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Abstract— Many real-world applications have problems when
learning from imbalanced data sets, such as medical diagnosis,
fraud detection, and text classification. Very few minority class
instances cannot provide sufficient information and result in
performance degrading greatly. As a good way to improve
the classification performance of weak learner, some ensemble-
based algorithms have been proposed to solve class imbalance
problem. However, it is still not clear that how diversity affects
classification performance especially on minority classes, since
diversity is one influential factor of ensemble. This paper
explores the impact of diversity on each class and overall
performance. As the other influential factor, accuracy is also
discussed because of the trade-off between diversity and accu-
racy. Firstly, three popular re-sampling methods are combined
into our ensemble model and evaluated for diversity analysis,
which includes under-sampling, over-sampling, and SMOTE [1]
— a data generation algorithm. Secondly, we experiment not only
on two-class tasks, but also those with multiple classes. Thirdly,
we improve SMOTE in a novel way for solving multi-class data
sets in ensemble model - SMOTEBagging.

I. INTRODUCTION

MBALANCED data sets (IDS) correspond to domains

where there are many more instances of some classes
than others. Classification on IDS always causes problems
because standard machine learning algorithms tend to be
overwhelmed by the large classes and ignore the small
ones. Most classifiers operate on data drawn from the same
distribution as the training data, and assume that maximizing
accuracy is the principle goal [2], [3]. Many real-world
applications encounter the problem of imbalanced data, such
as medical diagnosis, fraud detection, text classification, and
oil spills detection [4].

Some solutions to the class imbalance problem have been
proposed at both data level and algorithm level. At the
data level, various re-sampling techniques are applied to
balance class distribution, including over-sampling minority
class instances and under-sampling majority class instances
[5], [6], [7], [8] . Particularly, SMOTE (Synthetic Minority
Over-sampling Technique) [1] is a popular approach designed
for generating new minority class data, which could expand
decision boundary towards majority class. At the algorithm
level, solutions are proposed by adjusting algorithm itself,
including adjusting the costs of various classes to counter
the class imbalance, adjusting the decision threshold, and
recognition-based (i.e., learning from one class) rather than
discrimination-based (two class) learning. When working
with decision trees, we could also adjust the probabilistic
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estimate at the tree leaf [2] . Cost-sensitive learning and semi-
supervised learning are related research on class imbalance
learning.

As one of the solutions, ensemble systems have been
drawn more and more attention because of their flexible char-
acteristics. Firstly, for ensemble itself, multiple classifiers
could have better answer than single one. A lot of study
has been working on ensemble models and proved that it
can average prediction errors and reduce bias and variance
of errors. Secondly, most current ensemble models have
the same learning procedure — re-sampling, base learning
algorithm, voting, but different strategies in each phase.
Each phase provides a chance to make the model better
for classifying minority class. For example, Bagging [9] and
Boosting [10] are two of the most popular techniques. These
methods operate by taking a base learning algorithm and
invoking it many times with different training sets. Therefore,
some algorithms are proposed based on these two ensemble
models by changing their re-sampling methods, such as
BEV (Bagging Ensemble Variation) [11], SMOTEBoost [1],
and DataBoost [12]. More details will be introduced in the
Section 2. In the second phase of constructing base learners,
algorithm-level methods can be applied. There are also
some voting strategies beneficial to minority class instead of
standard majority voting, such as adjusting weights of each
classifier according to different cost, distance of instances,
and F-measure value [13], [14].

Performance of ensemble models is decided by two fac-
tors: accuracy of individual classifier and diversity among all
classifiers. Diversity is the degree to which classifiers make
different decisions on one problem. Diversity allows voted
accuracy to be greater than that of single classifier. Among
above ensemble solutions for imbalanced data sets, however,
it is still not clear that how diversity affects classification
performance especially on minority classes. Understanding
of diversity on minority class can help us improve ensemble
solutions better. In this paper, therefore, the goal is to
discover the impact of diversity on imbalanced data sets.
Inevitably accuracy analysis is involved. Particularly, firstly,
we combine three popular re-sampling methods into our
ensemble model based on Bagging for diversity analysis,
which includes under-sampling, over-sampling, and SMOTE.
Secondly, we experiment not only on two-class tasks but
also those with multiple classes to make our analysis sound.
Thirdly, we extend SMOTE in a novel way for solving multi-
class data sets in ensemble model — SMOTEBagging.

