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Real Life Our Approach

Fig. 1. In real life, blue and yellow make green. Yet, in today’s painting software, they mix toward gray. Our mixing approach rectifies this by leveraging the
Kubelka–Munk model while operating in RGB-In / RGB-Out fashion, which makes it practical to integrate into any existing painting software.

There is a significant flaw in today’s painting software: the colors do not
mix like actual paints. E.g., blue and yellow make gray instead of green.
This is because the software is built around the RGB representation, which
models the mixing of colored lights. Paints, however, get their color from
pigments, whose mixing behavior is predicted by the Kubelka–Munk model
(K–M). Although it was introduced to computer graphics almost 30 years
ago, the K–Mmodel has never been adopted by painting software in practice
as it would require giving up the RGB representation, growing the number
of per-pixel channels substantially, and depriving the users of painting
with arbitrary RGB colors. In this paper, we introduce a practical approach
that enables mixing colors with K–M while keeping everything in RGB.
We achieve this by establishing a latent color space, where RGB colors are
represented asmixtures of primary pigments together with additive residuals.
The latents can be manipulated with linear operations, leading to expected,
plausible results. We describe the conversion between RGB and our latent
representation, and show how to implement it efficiently.
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1 INTRODUCTION
What happens whenwemix blue and yellow? Any 5-year-old knows
we get green. We gain that intuition from our first experiences with
painting as kids. One would expect the digital painting software to
follow that intuition. Surprisingly, they do not. In today’s painting
software, blue and yellow mix into gray (see Fig. 1). This happens
because the software represents the painting in RGB, which corre-
sponds to additive mixing of colored lights. Indeed, when we shine
blue and yellow light at the same spot, their spectra linearly sum
together, and we get gray. Paints, however, mix in a very different
way. They get their color from the mass of pigment particles which
absorb and scatter the light in a complex fashion. That makes the
outcome of pigment mixture highly non-linear (see Fig. 3). Blue and
yellow making green is the most striking consequence. However,
there are other interesting effects taking place. Unlike RGB, where
colors tend to lose saturation when mixed with white, the saturation
of actual paints momentarily increases, revealing the true nature of
the pigment. On top of that, the hue can also change in a dramatic
way. Phthalo Blue, for instance, shifts from purple to turquoise as
we keep adding white (see Fig. 4).

These phenomena are reproduced with remarkable accuracy by
the model of Kubelka and Munk [1931], who were the first to predict
the behavior of pigment mixtures. Their work was introduced to
the computer graphics community by Haase and Meyer [1992],
who readily applied the Kubelka–Munk (K–M) model in the digital
painting scenario. This launched an exciting line of research, where
the authors of [Curtis et al. 1997; Baxter et al. 2004; Chu and Tai
2005; Haevre et al. 2007] achieved spectacular results applying K–M
to realistic simulations of watercolors, oil paints, inks and pastels.
Strangely enough, the K–M model has never been picked up by
graphics software outside research. Even three decades since the
publication of [Haase and Meyer 1992], blue and yellow make gray
in today’s painting software. Why?
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Fig. 2. Implementing K–M requires increasing the number of per-pixel
channels to track pigment concentrations (right). This is in contrast to the
3-channel RGB representation (left), which is hardwired in today’s software.

An explanation that came up from our discussions with the au-
thors of Rebelle [Blaškovič 2016] is that the developers do not find
the K–Mmodel practical to implement. This is because K–M requires
tracking the respective concentrations of all available pigments at
each pixel [Baxter et al. 2004]. Another option is to track the per-
wavelength absorption and scattering coefficients instead [Haase
and Meyer 1992]. However, in both cases, the number of per-pixel
channels grows substantially. In comparison, the contemporary
painting software is usually built around the 3-channel RGB rep-
resentation, and implementing K–M would require changing the
software structure down to the core (see Fig. 2). In addition to that,
displaying a painting on screen would require evaluating the visible-
spectrum integrals per pixel, which has a considerable performance
cost. Another drawback is that pigment mixtures do not cover the
whole RGB gamut, which complicates the exchange with the outside
world. For example, the user may want to paste a piece of artwork
containings RGB colors that cannot be represented with pigments.
It also prevents the user from picking an arbitrary RGB color to
paint with, as they are used to from current software. It is for these
practical reasons why the K–M model resisted adoption for so long
in the graphics software industry.

Based on our discussion with Blaškovič et al., we put forward the
requirements that any color-mixing model needs to meet in order
to be practical for a real–world painting software:

• work directly on RGB without requiring additional channels,
• be fast enough to compute to avoid latencies during painting,
• handle all RGB colors without causing clipping or distortion.

Taking these considerations into account, we propose a new, practi-
cal approach to K–M-based pigment mixing which operates purely
on RGB information. Our main contribution is a new color rep-
resentation that enables mixing RGB colors as if they were made
of actual pigments. Our latent representation can be manipulated
with linear operations in the usual way, yielding expected, plausi-
ble results: taking an average of blue and yellow produces green.
Importantly, our representation treats all colors homogeneously,
including those RGB colors that cannot be mixed from pigments.
We describe the pair of transforms that map between RGB colors

Fig. 3. The reason we get green when mixing blue and yellow paints is that
their pigment particles repeatedly absorb and scatter the incoming light,
leaving only the green wavelengths to come out of the mixture.

and our latent representation, and we show they can be imple-
mented with minimal overhead. Our contributions make it possible
to integrate Kubelka–Munk into any painting software, solving the
long-lasting issue of colors mixing wrong in digital painting pro-
grams. We make the implementation of our method available online:
https://github.com/scrtwpns/pigment-mixing

