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Abstract

Adding examples of the majority class to the
training set can have a detrimental effect on
the learner’s behavior: noisy or otherwise un-
reliable examples from the majority class can
overwhelm the minority class. The paper dis-
cusses criteria to evaluate the utility of clas-
sifiers induced from such imbalanced training
sets, gives explanation of the poor behavior
of some learners under these circumstances,
and suggests as a solution a simple technique
called one-sided selection of examples.

1 Introduction

The general topic of this paper is learning from exam-
ples described by pairs [(x, ¢(x)], where x is a vector of
attribute values and ¢(x) is the corresponding concept
label. For simplicity, we consider only problems where
¢(x) is either positive or negative, and all attributes are
continuous. Since Fisher (1936), this task has received
plenty of attention from statisticians as well as from re-
searchers in artificial neural networks, Al, and ML. A
typical scenario assumes the existence of a training set
from which the agent induces a classifier whose per-
formance is then assessed on an independent testing
set.

An interesting complication arises when the train-
ing set is imbalanced in the sense that one of the
classes (say the positive examples) is heavily under-
represented compared to the other class. This is en-
countered in many real-world applications such as the
detection of fraudulent telephone calls (Fawcett and
Provost, 1996); spotting unreliable telecommunica-
tions customers (Ezawa, Singh, and Norton, 1996), or
a rare medical diagnosis such as the thyroid disease in
the UCI repository. Extremely imbalanced classes pre-
vail in information retrieval and filtering tasks (Lewis
and Catlett, 1994).

As pointed out by many authors, the classifier’s per-
formance in applications of this kind cannot be ex-
pressed in terms of the average accuracy (percentage of
testing examples correctly recognized by the system).
In the domain studied by Lewis and Catlett (1994),
only 0.2% examples are positive, and a retrieval sys-
tem will achieve 99.8% accuracy by stubbornly deny-
ing the presence of the requested document. Even a
system with accuracy close to 100% can thus be useless
and the benefit of classifiers in similar domains must
therefore be assessed by more appropriate criteria.

Informally, what the user expects is that the induced
classifier will perform well on positive as well as on neg-
ative examples, rather than only on one class at the
cost of the other. Section 2.1 gives a brief overview
of possible options and gives reasons for the criterion
that we have used in our experiments: the geomet-
ric mean, ¢ = Vat -a—, of accuracies observed sepa-
rately on positive examples, a®, and on negative ex-
amples; a~. Section 2.2 discusses the reasons why the
results of learning from sparse positive examples can
be disppointing (as viewed from the perspective of the
g-criterion). In this way, we provide grounds for the
solution described in the sequel.

In a project on detection of oil spills in satellite-borne
radar images (Kubat, Holte, and Matwin, 1997) we
have faced a relatively novel problem. Not only the
training set is unbalanced, but the positive examples
are extremely rare: no more than two dozens of oil
slicks as compared to hundreds of lookalikes. Having
observed that the g-performance of common learning
systems significantly worsened as the number of neg-
atives exceeded reasonable limits, we advocated stud-
ies of techniques tailored to this type of domains, and
reported experience with the program SHRINK devel-
oped to this end (Kubat, Holte, and Matwin, 1997).
The program induces classifiers in the form of a simple
network of tests. The tests have the form of properly
selected subintervals along the attributes’ domains.

If the

Here, we pursue quite a different strategy.



Table 1: Confusion matrix: the columns represent the
classes assigned by the classifier; the rows represent
the true classes.
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performance of the learner drops with abundant neg-
ative examples, why not simply select a reasonably
sized subset of negative examples? It turns out that
for our needs it is only necessary to adapt an exist-
ing technique that has been known in statistics for
quite some time but seems to be by and large ignored
in applications of machine learning dealing with im-
balanced classes (Catlett, 1994; Pazzani et al., 1994;
Fawcett and Provost, 1996; Ezawa et al, 1996; Lewis
and Catlett, 1994). In particular, we adapted the tech-
nique of Tomek links (Tomek, 1976) so that it only
removes examples from the majority class while leav-
ing the examples from the minority class untouched.
This is what we call one-sided selection. The details
are presented in Section 3.