Around our research problem, we consider the following
questions in our analysis, which are also the contributions of
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this paper:

o What is the performance tendency under different “di-
verse” degree by using different re-sampling techniques
in ensemble? Three basic re-sampling methods are
included: under-sampling of majority, over-sampling of
minority, SMOTE, which generates synthetic minority
class instances.

o What is the difference or similarity of diversity between
two-class cases and multi-class cases?

« Can SMOTE bring diversity into ensemble?

The paper is organized as follows: Section 2 discusses
related work of ensemble in class imbalance learning. Sec-
tion 3 describes our experimental design including three
improved ensemble models — OverBagging, UnderBagging,
and SMOTEBagging. Section 4 gives observations from ex-
periments and analyzes experimental results. Finally, section
5 presents the conclusions.

II. RELATED WORK

In this field, ensembles have been used to combine
several classifiers, each constructed after over-sampling or
under-sampling training data, in order to balance the class
distribution [15]. Among different re-sampling techniques,
random over-sampling and random under-sampling are the
simplest ones to be applied by duplicating or eliminating
instances randomly. To avoid overfitting of random over-
sampling, SMOTE is proposed by Chawla [1], which is a
popular method of over-sampling by generating synthetic
instances. Generally, SMOTE generates synthetic instances
in the following way:

SMOTE generates new synthetic minority examples by
interpolating between minority examples that lie together.
It makes the decision regions larger towards majority class
and less specific. Synthetic examples are introduced along
the line segment between each minority class example and
one of its k minority class nearest neighbors. Its generation
procedure for each minority class example can be explained
as: firstly, choose one of its k£ minority class nearest neigh-
bors. Then, take the difference between the two vectors.
Finally, multiply the difference by a random number between
0 and 1, and add it to this example. One of its problems is
that SMOTE can only solve two-class problems by adjusting
generating rate (i.e., from 100 to 500) to rebalance class
distribution. This would cause confusion if more than one
minority class exist. In addition, SMOTE is sensible to data
complexity of data sets.

Current ensemble solutions are mostly based on various
re-sampling methods, such as SMOTEBoost [1], DataBoost
[12], and BEV [11]. The first two improve Boosting by
combining data generating methods. Instead of changing the
distribution of training data by updating the weights associ-
ated with each example in standard Boosting, SMOTEBoost
alters the distribution by adding new minority-class examples
using the SMOTE algorithm. Experimental results indicate
that this approach allows SMOTEBoost to achieve higher
F-values than standard Boosting and SMOTE algorithm

with a single classifier. DataBoost has a different goal —
improve performance of minority class without sacrificing
the performance of majority class. Therefore, hard instances
from both majority class and minority class are identified.
BEV use Bagging by under-sampling majority class.

A number of researchers have been working on this
topic, however, very few discuss the diversity and give us
a clear idea that “why the ensemble model can improve
performance of minority”. Therefore, in order to achieve our
goal, we choose three re-sampling methods in our experi-
ments based on Bagging ensemble model — random over-
sampling, random under-sampling, SMOTE. The limitation
of the above solutions is that they are designed and tested
on two-class applications. So, we extend the three Bagging
models to multi-class cases where multiple minority classes
and multiple majority classes exist.

