symbols (reserved keywords);

 (,) are symbols of the operators syntax (reserved keywords);

 op is the only operand of the three operators;

 “{ }1” and “|” are symbols of the meta-syntax; in particular “|” indicates that the three
operators are alternative (a single invocation can contain only one of them) and “{ }1”
indicates that a single invocation contains just one of the shown alternatives;

From this template, it is possible to infer some valid possible invocations of the operators:

ltrim (DS_2)

rtrim (DS_3)

In these invocations, ltrim and rtrim are the symbols of the invoked operator and DS_2 and
DS_3 are the names of the specific Data Sets which are operands respectively of the former and
the latter invocation.

Description of the data types of operands and result

This section contains a brief legenda of the meaning of the symbols used for describing the
possible types of operands and results of the VTL operators. For a complete description of the
VTL data types, see the chapter “VLT Data Types” in the User Manual.

Symbol Meaning Example Example meaning

parameter :: type2 parameter is of the type2 param1 :: string param1 is of type string

type1 | type2 alternative types
dataset | component

| scalar
either dataset or

component or scalar

type1<type2> scalar type2 restricts type1 measure<string> Measure of string type

type1 _ (underscore) type1 can appear just once measure<string> _ just one string Measure

type1 elementName
predetermined element of

type1
measure<string> my_text

just one string Measure
named “my_text”

type1 _ +
type1 can appear one or

more times
measure<string>_+

one or more string
Measures

type1 _ *
type1 can appear zero, one

or more times
measure<string>_*

zero, one or more string
Measures

dataset { type_constraint }
Type_constraint restricts

the dataset type
dataset { measure <

string > _+ }
Dataset having one or
more string Measures

t1 * t2 * … * tn
Product of the types

t1 , t2 , … , tn
string * integer * boolean

triple of scalar values
made of a string, an

integer and a boolean
value

t1 -> t2
Operator from

 t1 to t2
string -> number

Operator having input
string and output number

ruleset { type_constraint }
Type_constraint restricts

the ruleset type
hierarchical { geo_area }

hierarchical ruleset
defined on geo_area

set < t > Set of elements of type “t” set < dataset > set of datasets

VTL Reference Manual - Version 2.1 Page: 16

Moreover, the word “name” in the data type description denotes the fact that the argument of
the invocation can contain only the name of an artefact of such a type but not a sub-expression.
For example:

comp :: name < component < string > >

Means that the argument passed for the input parameter comp can be only the name of a
Component of the basic scalar type string. The argument passed for comp cannot be a
component expression.

The word “name” added as a suffix to the parameter name means the same (for example if the
parameter above is called comp_name).

VTL Reference Manual - Version 2.1 Page: 17

VTL-ML Operators 1

Name Symbol Syntax Description
Notati

on
Input parameters type Result type Behaviour

Parentheses () (op)

Override the

default
evaluation

order of the
operators

Func. op :: dataset | component | scalar
dataset
|component
| scalar

Specific

Persistent
assignment <- re <- op

Assigns an
Expression to
a persistent

model
artefact

Infix op :: dataset dataset Specific

Non persistent
assignment := re := op

Assigns an
Expression to

a non
persistent

model
artefact

Infix
op :: dataset

| scalar

dataset Specific

Membership # ds#comp

Identifies a
Component

within a Data
Set

Infix

ds :: dataset

comp :: name<component>

dataset Specific

User defined
operator call

 operator_name ({ argument { , argument }* })

Invokes a
user defined

operator
passing the
arguments

Func.

operatorName :: name

argument :: user-defined operator

parameters data type

user-defined result data type Specific

Evaluation of
an external

routine
eval

eval (externalRoutineName ({argument} {, argument }*) ,

language, returns outputType)

Evaluates an
external
routine

Func.

externalRoutineName :: string
argument :: any dataType
language :: string
outputType :: string

dataset Specific

VTL Reference Manual - Version 2.1 Page: 18

Type
conversion

cast cast (op ,scalarType { , mask })
converts to

the specified
data type

Func.

op :: dataset{ measure<scalar> _ }
| component<scalar>
| scalar

scalarType :: scalar type

mask :: string

dataset{ measure<scalar> _ }
| component<scalar>
| scalar

Changing
data type

Join

inner_joi
n,
left_join,
full_join,
cross_joi
n,

joinOperator (ds1 { as alias1 }, … ,dsN { as aliasN }

{ using usingComp }

{ filter filterCondition }

{ apply applyExpr

| calc calcClause

| aggr aggrClause { groupingClause }

}

{ keep comp {, comp }*

| drop comp {, comp }* }

{ rename compFrom to compTo

{ , compFrom to compTo }* }

)

joinOperator::= { inner_join | left_join| full_join | cross_join }1

calcClause ::= { calcRole } calcComp := calcExpr

{ , { calcRole } calcComp := calcExpr }*

calcRole :: { identifier | measure | attribute | viral attribute} 1

aggrClause ::= { aggrRole } aggrComp := aggrExpr

{ , { aggrRole } aggrComp := aggrExpr }*

aggrRole ::= { measure | attribute | viral attribute }1

groupingClause ::= { group by idList

| group except idList

| group all conversionExpr }1

{ having havingCondition }

Inner join,
left outer join,
full outer join,
cross join,

Func.

ds1, …, dsN :: dataset

alias1, …, aliasN :: name

usingId :: name < component >

filterCondition ::
component<boolean>

applyExpr :: dataset

calcComp:: name<component>

calcExpr :: component<scalar>

aggrComp :: name<component >

aggrExpr :: component<scalar>

groupingId :: name < identifier >

conversionExpr ::

component<scalar>

havingCondition ::

component<boolean>

comp :: name < component >

compFrom :: component<scalar>

compTo :: component<scalar>

dataset Specific

String
concatenation || op1 || op2

Concatenates
two strings

Infix

op1, op2 ::
dataset { measure<string> _+}
| component<string>
| string

dataset { measure<string> _+ }
| component<string>
| string

On two
scalars, DSs

or DSCs

VTL Reference Manual - Version 2.1 Page: 19

Whitespace
removal

trim
rtrim
ltrim

{trim|ltrim|rtrim}1 (op)

Removes
trailing
or/and
leading

whitespace
from a string

Func.

op ::
dataset { measure<string> _+ }
| component<string>
| string

dataset { measure<string> _+ }
| component<string>
| string

On one
scalar, DS

or DSC

Character case
conversion

upper
lower

{upper | lower}1 (op)

Converts the
character
case of a
string in
upper or

lower case

Func.

op ::
dataset { measure<string> _+ }
| component<string>
| string

dataset { measure<string> _+ }
| component<string>
| string

On one
scalar, DS

or DSC

Sub-string
extraction

substr substr (op, start, length)

Extracts the
substring that

starts in a
specified

position and
has a

specified
lengtt

Func.

op ::
dataset { measure<string> _+ }
| component<string>
| string

start ::
component < integer[>=1]>
| integer[>= 1]

length ::
component < integer[>= 0] >
| integer[>=0]

dataset { measure<string> _+ }
| component<string>
| string

On one DS

or

on more
than two
scalars or

DSC

String pattern
replacement

replace replace (op ,pattern1, pattern2)

Replaces a
specified

string-pattern
with another

one

Func.

op ::
dataset { measure<string> _+ }
| component<string>
| string

pattern1, pattern2 ::
component<string>
| string

dataset { measure<string> _+ }
| component<string>
| string

On one DS

or

on more
than two
scalars or

DSC

String pattern
location

instr instr(op, pattern, start, occurrence)

Returns the
location of a

specified
string-pattern

Func.

op ::
dataset { measure<string> _+ }
| component<string>
| string

pattern :: component<string>
| string

start:: component< integer[>= 1]>
| integer[>= 1]

occurrence ::
component < integer[>= 1] >
| integer[>= 1]

dataset
{measure<integer[>=0]>
int_var }

| component <integer[>= 0]>
| integer[>= 0]

Changing
data type

VTL Reference Manual - Version 2.1 Page: 20

String length length length (op)
Returns the
length of a

string
Func.

op ::
dataset { measure<string> _ }
| component<string>
| string

dataset
{measure<integer[>=0]>
int_var }

| component <integer[>= 0]>
| integer[>= 0]

Changing
data type

Unary plus + + op

Replicates the
operand with

the sign
unaltered

Infix

op ::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On one
scalar, DS

or DSC

Unary minus - - op

Replicates the
operand with

the sign
changed

Infix

op ::
dataset { measure<number> _+ }
| component<number>
| number

 dataset
{ measure<number> _+ }

| component<number>
| number

On one
scalar, DS

or DSC

Addition + op1 + op2
Sums two
numbers

Infix

op1, op2::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On two
scalars, DSs

or DSCs

Subtraction - op1 - op2
Subtracts two

numbers
Infix

op1, op2::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On two
scalars, DSs

or DSCs

Multiplication * op1 * op2
Multiplies

two numbers
Infix

op1, op2::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On two
scalars, DSs

or DSCs

Division / op1 / op2
Divides two

numbers
Infix

op1, op2::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On two
scalars, DSs

or DSCs

Modulo mod mod (op1, op2)

Calculates the
remainder of

a number
divided by a

certain
divisor

Func.

op1, op2::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number> _+ }

| component<number>
| number

On two
scalar, DS

or DSC

Rounding round round (op, numDigit)
Rounds a

number to a
certain digit

Func.

op ::
dataset { measure<number> _+ }
| component<number>
| number

numDigit::
component < integer > | integer

dataset
{ measure<number> _+ }

| component<number>
| number

On one DS

or

on two
scalars or

DSC

VTL Reference Manual - Version 2.1 Page: 21

Truncation trunc trunc (op, numDigit)
Truncates a
number to a
certain digit

Func.

op ::
dataset { measure<number> _+ }
| component<number>
| number
 numDigit ::
component < integer > | integer

dataset
{ measure<number> _+ }

| component<number>
| number

On one DS
or

on two
scalars or

DSC

Ceiling ceil ceil (op)

Returns the
smallest

integer which
is greater or
equal than a

number

Func.

op ::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<integer> _+ }

| component< integer >
| integer

On one
scalar, DS

or DSC

Floor floor floor (op)

Returns the
greater

integer which
is smaller or
equal than a

number

Func.

op ::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<integer> _+ }

| component< integer >
| integer

On one
scalar, DS

or DSC

Absolute value abs abs (op)

Calculates the
absolute
value of a
number

Func.

op ::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number[>=0]> _+ }
| component<number[>=0]>
| number[>= 0]

On one
scalar, DS

or DSC

Exponential exp exp (op)

Raises e (base
of the natural
logarithm) to

a number

Func.

op::
dataset { measure<number> _+ }
| component<number>
| number

dataset
{ measure<number[>0]> _+ }

| component<number[>0]>
| number[> 0]

On one
scalar, DS

or DSC

Natural
logarithm

ln ln (op)

Calculates the
natural

logarithm of a
number

Func.

op ::
dataset
{measure<number[>0]> _+ }
| component<number[>0]>
| number[>0]

dataset
{ measure<number> _+ }

| component<number>
| number

On one
scalar, DS

or DSC

Power power power (base, exponent)

Raises a
number to a

certain
exponent

Func.

base ::
dataset { measure<number> _+ }
| component<number>
| number
exponent ::
component<number> | number

dataset
{ measure<number> _+ }

| component<number>
| number

On one DS
or

on two
scalars or

DSC

Logarithm log log (op, num)

Calculates the
logarithm of a
number to a
certain base

Func.

op :: dataset
 { measure<number[>1]> _+ }
| component<number[>1]>
| number[>1]
num:: component<integer[>0]>
| integer[>0]

dataset
 { measure<number> _+ }
| component<number>
| number

On one DS
or

on two
scalars or

DSC

VTL Reference Manual - Version 2.1 Page: 22

Square root sqrt sqrt (op)
Calculates the
square root of

a number
Func.

op :: dataset
 { measure<number[>=0> _+ }

| component<number[>= 0]>
| number[>= 0]

dataset
{ measure<number[>=0]> _+ }
| component<number[>= 0]>
| number[>= 0]

On one
scalar, DS

or DSC

Random random random ({ seed (op) })

Returns a
random
decimal

number >= 0
and <1

Func. op :: number op :: number
On one

scalar, DS
or DSC

Equal to = left = rigth
Verifies if two

values are
equal

Infix

left,right ::
dataset {measure<scalar> _ }
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

Not equal to <> left <> rigth
Verifies if two
values are not

equal
Infix

left, right ::
dataset {measure<scalar> _ }
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

Greater than

>

left { > | >= }1 right

Verifies if a
first value is
greater (or

equal) than a
second value

Infix

left, right ::
dataset {measure<scalar> _ }
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

>=

Less than

<
 left { < | <= }1 right

Verifies if a
first value is

less (or
equal) than a
second value

Infix

left, right ::
 dataset {measure<scalar> _ }
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

<=

Between between between(op, from, to)

Verify if a
value belongs
to a range of

values

Func.

op ::
dataset {measure<scalar> _}
| component<scalar>
| scalar

from ::scalar | component<scalar>

to :: scalar | component<scalar>

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

Element of
in

op in collection

collection ::= set | valueDomainName

Verifies if a
value belongs

to a set of
values

Infix

op ::
dataset {measure<scalar> _ }
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

VTL Reference Manual - Version 2.1 Page: 23

not_in
op not_in collection

collection ::= set | valueDomainName

Verifies if a
value does

not belong to
a set of values

Infix

collection :: set<scalar>
| name<value_domain>

Match_charact
ers

match_c
haracter

s

match_characters (op, pattern)

Verifies if a
value

respects or
not a pattern

Func.

op::
dataset {measure<string> _}
| component<string>
| string

pattern ::
string | component<string>

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

Isnull isnull isnull (op)
Verifies if a

values is
NULL

Func.

op ::
dataset {measure<scalar> _}
| component<scalar>
| scalar

dataset
{measure<boolean> bool_var}
| component<boolean>
| boolean

Changing
data type

Exists in exists_in

exists_in (op1, op2, retain)

retain := { true | false | all }

As for the
common

identifiers of
op1 and op2,
verifies if the
combinations

of values of
op1 exist in

op2.

Func. op1, op2 :: dataset
dataset
{measure<boolean> bool_var}

Changing
data type

Logical
conjunction

and op1 and op2
Calculates the

logical AND

op1,op2 ::
dataset {measure<boolean> _ }
| component<boolean>
| boolean

dataset
 { measure<boolean> _}
| component<boolean>
| boolean

Boolean

Logical
disjunction

or op1 or op2
Calculates the

logical OR

op1,op2 ::
dataset {measure<boolean> _ }
| component<boolean>
| boolean

dataset
{ measure<boolean> _}

| component<boolean>
| boolean

Boolean

Exclusive
disjunction

xor op1 xor op2
Calculates the

logical XOR

op1,op2 ::
dataset {measure<boolean> _ }
| component<boolean>
| boolean

dataset
{ measure<boolean> _}

| component<boolean>
| boolean

Boolean

Logical
negation

not not op
Calculates the

logical NOT

op ::
dataset {measure<boolean> _ }
| component<boolean>
| boolean

dataset
{ measure<boolean> _ }

| component<boolean>
 | boolean

Boolean

Period
indicator

period_i
ndicator

period_indicator ({op})

extracts the
period

indicator
from a

Func.

op ::
dataset
{ identifier <time_period> _ ,

identifier _* }

dataset { measure<duration>
duration_var }

| component <duration>
| duration

Specific

VTL Reference Manual - Version 2.1 Page: 24

time_period
value

| component<time_period>
| time_period

Fill time series
fill_time_

series

fill_time_series (op { , limitsMethod })

limitsMethod ::= single | all

Replaces each
missing data
point in the

input Data Set

Func.
op ::
dataset
{ identifier <time> _ , identifier _* }

dataset
{ identifier <time> _ , identifier
_* }

Specific

Flow to stock
flow_to_s

tock
flow_to_stock (op)

Transforms
from a flow

interpretatio
n of a Data
Set to stock

Func.

op ::
dataset { identifier <time> _ ,
identifier _* ,
measure<number> _+ }

dataset
{ identifier < time > _ , identifier
_* ,
measure<number> _+ }

Specific

Stock to flow
stock_to_

flow
stock_to_flow (op)

Transforms
from stock to

flow
interpretatio

n of a Data
Set

Func.

op ::
dataset
{ identifier <time> _ , identifier _* ,
measure<number> _+ }

dataset
{ identifier < time > _ ,
identifier _* ,
measure<number> _+ }

Specific

Time shift timeshift timeshift (op , shiftNumber)

Shifts the
time

component of
a specified

range of time

Func.

op ::
dataset
{ identifier <time> _ , identifier _* }

shiftNumber :: integer

dataset
{ identifier < time > _ , identifier
_* }

Specific

Time
aggregation

time_agg time_agg (periodIndTo { , periodIndFrom } { ,op }{ , first | last })

converts the
time values
from higher

to lower
frequency

values

Func.

op ::
dataset
{ identifier <time> _ , identifier _* }
| component<time>
| time

periodIndFrom :: duration

periodIndTo :: duration

dataset
{ identifier < time > _ ,
identifier _* }
| component<time>
| time

Specific

Actual time
current_

date
current_date ()

returns the
current date

Func. date Specific

Days between
two dates

datediff datediff (dateFrom, dateTo)

returns the
number of

days between
two dates

Func.

dateFrom::
 component<time> | time
dateTo :: component<time> | time

component<time> | time Specific

Add a time
unit to a date

dateadd dateadd (op, shiftNumber , periodInd)

Calculates the
number of

days between
two dates

Func.

op :: dataset
{ identifier <time> _ , identifier _* }
| component<time>
| time
shiftNumber :: integer
periodInd :: duration

op :: dataset
{ identifier <time> _ , identifier
_* }
| component<time>
| time

Specific

VTL Reference Manual - Version 2.1 Page: 25

Extract time
period from a

date

year,
month,

dayofmo
nth,

dayofyea
r

year (op)
month (op)

dayofmonth (op)
dayofyear (op)

Extract time
period from a

date
Func. op:: component<time> | time component<integer> | integer Specific

Number of
days to

duration

daytoyea
r,

daytomo
nth

daytoyear (op)
daytomonth (op)

Transform
number of

days to
duration

Func. op:: component<integer> |integer
component<duration>
|duration

Specific

Duration to
number of

days

yeartoda
y,

monthto
day

yeartoday (yearDuration)
monthtoday (monthDuration)

Transform
duration to
number of

days

Func.
op:: component<duration>
|duration

component<integer> |integer Specific

Union union
union (dsList)

 dsList ::= ds { , ds }*

Computes the
union of N
datasets

Func. ds :: dataset dataset Set

Intersection intersect
intersect (dsList)

 dsList ::= ds { , ds }*

Computes the
intersection
of N datasets

Func. ds :: dataset dataset Set

Set difference setdiff setdiff (ds1, ds2)
Computes the
differences of
two datasets

Func. ds1, ds2 :: dataset dataset Set

Simmetric
difference

symdiff symdiff (ds1, ds2)

Computes the
symmetric

difference of
two datasets

Func. ds1, ds2 :: dataset dataset Set

Hierarchical
roll-up

hierarch
y

hierarchy (op , hr { condition condComp { , condComp }* }
{ rule ruleComp } { mode } { input } { output })

condComp ::= component { , component }*

mode ::= non_null | non_zero | partial_null | partial_zero |
always_null | always_zero

input ::= dataset | rule | rule_priority

output ::= computed | all

Aggregates
data using a
hierarchical

ruleset

Func.

op ::dataset{measure<number> _ }

hr ::name < hierarchical >

condComp :: name < component >

ruleComp :: name < identifier >

dataset{measure<number> _ } Specific

Aggregate
invocation

in a Data Set expression:
aggregateOperator
(firstOperand { , additionalOperand }* { groupingClause })

Set of
statistical
functions

used to

Func.
firstOperand ::
dataset | component

dataset | component Specific

VTL Reference Manual - Version 2.1 Page: 26

in a Component expression within an aggr clause
aggregateOperator
(firstOperand { , additionalOperand }*) { groupingClause }

aggregateOperator ::= avg | count | max | median | min |
stddev_pop| stddev_samp | sum |
var_pop | var_samp

groupingClause ::=

 { group by groupingId {, groupingId}*
| group except groupingId {, groupingId}*
| group all conversionExpr }1
 { having havingCondition }

aggregate
data

additionalOperand :: type of the
(possible) additional parameter of
the aggregate Operator

groupingId ::name < identifier >

conversionExpr :: identifier

havingCondition ::
 component<boolean>

Analytic
invocation

analyticOperator
 (firstOperand { , additionalOperand }* over (analyticClause))
analyticOperator ::= avg | count | max | median | min |

stddev_pop| stddev_samp | sum | var_pop
| var_samp | first_value | lag | last_value |
lead | rank | ratio_to_report

analyticClause ::= { partitionClause } { orderClause } {

windowClause }

partitionClause ::= partition by identifier { , identifier }*

orderClause ::= order by component { asc | desc }
{ , component { asc | desc } }*

windowClause ::=
{ data points | range }1 between limitClause and limitClause
limitClause ::=
{ num preceding | num following | current data point
| unbounded preceding | unbounded following }1

Set of
statistical
functions

used to
aggregate

data

Func.

firstOperand ::
dataset | component

additionalOperand :: type of the
(possible) additional parameter of
the invoked operator

identifier :: name<identifier>

component :: name<component>

num :: integer

dataset | component Specific

Check
datapoint

check_da
tapoint

check_datapoint
 (op , dpr { components listComp } { output output })

listComp ::= comp { , comp }*

output ::= invalid | all | all_measures

Applies one
datapoint

ruleset on a
Data Set

Func.

op ::dataset

dpr ::name < datapoint >

comp :: name < component >

dataset Specific

Check
hierarchy

check_hi
erarchy

check_hierarchy (
op , hr { condition condComp { , condComp }* }
{ rule ruleComp }
{ mode } { input } { output })

mode ::= non_null | non_zero | partial_null | partial_zero |
always_null | always_zero

input ::= dataset | dataset_priority

output ::= invalid | all | all_measures

Applies a
hierarchical
ruleset to a

Data Set

Func.

op ::dataset

hr ::name < hierarchical >

condComp :: name< component >

ruleComp :: name< identifier >

dataset Specific

VTL Reference Manual - Version 2.1 Page: 27

Check check

check (op { errorcode errorcode } { errorlevel errorlevel }

{ imbalance imbalance } { output })

output ::= invalid | all

Checks if an
expression
verifies a
condition

Func.

op :: dataset

errorcode :: errorcode_vd

errorlevel :: errorlevel_vd

imbalance :: number

dataset

Specific

If then else
if ….then

else….
if condition then thenOperand else elseOperand

Makes
alternative
calculations

according to a
condition

Func.

condition ::
dataset { measure <boolean> _ }
| component<boolean>
| boolean
thenOperand ::
dataset | component | scalar
elseOperand ::
dataset | component | scalar

dataset
| component
| scalar

Specific

Case

Case
when

….then
else….

case when condition then thenOperand {when condition
then thenOperand)* else elseOperand

Makes
alternative
calculations

according to a
condition

Func.

condition ::
dataset { measure <boolean> _ }
| component<boolean>
| boolean
thenOperand ::
dataset | component | scalar
elseOperand ::
dataset | component | scalar

dataset
| component
| scalar

Specific

Nvl nvl nvl (op1, op2)
Replaces the

null value
with a value.

Func.

op1, op2::
dataset
| component
| scalar

dataset
| component
| scalar

Specific

Filtering Data
Points

filter op [filter condition]

Filter data
using a

Boolean
condition

Clause

op :: dataset

filterCondition ::

component<boolean>

dataset Specific

Calculation of
a Component

calc
op [calc { calcRole } calcComp := calcExpr { , { calcRole }

calcComp := calcExpr }*]

Calculates the
values of a
Structure

Component

Clause

op :: dataset

calcComp ::name < component >

calcExpr :: component<scalar>

dataset Specific

Aggregation aggr

op [aggr aggrClause { groupingClause }]

aggrClause ::= { aggrRole } aggrComp := aggrExpr
 { , { aggrRrole } aggrComp:= aggrExpr }*

groupingClause ::= { group by groupingId {, gropuingId }*
| group except groupingId {, groupingId }*
| group all conversionExpr }1
 { having havingCondition }

Aggregates
using an

aggregate
operator

Clause

op :: dataset

aggrComp :: name < component >

aggrExpr :: component<scalar>

groupingId ::name <identifier >

dataset Specific

VTL Reference Manual - Version 2.1 Page: 28

2

aggrRole::= measure | attribute | viral attribute

 conversionExpr ::
identifier<scalar>

havingCondition ::

component<boolean>

Maintaining
Components

keep op [keep comp {, comp }*]
Keep list of

components
Clause

op ::dataset

comp :: name < component >

dataset Specific

Removal of
Components

drop op [drop comp { , comp }*]
Drop list of

components
Clause

op :: dataset

comp :: name < component >

dataset Specific

Change of
Component

name
rename op [rename comp_from to comp_to { ,comp_from to comp_to }*]

Rename
components

Clause

op :: dataset

comp_from :: name<component>

comp_to :: name<component>

dataset Specific

Pivoting pivot op [pivot identifier , measure]

Transform
identifier
values to
measures

Clause

op :: dataset

identifier ::name <identifier>

measure ::name <measure>

dataset Specific

Unpivoting unpivot op [unpivot identifier , measure]

Transform
measures to

identifier
values

Clause

op :: dataset

identifier :: name<identifier>

measure :: name<measure>

dataset

Specific

Subspace sub op [sub identifier = value { , identifier = value }*]

Remove the
specified

identifiers by
fixing a value

for them

Clause

op :: dataset

identifier :: name<identifier>

value :: scalar

dataset Specific

VTL Reference Manual - Version 2.1 Page: 29

VTL-ML - Evaluation order of the Operators

Within a single expression of the manipulation language, the operators are applied in sequence,
according to the precedence order. Operators with the same precedence level are applied
according to the default associativity rule. Precedence and associativity orders are reported in
the following table.

Evaluation
order

Operator Description
Default

associativity
rule

I ()
Parentheses. To alter the

default order.
None

II
VTL operators
with functional

syntax

VTL operators with
functional syntax

Left-to-right

III
Clause

Membership
Clause

Membership
Left-to-right

IV
unary plus

unary minus
not

Unary minus
Unary plus

Logical negation
None

V
*
/

Multiplication
Division

Left-to-right

VI
+
-
||

Addition
Subtraction

String concatenation
Left-to-right

VII

> >=
< <=

=
<>
in

not_in

Greater than
Less than
Equal-to

Not-equal-to
In a value list

Not in a value list

Left-to-right

VIII and Logical AND Left-to-right

IX
or

xor
Logical OR

Logical XOR
Left-to-right

X
if-then-else

case
Conditional (if-then-

else/case)
None

Description of VTL Operators

The structure used for the description of the VTL-DL Operators is made of the following parts:

 Operator name, which is also used to invoke the operator

VTL Reference Manual - Version 2.1 Page: 30

 Semantics: a brief description of the purpose of the operator

 Syntax: the syntax of the Operator (this part follows the conventions described in the
previous section “Conventions for describing the operators’ syntax”)

 Syntax description: detailed explanation of the meaning of the various parts of the syntax

 Parameters: list of the input parameters and their types

 Constraints: additional constraints that are not specified with the meta-syntax and need a
textual explanation

 Semantic specifications: detailed description of the semantics of the operator

 Examples: examples of invocation of the operator

The structure used for the description of the VTL-ML Operators is made of the following parts:

 Operator name, followed by the operator symbol (keyword) which is used to invoke the
operator

 Syntax: the syntax of the Operator (this part follows the conventions described in the
previous section “Conventions for describing the operators’ syntax”)

 Input parameters: list of all input parameters and the subexpressions with their meaning
and the indication if they are mandatory or optional

 Examples of valid syntaxes: examples of syntactically valid invocations of the Operator

 Semantics for scalar operations: the behaviour of the Operator on scalar operands, which
is the basic behaviour of the Operator

 Input parameters type: the formal description of the type of the input parameters (this
part follows the conventions described in the previous section “Description of the data types
of operands and results”)

 Result type: the formal description of the type of the result (this part follows the
conventions described in the previous section “Description of the data types of operands
and results”)

 Additional constraints: additional constraints that are not specified with the meta-syntax
and need a textual explanation, including both possible semantic constraints under which
the operation is possible or impossible, and syntactical constraint for the invocation of the
Operator

 Behaviour: description of the behaviour of the Operator for non-scalar operations (for
example operations at Data Set or at Component level). When the Operator belongs to a
class of Operators having a common behaviour, the common behaviour is described once
for all in a section of the chapter “Typical behaviours of the ML Operators” and therefore
this part describes only the specific aspect of the behaviour and contains a reference to the
section where the common part of the behaviour is described.

 Examples: a series of examples of invocation and application of the operator in case of
operations at Data Sets or at Component level.

VTL Reference Manual - Version 2.1 Page: 31

VTL-DL - Rulesets

define datapoint ruleset

Semantics

The Data Point Ruleset contains Rules to be applied to each individual Data Point of a Data Set
for validation purposes. These rulesets are also called “horizontal” taking into account the
tabular representation of a Data Set (considered as a mathematical function), in which each
(vertical) column represents a variable and each (horizontal) row represents a Data Point:
these rulesets are applied on individual Data Points (rows), i.e., horizontally on the tabular
representation.

Syntax

define datapoint ruleset rulesetName (dpRulesetSignature) is dpRule { ; dpRule }*
end datapoint ruleset

dpRulesetSignature ::= valuedomain listValueDomains | variable listVariables

listValueDomains ::= valueDomain { as vdAlias } { , valueDomain { as vdAlias } }*

listVariables ::= variable { as varAlias } { , variable { as varAlias } }*

dpRule ::= { ruleName : } { when antecedentCondition then } consequentCondition
{ errorcode errorCode }
{ errorlevel errorLevel }

Syntax description

rulesetName the name of the Data Point Ruleset to be defined.
dpRulesetSignature the Cartesian space of the Ruleset (signature of the Ruleset), which

specifies either the Value Domains or the Represented Variables (see the
information model) on which the Ruleset is defined. If valuedomain is
specified then the Ruleset is applicable to the Data Sets having
Components that take values on the specified Value Domains. If variable
is specified then the Ruleset is applicable to Data Sets having the specified
Variables as Components.

valueDomain a Value Domain on which the Ruleset is defined.
vdAlias an (optional) alias assigned to a Value Domain and valid only within the

Ruleset, this can be used for the sake of compactness in writing the Rules.
If an alias is not specified then the name of the Value Domain (parameter
valueDomain) is used in the body of the rules.

variable a Represented Variable on which the Ruleset is defined.
varAlias an (optional) alias assigned to a Variable and valid only within the Ruleset,

this can be used for the sake of compactness in writing the Rules. If an
alias is not specified then the name of the Variable (parameter
valueDomain) is used in the body of the Rules.

dpRule a Data Point Rule, as defined in the following parameters.
ruleName the name assigned to the specific Rule within the Ruleset. If the Ruleset is

used for validation then the ruleName identifies the validation results of
the various Rules of the Ruleset. The ruleName is optional and, if not
specified, is assumed to be the progressive order number of the Rule in
the Ruleset. However please note that, if ruleName is omitted, then the

VTL Reference Manual - Version 2.1 Page: 32

Rule names can change in case the Ruleset is modified, e.g., if new Rules
are added or existing Rules are deleted, and therefore the users that
interpret the validation results must be aware of these changes.

antecedentCondition a boolean expression to be evaluated for each single Data Point of the
input Data Set. It can contain Values of the Value Domains or Variables
specified in the Ruleset signature and constants; all the VTL-ML
component level operators are allowed. If omitted then
antecedentCondition is assumed to be TRUE.

consequentCondition a boolean expression to be evaluated for each single Data Point of the
input Data Set when the antecedentCondition evaluates to TRUE (as
mentioned, missing antecedent conditions are assumed to be TRUE). It
contains Values of the Value Domains or Variables specified in the Ruleset
signature and constants; all the VTL-ML component level operators are
allowed. A consequent condition equal to FALSE is considered as a non-
valid result.

errorCode a literal denoting the error code associated to the rule, to be assigned to
the possible non-valid results in case the Rule is used for validation. If
omitted then no error code is assigned (NULL value). VTL assumes that a
Value Domain errorcode_vd of error codes exists in the Information
Model and contains all possible error codes: the errorCode literal must be
one of the possible Values of such a Value Domain. VTL assumes also that
a Variable errorcode for describing the error codes exists in the IM and is
a dependent variable of the Data Sets which contain the results of the
validation.

errorLevel a literal denoting the error level (severity) associated to the rule, to be
assigned to the possible non-valid results in case the Rule is used for
validation. If omitted then no error level is assigned (NULL value). VTL
assumes that a Value Domain errorlevel_vd of error levels exists in the
Information Model and contains all possible error levels: the errorLevel
literal must be one of the possible Values of such a Value Domain. VTL
assumes also that a Variable errorlevel for describing the error levels
exists in the IM and is a dependent variable of the Data Sets which contain
the results of the validation.

Parameters

rulesetName :: name <ruleset >

valueDomain :: name < valuedomain >
vdAlias :: name
variable :: name
varAlias :: name

ruleName :: name
antecedentCondition :: boolean
consequentCondition :: boolean
errorCode :: errorcode_vd
errorLevel :: errorlevel_vd

Constraints

 antecedentCondition and consequentCondition can refer only to the Value Domains or
Variables specified in the dpRulesetSignature.

 Either ruleName is specified for all the Rules of the Ruleset or for none.

VTL Reference Manual - Version 2.1 Page: 33

 If specified, then ruleName must be unique within the Ruleset.

Semantic specification

This operator defines a persistent Data Point Ruleset named rulesetName that can be used for
validation purposes.
A Data Point Ruleset is a persistent object that contains Rules to be applied to the Data Points
of a Data Set1. The Data Point Rulesets can be invoked by the check_datapoint operator. The
Rules are aimed at checking the combinations of values of the Data Set Components, assessing
if these values fulfil the logical conditions expressed by the Rules themselves. The Rules are
evaluated independently for each Data Point, returning a Boolean scalar value (i.e., TRUE for
valid results and FALSE for non-valid results).
Each Rule contains an (optional) antecedentCondition boolean expression followed by a
consequentCondition boolean expression and expresses a logical implication. Each Rule states
that when the antecedentCondition evaluates to TRUE for a given Data Point, then the
consequentCondition is expected to be TRUE as well. If this implication is fulfilled, the result is
considered as valid (TRUE), otherwise as non-valid (FALSE). On the other side, if the
antecedentCondition evaluates to FALSE, the consequentCondition does not applies and is not
evaluated at all, and the result is considered as valid (TRUE). In case the antecedentCondition
is absent then it is assumed to be always TRUE, therefore the consequentCondition is expected
to evaluate to TRUE for all the Data Points. See an example below:

Rule Meaning

On Value Domains:

when flow_type = "CREDIT" or flow_type =

"DEBIT" then numeric_value >= 0

When the Component of the Data Set

which is defined on the Value Domain

named flow_type takes the value

“CREDIT” or the value “DEBIT”, then the

other Component defined on the Value

Domain named numeric_value is

expected to have a zero or positive value.

On Variables:

when flow = "CREDIT" or flow = "DEBIT"

then obs_value >= 0

When the Component of the Data Set

named flow has the value “CREDIT” or

“DEBIT” then the Component named

obs_value is expected to have a value

greater than zero.

The definition of a Ruleset comprises a signature (dpRulesetSignature), which specifies the
Value Domains or Variables on which the Ruleset is defined and a set of Rules, that are the
Boolean expressions to be applied to each Data Point. The antecedentCondition and

1 In order to apply the Ruleset to more Data Sets, these Data Sets must be composed together using the appropriate
VTL operators in order to obtain a single Data Set.

VTL Reference Manual - Version 2.1 Page: 34

consequentCondition of the Rules can refer only to the Value Domains or Variables of the
Ruleset signature.
The Value Domains or the Variables of the Ruleset signature identify the space in which the
rules are defined while each Rule provides for a criterion that demarcates the Set of valid
combinations of Values inside this space.
The Data Point Rulesets can be defined in terms of Value Domains in order to maximize their
reusability, in fact this way a Ruleset can be applied on any Data Set which has Components
which take values on the Value Domains of the Ruleset signature. The association between the
Components of the Data Set and the Value Domains of the Ruleset signature is provided by the
check_datapoint operator at the invocation of the Ruleset.
When the Ruleset is defined on Variables, their reusability is intentionally limited to the Data
Sets which contains such Variables (and not to other possible Variables which take values from
the same Value Domain). If at a later stage the Ruleset would need to be applied also to other
Variables defined on the same Value Domain, a similar Ruleset should be defined also for the
other Variable.
Rules are uniquely identified by ruleName. If omitted then ruleName is implicitly assumed to
be the progressive order number of the Rule in the Ruleset. Please note however that, using this
default mechanism, the Rule Name can change if the Ruleset is modified, e.g., if new Rules are
added or existing Rules are deleted, and therefore the users that interpret the validation results
must be aware of these changes. In addition, if the results of more than one Ruleset have to be
combined in one Data Set, then the user should make the relevant rulesetNames different.
As said, each Rule is applied in a row-wise fashion to each individual Data Point of a Data Set.
The references to the Value Domains defined in the antecedentCondition and
consequentCondition are replaced with the values of the respective Components of the Data
Point under evaluation.

Examples

define datapoint ruleset DPR_1 (valuedomain flow_type A, numeric_value B) is
 when A = “CREDIT” or A = “DEBIT” then B >= 0 errorcode “Bad value” errorlevel 10
end datapoint ruleset

define datapoint ruleset DPR_2 (variable flow F, obs_value O) is
 when F = “CREDIT” or F = “DEBIT” then O >= 0 errorcode “Bad value”
end datapoint ruleset

define hierarchical ruleset

Semantics

This operator defines a persistent Hierarchical Ruleset that contains Rules to be applied to
individual Components of a given Data Set in order to make validations or calculations
according to hierarchical relationships between the relevant Code Items. These Rulesets are
also called “vertical” taking into account the tabular representation of a Data Set (considered
as a mathematical function), in which each (vertical) column represents a variable and each
(horizontal) row represents a Data Point: these Rulesets are applied on variables (columns),
i.e., vertically on the tabular representation of a Data Set.
A main purpose of the hierarchical Rules is to express some more aggregated Code Items (e.g.
the continents) in terms of less aggregated ones (e.g., their countries) by using Code Item
Relationships. This kind of relations can be applied to aggregate data, for example to calculate
an additive measure (e.g., the population) for the aggregated Code Items (e.g., the continents)

VTL Reference Manual - Version 2.1 Page: 35

as the sum of the corresponding measures of the less aggregated ones (e.g., their countries).
These rules can be used also for validation, for example to check if the additive measures
relevant to the aggregated Code Items (e.g., the continents) match the sum of the corresponding
measures of their component Code Items (e.g., their countries), provided that the input Data
Set contains all of them, i.e. the more and the less aggregated Code Items.
Another purpose of these Rules is to express the relationships in which a Code Item represents
some part of another one, (e.g., “Africa” and “Five largest countries of Africa”, being the latter a
detail of the former). This kind of relationships can be used only for validation, for example to
check if a positive and additive measure (e.g., the population) relevant to the more aggregated
Code Item (e.g., Africa) is greater than the corresponding measure of the other more detailed
one (e.g., “5 largest countries of Africa”).
The name “hierarchical” comes from the fact that this kind of Ruleset is able to express the
hierarchical relationships between Code Items at different levels of detail, in which each
(aggregated) Code Item is expressed as a partition of (disaggregated) ones. These relationships
can be recursive, i.e., the aggregated Code Items can be in their turn component of even more
aggregated ones, without limitations about the number of recursions.
As a first simple example, the following Hierarchical Ruleset named
“BeneluxCountriesHierarchy” contains a single rule that asserts that, in the Value Domain
“Geo_Area”, the Code Item BENELUX is the aggregation of the Code Items BELGIUM,
LUXEMBOURG and NETHERLANDS:

define hierarchical ruleset BeneluxCountriesHierarchy (valuedomain rule Geo_Area)
is

BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS
end hierarchical ruleset

Syntax

define hierarchical ruleset rulesetName (hrRulesetSignature) is hrRule

{ ; hrRule }*

end hierarchical ruleset

hrRulesetSignature ::= vdRulesetSignature | varRulesetSignature

vdRulesetSignature ::= valuedomain { condition vdConditioningSignature } rule
ruleValueDomain

vdConditioningSignature ::= condValueDomain { as vdAlias } { , condValueDomain { as
vdAlias } }*

varRulesetSignature ::= variable { condition varConditioningSignature } rule ruleVariable

varConditioningSignature ::= condVariable { as vdAlias } { , condVariable { as vdAlias } }*

hrRule ::= { ruleName:} codeItemRelation { errorcode errorCode } { errorlevel errorLevel }

codeItemRelation ::= { when leftCondition then }
leftCodeItem { = | > | < | >= | <= }1
{ + | - } rightCodeItem { [rightCondition] }
{ { + | - }1 rightCodeItem { [rightCondition] } }*

Syntax description

rulesetName the name of the Hierarchical Ruleset to be defined.
hrRulesetSignature the signature of the Ruleset. It specifies the Value Domain or Variable on

which the Ruleset is defined, and the Conditioning Signature.