2 BACKGROUND AND RELATED WORK
In order for color mixing to behave naturally in digital painting
software, the mixing process should follow what happens in real life.
The color sensation we experience when looking at the paint that
comes out of the tube is caused by the interaction between incident
light and pigment particles inside the paint. The pigment particles
selectively absorb and scatter the light by a different amount at
each wavelength. It is the difference in absorption and scattering
properties that causes pigments to have distinct colors.
When we mix blue and yellow paint, the two kinds of pigments

get dispersed together. When the light travels inside such a mixture,
it is repeatedly absorbed and scattered by both the blue and the
yellow particles along the way (see Fig. 3). Finally, some of the
remaining light finds its way out of the mixture and reaches the
eye. This is a process we are familiar with in computer graphics as
subsurface scattering. It is this subsurface scattering phenomenon
that causes the mixture of blue and yellow paint to appear green.
Over the years, different models were proposed to predict the

outcome of this phenomenon [Klein 2010]. Perhaps the most suc-
cessful one is the model of Kubelka and Munk [1931]. In order to
predict the color of a pigment mixture with K–M, we need to know
the absorption and scattering coefficients 𝐾 (𝜆) and 𝑆 (𝜆) of each
pigment. These are functions of wavelength 𝜆, and they need to be
measured beforehand. Given the concentrations c = [𝑐1, · · · , 𝑐𝑁 ] of
the set of 𝑁 pigments P = {(𝐾𝑖 (𝜆), 𝑆𝑖 (𝜆))}𝑁𝑖=1 entering the mix, the
absorption and scattering of the resulting mixture is determined by
a linear combination of its constituents [Duncan 1940]:

𝐾𝑚𝑖𝑥 (c, 𝜆) =
𝑁∑︁
𝑖=1

𝑐𝑖𝐾𝑖 (𝜆), 𝑆𝑚𝑖𝑥 (c, 𝜆) =
𝑁∑︁
𝑖=1

𝑐𝑖𝑆𝑖 (𝜆), (1)

where the concentrations 𝑐𝑖 are non-negative and sum to one.
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Real Life RGB K–M Real Life RGB K–M

Fig. 4. Real paints gain saturation and shift in hue when mixed with white,
as exhibited byQuinacridone Magenta (left) and Phthalo Blue (right). These
effects are reproduced faithfully by the K–M model, unlike RGB, where
colors tend to lose saturation when mixed with white.

From here we use the K–M equation to predict the reflectance
spectrum 𝑅𝑚𝑖𝑥 (c, 𝜆) of the mixture. We assume a layer of paint so
thick it completely hides the underlying substrate:

𝑅𝑚𝑖𝑥 (c, 𝜆) = 1+ 𝐾𝑚𝑖𝑥 (c, 𝜆)
𝑆𝑚𝑖𝑥 (c, 𝜆)

−

√︄(
𝐾𝑚𝑖𝑥 (c, 𝜆)
𝑆𝑚𝑖𝑥 (c, 𝜆)

)2
+ 2

𝐾𝑚𝑖𝑥 (c, 𝜆)
𝑆𝑚𝑖𝑥 (c, 𝜆)

. (2)

To display 𝑅𝑚𝑖𝑥 on screen, we illuminate the mixture with a suit-
able light source and integrate the reflected spectrum with the CIE
standard observer functions over the visible range of wavelengths
𝜆 ∈ [380, 750]. Here we use the 𝐷65 illuminant, which corresponds
to average daylight and coincides with the sRGB white point:

𝑋 (c) =
∫
𝜆

𝑥 (𝜆)𝐷65 (𝜆)𝑅′𝑚𝑖𝑥 (c, 𝜆) 𝑑𝜆, (3)

𝑌 (c) =
∫
𝜆

𝑦 (𝜆)𝐷65 (𝜆)𝑅′𝑚𝑖𝑥 (c, 𝜆) 𝑑𝜆, (4)

𝑍 (c) =
∫
𝜆

𝑧 (𝜆)𝐷65 (𝜆)𝑅′𝑚𝑖𝑥 (c, 𝜆) 𝑑𝜆. (5)

To account for surface reflection, we use the modified reflectance
spectrum 𝑅′

𝑚𝑖𝑥
obtained from Saunderson’s [1942] equation:

𝑅′𝑚𝑖𝑥 (c, 𝜆) =
(1 − 𝑘1) (1 − 𝑘2)𝑅𝑚𝑖𝑥 (c, 𝜆)

1 − 𝑘2𝑅𝑚𝑖𝑥 (c, 𝜆)
, (6)

where 𝑘1 and 𝑘2 are the measured reflectance constants [Okumura
2005]. Finally, to obtain an sRGB color of the pigment mixture,
we multiply the XYZ tristimulus values with the matrix of sRGB
chromaticities and normalize by 𝑌𝐷65 =

∫
𝜆
𝑦 (𝜆)𝐷65 (𝜆) 𝑑𝜆:

mix
P

(c) =

𝑅(c)
𝐺 (c)
𝐵(c)

 =
1

𝑌𝐷65


+3.2406 −1.5372 −0.4986
−0.9689 +1.8758 +0.0415
+0.0557 −0.2040 +1.0570



𝑋 (c)
𝑌 (c)
𝑍 (c)

 . (7)
In summary, given a set of pigments P, the function mix (c) takes
the input concentrations c and returns the predicted RGB color of
the mixture. When displayed on a screen, this RGB color will evoke
the same sensation in the eye as if we were looking at the pigment
mixture in real life.