Class imbalance has its own evaluation criteria on minority
class and whole data set. For evaluating performance of one
class, recall, precision, and F-measure are commonly used.
Recall values tell us how many minority class instances are
identified in the end, but may sacrifice system precision
by misclassifying majority class instances. For a two-class
problem, if we assume positive class is the minority, then
recall value is formulated as “T'P/ (TP + FN)”, where TP
denotes the number of “true positive” instances and FN
denotes the number of “false negative” instances. Value of F-
measure (or F-value) incorporates both precision and recall,
in order to measure the “goodness” of a learning algorithm
for the class. It is formulated as,

(1 + ﬁQ) -recall - precision

F —value = (H

where [ corresponds to relative importance of precision
(TP/ (TP + FP), FP is “false positive”) and recall, and
it is usually set to 1. For evaluating overall performance,
geometric mean (G-mean) and ROC analysis are better
choices. G-mean is geometric average of recall values of each
class. In this work, we choose recall, F-measure and G-mean
value to describe performance tendency at different diversity
degrees. Q-statistics is selected as our diversity measurement
because of its easily understood form [16]. For two classifiers
L; and Ly, Q-statistic value is,

32 - recall + precision
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where N is the number of training instances for which
L; gives result ‘a’ and Ly gives result ‘b’ (It is supposed
that the result here is equal to 1 if an instance is classified
correctly and O if it is misclassified). Then for an ensemble
system with a group of classifiers, the averaged Q-statistics is
calculated to express the diversity over all pairs of classifiers,

@

2 M-1 M
av — - i 3
Q M(M_l);kng,k 3)

For statistically independent classifiers, the expectation of
Q-value is 0. Q-value varies between —1 and 1. It will be

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on April 12,2010 at 11:10:37 UTC from IEEE Xplore. Restrictions apply.



positive if classifiers tend to recognize the same instances
correctly, and will perform negative if they commit errors
on different instances [17]. The larger the value is, the less
diverse classifiers are.

III. EXPERIMENTAL DESIGN

This section presents our experimental design for diversity
analysis on both two-class and multi-class data sets. We
implemented three ensemble models, each using Bagging to
integrate every individual classifier, but different re-sampling
methods. They are referred to UnderBagging, OverBagging
and SMOTEBagging respectively. Firstly, the description and
definition of these models are given. Then, experimental
configuration is presented. It is worth to note that the
following experiments and corresponding analysis emphasize
performance on minority more than majority class. The
reason is that information provided by minority class is com-
monly more meaningful in real-world problems, although
performance is influenced by the relative proportion of both
minority class and majority class.

A. Notations and Three Bagging Models in Our Work

Suppose there are C' classes. The i-th class has N; number
of training instances. Those classes are sorted by /V; such that
for the i-th class and the j-th class, if i < j then N; < IV;.
Therefore, N¢ is the number of the class having the most
instances. Moreover, suppose there are H minority classes
and (C — H) majority classes, which is defined manually.
Now we construct each classifier in ensemble iteratively
using subset S of training set S. M classifiers are built,
k=1,2,..., M.

1) UnderBagging and OverBagging: In UnderBagging,
each subset Sy, is created by under-sampling majority classes
randomly to construct the k-th classifiers. In the similar way,
OverBagging forms each subset simply by over-sampling
minority classes randomly. After construction, majority vote
is performed when a new instance comes. Each classifier
gives its judgment. Final classification decision follows the
most voted class. If a tie appears, then the class with
minor instances is returned. The whole procedure could be
described as 3 steps — “re-sampling, constructing ensemble,
voting” from training phase to testing phase. Because there
may be multiple minority and majority classes, it brings
more difficulty to decide which re-sampling rate we should
use. How to decide re-sampling rate in multi-class cases? In
order to keep every subset having same number of instances
from each class, we use a “uniform” way of controlling re-
sampling rate a%. It refers to sampling rate of class C,
containing the most instances. Other (C' — 1) classes has re-
sampling rate (N¢/N;) - a%. ‘a’ ranges from 10 to 100.
For example, when ‘a’ equals to 100, N¢ instances are
bootstrapped from class C' which has the most instances
firstly. For other classes from class 1 to class (C' —1),
each has sampling rate (N¢/N;) - 100%. When ‘a’ equals
to 10, 10% - N¢ instances are bootstrapped from class C,
and other classes have sampling rate (N¢/N;) - 10%. This
method builds subset with same number of each class. In the

former case, all classes are over-sampled. In the second case,
minority classes are more likely to be over-sampled or keep
the same number, and majority classes are under-sampled.
Therefore, as ‘a’ increasing, it is a procedure of changing
ensemble from UnderBagging to OverBagging. We handle
these two strategies in the same way. The algorithm detail is
shown in Table 1.