Section 4 reports experiments investigating the merits
of one-sided selection in the framework of a nearest-
neighbor classifier and a decision-tree generator. Ex-
perience from the oil-spill task is supplemented by ex-
periments from other domains with similar character-
istics, including three benchmark domains.

2 The Curse of Imbalanced Training
Sets

2.1 Evaluation Criteria

To formulate criteria of the performance of pattern-
recognition systems, statisticians work with the con-
fusion matriz (Table 1) whose fields characterize clas-
sification behavior of a given system. For instance,
a is the number of correctly classified negative exam-
ples and ¢ is the number of misclassified positive ex-
amples. Performance criteria are couched in terms of
these numbers: the traditional accuracy (inappropri-

: _ at+d
ate for our needs) is calculated as acc = TFiterd-

The information-retrieval community prefers to work
with precision, p = H_Ld, and recall, v = c_}_id. Some-
times, the geometric mean of the two quantities is
used, /p - 7, reaching high values only if both precision
and recall are high and in equilibrium. Other authors
(Lewis and Gale, 1994) combine precision and recall
into a more elaborate function called the F-measure.

accuracy on
positives

error rate on negeatives

Figure 1: The ROC curve

Yet another useful measure is the information-based
criterion suggested and analyzed by Kononenko and

Bratko (1991).

Swets (1988) discusses a measure that reflects the fact
that very often the classifier can deliberately be biased
towards one of the classes and that the extent of this
bias can be controled: accuracy on positive examples,
at = hiLd, can be increased at the cost of accuracy
on negative examples, a~ = a"? The relation of the
two quantities can be captured by what is called the
ROC (Relative Operating Characteristics) curve: the
horizontal axis measures error rate on negative exam-
ples while the vertical axis measures accuracy on the
positive examples. An example is shown in Figure 1.
Informally, the curve shows to what extent accuracy
on positive examples drops with reduced error rate on
negative examples. The larger the area below the ROC
curve, the higher the classification potential of the sys-
tem.

In Kubat, Holte, and Matwin (1997) we used the geo-
metric mean of the accuracies measured separately on

cg=+at . a = ./ .4 i
each class: ¢ = vVat -a= = pE) c+d.Thlsmeasure

relates to a point on the ROC curve and the idea is
to maximize the accuracy on each of the two classes
while keeping these accuracies balanced. For instance,
a high at by a low a~ will result in poor g.

This measure was consistent with the requirements of
the customer in the oil-spill domain. However, the con-
crete choice does not seem to be critical for the consid-
erations in the sequel, and we believe that other met-
rics (i.e. metrics sensitive to the needs of each class)
could do as well. Especially the criterion discussed
at length by Kononenko and Bratko (1991) deserves
attention for its many convenient properties.



- + -
+ - - _-
) + e m -
+ -+ . - =
- + - -

Figure 2: The sparseness of positive examples compli-
cates the learner’s task

2.2 The Case of Extremely Rare Positives

Why do abundant negatives hurt? Figure 2 offers an
intuition that explains the behavior of the nearest-
neighbor rule (1-NN) under these circumstances. The
picture shows several positive examples, many nega-
tive examples, and a decision surface that is a priori
unknown to the learner. The reader can see that each
positive example has a negative nearest neighbor. This
can be generalized: as the number of negative exam-
ples in a noisy domain grows (the number of positives
being constant), so does the likelihood that the near-
est neighbor of any example will be negative. Many
positive examples will thus be misclassified. With in-
finitely many negative examples and a finite number
of sparse positive examples, the 1-NN classifier experi-
ences a~ = 100% and at = 0%, which is unacceptable.
With reasonably sized training sets, this situation can
be partially rectified by taking k nearest neighbors in-
stead of a single one. Still, with very large training
sets (and with very large disproportion between the
positive and negative examples), the harmful effect of
the negative examples prevails.