VTL Reference Manual - Version 2.1 Page: 36

vdRulesetSignature the signature of a Ruleset defined on Value Domains
varRulesetSignature the signature of a Ruleset defined on Variables
hrRule a single hierarchical rule, as described below.
vdConditioningSignature specifies the Value Domains on which the conditions are defined.

The Ruleset is meant to be applicable to the Data Sets having
Components that take values on the Value Domain on which the ruleset
is defined (i.e., ruleValueDomain) and on the conditioning Value
Domains (i.e., condValueDomain).

ruleValueDomain the Value Domain on which the Ruleset is defined
condValueDomain a conditioning Value Domain of the Ruleset
vdAlias an (optional) alias assigned to a Value Domain and valid only within the

Ruleset, this can be used for the sake of compactness in writing
leftCondition and rightCondition. If an alias is not specified then the name
of the Value Domain (i.e., condValueDomain) must be used.

varConditioningSignature the signature of the (possible) conditions of the Ruleset defined on
Variables. It specifies the Represented Variables (see the information
model) on which these conditions are defined. The Ruleset is meant to
be applicable to any Data Set having Components which are defined by
the Variable on which the Ruleset is expressed (i.e., variable) and on the
Conditioning Variables.

ruleVariable the variable on which the Ruleset is defined
condVariable a conditioning Variable of the Ruleset
varAlias an (optional) alias assigned to a Variable and valid only within the

Ruleset, this can be used for the sake of compactness in writing
leftCondition and rightCondition. If an alias is not specified then the name
of the Variableomain (parameter condVariable) must be used.

ruleName the name assigned to the specific Rule within the Ruleset. If the Ruleset
is used for validation then the ruleName identifies the validation results
of the various Rules of the Ruleset. The ruleName is optional and, if not
specified, is assumed to be the progressive order number of the Rule in
the Ruleset. However please note that, if ruleName is omitted, then the
Rule names can change in case the Ruleset is modified, e.g., if new Rules
are added or existing Rules are deleted, and therefore the users that
interpret the validation results must be aware of these changes. In
addition, if the results of more than one Ruleset have to be combined in
one Data Set, then the user should make the relevant rulesetNames
different.

codeItemRelation specifies a (possibly conditioned) Code Item Relation. It expresses a
logical relation between Code Items belonging to the Value Domain of the
hrRulesetSignature, possibly conditioned by the Values of the Value
Domains or Variables of the Conditioning Signature. The relation is
expressed by one of the symbols =, >, >=, <, <=, that in this context denote
special logical relationships typical of Code Items. The first member of
the relation is a single Code Item. The second member of the relationship
is the composition of one or more Code Items combined using the
symbols + or -, which in turn also denote special logical operators typical
of Code Items. The meaning of these symbols is better explained below
and in the User Manual.

errorCode a literal denoting the error code associated to the rule, to be assigned to
the possible non-valid results in case the Rule is used for validation. If

VTL Reference Manual - Version 2.1 Page: 37

omitted then no error code is assigned (NULL value). VTL assumes that
a Value Domain errorcode_vd of the error codes exists in the
Information Model and contains all the possible error codes: the
errorCode literal must be one of the possible Values of such a Value
Domain. VTL assumes also that a Variable errorcode for describing the
error codes exists in the IM and is a dependent variable of the Data Sets
which contain the results of the validation.

errorLevel a literal denoting the error level (severity) associated to the rule, to be
assigned to the possible non-valid results in case the Rule is used for
validation. If omitted then no error level is assigned (NULL value). VTL
assumes that a Value Domain errorlevel_vd of the error levels exists in
the Information Model and contains all the possible error levels: the
errorLevel literal must be one of the possible Values of such a Value
Domain. VTL assumes also that a Variable errorlevel for describing the
error levels exists in the IM and is a dependent variable of the Data Sets
which contain the results of the validation.

leftCondition a boolean expression which defines the pre-condition for evaluating the
left member Code Item (i.e., it is evaluated only when the leftCondition is
TRUE); It can contain references to the Value domains or the Variables
of the conditioningSignature of the Ruleset and Constants; all the VTL-
ML component level operators are allowed. The leftCondition is
optional, if missing it is assumed to be TRUE and the Rule is always
evaluated.

leftCodeItem a Code Item of the Value Domain specified in the hrRulesetSignature.
rightCodeItem a Code Item of the Value Domain specified in the hrRulesetSignature.
rightCondition a boolean scalar expression which defines the condition for a right

member Code Item to contribute to the evaluation of the Rule (i.e., the
right member Code Item is taken into account only when the relevant
rightCondition is TRUE). It can contain references to the Value Domains
or Variables of the vdConditioningSignature or
varConditioningSignature of the Ruleset and Constants; all the VTL-ML
component level operators are allowed. The rightCondition is optional, if
omitted then it is assumed to be TRUE and the right member Code Item
is always taken into account.

Input parameters type

rulesetName :: name < ruleset >
ruleValueDomain :: name <valuedomain >
condValueDomain :: name <valuedomain >
vdAlias :: name

ruleVariable :: name
condVariable :: name
varAlias :: name
ruleName :: name
errorCode :: errorcode_vd

errorLevel :: errorlevel_vd
leftCondition :: boolean
leftCodeItem :: name
rightCodeItem :: name

rightCondition :: boolean

VTL Reference Manual - Version 2.1 Page: 38

Constraints

 leftCondition and rightCondition can refer only to Value Domains or Variables specified in
vdConditioningSignature or varConditioningSignature.

 Either the ruleName is specified for all the Rules of the Ruleset or for none.
 If specified, the ruleName must be unique within the Ruleset.

Semantic specification

This operator defines a Hierarchical Ruleset named rulesetName that can be used both for
validation and calculation purposes (see check_hierarchy and hierarchy). A Hierarchical
Ruleset is a set of Rules expressing logical relationships between the Values (Code Items) of a
Value Domain or a Represented Variable.
Each rule contains a Code Item Relation, possibly conditioned, which expresses the relation
between Code Items to be enforced. In the relation, the left member Code Item is put in
relation to a combination of one or more right member Code Items. The kinds of relations are
described below.
The left member Code Item can be optionally conditioned through a leftCondition, a boolean
expression which defines the cases in which the Rule has to be applied (if not declared the Rule
is applied ever). The participation of each right member Code Item in the Relation can be
optionally conditioned through a rightCondition, a boolean expression which defines the cases
in which the Code Item participates in the relation (if not declared the Code Item participates
to the relation ever).
As for the mathematical meaning of the relation, please note that each Value (Code Item) is the
representation of an event belonging to a space of events (i.e., the relevant Value Domain),
according to the notions of “event” and “space of events” of the probability theory (see also the
section on the Generic Models for Variables and Value Domains in the VTL IM). Therefore the
relations between Values (Code Items) express logical implications between events.
The envisaged types of relations are: “coincides” (=), “implies” (<), “implies or coincides” (<=),
“is implied by” (>), “is implied by or coincides” (>=)2. For example:

UnitedKingdom < Europe
means that UnitedKingdom implies Europe (if a point belongs to United Kingdom it also belongs
to Europe).

January2000 < year2000
means that January of the year 2000 implies the year 2000 (if a time instant belongs to “January
2000” it also belongs to the “year 2000”)
The first member of a Relation is a single Code Item. The second member can be either a single
Code Item, like in the example above, or a logical composition of Code Items giving another
Code Item as result. The logical composition can be defined by means of Code Item Operators,
whose goal is to compose some Code Items in order to obtain another Code Item.
Please note that the symbols + and - do not denote the usual operations of sum and subtraction,
but logical operations between Code Items which are seen as events of the probability theory.
In other words, two or more Code Items cannot be summed or subtracted to obtain another
Code Item, because they are events and not numbers, however they can be manipulated
through logical operations like “OR” and “Complement”.
Note also that the + also acts as a declaration that all the Code Items denoted by + in the formula
are mutually exclusive one another (i.e., the corresponding events cannot happen at the same
time), as well as the - acts as a declaration that all the Code Items denoted by - in the formula

2 “Coincides” means “implies and is implied”

VTL Reference Manual - Version 2.1 Page: 39

are mutually exclusive one another and furthermore that each one of them is a part of (implies)
the result of the composition of all the Code Items having the + sign.
At intuitive level, the symbol + means “with” (Benelux = Belgium with Luxembourg with
Netherland) while the symbol - means “without” (EUwithoutUK = EuropeanUnion without
UnitedKingdom).
When these relationships are applied to additive numeric measures (e.g., the population
relevant to geographical areas), they allow to obtain the measure values of the compound Code
Items (i.e., the population of Benelux and EUwithoutUK) by summing or subtracting the
measure values relevant to the component Code Items (i.e., the population of Belgium,
Luxembourg and Netherland). This is why these logical operations are denoted in VTL through
the same symbols as the usual sum and subtraction. Please note also that this property is valid
whichever is the Data Set and whichever is the additive measure (provided that the possible
other Identifier Components of the Data Set Structure have the same values), therefore the
Rulesets of this kind are potentially largely reusable.
The Ruleset Signature specifies the space on which the Ruleset is defined, i.e., the ValueDomain
or Variable on which the Code Item Relations are defined (the Ruleset is meant to be applicable
to Data Sets having a Component which takes values on such a Value Domain or are defined by
such a Variable). The optional vdConditioningSignature specifies the conditioning Value
Domains (the conditions can refer only to those Value Domains), as well as the optional
varConditioningSignature specifies the conditioning Variables (the conditions can refer only
to those Variables).
The Hierarchical Ruleset may act on one or more Measures of the input Data Set provided that
these measures are additive (for example it cannot be applied on a measure containing a
“mean” because it is not additive).
Within the Hierarchical Rulesets there can be dependencies between Rules, because the inputs
of some Rules can be the output of other Rules, so the former can be evaluated only after the
latter. For example, the data relevant to the Continents can be calculated only after the
calculation of the data relevant to the Countries. As a consequence, the order of calculation of
the Rules is determined by their mutual dependencies and can be different from the order in
which the Rules are written in the Ruleset. The dependencies between the Rules form a directed
acyclic graph.
The Hierarchical ruleset can be used for calculations to calculate the upper levels of the
hierarchy if the data relevant to the leaves (or some other intermediate level) are available in
the operand Data Set of the hierarchy operator (for more information see also the “Hierarchy”
operator). For example, having additive Measures broken by region, it would be possible to
calculate these Measures broken by countries, continents and the world. Besides, having
additive Measures broken by country, it would be possible to calculate the same Measures
broken by continents and the world.
When a Hierarchical Ruleset is used for calculation, only the Relations expressing coincidence
(=) are evaluated (provided that the leftCondition is TRUE, and taking into account only right-
side Code Items whose rightCondition is TRUE). The result Data Set will contain the compound
Code Items (the left members of those relations) calculated from the component Code Items
(the right member of those Relations), which are taken from the input Data Set (for more details
about the evaluation options see the hierarchy operator). Moreover, the clauses typical of the
validation are ignored (e.g., ErrorCode, ErrorLevel).
The Hierarchical Ruleset can be also used to filter the input Data Points. In fact if some Code
Items are defined equal to themselves, the relevant Data Points are brought in the result
unchanged. For example, the following Ruleset will maintain in the result the Data Points of the
input Data Set relevant to Belgium, Luxembourg and Netherland and will add new Data Points
containing the calculated value for Benelux:

VTL Reference Manual - Version 2.1 Page: 40

define hierarchical ruleset BeneluxRuleset (valuedomain rule GeoArea) is
 Belgium = Belgium
; Luxembourg = Luxembourg
; Netherlands = Netherlands
; Benelux = Belgium + Luxembourg + Netherlands

end hierarchical ruleset

The Hierarchical Rulesets can be used for validation in case various levels of detail are
contained in the Data Set to be validated (see also the check_hierarchy operator for more
details). The Hierarchical Rulesets express the coherency Rules between the different levels of
detail. Because in the validation the various Rules can be evaluated independently, their order
is not significant.
If a Hierarchical Ruleset is used for validation, all the possible Relations (=, >, >=, <, <=) are
evaluated (provided that the leftCondition is TRUE and taking into account only right-side Code
Items whose rightCondition is TRUE). The Rules are evaluated independently. Both the Code
Items of the left and right members of the Relations are expected to belong to and taken from
the input Data Set (for more details about the evaluation options see the check_hierarchy
operator). The Antecedent Condition is evaluated and, if TRUE, the operations specified in the
right member of the Relation are performed and the result is compared to the first member,
according to the specified type of Relation. The possible relations in which Code Items are
defined as equal to themselves are ignored. Further details are described in the
check_hierarchy operator.
If the data to be validated are in different Data Sets, either they can be joined in advance using
the proper VTL operators or the validation can be done by comparing those Data Sets directly,
without using a Hierarchical Ruleset (see also the check operator).

Through the right and left Conditions, the Hierarchical Rulesets allow to declare the time
validity of Rules and Relations. In fact leftCondition and RightCondition can be defined in
term of the time Value Domain, expressing respectively when the left member Code Item has
to be evaluated (i.e., when it is considered valid) and when a right member Code Item
participates in the relation.
The following two simplified examples show possible ways of defining the European Union in
term of participating Countries.

Example 1 (for simplicity the time literals are written without the needed “cast” operation)

define hierarchical ruleset EuropeanUnionAreaCountries1
(valuedomain condition ReferenceTime as Time rule GeoArea) is
 when between (Time, “1.1.1958”, “31.12.1972”)

then EU = BE + FR + DE + IT + LU + NL
; when between (Time, “1.1.1973”, “31.12.1980”)

then EU = … same as above … + DK + IE + GB
; when between (Time, “1.1.1981”, “02.10.1985”)

then EU = … same as above … + GR
; when between (Time, “1.1.1986”, “31.12.1994”)

then EU = … same as above … + ES + PT
; when between (Time, “1.1.1995”, “30.04.2004”)

then EU = … same as above … + AT + FI + SE
; when between (Time, “1.5.2004”, “31.12.2006”)

then EU = … same as above …
+CY+CZ+EE+HU+LT+LV+MT+PL+SI+SK
; when between (Time, “1.1.2007”, “30.06.2013”)

then EU = … same as above … + BG + RO

VTL Reference Manual - Version 2.1 Page: 41

; when >= “1.7.2013”
then EU = … same as above … + HR

end hierarchical ruleset

Example 2 (for simplicity the time literals are written without the needed “cast” operation)

define hierarchical ruleset EuropeanUnionAreaCountries2
(valuedomain condition ReferenceTime as Time rule GeoArea) is
EU = AT [Time >= “0101.1995”]

+ BE [Time >= “01.01.1958”]
+ BG [Time >= “01.01.2007”]

 + …
 + SE [Time >= “01.01.1995”]

+ SI [Time >= “01.05.2004”]
+ SK [Time >= “01.05.2004”]

end hierarchical ruleset

The Hierarchical Rulesets allow defining hierarchies either having or not having levels
(free hierarchies). For example, leaving aside the time validity for sake of simplicity:

define hierarchical ruleset GeoHierarchy (valuedomain rule Geo_Area) is
 World = Africa + America + Asia + Europe + Oceania
; Africa = Algeria + … + Zimbabwe
; America = Argentina + … + Venezuela
; Asia = Afghanistan + … + Yemen
; Europe = Albania + … + VaticanCity
; Oceania = Australia + … + Vanuatu
; Afghanistan = AF_reg_01 + … + AF_reg_N
 … … … … … …
; Zimbabwe = ZW_reg_01 + … + ZW_reg_M
; EuropeanUnion = … + … + … + …
; CentralAmericaCommonMarket = … + … + … + …
; OECD_Area = … + … + … + …

end hierarchical ruleset

The Hierarchical Rulesets allow defining multiple relations for the same Code Item.
Multiple relations are often useful for validation. For example, the Balance of Payments item
"Transport" can be broken down both by type of carrier (Air transport, Sea transport, Land
transport) and by type of objects transported (Passengers and Freights) and both breakdowns
must sum up to the whole "Transport" figure. In the following example a RuleName is assigned
to the different methods of breaking down the Transport.

define hierarchical ruleset TransportBreakdown (variable rule BoPItem) is
 transport_method1 : Transport = AirTransport + SeaTransport + LandTransport
; transport_method2 : Transport = PassengersTransport + FreightsTransport

end hierarchical ruleset

Multiple relations can be useful even for calculation. For example, imagine that the input Data
Set contains data about resident units broken down by region and data about non-residents
units broken down by country. In order to calculate a homogeneous level of aggregation (e.g.,
by country), a possible Ruleset is the following:

define hierarchical ruleset CalcCountryLevel (valuedomain condition Residence rule
GeoArea) is

 when Residence = “resident” then Country1 = Country1

VTL Reference Manual - Version 2.1 Page: 42

 ; when Residence = “non-resident” then Country1 = Region11+ … +Region1M …
 ; when Residence = “resident” then CountryN = CountryN

 ; when Residence = “non-resident” then CountryN = Region N1+ …+ RegionNM
end hierarchical ruleset

In the calculation, basically, for each Rule, for all the input Data Points and provided that the
conditions are TRUE, the right Code Items are changed into the corresponding left Code Item,
obtaining Data Points referred only to the left Code Items. Then the outcomes of all the Rules of
the Ruleset are aggregated together to obtain the Data Points of the result Data Set.
As far as each left Code Item is calculated by means of a single Rule (i.e., a single calculation
method), this process cannot generate inconsistencies.
Instead if a left Code Item is calculated by means of more Rules (e.g., through more than one
calculation method), there is the risk of producing erroneous results (e.g., duplicated data),
because the outcome of the multiple Rules producing the same Code Item are aggregated
together. Proper definition of the left or right conditions can avoid this risk, ensuring that for
each input Data Point just one Rule is applied.
If the Ruleset is aimed only at validation, there is no risk of producing erroneous results because
in the validation the rules are applied independently.

Examples

1) The Hierarchical Ruleset is defined on the Value Domain “sex”: Total is defined as Male +
Female. No conditions are defined.

define hierarchical ruleset sex_hr (valuedomain rule sex) is
 TOTAL = MALE + FEMALE
end hierarchical ruleset

2) BENELUX is the aggregation of the Code Items BELGIUM, LUXEMBOURG and
NETHERLANDS. No conditions are defined.

define hierarchical ruleset BeneluxCountriesHierarchy (valuedomain rule GeoArea) is
BENELUX = BELGIUM + LUXEMBOURG + NETHERLANDS errorcode “Bad value
for Benelux”

end hierarchical ruleset

3) American economic partners. The first rule states that the value for North America should
be greater than the value reported for US. This type of validation is useful when the data
communicated by the data provider do not cover the whole composition of the aggregate but
only some elements. No conditions are defined.

define hierarchical ruleset american_partners_hr (variable rule PartnerArea) is
 NORTH_AMERICA > US

; SOUTH_AMERICA = BR + UY + AR + CL

end hierarchical ruleset

4) Example of an aggregate Code Item having multiple definitions to be used for validation only.
The Balance of Payments item "Transport" can be broken down by type of carrier (Air
transport, Sea transport, Land transport) and by type of objects transported (Passengers and
Freights) and both breakdowns must sum up to the total "Transport" figure.

define hierarchical ruleset validationruleset_bop (variable rule BoPItem) is
 transport_method1 : Transport = AirTransport + SeaTransport + LandTransport
; transport_method2 : Transport = PassengersTransport + FreightsTransport

end hierarchical ruleset

VTL Reference Manual - Version 2.1 Page: 43

VTL-DL – User Defined Operators

define operator

Syntax

define operator operator_name ({ parameter { , parameter }* })
{returns outputType } is operatorBody
end define operator

parameter::= parameterName parameterType { default parameterDefaultValue }

Syntax description
operator_name the name of the operator
parameter the names of parameters, their data types and defaultvalues
outputType the data type of the artefact returned by the operator
operatorBody the expression which defines the operation
parameterName the name of the parameter
parameterType the data type of the parameter
parameterDefaultValue the default value for the parameter (optional)
Parameters
operator_name name
outputType a VTL data type (see the Data Type Syntax below)
operatorBody a VTL expression having the parameters (i.e., parameterName) as the

operands
parameterName name
parameterType a VTL data type (see the Data Type Syntax below)
parameterDefaultValue a Value of the same type as the parameter
Constraints

 Each parameterName must be unique within the list of parameters
 parameterDefaultValue must be of the same data type as the corresponding parameter
 if outputType is specified then the type of operatorBody must be compatible with

outputType
 If outputType is omitted then the type returned by the operatorBody expression is assumed
 If parameterDefaultValue is specified then the parameter is optional

Semantic specification
This operator defines a user-defined Operator by means of a VTL expression, specifying also
the parameters, their data types, whether they are mandatory or optional and their (possible)
default values.
Examples
Example 1:

define operator max1 (x integer, y integer)
returns boolean is
if x > y then x else y
end operator

Example 2:
define operator add (x integer default 0, y integer default 0)
returns number is
x+y
end operator

VTL Reference Manual - Version 2.1 Page: 44

Data type syntax

The VTL data types are described in the VTL User Manual. Types are used throughout this
Reference Manual as both meta-syntax and syntax.

They are used as meta-syntax in order to define the types of input and output parameters in
the descriptions of VTL operators; they are used in the syntax, and thus are proper part of the
VTL, in order to allow other operators to refer to specific data types. For example, when
defining a custom operator (see the define operator above), one will need to declare the type
of the input/output parameters.

The syntax of the data types is described below (as for the meaning of these definitions, see the
section VTL Data Types in the User Manual). See also the section “Conventions for describing
the operators’ syntax” in the chapter “Overview of the language and conventions” above.

dataType ::= scalarType | scalarSetType | componentType | datasetType | operatorType |
 rulesetType

scalarType ::= { basicScalarType | valueDomainName | setName }1 { scalarTypeConstraint } {
{ not } null }

basicScalarType ::= scalar | number | integer | string | boolean | time | date |
 time_period | duration

scalarTypeConstraint ::=[valueBooleanCondition] | { scalarLiteral { , scalarLiteral }* }

scalarSetType ::= set { < scalarType > }

componentType ::= componentRole { < scalarType > }

componentRole ::= component | identifier | measure | attribute | viral attribute

datasetType ::= dataset { { componentConstraint { , componentConstraint }* } }

componentConstraint ::= componentType { componentName | multiplicityModifier }1

multiplicityModifier ::= _ { + | * }

operatorType ::= inputParameterType { * inputParameterType }* } -> outputParameterType

inputParameterType ::= scalarType | scalarSetType | componentType | datasetType |
 rulesetType

outputParameterType ::= scalarType | componentType | datasetType

rulesetType ::= { ruleset | dpRuleset | hrRuleset }1

dpRuleset ::= datapoint |
 datapoint_on_valuedomains { (name { * name }*) } |

 datapoint_on_variables { (name { * name }*) }

hrRuleset ::= hierarchical |
 hierarchical_on_valuedomains { valueDomainName
 { (condValueDomainName { * condValueDomainName }*) } } } |

 hierarchical_on_variables { variableName
 { (condValueDomainName { * condValueDomainName }*) } } }

Note that the valueBooleanCondition in scalarTypeConstraint is expressed with reference to
the fictitious variable “value” (see also the User Manual, section “Conventions for describing
the Scalar Types”), which represents the generic value of the scalar type, for example:

VTL Reference Manual - Version 2.1 Page: 45

integer { 0, 1 } means an integer number whose value is 0 or 1
number [value >= 0] means a number greater or equal than 0
string { "A", "B", "C" } means a string whose value is A, B or C
string [length (value) <= 6] means a string whose length is lower or equal than 6

General examples of the syntax for defining types can be found in the User Manual, section VTL
Data Types and in the declaration of the data types of the VTL operators (sub-sections “input
parameters type” and “result type”).

VTL Reference Manual - Version 2.1 Page: 46

VTL-ML - Typical behaviours of the ML Operators

In this section, the common behaviours of some class of VTL-ML operators are described, both
for a better understanding of the characteristics of such classes and to factor out and not repeat
the explanation for each operator of the class.

Typical behaviour of most ML Operators

Unless differently specified in the Operator description, the Operators can be applied to Scalar
Values, to Data Sets and to Data Set Components.

The operations on Scalar Values are primitive and are part of the core of the language. The other
kind of operations can be typically be obtained by means of the scalar operations in conjunction
with the Join operator, which is part of the core too.

In the operations on Data Set, the Operators are meant to be applied by default only to the
values of the Measures of the input Data Sets, leaving the Identifiers unchanged. The Attributes
follow by default their specific propagation rules, which are described in the User Manual.

In the operations on Components, the Operators are meant to be applied on the specified
components of one input Data Set, in order to calculate a new component which becomes part
of the resulting Data Set. In this case, the Attributes can be operated like the Measures.

Operators applicable on one Scalar Value or Data Set or Data Set
Component

Operations on Scalar values

The operator is applied on a scalar value and returns a scalar value.

Operations on Data Sets

The operator is applied on a Data Set and returns a Data Set.

For example, using a functional style and denoting the operator with f (…), this can written
as:

DS_r := f (DS_1)

The same operation, using an infix style and denoting the operator as op, can be also written as

DS_r := op DS_1

This means that the operator is applied to the values of all the Measures of DS_1 in order to
produce homonymous Measures in DS_r.

The application of the operator is allowed only if all the Measures of the operand Data Set are
of a data type compatible with the operator (for example, a numeric operator is applicable only
if all the Measures of the operand Data Sets are numeric). If the Measures of the operand Data
Set are of different types, not all compatible with the operator to be applied, the membership
or the keep clauses can be used to select only the proper Measures. No applicability constraints
exist on Identifiers and Attributes, which can be any.

As for the data content, for each Data Point (DP_1) of the operand Data Set, a result Data Point
(DP_r) is returned, having for the Identifiers the same values as DP_1.

For each Data Point DP_1 and for each Measure, the operator is applied on the Measure value
of DP_1 and returns the corresponding Measure value of DP_r.

VTL Reference Manual - Version 2.1 Page: 47

For each Data Point DP_1 and for each viral Attribute, the value of the Attribute propagates
unchanged in DP_r.

As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the
operand Data Set (DS_1), and has the Attributes resulting from the application of the attribute
propagation rules on the Attributes of the operand Data Set (DS_r maintains the Attributes
declared as “viral” in DS_1; these Attributes are considered as “viral” also in DS_r, the “non-
viral” Attributes of DS_1 are not kept in DS_r).

Operations on Data Set Components

The operator is applied on a Component (COMP_1) of a Data Set (DS_1) and returns another
Component (COMP_r) which alters the structure of DS_1 in order to produce the result Data Set
(DS_r).

For example, using a functional style and denoting the operator with f (…), this can be written
as:

DS_r := DS_1 [calc COMP_r := f (COMP_1)]

The same operation, using an infix style and denoting the operator as op, can be written as:

DS_r := DS_1 [calc COMP_r := op COMP_1]

This means that the operator is applied on COMP_1 in order to calculate COMP_r.

 If COMP_r is a new Component which originally did not exist in DS_1, it is added to the
original Components of DS_1, by default as a Measure (unless otherwise specified), in order
to produce DS_r.

 If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from
the application of the operator f (…) replace the DS_1 original values for such a Measure
or Attribute in order to produce DS_r.

 If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the
result can become inconsistent.

In any case, an operation on the Components of a Data Set produces a new Data Set, as in the
example above.

The application of the operator is allowed only if the input Component belongs to a data type
compatible with the operator (for example, a numeric operator is applicable only on numeric
Components). As already said, COMP_r cannot have the same name of an Identifier of DS_1.

As for the data content, for each Data Point DP_1 of DS_1, the operator is applied on the values
of COMP_1 so returning the value of COMP_r.

As for the data structure, like for the operations on Data Sets above, the result Data Set (DS_r)
has the Identifiers and the Measures of the operand Data Set (DS_1), and has the Attributes
resulting from the application of the attribute propagation rules on the Attributes of the
operand Data Set (DS_r maintains the Attributes declared as “viral” in DS_1; these Attributes
are considered as “viral” also in DS_r, the “non-viral” Attributes of DS_1 are not kept in DS_r). If
an Attribute is explicitly calculated, the attribute propagation rule is overridden.

Moreover, in the case of the operations on Data Set Components, the (possible) new Component
DS_r can be added to the original structure, the role of a (possible) existing DS_1 Component
can be altered, the virality of a (possibly) existing DS_r Attribute can be altered, a (possible)
COMP_r non-viral Attribute can be kept in the result. For the alteration of role and virality see
also the calc clause.

VTL Reference Manual - Version 2.1 Page: 48

Operators applicable on two Scalar Values or Data Sets or Data Set
Components

Operation on Scalar values

The operator is applied on two Scalar values and returns a Scalar value.

Operation on Data Sets

The operator is applied either on two Data Sets or on one Data Set and one Scalar value and
returns a Data Set. The composition of a Data Set and a Component is not allowed (it makes no
sense).

For example, using a functional style and denoting the operator with f (…), this can be written
as:

DS_r := f (DS_1, DS_2)

The same kind of operation, using an infix stile and denoting the operator as op, can be also
written as

DS_r := DS_1 op DS_2

This means that the operator is applied to the values of all the couples of Measures of DS_1 and
DS_2 having the same names in order to produce homonymous Measures in DS_r. DS_1 or DS_2
may be replaced by a Scalar value.

The composition of two Data Sets (DS_1, DS_2) is allowed if the two operand Data Sets have
exactly the same Measures and if all these Measures belong to a data type compatible with the
operator (for example, a numeric operator is applicable only if all the Measures of the operand
Data Sets are numeric). If the Measures of the operand Data Sets are different or of different
types not all compatible with the operator to be applied, the membership or the keep clauses
can be used to select only the proper Measures. The composition is allowed if these operand
Data Sets have the same Identifiers or if one of them has at least all the Identifiers of the other
one (in other words, the Identifiers of one of the Data Sets must be a superset of the Identifiers
of the other one). No applicability constraints exist on the Attributes, which can be any.

As for the data content, the operand Data Sets (DS_1, DS_2) are joined to find the couples of Data
Points (DP_1, DP_2), where DP_1 is from the first operand (DS_1) and DP_2 from the second
operand (DS_2), which have the same values as for the common Identifiers. Data Points that are
not coupled are left out (the inner join is used). An operand Scalar value is treated as a Data
Point that couples with all the Data Points of the other operand. For each couple (DP_1, DP_2)
a result Data Point (DP_r) is returned, having for the Identifiers the same values as DP_1 and
DP_2.

For each Measure and for each couple (DP_1, DP_2), the Measure values of DP_1 and DP_2 are
composed through the operator so returning the Measure value of DP_r. An operand Scalar
value is composed with all the Measures of the other operand.

For each couple (DP_1, DP_2) and for each Attribute that propagates in DP_r, the Attribute value
is calculated by applying the proper Attribute propagation algorithm on the values of the
Attributes of DP_1 and DP_2 .

As for the data structure, the result Data Set (DS_r) has all the Identifiers (with no repetition of
common Identifiers) and the Measures of both the operand Data Sets, and has the Attributes
resulting from the application of the attribute propagation rules on the Attributes of the
operands (DS_r maintains the Attributes declared as “viral” for the operand Data Sets; these
Attributes are considered as “viral” also in DS_r, the “non-viral” Attributes of the operand Data
Sets are not kept in DS_r).

VTL Reference Manual - Version 2.1 Page: 49

Operation on Data Set Components

The operator is applied either on two Data Set Components (COMP_1, COMP_2) belonging to
the same Data Set (DS_1) or on a Component and a Scalar value, and returns another
Component (COMP_r) which alters the structure of DS_1 in order to produce the result Data Set
(DS_r). The composition of a Data Set and a Component is not allowed (it makes no sense).

For example, using a functional style and denoting the operator with f (…), this can be written
as:

DS_r := DS_1 [calc COMP_r := f (COMP_1, COMP_2)]

The same operation, using an infix style and denoting the operator as op, can be written as:

DS_r := DS_1 [calc COMP_r := COMP_1 op COMP_2]

This means that the operator is applied on COMP_1 and COMP_2 in order to calculate COMP_r.

 If COMP_r is a new Component which originally did not exist in DS_1, it is added to the
original Components of DS_1, by default as a Measure (unless otherwise specified), in order
to produce DS_r.

 If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from
the application of the operator f (…) replace the DS_1 original values for such a Measure
or Attribute in order to produce DS_r.

 If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the
result can become inconsistent.

In any case, an operation on the Components of a Data Set produces a new Data Set, like in the
example above.

The composition of two Data Set Components is allowed provided that they belong to the same
Data Set3. Moreover, the input Components must belong to data types compatible with the
operator (for example, a numeric operator is applicable only on numeric Components). As
already said, COMP_r cannot have the same name of an Identifier of DS_1.

As for the data content, for each Data Point of DS_1, the values of COMP_1 and COMP_2 are
composed through the operator so returning the value of COMP_r.

As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the
operand Data Set (DS_1), and has the Attributes resulting from the application of the attribute
propagation rules on the Attributes of the operand Data Set (DS_r maintains the Attributes
declared as “viral” in DS_1; these Attributes are considered as “viral” also in DS_r, the “non-
viral” Attributes of DS_1 are not kept in DS_r). If an Attribute is explicitly calculated, the
attribute propagation rule is overridden.

Moreover, in the case of the operations on Data Set Components, a (possible) new Component
DS_r can be added to the original structure of DS_1, the role of a (possibly) existing DS_1
Component can be altered, the virality of a (possibly) existing DS_r Attributes can be altered, a
(possible) COMP_r non-viral Attribute can be kept in the result. For the alteration of role and
virality see also the calc clause.

3 As obvious, the input Data Set can be the result of a previous composition of more other Data Sets, even within
the same expression

VTL Reference Manual - Version 2.1 Page: 50

Operators applicable on more than two Scalar Values or Data Set
Components

The cases in which an operator can be applied on more than two Data Sets (like the Join
operators) are described in the relevant sections.

Operation on Scalar values

The operator is applied on more Scalar values and returns a Scalar value according to its
semantics.

Operation on Data Set Components

The operator is applied either on a combination of more than two Data Set Components
(COMP_1, COMP_2) belonging to the same Data Set (DS_1) or Scalar values, and returns another
Component (COMP_r) which alters the structure of DS_1 in order to produce the result Data Set
(DS_r). The composition of a Data Set and a Component is not allowed (it makes no sense).

For example, using a functional style and denoting the operator with f (…), this can be written
as:

DS_r := DS_1 [substr COMP_r := f (COMP_1, COMP_2, COMP_3)]

This means that the operator is applied on COMP_1, COMP_2 and COMP_3 in order to calculate
COMP_r.

 If COMP_r is a new Component which originally did not exist in DS_1, it is added to the
original Components of DS_1, by default as a Measure (unless otherwise specified), in order
to produce DS_r.

 If COMP_r is one of the original Measures or Attributes of DS_1, the values obtained from
the application of the operator f (…) replace the DS_1 original values for such a Measure
or Attribute in order to produce DS_r.

 If COMP_r is one of the original Identifiers of DS_1, the operation is not allowed, because the
result can become inconsistent.

In any case, an operation on the Components of a Data Set produces a new Data Set, like in the
example above.

The composition of more Data Set Components is allowed provided that they belong to the
same Data Set4. Moreover, the input Components must belong to data types compatible with
the operator (for example, a numeric operator is applicable only on numeric Components). As
already said, COMP_r cannot have the same name of an Identifier of DS_1.

As for the data content, for each Data Point of DS_1, the values of COMP_1, COMP_2 and COMP_3
are composed through the operator so returning the value of COMP_r.

As for the data structure, the result Data Set (DS_r) has the Identifiers and the Measures of the
operand Data Set (DS_1), and has the Attributes resulting from the application of the attribute
propagation rules on the Attributes of the operand Data Set (DS_r maintains the Attributes
declared as “viral” in DS_1; these Attributes are considered as “viral” also in DS_r, the “non-
viral” Attributes of DS_1 are not kept in DS_r). If an Attribute is explicitly calculated, the
attribute propagation rule is overridden.

Moreover, in the case of the operations on Data Set Components, a (possible) new Component
DS_r can be added to the original structure of DS_1, the role of a (possibly) existing DS_1

4 As obvious, the input Data Set can be the result of a previous composition of more other Data Sets, even within
the same expression

VTL Reference Manual - Version 2.1 Page: 51

Component can be altered, the virality of a (possibly) existing DS_r Attributes can be altered, a
(possible) COMP_r non-viral Attribute can be kept in the result. For the alteration of role and
virality see also the calc clause.

Behaviour of Boolean operators

The Boolean operators are allowed only on operand Data Sets that have a single measure of
type boolean. As for the other aspects, the behaviour is the same as the operators applicable on
one or two Data Sets described above.

Behaviour of Set operators

These operators apply the classical set operations (union, intersection, difference, symmetric
differences) to the Data Sets, considering them as sets of Data Points. These operations are
possible only if the Data Sets to be operated have the same data structure, and therefore the
same Identifiers, Measures and Attributes5.

Behaviour of Time operators

The time operators are the operators dealing with time, date and time_period basic scalar types.
These types are described in the User Manual in the sections “Basic Scalar Types” and “External
representations and literals used in the VTL Manuals”.

The time-related formats used for explaining the time operators are the following (they are
described also in the User Manual).

For the time values:

YYYY-MM-DD/YYYY-MM-DD

Where YYYY are 4 digits for the year, MM two digits for the month, DD two digits for the
day. For example:

2000-01-01/2000-12-31 the whole year 2000

2000-01-01/2009-12-31 the first decade of the XXI century

For the date values:

YYYY-MM-DD

The meaning of the symbols is the same as above. For example:

2000-12-31 the 31st December of the year 2000

2010-01-01 the first of January of the year 2010

For the time_period values:

YYYY{P}{NNN}

Where YYYY are 4 digits for the year, P is one character for the period indicator of the
regular period (it refers to the duration data type and can assume one of the possible
values listed below), NNN are from zero to three digits which contain the progressive
number of the period in the year. For annual data the A and the three digits NNN can be
omitted. For example:

5 According to the VTL IM, the Variables that have the same name have also the same data type

VTL Reference Manual - Version 2.1 Page: 52

2000M12 the month of December of the year 2000 (duration: M)

2010Q1 the first quarter of the year 2010 (duration: Q)

2010A the whole year 2010 (duration: A)

2010 the whole year 2010 (duration: A)

For the duration values, which are the possible values of the period indicator of the regular
periods above, it is used for simplicity just one character whose possible values are the
following:

Code Duration

 D Day

 W Week

 M Month

 Q Quarter

 S Semester

 A Year

As mentioned in the User Manual, these are only examples of possible time-related
representations, each VTL system is free of adopting different ones. In fact no predefined
representations are prescribed, VTL systems are free to using they preferred or already existing
ones.

Several time operators deal with the specific case of Data Sets of time series, having an Identifier
component that acts as the reference time and can be of one of the scalar types time, date or
time_period; moreover this Identifier must be periodical, i.e. its possible values are regularly
spaced and therefore have constant duration (frequency).

It is worthwhile to recall here that, in the case of Data Sets of time series, VTL assumes that the
information about which is the Identifier Components that acts as the reference time and which
is the period (frequency) of the time series exists and is available in some way in the VTL
system. The VTL Operators are aware of which is the reference time and the period (frequency)
of the time series and use these information to perform correct operations. VTL also assumes
that a Value Domain representing the possible periods (e.g. the period indicator Value Domain
shown above) exists and refers to the duration scalar type. For the assumptions above, the users
do not need to specify which is the Identifier Component having the role of reference time.

The operators for time series can be applied only on Data Sets of time series and returns a Data
Set of time series. The result Data Set has the same Identifier, Measure and Attribute
Components as the operand Data Set and contains the same time series as the operand. The
Attribute propagation rule is not applied.

Operators changing the data type

These Operators change the Scalar data type of the operands they are applied to (i.e. the type
of the result is different from the type of the operand). For example, the length operator is
applied to a value of string type and returns a value of integer type. Another example is
the cast operator.

Operation on Scalar values

The operator is applied on (one or more) Scalar values and returns one Scalar value of a
different data type.

VTL Reference Manual - Version 2.1 Page: 53

Operation on Data Sets

If an Operator change the data type of the Variable it is applied to (e.g., from string to number),
the result Data Set cannot maintain this Variable as it happens in the previous cases, because a
Variable cannot have different data types in different Data Sets6.

As a consequence, the converted variable cannot follow the same rules described in the sections
above and must be replaced, in the result Data Set, by another Variable of the proper data type.

For sake of simplicity, the operators changing the data type are allowed only on mono-measure
operand Data Sets, so that the conversion happens on just one Measure. A default generic
Measure is assigned by default to the result Data Set, depending on the data type of the result
(the default Measure Variables are reported in the table below).

Therefore, if the operands are originally multi-measure, just one Measure must be pre-
emptively selected (for example through the membership operator) in order to apply the
changing-type operator. Moreover, if in the result Data Set a different Measure Variable name
is desired than the one assigned by default, it is possible to change the Variable name (see the
rename operator).

As for the Identifiers and the Attributes, the behaviour of these operators is the same as the
typical behaviour of the unary or binary operators.

Operation on Data Set Components

For the same reasons above, the result Component cannot be the same as one of the operand
Components and must be of the appropriate Scalar data type.

Default Names for Variables and Value Domains used in this manual

The following table shows the default Variable names and the relevant default Value Domain.