TABLE I
FROM UNDERBAGGING TO OVERBAGGING

Training:
1. Let S be the original training set.
2. Construct subset S}, containing instances from all classes with
same number by executing the following:
2a. Set re-sampling rate at a%.
2b. For each class i, re-sample instances with replacement at the rate
of (N¢/N;) - a%.
3. Train a classifier from Sy.
4. Repeat step 2 and 3 until k equals M.

Testing on a new instance:
1. Generate outputs from each classifier.
2. Return the class which gets the most votes.

Another advantage of this method is its convenience to
analyze diversity and performance tendency by controlling
the value of ‘a’. In our experiments, ‘a’ is set at multiples
of 10. In this way we can get 10 ensembles for one data
set. We expect that smaller ‘a’ results in more diverse
ensemble system. And actually that is the fact, which will
be discussed in the following experiments. It is worth to
note that the statement is not always true. The change of
diversity may also depend on other factors, such as learning
algorithm, size of data set and data complexity. Diversity
degree is more easily influenced by nonlinear learning
methods when re-sampling rate varies, such as decision
tree and neural networks, but SVM is less sensitive to the
number of training instances. However, the former type of
learning algorithms is more often used in ensemble learning.
Similarly, some data set properties may also slow down the
changing of diversity, but general tendency is not influenced.
It can be explained by equation (2). If decision tree or
ANN is selected as base learner, increasing re-sampling
rate makes classification boundary more and more specific.
Then the value of “NO1 - N10” gets smaller, and causes Q-
value becomes larger, which means the decrease of diversity.

2) SMOTEBagging: Different from UnderBagging and
OverBagging, SMOTEBagging involves generation step of
synthetic instances during subset construction. According
to SMOTE, two parameters need to be decided: k nearest
neighbors and the amount of over-sampling from minority
class — N. In Chawla’s paper, their implementation uses five
nearest neighbors and set N at 100, 200, 300, 400 and 500.
We cannot use this in our experiments directly because there
may exist multiple minority classes. We must consider the
relative class distribution among all minority classes after re-
sampling instead of over-sampling each class independently
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by using different N values. For example, minority class A
has 10 instances and minority class B has 50 instances. We
use the same N to over-sample both A and B. After that, the
two classes are still “inner-imbalanced”. To avoid it, we use a
percentage value b% to control the number of new generated
instances in each class. Every classifier has different ‘b’
values, which range from 10 to 100. Each possible value
is the multiple of 10. The algorithm detail is shown in Table
I

TABLE 11
SMOTEBAGGING

Training:
1. Let S be the original training set.
2. Construct subset S, containing instances from all classes with same
number by executing the following:
2a. Re-sample class C with replacement at percentage 100%.
2b. For each class 4 (1,...,C — 1):
Re-sample from original instances with replacement at the rate
of (N¢/N;) - b%.
Set N = (N¢/N;) - (1 — b%) - 100.
Generate new instances by using SMOTE (k, N).
3. Train a classifier from S.
4. Change percentage b%.
5. Repeat step 2 and 3 until k equals M.

Testing on a new instance:
1. Generate outputs from each classifier.

2. Return the class which gets the most votes.

Note that after constructing a subset Sy, every class
has the same number of instances N¢, and every minority
class has the same percentage of new instances and original
instances. To make our system more diverse, we use different
percentage value when building each classifier. So, if we
build 20 classifiers as ensemble members, every 10 classifiers
have different 6% from 10% to 100%.