Real Life RGB RYB Subtractive SubAdd K–M

Fig. 5. MixingCobalt Blue andHansa Yellow in real life vs. in RGB, RYB [Gos-
sett and Chen 2004], Subtractive, Subtractive-Additive [Simonot and Hébert
2014] and K–M model. The ad-hoc approaches are unable to match the
K–M’s ability to predict the outcome of two pigments mixing together.

The computational machinery outlined in equations (1) – (7) was
introduced to the computer graphics community by Haase and
Meyer [1992] almost 30 years ago. Surprisingly, none of the widely
used painting software actually implements it. Instead, they mix
colors additively in RGB, which mimics the behavior of colored
lights. That is why painting software lacks phenomena typical for
pigments, such as hue shifts and saturation gains (see Fig. 4).

The most striking difference is that yellow and blue mix into gray
instead of green. There are some exceptions where the develop-
ers recognized the issue and tried to mitigate it with some ad-hoc
workaround. An example of such a workaround is the RYB mixing
devised by Gossett and Chen [2004] and followed by [Chen et al.
2015; Sugita and Takahashi 2017]. They proposed an alternate color
space, designed specifically to make the average of blue and yellow
turn out green. They achieve this by interpolating eight hand-picked
colors placed at the vertices of a 3D cube. As seen in Fig. 5, this
approach produces colors that are far from the behavior of real
pigments.

Instead of picking the colors by hand, Lu et al. [2014] took a data-
driven approach, where they interpolate samples of real pigment
mixtures taken from a provided example. However, their approach
only works with a predetermined mixing ratio (e.g., 50:50), which
is not flexible enough for the use in painting software, where col-
ors need to be mixed in arbitrary ratios. In a related line of work
Aharoni-Mack et al. [2017] and Tan et al. [2019] use the K–M model
to extract a pigment palette from a supplied RGB image and decom-
pose it into a collection of pigment channels. Shugrina et al. [2020]
propose a reduced-order parametric model to fit the distribution of
image colors. Although they achieve impressive results on image
recolorization, these approaches are tailored to manipulating an
existing artwork, which does not make them directly applicable to
the digital painting scenario.

Another way to work around the yellow–blue issue is to perform
subtractive color mixing, which models the behavior of overlaid
color filters that selectively absorb light. In print, the CMYK color
model uses subtractive mixing to predict the light absorption by the
successive layers of cyan, magenta, and yellow ink. Although the
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Real Sub SubAdd K–M Real Sub SubAdd K–M

Fig. 6. Compared to the K–M model, subtractive mixing produces results
that are either too dark (left) or have a wrong color (right). Subtractive–
additive mixing improves the lightness but shares the improper color.

subtractive mixing does have the ability to produce green out of
yellow and blue, the resulting color lacks the saturation achieved
when mixing real paints (see Fig. 5). This is because subtractive
mixing accounts only for the absorption of light, which is different
from how the light interacts with actual pigment mixtures, where
both absorption and scattering take place. The consequence is that
the subtractive mixture turns out darker and has a different hue
compared to real life (see Fig. 6). This is in contrast with the K–M
model, whose predictions are in great agreement with reality. The
shortcomings of subtractive mixing were recognized by Simonot
and Hébert [2014] who derived hybrid subtractive–additive mixing
formulas. While their formulation yields appreciably less dark re-
sults than purely subtractive mixing (see Fig. 5), it mispredicts the
color in a similar way due to the shared subtractive component (see
Fig. 6). Overall, none of the workarounds can match the K–M model
in its ability to accurately predict the outcome of two paints mixing
together.

When looking at today’s painting software, it is evident that the
developers went to great lengths to implement realistic brushes and
believable media. Some software even include sophisticated solvers
for simulating the dynamics of oils and watercolors. Yet, when it
comes down to mixing paints, they all get the color wrong. This is
in disregard of the body of work done by the research community,
which clearly recognized the importance of using K–M to achieve
realistic mixing of colors ([Curtis et al. 1997; Baxter et al. 2004; Chu
and Tai 2005; Haevre et al. 2007]). Baxter et al. [2004] in particular
made a clear case for using K–M in painting software and described
the steps to implement it. Still, no painting software seems to imple-
ment K–M outside research. This is because the existing approaches
require giving up the 3-channel RGB representation and resort to
per-pixel tracking of pigment concentrations (like Baxter et al.) or
store the full absorption and scattering spectra at each pixel (like
Hasse and Meyer). Moving away from RGB is not practical from the
developers’ standpoint, as contemporary software is built around it,
and the users expect certain features, like the ability to load an exist-
ing RGB image or to pick an arbitrary RGB color. This prompted us
to devise a practically oriented color mixing solution that enables
to use K–M in a real-world setting.

3 OUR APPROACH
To make the K–M pigment mixing practical, we need to make it
work directly with RGB colors. This is the representation virtually
every painting software works in. This means the work-in-progress
painting is stored as per-pixel RGB triplets in memory. No other
information is usually available (except for alpha). The most ba-
sic mixing operation used in today’s painting software is linear
interpolation, i.e., the "lerp":

lerp(RGB1,RGB2, 𝑡) = (1 − 𝑡)RGB1 + 𝑡RGB2 . (8)

The lerp takes two colors and a mixing parameter 𝑡 ∈ [0, 1], and
produces the blended color as a linear combination of inputs. Most
operations that involve color mixing, like blending, smudging, brush
stamping, and compositing, can be reduced to a sequence of one or
more applications of the lerp with suitably chosen 𝑡 parameters.

Our aim now is to build an alternate version of lerp, which takes
the same RGB inputs but produces a color that would result if we
mixed actual paints, according to what the K–M model predicts. We
call it the kmerp(RGB1,RGB2, 𝑡).