Scalar data type Default Variable Default Value Domain

string string_var string_vd

number num_var num_vd

integer int_var int_vd

time time_var time_vd

time_period time_period_var time_period_vd

date date_var date_vd

duration duration_var duration_vd

boolean bool_var bool_vd

6 This according both to the mathematical meaning of a Variable and the VTL Information Model; in fact a
Represented Variable is defined on just one Value Domain, which has just one data type, independently of the
Data Structures and the Data Sets in which the Variable is used.

VTL Reference Manual - Version 2.1 Page: 54

Type Conversion and Formatting Mask

The conversions between scalar types is provided by the operator cast, described in the section
of the general purpose operators. Some particular types of conversion require the specification
of a formatting mask, which specifies which format the source or the destination of the
conversion should assume. The formatting masks for the various scalar types are explained
here.

If needed, the formatting Masks can be personalized in the VTL implementations. If VTL rules
are exchanged, the personalised masks need to be shared with the partners of the exchange.

The Numbers Formatting Mask

The number formatting mask can be defined as a combination of characters whose meaning
is the following:

o “D” one numeric digit (for the mantissa of the scientific notation)

o “E” one numeric digit (for the exponent of the scientific notation)

o “*” an arbitrary number of digits

o “+” at least one digit

o “.” (dot) can be used as a separator between the integer and the decimal parts.

o “,” (comma) can be used as a separator between the integer and the decimal parts.

Examples of valid masks are:

 DD.DDDDD, DD.D, D, D.DDDD, D*.D*, D+.D+ , DD.DDDEEEE

The Time Formatting Mask

The format of the values of the types time, date and time_period can be specified through specific
formatting masks. A mask related to time, date and time_period is formed by a sequence of
symbols which denote:

- the time units that are used, for example years, months, days

- the format in which they are represented, for example 4 digits for the year (2018), 2 digits

for the month within the year (04 for April) and 2 digits for the day within the year and the

month (05 for the 5th)

- the order of these parts; for example, first the 4 digits for the year, then the 2 digits for the

month and finally the 2 digits for the day

- other (possible) typographical characters used in the representation; for example, a line

between the year and the month and between the month and the day (e.g., 2018-04-05).

The time formatting masks follows the general rules below.

For a numerical representations of the time units:

- A digit is denoted through the use of a special character which depends on the time unit.
for example Y is for “year”, M is for “month” and D is for “day”

- The special character is lowercase for the time units shorter than the day (for example h
for “hour”, m for “minute”, s for “second”) and uppercase for time units equal to “day” or
longer (for example W for “week”, Q for “quarter”, S for “semester”)

VTL Reference Manual - Version 2.1 Page: 55

- The number of letters matches the number of digits, for example YYYY means that the
year is represented with four digits and MM that the month is of 2 digits

- The numerical representation is assumed to be padded by leading 0 by default, for example
MM means that April is represented as 04 and the year 33 AD as 0033

- If the numerical representation is not padded, the optional digits that can be omitted (if
equal to zero) are enclosed within braces; for example {M}M means that April is
represented by 4 and December by 12, while {YYY}Y means that the 33 AD is represented
by 33

For textual representations of the time units:

- Special words denote a textual localized representation of a certain unit, for example DAY
means a textual representation of the day (MONDAY, TUESDAY …)

- An optional number following the special word denote the maximum length, for example
DAY3 is a textual representation that uses three characters (MON, TUE …)

- The case of the special word correspond to the case of the value; for example day3
(lowercase) denotes the values mon, tue …

- The case of the initial character of the special word correspond to the case of the initial
character of the time format; for example Day3 denotes the values Mon, Tue …

- The letter P denotes the period indicator, (i.e., day, week, month …) and the letter p denotes
the number of periods

Representation of more time units:

- If more time units are used in the same mask (for example years, months, days), it is
assumed that the more detailed units (e.g., the day) are expressed through the order
number that they assume within the less detailed ones (e.g., the month and the year). For
example, if years, weeks and days are used, the weeks are within the year (from 1 to 53)
and the days are within the year and the week (from 1 to 7).

- The position of the digits in the mask denotes the position of the corresponding values; for
example, YYYMMDD means four digits for the year followed by two digits for the month
and then two digits for the day (e.g., 20180405 means the year 2018, month April, day 5th)

- Any other character can be used in the mask, meaning simply that it appears in the same
position; for example, YYYY-MM-DD means that the values of year, month and day are
separated by a line (e.g., 2018-04-05 means the year 2018, month April, day 5th) and \PMM
denotes the letter “P” followed by two characters for the month.

- The special characters and the special words, if prefixed by the reverse slash (\) in the mask,
appear in the same position in the time format; for example \PMM\M means the letter “P”
followed by two characters for the month and then the letter “M”; for example, P03M means
a period of three months (this is an ISO 8601 standard representation for a period of MM
months). The reverse slash can appear in the format if needed by prefixing it with another
reverse slash; for example YYYY\\MM means for digits for the year, a reverse slash and two
digits for the month.

The special characters and the corresponding time units are the following:

C century

Y year

S semester

Q quarter

M month

VTL Reference Manual - Version 2.1 Page: 56

W week

D day

h hour digit (by default on 24 hours)

m minute

s second

d decimal of second

P period indicator (see the “duration” codes below)

p number of periods

The special words for textual representations are the following:

AM/PM indicator of AM / PM (e.g. am/pm for “am” or “pm”)

MONTH textual representation of the month (e.g., JANUARY for January)

DAY textual representation of the day (e.g., MONDAY for Monday)

Examples of formatting masks for the time scalar type:

A Scalar Value of type time denotes time intervals of any duration and expressed with any
precision, which are the intervening time between two time points.

These examples are about three possible ISO 8601 formats for expressing time intervals:

 Start and end time points, such as "2015-03-03T09:30:45Z/2018-04-05T12:30:15Z"

VTL Mask: YYYY-MM-DDThh:mm:ssZ/YYYY-MM-DDThh:mm:ssZ

 Start and duration, such as "2015-03-03T09:30:45-01/P1Y2M10DT2H30M"

VTL Mask: YYYY-MM-DDThh:mm:ss-01/PY\YM\MDD\DT{h}h\Hmm\M

 Duration and end, such as "P1Y2M10DT2H30M/2018-04-05T12:30:00+02"

VTL Mask: PY\YM\MDD\DT{h}h\Hmm\M/YYYY-MM-DDThh:mm:ssZ

Example of other possible ISO formats having accuracy reduced to the day

 Start and end, such as "20150303/20180405"

VTL Mask: YYYY-MM-DD/YYYY-MM-DD

 Start and duration, such as "2015-03-03/P1Y2M10D"

VTL Mask: YYYY-MM-DD/PY\YM\MDD\D

 Duration and end, such as "P1Y2M10D/2018-04-05"

VTL Mask: PY\YM\MDD\DT/YYYY-MM-DD

Examples of formatting masks for the date scalar type:

A date scalar type is a point in time, equivalent to an interval of time having coincident start
and end duration equal to zero.

These examples about possible ISO 8601 formats for expressing dates:

 Date and day time with separators: "2015-03-03T09:30:45Z"

VTL Mask: YYYY-MM-DDThh:mm:ssZ

 Date and day time without separators "20150303T093045-01 "

VTL Mask: YYYYMMDDThhmmss-01

Example of other possible ISO formats having accuracy reduced to the day

 Date and day-time with separators "2015-03-03/2018-04-05"

VTL Reference Manual - Version 2.1 Page: 57

VTL Mask: YYYY-MM-DD/YYYY-MM-DD

 Start and duration, such as "2015-03-03/P1Y2M10D"

VTL Mask: YYYY-MM-DD/PY\YM\MDD\D

Examples of formatting masks for the time_period scalar type:

A time_period denotes non-overlapping time intervals having a regular duration (for example
the years, the quarters of years, the months, the weeks and so on). The time_period values
include the representation of the duration of the period.

These examples are about possible formats for expressing time-periods:

 Generic time period within the year such as: "2015Q4", "2015M12""2015D365"

VTL Mask: YYYYP{ppp} where P is the period indicator and ppp three digits for the
number of periods, in the values, the period indicator may assume one of the values of
the duration scalar type listed below.

 Monthly period: "2015M03"

VTL Mask: YYYY\MMM

Examples of formatting masks for the duration scalar type:

A Scalar Value of type duration denotes the length of a time interval expressed with any
precision and without connection to any particular time point (for example one year, half
month, one hour and fifteen minutes).

These examples are about possible formats for expressing durations (period / frequency)

 Non ISO representation of the duration in one character, whose possible codes are:

Code Duration

 D Day

 W Week

 M Month

 Q Quarter

 S Semester

 A Year

VTL Mask: P (period indicator)

 ISO 8601 composite duration: "P10Y2M12DT02H30M15S" (P stands for “period”)

VTL Mask: \PYY\YM\MDD\DThh\Hmm\Mss\S

 ISO 8601 duration in weeks: "P018W" (P stands for “period”)

VTL Mask: \PWWW\W

 ISO 4 characters representation: P10M (ten months), P02Q (two quarters) …

VTL Mask: \PppP

Examples of fixed characters used in the ISO 8601 standard which can appear as fixed

characters in the relevant masks:

P designator of duration

T designator of time

Z designator of UTC zone

VTL Reference Manual - Version 2.1 Page: 58

“+” designator of offset from UTC zone

”-“ designator of offset form UTC zone

/ time interval separator

Attribute propagation

The VTL has different default behaviours for Attributes and for Measures, to comply as much
as possible with the relevant manipulation needs. At the Data Set level, the VTL Operators
manipulate by default only the Measures and not the Attributes. At the Component level,
instead, Attributes are calculated like Measures, therefore the algorithms for calculating
Attributes, if any, can be specified explicitly in the invocation of the Operators. This is the
behaviour of clauses like calc, keep, drop, rename and so on, either inside or outside the join
(see the detailed description of these operators in the Reference Manual).

The users which want to automatize the propagation of the Attributes’ Values can optionally
enforce a mechanism, called Attribute Propagation rule, whose behaviour is explained in the
User Manual (see the section “Behaviour for Attribute Components”). The adoption of this
mechanism is optional, users are free to allow the attribute propagation rule or not. The users
that do not want to allow Attribute propagation rules simply will not implement what follows.

In short, the automatic propagation of an Attribute depends on a Boolean characteristic, called
“virality”, which can be assigned to any Attribute of a Data Set (a viral Attribute has virality =
TRUE, a non-viral Attribute has virality=FALSE, if the virality is not defined, the Attribute is
considered as non-viral).

By default, an Attribute propagates from the operand Data Sets (DS_i) to the result Data Set
(DS_r) if it is “viral” at least in one of the operand Data Sets. By default, an Attribute which is
viral in one of the operands DS_i is considered as viral also in the result DS_r.

The Attribute propagation rule does not apply for the time series operators.

The Attribute propagation rule does not apply if the operations on the Attributes to be
propagated are explicitly specified in the expression (for example through the keep and calc
operators). This way it is possible to keep in the result also Attribute which are non-viral in all
the operands, to drop viral Attributes, to override the (possible) default calculation algorithm
of the Attribute, to change the virality of the resulting Attributes.

VTL Reference Manual - Version 2.1 Page: 59

VTL-ML - General purpose operators

Parentheses : ()

Syntax

(op)

Input parameters

op the operand to be evaluated before performing other operations written outside the
parentheses. According to the general VTL rule, operators can be nested, therefore any
Data Set, Component or scalar op can be obtained through an expression as complex as
needed (for example op can be written as the expression 2 + 3).

Examples of valid syntaxes

(DS_1 + DS_2)
(CMP_1 - CMP_2)
(2 + DS_1)
(DS_2 - 3 * DS_3)

Semantic for scalar operations

Parentheses override the default evaluation order of the operators that are described in the
section “VTL-ML – Evaluation order of the Operators”. The operations enclosed in the
parentheses are evaluated first. For example (2+3)*4 returns 20, instead 2+3*4 returns 14
because the multiplication has higher precedence than the addition.

Input parameters type

op :: dataset
 | component

| scalar

Result type

result :: dataset
| component
| scalar

Additional constraints

None.

Behaviour

As mentioned, the op of the parentheses can be obtained through an expression as complex as
needed (for example op can be written as DS_1 - DS_2. The part of the expression inside the
parentheses is evaluated before the part outside of the parentheses. If more parentheses are
nested, the inner parentheses are evaluated first, for example (20 – 10 / (2 + 3)) * 3 would
give 54.

Examples

(DS_1 + DS_2) * DS_3

(CMP_1 – CMP_2 / (CMP_3 + CMP_4)) * CMP_5

VTL Reference Manual - Version 2.1 Page: 60

Persistent assignment : <-

Syntax

re <- op

Input Parameters

re the result
op the operand. According to the general VTL rule allowing the indentation of the operators,

op can be obtained through an expression as complex as needed (for example op can be
the expression DS_1 - DS_2).

Examples of valid syntaxes

DS_r <- DS_1
DS_r <- DS_1 - DS_2

Semantics for scalar operations

empty

Input parameters type

 op :: dataset

Result type

result :: dataset

Additional constraints

The assignment cannot be used at Component level because the result of a Transformation
cannot be a Data Set Component. When operations at Component level are invoked, the result
is the Data Set which the output Components belongs to.

Behaviour

The input operand op is assigned to the persistent result re, which assumes the same value as
op. As mentioned, the operand op can be obtained through an expression as complex as needed
(for example op can be the expression DS_1 - DS_2).
The result re is a persistent Data Set that has the same data structure as the Operand. For
example in DS_r <- DS_1 the data structure of DS_r is the same as the one of DS_1.
If the Operand op is a scalar value, the result Data Set has no Components and contains only
such a scalar value. For example, income <- 3 assigns the value 3 to the persistent Data Set
named income.

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

VTL Reference Manual - Version 2.1 Page: 61

Example 1: DS_r <- DS_1 results in:

DS_r (persistent Data Set)

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

Non-persistent assignment : :=

Syntax

re := op

Input parameters

re the result
op the operand (according to the general VTL rule allowing the indentation of the

operators, op can be obtained through an expression as complex as needed (for example
op can be the expression DS_1 - DS_2).

Examples of valid syntaxes

DS_r := DS_1
DS_r := 3
DS_r := DS_1 - DS_2
DS_r := 3 + 2

Semantic for scalar operations

empty

Input parameters type

 op :: dataset
 | scalar

Result type

result :: dataset

Additional constraints

The assignment cannot be used at Component level because the result of a Transformation
cannot be a Data Set Component. When operations at Component level are invoked, the result
is the Data Set which the output Components belongs to.
The same symbol denoting the non-persistent assignment Operator (:=) is also used inside
other operations at Component level (for example in calc and aggr) in order to assign the
result of the operation to the output Component: please note that in these cases the symbol :=
does not denote the non-persistent assignment (i.e., this Operator), which cannot operate at
Component level, but a special keyword of the syntax of the other Operator in which it is used.

Behaviour

The value of the operand op is assigned to the result re, which is non-persistent and therefore
is not stored. As mentioned, the operand op can be obtained through an expression as complex
as needed (for example op can be the expression DS_1 - DS_2).

VTL Reference Manual - Version 2.1 Page: 62

The result re is a non-persistent Data Set that has the same data structure as the Operand. For
example in DS_r := DS_1 the data structure of DS_r is the same as the one of DS_1.
If the Operand op is a scalar value, the result Data Set has no Components and contains only
such a scalar value. For example, income := 3 assigns the value 3 to the non-persistent Data
Set named income.

Examples

Given the operand Data Sets DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

Example 1: DS_r := DS_1 results in:

DS_r (non persistent Data Set)

Id_1 Id_2 Me_1 Me_2

2013 Belgium 5 5

2013 Denmark 2 10

2013 France 3 12

2013 Spain 4 20

Membership : #

Syntax

ds#comp

Input Parameters

ds the Data Set
comp the Data Set Component

Examples of valid syntaxes

DS_1#COMP_3

Semantic for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

ds :: dataset
comp :: name < component >

Result type

result :: dataset

Additional constraints

comp must be a Data Set Component of the Data Set ds

VTL Reference Manual - Version 2.1 Page: 63

Behaviour

The membership operator returns a Data Set having the same Identifier Components of ds and
a single Measure.
If comp is a Measure in ds, then comp is maintained in the result while all other Measures are
dropped.
If comp is an Identifier or an Attribute Component in ds, then all the existing Measures of ds
are dropped in the result and a new Measure is added. The Data Points’ values for the new
Measure are the same as the values of comp in ds. A default conventional name is assigned to
the new Measure depending on its type: for example num_var if the Measure is numeric,
string_var if it is string and so on (the default name can be renamed through the rename
operator if needed).
The Attributes follow the Attribute propagation rule as usual (viral Attributes of ds are
maintained in the result as viral, non-viral ones are dropped). If comp is an Attribute, it follows
the Attribute propagation rule too.
The same symbol denoting the membership operator (#) is also used inside other operations
at Component level (for example in join, calc, aggr) in order to identify the Components to be
operated: please note that in these cases the symbol # does not denote the membership
operator (i.e., this operator, which does not operate at Component level), but a special keyword
of the syntax of the other operator in which it is used.

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2 At_1

1 A 1 5

1 B 2 10 P

2 A 3 12

Example 1: DS_r := DS_1#Me_1 results in:

(assuming that At_1 is not viral in DS_1)

DS_r

Id_1 Id_2 Me_1

1 A 1

1 B 2

2 A 3

(assuming that At_1 is viral in DS_1)

DS_r

Id_1 Id_2 Me_1 At_1

1 A 1

1 B 2 P

2 A 3

VTL Reference Manual - Version 2.1 Page: 64

Example 2: DS_r := DS_1#Id_1 assuming that At_1 is viral in DS_1 results in:

DS_r

Id_1 Id_2 num_var At_1

1 A 1

1 B 1 P

2 A 2

Example 3: DS_r := DS_1#At_1 assuming that At_1 is viral in DS_1 results in:

DS_r

Id_1 Id_2 string_var At_1

1 A

1 B P P

2 A

User-defined operator call

Syntax

operatorName ({ argument { , argument }* })

Input parameters

operatorName the name of an existing user-defined operator
argument argument passed to the operator

Examples of valid syntaxes

max1 (2, 3)

Semantic for scalar operations

It depends on the specific user-defined operator that is invoked.

Input parameters type

operatorName :: name
argument :: A data type compatible with the type of the parameter of the user-defined

operator that is invoked (see also the “Type syntax” section).

Result type

result :: The data type of the result of the user-defined operator that is invoked
(see also the “Type syntax” section).

Additional constraints

 operatorName must refer to an operator created with the define operator statement.
 The type of each argument value must be compliant with the type of the corresponding

parameter of the user defined operator (the correspondence is in the positional order).

Behaviour

The invoked user-defined operator is evaluated. The arguments passed to the operator in the
invocation are associated to the corresponding parameters in positional order, the first
argument as the value of the first parameter, the second argument as the value of the second

VTL Reference Manual - Version 2.1 Page: 65

parameter, and so on. An underscore (“_”) can be used to denote that the value for an optional
operand is omitted. One or more optional operands in the last positions can be simply omitted.

Examples

Example 1:
Definition of the max1 operator (see also “define operator” in the VTL-DL):

define operator max1 (x integer, y integer)
returns boolean
is if x > y then x else y
end define operator

User-defined operator call of the max1 operator:
max1 (2, 3)

Evaluation of an external routine : eval

Syntax

eval (externalRoutineName ({ argument } { , argument }*), language, returns
outputType)

Input parameters

externalRoutineName the name of an external routine
argument the arguments passed to the external routine
language the implementation language of the routine
outputType the data type of the object returned by eval (see

outputParameterType in Data type syntax)

Examples of valid syntaxes

eval (routine1 (DS_1))

Semantics for scalar operations:

This is not a scalar operation.

Input parameters type

externalRoutineName :: name
argument :: any data type
language :: string
outputType :: any data type restricting Data Set or scalar

Result Type

result :: dataset
 Additional constraints
 The eval is the only VTL Operator that does not allow nesting and therefore a

Transformation can contain just one invocation of eval and no other invocations. In other
words, eval cannot be nested as the operand of another operation as well as another
operator cannot be nested as an operand of eval

 The result of an expression containing eval must be persistent
 externalRoutineName is the conventional name of a non-VTL routine
 the invoked external routine must be consistent with the VTL principles, first of all its

behaviour must be functional, so having in input and providing in output first-order
functions

 argument is an argument passed to the external routine, it can be a name or a value of a
VTL artefacts or some other parameter required by the routine

VTL Reference Manual - Version 2.1 Page: 66

 the arguments passed to the routine correspond to the parameters of the invoked external
routine in positional order; as usual the optional parameters are substituted by the
underscore if missing. The conversion of the VTL input/output data types from and to the
external routine processor is left to the implementation.

Behaviour

The eval operator invokes an external, non-VTL routine, and returns its result as a Data Set or
a scalar. The specific data type can be given in the invocation. The routine specified in the eval
operator can perform any internal logic.

Examples

Assuming that SQL3 is an SQL statement which produces DS_r starting from DS_1:
DS_r := eval(SQL3(DS_1) , “SQL”,

returns dataset { identifier<geo_area> ref_area,
identifier<date> time,
measure<number> obs_value,
attribute<string> obs_status })

Assuming that f is an externally defined Java method:
DS_r := DS_1[calc Me := eval(f(Me) + 1, “Java”, integer)]

Type conversion : cast

Syntax

cast (op , scalarType { , mask})

Input parameters

op the operand to be cast
scalarType the name of the scalar type into which op has to be converted
mask a character literal that specifies the format of op

Examples of valid syntaxes

See the examples below.

Semantics for scalar operations:

This operator converts the scalar type of op to the scalar type specified by scalarType. It
returns a copy of op converted to the specified scalarType.

Input parameters type

op :: dataset{ measure<scalar> _ }
 | component<scalar>
 | scalar
scalarType :: scalar type (see the section: Data type syntax)
mask :: string

Result type

result :: dataset{ measure<scalar> _ }
 | component<scalar>
 | scalar
 Additional constraints
 Not all the conversions are possible, the specified casting operation is allowed only

according to the semantics described below.
 The mask must adhere to one of the formats specified below.

Behaviour

VTL Reference Manual - Version 2.1 Page: 67

Conversions between basic scalar types

The VTL assumes that a basic scalar type has a unique internal and more possible external
representations (formats).

The external representations are those of the Value Domains which refers to such a basic scalar
types (more Value Domains can refer to the same basic scalar type, see the VTL Data Types in
the User Manual). For example, there can exist a boolean Value Domain which uses the values
TRUE and FALSE and another boolean Value Domain which uses the values 1 and 0. The
external representations are the ones of the Data Point Values and are obviously known by
users.

The unique internal representation of a basic scalar type, instead, is used by the cast operator
as a technical expedient to make the conversion between external representations easier: not
necessarily users are aware of it. In a conversion, the cast converts the source external
representation into the internal representation (of the corresponding scalar type), then this
last one is converted into the target external representation (of the target type). As mentioned
in the User Manual, VTL does not prescribe any specific internal representation for the various
scalar types, leaving different organisations free of using their preferred or already existing
ones.

In some cases, depending on the type of op, the output scalarType and the invoked operator,
an automatic conversion is made, that is, even without the explicit invocation of the cast
operator: this kind of conversion is called implicit casting.

In other cases, more than all when the implicit casting is not possible, the type conversion must
be specified explicitly through the invocation of the cast operator: this kind of conversion is
called explicit casting. If an explicit casting is specified, the (possible) implicit casting is
overridden; the explicit conversion requires a formatting mask that specifies how the actual
casting is performed.

The table below summarises the possible castings between the basic scalar types. In particular,
the input type is specified in the first column (row headings) and the output type in the first
row (column headings).

Expected

Provided

integer number boolean time date time_period string duration

integer - Implicit Implicit Not feasible Not feasible Not feasible Implicit Not
feasible

number Implicit - Implicit Not feasible Not feasible Not feasible Implicit Not
feasible

boolean Implicit Implicit - Not feasible Not feasible Not feasible Implicit Not
feasible

time Not feasible Not feasible Not feasible - Not feasible Not feasible Explicit with
mask

Not
feasible

date Not feasible Not feasible Not feasible Implicit - Explicit with
mask

Explicit with
mask

Not
feasible

time_period Not feasible Not feasible Not feasible Implicit Explicit with
mask

- Implicit Not
feasible

string Implicit Explicit with
mask

Not feasible Explicit with
mask

Explicit with
mask

Explicit with
mask

- Explicit
with mask

duration Not feasible Not feasible Not feasible Not feasible Not feasible Not feasible Explicit with
mask

-

The type of casting can be personalised in specific environments, provided that the
personalisation is explicitly documented with reference to the table above. For example,

VTL Reference Manual - Version 2.1 Page: 68

assuming that an explicit cast with mask is required and that in a specific environment a
definite mask is used for such a kind of conversions, the cast can also become implicit provided
that the mask that will be applied is specified.

The implicit casting is performed when a value of a certain type is provided when another
type is expected. Its behaviour is described here:

 From integer to number: an integer is provided when a number is expected (for example,
an integer and a number are passed as inputs of a n-ary numeric operator); it returns a
number having the integer part equal to the integer and the decimal part equal to zero;

 From integer to string: an integer is provided when a string is expected (for example, an
integer is passed as an input of a string operator); it returns a string having the literal value
of the integer;

 From number to string: a number is provided when a string is expected; it returns the string
having the literal value of the number; the decimal separator is converted into the character
“.” (dot).

 From boolean to string: a boolean is provided when a string is expected; the boolean value
TRUE is converted into the string “TRUE” and FALSE into the string “FALSE”;

 From date to time: a date (point in time) is provided when a time is expected (interval of
time): the conversion results in an interval having the same start and end, both equal to the
original date;

 From time_period to time: a time_period (a regular interval of time, like a month, a quarter,
a year …) is provided when a time (any interval of time) is expected; it returns a time value
having the same start and end as the time_period value.

 From integer to boolean: if the integer is different from 0, then TRUE is returned, FALSE
otherwise.

 From number to integer: converts a number with no decimal part into an integer; if the
decimal part is present, a runtime error is raised.

 From number to boolean: if the number is different from 0.0, then TRUE is returned, FALSE
otherwise.

 From boolean to integer: TRUE is converted into 1; FALSE into 0.

 From boolean to number: TRUE is converted into 1.0; FALSE into 0.0.

 From time_period to string: it is applied the time_period formatting mask.

 From string to integer: the integer having the literal value of the string is returned; if the
string contains a literal that cannot be matched to an integer, a runtime error is raised.

An implicit cast is also performed from a value domain type or a set type to a basic scalar
type: when a scalar value belonging to a Value Domains or a Set is involved in an operation (i.e.,
provided as input to an operator), the value is implicitly cast into the basic scalar type which
the Value Domain refers to (for this relationship, see the description of Type System in the User
Manual). For example, assuming that the Component birth_country is defined on the Value
Domain country, which contains the ISO 3166-1 numeric codes and therefore refers to the basic
scalar type integer, the (possible) invocation length(birth_country), which calculates the length
of the input string, automatically casts the values of birth_country into the corresponding string.
If the basic scalar type of the Value Domain is not compatible with the expression where it is
used, an error is raised. This VTL feature is particularly important as it provides a general
behaviour for the Value Domains and relevant Sets, preventing from the need of defining
specific behaviours (or methods or operations) for each one of them. In other words, all the

VTL Reference Manual - Version 2.1 Page: 69

Values inherit the operations that can be performed on them from the basic scalar types of the
respective Value Domains.

The cast operator can be invoked explicitly even for the conversions which allow an implicit
cast and in this case the same behaviour as the implicit cast is applied.

When an explicit casting with mask is required, the conversion is made by applying the
formatting mask which specifies the meaning of the characters in the output string. The
formatting Masks are described in the section “VTL-ML – Typical Behaviour of the ML
Operators”, sub-section “Type Conversion and Formatting Mask.

The behaviour of the cast operator for such conversions is the following:

 From time to string: it is applied the time formatting mask.

 From date to time_period: it converts a date into the corresponding daily value of
time_period.

 From date to string: it is applied the time_period formatting mask.

 From time_period to date: it is applied a formatting mask which accepts two possible values
(“START”, “END”). If “START” is specified, then the date is set to the beginning of the
time_period; if “END” is specified, then the date is set to the end of the time_period.

 From string to number: the number having the literal value of the string is returned; if the
string contains a literal that cannot be matched to a number, a runtime error is raised. The
number is generated by using a number formatting mask.

 From string to time: the time having the literal value of the string is returned; if the string
contains a literal that cannot be matched to a date, a runtime error is raised. The time value
is generated by using a time formatting mask.

 From string to date: it converts a string value to a date value.

 From string to time_period: it converts a string value to a time_period value.

 From string to duration: the duration having the literal value of the string is returned; if
the string contains a literal that cannot be matched to a duration, a runtime error is raised.
The duration value is generated by using a time formatting mask.

 From duration to string: a duration (an absolute time interval) is provided when a string is
expected; it returns the string having the default string representation for the duration.

Conversions between basic scalar types and Value Domains or Set types

A value of a basic scalar type can be converted into a value belonging to a Value Domain which
refers to such a scalar type. The resulting scalar value must be one of the allowed values of the
Value Domain or Set; otherwise, a runtime error is raised. This specific use of cast operators
does not really correspond to a type conversion; in more formal terms, we would say that it
acts as a constructor, i.e., it builds an instance of the output type. Yet, towards a homogeneous
and possibly simple definition of VTL syntax, we blur the distinction between constructors and
type conversions and opt for a unique formalism. An example is given below.

Conversions between different Value Domain types

As a result of the above definitions, conversions between values of different Value Domains are
also possible. Since an element of a Value Domain is implicitly cast into its corresponding basic
scalar type, we can build on it to turn the so obtained scalar type into another Value Domain
type. Of course, this latter Value Domain type must use as a base type this scalar type.

Examples

Example 1: from string to number

VTL Reference Manual - Version 2.1 Page: 70

ds2 := ds1[calc m2 := cast(m1, number, “DD.DDD”) + 2)]

In this case we use explicit cast from string to numbers. The mask is used to specify how the
string must be interpreted in the conversion.

Example 2: from string to date

ds2 := ds1[calc m2 := cast(m1, date, “YYYY-MM-DD”)]

In this case we use explicit cast from string to date. The mask is used to specify how the string
must be interpreted in the conversion.

Example 3: from number to integer

ds2 := ds1[calc m2 := cast(m1, integer) + 3]

In this case we cast a number into an integer, no mask is required.

Example 4: from number to string

ds2 := ds1[calc m2 := length(cast(m1, string))]

In this case we cast a number into a string, no mask is required.

Example 5: from date to string

ds2 := ds1[calc m2 := cast(m1, string, “YY-MON-DAY hh:mm:ss”)]

In this example a date instant is turned into a string. The mask is used to specify the string
layout.

Example 6: from string to GEO_AREA

ds2 := ds1[calc m2 := cast(GEO_STRING, GEO_AREA)]

In this example we suppose we have elements of Value Domain Subset for GEO_AREA. Let
GEO_STRING be a string Component of Data Set ds1 with string values compatible with the
GEO_AREA Value Domain Subset. Thus, the following expression moves ds1 data into ds2,
explicitly casting strings to geographical areas.

Example 7: from GEO_AREA to string

ds2 := ds1[calc m2 := length(GEO_AREA)]

In this example we use a Component GEO_AREA in a string expression, which calculates the
length of the corresponding string; this triggers the automatic cast.

Example 8: from GEO_AREA2 to GEO_AREA1

ds2 := ds1 [calc m2 := cast (GEO, GEO_AREA1)]

In this example we suppose we have to compare elements two Value Domain Subsets, They are
both defined on top of Strings. The following cast expressions performs the conversion.

Now, Component GEO is of type GEO_AREA2, then we specify it has to be cast into
GEO_AREA1. As both work on strings (and the values are compatible), the conversion is
feasible. In other words, the cast of an operand into GEO_AREA1 would expect a string. Then,
as GEO is of type GEO_AREA2, defined on top of strings, it is implicitly cast to the respective
string; this is compatible with what cast expects and it is then able to build a value of type
GEO_AREA1.

Example 9: from string to time_period

In the following examples we convert from strings to time_periods, by using appropriate masks.

The first quarter of year 2000 can be expressed as follows (other examples are possible):

cast (“2000Q1”, time_period, “YYYY\QQ”)

cast (“2000-Q1”, time_period, “YYYY-\QQ”)

VTL Reference Manual - Version 2.1 Page: 71

cast (“2000-1”, time_period, “YYYY-Q”)

cast (“Q1-2000”, time_period, “\QQ-YYYY”)

cast (“2000Q01”, time_period, “YYYY\QQQ”)

Examples of daily data:

cast (“2000M01D01”, time_period, “YYYY\MMM\DDD”)

cast (“2000.01.01”, time_period, “YYYY\.MM\.DD”)

VTL Reference Manual - Version 2.1 Page: 72

VTL-ML - Join operators

The Join operators are fundamental VTL operators. They are part of the core of the language
and allow to obtain the behaviour of the majority of the other non-core operators, plus many
additional behaviours that cannot be obtained through the other operators.
The Join operators are four, namely the inner_join, the left_join, the full_join and the cross_join.
Because their syntax is similar, they are described together.

Join : inner_join, left_join, full_join, cross_join

Syntax

joinOperator (ds1 { as alias1 } { , dsN { as aliasN } }* { using usingComp { , usingComp }*}

{ filter filterCondition }

{ apply applyExpr

| calc calcClause

 | aggr aggrClause { groupingClause } }

{ keep comp {, comp }* | drop comp {, comp }* }

{ rename compFrom to compTo { , compFrom to compTo }* }

)

joinOperator ::= { inner_join | left_join | full_join | cross_join }1

calcClause ::= { calcRole } calcComp := calcExpr

{ , { calcRole } calcComp := calcExpr }*

calcRole ::= {identifier | measure | attribute | viral attribute}1

aggrClause ::= { aggrRole } aggrComp := aggrExpr

{ , { aggrRole } aggrComp := aggrExpr }*

aggrRole ::= { measure | attribute | viral attribute }1

groupingClause ::= { group by groupingId { , groupingId }*

| group except groupingId { , groupingId }*

| group all conversionExpr }1

 { having havingCondition }

Input parameters

joinOperator the Join operator to be applied
ds1, …, dsN the Data Set operands (at least one must be present)
alias1, …, aliasN optional aliases for the input Data Sets, valid only within the “join”

operation to make it easier to refer to them. If omitted, the Data Set name
must be used.

usingComp component of the input Data Sets whose values have to match in the join
(the using clause is allowed for the left_join only under certain
constraints described below and is not allowed at all for the full_join and
cross_join)

filterCondition a condition (boolean expression) at component level, having only
Components of the input Data Sets as operands, which is evaluated for
each joined Data Point and filters them (when TRUE the joined Data Point
is kept, otherwise it is not kept)

VTL Reference Manual - Version 2.1 Page: 73

applyExpr an expression, having the input Data Sets as operands, which is pairwise
applied to all their homonym Measure Components and produces
homonym Measure Components in the result; for example if both the Data
Sets ds1 and ds2 have the numeric measures m1 and m2, the clause apply
ds1 + ds2 would result in calculating m1 := ds1#m1 + ds2#m1 and m2
:= ds1#m2 + ds2#m2

calcClause clause that specifies the Components to be calculated, their roles and their
calculation algorithms, to be applied on the joined and filtered Data Points.

calcRole the role of the Component to be calculated
calcComp the name of the Component to be calculated
calcExpr expression at component level, having only Components of the input Data

Sets as operands, used to calculate a Component
aggrClause clause that specifies the required aggregations, i.e., the aggregated

Components to be calculated, their roles and their calculation algorithm,
to be applied on the joined and filtered Data Points

aggrRole the role of the aggregated Component to be calculated; if omitted, the
Measure role is assumed

aggrComp the name of the aggregated Component to be calculated; this is a
dependent Component of the result (Measure or Attribute, not Identifier)

aggrExpr expression at component level, having only Components of the input Data
Sets as operands, which invokes an aggregate operator (e.g. avg, count,
max … , see also the corresponding sections) to perform the desired
aggregation. Note that the count operator is used in an aggrClause
without parameters, e.g.:

DS_1 [aggr Me_1 := count () group by Id_1)]

groupingClause the following alternative grouping options:
group by the Data Points are grouped by the values of the specified

Identifiers (groupingId). The Identifiers not specified are
dropped in the result.

group except the Data Points are grouped by the values of the
Identifiers not specified as groupingId. The specified
Identifiers are dropped in the result.

group all converts the values of an Identifier Component using
conversionExpr and keeps all the resulting Identifiers.

groupingId Identifier Component to be kept (in the group by clause) or dropped (in
the group except clause).

conversionExpr specifies a conversion operator (e.g. time_agg) to convert an Identifier
from finer to coarser granularity. The conversion operator is applied on
an Identifier of the operand Data Set op.

havingCondition a condition (boolean expression) at component level, having only
Components of the input Data Sets as operands (and possibly constants),
to be fulfilled by the groups of Data Points: only groups for which
havingCondition evaluates to TRUE appear in the result. The
havingCondition refers to the groups specified through the
groupingClause, therefore it must invoke aggregate operators (e.g. avg,
count, max, …, see also the section Aggregate invocation). A correct
example of havingCondition is max(obs_value) < 1000, while the
condition obs_value < 1000 is not a right havingCondition, because it

VTL Reference Manual - Version 2.1 Page: 74

refers to the values of single Data Points and not to the groups. The count
operator is used in a havingCondition without parameters, e.g.:

sum (ds group by id1 having count () >= 10)

comp dependent Component (Measure or Attribute, not Identifier) to be kept (in
the keep clause) or dropped (in the drop clause)

compFrom the original name of the Component to be renamed
compTo the new name of the Component atfer the renaming

Examples of valid syntaxes

inner_join (ds1 as d1, ds2 as d2 using Id1, Id2
filter d1#Me1 + d2#Me1 <10
apply d1 / d2
keep Me1, Me2, Me3
rename Id1 to Id10, id2 to id20

)

left_join (ds1 as d1, ds2 as d2

 filter d1#Me1 + d2#Me1 <10,
 calc Me1 := d1#Me1 + d2#Me3,
 keep Me1
 rename Id1 to Ident1, Me1 to Meas1
)

full_join (ds1 as d1, ds2 as d2

 filter d1#Me1 + d2#Me1 <10,
 aggr Me1 := sum(Me1), attribute At20 := avg(Me2)
 group by Id1, Id2
 having sum(Me3) > 0
)

Semantics for scalar operations

The join operator does not perform scalar operations.

Input parameters type

ds1, …, dsN :: dataset
alias1, …, aliasN :: name
usingId :: name < component >
filterCondition :: component<boolean>
applyExpr :: dataset
calcComp :: name < component >
calcExpr :: component<scalar>
aggrComp :: name < component >
aggrExpr :: component<scalar>
groupingId :: name < identifier >
conversionExpr :: component<scalar>
havingCondition :: component<boolean>
comp :: name < component >
compFrom :: component<scalar>
compTo :: component<scalar>

Result type

result :: dataset

VTL Reference Manual - Version 2.1 Page: 75

Additional constraints

The aliases must be all distinct and different from the Data Set names. Aliases are mandatory
for Data Sets which appear more than once in the Join (self-join) and for non-named Data Set
obtained as result of a sub-expression.
The using clause is not allowed for the full_join and for the cross_join, because otherwise a
non-functional result could be obtained.
If the using clause is not specified (we will label this case as “Case A”), calling Id(dsi) the set of
Identifier Components of operand dsi, the following group of constraints must hold7:
 For inner_join, for each pair dsi, dsj, either Id(dsi) Id(dsj) or Id(dsj) Id(dsi). In simpler

words, the Identifiers of one of the joined Data Sets must be a superset of the identifiers of
all the other ones.

 For left_join and full_join, for each pair dsi, dsj, Id(dsi) = Id(dsj). In simpler words, the
joined Data Sets must have the same Identifiers.

 For cross-join (Cartesian product), no constraints are needed.
If the using clause is specified (we will label this case as “Case B”, allowed only for the
inner_join and the left_join), all the join keys must appear as Components in all the input Data
Sets. Moreover two sub-cases are allowed:

 Sub-case B1: the constraints of the Case A are respected and the join keys are a subset
of the common Identifiers of the joined Data Sets;

 Sub-case B2:
o In case of inner_join, one Data Set acts as the reference Data Set which the others

are joined to; in case of left_join, this is the “more to the left” Data Set (i.e., ds1);
o All the input Data Sets, except the reference Data Set, have the same Identifiers

[Id1, … , Idn];
o The using clause specifies all and only the common Identifiers of the non-

reference Data Sets [Id1, … , Idn].
The join operators must fulfil also other constraints:
 apply, calc and aggr clauses are mutually exclusive
 keep and drop clauses are mutually exclusive
 comp can be only dependent Components (Measures and Attributes, not Identifiers)
 An Identifier not included in the group by clause (if any) cannot be included in the rename

clause
 An Identifier included in the group except clause (if any) cannot be included in the

rename clause. If the aggr clause is invoked and the grouping clause is omitted, no
Identifier can be included in the rename clause

 A dependent Component not included in the keep clause (if any) cannot be renamed
 A dependent Component included in the drop clause (if any) cannot be renamed

Behaviour

The semantics of the join operators can be procedurally described as follows.
 A relational join of the input operands is performed, according to SQL inner (inner_join),

left-outer (left_join), full-outer (full_join) and Cartesian product (cross_join) semantics
(these semantics will be explained below), producing an intermediate internal result, that
is a Data Set that we will call “virtual” (VDS1).