Similar conclusions can be inferred from the princi-
ples of Bayesian classifiers. Denote by P(+) and P(—)
the a priori probabilities of the positive and negative
class, respectively, and denote by p4(x) and p_(x) the
probability density functions for the positive and neg-
ative class at the point x. The pure Bayesian classifier
(ignoring miclassification costs) labels x as a positive
example if P(4+)p4(x) > P(—)p-(x). However, the
inequality can hardly ever be satisfied in the learn-
ing task depicted in Figure 2 because P(—) > P(+4)
and only rarely, if ever, p4(x) > p_(x). The only so-
lution is to allot very high costs to positive examples
(I+) by a small cost associated with negative examples
(L_). The classifier would then assign the positive
class whenever P(+)p4+(x)ly > P(—)p_(x){_ Even
then, the classifier can have problems to properly es-

timate a smooth density function of the positive class.
Moreover, it is often not clear how to determine the
values of [; and I_ during learning or prior to learning.

Induction of decision trees will suffer as well. Deci-
sion trees are known to be universal classifiers: any
dichotomy of points in general position in an n-
dimensional continuous space can be realized by a suf-
ficiently large decision tree. In the case from Figure 2,
each positive example will eventually be represented
by one branch of the tree. With sufficiently many neg-
ative examples and sparse positive examples, the posi-
tive regions will be arbitrarily small. The tree overfits
the data with a similar effect as in the case of the 1-NN
classifier.

Pruning the tree does not answer the main problem.
After pruning, some regions will contain examples
from both classes. A commonplace policy is to asso-
ciate with each leaf the label of the class that has ma-
jority in the corresponding region. In applications with
rare positive examples, regions containing mixed pos-
itives and negatives will be labeled as negative, with
the potential effect that none of the branches will be
deemed positive unless the algorithm is appropriately
modified. Of course, the situation can be improved by
meticulously finding the best pruning constant, say,
by means of a properly designed cross-validation tech-
nique, as in CART (Breiman et al., 1984. However,
this does not address the core of the problem: each
positive example is surrounded by one or more (or even
many) negative examples, and most regions will thus
be labeled as negative.

3 One-Sided Sampling

Learning from highly imbalanced training sets re-
ceived some attention in the neural-network commu-
nity. Common solutions duplicate the training ex-
amples; create new examples by corrupting existing
ones with artificial noise; or increase the learning rate
when an example of the underrepresented concept is
presented (DeRouin et al. 1991). In the realm of
machine learning, the problem has been addressed in
various ways: by weighing training instances (Paz-
zani et al. 1994), by introducing different miclassifica-
tion costs for positive and negative examples (Gordon
and Perlis (1989), by windowing and bootstrapping
(Catlett, 1991; Sung and Poggio, 1995), by hetero-
geneous sampling (Lewis and Catlett, 1994), and by
forcing the learner to focus on specific relationships
between certain attributes (Ezawa et al, 1996). Note
that this problem is different from the pure scarcity of
data as discussed in Dietterich, Lathrop, and Lozano-

Perez (1997).

As already mentioned, the strategy chosen in this par-
ticular study is that the learner will first select a repre-



sentative subset of the negative examples. The train-
ing set becomes more balanced, and the drawbacks
discussed in the previous section will diminish.

Selection techniques were studied by the statistical
literature of the 60s and 70s (Hart, 1968; Gates,
1972; Tomek, 1976) and were later addressed also by
machine-learning researchers, among them by Aha, Ki-
bler, and Albert (1991), Zhang (1992), Skalak (1994),
Lewis and Gale (1994), Floyd and Warmuth (1995).
Although the focus of these papers was mainly on the
reduction of the training-set size, the underlying al-
gorithms can be instrumental also in our particular
problem. The only requirement is that the learner al-
ways keeps all positive examples (they are too rare to
be wasted, even under the danger that some of them
are noisy) and prunes out only negative examples.

What heuristics can be applied to detect less reliable
examples? Figure 2 has already illustrated the fact
that negative examples can roughly be divided into
four groups.

1. Those that suffer from the class-label noise—for
instance the point in the bottom left corner.

2. Borderline examples that are close to the bound-
ary between the positive and negative regions.
Borderline examples are unreliable: even a small
amount of attribute noise can send the example
to the wrong side of the decision surface.