B. Data Sets and Configuration

Our experiments test on 8 UCI data sets including 6
two-class data sets and 2 multi-class data sets. They are
well chosen with various imbalance rate and data set size
and concluded in Table III. Particularly, we treat the first
four classes in Glass as minority classes, and the first eight
classes in Yeast as minority classes. Therefore, Glass has
four minority classes and two majority classes. Yeast has
eight minority classes and two majority classes.

In the experimental study, C4.5 decision tree is used as
base learner in all of ensemble strategies described in this
section. 10-fold cross validation is performed on each data
set by running 30 times. The test result is the average of 30
runs of 10 folds. Each ensemble model creates 20 classifier
members.

C. Relationship Between Re-sampling and Diversity or Ac-
curacy

Before our experiments, we need to clarify the relationship
between re-sampling and diversity. Our diversity analysis is
based on the adjustment of re-sampling rate in ensemble

TABLE III
EXPERIMENTAL DATA SETS

Data Set Size | Attributes | Class Class Distribution
(from minority to majority)
Hepatitis 155 19 2 45:55
Heart 270 13 2 44:56
Liver 345 6 2 42:58
Pima 768 8 2 35:65
Ionosphere | 351 34 2 35:65
Breast-w 699 9 2 34:66
Glass 214 9 6 4.2:6.0:8.0:13.6:32.7:35.5
Yeast 1484 8 10 0.3:1.3:2.0:2.5:3.0
3.4:11.0:16.4:28.9:31.2

models. However, we don’t treat re-sampling rate and diver-
sity as the same concept. When re-sampling rate changes,
accuracy of each classifier and diversity are changing at the
same time. It is obvious that accuracy varies with re-sampling
because more instances are used for classification. Therefore,
when we analyze the diversity in the next section, we don’t
ignore the influence of accuracy. To discriminate accuracy
and diversity, we use the algorithm shown in Table I on single
classifier firstly, and adjust re-sampling rate in the same
way. The results show the relationship between re-sampling
and accuracy before we do the diversity analysis. Figure 1
illustrates increasing tendency of output values (Recall and
F-measure of minority, G-mean) by using one classifier in
data set Breast-w. If we build only one classifier, classifier
accuracy increases without diversity involved, caused by re-
sampling rate. It results in the improvement of other metrics.
Other data sets have similar results, which fluctuate in a much
lower range than ensemble. More diversity analysis is given
in section “Experimental Analysis”.

1,03 e
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Fig. 1.  Performance tendency of data set “Breast-w” by using single
classifier. X-axis: the sampling rate from 10 to 100; Y-axis: the average
values of final outputs. (Recall of Minority, F-value of Minority, G-mean)

IV. EXPERIMENTAL ANALYSIS

We firstly study the models UnderBagging and OverBag-
ging on the eight data sets in Table III. In order to analyze
diversity and performance tendency, percentage value ‘a’ is
chosen from 10 to 100. When ‘a’ equals to 10, most classes
from one data set will be under-sampled except the ones ten
times smaller than the class with largest number of instances.
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In this case, ensemble diversity should also be the largest.
When ‘a’ equals to 100, all classes will be over-sampled to
the largest number, in which case ensemble diversity should
be the smallest, because a number of instances are duplicated.
The fewer instances one class contains, the higher duplication
degree is. In other words, overfitting is caused. We compare
the results of recall values and F-values for each class, and
G-mean as overall criterion. Different from other related
studies, we calculate Q-statistics as diversity value not only
on whole training data, but also on data in each class. This
means every class has a diversity value, in order to make our
experiments more accurate and convincing.