 The filterCondition, if present, is applied on VDS1, producing the Virtual Data Set VDS2.

7 These constraints hold also for the full_join and the cross_join, which do not allow the using clause.

VTL Reference Manual - Version 2.1 Page: 76

 The specified calculation algorithms (apply, calc or aggr), if present, are applied on VDS2.
For the Attributes that have not been explicitly calculated in these clauses, the Attribute
propagation rule is applied (see the User Manual), so producing the Virtual Data Set VDS3.

 The keep or drop clause, if present, is applied on VDS3, producing the Virtual Data Set VDS4.
 The rename clause, if present, is applied on VDS4, producing the Virtual Data Set VDS5.
 The final automatic alias removal is performed in order to obtain the output Data Set.
An alias can be optionally declared for each input Data Set. The aliases are valid only within the
“join” operation, in particular to allow joining a dataset with itself (self join). If omitted, the
input Data Sets are referenced only through their Data Set names. If the aliases are ambiguous
(for example duplicated or equal to the name of another Data Set), an error is raised.

The structure of the virtual Data Set VDS1 which is the output of the relational join is the
following.

For the inner_join, the left_join and the full_join, the virtual Data Set contains the
following Components:

 The Components used as join keys, which appear once and maintain their original names
and roles. In the cases A and B1, all of them are Identifiers. In the sub-case B2, the result
takes the roles from the reference Data Set.

 In the sub-case B2: the Identifiers of the reference Data Set, which appear once and
maintain their original name and role.

 The other Components coming from exactly one input Data Set, which appear once and
maintain their original name

 The other Components coming from more than one input Data Set, which appears as
many times as the Data Set they come from; to distinguish them, their names are
prefixed with the alias (or the name) of the Data Set they come from, separated by the
“#” symbol (e.g., dsi#cmpj). For example, if the Component “population” appears in two
input Data Sets “ds1” and “ds2” that have the aliases “a” and “b” respectively, the
Components “a#population” and “b#population” will appear in the virtual Data Set. If
the aliases are not defined, the two Components are prefixed with the Data Set name
(i.e., “ds1#population” and “ds2#population”). In this context, the symbol “#” does not
denote the membership operator but acts just as a separator between the Data Set and
the Component names.

 If the same Data Set appears more times as operand of the join (self-join) and the aliases
are not defined, an exception is raised because it is not allowed that two or more
Components in the virtual Data Set have the same name. In the self-join the aliases are
mandatory to disambiguate the Component names.

 If a Data Set in the join list is the result of a sub-expression, then an alias is mandatory
all the same because this Data Set has no name. If the alias is omitted, an exception is
raised.

As for the cross_join, the virtual Data Set contains all the Components from all the operands,
possibly prefixed with the aliases to avoid ambiguities.
The semantics of the relational join is the following.
The join is performed on some join keys, which are the Components of the input Data Sets
whose values are used to match the input Data Points and produce the joined output Data
Points.
By default (only for the full_join and the cross_join), the join is performed on the subset of
homonym Identifier Components of the input Data Sets.
The parameter using allows to specify different join keys than the default ones, and can be
used only for the inner_join and the left_join in order to preserve the functional behaviour of
the operations.

VTL Reference Manual - Version 2.1 Page: 77

The different kinds of relational joins behave as follows.
 inner_join: the Data Points of ds1, …, dsN are joined if they have the same values for the

common Identifier Components or, if the using clause is present, for the specified
Components. A (joined) virtual Data Point is generated in the virtual Data Set VDS1 when a
matching Data Point is found for each one of the input Data Sets. In this case, the Values of
the Components of a virtual Data Point are taken from the corresponding Components of
the matching Data Points. If there is no match for one or more input Data Sets, no virtual
Data Point is generated.

 left_join: the join is ideally performed stepwise, between consecutive pairs of input Data
Sets, starting from the left side and proceeding towards the right side. The Data Points are
matched like in the inner_join, but a virtual Data Point is generated even if no Data Point of
the right Data Set matches (in this case, the Measures and Attributes coming from the right
Data Set take the NULL value in the virtual Data Set). Therefore, for each Data Points of the
left Data Set a virtual Data Point is always generated. These stepwise operations are
associative. More formally, consider the generic pair <dsi, dsi+1>, where dsi is the result of
the left_join of the first “i” operands and dsi+1 is the i+1th operand. For each pair <dsi, dsi+1>,
the joined Data Set is fed with all the Data Points that match in dsi and dsi+1 or are only in
dsi. The constraints described above guarantee the absence of null values for the Identifier
Components of the joined Data Set, whose values are always taken from the left Data Set. If
the join succeeds for a Data Point in dsi, the values for the Measures and the Attributes are
carried from dsi and dsi+1 as explained above. Otherwise, i.e., if no Data Point in dsi+1

matches the Data Point in dsi, null values are given to Measures and Attributes coming only
from dsi+1.

 full_join: the join is ideally performed stepwise, between consecutive pairs of input Data
Sets, starting from the left side and proceeding toward the right side. The Data Points are
matched like in the inner_join and left_join, but the using clause is not allowed and a
virtual Data Point is generated either if no Data Point of the right Data Set matches with the
left Data Point or if no Data Point of the left Data Set matches with the right Data Point (in
this case, Measures and Attributes coming from the non matching Data Set take the NULL
value in the virtual Data Set). Therefore, for each Data Points of the left and the right Data
Set, a virtual Data Point is always generated. These stepwise operations are associative.
More formally, consider the generic pair <dsi, dsi+1>, where dsi is the result of the full_join
of the first “i” operands and dsi+1 is the i+1th operand. For each pair <dsi, dsi+1>, the resulting
Data Set is fed with the Data Points that match in dsi and dsi+1 or that are only in dsi or in
dsi+1. If for a Data Point in dsi the join succeeds, the values for the Measures and the
Attributes are carried from dsi and dsi+1 as explained. Otherwise, i.e., if no Data Point in dsi+1

matches the Data Point in dsi, NULL values are given to Measures and Attributes coming
only from dsi+1. Symmetrically, if no Data Point in dsi matches the Data Point in dsi+1, NULL
values are given to Measures and Attributes coming only from dsi. The constraints described
above guarantee the absence of NULL values on the Identifier Components. As mentioned,
the using clause is not allowed in this case.

 cross_join: the join is performed stepwise, between consecutive pairs of input Data Sets,
starting from the left side and proceeding toward the right side. No match is performed but
the Cartesian product of the input Data Points is generated in output. These stepwise
operations are associative. More formally, consider the ordered pair <dsi, dsi+1>, where dsi
is the result of the cross_ join of the first “i” operands and dsi+1 is the i+1-th operand. For
each pair <dsi, dsi+1>, the resulting Data Set is fed with the Data Points obtained as the
Cartesian product between the Data Points of dsi and dsi+1. The resulting Data Set will have
all the Components from dsi and dsi+1. For the Data Sets which have at least one Component

VTL Reference Manual - Version 2.1 Page: 78

in common, the alias parameter is mandatory. As mentioned, the using parameter is not
allowed in this case.

The semantics of the clauses is the following.
 filter takes as input a Boolean Component expression (having type

component<boolean>). This clause filters in or out the input Data Points; when the
expression is TRUE the Data Point is kept, otherwise it is not kept in the result. Only one
filter clause is allowed.

 apply combines the homonym Measures in the source operands whose type is
compatible with the operators used in applyExpr, generating homonym Measures in the
output. The expression applyExpr can use as input the names or aliases of the operand
Data Sets. It applies the expression to all the n-uples of homonym Measures in the input
Data Sets producing in the target a single homonym Measure for each n-uple. It can be
thought of as the multi-measure version of the calc. For example, if the following aliases
have been declared: d1, d2, d3, then the following expression d1+d2+d3, sums all the
homonym Measures in the three input Data Sets, say M1 and M2, so as to obtain in the
result: M1 := d1#M1 + d2#M1 + d3#M1 and M2 := d1#M2 + d2#M2 + d3#M2. It is not
only a compact version of a multiple calc, but also essential when the number of
Measures in the input operands is not known beforehand. Only one apply clause is
allowed.

 calc calculates new Identifier, Measure or Attribute Components on the basis of sub-
expressions at Component level. Each Component is calculated through an independent
sub-expression. It is possible to specify the role of the calculated Component among
measure, identifier, attribute, or viral attribute, therefore the calc clause can be used
also to change the role of a Component when possible. The keyword viral allows
controlling the virality of Attributes (for the Attribute propagation rule see the User
Manual). The following rule is used when the role is omitted: if the component exists in
the operand Data Set then it maintains that role; if the component does not exist in the
operand Data Set then the role is measure. The calcExpr are independent one another,
they can only reference Components of the input Virtual Data Set and cannot use
Components generated, for example, by other calcExpr . If the calculated Component is
a new Component, it is added to the output virtual Data Set. If the Calculated component
is a Measure or an Attribute that already exists in the input virtual Data Set, the
calculated values overwrite the original values. If the Calculated component is an
Identifier that already exists in the input virtual Data Set, an exception is raised because
overwriting an Identifier Component is forbidden for preserving the functional
behaviour. Analytic operators can be used in the calc clause.

 aggr calculates aggregations of dependent Components (Measures or Attributes) on the
basis of sub-expressions at Component level. Each Component is calculated through an
independent sub-expression. It is possible to specify the role of the calculated
Component among measure, identifier, attribute, or viral attribute. The substring
viral allows to control the virality of Attributes, if the Attribute propagation rule is
adopted (see the User Manual). The aggr sub-expressions are independent of one
another, they can only reference Components of the input Virtual Data Set and cannot
use Components generated, for example, by other aggr sub-expressions. The aggr
computed Measures and Attributes are the only Measures and Attributes returned in
the output virtual Data Set (plus the possible viral Attributes, see below Attribute
propagation). The sub-expressions must contain only Aggregate operators, which are
able to compute an aggregated Value relevant to a group of Data Points. The groups of

VTL Reference Manual - Version 2.1 Page: 79

Data Points to be aggregated are specified through the groupingClause, which allows
the following alternative options.
group by the Data Points are grouped by the values of the specified Identifier. The

Identifiers not specified are dropped in the result.
group except the Data Points are grouped by the values of the Identifiers not

specified in the clause. The specified Identifiers are dropped in the result.
group all converts an Identifier Component using conversionExpr and keeps all

the resulting Identifiers.
The having clause is used to filter groups in the result by means of an aggregate condition
evaluated on the single groups, for example the minimum number of rows in the group.
If no grouping clause is specified, then all the input Data Points are aggregated in a single
group and the clause returns a Data Set that contains a single Data Point and has no
Identifier Components.

 keep maintains in the output only the specified dependent Components (Measures and
Attributes) of the input virtual Data Set and drops the non-specified ones. It has the role
of a projection in the usual relational semantics (specifying which columns have to be
projected in). Only one keep clause is allowed. If keep is used, drop must be omitted.

 drop maintains in the output only the non-specified dependent Components (Measures
and Attributes) of the input virtual Data Set (component<scalar>) and drops the
specified ones. It has the role of a projection in the usual relational join semantics
(specifying which columns will be projected out). Only one drop clause is allowed. If
drop is used, keep must be omitted.

 rename assigns new names to one or more Components (Identifier, Measure or
Attribute Components). The resulting Data Set, after renaming all the specified
Components, must have unique names of all its Components (otherwise a runtime error
is raised). Only the Component name is changed and not the Component Values,
therefore the new Component must be defined on the same Value Domain and Value
Domain Subset as the original Component (see also the IM in the User Manual). If the
name of a Component defined on a different Value Domain or Set is assigned, an error is
raised. In other words, rename is a transformation of the variable without any change in
its values.

The semantics of the Attribute propagation in the join is the following. The Attributes
calculated through the calc or aggr clauses are maintained unchanged. For all the other
Attributes that are defined as viral, the Attribute propagation rule is applied (for the semantics,
see the Attribute Propagation Rule section in the User Manual). This is done before the
application of the drop, keep and rename clauses, which acts also on the Attributes resulting
from the propagation.
The semantics of the final automatic aliases removal is the following. After the application of
all the clauses, the structure of the final virtual Data Set is further modified. All the Components
of the form “alias#component_name” (or “dataset_name#component_name”) are implicitly
renamed into “component_name”. This means that the prefixes in the Component names are
automatically removed. It is responsibility of the user to guarantee the absence of duplicated
Component names once the prefixes are removed. In other words, the user must ensure that
there are no pairs of Components whose names are of the form “alias1#c1” and “alias2#c1” in
the structure of the virtual Data Point, since the removal of “alias1” and “alias2” would cause
the clash. If, after the aliases removal two Components have the same name, an error is raised.
In particular, name conflicts may derive if the using clause is present and some homonym
Identifier Components do not appear in it; these components should be properly renamed

VTL Reference Manual - Version 2.1 Page: 80

because cannot be removed; the input Data Set have homonym Measures and there is no apply
clause which unifies them; these Measures can be renamed or removed.

Examples

Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Me_1 Me_2

1 A A B

1 B C D

2 A E F

DS_2

Id_1 Id_2 Me_1A Me_2

1 A B Q

1 B S T

3 A Z M

Example 1:

DS_r := inner_join (DS_1 as d1, DS_2 as d2,
keep Me_1, d2#Me_2, Me_1A) results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A

1 A A Q B

1 B C T S

Example 2:

 DS_r := left_join (DS_1 as d1, DS_2 as d2,
keep Me_1, d2#Me_2, Me_1A) results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A

1 A A Q B

1 B C T S

2 A E null null

Example 3:

DS_r := full_join (DS_1 as d1, DS_2 as d2,
keep Me_1, d2#Me_2, Me_1A) results in:

VTL Reference Manual - Version 2.1 Page: 81

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A

1 A A Q B

1 B C T S

2 A E null null

3 A null M Z

Example 4:

DS_r := cross_join (DS_1 as d1, DS_2 as d2,
rename d1#Id_1 to Id11, d1#Id_2 to Id12, d2#Id1 to Id21, d2#Id2 to
Id22, d1#Me_2 to Me12) results in:

DS_r

Id_11 Id_12 Id_21 Id_22 Me_1 Me12 Me_1A Me_2

1 A 1 A A B B Q

1 A 1 B A B S T

1 A 3 A A B Z M

1 B 1 A C D B Q

1 B 1 B C D S T

1 B 3 A C D Z M

2 A 1 A E F B Q

2 A 1 B E F S T

2 A 3 A E F Z M

Example 5:

DS_r := inner_join (DS_1 as d1, DS_2 as d2,
filter Me_1 = “A”,

 calc Me_4 = Me_1 || Me_1A,
drop d1#Me_2)
where || is the string concatenation, results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_1A Me_4

1 A A Q B AB

Example 6:

DS_r := inner_join (DS_1
calc Me_2 := Me_2 || “_NEW”
filter Id_2 =”B”
keep Me_1, Me_2)
where || is the string concatenation, results in:

VTL Reference Manual - Version 2.1 Page: 82

DS_r

Id_1 Id_2 Me_1 Me_2

1 B C D_NEW

Example 7:

Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Me_1 Me_2

1 A A B

1 B C D

2 A E F

DS_2

Id_1 Id_2 Me_1 Me_2

1 A B Q

1 B S T

3 A Z M

DS_r := inner_join (DS_1 as d1, DS_2 as d2,
apply d1 || d2)

DS_r

Id_1 Id_2 Me_1 Me_2

1 A AB BQ

1 B CS DT

VTL Reference Manual - Version 2.1 Page: 83

VTL-ML - String operators

String concatenation : ||

Syntax

op1 || op2

Input Parameters

op1, op2 the operands

Examples of valid syntaxes

"Hello" || ", world!"
ds_1 || ds_2

Semantics for scalar operations

Concatenates two strings. For example, "Hello" || ", world!" gives "Hello, world!"

Input parameters type

op1, op2 :: dataset { measure<string> _+ }
| component<string>
| string

Result type

result :: dataset { measure<string> _+ }
| component<string>
| string

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets
or Data Set Components” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Me_1

1 A "hello"

2 B "hi"

DS_2

Id_1 Id_2 Me_1

1 A "world"

2 B "there"

Example 1: DS_r := DS_1 || DS_2 results in:

VTL Reference Manual - Version 2.1 Page: 84

DS_r

Id_1 Id_2 Me_1

1 A "helloworld"

2 B "hithere"

Example 2 (on component): DS_r := DS_1[calc Me_2:= Me_1 || “ world”] results in:

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello" "hello
world"

2 B "hi" "hi world"

Whitespace removal : trim, rtrim, ltrim

Syntax

{trim|ltrim|rtrim}1 (op)

Input parameters

op the operand

Examples of valid syntaxes

trim("Hello ")
trim(ds_1)

Semantics for scalar operations

Removes trailing or/and leading whitespace from a string. For example, trim("Hello ") gives
"Hello".

Input parameters type

op :: dataset { measure<string> _+ }
| component<string>
| string

Result type

result :: dataset { measure<string> _+ }
| component<string>
| string

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or
Data Set Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the Data Set DS_1:

VTL Reference Manual - Version 2.1 Page: 85

DS_1

Id_1 Id_2 Me_1

1 A "hello "

2 B "hi "

Example 1: DS_r := rtrim(DS_1) results in:

DS_r

Id_1 Id_2 Me_1

1 A "hello"

2 B "hi"

Example 2 (on component): DS_r := DS_1[calc Me_2:= rtrim(Me_1)] results in:

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello " "hello"

2 B "hi " "hi"

Character case conversion : upper/lower

Syntax

{upper | lower}1 (op)

Input Parameters

op the operand

Examples of valid syntaxes

upper("Hello")
lower(ds_1)

Semantics for scalar operations

Converts the character case of a string in upper or lower case. For example, upper("Hello")
gives "HELLO".

Input Parameters type

op :: dataset { measure<string> _+ }
| component<string>
| string

Result type

result :: dataset { measure<string> _+ }
| component<string>
| string

Additional constraints

None.

VTL Reference Manual - Version 2.1 Page: 86

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or
Data Set Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Me_1

1 A "hello"

2 B "hi"

Example 1: DS_r := upper(DS_1) results in:

DS_r

Id_1 Id_2 Me_1

1 A "HELLO"

2 B "HI"

Example 2 (on component): DS_r := DS_1[calc Me_2:= upper(Me_1)] results in:

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello" "HELLO"

2 B "hi" "HI"

Sub-string extraction : substr

Syntax

substr (op, start, length)

Input parameters

op the operand
start the starting digit (first character) of the string to be extracted
length the length (number of characters) of the string to be extracted

Examples of valid syntaxes

substr (DS_1, 2 , 3)
substr (DS_1, 2)
substr (DS_1, _ , 3)
substr (DS_1)

Semantics for scalar operations

The operator extracts a substring from op, which must be string type. The substring starts from
the startth character of the input string and has a number of characters equal to the length
parameter.

 If start is omitted, the substring starts from the 1st position.
 If length is omitted or overcomes the length of the input string, the substring ends at the

end of the input string.

VTL Reference Manual - Version 2.1 Page: 87

 If start is greater than the length of the input string, an empty string is extracted.
For example:
substr (“abcdefghijklmnopqrstuvwxyz”, start:= 5 , length:= 10) gives: “efghijklmn”.
substr (“abcdefghijklmnopqrstuvwxyz”, start:= 25 , length:= 10) gives: “yz”.
substr (“abcdefghijklmnopqrstuvwxyz”, start:= 30 , length:= 10) gives: “”.

Input parameters type

op :: dataset { measure <string> _+ }
| component <string>
| string

start :: component < integer [value >= 1] >
| integer [value >= 1]

length :: component < integer [value >= 0] >
| integer [value >= 0]

Result type

result :: dataset { measure<string> _+ }
| component<string>
| string

Additional constraints

None.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the “Operators
applicable on one Scalar Value or Data Set or Data Set Component”, as for the invocations at
Component or Scalar level, the operator has the behaviour of the “Operators applicable on more
than two Scalar Values or Data Set Components” (see the section “Typical behaviours of the ML
Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2

1 A "hello world" "medium size text"

1 B "abcdefghilmno" "short text"

2 A "pqrstuvwxyz" "this is a long description"

Example 1: DS_r:= substr (DS_1 , 7) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "world" " size text"

1 B "ghilmno" "text"

2 A "vwxyz" "s a long description"

Example 2: DS_r:= substr (DS_1 , 1 , 5) results in:

VTL Reference Manual - Version 2.1 Page: 88

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello" "mediu"

1 B "abcde" "short"

2 A "pqrst" "this "

Example 3 (on Components): DS_r:= DS_1 [calc Me_2:= substr (Me_2 , 1 , 5)]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello world" "mediu"

1 B "abcdefghilmno" "short"

2 A "pqrstuvwxyz" "this "

String pattern replacement: replace

Syntax

replace (op , pattern1, pattern2)

Input parameters

op the operand
pattern1 the pattern (regular expression) to be replaced
pattern2 the replacing pattern

Examples of valid syntaxes

replace(DS_1, "Hello", "Hi")
replace(DS_1, "Hello")

Semantics for scalar operations

Replaces all the occurrences of a specified string-pattern (pattern1) with another one
(pattern2). If pattern2 is omitted then all occurrences of pattern1 are removed. For example:

replace("Hello world", "Hello", "Hi") gives "Hi world"
replace("Hello world", "Hello") gives " world"

replace ("Hello", "ello", "i") gives "Hi"

Input parameters type

op :: dataset { measure<string> _+ }
| component<string>
| string

pattern1, pattern2 :: component<string>
| string

Result type

result :: dataset { measure<string> _+ }
| component<string>
| string

VTL Reference Manual - Version 2.1 Page: 89

Additional constraints

None.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the “Operators
applicable on one Scalar Value or Data Set or Data Set Component”, as for the invocations at
Component or Scalar level, the operator has the behaviour of the “Operators applicable on more
than two Scalar Values or Data Set Components”, (see the section “Typical behaviours of the ML
Operators”).

Examples

Given the Data_ Set DS_1:

DS_1

Id_1 Id_2 Me_1

1 A "hello world"

2 A "say hello"

3 A "he"

4 A "hello!"

Example 1: DS_r := replace (ds_1,"ello","i") results in:

DS_r

Id_1 Id_2 Me_1

1 A "hi world"

2 A "say hi"

3 A "he"

4 A "hi! "

Example 2 (on component): DS_r := DS_1[calc Me_2:= replace (Me_1,"ello","i")] results in:

DS_r

Id_1 Id_2 Me_1 Me_2

1 A " hello world" "hi world"

2 A " say hello" "say hi"

3 A "he" "he"

4 A "hello! " "hi! "

String pattern location : instr

Syntax

instr (op, pattern, start, occurrence)

Input parameters

VTL Reference Manual - Version 2.1 Page: 90

op the operand
pattern the string-pattern to be searched
start the position in the input string of the character from which the search starts
occurrence the occurrence of the pattern to search

Examples of valid syntaxes

instr (DS_1, “ab”, 2 , 3)
instr (DS_1, “ab”, 2)
instr (DS_1, “ab”, _ , 2)
instr (DS_1, “ab”)

Semantics for scalar operations

The operator returns the position in the input string of a specified string (pattern). The search
starts from the startth character of the input string and finds the nth occurrence of the pattern,
returning the position of its first character.

 If start is omitted, the search starts from the 1st position.
 If nth occurrence is omitted, the value is 1.

If the nth occurrence of the string-pattern after the startth character is not found in the input
string, the returned value is 0.
For example:
instr ("abcde", "c") gives 3
instr ("abcdecfrxcwsd", "c", _ , 3) gives 10
instr ("abcdecfrxcwsd", "c", 5 , 3) gives 0

Input parameters type

op :: dataset { measure<string> _ }
| component<string>
| string

pattern :: component<string>
| string

start :: component < integer [value >= 1] >
| integer [value >= 1]

occurrence :: component < integer [value >= 1] >
| integer [value >= 1]

Result type

result :: dataset { measure<integer[value >= 0]> int_var }
| component<integer[value >= 0]>
| integer[value >= 0]

Additional constraints

For operations at Data Set level, the input Data Set must have exactly one string type Measure.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the “Operators
applicable on one Scalar Value or Data Set or Data Set Component”, as for the invocations at
Component or Scalar level, the operator has the behaviour of the “Operators applicable on more
than two Scalar Values or Data Set Components”, (see the section “Typical behaviours of the ML
Operators”).
If op is a Data Set then instr returns a dataset with a single measure int_var of type integer.

VTL Reference Manual - Version 2.1 Page: 91

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Me_1

1 A "hello world"

2 A "say hello"

3 A "he"

4 A "hi, hello! "

Example 1: DS_r:= instr(ds_1,”hello”) results in

DS_r

Id_1 Id_2 int_var

1 A 1

2 A 5

3 A 0

4 A 5

Example 2 (on component): DS_r := DS_1[calc Me_2:=instr(Me_1,”hello”)]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2

1 A “hello world” 1

2 A “say hello” 5

3 A “he” 0

4 A “hi, hello!” 5

Given the Data Set DS_2:

DS_2

Id_1 Id_2 Me_1 Me_2

1 A "hello" "world"

2 B NULL "hi"

Example 3 (applying the instr operator at component level to a multi Measure Data Set):
DS_r := DS_2 [calc Me_10:= instr(Me_1, "o"), Me_20:=instr(Me_2, "o")] results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10 Me_20

1 A "hello" "world" 5 2

2 B NULL "hi" NULL 0

VTL Reference Manual - Version 2.1 Page: 92

Example 4 (applying the instr operator at Data Set level to a multi Measure Data Set):
DS_r := instr(DS_2, "o") would give error because DS_2 has more Measures.

String length : length

Syntax

length (op)

Input Parameters

op the operand

Examples of valid syntaxes

length("Hello, World!")
length(DS_1)

Semantics for scalar operations

Returns the length of a string. For example, length("Hello, World!") gives 13
For the empty string “” the value 0 is returned

Input Parameters type

 op :: dataset { measure<string> _ }
| component<string>
| string

Result type

result :: dataset { measure<integer[value >= 0]> int_var }
| component<integer[value >= 0]>
| integer[value >= 0]

Additional constraints

For operations at Data Set level, the input Data Set must have exactly one string type Measure.

Behaviour

The operator has the behaviour of the “Operators changing the data type” (see the section
“Typical behaviours of the ML Operators”).
If op is a Data Set then length returns a dataset with a single measure int_var of type integer.

Examples
Given the Data Set DS_1

DS_1

Id_1 Id_2 Me_1

1 A "hello"

2 B null

Example 1: DS_r := length(DS_1) results in:

DS_r

Id_1 Id_2 int_var

1 A 5

2 B null

Example 2 (on component): DS_r:= DS_1[calc Me_2:=length(Me_1)] results in

VTL Reference Manual - Version 2.1 Page: 93

DS_r

Id_1 Id_2 Me_1 Me_2

1 A "hello" 5

2 B null null

Given the Data Set DS_2:

DS_2

Id_1 Id_2 Me_1 Me_2

1 A "hello" "world"

2 B null "hi"

Example 3 (applying the length operator at component level to a multi Measure Data Set):
DS_r := DS_2 [calc Me_10:= length(Me_1), Me_20:=length(Me_2)] results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10 Me_20

1 A "hello" "world" 5 5

2 B null "hi" null 2

Example 4 (length operator applied at Data Set level to a multi Measure Data Set):
DS_r := length(DS_2) would give error because DS_2 has more Measures.

VTL Reference Manual - Version 2.1 Page: 94

VTL-ML - Numeric operators

Unary plus : +

Syntax

+ op

Input parameters

op the operand

Examples of valid syntaxes

+ DS_1
+ 3

Semantics for scalar operations

The operator + returns the operand unchanged. For example:
+ 3 gives 3
+ (- 5) gives - 5

Input Parameters type

 op :: dataset { measure<number> _+ }
| component<number>
| number

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or
Data Set Component” (see the section “Typical behaviours of the ML Operators”).
According to the general rules about data types, the operator can be applied also on sub-types
of number, that is the type integer. If the type of the operand is integer then the result has type
integer. If the type of the operand is number then the result has type number.

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 1.0 5

10 B 2.3 10

11 A 3.2 12

Example 1: DS_r := + DS_1 results in:

VTL Reference Manual - Version 2.1 Page: 95

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 1.0 5

10 B 2.3 10

11 A 3.2 12

Example 2 (on components): DS_r := DS_1 [calc Me_3 := + Me_1]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 1.0 5 1.0

10 B 2.3 10 2.3

11 A 3.2 12 3.2

Unary minus: -

Syntax

- op

Input parameters

op the operand

Examples of valid syntaxes

- DS_1
- 3

Semantics for scalar operations

The operator - inverts the sign of op. For example:
- 3 gives - 3
- (- 5) gives 5

Input Parameters type

 op :: dataset { measure<number> _+ }
| component<number>
| number

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or
Data Set Component” (see the section “Typical behaviours of the ML Operators”).

VTL Reference Manual - Version 2.1 Page: 96

According to the general rules about data types, the operator can be applied also on sub-types
of number, that is the type integer. If the type of the operand is integer then the result has type
integer. If the type of the operand is number then the result has type number.

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 1 5.0

10 B 2 10.0

11 A 3 12.0

Example 1: DS_r := - DS_1 results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A -1 -5.0

10 B -2 -10.0

11 A -3 -12.0

Example 2 (on components): DS_r := DS_1 [calc Me_3 := - Me_1]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 1 5.0 -1

10 B 2 10.0 -2

11 A 3 12.0 -3

Addition : +

Syntax

op1 + op2

Input parameters

op1 the first addendum
op2 the second addendum

Examples of valid syntaxes

DS_1 + DS_2
3 + 5

Semantics for scalar operations

The operator addition returns the sum of two numbers. For example:
3 + 5 gives 8

VTL Reference Manual - Version 2.1 Page: 97

Input parameters type

 op1, op2 :: dataset { measure<number> _+ }
| component<number>
| number

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets
or Data Set Components” (see the section “Typical behaviours of the ML Operators”).
According to the general rules about data types, the operator can be applied also on sub-types
of number, that is the type integer. If the type of both operands is integer then the result has
type integer. If one of the operands is of type number, then the other operand is implicitly cast
to number and therefore the result has type number.

Examples

Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 5 5.0

10 B 2 10.5

11 A 3 12.2

11 B 4 20.3

DS_2

Id_1 Id_2 Me_1 Me_2

10 A 10 3.0

10 C 11 6.2

11 B 6 7.0

Example 1: DS_r := DS_1 + DS_2 results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 15 8.0

11 B 10 27.3

Example 2: DS_r := DS_1 + 3 results in:

VTL Reference Manual - Version 2.1 Page: 98

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 8 8.0

10 B 5 13.5

11 A 6 15.2

11 B 7 23.3

Example 3 (on components): DS_r := DS_1 [calc Me_3 := Me_1 + 3.0] results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 5 5.0 8.0

10 B 2 10.5 5.0

11 A 3 12.2 6.0

11 B 4 20.3 7.0

Subtraction : -
Syntax

op1 - op2

Input Parameters

op1 the minuend
op2 the subtrahend

Examples of valid syntaxes

DS_1 - DS_2
3 - 5

Semantics for scalar operations

The operator subtraction returns the difference of two numbers. For example:
3 - 5 gives - 2

Input Parameters type

 op1, op2:: dataset { measure<number> _+ }
| component<number>
| number

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets
or Data Set Components” (see the section “Typical behaviours of the ML Operators”).

VTL Reference Manual - Version 2.1 Page: 99

According to the general rules about data types, the operator can be applied also on sub-types
of number, that is the type integer. If the type of both operands is integer then the result has
type integer. If one of the operands is of type number, then the other operand is implicitly cast
to number and therefore the result has type number.

Examples

Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 5 5.0

10 B 2 10.5

11 A 3 12.2

11 B 4 20.3

DS_2

Id_1 Id_2 Me_1 Me_2

10 A 10 3.0

10 C 11 6.2

11 B 6 7.0

Example 1: DS_r := DS_1 - DS_2 results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A -5 2.0

11 B -2 13.3

Example 2: DS_r := DS_1 - 3 results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 2 2.0

10 B -1 7.5

11 A 0 9.2

11 B 1 17.3

Example 3 (on components): DS_r := DS_1 [calc Me_3 := Me_1 - 3] results in:

VTL Reference Manual - Version 2.1 Page: 100

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 5 5.0 2

10 B 2 10.5 -1

11 A 3 12.2 0

11 B 4 20.3 1

Multiplication : *

Syntax

op1 * op2

Input parameters

op1 the multiplicand
op2 the multiplier

Examples of valid syntaxes

DS_1 * DS_2
3 * 5

Semantics for scalar operations

The operator multiplication returns the product of two numbers. For example:
3 * 5 gives 15

Input parameters type

 op1, op2 :: dataset { measure<number> _+ }
| component<number>
| number

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets
or Data Set Components” (see the section “Typical behaviours of the ML Operators”).
According to the general rules about data types, the operator can be applied also on sub-types
of number, that is the type integer. If the type of both operands is integer then the result has
type integer. If one of the operands is of type number, then the other operand is implicitly cast
to number and therefore the result has type number.

Examples

Given the operand Data Sets DS_1 and DS_2:

VTL Reference Manual - Version 2.1 Page: 101

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 100 7.6

10 B 10 12.3

11 A 20 25.0

11 B 2 20.0

DS_2

Id_1 Id_2 Me_1 Me_2

10 A 1 2.0

10 C 5 3.0

11 B 2 1.0

Example 1: DS_r := DS_1 * DS_2 results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 100 15.2

11 B 4 20.0

Example 2: DS_r := DS_1 * -3 results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A -300 -22.8

10 B -30 -36.9

11 A -60 -75.0

11 B -6 -60.0

Example 3 (on components): DS_r := DS_1 [calc Me_3 := Me_1 * Me_2]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 100 7.6 760.0

10 B 10 12.3 123.0

11 A 20 25.0 500.0

11 B 2 20.0 40.0

VTL Reference Manual - Version 2.1 Page: 102

Division : /

Syntax

op1 / op2

Input parameters

op1 the dividend
op2 the divisor

Examples of valid syntaxes

DS_1 / DS_2
3 / 5

Semantics for scalar operations

The operator division divides two numbers. For example:
3 / 5 gives 0.6

Input parameters type

 op1, op2 :: dataset { measure<number> _+ }
| component<number>
| number

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets
or Data Set Components” (see the section “Typical behaviours of the ML Operators”).
According to the general rules about data types, the operator can be applied also on sub-types
of number, that is the type integer. The result has type number.
If op2 is 0 then the operation generates a run-time error.

Examples

Given the operand Data Sets DS_1, DS_2 and DS_3:

DS_1

Id_1 Id_2 Me_1

10 A 7.6

10 B 12.3

11 A 25.0

11 B 12.3

VTL Reference Manual - Version 2.1 Page: 103

DS_2

Id_1 Id_2 Me_1

10 A 2.0

10 C 3.0

11 B 1.0

DS_3

Id_1 Id_2 Me_1 Me_2

10 A 100 7.6

10 B 10 12.3

11 A 20 25.0

11 B 10 12.3

Example 1: DS_r := DS_1 / DS_2 results in:

DS_r

Id_1 Id_2 Me_1

10 A 3.8

11 B 25.0

Example 2: DS_r := DS_1 / 10 results in:

DS_r

Id_1 Id_2 Me_1

10 A 0.76

10 B 1.23

11 A 2.5

11 B 2.0

Example 3 (on components): DS_r := DS_3 [calc Me_3 := Me_2 / Me_1]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_3

10 A 100 7.6 0.076

10 B 10 12.3 1.23

11 A 20 25.0 1.25

11 B 2 20.0 10.0

VTL Reference Manual - Version 2.1 Page: 104

Modulo : mod

Syntax

mod (op1 , op2)

Input parameters

op1 the dividend
op2 the divisor

Examples of valid syntaxes

mod (DS_1, DS_2)
mod (DS_1, 5)
mod (5, DS_2)
mod (5, 2)

Semantics for scalar operations

The operator mod returns the remainder of op1 divided by op2. It returns op1 if divisor op2 is
0. For example:

mod (5, 2) gives 1
mod (5, -2) gives -1
mod (8, 2) gives 0
mod (9, 0) gives 9

Input Parameters type

 op1, op2 :: dataset { measure<number> _+ }
| component<number>
| number

divisor :: number

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on two Scalar Values or Data Sets
or Data Set Components” (see the section “Typical behaviours of the ML Operators”).
According to the general rules about data types, the operator can be applied also on sub-types
of number, that is the type integer. If the type of both operands is integer then the result has
type integer. If one of the operands is of type number, then the other operand is implicitly cast
to number and therefore the result has type number.

Examples

Given the operand Data Sets DS_1 and DS_2:

VTL Reference Manual - Version 2.1 Page: 105

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 100 0.7545

10 B 10 18.45

11 A 20 1.87

11 B 9 12.3

DS_2

Id_1 Id_2 Me_1 Me_2

10 A 1 0.25

10 C 5 3.0

11 B 2 2.0

Example 1: DS_r := mod (DS_1, DS_2) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 0 0.0045

11 B 1 0.3

Example 2: DS_r := mod (DS_1, 15) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 10 0.7545

10 B 10 3.45

11 A 5 1.87

11 B 9 12.3

Example 3 (on components): DS_r := DS_1[calc Me_3 := mod(DS_1#Me_1, 3.0)]

 results in:

DS_r

Id_1 Id_2 Me_1 Me_2 ME_3

10 A 100 0.7545 1.0

10 B 10 18.45 1.0

11 A 20 1.87 2.0

11 B 9 12.3 0.0

VTL Reference Manual - Version 2.1 Page: 106

Rounding : round

Syntax

round (op , numDigit)

Input parameters

op the operand
numDigit the number of positions to round to

Examples of valid syntaxes

round (DS_1 , 2)
round (DS_2)
round (3.14159 , 2)
round (3.14159 , _)

Semantics for scalar operations

The operator round rounds the operand to a number of positions at the right of the decimal
point equal to the numDigit parameter. The decimal point is assumed to be at position 0. If
numDigit is negative, the rounding happens at the left of the decimal point. The rounding
operation leaves the numDigit position unchanged if the numDigit+1 position is between 0 and
4, otherwise it adds 1 to the number that is in the numDigit position. All the positions greater
than numDigit are set to 0. The basic scalar type of the result is integer if numDigit is omitted,
number otherwise.
For example:

round (3.14159, 2) gives 3.14
round (3.14159, 4) gives 3.1416
round (12345.6, 0) gives 12346.0
round (12345.6) gives 12346
round (12345.6, _) gives 12346

round (12345.6, -1) gives 12350.0

Input parameters type

 op1 :: dataset { measure<number> _+ }
| component<number>
| number

numDigit:: component < integer >
| integer

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the “Operators
applicable on one Scalar Value or Data Set or Data Set Component”, as for the invocations at
Component or Scalar level, the operator has the behaviour of the “Operators applicable on two

VTL Reference Manual - Version 2.1 Page: 107

Scalar Values or Data Sets or Data Set Components”, (see the section “Typical behaviours of the
ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_1 Me_1 Me_2

10 A 7.5 5.9

10 B 7.1 5.5

11 A 36.2 17.7

11 B 44.5 24.3

Example 1: DS_r := round(DS_1, 0) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 8.0 6.0

10 B 7.0 6.0

11 A 36.0 18.0

11 B 45.0 24.0

Example 2 (on components): DS_r := DS_1 [calc Me_10:= round(Me_1)]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 7.5 5.9 8

10 B 7.1 5.5 7

11 A 36.2 17.7 36

11 B 44.5 24.3 45

Example 3 (on components) : DS_r := DS_1 [calc Me_20:= round(Me_1 , -1)]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_20

10 A 7.5 5.9 10

10 B 7.1 5.5 10

11 A 36.2 17.7 40

11 B 44.5 24.3 40

VTL Reference Manual - Version 2.1 Page: 108

Truncation : trunc

Syntax

trunc (op , numDigit)

Input Parameters

op the operand
numDigit the number of position from which to trunc

Examples of valid syntaxes

trunc (DS_1 , 2)
trunc (DS_1)
trunc (3.14159 , 2)
trunc (3.14159 , _)

Semantics for scalar operations

The operator trunc truncates the operand to a number of positions at the right of the decimal
point equal to the numDigit parameter. The decimal point is assumed to be at position 0. If
numDigit is negative, the truncation happens at the left of the decimal point. The truncation
operation leaves the numDigit position unchanged. All the positions greater than numDigit are
eliminated. The basic scalar type of the result is integer if numDigit is omitted, number
otherwise.