3. Those that are redundant so that their part can

be taken over by other examples. This is the case

of examples in the upper right corner.
4. Safe examples that are worth being kept for fu-
ture classification tasks.

The redundant examples do not harm correct classifi-
cations but they increase classification costs. Figure 3
shows what happens with the training set from Fig-
ure 2 if all borderline and noisy examples are removed.
Figure 4 illustrates a further reduction: the removal of
redundant negative examples. If examples from this
last picture are used as a training set, neither the 1-
NN rule nor a bayesian classifier nor a decision-tree
generator should run into any serious problem.

An intelligent agent will thus try to eliminate border-
line examples and examples suffering from the class-
label noise. These can easily be detected using the
concept of Tomek links (Tomek, 1976). The idea can
be put as follows. Take two examples, x and y, so
that each has a different concept label. Denote by
8(x,y) the distance between x and y. The pair (x,y)
is called a Tomek link if no example z exists such that
8(x,2) < 6(x,y) or 8(y,z) < 6(y,x). Examples par-
ticipating in Tomek links are either borderline or noisy.

An attempt to reduce the number of redundant exam-
ples can be cast as the task of creating a consistent
subset, C', of the training set, S. By definition, a set
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Figure 3: The training set without the bor-
derline and noisy negative examples.
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Figure 4: The training set after the re-
moval of redundant negative examples.

Table 2: Algorithm for the one-sided selection of ex-
amples.

. Let S be the original training set.

2. Initially, C' contains all positive examples from S and

one randomly selected negative example.

. Classify S with the 1-NN rule using the examples in
C, and compare the assigned concept labels with the
original ones. Move all misclassified examples into C
that is now consistent with S while being smaller.

. Remove from C' all negative examples participating
in Tomek links. This removes those negative exam-
ples that are believed borderline and/or noisy. All
positive examples are retained. The resulting set is
referred to as 7.




C C S is consistent with S if, when used by the 1-NN
rule, it correctly classifies examples in S. Note that
any training set is a consistent subset of itself. In our
particular problem, the objective is not necessarily to
create the smallest possible C. Rather, it is enough
if the set of negative examples reasonably shrinks. To
this end, we use our own variant of the technique in-
vented by Hart (1968). To start with, one negative
and all positive examples are placed into C'. Then, the
1-NN rule is used with the examples in C' in an at-
tempt to re-classify S. Those training examples that
have been misclassified are then added to C.

Table 2 summarizes the procedure. First, the num-
ber of redundant negatives is reduced by creating the
subset C| consistent with the training set. Then, the
system removes those negative examples that partici-
pate at Tomek links. In this way, the noisy and bor-
derline examples are discarded, which leads to the new
training set, 7'

4 Experiments

4.1 Experimental Setting

The task of the experiments is to demonstrate that in
applications with imbalanced training sets, one-sided
sampling indeed improves the behavior of some exist-
ing learners. In particular, 1-NN and C4.5 were se-
lected because of their widespread use and well-known
performance. We wanted to compare the results of a
classifier induced from all training examples (the set
S) with the results of the same classifier induced from
the sets C' (some redundant examples removed) and
T (some redundant, borderline, and noisy examples
removed).

To obtain statistically reliable results even under the
circumstance of scarce positive examples, a specific
variant of the k-fold cross-validation technique was
used. The training set was divided into k subsets of
equal size in a manner that ensured that each of them
had the same proportion of positive and negative ex-
amples (stratified sampling). For all possible choices of
k — 1 subsets, the union of k¥ — 1 subsets was used for
training, and the induced classifier was tested on the
remaining subset. The results were averaged.

The domains used as experimental testbeds can
roughly be divided into two groups. The first group is
formed by data from two major projects that originally
motivated this research: oil-spill detection and sleep
classification. They represent very difficult learning
tasks because the information provided by the given
attributes is insufficient for successful classification.
Moreover, many attributes are probably irrelevant.