A. Two-class Data: From UnderBagging to OverBagging

In the two-class data sets, we give the curves to show
the changes of each metric in Figure 2. X-axis presents
the under-sampling percentage from 10 to 100, and Y-axis
presents the average values of final outputs. However, for
space considerations, we only put diversity results from data
set “Pima” here in Table IV. Other five data sets perform
similar on Q-statistic values. Q-statistic values of minority
class and whole data set are both increasing as value ‘a’
becomes larger and larger, which means diversity is decreas-
ing. In Figure 2, it is evident that recall value of minority
class from five data sets out of six keeps decreasing when
diversity becomes smaller and smaller. There is no phase
of going up. Recall value of majority class performs in the
opposite way, which keeps increasing. Data set “lonosphere”
is an exception. Recall value, however, can only tell us how
many minority instances could be found (hit rate). F-value is
more meaningful for most real world problems. F-value of
minority class is the curve with circle marker ‘o’ in the figure
2. As we can observe, none of F-values from six data sets
decrease when diversity gets smaller during the first several
steps. They all have a significant improvement at the first
few points of x-axis. Then three of them start to decrease,
and others stay at the same level. G-mean values presenting
overall performance have similar tendency with F-values.

TABLE IV
Q-STATISTICS OF PIMA

Re-sample Percentage | Minority Q-statistic | Overall Q-statistic
10% 0.449 0.496
20% 0.513 0.570
30% 0.530 0.598
40% 0.543 0.618
50% 0.547 0.625
60% 0.549 0.628
70% 0.546 0.632
80% 0.552 0.634
90% 0.550 0.637
100% 0.552 0.638

The behavior of recall value is easy to understand. Higher
diversity gives more chance to find out minority instances,
and vice versa. At first, the re-sampling rate for majority class
is low. One instance has lower probability to be classified
as majority. In other words, system has a low accuracy

on majority. Compared with single classifier in Figure 1,
diversity exerts more significant influence on minority class
than majority class. An instance is more likely to be classified
as minority when accuracy is low. Therefore, recall of
minority is comparatively high. As accuracy on majority and
minority becomes higher, diversity goes down. Accuracy on
minority also means overfitting, which causes low diversity
and low recall. In fact, it can also be explained from the
recall formulation (recall = TP/(TP 4+ FN)) in section
II. ITmagine that classification boundary is getting more and
more specific. TP get smaller and FN gets larger correspond-
ingly because the number of minority instances is fixed. Too
much duplication lowers the probability of classifying an
instance as minority.

When discussing about diversity, we cannot ignore accu-
racy, because there is a trade-off between accuracy of each
classifier and ensemble diversity [18], [17]. Assume accuracy
and diversity have low-medium-high three levels respectively.
Then there are the following possible statuses:

o Low accuracy, low diversity: every classifier is more
likely to misclassify instances and makes the same er-
rors. This rarely happens if a proper learning algorithm
is chosen.

o Low accuracy, high diversity: every classifier is more
likely to misclassify instances but makes different er-
rors.

o High accuracy, low diversity: every classifier is more
likely to make the same correct decision on instances.

e Medium accuracy, medium diversity: intermediate status
between status 2 and 3.

During the analysis of F-values of minority class, the ten-
dency can be explained based on the above statuses. At first,
the classification capacity of ensemble system is in status
2. As re-sampling rate going up, status changes into 4. F-
value is the geometric average of recall and precision. Recall
is decreasing and precision is increasing, but accuracy is
more influential so that F-value has improvement. Normally
when re-sampling rate varies from 40% to 100%, F-value
stops increasing or even starts decreasing, because the status
changes from 4 to 3. Diversity factor is playing a more
important role in the ensemble system. From this stand of
view, the point with re-sampling rate 40% is better than the
point with rate 100% for minority class, because they have
similar F-values but the former case gets better recall value.
In class imbalance field, high recall value is more useful
than precision some times. For example, if we need to detect
fraud, overfitting may harm fraud prevention, but recall can
help us to find more potential fraud cases even if some of
them are not. Therefore, status 4 with medium accuracy and
medium diversity could be a better choice.