The important point is that encapsulating the K–M mixing in this
way makes it practical to integrate into existing software. The de-
velopers can keep the in-memory painting representation as-is, and
only need to replace every occurrence of lerp with kmerp in their
color mixing code. Crucially, they are not forced to upgrade from
the 3-channel RGB representation to N-channels of pigment con-
centrations or per-wavelength tracking of absorption and scattering
coefficients.

In order for kmerp to determine the outcome of mixing two RGB
colors, it needs to know what pigments they are made of. Different
combinations of pigments can be used to mix the same RGB color,
each leading to a different outcome when mixed with another color.
To resolve this, we need to decide on a set of primary pigments
P∗ = {(𝐾∗

𝑖
(𝜆), 𝑆∗

𝑖
(𝜆))}𝑁

𝑖=1. This is the palette of pigments all the
other colors will be mixed from.

The set of primary pigments is decided a priori, and the concrete
choice is up to the kmerp user. For the general purpose, we use
four modern organic pigments that provide a wide color gamut:

Phthalo Blue, Quinacridone Magenta, Hansa Yellow, and Titanium
White, as suggested by Briggs [2007].

The main idea behind kmerp is to first decompose each RGB color
into a mixture of these primary pigments, i.e., to unmix the input
color into a vector of pigment concentrations c. This amounts to
inverting the K–M mixing procedure outlined in equations (1) – (7).
We pose this inversion task as a least-squares optimization problem
and solve for the unknown concentrations c:

unmix
P∗

(RGB) = arg min
c

| |mix
P∗

(c) − RGB| |2

s.t. 𝑐𝑖 ≥ 0 ∧∑𝑁
𝑖=1 𝑐𝑖 = 1.

(9)

Even though the mix is non-linear in c, it is smooth and differen-
tiable, which allows us to use a Newton-type solver to obtain the
solution of the optimization problem (9).
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Fig. 7. To mix the two RGB colors, we first encode both colors into our
latent representation using F. Next, we mix the latent vectors using regular
linear interpolation (lerp) and decode the result back to RGB using G.

Equipped with the ability to unmix an RGB color, we can now put
the rest of kmerp together. Given the two input colors RGB1,RGB2,
we take a linear combination of their unmixed concentrations c1, c2
andmix the combined concentrations ĉ back to obtain the final RGB
color:

c1 = unmix (RGB1),
c2 = unmix (RGB2),
ĉ = (1 − 𝑡)c1 + 𝑡c2,

kmerp(RGB1,RGB2, 𝑡) = mix (ĉ) .
The kmerp meets our goal of having a color mixing device which

takes RGB colors as input and produces the same answer as what
the K–M model predicts. However, compared to lerp, it has a slight
deficiency: it isn’t guaranteed to reproduce the input colors when
𝑡 = 0 or 𝑡 = 1. This deficiency stems from the fact that there are
RGB colors that cannot be mixed from the primary pigments. In
fact, some RGB colors cannot be mixed out of any currently known
pigments [Pointer 1980]. Such colors can only be made by shining
light. For these RGB colors, the inverse of the mix function (7)
does not exist. While the least-squares formulation (9) handles this
gracefully by projecting the unattainable RGB color onto its closest
mixable counterpart, this does have some negative implications for
using kmerp in painting software.
Our next idea is to correct this deficiency by introducing an

additive residual term. The residual represents the missing part
of red, green, and blue light that needs to be supplemented to the
light reflected off of the pigment mixture in order to exactly match
the original RGB color. The residual is the difference between the
RGB color and its projected counterpart: RGB−mix (unmix (RGB)).
Since they essentially represent light, we can take the residuals r1, r2
of the input RGB colors and add their linear combination r̂ back
to the result of mix (ĉ). With this correction in mind, we revise the
kmerp in a following way:

c1 = unmix (RGB1), r1 = RGB1 −mix (c1),
c2 = unmix (RGB2), r2 = RGB2 −mix (c2),

ĉ = (1 − 𝑡)c1 + 𝑡c2, (10)
r̂ = (1 − 𝑡)r1 + 𝑡r2, (11)

kmerp(RGB1,RGB2, 𝑡) = mix (ĉ) + r̂.
The important thing to notice is that when the two input colors
get combined together (Eqns. 10 & 11), the kmerp treats both the

concentrations and the residuals in the same way. This leads us
to the idea of establishing a homogeneous color representation by
concatenating the pigment concentrations c and the RGB residuals r
into a single latent vector z =

[
𝑐1 𝑐2 𝑐3 𝑐4 𝑟𝑅 𝑟𝐺 𝑟𝐵

]⊤. We use F to
encode an RGB color into the latent representation and G to decode
it back:

F (RGB) =
[
c
r

]
=

[
unmix (RGB)
RGB −mix (c)

]
= z, (12)

G(z) = G
( [
c
r

] )
= mix (c) + r. (13)

Borrowing from machine learning terminology, we call F the en-
coder and G the decoder. Our latent representation has two desirable
properties:

• it represents all RGB colors in a homogeneous way, including
those that cannot be mixed out of pigments P∗,

• linear operations on latent vectors give expected, plausible
results.

Note that unlike machine learning, where the latent representation
is usually learned from data, here it is induced directly by the K–M
model and the set of pigments P∗. Also, while the latent space
usually has less dimensions compared to input, here it is the other
way: the latent space is 7D (4 concentrations + 3 residuals), while
the input is the 3D RGB space.

With F andG at hand, the K–M-based pigment mixing can be eas-
ily plugged into any painting software. Each time two or more RGB
colors need to be mixed in the host software, one simply encodes
each participating color into our representation, applies the mixing
operation on the corresponding latent vectors, and decodes the re-
sult back to RGB. Crucially, the whole operation is performed in an
RGB-In / RGB-Out fashion (see Fig. 7), which makes it compatible
with software that has the RGB representation hardwired.