For example:

trunc (3.14159, 2) gives 3.14
trunc (3.14159, 4) gives 3.1415

trunc (12345.6, 0) gives 12345.0
trunc (12345.6) gives 12345
trunc (12345.6, _) gives 12345
trunc(12345.6, -1) gives 12340.0

Input parameters type

 op :: dataset { measure<number> _+ }
| component<number>
| number

numDigit :: component < integer >
| integer

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the “Operators
applicable on one Scalar Value or Data Set or Data Set Component”, as for the invocations at
Component or Scalar level, the operator has the behaviour of the “Operators applicable on two

VTL Reference Manual - Version 2.1 Page: 109

Scalar Values or Data Sets or Data Set Components”, (see the section “Typical behaviours of the
ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_1 Me_1 Me_2

10 A 7.5 5.9

10 B 7.1 5.5

11 A 36.2 17.7

11 B 44.5 24.3

Example 1: DS_r := trunc(DS_1, 0) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 7.0 5.0

10 B 7.0 5.0

11 A 36.0 17.0

11 B 44.0 24.0

Example 2 (on components): DS_r := DS_1[calc Me_10:= trunc(Me_1)]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 7.5 5.9 7

10 B 7.1 5.5 7

11 A 36.2 17.7 36

11 B 44.5 24.3 44

Example 3 (on components): DS_r := DS_1[calc Me_20:= trunc(Me_1 , -1)]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_20

10 A 7.5 5.9 0

10 B 7.1 5.5 0

11 A 36.2 17.7 30

11 B 44.5 24.3 40

VTL Reference Manual - Version 2.1 Page: 110

Ceiling : ceil

Syntax

ceil (op)

Input parameters

op the operand

Examples of valid syntaxes

ceil (DS_1)
ceil (3.14159)

Semantics for scalar operations

The operator ceil returns the smallest integer greater than or equal to op.
For example:
 ceil(3.14159) gives 4
 ceil(15) gives 15
 ceil(-3.1415) gives -3

ceil(-0.1415) gives 0

Input parameters type

op :: dataset { measure<number> _+ }
| component<number>
| number

Result type

result :: dataset { measure<integer> _+ }
| component< integer >
| integer

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or
Data Set Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_1 Me_1 Me_2

10 A 7.0 5.9

10 B 0.1 -5.0

11 A -32.2 17.7

11 B 44.5 -0.3

Example 1: DS_r := ceil (DS_1) results in:

VTL Reference Manual - Version 2.1 Page: 111

DS_r

Id_1 Id_1 Me_1 Me_2

10 A 7 6

10 B 1 -5

11 A -32 18

11 B 45 0

Example 2 (on components): DS_r := DS_1 [Me_10 := ceil (Me_1)] results in:

DS_r

Id_1 Id_1 Me_1 Me_2 Me_10

10 A 7.0 5.9 7

10 B 0.1 -5.0 1

11 A -32.2 17.7 -32

11 B 44.5 -0.3 45

Floor: floor

Syntax

floor (op)

Input parameters

op the operand

Examples of valid syntaxes

floor (DS_1)
floor (3.14159)

Semantics for scalar operations

The operator floor returns the greatest integer which is smaller than or equal to op.
For example:

floor(3.1415) gives 3
floor(15) gives 15

 floor(-3.1415) gives -4
floor(-0.1415) gives -1

Input parameters type

op :: dataset { measure<number> _+ }
| component<number>
| number

Result type

result :: dataset { measure<integer> _+ }
| component< integer >
| integer

VTL Reference Manual - Version 2.1 Page: 112

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or
Data Set Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_1 Me_1 Me_2

10 A 7.0 5.9

10 B 0.1 -5.0

11 A -32.2 17.7

11 B 44.5 -0.3

Example 1: DS_r := floor (DS_1) results in:

DS_r

Id_1 Id_1 Me_1 Me_2

10 A 7 5

10 B 0 -5

11 A -33 17

11 B 44 -1

Example 2 (on components): DS_r := DS_1 [Me_10 := floor (Me_1)] results in:

DS_r

Id_1 Id_1 Me_1 Me_2 Me_10

10 A 7.5 5.9 7

10 B 0.1 -5.5 0

11 A -32.2 17.7 -33

11 B 44.5 -0.3 44

Absolute value : abs

Syntax

abs (op)

Input parameters

op the operand

Examples of valid syntaxes

abs (DS_1)

abs (-5)

VTL Reference Manual - Version 2.1 Page: 113

Semantics for scalar operations

The operator abs calculates the absolute value of a number.
For example:

abs (-5.49) gives 5.49
abs (5.49) gives 5.49

Input parameters type

op :: dataset { measure<number> _+ }
| component<number>
| number

Result type

result :: dataset { measure<number [value >= 0]> _+ }
| component<number [value >= 0]>
| number [value >= 0]

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or
Data Set Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 0.484183 0.7545

10 B -0.515817 -13.45

11 A -1.000000 187.0

Example 1: DS_r := abs (DS_1) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 0.484183 0.7545

10 B 0.515817 13.45

11 A 1.000000 187

Example 2 (on components): DS_r := DS_1 [Me_10 := abs(Me_1)] results in:

DS_r

Id_1 Id_2 Me_1 Me_2 Me_10

10 A 0.484183 0.7545 0.484183

10 B -0.515817 -13.45 0.515817

11 A -1.000000 187 1.000000

VTL Reference Manual - Version 2.1 Page: 114

Exponential : exp

Syntax

exp (op)

Input parameters

op the operand

Examples of valid syntaxes

exp (DS_1)
exp (5)

Semantics for scalar operations

The operator exp returns e (base of the natural logarithm) raised to the op-th power.
For example;

exp (5) gives 148.41315…
exp (1) gives 2.71828… (the number e)
exp (0) gives 1.0
exp (-1) gives 0.36787… (the number 1/e)

Input parameters type

op:: dataset { measure<number> _+ }
| component<number>
| number

Result type

result :: dataset { measure<number[value > 0]> _+ }
| component<number [value > 0]>
| number[value > 0]

Additional constraints

None.

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or
Data Set Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 5 0.7545

10 B 8 13.45

11 A 2 1.87

Example 1: DS_r := exp(DS_1) results in:

VTL Reference Manual - Version 2.1 Page: 115

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 148.413 2.126547

10 B 2980.95 693842.3

11 A 7.38905 6.488296

Example 2 (on components): DS_r := DS_1 [Me_1 := exp (Me_1)] results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 148.413 0.7545

10 B 2980.95 13.45

11 A 7.389 1.87

Natural logarithm : ln

Syntax

ln (op)

Input parameters

op the operand

Examples of valid syntaxes

ln (DS_1)
ln (148)

Semantics for scalar operations

The operator ln calculates the natural logarithm of a number.
For example:

ln (148) gives 4.997…
ln (e) gives 1.0
ln (1) gives 0.0
ln (0,5) gives -0.693…

Input parameters type

 op :: dataset { measure<number [value > 0] > _+ }
| component<number [value > 0] >
| number [value > 0]

Result type

result :: dataset { measure<number > _+ }
| component<number >
| number

Additional constraints

None.

VTL Reference Manual - Version 2.1 Page: 116

Behaviour

The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or
Data Set Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 148.413 0.7545

10 B 2980.95 13.45

11 A 7.38905 1.87

Example 1: DS_r := ln(DS_1) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 5.0 -0.281700

10 B 8.0 2.598979

11 A 2.0 0.625938

Example 2 (on components): DS_r := DS_1 [Me_2 := ln (DS_1#Me_1) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 148.413 5.0

10 B 2980.95 8.0

11 A 7.38905 2.0

Power : power

Syntax

power (base , exponent)

Input parameters

base the operand
exponent the exponent of the power

Examples of valid syntaxes

power (DS_1, 2)
power (5, 2)

Semantics for scalar operations

The operator power raises a number (the base) to another one (the exponent).
For example:

VTL Reference Manual - Version 2.1 Page: 117

power (5, 2) gives 25

power (5, 1) gives 5
power (5, 0) gives 1
power (5, -1) gives 0.2
power (-5, 3) gives -125

Input parameters type

base :: dataset { measure<number> _+ }

| component<number>
| number

exponent :: component<number>
| number

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the “Operators
applicable on one Scalar Value or Data Set or Data Set Component”, as for the invocations at
Component or Scalar level, the operator has the behaviour of the “Operators applicable on two
Scalar Values or Data Sets or Data Set Components”, (see the section “Typical behaviours of the
ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 3 0.7545

10 B 4 13.45

11 A 5 1.87

Example 1: DS_r := power(DS_1, 2) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 9 0.56927

10 B 16 180.9025

11 A 25 3.4969

Example 2 (on components): DS_r := DS_1[calc Me_1 := power(Me_1, 2)] results in:

VTL Reference Manual - Version 2.1 Page: 118

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 9 0.7545

10 B 16 13.45

11 A 25 1.87

Logarithm : log

Syntax

log (op , num)

Input parameters

op the base of the logarithm
num the number to which the logarithm is applied

Examples of valid syntaxes

log (DS_1, 2)
log (1024, 2)

Semantics for scalar operations

The operator log calculates the logarithm of num base op.
For example:

log (1024, 2) gives 10

log (1024, 10) gives 3.01

Input parameters type

op :: dataset { measure<number [value > 1] > _+ }
| component<number [value > 1] >
| number [value > 1]

num :: component<integer [value > 0]>
| integer [value > 0]

Result type

result :: dataset { measure<number> _+ }
| component<number>
| number

Additional constraints

None.

Behaviour

As for the invocations at Data Set level, the operator has the behaviour of the “Operators
applicable on one Scalar Value or Data Set or Data Set Component”, as for the invocations at
Component or Scalar level, the operator has the behaviour of the “Operators applicable on two
Scalar Values or Data Sets or Data Set Components”, (see the section “Typical behaviours of the
ML Operators”).

Examples

Given the operand Data Set DS_1:

VTL Reference Manual - Version 2.1 Page: 119

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 1024 0.7545

10 B 64 13.45

11 A 32 1.87

Example 1: DS_r := log (DS_1, 2) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 10.0 -0.40641

10 B 6.0 3.749534

11 A 5.0 0.903038

Example 2 (on components): DS_r := DS_1 [calc Me_1 := log (Me_1, 2)] results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 10.0 0.7545

10 B 6.0 13.45

11 A 5.0 1.87

Square root : sqrt

Syntax
sqrt (op)
Input parameters
op the operand
Examples of valid syntaxes
sqrt (DS_1)
sqrt (5)
Semantics for scalar operations
The operator sqrt calculates the square root of a number. For example:

sqrt (25) gives 5
Input parameters type
op :: dataset { measure<number [value >= 0] > _+ }

| component<number [value >= 0] >
| number [value >= 0]

Result type
result :: dataset { measure<number[value >= 0] > _+ }

| component<number[value >= 0] >
| number[value >= 0]

Additional constraints
None.

VTL Reference Manual - Version 2.1 Page: 120

Behaviour
The operator has the behaviour of the “Operators applicable on one Scalar Value or Data Set or
Data Set Component” (see the section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 Me_2

10 A 16 0.7545

10 B 81 13.45

11 A 64 1.87

Example 1: DS_r := sqrt(DS_1) results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 4 0.86862

10 B 9 3.667424

11 A 8 1.367479

Example 2 (on components): DS_r := DS_1 [calc Me_2 := sqrt (Me_1)] results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 4 0.7545

10 B 9 13.45

11 A 8 1.87

Random : random

Syntax
random (seed, index)

Input parameters type
seed :: dataset { measure<number > _+ }

| component<number >
| number

index :: integer
Result type
result :: dataset { measure<number > _+ }

| component<number[0-1] >
| number[0-1]

VTL Reference Manual - Version 2.1 Page: 121

Examples of valid syntax

random(15,12)
ds [calc r := random(col_1, 12)]
random(ds, 12);

Semantics for scalar operations

The operator generates a sequence number >= 0 and <1, based on seed parameter and returns
the number value corresponding to index.

Additional constraints

None.

Behaviour

The operator returns a random decimal number >= 0 and <1.

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1

10 A 16.0

10 B 4.0

11 A 7.2

Example 1: DS_r := random(DS_1,5) results in:

DS_r

Id_1 Id_2 Me_1

10 A 0.3582791

10 B 0.428819

11 A 0.715488

Example 2 (on components): DS_r := DS_1 [calc Me_2 := random(Me_1, 8)]
 results in:

DS_r

Id_1 Id_2 Me_1 Me_2

10 A 16.0 0.7545341

10 B 4.0 0.3457166

11 A 7.2 0.5183224

VTL Reference Manual - Version 2.1 Page: 122

VTL-ML - Comparison operators

Equal to : =

Syntax

left = right

Input parameters

left the left operand
right the right operand

Examples of valid syntaxes

DS_1 = DS_2

Semantics for scalar operations

The operator returns TRUE if the left is equal to right, FALSE otherwise.
For example:

5 = 9 gives: FALSE
5 = 5 gives: TRUE
“hello” = “hi” gives: FALSE

Input parameters type

left, right :: dataset {measure<scalar> _ }
| component<scalar>
| scalar

Result type

result :: dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional constraints

Operands left and right must be of the same scalar type

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total NULL

2012 G Total Total 0.286

2012 S Total Total 0.064

2012 M Total Total 0.043

2012 F Total Total 0.08

2012 W Total Total 0.08

VTL Reference Manual - Version 2.1 Page: 123

Example 1: DS_r := DS_1 = 0.08 results in:

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total NULL

2012 G Total Total FALSE

2012 S Total Total FALSE

2012 M Total Total FALSE

2012 F Total Total TRUE

2012 W Total Total TRUE

Example 2 (on Components): DS_r := DS_1 [calc Me_2 := Me_1 = 0.08]
 results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

2012 B Total Total NULL NULL

2012 G Total Total 0.286 FALSE

2012 S Total Total 0.064 FALSE

2012 M Total Total 0.043 FALSE

2012 F Total Total 0.08 TRUE

2012 W Total Total 0.08 TRUE

Not equal to : <>

Syntax

left <> right

Input parameters

left the left operand
right the right operand

Examples of valid syntaxes

DS_1 <> DS_2

Semantics for scalar operations

The operator returns FALSE if the left is equal to right, TRUE otherwise.
For example:

5 <> 9 gives: TRUE

5 <> 5 gives: FALSE
“hello” <> “hi” gives: TRUE

Input parameters type

VTL Reference Manual - Version 2.1 Page: 124

left, right :: dataset {measure<scalar> _ }
| component<scalar>
| scalar

Result type

result :: dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional constraints

Operands left and right must be of the same scalar type

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.1

R Total Percentage Total NULL

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.5

R Total Percentage Total 3

Example 1: DS_r := DS_1 <> DS_2 results in:

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total TRUE

R Total Percentage Total NULL

Note that due to the behaviour for NULL values, if the value for G in the second operand had
also been NULL, then the result would still be NULL for G.

Example 2 (on Components): DS_r := DS_1 [calc Me_2 := Me_1<>7.5] results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

G Total Percentage Total 7.5 TRUE

R Total Percentage Total 3 NULL

VTL Reference Manual - Version 2.1 Page: 125

Greater than : > >=

Syntax

left { > | >= }1 right

Input parameters

left the left operand part of the comparison
right the right operand part of the comparison

Examples of valid syntaxes

DS_1 > DS_2
DS_1 >= DS_2

Semantics for scalar operations

The operator > returns TRUE if left is greater than right, FALSE otherwise.
The operator >= returns TRUE if left is greater than or equal to right, FALSE otherwise.
For example:

5 > 9 gives: FALSE
5 >= 5 gives: TRUE
“hello” > “hi” gives: FALSE

Input parameters type

left, right :: dataset {measure<scalar> _ }
| component<scalar>
| scalar

Result type

result :: dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional constraints

Operands left and right must be of the same scalar type

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Id_4 Id_5 Me_1

2 G 2011 Total Percentage NULL

2 R 2011 Total Percentage 12.2

2 F 2011 Total Percentage 29.5

Example 1: DS_r := DS_1 > 20 results in:

VTL Reference Manual - Version 2.1 Page: 126

DS_r

Id_1 Id_2 Id_3 Id_4 Id_5 bool_var

2 G 2011 Total Percentage NULL

2 R 2011 Total Percentage FALSE

2 F 2011 Total Percentage TRUE

Example 2 (on Components): DS_r := DS_1 [calc Me_2 := Me_1 > 20] results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Id_5 Me_1 Me_2

2 G 2011 Total Percentage NULL NULL

2 R 2011 Total Percentage 12.2 FALSE

2 F 2011 Total Percentage 29.5 TRUE

Given the left operand Data Set:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.1

R Total Percentage Total 42.5

and the right operand Data Set:

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 7.5

R Total Percentage Total 33.7

Example 3: DS_r:= DS_1 > DS_2 results in:

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total FALSE

R Total Percentage Total TRUE

If the Me_1 column for G in the DS_2 Data Set had a NULL value the result would be:

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total NULL

R Total Percentage Total TRUE

VTL Reference Manual - Version 2.1 Page: 127

Less than : < <=

Syntax

left { < | <= }1 right

Input parameters

left the left operand
right the right operand

Examples of valid syntaxes

DS_1 < DS_2
DS_1 <= DS_2

Semantics for scalar operations

The operator < returns TRUE if left is smaller than right, FALSE otherwise.
The operator <= returns TRUE if left is smaller than or equal to right, FALSE otherwise.
For example:

5 < 4 gives: FALSE
5 <= 5 gives: TRUE
“hello” < “hi” gives: TRUE

Input parameters type

left, right :: dataset {measure<scalar> _ }
| component<scalar>
| scalar

Result type

result :: dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional constraints

Operands left and right must be of the same scalar type

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total 46818219

2012 M Total Total NULL

2012 F Total Total 5401267

2012 W Total Total 7954662

VTL Reference Manual - Version 2.1 Page: 128

Example 1: DS_r := DS_1 < 15000000 results in:

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total TRUE

2012 G Total Total TRUE

2012 S Total Total FALSE

2012 M Total Total NULL

2012 F Total Total TRUE

2012 W Total Total TRUE

Between : between

Syntax

between (op, from, to)

Input parameters

op the Data Set to be checked
from the left delimiter
to the right delimiter

Examples of valid syntaxes

ds2 := between(ds1, 5,10)
ds2 := ds1 [calc m1 := between(me2, 5, 10)]

Semantics for scalar operations

The operator returns TRUE if op is greater than or equal to from and lower than or equal to to.
In other terms, it is a shortcut for the following:

op >= from and op <= to

The types of op, from and to must be compatible scalar types.

Input parameters type

op :: dataset {measure<scalar> _}
| component<scalar>
| scalar

from :: scalar | component<scalar>
to :: scalar | component<scalar>

Result type

result :: dataset { measure<booelan> bool_var }
| component<boolean>
| boolean

Additional constraints

The type of the operand (i.e., the measure of the dataset, the type of the component, the scalar
type) must be the same as that of from and to.

VTL Reference Manual - Version 2.1 Page: 129

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the following Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total 6

R Total Percentage Total -2

Example 1: DS_r:= between(ds1, 5,10) results in:

DS_1

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total TRUE

R Total Percentage Total FALSE

Element of: in / not_in

Syntax

op in collection
op not_in collection

collection ::= set | valueDomainName

Input parameters

op the operand to be tested
collection the the Set or the Value Domain which contains the values
set the Set which contains the values (it can be a Set name or a Set literal)
valueDomainName the name of the Value Domain which contains the values

Examples of valid syntaxes

ds := ds_2 in {1,4,6} as usual, here the braces denote a set literal (it contains the values
1, 4 and 6)

ds := ds_3 in mySet
ds := ds_3 in myValueDomain

Semantics for scalar operations

The in operator returns TRUE if op belongs to the collection, FALSE otherwise.
The not_in operator returns FALSE if op belongs to the collection, TRUE otherwise.

For example:

VTL Reference Manual - Version 2.1 Page: 130

 1 in { 1, 2, 3 } returns TRUE
“a” in { “c, “ab”, “bb”, “bc” } returns FALSE
“b” not_in { “b”, ”hello”, ”c”} returns FALSE
“b” not_in { “a”, ”hello”, ”c”} returns TRUE

Input parameters type

op :: dataset {measure<scalar> _ }
 | component<scalar>

| scalar
collection :: set<scalar> | name<value_domain>

Result type

result :: dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional constraints

The operand must be of a basic scalar data type compatible with the basic scalar type of the
collection.

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the
section “Typical behaviours of the ML Operators”).

Semantics

The in operator evaluates to TRUE if the operand is an element of the specified collection and
FALSE otherwise, the not_in the opposite.

The operator has the typical behaviour of the “Operators changing the data type” (see the
section “Typical behaviours of the ML Operators”).

The collection can be either a set of values defined in line or a name that references an
externally defined Value Domain or Set.

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Me_1

2012 BS 0

2012 GZ 4

2012 SQ 9

2012 MO 6

2012 FJ 7

2012 CQ 2

Example 1:

DS_r := DS_1 in { “BS”, “MO”, “HH”, “PP” } results in:

VTL Reference Manual - Version 2.1 Page: 131

DS_r

Id_1 Id_2 bool_var

2012 BS TRUE

2012 GZ FALSE

2012 SQ FALSE

2012 MO TRUE

2012 FJ FALSE

2012 CQ FALSE

Example 2 (on Components):

DS_r := DS_1 [calc Me_2:= Me_1 in { “BS”, “MO”, “HH”, “PP” }] results in:

DS_r

Id_1 Id_2 Me_1 Me_2

2012 BS 0 TRUE

2012 GZ 4 FALSE

2012 SQ 9 FALSE

2012 MO 6 TRUE

2012 FJ 7 FALSE

2012 CQ 2 FALSE

Given the previous Data Set DS_1 and the following Value Domain named
myGeoValueDomain (which has the basic scalar type string) :

myGeoValueDomain

Code Meaning

AF Afghanistan

BS Bahamas

FJ Fiji

GA Gabon

KH Cambodia

MO Macao

PK Pakistan

QA Quatar

UG Uganda

Example 3 (on external Value Domain):

DS_r := DS_1#Id_2 in myGeoValueDomain results in:

VTL Reference Manual - Version 2.1 Page: 132

DS_r

Id_1 Id_2 bool_var

2012 BS TRUE

2012 GZ FALSE

2012 SQ FALSE

2012 MO TRUE

2012 FJ TRUE

2012 CQ FALSE

match_characters match_characters

Syntax

match_characters (op , pattern)

Input parameters

op the dataset to be checked
pattern the regular expression to check the Data Set or the Component against

Examples of valid syntaxes

match_characters(ds1, “[abc]+\d\d”)
ds1 [calc m1 := match_characters(ds1, “[abc]+\d\d”)]

Semantics for scalar operations

match_characters returns TRUE if op matches the regular expression regexp, FALSE
otherwise. The string regexp is an Extended Regular Expression as described in the POSIX
standard. Different implementations of VTL may implement different versions of the POSIX
standard therefore it is possible that match_characters may behave in slightly different ways.

Input parameters type

op :: dataset {measure<string> _}
| component<string>
| string

pattern :: string | component<string>

Result type

result :: dataset { measure<booelan> bool_var }
| component<boolean>
| boolean

Additional constraints

If op is a Data Set then it has exactly one measure.
pattern is a POSIX regular expression.

Behaviour

The operator has the typical behaviour of the “Operators changing the data type” (see the
section “Typical behaviours of the ML Operators”).

VTL Reference Manual - Version 2.1 Page: 133

Examples

Given the following Dataset DS_1:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

G Total Percentage Total AX123

R Total Percentage Total AX2J5

DS_r:=(ds1, “[:alpha:]{2}[:digit:]{3}”) results in:

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

G Total Percentage Total TRUE

R Total Percentage Total FALSE

Isnull: isnull

Syntax

isnull (op)

Input parameters

operand mandatory the operand

Examples of valid syntaxes

isnull(DS_1)

Semantics for scalar operations

The operator returns TRUE if the value of the operand is NULL, FALSE otherwise.

Examples

isnull(“Hello”) gives: FALSE
isnull(NULL) gives: TRUE

Input parameters type

op :: dataset {measure<scalar> _}
| component<scalar>
| scalar

Result type

result :: dataset { measure<boolean> bool_var }
| component<boolean>
| boolean

Additional constraints

If op is a Data Set then it has exactly one measure.
 Behaviour
The operator has the typical behaviour of the “Operators changing the data type” (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

VTL Reference Manual - Version 2.1 Page: 134

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total NULL

2012 M Total Total 417546

2012 F Total Total 5401267

2012 N Total Total NULL

Example 1: DS_r := isnull(DS_1) results in:

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total FALSE

2012 G Total Total FALSE

2012 S Total Total TRUE

2012 M Total Total FALSE

2012 F Total Total FALSE

2012 N Total Total TRUE

Example 2 (on Components): DS_r := DS_1[calc Me_2 := is_null(Me_1)] results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

2012 B Total Total 11094850 FALSE

2012 G Total Total 11123034 FALSE

2012 S Total Total NULL TRUE

2012 M Total Total 417546 FALSE

2012 F Total Total 5401267 FALSE

2012 N Total Total NULL TRUE

Exists in : exists_in

Syntax

exists_in (op1, op2 { , retain })
retain ::= true | false | all

Input parameters

op1 the operand dataset
op2 the operand dataset
retain the optional parameter to specify the Data Points to be returned (default: all)

VTL Reference Manual - Version 2.1 Page: 135

Examples of valid syntaxes

exists_in (DS_1, DS_2, true)
exists_in (DS_1, DS_2)
exists_in (DS_1, DS_2, all)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op1,
op2 :: dataset

Result type

result :: dataset { measure<boolean> bool_var }

Additional constraints

op2 has all the identifier components of op1.

Behaviour

The operator takes under consideration the common Identifiers of op1 and op2 and checks if
the combinations of values of these Identifiers which are in op1 also exist in op2.
The result has the same Identifiers as op1 and a boolean Measure bool_var whose value, for
each Data Point of op1, is TRUE if the combination of values of the Identifier Components
existing in op1 is found in a Data Point of op2, FALSE otherwise.
If retain is all then both the Data Points having bool_var = TRUE and bool_var = FALSE are
returned.
If retain is true then only the data points with bool_var = TRUE are returned. If retain is false
then only the Data Points with bool_var = FALSE are returned. If the retain parameter is
omitted, the default is all.
The operator has the typical behaviour of the “Operators changing the data type” (see the
section “Typical behaviours of the ML Operators”).

Examples

Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total 46818219

2012 M Total Total 417546

2012 F Total Total 5401267

2012 W Total Total 7954662

VTL Reference Manual - Version 2.1 Page: 136

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 0.023

2012 G Total M 0.286

2012 S Total Total 0.064

2012 M Total M 0.043

2012 F Total Total NULL

2012 W Total Total 0.08

Example 1: DS_r := exists_in (DS_1, DS_2, all) results in:

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total TRUE

2012 G Total Total FALSE

2012 S Total Total TRUE

2012 M Total Total FALSE

2012 F Total Total TRUE

2012 W Total Total TRUE

Example 2: DS_r := exists_in (DS_1, DS_2, true) results in:

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 B Total Total TRUE

2012 S Total Total TRUE

2012 F Total Total TRUE

2012 W Total Total TRUE

Example 3: DS_r := exists_in (DS_1, DS_2, false) results in:

DS_r

Id_1 Id_2 Id_3 Id_4 bool_var

2012 G Total Total FALSE

2012 M Total Total FALSE

VTL Reference Manual - Version 2.1 Page: 137

VTL-ML - Boolean operators

Logical conjunction: and

Syntax

op1 and op2

Input parameters

op1 the first operand
op2 the second operand

Examples of valid syntaxes

DS_1 and DS_2

Semantics for scalar operations

The and operator returns TRUE if both operands are TRUE, otherwise FALSE. The two
operands must be of boolean type.
For example:

FALSE and FALSE gives FALSE
FALSE and TRUE gives FALSE
FALSE and NULL gives FALSE
TRUE and FALSE gives FALSE
TRUE and TRUE gives TRUE
TRUE and NULL gives NULL
NULL and NULL gives NULL

Input parameters type

op1,op2 :: dataset {measure<boolean> _ }
| component<boolean>
| boolean

Result type

result :: dataset { measure<boolean> _}
| component<boolean>
| boolean

Additional constraints

None.

Behaviour

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section
“Typical behaviours of the ML Operators”).

Examples

Given the operand Data Sets DS_1 and DS_2:

VTL Reference Manual - Version 2.1 Page: 138

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 FALSE

M 65 B 2013 TRUE

F 15 U 2013 FALSE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 FALSE

M 64 B 2013 TRUE

M 65 B 2013 TRUE

F 15 U 2013 TRUE

F 64 U 2013 FALSE

F 65 U 2013 FALSE

Example 1: DS_r:= DS_1 and DS_2 results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 FALSE

M 64 B 2013 FALSE

M 65 B 2013 TRUE

F 15 U 2013 FALSE

F 64 U 2013 FALSE

F 65 U 2013 FALSE

Example 2 (on Components):DS_r := DS_1 [calc Me_2:= Me_1 and true] results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 TRUE TRUE

M 64 B 2013 FALSE FALSE

M 65 B 2013 TRUE TRUE

F 15 U 2013 FALSE FALSE

F 64 U 2013 FALSE FALSE

F 65 U 2013 TRUE TRUE

VTL Reference Manual - Version 2.1 Page: 139

Logical disjunction : or

Syntax

op1 or op2

Input parameters

op1 the first operand
op2 the second operand

Examples of valid syntaxes

DS_1 or DS_2

Semantics for scalar operations

The or operator returns TRUE if at least one of the operands is TRUE, otherwise FALSE. The
two operands must be of boolean type.
For example:

FALSE or FALSE gives FALSE
FALSE or TRUE gives TRUE
FALSE or NULL gives NULL
TRUE or FALSE gives TRUE
TRUE or TRUE gives TRUE
TRUE or NULL gives TRUE
NULL or NULL gives NULL

Input parameters type

op1,op2 :: dataset {measure<boolean> _ }
| component<boolean>
| boolean

Result type

result :: dataset { measure<boolean> _ }
| component<boolean>
| boolean

Additional constraints

None.

Behaviour

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section
“Typical behaviours of the ML Operators”).

Examples

 Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 FALSE

M 65 B 2013 TRUE

F 15 U 2013 FALSE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

VTL Reference Manual - Version 2.1 Page: 140

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 FALSE

M 64 B 2013 TRUE

M 65 B 2013 TRUE

F 15 U 2013 TRUE

F 64 U 2013 FALSE

F 65 U 2013 FALSE

Example 1: DS_r:= DS_1 or DS_2 results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 TRUE

M 65 B 2013 TRUE

F 15 U 2013 TRUE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

Example 2 (on Components): DS_r:= DS_1 [calc Me_2:= Me_1 or true] results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 TRUE TRUE

M 64 B 2013 FALSE TRUE

M 65 B 2013 TRUE TRUE

F 15 U 2013 FALSE TRUE

F 64 U 2013 FALSE TRUE

F 65 U 2013 TRUE TRUE

Exclusive disjunction : xor

Syntax

op1 xor op2

Input parameters

op1 the first operand
op2 the second operand

VTL Reference Manual - Version 2.1 Page: 141

Examples of valid syntaxes

DS_1 xor DS_2

Semantics for scalar operations

The xor operator returns TRUE if only one of the operand is TRUE (but not both), FALSE
otherwise. The two operands must be of boolean type.
For example:

FALSE xor FALSE gives FALSE
FALSE xor TRUE gives TRUE
FALSE xor NULL gives NULL
TRUE xor FALSE gives TRUE
TRUE xor TRUE gives FALSE
TRUE xor NULL gives NULL
NULL xor NULL gives NULL

Input parameters type

op1,op2 :: dataset {measure<boolean> _ }
| component<boolean>
| boolean

Result type

result :: dataset { measure<boolean> _ }
| component<boolean>
| boolean

Additional constraints

None.

Behaviour

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section
“Typical behaviours of the ML Operators”).

Examples

Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 FALSE

M 65 B 2013 TRUE

F 15 U 2013 FALSE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

VTL Reference Manual - Version 2.1 Page: 142

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 FALSE

M 64 B 2013 TRUE

M 65 B 2013 TRUE

F 15 U 2013 TRUE

F 64 U 2013 FALSE

F 65 U 2013 FALSE

Example 1: DS_r:=DS_1 xor DS_2 results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 TRUE

M 65 B 2013 FALSE

F 15 U 2013 TRUE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

Example 2 (on Components): DS_r:= DS_1 [calc Me_2:= Me_1 xor true] results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 TRUE FALSE

M 64 B 2013 FALSE TRUE

M 65 B 2013 TRUE FALSE

F 15 U 2013 FALSE TRUE

F 64 U 2013 FALSE TRUE

F 65 U 2013 TRUE FALSE

Logical negation : not

Syntax

not op

Input parameters

op the operand

Examples of valid syntaxes

not DS_1

VTL Reference Manual - Version 2.1 Page: 143

Semantics for scalar operations

The not operator returns TRUE if op is FALSE, otherwise TRUE. The input operand must be of
boolean type.
For example:

not FALSE gives TRUE
not TRUE gives FALSE
not NULL gives NULL

Input parameters type

op :: dataset {measure<boolean> _ }
| component<boolean>
| boolean

Result type

result :: dataset { measure<boolean> _ }
| component<boolean>
| boolean

Additional constraints

None.

Behaviour

The operator has the typical behaviour of the “Behaviour of Boolean operators” (see the section
“Typical behaviours of the ML Operators”).

Examples

Given the operand Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 TRUE

M 64 B 2013 FALSE

M 65 B 2013 TRUE

F 15 U 2013 FALSE

F 64 U 2013 FALSE

F 65 U 2013 TRUE

Example 1: DS_r:= not DS_1 results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

M 15 B 2013 FALSE

M 64 B 2013 TRUE

M 65 B 2013 FALSE

F 15 U 2013 TRUE

F 64 U 2013 TRUE

F 65 U 2013 FALSE

VTL Reference Manual - Version 2.1 Page: 144

Example 2 (on Components): DS_r:= DS_1 [calc Me_2 := not Me_1] results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1 Me_2

M 15 B 2013 TRUE FALSE

M 64 B 2013 FALSE TRUE

M 65 B 2013 TRUE FALSE

F 15 U 2013 FALSE TRUE

F 64 U 2013 FALSE TRUE

F 65 U 2013 TRUE FALSE

VTL Reference Manual - Version 2.1 Page: 145

VTL-ML - Time operators

This chapter describes the time operators, which are the operators dealing with time, date and
time_period basic scalar types. The general aspects of the behaviour of these operators is
described in the section “Behaviour of the Time Operators”.

The time data type is the most general type and denotes a generic time interval, having start
and end points in time and therefore a duration, which is the time intervening between the start
and end points. The date data type denotes a generic time instant (a point in time), which is a
time interval with zero duration. The time_period data type denotes a regular time interval
whose regular duration is explicitly represented inside each time_period value and is named
period_indicator. In some sense, we say that date and time_period are special cases of time, the
former with coinciding extremes and zero duration and the latter with regular duration. The
time data type is overarching in the sense that it comprises date and time_period. Finally,
duration data type represents a generic time span, independently of any specific start and end
date.

The time, date and time period formats used here are explained in the User Manual in the
section “External representations and literals used in the VTL Manuals”.

The period indicator P id of the duration type and its possible values are:

 D Day
 W Week
 M Month
 Q Quarter
 S Semester
 A Year

As already said, these representation are not prescribed by VTL and are not part of the VTL
standard, each VTL system can personalize the representation of time, date, time_period and
duration as desired. The formats shown above are only the ones used in the examples.

For a fully-detailed explanation, please refer to the User Manual.

Period indicator : period_indicator

The operator period_indicator extracts the period indicator from a time_period value.

Syntax

period_indicator ({ op })

Input parameters

op the operand

Examples of valid syntaxes

period_indicator (ds_1)
period_indicator (if used in a clause the operand op can be omitted)

Semantics for scalar operations

period_indicator returns the period indicator of a time_period value. The period indicator is
the part of the time_period value which denotes the duration of the time period (e.g. day, week,
month …).

VTL Reference Manual - Version 2.1 Page: 146

Input parameters type

op :: dataset { identifier <time_period> _ , identifier _* }

 | component<time_period>
 | time_period

Result type

result :: dataset { measure<duration> duration_var }
 | component <duration>
 | duration

Additional constraints

If op is a Data Set then it has exactly an Identifier of type time_period and may have other
Identifiers. If the operator is used in a clause and op is omitted, then the Data Set to which the
clause is applied has exactly an Identifier of type time_period.

Behaviour

The operator extracts the period indicator part of the time_period value. The period indicator
is computed for each Data Point. When the operator is used in a clause, it extracts the period
indicator from the time_period value the Data Set to which the clause is applied.
The operator returns a Data Set with the same Identifiers of op and one Measure of type
duration named duration_var. As for all the Variables, a proper Value Domain must be defined
to contain the possible values of the period indicator and duration_var. The values used in the
examples are listed at the beginning of this chapter "VTL-ML Time operators".

Examples

Given the Data Set DS_1:

DS_r

Id_1 Id_2 Id_3 Me_1

A 1 2010 10

A 1 2013Q1 50

Example 1: DS_r := period_indicator (DS_1) results in:

DS_r

Id_1 Id_2 Id_3 duration_var

A 1 2010 A

A 1 2013Q1 Q

Example 2 (on component): DS_r := DS_1 [filter period_indicator (Id_3) = “A"] results in:

DS_r

Id_1 Id_2 Id_3 Me_1

A 1 2010 10

VTL Reference Manual - Version 2.1 Page: 147

Fill time series : fill_time_series

Syntax

fill_time_series (op { , limitsMethod })
limitsMethod ::= single | all

Input parameters

op the operand
limitsMethod method for determining the limits of the time interval to be filled (default: all)

Examples of valid syntaxes

fill_time_series (ds)
fill_time_series (ds, all)

Semantics for scalar operations

The fill_time_series operator does not perform scalar operations.

Input parameters type:

op :: dataset { identifier <time > _ , identifier _* }

Result type:

result :: dataset { identifier <time > _ , identifier _* }

Additional constraints

The operand op has an Identifier of type time, date or time_period and may have other
Identifiers.

Behaviour

This operator can be applied only on Data Sets of time series and returns a Data Set of time
series.
The operator fills the possibly missing Data Points of all the time series belonging to the
operand op within the time limits automatically determined by applying the limitsMethod.
If limitsMmethod is all, the time limits are determined with reference to all the time_series of
the Data Set: the limits are the minimum and the maximum values of the reference time
Identifier Component of the Data Set.
If limitsMmethod is single, the time limits are determined with reference to each single
time_series of the Data Set: the limits are the minimum and the maximum values of the
reference time Identifier Component of the time series.
The expected Data Points are determined, for each time series, by considering the limits above
and the period (frequency) of the time series: all the Identifiers are kept unchanged except the
reference time Identifier, which is increased of one period at a time (e.g. day, week, month,
quarter, year) from the lower to the upper time limit. For each increase, an expected Data Point
is identified.
If this expected Data Points is missing, it is added to the Data Set. For the added Data Points,
Measures and Attributes assume the NULL value.
The output Data Set has the same Identifier, Measure and Attribute Components as the operand
Data Set. The output Data Set contains the same time series as the operand, because the time
series Identifiers (all the Identifiers except the reference time Identifier) are not changed.
As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to
know which is the reference time Identifier as well as the period of each time series.

Examples

As described in the User Manual, the time data type is the intervening time between two time
points and using the ISO 8601 standard it can be expressed through a start date and an end

VTL Reference Manual - Version 2.1 Page: 148

date separated by a slash at any precision. In the examples relevant to the time data type the
precision is set at the level of month and the time format YYYY-MM/YYYY-MM is used.

Given the Data Set DS_1, which contains yearly time series, where Id_2 is the reference time
Identifier of time type:

DS_1

Id_1 Id_2 Me_1

A 2010-01/2010-12 "hello world"

A 2012-01/2012-12 "say hello"

A 2013-01/2013-12 "he"

B 2011-01/2011-12 "hi, hello! "

B 2012-01/2012-12 "hi”

B 2014-01/2014-12 “hello!”

Example 1: DS_r := fill_time_series (DS_1, single) results in:

DS_r

Id_1 Id_2 Me_1

A 2010-01/2010-12 "hello world"

A 2011-01/2011-12 NULL

A 2012-01/2012-12 "say hello"

A 2013-01/2013-12 "he"

B 2011-01/2011-12 "hi, hello! "

B 2012-01/2012-12 "hi”

B 2013-01/2013-12 NULL

B 2014-01/2014-12 “hello!”

Example 2: DS_r := fill_time_series (DS_1, all) results in:

DS_r

Id_1 Id_2 Me_1

A 2010-01/2010-12 "hello world"

A 2011-01/2011-12 NULL

A 2012-01/2012-12 "say hello"

A 2013-01/2013-12 "he"

A 2014-01/2014-12 NULL

B 2010-01/2010-12 NULL

B 2011-01/2011-12 "hi, hello! "

B 2012-01/2012-12 "hi”

B 2013-01/2013-12 NULL

B 2014-01/2014-12 “hello!”

VTL Reference Manual - Version 2.1 Page: 149

Given the Data Set DS_2, which contains yearly time series, where Id_2 is the reference time
Identifier of date type and conventionally each period is identified by its last day:

DS_2

Id_1 Id_2 Me_1

A 2010-12-31 "hello world"

A 2012-12-31 "say hello"

A 2013-12-31 "he"

B 2011-12-31 "hi, hello! "

B 2012-12-31 "hi”

B 2014-12-31 “hello!”

Example 3: DS_r := fill_time_series (DS_2, single) results in:

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 "hello world"

A 2011-12-31 NULL

A 2012-12-31 "say hello"

A 2013-12-31 "he"

B 2011-12-31 "hi, hello! "

B 2012-12-31 "hi”

B 2013-12-31 NULL

B 2014-12-31 “hello!”