G-mean is actually the geometric average of recall value
from each class. In the six cases, the increasing of majority
recall value is faster than the decreasing of minority recall
value. So, G-mean goes up at the first phase like F-value. In
the second phase, the increasing speed slows down. G-mean
values stop increasing or even start decreasing slightly.
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Fig. 2. Performance tendency of two-class data sets. X-axis: the sampling rate from 10 to 100; Y-axis: the average values of final outputs. (Recall of

Minority and Majority, F-value of Minority, G-mean)

TABLE V
PERFORMANCE TENDENCY OF EACH CLASS IN MULTI-CLASS DATA SETS.
FIRST COLUMN IS THE NUMBER OF CLASS SORTED BY IMBALANCE
DEGREE FROM HIGHLY IMBLALANCED TO SLIGHTLY IMBALANCED. UP
ARROW: SIGNIFICANT INCREASE; DOWN ARROW: SIGNIFICANT

DECREASE.
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B. Multi-class Data: From UnderBagging to OverBagging

In the multi-class data sets, the performance tendency is
more obvious, and similar with two-class data sets. Table
V describes the changing by using up/down arrows. Mark
“-” means there is not significant change. Double arrows
show two changes happen sequentially. Recall and F-value
are included.

In data set “Glass”, the first four classes (No.1-4) are
minority classes, sorted by imbalance rate. In the same way,
the first eight classes (No.1-8) in “Yeast” are minority. Most
recall values in minority classes are reducing. When the class
is less imbalanced, the reducing speed slows down. We can

TABLE VI
F-VALUE AVERAGES AND STANDARD DEVIATIONS OF 30 RUNS OF
10-FOLD CROSS-VALIDATION T TESTS OF THE CASE WITH THE BEST
F-VALUE AND THE CASE WITH THE RE-SAMPLING RATE 100% FOR
EACH MINORITY CLASS OF DATA SET “GLASS” AND “YEAST”. SYMBOL
“*” DENOTES STATISTICAL SIGNIFICANT DIFFERENCE WITH 90% OF
CONFIDENCE. THE FIRST COLUMN LISTS THE NUMBERS OF MINORITY

CLASSES.
Glass Best F-val F-val with 100% T
re-sampling rate
1 0.91067 + 0.03586 | 0.85067 & 0.07555 | *
2 0.693 + 0.09087 0.56500 + 0.09475 | *
3 0.39150 + 0.07306 | 0.32367 &£ 0.10052 | *
4 0.87500 + 0.04226 | 0.85467 £ 0.04261
Yeast Best F-val F-val with 100% T
re-sampling rate
1 0.92467 + 0.02630 | 0.86833 £ 0.06405 | *
2 0.41706 + 0.03578 | 0.31730 £ 0.02650 | *
3 0.06608 + 0.02364 | 0.03168 =0.01183 | *
4 0.46140 + 0.03892 | 0.42093 £ 0.04798 | *
5 0.76751 + 0.03747 | 0.72659 £ 0.01807 | *
6 0.40013 + 0.05017 | 0.37769 £ 0.05408
7 0.76729 + 0.01156 | 0.76696 £ 0.01350
8 0.57919 + 0.01252 | 0.56124 £ 0.01212 | *

also observe that most F-values in minority classes have a
phase of decreasing, but not for the majority classes. T test
with 90% of confidence between the case with the best F-
value and the case with the highest re-sampling rate 100%
is done in Table VI, in order to show that the best class
performance does not appear in the case with high accuracy
/ low diversity. Proper diversity is necessary. Nine out of
twelve minority classes have significant difference.
Between two-class and multi-class problems, diversity has
similar impact on each class. The impact is weakened as the
imbalance rate gets smaller for each class in the observations
of multi-class. The imbalance rate here is a relative concept
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within one data set, not an absolute value. In the first two
two-class data sets, even if the data is not very imbalanced,
the recall of minority still decreases significantly. If there
exist multiple minority classes, less imbalanced minority
class is more difficult to be influenced by diversity. Diversity
is distracted on more comparatively imbalanced classes.
There is an interactive influence among minority classes.