With this scheme in mind, we can formulate the kmerp using F
and G in the following way:

kmerp(RGB1,RGB2, 𝑡) = G((1 − 𝑡)F (RGB1) + 𝑡F (RGB2)) . (14)
The scheme extends analogously to situations where more than two
colors mix together, like in bilinear interpolation, when applying
convolution, or taking a weighted average of 𝑛 colors in general:

G
(∑𝑛

𝑖=1𝑤𝑖F (RGB𝑖 )∑𝑛
𝑖=1𝑤𝑖

)
.

Our latent representation makes it possible to mix RGB colors as if
we were mixing real paints. Thanks to the residual part, our mixing
approach generalizes even to RGB colors that cannot be mixed out
of pigments. This makes it a viable drop-in replacement for the
ordinary RGB mixing in digital painting software.

3.1 Surrogate Pigments
A practical issue with the pigment-based latent representation de-
scribed above is that some pigment mixtures produce colors outside
the sRGB gamut. For example, when mixing Phtahlo Blue and Ti-
tanium White in real life, at a certain point, we get a turquoise
so saturated that no ordinary sRGB monitor is able to display it.
In software, this issue manifests itself by the RGB values turning
negative or greater than one in Eqn. 7.
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P∗

Q∗

Fig. 8. The mixtures of P∗ exceed the gamut of sRGB colors (top row). We mitigate this by optimizing a set of surrogate pigments Q∗ which are confined to
stay inside the RGB cube while being as close as possible to P∗ (bottom row). The pyramids show 3-way mixtures between pigments placed at the vertices,
with the outside-gamut colors highlighted in red. While the colors mixed from Q∗ differ slightly from those mixed from P∗, the change is mostly unnoticeable.

We may clamp the out-of-range values for a quick remedy, but
that causes the mixing process to no longer be invertible. There are
multiple combinations of the primary pigments that, after mixing
and clamping, result in the same RGB color. Since RGB is the persis-
tent representation of color that ultimately gets stored in memory,
the clamping causes information to be lost.

One way to alleviate this issue is to perform gamut compression
instead of clamping. The idea is to deform the in-gamut colors
to make room for the outside-gamut colors and squeeze them in.
Importantly, gamut compression is bijective, which preserves the
invertibility and avoids the loss of information. Unfortunately, after
experimenting with many gamut compression techniques [Morovič
2008], we came to the conclusion that they all cause too much
distortion. The gamut compression manages to fit all mixed colors
inside the RGB cube but causes the gradients between colors to no
longer follow the trajectory predicted by K–M.
This prompted us to devise a different strategy: instead of com-

pressing the colors after they have been already mixed, we tweak
the primary pigments themselves to make their mixtures stay inside
the RGB gamut in the first place. We call these modified pigments
surrogate, denote them Q∗, and use them in place of the original
pigments P∗ in the encoder F and decoder G. We formulate the
task of tweaking Q∗ as a non-linear optimization problem:

arg min
Q

𝐸𝑝𝑢𝑠ℎ (Q) + 𝛼𝐸𝑝𝑢𝑙𝑙 (Q,P∗)

s.t. 𝐾 (𝜆) > 0 ∧ 𝑆 (𝜆) > 0 ∀(𝐾, 𝑆) ∈ Q,
(15)

where the variables are the collected absorption and scattering co-
efficients of the four surrogate pigments Q = {(𝐾†

𝑖
(𝜆), 𝑆†

𝑖
(𝜆))}4

𝑖=1.
The mixtures of Q are spanning the surrogate color gamut Ω. The
objective is to push Ω completely inside the RGB cube, while di-
verging as little as possible from the gamut of the original pigments
P∗. To that end, the term 𝐸𝑝𝑢𝑠ℎ penalizes the gamut boundary 𝜕Ω

protruding outside the RGB cube:

𝐸𝑝𝑢𝑠ℎ (Q) =
∫
𝜕Ω

max(0, 𝜙 (mix
Q

(c)))2 𝑑𝑠, (16)

where 𝑑𝑠 is the element of the surrogate gamut boundary, and 𝜙 (p)
is the signed distance between p and its closest point on a surface
of the unit cube [0, 1]3, having negative sign when p is inside the
cube, otherwise being positive.
The second term pulls the boundary towards the gamut of the

original pigments P∗ by penalizing the deviations between colors
mixed from Q and those mixed from P∗:

𝐸𝑝𝑢𝑙𝑙 (Q,P∗) =
∫
𝜕Ω

| |𝜓 (mix
Q

(c)) −𝜓 (mix
P∗

(c)) | |2 𝑑𝑠. (17)

To obtain Q∗ that differs from P∗ in the least perceptible way, we
take the color difference in the Oklab space [Ottosson 2020], which
is a recent alternative to CIELAB with better perceptual properties.
The function𝜓 takes care of converting the mixed RGB color to its
Oklab counterpart.
The parameter 𝛼 controls the relative strength of the pushing

and pulling forces. To obtain the best Q∗, we start with 𝛼 = 105

and repeatedly solve the optimization problem (15), reducing 𝛼
by half after each step. We use Q0 = P∗ as an initial guess and
terminate as soon as Ω completely fits inside the RGB cube. We
evaluate the integrals (16) and (17) numerically by sampling the
gamut boundary 𝜕Ω at a number of quadrature points corresponding
to equally spaced concentrations. We obtain the gradient of the
objective with automatic differentiation [Griewank and Walther
2008] and use the L-BFGS-B algorithm [Byrd et al. 1995] to solve (15)
in the loop.