Example 4: DS_r := fill_time_series (DS_2, all) results in:

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 "hello world"

A 2011-12-31 NULL

A 2012-12-31 "say hello"

A 2013-12-31 "he"

A 2014-12-31 NULL

B 2010-12-31 NULL

B 2011-12-31 "hi, hello! "

B 2012-12-31 "hi”

B 2013-12-31 NULL

B 2014-12-31 “hello!”

VTL Reference Manual - Version 2.1 Page: 150

Given the Data Set DS_3, which contains yearly time series, where Id_2 is the reference time
Identifier of time_period type:

DS_3

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2012Y "say hello"

A 2013Y "he"

B 2011Y "hi, hello! "

B 2012Y "hi”

B 2014Y “hello!”

Example 5: DS_r := fill_time_series (DS_3, single) results in:

DS_r

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2013Y "he"

B 2011Y "hi, hello! "

B 2012Y "hi”

B 2013Y NULL

B 2014Y “hello!”

Example 6: DS_r := fill_time_series (DS_3, all) results in:

DS_r

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2013Y "he"

A 2014Y NULL

B 2010Y NULL

B 2011Y "hi, hello! "

B 2012Y "hi”

B 2013Y NULL

B 2014Y “hello!”

VTL Reference Manual - Version 2.1 Page: 151

Given the Data Set DS_4, which contains both quarterly and annual time series relevant to the
same phenomenon “A”, where Id_2 is the reference time Identifier of time_period type,:

DS_4

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2012Y "say hello"

A 2010Q1 “he”

A 2010Q2 "hi, hello! "

A 2010Q4 "hi”

A 2011Q2 “hello!”

Example 7: DS_r := fill_time_series (DS_4, single) results in:

DS_r

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2010Q1 “he”

A 2010Q2 "hi, hello! "

A 2010Q3 NULL

A 2010Q4 "hi”

A 2011Q2 “hello!”

Example 8: DS_r := fill_time_series (DS_4, all) results in:

DS_r

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2010Q1 “he”

A 2010Q2 "hi, hello! "

A 2010Q3 NULL

A 2010Q4 "hi”

A 2011Q1 NULL

A 2011Q2 “hello!”

A 2011Q3 NULL

A 2011Q4 NULL

VTL Reference Manual - Version 2.1 Page: 152

A 2012Q1 NULL

A 2012Q2 NULL

A 2012Q3 NULL

A 2012Q4 NULL

Flow to stock : flow_to_stock

Syntax

flow_to_stock (op)

Input Parameters

op the operand

Examples of valid syntaxes

flow_to_stock (ds_1)

Semantics for scalar operations

This operator does not perform scalar operations.

Input parameters type:

op :: dataset { identifier < time > _ , identifier _* , measure<number> _+ }

Result type:

result :: dataset { identifier < time > _ , identifier _* , measure<number> _+ }

Additional constraints

The operand dataset has an Identifier of type time, date or time_period and may have other
Identifiers.

Behaviour

The statistical data that describe the “state” of a phenomenon on a given moment (e.g. resident
population on a given moment) are often referred to as “stock data”.
On the contrary, the statistical data that describe “events” which can happen continuously (e.g.
changes in the resident population, such as births, deaths, immigration, emigration), are often
referred to as “flow data”.
This operator takes in input a Data Set which are interpreted as flows and calculates the change
of the corresponding stock since the beginning of each time series by summing the relevant
flows. In other words, the operator perform the cumulative sum from the first Data Point of
each time series to each other following Data Point of the same time series.
The flow_to_stock operator can be applied only on Data Sets of time series and returns a Data
Set of time series.
The result Data Set has the same Identifier, Measure and Attribute Components as the operand
Data Set and contains the same time series as the operand, because the time series Identifiers
(all the Identifiers except the reference time Identifier) are not changed.
As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to
know which is the time Identifier as well as the period of each time series.

Examples

As described in the User Manual, the time data type is the intervening time between two time
points and using the ISO 8601 standard it can be expressed through a start date and an end
date separated by a slash at any precision. In the examples relevant to the time data type the
precision is set at the level of month and the time format YYYY-MM/YYYY-MM is used.

VTL Reference Manual - Version 2.1 Page: 153

Given the Data Set DS_1, which contains yearly time series, where Id_2 is the reference time
Identifier of time type:

DS_1

Id_1 Id_2 Me_1

A 2010-01/2010-12 2

A 2011-01/2011-12 5

A 2012-01/2012-12 -3

A 2013-01/2013-12 9

B 2010-01/2010-12 4

B 2011-01/2011-12 -8

B 2012-01/2012-12 0

B 2013-01/2013-12 6

Example 1: DS_r := flow_to_stock (DS_1) results in:

DS_r

Id_1 Id_2 Me_1

A 2010-01/2010-12 2

A 2011-01/2011-12 7

A 2012-01/2012-12 4

A 2013-01/2013-12 13

B 2010-01/2010-12 4

B 2011-01/2011-12 -4

B 2012-01/2012-12 -4

B 2013-01/2013-12 2

Given the Data Set DS_2, which contains yearly time series, where Id_2 is the reference time
Identifier of date type (conventionally each period is identified by its last day):

DS_2

Id_1 Id_2 Me_1

A 2010-12-31 2

A 2011-12-31 5

A 2012-12-31 -3

A 2013-12-31 9

B 2010-12-31 4

B 2011-12-31 -8

B 2012-12-31 0

B 2013-12-31 6

VTL Reference Manual - Version 2.1 Page: 154

Example 2: DS_r := flow_to_stock (DS_2) results in:

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 2

A 2011-12-31 7

A 2012-12-31 4

A 2013-12-31 13

B 2010-12-31 4

B 2011-12-31 -4

B 2012-12-31 -4

B 2013-12-31 2

Given the Data Set DS_3, which contains yearly time series, where Id_2 is the reference time
Identifier of time_period type:

DS_3

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 5

A 2012Y -3

A 2013Y 9

B 2010Y 4

B 2011Y -8

B 2012Y 0

B 2013Y 6

Example 3: DS_r := flow_to_stock (DS_3) results in:

DS_r

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 7

A 2012Y 4

A 2013Y 13

B 2010Y 4

B 2011Y -4

B 2012Y -4

B 2013Y 2

VTL Reference Manual - Version 2.1 Page: 155

Given the Data Set DS_4, which contains both quarterly and annual time series relevant to the
same phenomenon “A”, where Id_2 is the reference time Identifier of time_period type:

DS_4

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 7

A 2012Y 4

A 2013Y 13

A 2010Q1 2

A 2010Q2 -3

A 2010Q3 7

A 2010Q4 -4

Example 4: DS_r := flow_to_stock (DS_3) results in:

DS_r

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 9

A 2012Y 13

A 2013Y 26

A 2010Q1 2

A 2010Q2 -1

A 2010Q3 6

A 2010Q4 2

Stock to flow : stock_to_flow

Syntax

stock_to_flow (op)

Input parameters

 op the operand

Examples of valid syntaxes

stock_to_flow (ds_1)

Semantics for scalar operations

This operator does not perform scalar operations.

Input parameters type:

op :: dataset { identifier < time > _ , identifier _* , measure<number> _+ }

Result type:

VTL Reference Manual - Version 2.1 Page: 156

result :: dataset { identifier < time > _ , identifier _* , measure<number> _+ }

Additional constraints

The operand dataset has an Identifier of type time, date or time_period and may have other
Identifiers.

Behaviour

The statistical data that describe the “state” of a phenomenon on a given moment (e.g. resident
population on a given moment) are often referred to as “stock data”.
On the contrary, the statistical data that describe “events” which can happen continuously (e.g.
changes in the resident population, such as births, deaths, immigration, emigration), are often
referred to as “flow data”.
This operator takes in input a Data Set of time series which is interpreted as stock data and, for
each time series, calculates the corresponding flow data by subtracting from the measure
values of each regular period the corresponding measure values of the previous one.
The stock_to_flow operator can be applied only on Data Sets of time series and returns a Data
Set of time series.
The result Data Set has the same Identifier, Measure and Attribute Components as the operand
Data Set and contains the same time series as the operand, because the time series Identifiers
(all the Identifiers except the reference time Identifier) are not changed.
The Attribute propagation rule is not applied.
As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to
know which is the time Identifier as well as the period of each time series.

Examples

As described in the User Manual, the time data type is the intervening time between two time
points and using the ISO 8601 standard it can be expressed through a start date and an end
date separated by a slash at any precision. In the examples relevant to the time data type the
precision is set at the level of month and the time format YYYY-MM/YYYY-MM is used.

Given the Data Set DS_1, which contains yearly time series, where Id_2 is the reference time
Identifier of time type:

DS_1

Id_1 Id_2 Me_1

A 2010-01/2010-12 2

A 2011-01/2011-12 7

A 2012-01/2012-12 4

A 2013-01/2013-12 13

B 2010-01/2010-12 4

B 2011-01/2011-12 -4

B 2012-01/2012-12 -4

B 2013-01/2013-12 2

Example 1: DS_r := stock_to_flow (DS_1) results in:

VTL Reference Manual - Version 2.1 Page: 157

DS_r

Id_1 Id_2 Me_1

A 2010-01/2010-12 2

A 2011-01/2011-12 5

A 2012-01/2012-12 -3

A 2013-01/2013-12 9

B 2010-01/2010-12 4

B 2011-01/2011-12 -8

B 2012-01/2012-12 0

B 2013-01/2013-12 6

Given the Data Set DS_2, which contains yearly time series, where Id_2 is the reference time
Identifier of date type (conventionally each period is identified by its last day):

DS_2

Id_1 Id_2 Me_1

A 2010-12-31 2

A 2011-12-31 7

A 2012-12-31 4

A 2013-12-31 13

B 2010-12-31 4

B 2011-12-31 -4

B 2012-12-31 -4

B 2013-12-31 2

Example 2: DS_r := stock_to_flow (DS_2) results in:

DS_r

Id_1 Id_2 Me_1

A 2010-12-31 2

A 2011-12-31 5

A 2012-12-31 -3

A 2013-12-31 9

B 2010-12-31 4

B 2011-12-31 -8

B 2012-12-31 0

B 2013-12-31 6

Given the Data Set DS_3, which contains yearly time series, where Id_2 is the reference time
Identifier of time_period type:

VTL Reference Manual - Version 2.1 Page: 158

DS_3

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 7

A 2012Y 4

A 2013Y 13

B 2010Y 4

B 2011Y -4

B 2012Y -4

B 2013Y 2

Example 3: DS_r := stock_to_flow (DS_3) results in:

DS_r

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 5

A 2012Y -3

A 2013Y 9

B 2010Y 4

B 2011Y -8

B 2012Y 0

B 2013Y 6

Given the Data Set DS_4, which contains both quarterly and annual time series relevant to the
same phenomenon “A”, where Id_2 is the time Identifier of time_period type:

DS_4

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 9

A 2012Y 13

A 2013Y 26

A 2010Q1 2

A 2010Q2 -1

A 2010Q3 6

A 2010Q4 2

Example 4: DS_r := stock_to_flow (DS_4) results in:

VTL Reference Manual - Version 2.1 Page: 159

DS_r

Id_1 Id_2 Me_1

A 2010Y 2

A 2011Y 7

A 2012Y 4

A 2013Y 13

A 2010Q1 2

A 2010Q2 -3

A 2010Q3 7

A 2010Q4 -4

Time shift : timeshift

Syntax

timeshift (op , shiftNumber)

Input parameters

op the operand
shiftNumber the number of periods to be shifted

Examples of valid syntaxes

timeshift (DS_1, 2)
timeshift (DS_1)

Semantics for scalar operations

This operator does not perform scalar operations.

Input parameters type:

op :: dataset { identifier < time > _ , identifier _* }

shiftNumber :: integer

Result type:

result :: dataset { identifier < time > _ , identifier _* }

Additional constraints

The operand dataset has an Identifier of type time, date or time_period and may have other
Identifiers.

Behaviour

This operator takes in input a Data Set of time series and, for each time series of the Data Set,
shifts the reference time Identifier of a number of periods (of the time series) equal to the
shift_number parameter. If shift_number is negative, the shift is in the past, otherwise in the
future. For example, if the period of the time series is month and shift_number is -1 the
reference time Identifier is shifted of two months in the past.
The operator can be applied only on Data Sets of time series and returns a Data Set of time
series.

VTL Reference Manual - Version 2.1 Page: 160

The result Data Set has the same Identifier, Measure and Attribute Components as the operand
Data Set and contains the same time series as the operand, because the time series Identifiers
(all the Identifiers except the reference time Identifier) are not changed.
The Attribute propagation rule is not applied.
As mentioned in the section “Behaviour of the Time Operators”, the operator is assumed to
know which is the time Identifier as well as the period of each data point.

Examples

As described in the User Manual, the time data type is the intervening time between two time
points and using the ISO 8601 standard it can be expressed through a start date and an end
date separated by a slash at any precision. In the examples relevant to the time data type the
precision is set at the level of month and the time format YYYY-MM/YYYY-MM is used.

Given the Data Set DS_1, which contains yearly time series, where Id_2 is the reference time
Identifier of time type:

DS_1

Id_1 Id_2 Me_1

A 2010-01/2010-12 "hello world"

A 2011-01/2011-12 NULL

A 2012-01/2012-12 "say hello"

A 2013-01/2013-12 "he"

B 2010-01/2010-12 "hi, hello! "

B 2011-01/2011-12 "hi”

B 2012-01/2012-12 NULL

B 2013-01/2013-12 “hello!”

Example 1: DS_r := timeshift (DS_1 , -1) results in:

DS_r

Id_1 Id_2 Me_1

A 2009-01/2009-12 "hello world"

A 2010-01/2010-12 NULL

A 2011-01/2011-12 "say hello"

A 2012-01/2012-12 "he"

B 2009-01/2009-12 "hi, hello! "

B 2010-01/2010-12 "hi”

B 2011-01/2011-12 NULL

B 2012-01/2012-12 “hello!”

Given the Data Set DS_2, which contains yearly time series, where Id_2 is the reference time
Identifier of date type (conventionally each period is identified by its last day):

VTL Reference Manual - Version 2.1 Page: 161

DS_2

Id_1 Id_2 Me_1

A 2010-12-31 "hello world"

A 2011-12-31 NULL

A 2012-12-31 "say hello"

A 2013-12-31 "he"

B 2010-12-31 "hi, hello! "

B 2011-12-31 "hi”

B 2012-12-31 NULL

B 2013-12-31 “hello!”

Example 2: DS_r := timeshift (DS_2 , 2) results in:

DS_r

Id_1 Id_2 Me_1

A 2012-12-31 "hello world"

A 2013-12-31 NULL

A 2014-12-31 "say hello"

A 2015-12-31 "he"

B 2012-12-31 "hi, hello! "

B 2013-12-31 "hi”

B 2014-12-31 NULL

B 2015-12-31 “hello!”

Given the Data Set DS_3, which contains yearly time series, where Id_2 is the reference time
Identifier of time_period type:

DS_3

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2013Y "he"

B 2010Y "hi, hello! "

B 2011Y "hi”

B 2012Y NULL

B 2013Y “hello!”

Example 3: DS_r := timeshift (DS_3 , 1) results in:

VTL Reference Manual - Version 2.1 Page: 162

DS_r

Id_1 Id_2 Me_1

A 2011Y "hello world"

A 2012Y NULL

A 2013Y "say hello"

A 2014Y "he"

B 2011Y "hi, hello! "

B 2012Y "hi”

B 2013Y NULL

B 2014Y “hello!”

Given the Data Set DS_4, which contains both quarterly and annual time series relevant to the
same phenomenon “A”, where Id_2 is the reference time Identifier of time_period type:

DS_4

Id_1 Id_2 Me_1

A 2010Y "hello world"

A 2011Y NULL

A 2012Y "say hello"

A 2013Y "he"

A 2010Q1 "hi, hello! "

A 2010Q2 "hi”

A 2010Q3 NULL

A 2010Q4 “hello!”

Example 4: DS_r := timeshift (DS_3 , -1) results in:

DS_r

Id_1 Id_2 Me_1

A 2009Y "hello world"

A 2010Y NULL

A 2011Y "say hello"

A 2012Y "he"

A 2009Q4 "hi, hello! "

A 2010Q1 "hi”

A 2010Q2 NULL

A 2010Q3 “hello!”

VTL Reference Manual - Version 2.1 Page: 163

Time aggregation : time_agg

The operator time_agg converts time, date and time_period values from a smaller to a larger
duration.

Syntax

time_agg (periodIndTo { , periodIndFrom } { , op } { , first | last })

Input parameters

op the scalar value, the Component or the Data Set to be converted. If not
specified, then time_agg is used in combination within an aggregation
operator

periodIndFrom the source duration
periodIndTo the target duration

Examples of valid syntaxes

sum (DS group all time_agg (“A”))
time_agg (“A”, cast (“2012Q1”, time_period , ”YYYY\Qq”))
time_agg(“M”, cast (“2012-12-23”, date, “YYYY-MM-DD”))
time_agg(“M”, DS1)
ds_2 := ds_1[calc Me1 := time_agg(“M”,Me1)]

Semantics for scalar operations

The operator converts a time, date or time_period value from a smaller to a larger duration.

Input parameters type

op :: dataset { identifier < time > _ , identifier _* }

 | component<time>
| time

periodIndFrom :: duration
periodIndTo :: duration

Result type

op :: dataset { identifier < time > _ , identifier _* }
 | component<time>

| time

Additional constraints

If op is a Data Set then it has exactly one measure of type time, date or time_period.
If time_agg is used in combination with an aggregation operator, op must not be specified, and
the source dataset must have exactly one Identifier of type time, date or time_period (it may
have additional Identifiers of other types). This Identifier must be included in the group by
clause of the aggregation operator.
It is only possible to convert smaller duration values to larger duration values (e.g. it is possible

to convert monthly data to annual data but the contrary is not allowed).

Behaviour

The scalar version of this operator takes as input a time, date or time_period value, converts it

to periodIndTo and returns a scalar of the corresponding type.

The Data Set version acts on a single Measure Data Set of type time, date or time_period and
returns a Data Set having the same structure.

VTL Reference Manual - Version 2.1 Page: 164

Finally, VTL also provides a component version, for use in combination with an aggregation
operator, in order to group the source dataset by a different frequency.
In this case, the operator converts the Identifier of type time, date or time_period of the data
points (e.g., convert monthly data to annual data).
On time type, the operator maps the input value into the comprising larger regular interval,
whose duration is the one specified by the periodIndTo parameter.
On date type, the operator maps the input value into the comprising larger period, whose
duration is the one specified by the periodIndTo parameter, which is conventionally
represented either by the start or by the end date, according to the first/last parameter.
On time_period type, the operator maps the input value into the comprising larger time period
specified by the periodIndTo parameter (the original period indicator is converted in the
target one and the number of periods is adjusted correspondingly).
The input duration periodIndFrom is optional. In case of time_period Data Points, the input

duration can be inferred from the internal representation of the value. In case of time or date

types, it is inferred by the implementation.

Examples

Given the Data Set DS_1

DS_1

Id_1 Id_2 Me_1

2010Q1 A 20

2010Q2 A 20

2010Q3 A 20

2010Q1 B 50

2010Q2 B 50

2010Q1 C 10

2010Q2 C 10

Example 1: DS_r := sum (DS_1) group all time_agg (“A”) results in:

DS_r

Id_1 Id_2 Me_1

2010 A 60

2011 B 100

2010 C 20

Example 2: DS_r := time _agg (“Q”, cast (“2012M01”, time_period, ”YYYY\MMM”))

Returns: “2012Q1”.

Example 3: The following example maps a date to quarter level, 2012 (end of the period).

time_agg(“Q”, cast(“20120213”, date, ”YYYYMMDD”), _ , last)

and produces a date value corresponding to the string “20120331”

Example 4: The following example maps a date to year level, 2012 (beginning of the period).

VTL Reference Manual - Version 2.1 Page: 165

time_agg(cast(”A”, “2012M1”, date, ”YYYYMMDD”), _, first)

and produces a date value corresponding to the string “20120101”.

Actual time : current_date

Syntax

current_date ()

Input parameters

None

Examples of valid syntax

current_date

Semantics for scalar operations

The operator current_date returns the current time as a date type.

Input parameters type

This operator has no input parameters.

Result type

result :: date

Additional constraints

None.

Behaviour

The operator return the current date

Examples

cast (current_date, string, "YYYY.MM.DD")

Days between two dates: datediff

Syntax

datediff (dateFrom, dateTo)

Input parameters

dateFrom the starting date/time period
dateTo the ending date/time period

Examples of valid syntax

datediff (2022Q1, 2023Q2)
datediff (2020-12-14,2021-04-20)
datediff (2021Q2, 2021-11-04)
ds2 := ds1[calc Me3 := datediff(Me1, Me2)]

Semantics for scalar operations

The operator datediff returns the number of days between two dates or time periods. The last
day of the time period is assumed as the starting/ending date.

Input parameters type

dateFrom :: component<time> | time
dateTo :: component<time> | time

Result type

VTL Reference Manual - Version 2.1 Page: 166

result :: component<integer> | integer

Additional constraints

None.

Behaviour

The scalar version of this operator takes as input two date or time_period values and returns a
scalar integer value.
In the component version, that can be used in a calc clause, a new component of type integer is
added to the dataset.

Examples

datediff (2021Q2, 2021-11-04) gives 127

Given the following Data Set DS_1:

DS_1

Id_1 Id_2 Me_1

G 2019-01-01 2020Q2

G 2020-07-01 2021Q1

T 2020-12-31 2021Q1

Example 1: DS_r:= DS_1[calc Me2 := datediff(Id_2, Me_1)] results in:

DS_r

Id_1 Id_2 Me_1 Me_2

G 2019-01-01 2020Q2 546

G 2020-07-01 2021Q1 273

T 2020-12-31 2021Q1 90

Add a time unit to a date: dateadd

Syntax

dateadd (op, shiftNumber , periodInd)

Input parameters

op :: the operand
shiftNumber :: the number of periods to be shifted
periodInd :: the period indicator

Examples of valid syntax

dateadd (2022Q1, 5, “M”)
dateadd (2020-12-14, -3 , “Y”)
ds2 := ds1[calc Me2 := dateadd(Me1, 3, “W”)]
DS_r := dateadd(DS_1, 1, “M”)

VTL Reference Manual - Version 2.1 Page: 167

Semantics for scalar operations

The operator dateadd returns the date resulting from adding (or subtracting) the given time
units. The last day of the time period is assumed as the starting date.
Please note that adding months to a given date returns the date plus integer months, adding
years to a given date returns the date plus integer years; for years the “Y” is used.
For example:

dateadd (2020-02-10, 1, “M”) gives 2020-03-10
dateadd (2020-02-10, 30, “D”) gives 2020-03-11
dateadd (2020-02-10, 4, “W”) gives 2020-03-09
dateadd (2020-02-10, 1, “Y”) gives 2021-02-10
dateadd (2020-02-10, 365, “D”) gives 2021-02-09

Input parameters type

op :: dataset { identifier < time > _ , identifier _* }
 |component<time>
 | time
shiftNumber :: integer
periodInd :: duration

Result type

result :: dataset { identifier < time > _ , identifier _* }
 |component<time>
 |time

Additional constraints

None.

Behaviour

The scalar version of this operator takes as input one date or time_period value and returns a
date adding/substracting the indicated number of time units.
In the component version, that can be used in a calc clause, a new component of type date is
added to the dataset.
The operator can be applied also Data Sets; the result Data Set has the same Identifier, Measure
and Attribute Components as the operand Data Set.

Examples

dateadd (2021-11-04, -3, “W”) gives 2021-10-14

Given the following Data Set DS_1:

DS_1

Id_1 Me_1

G 2019-01-01

H 2020-07-01

T 2020-12-31

Example 1: DS_r:= DS_1[calc Me2 := dateadd(Me_1, 2, “M”)] results in:

VTL Reference Manual - Version 2.1 Page: 168

DS_r

Id_1 Me_1 Me_2

G 2019-01-01 2019-03-01

H 2020-07-01 2020-09-01

T 2020-12-17 2021-01-17

Extract time period from a date: year, month, dayofmonth, dayofyear

Syntax

year (op)
month (op)
dayofmonth (op)
dayofyear (op)

Input parameters

op :: the input date/time period

Examples of valid syntax

year (2022Q1)
dayofyear (2020-12-14)
ds2 := ds1[calc Me2 := dayofmonth(Me1)]

Semantics for scalar operations

The operator year returns the year of the given date/time period.
The operator month returns the month of the given date/time period (between 1 and 12).
The operator dayofmonth returns the ordinal day within the month (between 1 and 31).
The operator dayofyear returns the ordinal day within the year (between 1 and 366).

Input parameters type

op :: component<time> | time

Result type

result :: component< integer > | integer

Additional constraints

None.

Behaviour

The scalar version of this operators takes as input one date or time_period value and returns a
integer value corresponding to the specified time period.
In the component version, that can be used in a calc clause, a new component of type integer is
added to the dataset.

Examples

dayofyear (2020-04-07) gives 98

Given the following Data Set DS_1:

VTL Reference Manual - Version 2.1 Page: 169

DS_1

Id_1 Me_1

G 2019-01-01

H 2020-07-01

T 2020-12-31

Example 1: DS_r:= DS_1[calc Me2 := month(Me_1, 2, “M”)] results in:

DS_r

Id_1 Me_1 Me_2

G 2019-01-01 1

H 2020-07-01 7

T 2020-12-17 12

Number of days to duration: daytoyear, daytomonth

Syntax

daytoyear (op)
daytomonth (op)

Input parameters

op :: an integer representing the number of days to transform

Examples of valid syntax

daytoyear (422)
daytomonth (146)
ds2 := ds1[calc Me2 := daytomonth(Me1)]

Semantics for scalar operations

The operator daytoyear returns a duration having the following mask: \PY\YDDD\D.
The operator daytomonth returns a duration having the following mask: \PM\MDD\D.

Input parameters type

op :: component<integer> | integer

Result type

result :: duration

Additional constraints

None.

Behaviour

The scalar version of the daytoyear operator takes as input an integer representing the
number of days and returns the corresponding number of years and days; according to ISO
8601 Y = 365D.

VTL Reference Manual - Version 2.1 Page: 170

The scalar version of the daytomonth operator takes as input an integer representing the
numberoof days and returns the corresponding number of months and days; according to ISO
8601 M = 30D.
In the component version, that can be used in a calc clause, a new component of type duration
is added to the dataset.

Examples

daytoyear (782) gives P2Y52D
daytomonth (134) gives P4M14D

Given the following Data Set DS_1:

DS_1

Id_1 Me_1

G 240

H 724

T 1056

Example 1: DS_r:= DS_1[calc Me2 := daytoyear(Me_1)] results in:

DS_r

Id_1 Me_1 Me_2

G 240 P0Y240D

H 724 P1Y359D

T 1056 P2Y326D

Example 2: DS_r:= DS_1[calc Me2 := daytomonth(Me_1)] results in:

DS_r

Id_1 Me_1 Me_2

G 240 P8M0D

H 724 P24M4D

T 1056 P35M6D

Duration to number of days: yeartoday, monthtoday

Syntax

yeartoday (yearDuration)
monthtoday (monthDuration)

Input parameters

yearDuration :: a duration having the following mask: \PY\YDDD\D
monthDuration :: a duration having the following mask: \PM\MDD\D

VTL Reference Manual - Version 2.1 Page: 171

Examples of valid syntax

yeartoday (422)
monthtoday (146)
ds2 := ds1[calc Me2 := yeartoday(Me1)]

Semantics for scalar operations

The operators return an integer representing the number of days corresponding to the given
duration.

Input parameters type

yearDuration :: component<duration> | duration
monthDuration :: component<duration> | duration

Result type

result :: integer

Additional constraints

None.

Behaviour

The scalar version of the yeartoday operator takes as input a duration having the following
mask: \PY\YDDD\D; returns the corresponding number of years and days (according to ISO
8601 Y = 365D).
The scalar version of the monthtoday operator takes as input a duration having the following
mask: \PM\MDD\D; returns the corresponding number of months and days; according to ISO
8601 M = 30D).
In the component version, that can be used in a calc clause, a new component of type integer is
added to the dataset.

Examples

yeartoday (P1Y20D) gives 385
monthtoday (P3M10D) gives 100

Given the following Data Set DS_1:

DS_1

Id_1 Me_1

G P2Y230D

H P1Y23D

T P3Y152D

Example 1: DS_r:= DS_1[calc Me2 := yeartoday (Me_1)] results in:

DS_r

Id_1 Me_1 Me_2

G P2Y230D 960

H P1Y23D 388

T P3Y152D 1247

VTL Reference Manual - Version 2.1 Page: 172

VTL-ML - Set operators

Union: union

Syntax

union (dsList)
dsList ::= ds { , ds }*

Input parameters

dsList the list of Data Sets in the union

Examples of valid syntaxes

union (ds2, ds3)

Semantics for scalar operations

This operator does not perform scalar operations.

Input parameters type

ds :: dataset

Result type

result :: dataset

Additional constraints

All the Data Sets in dsList have the same Identifier, Measure and Attribute Components.

Behaviour

The union operator implements the union of functions (i.e., Data Sets). The resulting Data Set
has the same Identifier, Measure and Attribute Components of the operand Data Sets specified
in the dsList, and contains the Data Points belonging to any of the operand Data Sets.
The operand Data Sets can contain Data Points having the same values of the Identifiers. To
avoid duplications of Data Points in the resulting Data Set, those Data Points are filtered by
choosing the Data Point belonging to the left most operand Data Set. For instance, let's assume
that in union (ds1, ds2) the operand ds1 contains a Data Point dp1 and the operand ds2
contains a Data Point dp2 such that dp1 has the same Identifiers values of dp2, then the
resulting Data Set contains dp1 only.
The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section
“Typical behaviours of the ML Operators”).
The automatic Attribute propagation is not applied.

Examples

Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

VTL Reference Manual - Version 2.1 Page: 173

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2012 N Total Total 23

2012 S Total Total 5

Example 1: DS_r := union(DS_1,DS_2) results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

2012 N Total Total 23

2012 S Total Total 5

Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 23

2012 S Total Total 5

Example 2: DS_r := union (DS_1, DS_2) results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 5

2012 G Total Total 2

2012 F Total Total 3

2012 S Total Total 5

VTL Reference Manual - Version 2.1 Page: 174

Intersection : intersect

Syntax

intersect (dsList)
dsList ::= ds { , ds }*

Input parameters

dsList the list of Data Sets in the intersection

Examples of valid syntaxes

intersect (ds2, ds3)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

ds :: dataset

Return type

result :: dataset

Additional constraints

All the Data Sets in dsList have the same Identifier, Measure and Attribute Components.

Behaviour

The intersect operator implements the intersection of functions (i.e., Data Sets). The resulting
Data Set has the same Identifier, Measure and Attribute Components of the operand Data Sets
specified in the dsList, and contains the Data Points belonging to all the operand Data Sets.
The operand Data Sets can contain Data Points having the same values of the Identifiers. To
avoid duplications of Data Points in the resulting Data Set, those Data Points are filtered by
choosing the Data Point belonging to the left most operand Data Set. For instance, let's assume
that in intersect (ds1, ds2) the operand ds1 contains a Data Point dp1 and the operand ds2
contains a Data Point dp2 such that dp1 has the same Identifiers values of dp2, then the
resulting Data Set contains dp1 only.
The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section
“Typical behaviours of the ML Operators”).
The automatic Attribute propagation is not applied.

Examples

Given the operand Data Sets DS_1 and DS_2:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 1

2012 G Total Total 2

2012 F Total Total 3

VTL Reference Manual - Version 2.1 Page: 175

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2011 B Total Total 10

2012 G Total Total 2

2011 M Total Total 40

Example 1: DS_r := intersect(DS_1,DS_2) results in:

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 G Total Total 2

Set difference : setdiff

Syntax

setdiff (ds1, ds2)

Input parameters

ds1 the first Data Set in the difference (the minuend)
ds2 the second Data Set in the difference (the subtrahend)

Examples of valid syntaxes

setdiff (ds2, ds3)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

ds1, ds2 :: dataset

Result type

result :: dataset

Additional constraints

The operand Data Sets have the same Identifier, Measure and Attribute Components.

Behaviour

The operator implements the set difference of functions (i.e. Data Sets), interpreting the Data
Points of the input Data Sets as the elements belonging to the operand sets, the minuend and
the subtrahend, respectively. The operator returns one single Data Set, with the same Identifier,
Measure and Attribute Components as the operand Data Sets, containing the Data Points that
appear in the first Data Set but not in the second. In other words, for setdiff (ds1, ds2), the
resulting Dataset contains all the data points Data Point dp1 of the operand ds1 such that there
is no Data Point dp2 of ds2 having the same values for homonym Identifier Components.
The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section
“Typical behaviours of the ML Operators”).
The automatic Attribute propagation is not applied.

Examples

Given the operand Data Sets DS_1 and DS_2:

VTL Reference Manual - Version 2.1 Page: 176

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 10

2012 G Total Total 20

2012 F Total Total 30

2012 M Total Total 40

2012 I Total Total 50

2012 S Total Total 60

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2011 B Total Total 10

2012 G Total Total 20

2012 F Total Total 30

2012 M Total Total 40

2012 I Total Total 50

2012 S Total Total 60

Example 1: DS_r := setdiff (DS_1, DS_2) results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 10

Given the operand Data Sets DS_1 and DS_2 :

DS_1

Id_1 Id_2 Id_3 Me_1

R M 2011 7

R F 2011 10

R T 2011 12

DS_2

Id_1 Id_2 Id_3 Me_1

R M 2011 7

R F 2011 10

Example 2: DS_r := setdiff (DS_1 , DS_2) results in:

VTL Reference Manual - Version 2.1 Page: 177

DS_r

Id_1 Id_2 Id_3 Me_1

R T 2011 12

Simmetric difference : symdiff

Syntax

symdiff (ds1, ds2)

Input parameters

ds1 the first Data Set in the difference
ds2 the second Data Set in the difference

Examples of valid syntaxes

symdiff (ds_2, ds_3)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

ds1, ds2 :: dataset

Result type

result :: dataset

Additional constraints

The operand Data Sets have the same Identifier, Measure and Attribute Components.

Behaviour

The operator implements the symmetric set difference between functions (i.e. Data Sets),
interpreting the Data Points of the input Data Sets as the elements in the operand Sets. The
operator returns one Data Set, with the same Identifier, Measure and Attribute Components as
the operand Data Sets, containing the Data Points that appear in the first Data Set but not in the
second and the Data Points that appear in the second Data Set but not in the first one.
Data Points are compared to one another by Identifier Components. For symdiff (ds1, ds2), the
resulting Data Set contains all the Data Points dp1 contained in ds1 for which there is no Data
Point dp2 in ds2 with the same values for homonym Identifier components and all the Data
Points dp2 contained in ds2 for which there is no Data Point dp1 in ds1 with the same values
for homonym Identifier Components.
The operator has the typical behaviour of the “Behaviour of the Set operators” (see the section
“Typical behaviours of the ML Operators”).
The automatic Attribute propagation is not applied.

Examples

Given the operand Data Sets DS_1 and DS_2 :

VTL Reference Manual - Version 2.1 Page: 178

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 1

2012 G Total Total 2

2012 F Total Total 3

2012 M Total Total 4

2012 I Total Total 5

2012 S Total Total 6

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2011 B Total Total 1

2012 G Total Total 2

2012 F Total Total 3

2012 M Total Total 4

2012 I Total Total 5

2012 S Total Total 6

Example 1: DS_r := symdiff (DS_1, DS_2) results in:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 1

2011 B Total Total 1

VTL Reference Manual - Version 2.1 Page: 179

VTL-ML - Hierarchical aggregation

Hierarchical roll-up : hierarchy

Syntax

hierarchy (op , hr { condition condComp { , condComp }* } { rule ruleComp } { mode }
{ input } { output })

mode ::= non_null | non_zero | partial_null | partial_zero | always_null |
always_zero

input ::= dataset | rule | rule_priority

output ::= computed | all

Input parameters

op the operand Data Set.

hr the hierarchical Ruleset to be applied.

condComp condComp is a Component of op to be associated (in positional order) to
the conditioning Value Domains or Variables defined in hr (if any).

ruleComp ruleComp is the Identifier of op to be associated to the rule Value Domain
or Variable defined in hr.

mode this parameter specifies how to treat the possible missing Data Points
corresponding to the Code Items in the right side of a rule and which Data
Points are produced in output. The meaning of the possible values of the
parameter is explained below.

input this parameter specifies the source of the values used as input of the
hierarchical rules. The meaning of the possible values of the parameter is
explained below.

output this parameter specifies the content of the resulting Data Set. The meaning
of the possible values of the parameter is explained below.

Examples of valid syntaxes

hierarchy (DS1, HR1 rule Id_1 non_null all)
hierarchy (DS2, HR2 condition Comp_1, Comp_2 rule Id_3 non_zero rule computed)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

op :: dataset { measure<number> _ }
hr :: name < hierarchical >
condComp :: name < component >
ruleComp :: name <identifier >

Result type

result :: dataset {measure<number> _ }

Additional constraints

If hr is defined on Value Domains then it is mandatory to specify the condition (if any) and the
rule parameters. Moreover, the Components specified as condComp and ruleComp must

VTL Reference Manual - Version 2.1 Page: 180

belong to the operand op and must take values on the Value Domains corresponding, in
positional order, to the ones specified in the condition and rule parameter of hr.
If hr is defined on Variables, the specification of condComp and ruleComp is not needed, but
they can be specified all the same if it is desired to show explicitly in the invocation which are
the involved Components: in this case, the condComp and ruleComp must be the same and in
the same order as the Variables specified in in the condition and rule signatures of hr.

Behaviour

The hierarchy operator applies the rules of hr to op as specified in the parameters. The
operator returns a Data Set with the same Identifiers and the same Measure as op. The Attribute
propagation rule is applied on the groups of Data Points which contribute to the same Data
Points of the result.
The behaviours relevant to the different options of the input parameters are the following.
First, the parameter input is considered to determine the source of the Data Points used as
input of the Hierarchy. The possible options of the parameter input and the corresponding
behaviours are the following:

dataset For each Rule of the Ruleset and for each item on the right hand side of the Rule,
the operator takes the input Data Points exclusively from the operand op.

rule For each Rule of the Ruleset and for each item on the right-hand side of the Rule:
 if the item is not defined as the result (left-hand side) of another Rule, the

current Rule takes the input Data Points from the operand op
 if the item is defined as the result of another Rule, the current Rule takes the

input Data Points from the computed output of such other Rule;
rule_priority For each Rule of the Ruleset and for each item on the right-hand side of the Rule:

 if the item is not defined as the result (left-hand side) of another rule, the
current Rule takes the input Data Points from the operand op.

 if the item is defined as the result of another Rule, then:
o if an expected input Data Point exists in the computed output of such

other Rule and its Measure is not NULL, then the current Rule takes
such Data Point;

o if an expected input Data Point does not exist in the computed output
of such other Rule or its measure is NULL, then the current Rule takes
the Data Point from op (if any) having the same values of the
Identifiers.

If the parameter input is not specified then it is assumed to be rule.
Then the parameter mode is considered, to determine the behaviour for missing Data Points
and for the Data Points to be produced in the output. The possible options of the parameter
mode and the corresponding behaviours are the following:

non_null the result Data Point is produced when its computed Measure value is not NULL
(i.e., when no Data Point corresponding to the Code Items of the right side of the
rule is missing or has NULL Measure value); in the calculation, the possible
missing Data Points corresponding to the Code Items of the right side of the rule
are considered existing and having a Measure value equal to NULL;

non_zero the result Data Point is produced when its computed Measure value is not equal
to 0 (zero); the possible missing Data Points corresponding to the Code Items of
the right side of the rule are considered existing and having a Measure value
equal to 0;

VTL Reference Manual - Version 2.1 Page: 181

partial_null the result Data Point is produced if at least one Data Point corresponding to the
Code Items of the right side of the rule is found (whichever is its Measure value);
the possible missing Data Points corresponding to the Code Items of the right
side of the rule are considered existing and having a NULL Measure value;

partial_zero the result Data Point is produced if at least one Data Point corresponding to the
Code Items of the right side of the rule is found (whichever is its Measure value);
the possible missing Data Points corresponding to the Code Items of the right
side of the rule are considered existing and having a Measure value equal to 0
(zero);

always_null the result Data Point is produced in any case; the possible missing Data Points
corresponding to the Code Items of the right side of the rule are considered
existing and having have a Measure value equal to NULL;

always_zero the result Data Point is produced in any case; the possible missing Data Points
corresponding to the Code Items of the right side of the rule are considered
existing and having a Measure value equal to 0 (zero);

If the parameter mode is not specified, then it is assumed to be non_null

The following table summarizes the behaviour of the options of the parameter “mode”

OPTION of the
MODE

PARAMETER:

Missing Data
Points are

considered:

Null Data
Points are

considered:

Condition for
evaluating the

rule

Returned Data
Points

Non_null NULL NULL
If all the involved
Data Points are

not NULL

Only not NULL Data
Points (Zeros are

returned too)

Non_zero Zero NULL
If at least one of

the involved Data
Points is <> zero

Only not zero Data
Points (NULLS are

returned too)

Partial_null NULL NULL
If at least one of

the involved Data
Points is not NULL

Data Points of any
value (NULL, not

NULL and zero too)

Partial_zero Zero NULL
If at least one of

the involved Data
Points is not NULL

Data Points of any
value (NULL, not

NULL and zero too)

Always_null NULL NULL Always
Data Points of any
value (NULL, not

NULL and zero too)

Always_zero Zero NULL Always
Data Points of any
value (NULL, not

NULL and zero too)

Finally the parameter output is considered, to determine the content of the resulting Data Set.
The possible options of the parameter output and the corresponding behaviours are the
following:

VTL Reference Manual - Version 2.1 Page: 182

computed the resulting Data Set contains only the set of Data Points computed according
to the Ruleset

all the resulting Data Set contains the union between the set of Data Points “R”
computed according to the Ruleset and the set of Data Points of op that have
different combinations of values for the Identifiers. In other words, the result is
the outcome of the following (virtual) expression: union (setdiff (op , R) , R)

If the parameter output is not specified then it is assumed to be computed.