Two data files come from the oil-spill detection project

Table 3: Characterization of experimental data. All
attributes are continuous and each domain has only
two classes.

file ]| # attrib. | #pos [ #neg | k ||

oill 44 24 480 | 8
0il2 39 21 350 |7
kr 15 150 750 |5
br 15 140 700 | 5
g7 10 28 182 | 7
vw( 10 90 900 | 5
vehl 19 168 676 | 4

reported by Kubat, Holte, and Matwin (1997). Each of
them actually refers to the same set of satellite images,
each time preprocessed by a different image process-
ing method. The positives are rare, and the domains
perfectly fit the problem definition from Section 1. An-
other two data files, kr and br, come from an earlier
research of one of the authors (Kubat, Pfurtscheller,
and Flotzinger, 1994). The training set is imbalanced
but the number of positive examples is not so small.
The negative examples are known to belong to several
different subclasses.

Apart from these domains, we also followed the com-
mon practice of the machine-learning community and
experimented with some data files from the UCI repos-
itory (Murphy and Aha, 1994) so that other re-
searchers can replicate the experiments and double-
check our results. To adapt the data to our needs,
we defined the task as learning to distinguish one se-
lected class from the other classes. More specifically,
in the glass domain (g7), the task is to learn class 7; in
the vowels domain (vw0), the task is to learn class 0;
and in the vehicles domain (vehl), the task is to learn
class 1.

The testbeds are summarized in Table 3. For each
domain, the table gives the number of attributes, the
number of positive examples, the number of negative
examples, and the value of k defining the k-fold cross-
validation technique. In two benchmark domains (g7,
vehl), we discarded (randomly) some examples just to
ensure that each of the k subsets will contain exactly
the same proportion of positive and negative examples
(which can only be ensured if if the number of positive
examples and the number of negative examples can
both be divided by the same integer number k).

4.2 Results and Discussion

In downsizing the training set, we delete all exam-
ples that participate in Tomek links. We do not re-



move all redundant examples because this could be
prohibitively expensive. The algorithm described in
Section 3 is relatively cheap, and capable of removing
most of the redundant examples. Preliminary exper-
iments revealed that the performance of the induced
classifier is largely unaffected by the choice of redun-
dant examples to be removed.

The results are summarized in Tables 4 through 7.
Each table is divided into three parts. The first, S,
gives results achieved when using «ll training exam-
ples; the second part, C, pertains to the situation after
the removal of redundant negative examples; and the
third part, T, pertains to the case when the system
removed from C' all negative examples participating
in Tomek links. The values in the tables are obtained
from the k-fold crossvalidation technique (for the val-
ues of k in the individual domains see Table 3).

To better illustrate the learners’ behavior, the tables
give the results in terms of the accuracy on positive
examples (at = C;Ld), accuracy on the negative ex-

amples (a= = a“?), and the geometric means of these

two values: ¢ = vat - a~. The reader can see that the
removal of redundant negative examples, while signif-
icantly reducing the number of stored examples, does
not yet guarantee performance gain. Indeed, in some
cases (1-NN in 0il2 and C4.5 in 0ill) the g-performance
even dropped because the removal of redundant neg-
atives did not solve the main problem: poor accuracy
on positive examples. The abundant negative exam-
ples in the borderline region bias the classifier towards
the negative class. Once these examples are removed
(set T), the accuracy as measured on different classes
of examples (positive and negative) becomes more bal-
anced, and the value of g improves in each of the four
domains, sometimes even by a wide margin. The ex-
treme is the behavior of C4.5 in the oil-slick-IT domain
where the difference between the g-performance of the
S set and that of the 1" set is more than 16%, and the
behavior of 1-NN on the oil-slick-I domain where the
improvement is even 46%.

For comparison, the last columns in the tables give the
average accuracy, acc = ﬁ. The reader can see
that the values of ace do not express anything alarm-
ing. The accuracy achieved by the S set is sometimes
even higher than that of 7. And yet the values of a+
indicate that the utility in a real-world setting might
be dubious: for instance, missing 80% of the positive
examples in the oil-slick-I domain.