This procedure yields surrogate pigments Q∗ that are as close as
possible to P∗, but whose mixtures are never clipped as they do not
exceed the RGB gamut. This guarantees that the round trip from
RGB to latents and back is always invertible, which is what makes
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Fig. 9. This digital painting was done using our pigment-based color mixing approach. It was painted on an 8-bit RGB canvas with colors picked from a
regular HSV wheel. Thanks to our mixing method, all simulated media such as oil paints, watercolor, or pastels look realistic and natural. The paints blend
intuitively and produce vibrant secondary colors: orange, violet, and most critically, green.

our approach work. Figure 8 shows the comparison between the
mixing behavior of the original pigmentsP∗ and their surrogatesQ∗.
Although some colors do change slightly, this does not pose an issue
in practice since real pigments also show some variance between
different batches and manufacturers. The important point is that
each surrogate pigment preserves its characteristic behavior when
mixed together with another pigment, as seen on the triangular
gradients in Fig. 8. The bias introduced with surrogate pigments is
barely noticeable, which we confirm later in Section 4.3 by looking
at the statistics of color differences. Thanks to our surrogate-based
approach, we manage to achieve the invertibility without sacrificing
the K–M mixing behavior.

3.2 Implementation
To implement pigment-based color mixing into painting software,
one has to integrate our encoder F and decoder G (Eqns. 12 & 13).
Each time colors need to be mixed in the host software, a sequence
of three steps is performed:

(1) encode each participating RGB color to its latent vector z
(2) take a weighted average of the latent vectors
(3) decode the resulting latent back to obtain the final RGB color

We showed how this is done in the case of kmerp (14), and the
procedure translates analogously to other situations.

In order for the painting experience to feel natural in software, it
is important to minimize any latency between the user’s action and
the result appearing on screen. Since a large number of color-mixing
operations needs to be performed at any given time, it is necessary
for the evaluation of F and G to be fast. To that end, we use lookup
tables and precompute the expensive operations as a preprocess,
which makes F and G very fast at runtime.

The preprocess starts by choosing a set of primary pigments P∗

and supplying their absorption and scattering coefficients 𝐾 (𝜆),
𝑆 (𝜆). These are either obtained by measuring the paint samples with
a spectrophotometer or taken from a pre-existing database [Oku-
mura 2005; Berns 2016]. For our purposes, we use four Golden Artist
acrylic paints PB15:4, PY73, PR122, and PW6, whose coefficients we

take from the Artist Paint Spectral Database [Berns 2016], together
with the reflectance constants 𝑘1, 𝑘2 of the Saunderson’s correc-
tion (6). The coefficients are sampled at wavelengths from 380 – 750
nm in 10 nm increments. Since the mixtures of P∗ lie outside the
RGB gamut, we find their surrogate pigments Q∗ first and use Q∗

in place of P∗ in all the subsequent steps. Since the coefficients are
sampled at 36 wavelengths, this amounts to solving the optimization
problem (15) in 288 variables.
The most expensive operation associated with our latent rep-

resentation is the evaluation of the unmix function (9) inside the
encoder F , which involves running a quasi-Newton solver for each
input RGB color. Here we use automatic differentiation together
with L-BFGS-B to obtain the 4 unmixed concentrations, starting
with c0 = (0.25, 0.25, 0.25, 0.25) as an initial guess. Unmixing an
RGB color this way can take up to 100 milliseconds to converge.
We speed this up by precomputing the unmix function for all 8-bit
RGB colors and store the results in a 3D look-up table. We quantize
the unmixed concentrations to 8-bits and further reduce the table
footprint by storing only 3 concentrations instead of 4. Since the
concentrations sum to one, the fourth concentration is implicitly
𝑐4 = 1 − (𝑐1 + 𝑐2 + 𝑐3). The final 2563 lookup table occupies 48 MB
of memory.

We further speed up F and G by using a second lookup table to
precompute the results of the mix function (7) in a similar fashion.
Thanks to the fact the fourth concentration is implicit, we can use a
3D table instead of 4D, which makes the approach feasible. The ex-
pensive part of themix function are the tristimulus integrals (3) – (5)
which we compute from the 36 spectrum samples using the trape-
zoidal rule. We quantize the concentrations to 8-bits and store the
mixed RGB colors in another 48 MB 2563 table.
The two precomputed tables occupy 96 MB in total. To reduce

their on-disk storage, we compress each table in a lossless way by
tiling its slices into a 4096 × 4096 PNG image. The two PNG images
have 7 MB in total, which is lightweight enough to bundle them
together with the software. With the precomputed tables at hand,
the evaluation of G reduces to performing a trilinear table lookup
followed by vector addition. The evaluation of F reduces to two
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Fig. 10. The effect pigment-based color mixing has on traditional media
simulation. When mixed in RGB, paints blend into grayish, dull colors, while
our method yields intuitive, natural shades and brings the simulation of oil
paints, pastels, watercolor, and other media to the next level.

trilinear lookups followed by a subtraction. This poses a reasonable
overhead compared to the usual RGB mixing, making the approach
practical for current painting software.