Examples

Given the following hierarchical ruleset:
define hierarchical ruleset HR_1 (valuedomain rule VD_1) is

 A = J + K + L
; B = M + N + O
; C = P + Q
; D = R + S
; E = T + U + V
; F = Y + W + Z
; G = B + C
; H = D + E
; I = D + G

end hierarchical ruleset
And given the operand Data Set DS_1 (where At_1 is viral and the propagation rule says that
the alphabetic order prevails the NULL prevails on the alphabetic characters and the Attribute
value for missing Data Points is assumed as NULL):

DS_1

Id_1 Id_2 Me_1 At_1

2010 M 2 Dx

2010 N 5 Pz

2010 O 4 Pz

2010 P 7 Pz

2010 Q -7 Pz

2010 S 3 Ay

2010 T 9 Bq

2010 U NULL Nj

2010 V 6 Ko

Example 1: DS_r := hierarchy (DS_1, HR_1 rule Id_2 non_null) results in:

DS_r

Id_1 Id_2 Me_1 At_1

2010 B 11 Dx

2010 C 0 Pz

2010 G 19 Dx

VTL Reference Manual - Version 2.1 Page: 183

Example 2: DS_r := hierarchy (DS_1, HR_1 rule Id_2 non_zero) results in:

DS_r

Id_1 Id_2 Me_1 At_1

2010 B 11 Dx

2010 D 3 NULL

2010 E NULL Bq

2010 G 11 Dx

2010 H NULL NULL

2010 I 14 NULL

Example 3: DS_r := hierarchy (DS_1, HR_1 rule Id_2 partial_null) results in:

DS_r

Id_1 Id_2 Me_1 At_1

2010 B 11 Dx

2010 C 0 Pz

2010 D NULL NULL

2010 E NULL Bq

2010 G 11 Dx

2010 H NULL NULL

2010 I NULL NULL

VTL Reference Manual - Version 2.1 Page: 184

VTL-ML - Aggregate and Analytic operators

The following table lists the operators that can be invoked in the Aggregate or in the Analytic
invocations described below and their main characteristics.

Operator Description Allowed invocations Type of the

resulting

Measure

Type of the

operand

Measures

count number of Data Points Aggregate Analytic integer any

min minimum value of a set of values Aggregate Analytic any any

max maximum value of a set of values Aggregate Analytic any any

median median value of a set of numbers Aggregate Analytic number number

sum sum of a set of numbers Aggregate Analytic number number

avg average value of a set of numbers Aggregate Analytic number number

stddev_pop population standard deviation of a set

of numbers

Aggregate Analytic number number

stddev_samp sample standard deviation of a set of

numbers

Aggregate Analytic number number

var_pop population variance of a set of numbers Aggregate Analytic number number

var_samp sample variance of a set of numbers Aggregate Analytic number number

first_value first value in an ordered set of values Analytic any any

last_value last value in an ordered set of values Analytic any any

lag in an ordered set of Data Points, it
returns the value(s) taken from a Data
Point at a given physical offset prior to
the current Data Point

Analytic any any

lead in an ordered set of Data Points, it
returns the value(s) taken from a Data
Point at a given physical offset beyond
the current Data Point

Analytic any any

rank rank (order number) of a Data Point in

an ordered set of Data Points

Analytic integer any

ratio_to_report ratio of a value to the sum of a set of
values

Analytic number number

VTL Reference Manual - Version 2.1 Page: 185

Aggregate invocation

Syntax

in a Data Set expression:

aggregateOperator (firstOperand { , additionalOperand }* { groupingClause })

in a Component expression within an aggr clause)

aggregateOperator (firstOperand { , additionalOperand }*) { groupingClause }

aggregateOperator ::= avg | count | max | median | min | stddev_pop

 | stddev_samp | sum | var_pop | var_samp

groupingClause ::= { group by groupingId {, groupingId}*

 | group except groupingId {, groupingId}*
 | group all conversionExpr }1
 { having havingCondition }

Input Parameters

aggregateOperator the keyword of the aggregate operator to invoke (e.g., avg, count, max
…)

firstOperand the first operand of the invoked aggregate operator (a Data Set for an
invocation at Data Set level or a Component of the input Data Set for an
invocation at Component level within a aggr operator or a aggr clause in
a join operation)

additionalOperand an additional operand (if any) of the invoked operator. The various
operators can have a different number of parameters. The number of
parameters, their types and if they are mandatory or optional depend on
the invoked operator

groupingClause the following alternative grouping options:

group by the Data Points are grouped by the values of the specified
Identifiers (groupingId). The Identifiers not specified are
dropped in the result.

group except the Data Points are grouped by the values of the
Identifiers not specified as groupingId. The Identifiers
specified as groupingId are dropped in the result.

group all converts the values of an Identifier Component using
conversionExpr and keeps all the resulting Identifiers.

groupingId Identifier Component to be kept (in the group by clause) or dropped (in
the group except clause).

conversionExpr specifies a conversion operator (e.g., time_agg) to convert data from
finer to coarser granularity. The conversion operator is applied on an
Identifier of the operand Data Set op.

havingCondition a condition (boolean expression) at component level, having only
Components of the input Data Sets as operands (and possibly constants),
to be fulfilled by the groups of Data Points: only groups for which
havingCondition evaluates to TRUE appear in the result. The
havingCondition refers to the groups specified through the
groupingClause, therefore it must invoke aggregate operators (e.g. avg,

VTL Reference Manual - Version 2.1 Page: 186

count, max …, see also the corresponding sections). A correct example
of havingCondition is:

max(obs_value) < 1000
while the condition obs_value < 1000 is not a right havingCondition,
because it refers to the values of single Data Points and not to the groups.
The count operator is used in a havingCondition without parameters, e.g.:

sum (ds group by id1 having count () >= 10)

Examples of valid syntaxes

avg (DS_1)
avg (DS_1 group by Id_1, Id_2)
avg (DS_1 group except Id_1, Id_2)
avg (DS_1 group all time_agg ("Q"))

Semantics for scalar operations

The aggregate operators cannot be applied to scalar values.

Input parameters type

firstOperand :: dataset
| component

additionalOperand :: see the type of the additional parameter (if any) of the invoked
aggregateOperator. The aggregate operators and their parameters
are described in the following sections.

groupingId :: name < identifier >
conversionExpr :: identifier
havingCondition :: component<boolean>

Result type:

result :: dataset
| component

Additional constraints

The Aggregate invocation cannot be nested in other Aggregate or Analytic invocations.
The aggregate operations at component level can be invoked within the aggr clause, both as
part of a join operator and the aggr operator (see the parameter aggrExpr of those operators).
The basic scalar types of firstOperand and additionalOperand (if any) must be compliant with
the specific basic scalar types required by the invoked operator (the required basic scalar types
are described in the table at the beginning of this chapter and in the sections of the various
operators below).
The conversionExpr parameter applies just one conversion operator to just one Identifier
belonging to the input Data Set. The basic scalar type of the Identifier must be compatible with
the basic scalar type of the conversion operator.
If the grouping clause is omitted, then all the input Data Points are aggregated in a single group
and the clause returns a Data Set that contains a single Data Point and has no Identifiers.

Behaviour

The aggregateOperator is applied as usual to all the measures of the firstOperand Data Set (if
invoked at Data Set level) or to the firstOperand Component of the input Data Set (if invoked at
Component level). In both cases, the operator calculates the required aggregated values for

VTL Reference Manual - Version 2.1 Page: 187

groups of Data Points of the input Data Set. The groups of Data Points to be aggregated are
specified through the groupingClause, which allows the following alternative options.

group by the Data Points are grouped by the values of the specified Identifiers. The

Identifiers not specified are dropped in the result.
group except the Data Points are grouped by the values of the Identifiers not specified

in the clause. The specified Identifiers are dropped in the result.
group all converts an Identifier Component using conversionExpr and keeps all the

Identifiers.

The having clause is used to filter groups in the result by means of an aggregate condition
evaluated on the single groups (for example the minimum number of rows in the group).
If no grouping clause is specified, then all the input Data Points are aggregated in a single group
and the operator returns a Data Set that contains a single Data Point and has no Identifiers.
For the invocation at Data Set level, the resulting Data Set has the same Measures as the
operand. For the invocation at Component level, the resulting Data Set has the Measures
explicitly calculated (all the other Measures are dropped because no aggregation behaviour is
specified for them).
For invocation at Data Set level, the Attribute propagation rule is applied. For invocation at
Component level, the Attributes calculated within the aggr clause are maintained in the result;
for all the other Attributes that are defined as viral, the Attribute propagation rule is applied
(for the semantics, see the Attribute Propagation Rule section in the User Manual).
As mentioned, the Aggregate invocation at component level can be done within the aggr clause,
both as part of a Join operator and the aggr operator (see the parameter aggrExpr of those
operators), therefore, for a better comprehension of the behaviour at Component level, see also
those operators.

Examples

Given the Data Set DS_1

DS_1

Id_1 Id_2 Id_3 Me_1 At_1

2010 E XX 20

2010 B XX 1 H

2010 R XX 1 A

2010 F YY 23

2011 E XX 20 P

2011 B ZZ 1 N

2011 R YY -1 P

2011 F XX 20 Z

2012 L ZZ 40 P

2012 E YY 30 P

Example 1: DS_r := avg (DS_1 group by Id_1) provided that At_1 is non viral, results in:

VTL Reference Manual - Version 2.1 Page: 188

DS_r

Id_1 Me_1

2010 11.25

2011 10

2012 35

Note: the example above can be rewritten equivalently in the following forms:

DS_r := avg (DS_1 group except Id_2, Id_3)
DS_r := avg (DS_1#Me_1 group by Id_1)

Example 2: DS_r := sum (DS_1 group by Id_1, Id_3)

provided that At_1 is non viral, results in:

DS_r

Id_1 Id_3 Me_1

2010 XX 22

2010 YY 23

2011 XX 40

2011 ZZ 1

2011 YY -1

2012 ZZ 40

2012 YY 30

Example 3: DS_r := avg (DS_1) provided that At_1 is non viral results in:

DS_r

Me_1

15.5

Example 4: DS_r := DS_1 [aggr Me_2 := max (Me_1),Me_3 := min (Me_1) group by Id_1]

provided that At_1 is viral and the first letter in alphabetic order prevails and NULL prevails on
all the other characters, results in:

DS_r

Id_1 Me_2 Me_3 At_1

2010 23 1

2011 20 -1 N

2012 40 30 P

VTL Reference Manual - Version 2.1 Page: 189

Analytic invocation

Syntax

analyticOperator (firstOperand { , additionalOperand }* over (analyticClause))

analyticOperator ::= avg | count | max | median | min | stddev_pop

 | stddev_samp | sum | var_pop | var_samp

 | first_value | lag | last_value | lead | rank | ratio_to_report

analyticClause ::= { partitionClause } { orderClause } { windowClause }

partitionClause ::= partition by identifier { , identifier }*

orderClause ::= order by component { asc | desc } { , component { asc | desc } }*

windowClause ::= { data points | range }1 between limitClause and limitClause

limitClause ::= { num preceding | num following | current data point | unbounded
 preceding | unbounded following }1

Parameters

analyticOperator the keyword of the analytic operator to invoke (e.g., avg, count, max …)
firstOperand the first operand of the invoked analytic operator (a Data Set for an

invocation at Data Set level or a Component of the input Data Set for an
invocation at Component level within a calc operator or a calc clause in
a join operation)

additionalOperand an additional operand (if any) of the invoked operator. The various
operators can have a different number of parameters. The number of
parameters, their types and if they are mandatory or optional depend on
the invoked operator

analyticClause clause that specifies the analytic behaviour
partitionClause clause that specifies how to partition Data Points in groups to be analysed

separately. The input Data Set is partitioned according to the values of
one or more Identifier Components. If the clause is omitted, then the Data
Set is partitioned by the Identifier Components that are not specified in
the orderClause.

orderClause clause that specifies how to order the Data Points. The input Data Set is
ordered according to the values of one or more Components, in ascending
order if asc is specified, in descending order if desc is specified, by
default in ascending order if the asc and desc keywords are omitted8.

windowClause clause that specifies how to apply a sliding window on the ordered Data
Points. The keyword data points means that the sliding window includes
a certain number of Data Points before and after the current Data Point
in the order given by the orderClause. The keyword range means that
the sliding windows includes all the Data Points whose values are in a
certain range in respect to the value, for the current Data Point, of the
Measure which the analytic is applied to.

limitClause clause that can specify either the lower or the upper boundaries of the
sliding window. Each boundary is specified in relationship either to the
whole partition or to the current data point under analysis by using the
following keywords:

8 Some assumptions are made on boolean values (true > false) and on time period elements (“Y” > “S” > “Q” > “M”
> “W”, i.e. taking the order from the largest to the smallest)

VTL Reference Manual - Version 2.1 Page: 190

 unbounded preceding means that the sliding window starts at the
first Data Point of the partition (it make sense only as the first limit of
the window)

 unbounded following indicates that the sliding window ends at the
last Data Point of the partition (it makes sense only as the second limit
of the window)

 current data point specifies that the window starts or ends at the
current Data Point.

 num preceding specifies either the number of data points to consider
preceding the current data point in the order given by the orderClause
(when data points is specified in the window clause), or the maximum
difference to consider, as for the Measure which the analytic is applied
to, between the value of the current Data Point and the generic other
Data Point (when range is specified in the windows clause).

 num following specifies either the number of data points to consider
following the current data point in the order given by the orderClause
(when data points is specified in the window clause), or the maximum
difference to consider, as for the Measure which the analytic is applied
to, between the values of the generic other Data Point and the current
Data Point (when range is specified in the windows clause).

If the whole windowClause is omitted then the default is data points

between unbounded preceding and unbounded following.
identifier Identifier Component of the input Data Set
component Component of the input Data Set
num scalar number

Examples of valid syntaxes

sum (DS_1 over (partition by Id_1 order by Id_2))
sum (DS_1 over (order by Id_2))
avg (DS_1 over (order by Id_1 data points between 1 preceding and 1 following))
DS_1 [calc M1 := sum (Me_1 over (order by Id_1))]

Semantics for scalar operations

The analytic operators cannot be applied to scalar values.

Input parameters type

firstOperand :: dataset
 | component
additionalOperand :: see the type of the additional parameter (if any) of the invoked

operator. The operators and their parameters are described in the
following sections.

identifier :: name < identifier >
component :: name < component >
num :: integer

Result type

result :: dataset
 | component

Additional constraints

The analytic invocation cannot be nested in other Aggregate or Analytic invocations.

VTL Reference Manual - Version 2.1 Page: 191

The analytic operations at component level can be invoked within the calc clause, both as part
of a Join operator and the calc operator (see the parameter calcExpr of those operators).
The basic scalar types of firstOperand and additionalOperand (if any) must be compliant with
the specific basic scalar types required by the invoked operator (the required basic scalar types
are described in the table at the beginning of this chapter and in the sections of the various
operators below).

Behaviour

The analytic Operator is applied as usual to all the Measures of the input Data Set (if invoked at
Data Set level) or to the specified Component of the input Data Set (if invoked at Component
level). In both cases, the operator calculates the desired output values for each Data Point of the
input Data Set.
The behaviour of the analytic operations can be procedurally described as follows:
 The Data Points of the input Data Set are first partitioned (according to partitionBy) and then

ordered (according to orderBy).
 The operation is performed for each Data Point (named “current Data Point”) of the input

Data Set. For each input Data Point, one output Data Point is returned, having the same
values of the Identifiers. The analytic operator is applied to a “window” that includes a set
of Data Points of the input Data Set and returns the values of the Measure(s) of the output
Data Point.
 If windowClause is not specified, then the set of Data Points which contribute to the

analytic operation is the whole partition which the current Data Point belongs to
 If windowClause is specified, then the set of Data Points is the one specified by

windowClause (see windowsClause and LimitClause explained above).
For the invocation at Data Set level, the resulting Data Set has the same Measures as the input
Data Set firstOperand. For the invocation at Component level, the resulting Data Set has the
Measures of the input Data Set plus the Measures explicitly calculated through the calc clause.
For the invocation at Data Set level, the Attribute propagation rule is applied. For invocation at
Component level, the Attributes calculated within the calc clause are maintained in the result;
for all the other Attributes that are defined as viral, the Attribute propagation rule is applied
(for the semantics, see the Attribute Propagation Rule section in the User Manual).
As mentioned, the Analytic invocation at component level can be done within the calc clause,
both as part of a Join operator and the calc operator (see the parameter aggrCalc of those
operators).

Examples

Given the Data Set DS_1:

DS_r

Id_1 Id_2 Id_3 Me_1

2010 E XX 5

2010 B XX -3

2010 R XX 9

2010 E YY 13

2011 E XX 11

2011 B ZZ 7

2011 E YY -1

VTL Reference Manual - Version 2.1 Page: 192

2011 F XX 0

2012 L ZZ -2

2012 E YY 3

Example 1:

DS_r := sum (DS_1 over (order by Id_1, Id_2, Id_3 data points between 1 preceding and
 1 following)) results in:

DS_r

Id_1 Id_2 Id_3 Me_1

2010 B XX 2

2010 E XX 15

2010 E YY 27

2010 R XX 29

2011 B ZZ 27

2011 E XX 17

2011 E YY 10

2011 F XX 2

2012 E YY 1

2012 L ZZ 1

Counting the number of data points: count

Aggregate syntax

count (dataset { groupingClause }) (in a Data Set expression)

count (component) { groupingClause} (in a Component expression within an aggr clause)

count () (in an having clause)

Analytic syntax

count (dataset over (analyticClause)) (in a Data Set expression)

count (component over (analyticClause)) (in a Component expression within a calc clause)

Input parameters

dataset the operand Data Set
component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Examples of valid syntaxes

See Aggregate and Analytic invocations above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

VTL Reference Manual - Version 2.1 Page: 193

Input parameters type

dataset :: dataset
component :: component

Result type

result :: dataset { measure<integer> int_var }
 | component<integer>

Additional constraints

None.

Behaviour

The operator returns the number of the input Data Points.
For other details, see Aggregate and Analytic invocations.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX iii

2011 A YY jjj

2011 B YY iii

2012 A XX kkk

2012 B YY iii

Example 1: DS_r := count (DS_1 group by Id_1) results in:

DS_r

Id_1 Int_var

2011 3

2012 2

Example 2: use of count in a having clause:

DS_r := sum (DS_1 group by Id_1 having count() > 2) results in:

DS_r

Id_1 Int_var

2011 3

Minimum value : min

Aggregate syntax

min (dataset { groupingClause }) (in a Data Set expression)

min (component) { groupingClause } (in a Component expression within an aggr clause)

Analytic syntax

VTL Reference Manual - Version 2.1 Page: 194

min (dataset over (analyticClause)) (in a Data Set expression)

min (component over (analyticClause)) (in a Component expression within a calc clause)

Input parameters

dataset the operand Data Set
component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Examples of valid syntaxes

See Aggregate and Analytic invocations above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset
component :: component

Result type

result :: dataset
 | component

Additional constraints

None.

Behaviour

The operator returns the minimum value of the input values.
For other details, see Aggregate and Analytic invocations.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1: DS_r := min (DS_1 group by Id_1) results in:

DS_r

Id_1 Me_1

2011 3

2012 2

VTL Reference Manual - Version 2.1 Page: 195

Maximum value : max

Aggregate syntax

max (dataset { groupingClause }) (in a Data Set expression)

max (component) { groupingClause } (in a Component expression within an aggr clause)

Analytic syntax

max (dataset over (analyticClause)) (in a Data Set expression)

max (component over (analyticClause)) (in a Component expression within a calc clause)

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Examples of valid syntaxes

See Aggregate and Analytic invocations above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset
component :: component

Result type

result :: dataset
 | component

Additional constraints

None.

Behaviour

The operator returns the maximum of the input values.
For other details, see Aggregate and Analytic invocations.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

VTL Reference Manual - Version 2.1 Page: 196

Example 1: DS_r := max (DS_1 group by Id_1) results in:

DS_r

Id_1 Me_1

2011 7

2012 4

Median value : median

Aggregate syntax

median (dataset { groupingClause }) (in a Data Set expression)

median (component) {groupingClause} (in a Component expression within an aggr clause)

Analytic syntax

median (dataset over (analyticClause)) (in a Data Set expression)

median (component over (analyticClause)) (in a Component expression within a calc clause)

Input parameters

dataset the operand Data Set
component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Examples of valid syntaxes

See Aggregate and Analytic invocations above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset {measure<number> _+ }
component :: component<number>

Result type

result :: dataset { measure<number> _+ }
 | component<number>

Additional constraints

None.

Behaviour

The operator returns the median value of the input values.
For other details, see Aggregate and Analytic invocations.

Examples

Given the Data Set DS_1:

VTL Reference Manual - Version 2.1 Page: 197

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1: DS_r := median (DS_1 group by Id_1) results in:

DS_r

Id_1 Me_1

2011 5

2012 3

Sum : sum

Aggregate syntax

sum (dataset { groupingClause }) (in a Data Set expression)

sum (component){ groupingClause } (in a Component expression within an aggr clause)

Analytic syntax

sum (dataset over (analyticClause)) (in a Data Set expression)

sum (component over (analyticClause)) (in a Component expression within a calc clause)

Input parameters

dataset the operand Data Set
component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Examples of valid syntaxes

See Aggregate and Analytic invocations above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset { measure<number> _+ }
component :: component<number>

Result type

result :: dataset { measure<number> _+ }
 | component<number>

VTL Reference Manual - Version 2.1 Page: 198

Additional constraints

None.

Behaviour

The operator returns the sum of the input values.
For other details, see Aggregate and Analytic invocations.

Examples

Given the Data Set DS_1 :

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1: DS_r := sum (DS_1 group by Id_1) results in:

DS_r

Id_1 Me_1

2011 15

2012 6

Average value : avg

Aggregate syntax

avg (dataset { groupingClause }) (in a Data Set expression)

avg (component) { groupingClause } (in a Component expression within an aggr clause)

Analytic syntax

avg (dataset over (analyticClause)) (in a Data Set expression)

avg (component over (analyticClause)) (in a Component expression within a calc clause)

Input parameters

dataset the operand Data Set
component the operand Component
groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Examples of valid syntaxes

See Aggregate and Analytic invocations above, at the beginning of the section.

Semantics for scalar operations

VTL Reference Manual - Version 2.1 Page: 199

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset {measure<number> _+}
component :: component<number>

Result type

result :: dataset { measure<number> _+ }
 | component<number>

Additional constraints

None.

Behaviour

The operator returns the mean of the input values.
For other details, see Aggregate and Analytic invocations.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1: DS_r := avg (DS_1 group by Id_1) results in:

DS_r

Id_1 Me_1

2011 5

2012 3

Population standard deviation : stddev_pop

Aggregate syntax

stddev_pop (dataset { groupingClause }) (in a Data Set expression)

stddev_pop(component){groupingClause} (in a Component expr. within an aggr clause)

Analytic syntax

stddev_pop (dataset over (analyticClause)) (in a Data Set expression)

stddev_pop (component over (analyticClause)) (in a Component expr. within a calc
clause)

Input parameters

dataset the operand Data Set

VTL Reference Manual - Version 2.1 Page: 200

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Examples of valid syntaxes

See Aggregate and Analytic invocations above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset { measure<number> _+ }
component :: component<number>

Result type

result :: dataset { measure<number> _+ }
 | component<number>

Additional constraints

None.

Behaviour

The operator returns the “population standard deviation” of the input values.
For other details, see Aggregate and Analytic invocations.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1: DS_r := stddev_pop (DS_1 group by Id_1) results in:

DS_r

Id_1 Me_1

2011 1.633

2012 1

Sample standard deviation : stddev_samp

Aggregate syntax

stddev_samp (dataset { groupingClause }) (in a Data Set expression)

VTL Reference Manual - Version 2.1 Page: 201

stddev_samp (component) { groupingClause } (in a Component expr. within an aggr
clause)

Analytic syntax

stddev_samp (dataset over (analyticClause)) (in a Data Set expression)

stddev_samp (component over (analyticClause)) (in a Component expr. within a calc
clause)

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation
analyticClause see Analytic invocation

Semantics for scalar operations

This operator cannot be applied to scalar values.

Examples of valid syntaxes

See Aggregate and Analytic invocations above, at the beginning of the section.

Input parameters type

dataset :: dataset { measure<number> _+ }
component :: component<number>

Result type

result :: dataset { measure<number> _+ }
| component<number>

Additional constraints

None.

Behaviour

The operator returns the “sample standard deviation” of the input values.
For other details, see Aggregate and Analytic invocations.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1: DS_r := stddev_samp (DS_1 group by Id_1) results in:

VTL Reference Manual - Version 2.1 Page: 202

DS_r

Id_1 Me_1

2011 2

2012 1.4142

Population variance : var_pop

Aggregate syntax

var_pop (dataset { groupingClause }) (in a Data Set expression)

var_pop (component) { groupingClause } (in a Component expr. within an aggr clause)

Analytic syntax

var_pop (dataset over (analyticClause)) (in a Data Set expression)

var_pop (component over (analyticClause)) (in a Component expr. within a calc
clause)

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Examples of valid syntaxes

See Aggregate and Analytic invocations above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset {measure<number>_+}
component :: component<number>

Result type

result :: dataset { measure<number> _+ }
 | component<number>

Additional constraints

None.

Behaviour

The operator returns the “population variance” of the input values.
For other details, see Aggregate and Analytic invocations.

Examples

Given the Data Set DS_1 :

VTL Reference Manual - Version 2.1 Page: 203

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1: DS_r := var_pop (DS_1 group by Id_1) results in:

DS_r

Id_1 Me_1

2011 2,6667

2012 1

Sample variance : var_samp

Aggregate syntax

var_samp (dataset { groupingClause }) (in a Data Set expression)

var_samp (component) { groupingClause } (in a Component expr. within an aggr clause)

Analytic syntax

var_samp (dataset over (analyticClause)) (in a Data Set expression)

var_samp (component over (analyticClause)) (in a Component expr. within a calc
clause)

Input parameters

dataset the operand Data Set

component the operand Component

groupingClause see Aggregate invocation

analyticClause see Analytic invocation

Examples of valid syntaxes

See Aggregate and Analytic invocations above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset {measure<number>_+}
component :: component<number>

Result type

result :: dataset { measure<number> _+ }
 | component<number>

Additional constraints

None.

VTL Reference Manual - Version 2.1 Page: 204

Behaviour

The operator returns the sample variance of the input values.
For other details, see Aggregate and Analytic invocations.

Examples

Given the Data Set DS_1

DS_1

Id_1 Id_2 Id_3 Me_1

2011 A XX 3

2011 A YY 5

2011 B YY 7

2012 A XX 2

2012 B YY 4

Example 1: DS_r := var_samp (DS_1 group by [Id_1]) results in:

DS_r

Id_1 Me_1

2011 4

2012 2

First value : first_value

Syntax

first_value (dataset over (analyticClause)) (in a Data Set expression)

first_value (component over (analyticClause)) (in a Component expr. within a calc
clause)

Input parameters

dataset the operand Data Set
component the operand Component
analyticClause see Analytic invocation

Examples of valid syntaxes

See Analytic invocation above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset { measure<scalar> _+ }
component :: component<scalar>

Result type

result :: dataset

VTL Reference Manual - Version 2.1 Page: 205

 | component<scalar>

Additional constraints

The Aggregate invocation is not allowed.

Behaviour

The operator returns the first value (in the value order) of the set of Data Points that belong to
the same analytic window as the current Data Point.
When invoked at Data Set level, it returns the first value for each Measure of the input Data Set.
The first value of different Measures can result from different Data Points.
When invoked at Component level, it returns the first value of the specified Component.
For other details, see Analytic invocation.

Examples

Given the Data Set DS_1 :

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

Example 1:
DS_r := first_value (DS_1 over (partition by Id_1, Id_2 order by Id_3 data points between
1 preceding and 1 following)) results in:

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 3 1

A XX 1995 4 5

A XX 1996 6 5

A YY 1993 5 3

A YY 1994 5 2

A YY 1995 2 2

A YY 1996 2 2

VTL Reference Manual - Version 2.1 Page: 206

Last value : last_value

Syntax

last_value (dataset over (analyticClause)) (in a Data Set expression)

last_value (component over (analyticClause)) (in a Component expr. within a calc clause)

Input parameters

dataset the operand Data Set
component the operand Component
analyticClause see Analytic invocation

Examples of valid syntaxes

See Analytic invocation above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset {measure<scalar> _+}
component :: component<scalar>

Result type

result :: dataset
 | component<scalar>

Additional constraints

The Aggregate invocation is not allowed.

Behaviour

The operator returns the last value (in the value order) of the set of Data Points that belong to
the same analytic window as the current Data Point.
When invoked at Data Set level, it returns the last value for each Measure of the input Data Set.
The last value of different Measures can result from different Data Points.
When invoked at Component level, it returns the last value of the speficied Component.
For other details, see Analytic invocation.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

Example 1:

VTL Reference Manual - Version 2.1 Page: 207

DS_r := last_value (DS_1 over (partition by Id_1, Id_2 order by Id_3 data points between
1 preceding and 1 following)) results in:

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 4 9

A XX 1994 7 9

A XX 1995 7 9

A XX 1996 7 8

A YY 1993 9 4

A YY 1994 10 4

A YY 1995 10 7

A YY 1996 10 7

Lag : lag

Syntax

in a Data Set expression:

lag (dataset {, offset {, defaultValue } } over ({ partitionClause } orderClause))

In a Component expression within a calc clause:

lag (component {, offset {, defaultValue } } over ({ partitionClause } orderClause))

Input parameters

dataset the operand Data Set

component the operand Component

offset the relative position prior to the current Data Point

defaultValue the value returned when the offset goes outside of the partition.

partitionClause see Analytic invocation

orderClause see Analytic invocation

Examples of valid syntaxes

See Analytic invocation above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset
component :: component
offset :: integer [value > 0]
default value :: scalar

Result type

result :: dataset

VTL Reference Manual - Version 2.1 Page: 208

 | component

Additional constraints

The Aggregate invocation is not allowed.
The windowClause of the Analytic invocation syntax is not allowed.

Behaviour

In the ordered set of Data Points of the current partition, the operator returns the value(s) taken
from the Data Point at the specified physical offset prior to the current Data Point.
If defaultValue is not specified then the value returned when the offset goes outside the
partition is NULL.
For other details, see Analytic invocation.

Examples

Given the Data Set DS_1 :

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

Example 1: DS_r := lag (DS_1 , 1 over (partition by Id_1 , Id_2 order by Id_3))
 results in:

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 NULL NULL

A XX 1994 3 1

A XX 1995 4 9

A XX 1996 7 5

A YY 1993 NULL NULL

A YY 1994 9 3

A YY 1995 5 4

A YY 1996 10 2

VTL Reference Manual - Version 2.1 Page: 209

lead : lead

Syntax

in a Data Set expression:

lead (dataset , {offset {, defaultValue } } over ({ partitionClause } orderClause))

in a Component expression within a calc clause:

lead (component , {offset {, defaultValue } } over ({ partitionClause } orderClause))

Input parameters

dataset the operand Data Set

component the operand Component

offset the relative position beyond the current Data Point

defaultValue the value returned when the offset goes outide the partition.

partitionClause see Analytic invocation

orderClause see Analytic invocation

Examples of valid syntaxes

See Analytic invocation above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset
component :: component
offset :: integer [value > 0]
default value :: scalar

Result type

result :: dataset
 | component

Additional constraints

The Aggregate invocation is not allowed.
The windowClause of the Analytic invocation syntax is not allowed.

Behaviour

In the ordered set of Data Points of the current partition, the operator returns the value(s) taken
from the Data Point at the specified physical offset beyond the current Data Point.
If defaultValue is not specified, then the value returned when the offset goes outside the
partition is NULL.
For other details, see Analytic invocation.

Examples

Given the Data Set DS_1

VTL Reference Manual - Version 2.1 Page: 210

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 3 1

A XX 1994 4 9

A XX 1995 7 5

A XX 1996 6 8

A YY 1993 9 3

A YY 1994 5 4

A YY 1995 10 2

A YY 1996 2 7

Example 1: DS_r := lead (DS_1 , 1 over (partition by Id_1 , Id_2 order by Id_3))
 results in:

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 1993 4 9

A XX 1994 7 5

A XX 1995 6 8

A XX 1996 NULL NULL

A YY 1993 5 4

A YY 1994 10 2

A YY 1995 2 7

A YY 1996 NULL NULL

Rank : rank

Syntax

rank (over ({ partitionClause } orderClause)) (in a Component expr. within a calc clause)

Input parameters

partitionClause see Analytic invocation
orderClause see Analytic invocation

Examples of valid syntaxes

See Analytic invocation above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset
component :: component

Result type

VTL Reference Manual - Version 2.1 Page: 211

result :: dataset { measure<integer> int_var }
 | component<integer>
Additional constraints
The invocation at Data Set level is not allowed.
The Aggregate invocation is not allowed.
The windowClause of the Analytic invocation syntax is not allowed.

Behaviour

The operator returns an order number (rank) for each Data Point, starting from the number 1
and following the order specified in the orderClause. If some Data Points are in the same order
according to the specified orderClause, the same order number (rank) is assigned and a gap
appears in the sequence of the assigned ranks (for example, if four Data Points have the same
rank 5, the following assigned rank would be 9).
For other details, see Analytic invocation.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 3 1

A XX 2001 4 9

A XX 2002 7 5

A XX 2003 6 8

A YY 2000 9 3

A YY 2001 5 4

A YY 2002 10 2

A YY 2003 5 7

Example 1:

DS_r := DS_1 [calc Me2 := rank (over (partition by Id_1 , Id_2 order by Me_1))
 results in:

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 3 1

A XX 2001 4 2

A XX 2002 7 4

A XX 2003 6 3

A YY 2000 9 3

A YY 2001 5 1

A YY 2002 10 4

A YY 2003 5 1

VTL Reference Manual - Version 2.1 Page: 212

Ratio to report : ratio_to_report

Syntax

ratio_to_report (dataset over (partitionClause)) (in a Data Set expression)

ratio_to_report (component over (partitionClause)) (in a Component expr. within a
calc clause)

Input parameters

dataset the operand Data Set
component the operand Component
partitionClause see Analytic invocation

Examples of valid syntaxes

See Analytic invocation above, at the beginning of the section.

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type

dataset :: dataset { measure<number>_+ }
component :: component<number>

Result type

result :: dataset { measure<number> _+ }
 | component<number>

Additional constraints

The Aggregate invocation is not allowed.
The orderClause and windowClause of the Analytic invocation syntax are not allowed.

Behaviour

The operator returns the ratio between the value of the current Data Point and the sum of the
values of the partition which the current Data Point belongs to.
For other details, see Analytic invocation.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 3 1

A XX 2001 4 3

A XX 2002 7 5

A XX 2003 6 1

A YY 2000 12 0

A YY 2001 8 8

A YY 2002 6 5

A YY 2003 14 -3

Example 1: DS_r := ratio_to_report (DS_1 over (partition by Id_1, Id_2)) results in:

VTL Reference Manual - Version 2.1 Page: 213

DS_r

Id_1 Id_2 Id_3 Me_1 Me_2

A XX 2000 0.15 0,1

A XX 2001 0.2 0.3

A XX 2002 0.35 0.5

A XX 2003 0.3 0.1

A YY 2000 0.3 0

A YY 2001 0.2 0.8

A YY 2002 0.15 0.5

A YY 2003 0.35 -0.3

VTL Reference Manual - Version 2.1 Page: 214

VTL-ML - Data validation operators

check_datapoint

Syntax

check_datapoint (op , dpr { components listComp } { output output })

listComp ::= comp { , comp }*

output ::= invalid | all | all_measures

Input parameters

op the Data Set to check

dpr the Data Point Ruleset to be used

listComp if dpr is defined on Value Domains then listComp is the list of Components of op
to be associated (in positional order) to the conditioning Value Domains defined
in dpr. If dpr is defined on Variables then listComp is the list of Components of
op to be associated (in positional order) to the conditioning Variables defined
in dpr (for documentation purposes).

comp Component of op

output specifies the Data Points and the Measures of the resulting Data Set:

invalid the resulting Data Set contains a Data Point for each Data Point

of op and each Rule in dpr that evaluates to FALSE on that Data

Point. The resulting Data Set has the Measures of op.

all the resulting Data Set contains a data point for each Data Point

of op and each Rule in dpr. The resulting Data Set has the boolean

Measure bool_var.

all_measures the resulting Data Set contains a Data Point for each Data

Point of op and each Rule in dpr. The resulting dataset has the

Measures of op and the boolean Measure bool_var.

If not specified then output is assumed to be invalid. See the Behaviour for

further details.

Examples of valid syntaxes

check_datapoint (DS1, DPR invalid)
check_datapoint (DS1, DPR all_measures)

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type:

op :: dataset
dpr :: name < datapoint >
comp :: name < component >

Result type:

result :: dataset

VTL Reference Manual - Version 2.1 Page: 215

Additional constraints

If dpr is defined on Value Domains then it is mandatory to specify listComp. The Components
specified in listComp must belong to the operand op and be defined on the Value Domains
specified in the signature of dpr.
If dpr is defined on Variables then the Components specified in the signature of dpr must belong
to the operand op.
If dpr is defined on Variables and listComp is specified then the Components specified in
listComp are the same, in the same order, as those specified in op (they are provided for
documentation purposes).

Behaviour

It returns a Data Set having the following Components:
 the Identifier Components of op
 the Identifier Component ruleid whose aim is to identify the Rule that has generated the

actual Data Point (it contains at least the Rule name specified in dpr 9)
 if the output parameter is invalid: the original Measures of op (no boolean measure)
 If the output parameter is all: the boolean Measure bool_var whose value is the result of

the evaluation of a rule on a Data Point (TRUE, FALSE or NULL).
 If the output parameter is all_measures: the original measures of op and the boolean

Measure bool_var whose value is the result of the evaluation of a rule on a Data Point
(TRUE, FALSE or NULL).

 the Measure errorcode that contains the errorcode specified in the rule
 the Measure errorlevel that contains the errorlevel specified in the rule

A Data Point of op can produce several Data Points in the resulting Data Set, each of them with
a different value of ruleid. If output is invalid then the resulting Data Set contains a Data Point
for each Data Point of op and each rule of dpr that evaluates to FALSE. If output is all or
all_measures then the resulting Data Set contains a Data Point for each Data Point of op and
each rule of dpr.

Examples

define datapoint ruleset dpr1 (variable Id_3, Me_1) is
 when Id_3 = “CREDIT” then Me_1 >= 0 errorcode “Bad credit”
 ; when Id_3 = “DEBIT” then Me_1 >= 0 errorcode “Bad debit”
end datapoint ruleset

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1

2011 I CREDIT 10

2011 I DEBIT -2

2012 I CREDIT 10

2012 I DEBIT 2

DS_r := check_datapoint (DS_1, dpr1) results in:

9 The content of ruleid maybe personalised in the implementation

VTL Reference Manual - Version 2.1 Page: 216

DS_r

Id_1 Id_2 Id_3 ruleid Me_1 errorcode errorlevel

2011 I DEBIT dpr1_2 -2 Bad debit

DS_r := check_datapoint (DS_1, dpr1 all) results in:

DS_r

Id_1 Id_2 Id_3 ruleid bool_var errorcode errorlevel

2011 I CREDIT dpr1_1 true

2011 I CREDIT dpr1_2 true

2011 I DEBIT dpr1_1 true

2011 I DEBIT dpr1_2 false Bad debit

2012 I CREDIT dpr1_1 true

2012 I CREDIT dpr1_2 true

2012 I DEBIT dpr1_1 true

2012 I DEBIT dpr1_2 true

check_hierarchy

Syntax

check_hierarchy (op , hr { condition condComp { , condComp }* } { rule ruleComp }
 { mode } { input } { output })

mode ::= non_null | non_zero | partial_null | partial_zero | always_null |
always_zero

input ::= dataset | dataset_priority

output ::= invalid | all | all_measures

Input parameters

op the Data Set to be checked

hr the hierarchical Ruleset to be used

condComp condComp is a Component of op to be associated (in positional order) to the
conditioning Value Domains or Variables defined in hr (if any).

ruleComp ruleComp is the Identifier of op to be associated to the rule Value Domain or
Variable defined in hr.

mode this parameter specifies how to treat the possible missing Data Points
corresponding to the Code Items in the left and right sides of the rules and which
Data Points are produced in output. The meaning of the possible values of the
parameter is explained below.

input this parameter specifies the source of the values used as input of the
comparisons. The meaning of the possible values of the parameter is explained
below.

output this parameter specifies the structure and the content of the resulting dataset.
The meaning of the possible values of the parameter is explained below.