In summary, we have the following observations: recall
values of minority classes keep decreasing while recall values
of majority classes keep increasing as diversity is reducing.
At the same time, F-values of minority classes and G-mean
values perform two phases — increasing firstly and then
have a reduction or stay at the same level. Finally, medium
accuracy and medium diversity of an ensemble system could
be a better choice in the field of class imbalance.

TABLE VII
EXPERIMENTAL RESULTS OF OVERALL PERFORMANCE ON MULTI-CLASS
DATA SETS
Glass G-mean | Overall Q-statistics
Over 0.927 0.664
SMOTE 0.960 0.621
Yeast G-mean | Overall Q-statistics
Over 0.941 0.675
SMOTE 0.969 0.615

C. Multi-class Data: OverBagging and SMOTEBagging

In this section, we compare two models OverBagging
and SMOTEBagging. We are interested in the questions
that whether SMOTE brings diversity into ensemble model
and whether the ensemble system has better performance.
To find out the answer, we combine SMOTE algorithm
into our Bagging model and extend it to solve multi-class
data sets, which is described section 3. Because we do not
analyze tendency in this part, all classes are over-sampled
so that each has the same number of instances with the
class having the most instances. OverBagging is same as the
one in previous experiments whose re-sampling percentage
is 100%. In SMOTEBagging, we use a percentage value b%
to control the number of instances from each class that is
used for generating new instances for one subset. This part
of experiments is based on the multi-class data sets, so as
to compare the outputs among different minority classes and
keep results consistent. Minority classes from one data set
have the same data properties.

Table VII presents overall performance of data set “Glass”
and “Yeast”. From Table VII, both data sets have a re-
duction on Q-statistics and an improvement on G-mean in
SMOTEBagging. Generating synthetic instances generates
more diverse ensemble systems. Table VIII and Table IX
are the results of minority classes from each data set. In
“Glass”, three in four minority classes have lower Q-statistic
values in model SMOTEBagging. All of the three classes
have higher recall values. In “Yeast”, seven in eight minority
classes have lower Q-statistic values, and six in the seven
achieve better recall except the last one. One interesting

observation in this data set is that all classes get higher F-
value in SMOTEBagging rows. For more imbalanced classes,
F-values enhance more; for less imbalanced ones, F-values
enhance less. However, we cannot get strong conclusion
that there is a relationship between imbalance rate and
changing degree of F-value. Generally speaking, SMOTE
injects diversity into ensemble system in most cases and
improve its overall performance.

V. CONCLUSIONS

In this paper, the effect of diversity is studied empirically
on eight UCI data sets with three ensemble models. The
results suggest that diversity influences recall value signif-
icantly. Basically, larger diversity causes better recall for
minority but worse recall for majority classes. As diversity
decreases, recall values tend to be smaller for minority
classes. This is because diversity enhances the probability of
classifying an instance as minority when accuracy is not high
enough. Tendency of F-measure and G-mean are decided by
classifier accuracy and diversity together. In our opinion, the
best F-measure value and G-mean value don’t appear at the
status with high accuracy and low diversity, but the status
with medium accuracy and medium diversity. Secondly, to
make our research more convincing, we experiment on both
two-class data sets and multi-class data sets. Three ensemble
models are proposed to solve data with multiple classes.
Multi-class is more flexible and beneficial to our diversity
analysis. According to our results, diversity has similar
impact on each class between two-class and multi-class, but
the impact is weakened by the falloff of imbalance rate in the
observations of multi-class, not for two-class. There is inter-
action among classes. If some classes have higher probability
to be identified as, then other classes have lower probability.
Finally, SMOTE does bring diversity into ensemble system
in multi-class data sets. Both overall performance (G-mean)
and diversity degree have improvement. Multi-class studied
in this paper contains only two data sets. This is sufficient
for exploring the diversity, but may need more to analyze
the difference of performance between two-class and multi-
class. It is an interesting topic in our future work. As part
of future work, better evaluation criteria for multi-class also
need to be explored.
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