Table 8 summarizes the g-performance for the bench-
mark domains, indicating also the limitations of the
technique. In the vehicles domain, both 1-NN and
C4.5 significantly profited from the one-sided sam-
pling. However, in the glass domain the sampling tech-
nique leads only to a modest improvement in 1-NN

Table 4: The results in oil-slicks 1

|| #ex. || progr. | g | at | a” || acc ||
441.0 1-NN 44.3 | 20.8 | 94.4 90.9
C4.5 82.9 | 72.0 | 95.5 94.4
83.0 1-NN 66.6 | 45.8 | 96.7 94.3
C4.5 79.1 | 66.7 | 93.8 92.5
65.2 1-NN 90.6 | 87.5 | 93.7 93.4
C4.5 84.3 | 79.2 | 89.8 89.3

Table 5: The results in oil-slicks 11

|| #GX. || pI'OgI'. | g | Cl+ | a || acc ||
318.0 1-NN 51.3 | 28.6 | 92.3 88.7
C4.5 49.5 | 28.6 | 85.7 82.5
119.9 1-NN 41.4 | 19.0 | 90.0 86.0
C4.5 56.5 | 42.9 | 74.6 72.8
115.3 1-NN 53.0 | 33.3 | 84.3 81.4
C4.5 66.0 | 57.1 | 76.3 75.2
Table 6: The results in KR
|| #GX. || pI‘OgI‘. | g | a+ | a || acc ||
720.0 1-NN 69.2 | 52.7 | 90.9 84.5
C4.5 74.0 | 59.3 | 92.3 86.8
375.2 1-NN 69.8 | 55.3 | 88.0 82.6
C4.5 75.3 | 62.0 | 91.5 86.6
267.4 1-NN 75.8 | 74.0 | 77.6 77.0
C4.5 80.8 | 78.0 | 83.6 82.7
Table 7: The results in BR
|| #ex. || progr. | g | at | a~ || acc ||
672.0 1-NN 81.2 | 70.7 | 93.3 89.5
C4.5 76.4 | 62.1 | 94.0 88.7
297.2 1-NN 81.3 | 72.9 | 90.7 87.7
C4.5 79.0 | 69.3 | 90.1 86.6
227.2 1-NN 87.8 | 93.6 | 82.4 84.3
C4.5 83.4 | 80.7 | 86.1 85.2




Table 8: Results observed in the benchmark domains

g7 vw0 vehl
1I-NN [ C4.5 || 1I-NN [ C4.5 || 1-NN | C4.5
95.2 92.6 83.4 88.4 52.1 57.6
96.6 92.6 90.8 84.1 55.4 62.0
96.6 84.5 90.9 84.0 66.8 69.4

N Ql»

while causing a performance drop in C4.5. A more de-
tailed examination revealed that in this domain, C4.5
did not yield disproportionate values of at and a~,
and the situation therefore did not call for one-sided
sampling. Similar behavior was observed also in the
vowels domain where only 1-NN (and not C4.5) expe-
rienced improvement.

This suggest how the algorithm should actually be ap-
plied. First, look whether the values of at and a~
are balanced. Only if one of them is prohibitively low,
carry out the one-sided sampling.

5 Conclusion

In some real-world tasks, the learner can avail itself
of just a few positive examples and virtually unlim-
ited number of negative examples. If this is the case,
the avarage classification accuracy on the testing set
is not a very useful criterion. Several alternative cri-
teria can be recommeded, from which we selected the
g-performance: the geometric mean of a* (percentage
of positive examples correctly recognized) and a~ (per-
centage of negative examples correctly recognized).

Common learning algorithms such as the nearest-
neighbor rule and induction of decision trees can be
misled when the number of negative examples exceeds
certain limits. This behavior pertains to the funda-
mental principles of these learners, as explained in the
paper. The sensitivity to an imbalanced distribution
of examples can be mitigated by selection techniques
that discard those negative examples that lie in the
borderline region, are noisy, or redundant.

The paper investigated the impact of simple selection
techniques, adapted so that they remove only nega-
tive examples while keeping all positives. Hence the
name: one-sided selection. Although the experiments
addressed only 2-class problems, we believe that a sim-
ilar approach can be used also in the frame of multi-
class learning.
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