3.3 Choice of Primary Pigments
The set of primary pigments P∗ has a central role in our color mix-
ing approach. Because we interpret all RGB colors in terms of P∗,
the specific choice of pigments affects the resulting mixing behavior.
In Section 3, we picked Phthalo Blue, Quinacridone Magenta, Hansa
Yellow, and Titanium White as primary pigments, and we recom-
mend those as a good default. However, our method is not restricted
to this particular choice, and one can use different pigments instead.
This is important from the artist’s standpoint since the choice of pig-
ments is an intimate part of their approach and an expression of how
they see the world. Ideally, the host software should allow the user
to choose their preferred set of pigments in advance, pre-computing
the necessary look-up tables before starting the painting.
The primary pigments are usually selected from the yellow, red,

and blue pigment categories. Within each category, the pigments
come in various warm and cool hues, each having its specific color
bias. In our approach, the set of primary pigments is limited to four
entries, with one slot reserved for white. The main consequence
is that we can only choose either the warm or the cool version of
a pigment from each category. I.e., we cannot afford to have both

Fig. 11. When mixing paints with white in RGB, their colors get desaturated
and dimmed (left). In contrast, our method mimics saturated hue shifts
from real life and keeps the gradients radiant (right).

warm and cool blue, as that would take up two of the three available
slots. Therefore, the final behavior of our mixing method depends
on the particular kind of pigment we choose for each primary. Their
characteristic properties will get baked in, and interactions between
RGB colors will behave accordingly. For example, if we pick a warm
primary blue, such as Ultramarine, most blue-hued RGB colors will
inherit its warm nature and mix with other RGB colors in a similar
fashion.
Besides mixing behavior, the choice of pigments also bakes in a

specific appearance of the medium. That depends on the kind of
paints used to acquire the 𝐾 & 𝑆 coefficients. In our case, we used
the coefficients measured from acrylic paints, which are smooth
and glossy. The gloss provides the colors with a rich and saturated
appearance, and our method bakes in this characteristic. That can
cause it to overestimate saturation when applied in the context
of a different medium. For example, even though watercolor and
acrylic paints share the same pigments, dried watercolors should
look comparatively duller due to the absence of gloss. Therefore,
when applied to a simulated watercolor, our method can produce col-
ors that look more saturated than they would in real life. Although
this can be remedied by applying a desaturating color correction in
a post-process, we have not found this necessary in practice.

4 RESULTS
To prove our approach viable, we collaborated with Escape Motions
who integrated our mixing method into their painting software
Rebelle. In Fig. 9 you can see an example painting made using our
pigment-based color mixing approach. We painted this image on
an 8-bit RGB canvas with colors picked from a regular HSV wheel.
Notice how all paints blend naturally and stay vivid even after being
repeatedly mixed. This painting looks realistic partially thanks to
the convincing media simulation, but natural color mixing brings it
to the next level.

To appreciate the difference a natural colormixingmakes inmedia
simulation, we compare paints mixed additively in RGB to the same
paints mixed using our approach in Fig. 10. We show mainly the
critical combination of blue mixing with yellow on three different
techniques – oil paints, pastels, and watercolor. The outcome from
the additive mix is always grayish and dull while our approach gives
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Fig. 12. Landscape painting made for the purpose of profiling the perfor-
mance of our color-mixing approach. The whole image was done using four
colors – dark blue, magenta, yellow, and white, all picked from a regular
HSV wheel.

a natural shade of green color. Another combination we show is
magenta and yellow, painted with pastels in the middle row. The
orange color they produce with additive mixing is desaturated and
weak, while our approach yields a radiant, fiery orange, as we would
expect in real life.
Another effect that contributes to the realistic feel is the pro-

nounced hue shifts and increased saturation when colors mix with
white. Notice in Fig. 11 how especially the lower halves of the gradi-
ents differ. Additive mixing causes the colors close to white to look
grayish and dim, while our approach keeps colors lively throughout
the whole gradient.

4.1 Performance
To evaluate the performance of our method in a real-world setting,
we record a sequence of brush strokes made over the course of
a painting session. This allows us to replay them afterward with
different color-mixing implementations and compare the timings.
Our primary interest is to quantify the amount of lag incurred with
our pigment-based mixing, i.e., the time it takes for the painted
stroke to catch up with the motion of the stylus. With compute-
heavy approaches, the lag can easily build up when the user is
making fast brush strokes, which can negatively impact the painting
experience.

To gather the recorded brush strokes, we asked an artist to paint
a landscape following the wet-on-wet technique of Bob Ross, which
relies on the paints mixing together on canvas (see Fig. 12). To better
isolate the overhead of color mixing, the simulation of media dy-
namics was turned off, and the painting was deliberately made using
only two simple tools: a soft round brush and an area-averaging
smudge brush. We replay the recorded brush strokes with two con-
current implementations: the usual RGB mixing and our K–M-based
pigment mixing, both implemented in a single-threaded plain C
code. The strokes are replayed in real-time, and we measure the

Fig. 13. The latency and overhead of our color-mixing approach compared
to ordinary RGB mixing.

latency 𝑡2 − 𝑡1 between the time 𝑡1 when the latest stylus position
was registered and 𝑡2 when the painted stroke first reached up to
this position. We plot the peak latency encountered during each
second of the painting in Fig. 13a. The painting session lasted 38
minutes, during which the artist placed 2915 brush strokes of vary-
ing diameter, starting with large brushes for the background and
transitioning to smaller brushes when adding details. The painting
was made in a 2340 × 1654 resolution, and the performance was
measured on a laptop with Intel Xeon E-2276M CPU clocked at
2.8 GHz.

The plot of peak latencies shows that the performance of our ap-
proach follows that of RGB mixing with about 2× overhead, spiking
above 20 ms on a few occasions when the artist used a large smudg-
ing brush. Overall, painting the brush strokes with our method is
2× – 3× slower compared to RGBmixing, with the median overhead
of 2.3× (Fig. 13b). Crucially, when looking at the histogram of all
latencies (Fig. 13c), we see that both methods manage to catch up
with the stylus in less than 16 milliseconds most of the time. This is
quicker than the time it takes the 60 Hz display to refresh, which
makes our overhead unnoticeable in practice. Therefore, mixing the
colors with our approach does not introduce any appreciable lag
that would negatively affect the artist.