VTL Reference Manual - Version 2.1 Page: 217

Examples of valid syntaxes

check_hierarchy (DS1, HR_2 non_null dataset invalid)
check_hierarchy (DS1, HR_3 non_zero dataset_priority all)

Input parameters type

op :: dataset { measure<number> _ }
hr :: name < hierarchical >
condComp :: name < component >
ruleComp :: name < identifier >

Result type

result :: dataset {measure<number> _ }

Additional constraints

If hr is defined on Value Domains then it is mandatory to specify the condition (if any in the
ruleset hr) and the rule parameters. Moreover, the Components specified as condComp and
ruleComp must belong to the operand op and must take values on the Value Domains
corresponding, in positional order, to the ones specified in the condition and rule parameter of
hr.

If hr is defined on Variables, the specification of condComp and ruleComp is not needed, but
they can be specified all the same if it is desired to show explicitly in the invocation which are
the involved Components: in this case, the condComp and ruleComp must be the same and in
the same order as the Variables specified in in the condition and rule signatures of hr.

Behaviour

The check_hierarchy operator applies the Rules of the Ruleset hr to check the Code Items
Relations between the Code Items present in op (as for the Code Items Relations, see the User
Manual - section “Generic Model for Variables and Value Domains”). The operator checks if the
relation between the left and the right member is fulfilled, giving TRUE in positive case and
FALSE in negative case.
The Attribute propagation rule is applied on each group of Data Points which contributes to the
same Data Point of the result.

The behaviours relevant to the different options of the input parameters are the following.

First, the parameter input is used to determine the source of the Data Points used as input of
the check_hierarchy. The possible options of the parameter input and the corresponding
behaviours are the following:

dataset this option addresses the case where all the input Data Points of all the
Rules of the Ruleset are expected to be taken from the input Data Set (the
operand op).

 For each Rule of the Ruleset and for each item on the left and right sides of
the Rule, the operator takes the input Data Points exclusively from the
operand op.

dataset_prority this option addresses the case where the input Data Points of all the Rules
of the Ruleset are preferably taken from the input Data Set (the operand
op), however if a valid Measure value for an expected Data Point is not
found in op, the attempt is made to take it from the computed output of a
(possible) other Rule.

 For each Rule of the Ruleset and for each item on the left and right sides of
the Rule:

VTL Reference Manual - Version 2.1 Page: 218

 if the item is not defined as the result (left side) of another Rule that
applies the Code Item relation “is equal to” (=), the current Rule takes
the input Data Points from the operand op.

 if the item is defined as result of another Rule R that applies the Code
Item relation “is equal to” (=), then:

o if an expected input Data Point exists in op and its Measure is
not NULL, then the current Rule takes such Data Point from
op;

o if an expected input Data Point does not exist in op or its
measure is NULL, then the current Rule takes the Data Point
(if any) that has the same Identifiers’ values from the
computed output of the other Rule R.

If the parameter input is not specified then it is assumed to be dataset.

Then the parameter mode is considered, to determine the behaviour for missing Data Points
and for the Data Points to be produced in the output. The possible options of the parameter
mode and the corresponding behaviours are the following:

non_null the result Data Point is produced when all the items involved in the comparison
exist and have not NULL Measure value (i.e., when no Data Point corresponding
to the Code Items of the left and right sides of the rule is missing or has NULL
Measure value); under this option, in evaluating the comparison, the possible
missing Data Points corresponding to the Code Items of the left and right sides
of the rule are considered existing and having a NULL Measure value;

non_zero the result Data Point is produced when at least one of the items involved in the
comparison exist and have Measure not equal to 0 (zero); the possible missing
Data Points corresponding to the Code Items of the left and right sides of the
rule are considered existing and having a Measure value equal to 0;

partial_null the result Data Point is produced if at least one Data Point corresponding to the
Code Items of the left and right sides of the rule is found (whichever is its
Measure value); the possible missing Data Points corresponding to the Code
Items of the left and right sides of the rule are considered existing and having a
NULL Measure value;

partial_zero the result Data Point is produced if at least one Data Point corresponding to the
Code Items of the left and right sides of the rule is found (whichever is its
Measure value); the possible missing Data Points corresponding to the Code
Items of the left and right sides of the rule are considered existing and having a
Measure value equal to 0 (zero);

always_null the result Data Point is produced in any case; the possible missing Data Points
corresponding to the Code Items of the left and right sides of the rule are
considered existing and having a Measure value equal to NULL;

always_zero the result Data Point is produced in any case; the possible missing Data Points
corresponding to the Code Items of the left and right sides of the rule are
considered existing and having a Measure value equal to 0 (zero);

If the parameter mode is not specified, then it is assumed to be non_null.

The following table summarizes the behaviour of the options of the parameter “mode”

VTL Reference Manual - Version 2.1 Page: 219

OPTION of
the MODE

PARAMETER:

Missing Data
Points are

considered:

Null Data
Points are

considered:

Condition for
evaluating the rule

Returned Data
Points

Non_null NULL NULL
If all the involved Data

Points are not NULL

Only not NULL Data
Points (Zeros are

returned too)

Non_zero Zero NULL
If at least one of the

involved Data Points is
<> zero

Only not zero Data
Points (NULLS are

returned too)

Partial_null NULL NULL
If at least one of the

involved Data Points is
not NULL

Data Points of any
value (NULL, not

NULL and zero too)

Partial_zero Zero NULL
If at least one of the

involved Data Points is
not NULL

Data Points of any
value (NULL, not

NULL and zero too)

Always_null NULL NULL Always
Data Points of any
value (NULL, not

NULL and zero too)

Always_zero Zero NULL Always
Data Points of any
value (NULL, not

NULL and zero too)

Finally the parameter output is considered, to determine the structure and content of the
resulting Data Set. The possible options of the parameter output and the corresponding
behaviours are the following:

all all the Data Points produced by the comparison are returned, both the valid
ones (TRUE) and the invalid ones (FALSE) besides the possible NULL ones. The
result of the comparison is returned in the boolean Measure bool_var. The
original Measure Component of the Data Set op is not returned.

invalid only the invalid (FALSE) Data Points produced by the comparison are returned.
The result of the comparison (boolean Measure bool_var) is not returned. The
original Measure Component of the Data Set op is returned and contains the
Measure values taken from the Data Points on the left side of the rule.

all_measures all the Data Points produced by the comparison are returned, both the valid
ones (TRUE) and the invalid ones (FALSE) besides the possible NULL ones. The
result of the comparison is returned in the boolean Measure bool_var. The
original Measure Component of the Data Set op is returned and contains the
Measure values taken from the Data Points on the left side of the rule.

If the parameter output is not specified then it is assumed to be invalid.

VTL Reference Manual - Version 2.1 Page: 220

In conclusion, the operator returns a Data Set having the following Components:

 all the Identifier Components of op

 the additional Identifier Component ruleid, whose aim is to identify the Rule that has
generated the actual Data Point (it contains at least the Rule name specified in hr 10)

 if the output parameter is all: the boolean Measure bool_var whose values are the result
of the evaluation of the Rules (TRUE, FALSE or NULL).

 if the output parameter is invalid: the original Measure of op, whose values are taken
from the Measure values of the Data Points of the left side of the Rule

 if the output parameter is all_measures: the boolean Measure bool_var, whose value is
the result of the evaluation of a Rule on a Data Point (TRUE, FALSE or NULL), and the
original Measure of op, whose values are taken from the Measure values of the Data
Points of the left side of the Rule

 the Measure imbalance, which contains the difference between the Measure values of the
Data Points on the left side of the Rule and the Measure values of the corresponding
calculated Data Points on the right side of the Rule

 the Measure errorcode, which contains the errorcode value specified in the Rule

 the Measure errorlevel, which contains the errorlevel value specified in the Rule

Note that a generic Data Point of op can produce several Data Points in the resulting Data Set,
one for each Rule in which the Data Point appears as the left member of the comparison.

Examples

See also the examples in define hierarchical ruleset.

Given the following hierarchical ruleset:

define hierarchical ruleset HR_1 (valuedomain rule VD_1) is
 R010 : A = J + K + L errorlevel 5
; R020 : B = M + N + O errorlevel 5
; R030 : C = P + Q errorcode XX errorlevel 5
; R040 : D = R + S errorlevel 1
; R050 : E = T + U + V errorlevel 0
; R060 : F = Y + W + Z errorlevel 7
; R070 : G = B + C
; R080 : H = D + E errorlevel 0
; R090 : I = D + G errorcode YY errorlevel 0
; R100 : M >= N errorlevel 5

; R110 : M <= G errorlevel 5

end hierarchical ruleset

10 The content of ruleid maybe personalised in the implementation

VTL Reference Manual - Version 2.1 Page: 221

And given the operand Data Set DS_1 (where At_1 is viral and the propagation rule says that
the alphabetic order prevails the NULL prevails on the alphabetic characters and the Attribute
value for missing Data Points is assumed as NULL):

DS_1

Id_1 Id_2 Me_1

2010 A 5

2010 B 11

2010 C 0

2010 G 19

2010 H NULL

2010 I 14

2010 M 2

2010 N 5

2010 O 4

2010 P 7

2010 Q -7

2010 S 3

2010 T 9

2010 U NULL

2010 V 6

Example 1: DS_r := check_hierarchy (DS_1, HR_1 rule Id_2 partial_null all) results in:

DS_r

Id_1 Id_2 ruleid Bool_var imbalance errorcode errorlevel

2010 A R010 NULL NULL NULL 5

2010 B R020 TRUE 0 NULL 5

2010 C R030 TRUE 0 XX 5

2010 D R040 NULL NULL NULL 1

2010 E R050 NULL NULL NULL 0

2010 F R060 NULL NULL NULL 7

2010 G R070 FALSE 8 NULL NULL

2010 H R080 NULL NULL NULL 0

2010 I R090 NULL NULL YY 0

2010 M R100 FALSE -3 NULL 5

2010 M R110 TRUE -17 NULL 5

VTL Reference Manual - Version 2.1 Page: 222

check

Syntax

check (op { errorcode errorcode } { errorlevel errorlevel } { imbalance imbalance }
 { output })

output ::= invalid | all

Input parameters

op a boolean Data Set (a boolean condition expressed on one or more Data Sets)

errorcode the error code to be produced when the condition evaluates to FALSE. It must

be a valid value of the errorcode_vd Value Domain (or string if the errorcode_vd

Value Domain is not found). It can be a Data Set or a scalar. If not specified then

errorcode is NULL.

errorlevel the error level to be produced when the condition evaluates to FALSE. It must

be a valid value of the errorlevel_vd Value Domain (or integer if the

errorcode_vd Value Domain is not found). It can be a Data Set or a scalar. If not

specified then errorlevel is NULL.

imbalance the imbalance to be computed. imbalance is a numeric mono-measure Data Set

with the same Identifiers of op. If not specified then imbalance is NULL.

output specifies which Data Points are returned in the resulting Data Set:

invalid returns the Data Points of op for which the condition

evaluates to FALSE

all returns all Data Points of op

If not specified then output is all.

Examples of valid syntaxes

check (DS1 > DS2 errorcode myerrorcode errorlevel myerrorlevel imbalance DS1 - DS2
invalid)

Input parameters type:

op :: dataset
errorcode :: errorcode_vd
errorlevel :: errorlevel_vd
imbalance :: number

Result type:

result :: dataset

Additional constraints

op has exactly a boolean Measure Component.

Behaviour

It returns a Data Set having the following components:

 the Identifier Components of op

 a boolean Measure named bool_var that contains the result of the evaluation of the
boolean dataset op

VTL Reference Manual - Version 2.1 Page: 223

 the Measure imbalance that contains the specified imbalance

 the Measure errorcode that contains the specified errorcode

 the Measure errorlevel that contains the specified errorlevel

If output is all then all data points are returned. If output is invalid then only the Data Points
where bool_var is FALSE are returned.

Examples

Given the Data Sets DS_1 and DS_2 :

DS_1

Id_1 Id_2 Me_1

2010 I 1

2011 I 2

2012 I 10

2013 I 4

2014 I 5

2015 I 6

2010 D 25

2011 D 35

2012 D 45

2013 D 55

2014 D 50

2015 D 75

DS_2

Id_1 Id_2 Me_1

2010 I 9

2011 I 2

2012 I 10

2013 I 7

2014 I 5

2015 I 6

2010 D 50

2011 D 35

2012 D 40

2013 D 55

2014 D 65

2015 D 75

VTL Reference Manual - Version 2.1 Page: 224

Example 1: DS_r := check (DS1 >= DS2 imbalance DS1 - DS2) returns:

DS_r

Id_1 Id_2 bool_var imbalance errorcode errorlevel

2010 I FALSE -8 NULL NULL

2011 I TRUE 0 NULL NULL

2012 I TRUE 0 NULL NULL

2013 I FALSE -3 NULL NULL

2014 I TRUE 0 NULL NULL

2015 I TRUE 0 NULL NULL

2010 D FALSE -25 NULL NULL

2011 D TRUE 0 NULL NULL

2012 D TRUE 5 NULL NULL

2013 D TRUE 0 NULL NULL

2014 D FALSE -15 NULL NULL

2015 D TRUE 0 NULL NULL

VTL Reference Manual - Version 2.1 Page: 225

VTL-ML - Conditional operators

if-then-else : if

Syntax

if condition then thenOperand else elseOperand

Input parameters

condition a Boolean condition (dataset, component or scalar)
thenOperand the operand returned when condition evaluates to true
elseOperand the operand returned when condition evaluates to false

Examples of valid syntaxes

if A > B then A else B

Semantics for scalar operations

The if operator returns thenOperand if condition evaluates to true, elseOperand otherwise.
For example, considering the statement:

if x1 > x2 then 2 else 5,
for x1 = 3, x2 =0 it returns 2
for x1 = 0, x2 =3 it returns 5

Input Parameters type

condition :: dataset { measure <boolean> _ }
| component<Boolean>
| boolean

thenOperand :: dataset
| component
| scalar

elseOperand :: dataset
| component
| scalar

Result type

result :: dataset
| component
| scalar

Additional constraints

 The operands thenOperand and elseOperand must be of the same scalar type.
 If the operation is at scalar level, thenOperand and elseOperand are scalar.
 If the operation is at Component level, at least one of thenOperand and elseOperand

is a Component (the other one can be scalar) and condition must be a Component too
(a boolean Component); thenOperand, elseOperand and the other Components
referenced in condition must belong to the same Data Set.

 If the operation is at Data Set level, at least one of thenOperand and elseOperand
is a Data Set (the other one can be scalar) and condition must be a Data Set too
(having a unique boolean Measure) and must have the same Identifiers as
thenOperand or/and ElseOperand

VTL Reference Manual - Version 2.1 Page: 226

o If thenOperand and elseOperand are both Data Sets then they must have the
same Components in the same roles

o If one of thenOperand and elseOperand is a Data Set and the other one is a
scalar, the Measures of the operand Data Set must be all of the same scalar
type as the scalar operand.

Behaviour

For operations at Component level, the operation is applied for each Data Point of the unique
input Data Set, the if-then-else operator returns the value from the thenOperand Component
when condition evaluates to true, otherwise it returns the value from the elseOperand
Component. If one of the operands thenOperand or elseOperand is scalar, such a scalar value
can be returned depending on the outcome of the condition.
For operations at Data Set level, the if-then-else operator returns the Data Point from
thenOperand when the Data Point of condition having the same Identifiers’ values evaluates
to true, and returns the Data Point from elseOperand otherwise. If one of the operands
thenOperand or elseOperand is scalar, such a scalar value can be returned (depending on the
outcome of the condition) and in this case it feeds the values of all the Measures of the result
Data Point.
The behaviour for two Data Sets can be procedurally explained as follows. First the condition
Data Set is evaluated, then its true Data Points are inner joined with thenOperand and its false
Data Points are inner joined with elseOperand, finally the union is made of these two partial
results (the condition ensures that there cannot be conflicts in the union).

Examples

Example 1: given the operand Data Sets DS_cond, DS_1, DS_2 :

DS_cond

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total M 5451780

2012 B Total F 5643070

2012 G Total M 5449803

2012 G Total F 5673231

2012 S Total M 23099012

2012 S Total F 23719207

2012 F Total M 31616281

2012 F Total F 33671580

2012 I Total M 28726599

2012 I Total F 30667608

2012 A Total M NULL

2012 A Total F NULL

VTL Reference Manual - Version 2.1 Page: 227

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 S Total F 25.8

2012 F Total F NULL

2012 I Total F 20.9

2012 A Total M 6.3

DS_2

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total M 0.12

2012 G Total M 22.5

2012 S Total M 23.7

2012 A Total F NULL

DS_r := if (DS_cond#Id_4 = "F") then DS_1 else DS_2 returns:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 S Total F 25.8

2012 F Total F NULL

2012 I Total F 20.9

case: case

Syntax
case when condition then thenOperand {when condition then thenOperand}*
 else elseOperand

Input parameters
condition a Boolean condition (dataset, component or scalar)
thenOperand the operand returned when condition evaluates to true
elseOperand the operand returned when condition evaluates to false

Examples of valid syntaxes
case when A > B then A when A = B then A else B

Semantics for scalar operations
The case operator returns the first thenOperand whose corresponding condition evaluates to
true, elseOperand if none of the when conditions evaluates to true. For example, considering
the statement:

case when x1 > x2 then 2 when x1 = x2 then 0 else 5,

for x1 = 3, x2 =0 it returns 2
for x1 = x2 = 3 it returns 0
for x1 = 0, x2 =3 it returns 5

VTL Reference Manual - Version 2.1 Page: 228

Input Parameters type

condition :: dataset { measure <boolean> _ }
| component<Boolean>
| boolean

thenOperand :: dataset
| component
| scalar

elseOperand :: dataset
| component
| scalar

Result type

result :: dataset
| component
| scalar

Additional constraints

The same rules apply as for the if-then-else operator.

Behaviour
For operations at Component level, the operation is applied for each Data Point of the unique
input Data Set, the case operator returns the first value from the thenOperand Component
whose corresponding condition evaluates to true; if none of the when conditions evaluates to
true, it returns the value from the elseOperand Component. If one of the operands
thenOperand or elseOperand is scalar, such a scalar value can be returned depending on the
outcome of the condition.
For operations at Data Set level, the case operator returns the Data Point from the
thenOperand when the first Data Point of condition having the same Identifiers’ values
evaluates to true; returns the Data Point from elseOperand if none of the when conditions
evaluates to true. If one of the operands thenOperand or elseOperand is scalar, such a scalar
value can be returned (depending on the outcome of the condition) and in this case it feeds the
values of all the Measures of the result Data Point.
The behaviour for two Data Sets can be procedurally explained as follows. First the condition
Data Set is evaluated, then its true Data Points are inner joined with thenOperand and its false
Data Points are inner joined with elseOperand, finally the union is made of these two partial
results (the condition ensures that there cannot be conflicts in the union).

Examples

Example 1: given the Data Set DS_1:

DS_1

Id_1 Me_1

1 0.12

2 3.5

3 10.7

4 NULL

VTL Reference Manual - Version 2.1 Page: 229

DS_r := DS_1 [calc Me_2 case when Me_1 <= 1 then 0
 when Me_1 > 1 and Me_1 <= 10 then 1
 when Me_1 > 10 then 10

 else 100] returns:

DS_r

Id_1 Me_1 Me_2

1 0.12 0

2 3.5 1

3 10.7 10

4 NULL 100

Nvl : nvl

Syntax

nvl (op1 , op2)

Input parameters

op1 the first operand
op2 the second operand

Examples of valid syntaxes

nvl (ds1#m1, 0)

Semantics for scalar operations

The operator nvl returns op2 when op1 is null, otherwise op1. For example:
nvl (5, 0) returns 5
nvl (null, 0) returns 0

Input Parameters type

op1 :: dataset
| component<scalar>
| scalar

op2 :: dataset
| component
| <scalar>

Result type

result :: dataset
| component
| scalar

Additional constraints

If op1 and op2 are scalar values then they must be of the same type.
If op1 and op2 are Components then they must be of the same type.
If op1 and op2 are Data Sets then they must have the same Components.

VTL Reference Manual - Version 2.1 Page: 230

Behaviour

The operator nvl returns the value from op2 when the value from op1 is null, otherwise it
returns the value from op1.
The operator has the typical behaviour of the operators applicable on two scalar values or Data
Sets or Data Set Components.
Also the following statement gives the same result: if isnull (op1) then op2 else op1

Examples

Example 1: Given the input Data Set DS_1

DS_1

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total NULL

2012 M Total Total 417546

2012 F Total Total 5401267

2012 N Total Total NULL

DS_r := nvl (DS_1, 0) returns:

DS_r

Id_1 Id_2 Id_3 Id_4 Me_1

2012 B Total Total 11094850

2012 G Total Total 11123034

2012 S Total Total 0

2012 M Total Total 417546

2012 F Total Total 5401267

2012 N Total Total 0

VTL Reference Manual - Version 2.1 Page: 231

VTL-ML - Clause operators

Filtering Data Points : filter

Syntax

op [filter filterCondition]

Input parameters

op the operand
filterCondition the filter condition

Examples of valid syntaxes

DS_1 [filter Me_3 > 0]
DS_1 [filter Me_3 + Me_2 <= 0]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type:

op :: dataset
filterCondition :: component<boolean>

Result type:

result :: dataset

Additional constraints:

None.

Behaviour

The operator takes as input a Data Set (op) and a boolean Component expression
(filterCondition) and filters the input Data Points according to the evaluation of the condition.
When the expression is TRUE the Data Point is kept in the result, otherwise it is not kept (in
other words, it filters out the Data Points of the operand Data Set for which filterCondition
condition evaluates to FALSE or NULL).

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1 At_1

1 A XX 2 E

1 A YY 2 F

1 B XX 20 F

1 B YY 1 F

2 A XX 4 E

2 A YY 9 F

VTL Reference Manual - Version 2.1 Page: 232

Example 1: DS_r := DS_1 [filter Id_1 = 1 and Me_1 < 10] results in:

DS_r

Id_1 Id_2 Id_3 Me_1 At_1

1 A XX 2 E

1 A YY 2 F

1 B YY 1 F

Calculation of a Component : calc

Syntax

op [calc { calcRole } calcComp := calcExpr { , { calcRole } calcComp := calcExpr }*]

calcRole ::= identifier | measure | attribute | viral attribute

Input parameters

op the operand
calcRole the role to be assigned to a Component to be calculated
calcComp the name of a Component to be calculated
calcExpr expression at component level, having only Components of the input Data Sets as

operands, used to calculate a Component

Examples of valid syntaxes

DS_1 [calc Me_3 := Me_1 + Me_2]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type:

op :: dataset
calcComp :: name < component >
calcExpr :: component | scalar

Result type:

result :: dataset

Additional constraints

The calcComp parameter cannot be the name of an Identifier component.
All the components used in calcComp must belong to the operand Data Set op.

Behaviour

The operator calculates new Identifier, Measure or Attribute Components on the basis of sub-
expressions at Component level. Each Component is calculated through an independent sub-
expression. It is possible to specify the role of the calculated Component among measure,
identifier, attribute, or viral attribute, therefore the calc clause can be used also to change the
role of a Component when possible (e.g. changing a measure to identifier if it is not nullable).
The keyword viral allows controlling the virality of the calculated Attributes (for the attribute
propagation rule see the User Manual). When the role is omitted, the following rule is applied:

VTL Reference Manual - Version 2.1 Page: 233

if the component exists in the operand Data Set then it maintains its role; if the component does
not exist in the operand Data Set then its role is Measure.
The calcExpr sub-expressions are independent one another, they can only reference
Components of the input Data Set and cannot use Components generated, for example, by other
calcExpr. If the calculated Component is a new Component, it is added to the output Data Set.
If the Calculated component is a Measure or an Attribute that already exists in the input Data
Set, the calculated values overwrite the original values. If the calculated Component is an
Identifier that already exists in the input Data Set, an exception is raised because overwriting
an Identifier Component is forbidden for preserving the functional behaviour. Analytic
invocations can be used in the calc clause.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1

1 A CA 20

1 B CA 2

2 A CA 2

Example 1: DS_r := DS_1 [calc Me_1:= Me_1 * 2] results in:

DS_r

Id_1 Id_2 Id_3 Me_1

1 A CA 40

1 B CA 4

2 A CA 4

Example 2: DS_r := DS_1 [calc attribute At_1:= “EP”] results in:

DS_r

Id_1 Id_2 Id_3 Me_1 At_1

1 A CA 40 EP

1 B CA 4 EP

2 A CA 4 EP

Aggregation : aggr

Syntax

op [aggr aggrClause { groupingClause }]

aggrClause ::= { aggrRole } aggrComp := aggrExpr {, { aggrRrole } aggrComp:= aggrExpr }*

groupingClause ::= { group by groupingId {, gropuingId }*

| group except groupingId {, groupingId }*

| group all conversionExpr }1

VTL Reference Manual - Version 2.1 Page: 234

{ having havingCondition }

aggrRole::= measure | attribute | viral attribute

Input Parameters

op the operand
aggrClause clause that specifies the required aggregations, i.e., the aggregated

Components to be calculated, their roles and their calculation algorithm,
to be applied on the joined and filtered Data Points

aggrRole the role of the aggregated Component to be calculated

aggrComp the name of the aggregated Component to be calculated; this is a
dependent Component of the result (Measure or Attribute, not Identifier)

aggrExpr expression at component level, having only Components of the input Data
Sets as operands, which invokes an aggregate operator (e.g. avg, count,
max … , see also the corresponding sections) to perform the desired
aggregation. Note that the count operator is used in an aggrClause
without parameters, e.g.:

DS_1 [aggr Me_1 := count () group by Id_1)]

groupingClause the following alternative grouping options:

 group by the Data Points are grouped by the values of the
specified Identifiers (groupingId). The Identifiers not
specified are dropped in the result.

 group except the Data Points are grouped by the values of the
Identifiers not specified as groupingId. The
Identifiers specified as groupingId are dropped in the
result.

group all converts the values of an Identifier Component using
conversionExpr and keeps all the resulting
Identifiers.

groupingId Identifier Component to be kept (in the group by clause) or dropped (in
the group except clause).

conversionExpr specifies a conversion operator (e.g., time_agg) to convert an Identifier
from finer to coarser granularity. The conversion operator is applied on
an Identifier of the operand Data Set op.

havingCondition a condition (boolean expression) at component level, having only
Components of the input Data Sets as operands (and possibly constants),
to be fulfilled by the groups of Data Points: only groups for which
havingCondition evaluates to TRUE appear in the result. The
havingCondition refers to the groups specified through the
groupingClause, therefore it must invoke aggregate operators (e.g. avg,
count, max …, see also the section Aggregate invocation). A correct
example of havingCondition is:

max(obs_value) < 1000

instead the condition obs_value < 1000 is not a right havingCondition,
because it refers to the values of the single Data Points and not to the
groups. The count operator is used in a havingCondition without
parameters, e.g.:

sum (DS_1 group by id1 having count () >= 10)

VTL Reference Manual - Version 2.1 Page: 235

Examples of valid syntaxes

DS_1 [aggr M1 := min (Me_1) group by Id_1, Id_2]
DS_1 [aggr M1 := min (Me_1) group except Id_1, Id_2]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type:

op :: dataset
aggrComp :: name < component >
aggrExpr :: component<scalar>
groupingId :: name <identifier >
conversionExpr :: identifier<scalar>
havingCondition :: component<boolean>

Result type:

result :: dataset

Additional constraints

The aggrComp parameter cannot be the name of an Identifier component.
All the components used in aggrExpr must belong to the operand Data Set op.
The conversionExpr parameter applies just one conversion operator to just one Identifier
belonging to the input Data Set. The basic scalar type of the Identifier must be compatible with
the basic scalar type of the conversion operator.

Behaviour

The operator aggr calculates aggregations of dependent Components (Measures or Attributes)
on the basis of sub-expressions at Component level. Each Component is calculated through an
independent sub-expression. It is possible to specify the role of the calculated Component
among measure attribute, or viral attribute. The substring viral allows to control the virality
of Attributes, if the Attribute propagation rule is adopted (see the User Manual). When the role
is omitted, the following rule is applied: if the component exists in the operand Data Set then it
maintains its role; if the component does not exist in the operand Data Set then its role is
Measure.
The aggrExpr sub-expressions are independent of one another, they can only reference
Components of the input Data Set and cannot use Components generated, for example, by other
aggrExpr sub-expressions. The aggr computed Measures and Attributes are the only Measures
and Attributes returned in the output Data Set (plus the possible viral Attributes). The sub-
expressions must contain only Aggregate operators, which are able to compute an aggregated
Value relevant to a group of Data Points. The groups of Data Points to be aggregated are
specified through the groupingClause, which allows the following alternative options.

group by the Data Points are grouped by the values of the specified Identifiers. The
Identifiers not specified are dropped in the result.

group except the Data Points are grouped by the values of the Identifiers not specified
in the clause. The specified Identifiers are dropped in the result.

group all converts an Identifier Component using conversionExpr and keeps all the
other Identifiers.

The having clause is used to filter groups in the result by means of an aggregate condition
evaluated on the single groups (for example the minimum number of Data Points in the group).

VTL Reference Manual - Version 2.1 Page: 236

If no grouping clause is specified, then all the input Data Points are aggregated in a single group
and the clause returns a Data Set that contains a single Data Point and has no Identifiers.
The Attributes calculated through the aggr clauses are maintained in the result. For all the
other Attributes that are defined as viral, the Attribute propagation rule is applied (for the
semantics, see the Attribute Propagation Rule section in the User Manual).

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1

1 A XX 0

1 A YY 2

1 B XX 3

1 B YY 5

2 A XX 7

2 A YY 2

Example 1: DS_r := DS_1 [aggr Me_1:= sum(Me_1) group by Id_1 , Id_2] results in:

DS_r

Id_1 Id_2 Me_1

1 A 2

1 B 8

2 A 9

Example 2: DS_r := DS_1 [aggr Me_3:= min(Me_1) group except Id_3] results in:

DS_r

Id_1 Id_2 Me_3

1 A 0

1 B 3

2 A 2

Example 3: DS_r := DS_1 [aggr Me_1:= sum(Me_1), Me_2 := max(Me_1)
group by Id_1 , Id_2 having mean (Me_1) > 2] results in:

DS_r

Id_1 Id_2 Me_1 Me_2

1 B 8 5

2 A 9 7

VTL Reference Manual - Version 2.1 Page: 237

Maintaining Components: keep

Syntax

op [keep comp {, comp }*]

Input parameters

op the operand
comp a component to keep

Examples of valid syntaxes

DS_1 [keep Me_2, Me_3]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type:

op :: dataset
comp :: name < component >

Result type:

result :: dataset

Additional constraints:

All the Components comp must belong to the input Data Set op.
The Components comp cannot be Identifiers in op.

Behaviour

The operator takes as input a Data Set (op) and some Component names of such a Data Set
(comp). These Components can be Measures or Attributes of op but not Identifiers. The
operator maintains the specified Components, drops all the other dependent Components of
the Data Set (Measures and Attributes) and maintains the independent Components
(Identifiers) unchanged. This operation corresponds to a projection in the usual relational join
semantics (specifying which columns will be projected in among Measures and Attributes).

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1 Me_2 At_1

2010 A XX 20 36 E

2010 A YY 4 9 F

2010 B XX 9 10 F

Example 1: DS_r := DS_1 [keep Me_1] results in:

DS_r

Id_1 Id_2 Id_3 Me_1

2010 A XX 20

2010 A YY 4

2010 B XX 9

VTL Reference Manual - Version 2.1 Page: 238

Removal of Components: drop

Syntax

op [drop comp { , comp }*]

Input parameters

op the operand
comp a Component to drop

Examples of valid syntaxes

DS_1 [drop Me_2, Me_3]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input parameters type:

op :: dataset
comp :: name < component >

Result type:

result :: dataset

Additional constraints:

All the Components comp must belong to the input Data Set op.
The Components comp cannot be Identifiers in op.

Behaviour

The operator takes as input a Data Set (op) and some Component names of such a Data Set
(comp). These Components can be Measures or Attributes of op but not Identifiers. The
operator drops the specified Components and maintains all the other Components of the Data
Set. This operation corresponds to a projection in the usual relational join semantics (specifying
which columns will be projected out).

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1 At_1

2010 A XX 20 E

2010 A YY 4 F

2010 B XX 9 F

Example 1: DS_r := DS_1 [drop At_1] results in:

DS_r

Id_1 Id_2 Id_3 Me_1

2010 A XX 20

2010 A YY 4

2010 B XX 9

VTL Reference Manual - Version 2.1 Page: 239

Change of Component name : rename

Syntax

op [rename comp_from to comp_to { , comp_from to comp_to}*]

Input Parameters

op the operand
comp_from the original name of the Component to rename
comp_to the new name of the Component after the renaming

Examples of valid syntaxes

DS_1 [rename Me_2 to Me_3]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input Parameters type

op :: dataset
comp_from :: name < component >
comp_to :: name < component >

Result type

result :: dataset

Additional constraints

The corresponding pairs of Components before and after the renaming (dsc_from and dsc_to)
must be defined on the same Value Domain and the same Value Domain Subset.
The components used in dsc_from must belong to the input Data Set and the component used
in the dsc_to cannot have the same names as other Components of the result Data Set.

Behaviour

The operator assigns new names to one or more Components (Identifier, Measure or Attribute
Components). The resulting Data Set, after renaming the specified Components, must have
unique names of all its Components (otherwise a runtime error is raised). Only the Component
name is changed and not the Component Values, therefore the new Component must be defined
on the same Value Domain and Value Domain Subset as the original Component (see also the
IM in the User Manual). If the name of a Component defined on a different Value Domain or Set
is assigned, an error is raised. In other words, rename is a transformation of the variable
without any change in its values.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Id_3 Me_1 At_1

1 B XX 20 F

1 B YY 1 F

2 A XX 4 E

2 A YY 9 F

Example 1: DS_r := DS_1 [rename Me_1 to Me_2, At_1 to At_2] results in:

VTL Reference Manual - Version 2.1 Page: 240

DS_r

Id_1 Id_2 Id_3 Me_2 At_2

1 B XX 20 F

1 B YY 1 F

2 A XX 4 E

2 A YY 9 F

Pivoting : pivot

Syntax

op [pivot identifier , measure]

Input parameters

op the operand
identifier the Identifier Component of op to pivot
measure the Measure Component of op to pivot

Examples of valid syntaxes

DS_1 [pivot Id_2, Me_1]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input Parameters type

op :: dataset
identifier :: name < identifier >
measure :: name < measure >

Result type

result :: dataset

Additional constraints

The Measures created by the operator according to the behaviour described below must be
defined on the same Value Domain as the input Measure.

Behaviour

The operator transposes several Data Points of the operand Data Set into a single Data Point of
the resulting Data Set. The semantics of pivot can be procedurally described as follows.

1. It creates a virtual Data Set VDS as a copy of op
2. It drops the Identifier Component identifier and all the Measure Components from VDS.
3. It groups VDS by the values of the remaining Identifiers.
4. For each distinct value of identifier in op, it adds a corresponding measure to VDS,

named as the value of identifier. These Measures are initialized with the NULL value.
5. For each Data Point of op, it finds the Data Point of VDS having the same values as for

the common Identifiers and assigns the value of measure (taken from the current Data
Point of op) to the Measure of VDS having the same name as the value of identifier (taken
from the Data Point of op).

The result of the last step is the output of the operation.
Note that pivot may create Measures whose names are non-regular (i.e. they may contain
special characters, reserved keywords, etc.) according to the rules about the artefact names

VTL Reference Manual - Version 2.1 Page: 241

described in the User Manual (see the section “The artefact names” in the chapter “VTL
Transformations”). As said in the User Manual, those names must be quoted to be referenced
within an expression.

Examples

Given the Data Set DS_1:

DS_1

Id_1 Id_2 Me_1 At_1

1 A 5 E

1 B 2 F

1 C 7 F

2 A 3 E

2 B 4 E

2 C 9 F

Example 1: DS_r := Ds_1 [pivot Id_2, Me_1] results in:

DS_r

Id_1 A B C

1 5 2 7

2 3 4 9

Unpivoting : unpivot

Syntax

op [unpivot identifier , measure]

Input parameters

op the dataset operand
identifier the Identifier Component to be created
measure the Measure Component to be created

Examples of valid syntaxes

DS [unpivot Id_5, Me_3]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input Parameters type

op :: dataset
identifier :: name < identifier >
measure :: name < measure >

Result type

result :: dataset

Additional constraints

All the measures of op must be defined on the same Value Domain.

VTL Reference Manual - Version 2.1 Page: 242

Behaviour

The unpivot operator transposes a single Data Point of the operand Data Set into several Data
Points of the result Data set. Its semantics can be procedurally described as follows.

1. It creates a virtual Data Set VDS as a copy of op
2. It adds the Identifier Component identifier and the Measure Component measure to

VDS.
3. For each Data Point DP and for each Measure M of op whose value is not NULL, the

operator inserts a Data Point into VDS whose values are assigned as specified in the
following points

4. The VDS Identifiers other than identifier are assigned the same values as the
corresponding Identifiers of the op Data Point

5. The VDS identifier is assigned a value equal to the name of the Measure M of op
6. The VDS measure is assigned a value equal to the value of the Measure M of op

The result of the last step is the output of the operation.
When a Measure is NULL then unpivot does not create a Data Point for that Measure.
Note that in general pivoting and unpivoting are not exactly symmetric operations, i.e., in some
cases the unpivot operation applied to the pivoted Data Set does not recreate exactly the
original Data Set (before pivoting).

Examples

Given the Data Set DS_1:

DS_1

Id_1 A B C

1 5 2 7

2 3 4 9

Example 1: DS_r := DS_1 [unpivot Id_2, Me_1] results in:

DS_r

Id_1 Id_2 Me_1

1 A 5

1 B 2

1 C 7

2 A 3

2 B 4

2 C 9

Subspace : sub

Syntax

op [sub identifier = value { , identifier = value }*]

VTL Reference Manual - Version 2.1 Page: 243

Input parameters

op dataset
identifier Identifier Component of the input Data Set op
value valid value for identifier

Examples of valid syntaxes

DS_r := DS_1 [Id_2 = "A", Id_5 = 1]

Semantics for scalar operations

This operator cannot be applied to scalar values.

Input Parameters type

op :: dataset
identifier :: name < identifier >
value :: scalar

Result type

result :: dataset

Additional constraints

The specified Identifier Components identifier(s) must belong to the input Data Set op.
Each Identifier Component can be specified only once.
The specified value must be an allowed value for identifier.

Behaviour

The operator returns a Data Set in a subspace of the one of the input Dataset. Its behaviour can
be procedurally described as follows:

1. It creates a virtual Data Set VDS as a copy of op
2. It maintains the Data Points of VDS for which identifier = value (for all the specified

identifier) and eliminates all the Data Points for which identifier <> value (even for
only one specified identifier)

3. It projects out (“drops”, in VTL terms) all the identifier(s)

The result of the last step is the output of the operation.
The resulting Data Set has the Identifier Components that are not specified as identifier(s) and
has the same Measure and Attribute Components of the input Data Set.
The result Data Set does not violate the functional constraint because after the filter of the step
2, all the remaining identifier(s) do not contain the same Values for all the Data Points. In other
words, given that the input Data Set is a 1st order function and therefore does not contain
duplicates, the result Data Set is a 1st order function as well. To show this, let K1,…,Km,…,Kn be
the Identifier components for the generic input Data Set DS. Let us suppose that K1,…,Km are
assigned to fixed values by using the subspace operator. A duplicate could arise only if in the
result there are two Data Points DPr1 and DPr2 having the same value for Km+1,…,Kn , but this
is impossible since such Data Points had same K1,…,Km in the original Data Set DS, which did
not contain duplicates.
If we consider the vector space of Data Points individuated by the n-uples of Identifier
components of a Data Set DS(K1,…,Kn,…) (along, e.g., with the operators of sum and
multiplication), we have that the subspace operator actually performs a subsetting of such
space into another space with fewer Identifiers. This can be also seen as the equivalent of a dice
operation performed on hyper-cubes in multi-dimensional data warehousing.

Examples

Given the Data Set DS_1:

VTL Reference Manual - Version 2.1 Page: 244

DS_1

Id_1 Id_2 Id_3 Me_1 At_1

1 A XX 20 F

1 A YY 1 F

1 B XX 4 E

1 B YY 9 F

2 A XX 7 F

2 A YY 5 E

2 B XX 12 F

2 B YY 15 F

Example 1: DS_r := DS_1 [sub Id_1 = 1, Id_2 = “A”] results in:

DS_r

Id_3 Me_1 At_1

XX 20 F

YY 1 F

Example 2: DS_r := DS_1 [sub Id_1 = 1, Id_2 = “B”, Id_3 = “YY”] results in:

DS_r

Me_1 At_1

9 F

Example 3: DS_r := DS_1 [sub Id_2 = “A”] + DS_1 [sub Id_2 = “B”] results in:

Assuming that At_1 is viral and that in the propagation rule the greater value prevails, results
in:

DS_r

Id_1 Id_3 Me_1 At_1

1 XX 24 F

1 YY 10 F

2 XX 19 F

2 YY 20 F