4.2 Effect of Residuals
While our method achieves perfect results for RGB colors that can
be mixed out of primary pigments, the colors outside the pigment
gamut need to be supplemented with a non-zero residual. To assess
the impact of the residual term, we examine the gradients between
extremal RGB colors, which are farthest away from the pigment
gamut. As can be seen in Fig. 14, our method shows a reasonable be-
havior even in the presence of significant residuals, yielding plausi-
ble mixing results. The gradients follow smooth trajectories without
going through unexpected colors.
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Fig. 14. Mixing behavior in the presence of residuals. The colored curves show the RGB trajectories that result when mixing between extremal RGB colors.
The endpoint colors are away from the pigment gamut (shown in gray), which necessitates the participation of the residual term. Despite the presence of
significant residuals, the resulting gradients follow smooth, plausible trajectories without causing unexpected colors to appear. Unlike linear RGB mixing,
which follows straight-line paths in the RGB space, our approach produces curved trajectories due to the non-linearity of the underlying K–M model.

4.3 Bias of Surrogate Pigments
Since the primary pigments P∗ protrude outside the RGB gamut,
we need to replace them with surrogate pigments Q∗ in order to
achieve invertible conversion between RGB colors and our latent
representation. The mixtures of Q∗ produce slightly different colors
compared to P∗. In order to quantify the amount of bias caused by
replacing P∗ with Q∗, we sample 106 concentrations c and gather
the histogram of perceptual differences between colors mixed from
P∗ and those mixed from Q∗:

Δ𝐸00 (𝑚𝑖𝑥P∗
(c),𝑚𝑖𝑥

Q∗
(c)),

where Δ𝐸00 is the CIEDE2000 color difference formula [CIE 2001].
The resulting histogram is plotted in Fig. 15. The histogram peaks
around Δ𝐸 level of 1 which corresponds to just noticeable difference
(JND), and falls rapidly after that. This confirms that the surrogate
pigments do not introduce considerable bias. In fact, the difference
between colors mixed from P∗ and Q∗ is typically close to the
threshold of being unnoticeable.

Fig. 15. Histogram of perceptual color differences between colors mixed
from P∗ and Q∗.

5 LIMITATIONS AND FUTURE WORK
The main restriction of our approach is that the number of primary
pigments is limited to four. A practical reason is that we need to use
look-up tables for quick conversion between latent vectors and RGB
values. If there were more than four pigments, the use of the 3D

table would no longer be possible, and the real-time performance
would suffer. Another reason is that a fifth pigment would cause
ambiguities. There would be more ways to mix the primary pig-
ments into the same RGB color. For example, if we add Viridian
Green as the fifth pigment, we can now obtain certain green hues
in two possible ways: either by mixing blue and yellow, or by using
the green pigment in its pure form. This ambiguity would cause
the conversion between pigment concentrations and RGB values
to no longer be invertible and our method would cease to work.
The four-pigment-limitation can be alleviated to some extent by
precomputing multiple versions of the lookup tables for different
sets of primary pigments and switching between them on the fly.
However, the question how to properly generalize our approach
to a case of more than four pigments is an interesting avenue for
future work.

Another limitation is that our approach only considers homoge-
neous mixing of opaque paints. When compositing two RGB layers
using alpha-blending, our approach treats both layers as if they
consisted of thick wet paint. A possible extension left for future
work is to add support for the Kubelka–Munk layer-compositing
model, which would enable more faithful simulation of translucent
layers and handle effects like watercolor glazing.

6 CONCLUSION
We introduced a practical method to achieve natural color mixing
that follows the behavior of real paints. Our K–M-based mixing
works in RGB-In / RGB-Out fashion, which makes it easy to inte-
grate in current software that has the RGB representation hardwired.
Thanks to being compatible with all RGB colors, our method does
not deprive the users of the ability to work with arbitrary RGB im-
ages and allows them to keep using their favorite color pickers. Since
our color mixing can be performed with just a few table lookups,
it does not introduce any noticeable lag during painting compared
to ordinary RGB mixing. The practical side of our approach was
confirmed by a painting software vendor, who integrated it into
their product within a fewweeks. Thanks to that, the first few artists
got the opportunity to try it out and share their thoughts with us.
According to them, having a natural color mixing available in

painting software is highly desirable because it allows one to carry
the intuitions gained in real life over to the digital domain. This is
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Fig. 16. Watercolor painting made in Rebelle using our color mixing method.
Thanks to the faithful pigment behavior, the waterdrops dissolved into
vivid gradients and blended naturally. As a result, the painting process was
intuitive, enjoyable, and felt realistic. ©Ľubomír Zabadal, Constantine the
Philosopher University in Nitra, Slovakia.

especially important for classically trained artists, who often find
the color behavior in painting software unintuitive. Thanks to our
K–M-based mixing, the digital tools suddenly become accessible to
artists who are proficient in traditional media (see Fig. 16). It allows
them to extend their craft to a digital setting while enjoying some
of its benefits, like the ability to undo and redo. Digitally trained
painters, on the other hand, are already used to the RGB mixing
behavior. However, they need to consciously work against it to
avoid the regression toward the gray, which takes away from their
creative process. Unlike RGB where colors mix in linear fashion,
pigment-based mixing has the advantage of non-linear behavior,
which causes the mixed colors to naturally bend away from gray,
producing secondary hues while preserving saturation. This makes
our K–M-based color mixing desirable even to the artist who is
already skilled in RGB painting.

We believe this paper will finally put an end to the long-standing
issue of colors mixing wrong in digital painting software.
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