
Byzantine Fault Tolerance in a Distributed System

 Byzantine Faults

 Byzantine General’s Problem

The object of Byzantine fault tolerance is to be able to defend against failures, in which components
of a system fail in arbitrary ways, i.e., not just by stopping or crashing but by processing requests
incorrectly, corrupting their local state, and/or producing incorrect or inconsistent outputs. The
Byzantine failure models real-world environments in which computers and networks may behave in
unexpected ways due to hardware failures, network congestion and disconnection, as well as
malicious attacks. Byzantine failure-tolerant algorithms must cope with such failures and still satisfy
the specifications of the problems they are designed to solve.

Byzantine General’s Problem

(Lamport had to pick a group that would not offend anybody today)

 A Byzantine Fault is an incorrect operation (algorithm) that occurs in a distributed
system that can be classified as:

Omission Failure – a failure of not being present such as failing to respond to a
request or not receiving a request.

Execution Failure or Lying – a failure due to sending incorrect or inconsistent
data, corrupting the local state or responding to a request incorrectly.

 Examples

Round off errors passed from one function to another and then another, etc.

Corrupted system databases where the error is not detected

Compiler errors

An undetected bit flip producing a bad message

 This is a worse case model since the Byzantine Fault can generate misleading
information causing a maximum of confusion.

 The Byzantine General’s Problem is an illustrative example of Byzantine Faults

 A number of different armies want to besiege an enemy city. Success requires
agreement on a common plan amongst the disbursed army; communication is
only by messengers.

Complication: There may be traitors who send out conflicting messages to
sow confusion.

Challenge: Find an algorithm that ensures the armies come to an agreement
and attack at the same time.

 Real World Relationships

Generals processors

Traitors faulty processors or faulty system components
 (including software)

Messengers processor communications/system data bus

Byzantine General’s Problem Scenario

Several armies, each under the command of a general, are camped outside a city
which they plan to attack.

One of the generals will issue the order attack or retreat.

One or several of the generals may be traitors. To win the battle all loyal generals
must attack at the same time.
The traitors will attempt to fool the loyal generals so that not all of them attack at
the same time.

To stop the traitor’s malicious plan, all generals exchange messages directly with
each other.

 Problem

How do replicated units reach agreement on a non-replicated value in the presence of
malicious faults? Simple voting algorithms cannot handle the ‘malicious’ faults.

Solution*

To reach agreement between the loyal generals in the presence of m faults
 There must be at least 3m + 1 processors to deal with m faults (traitors)
 Each processor must be connected to each other through at least

2m + 1 communication paths
 m + 1 rounds of messages must be exchanged
 The processors must be synchronized within a known skew of each other

Such a system is called Byzantine Resilient which is a
fully fault tolerant system.

* for Unprotected or Oral messages versus Signed messages

krgoodwin
Typewritten Text
1st Round

krgoodwin
Typewritten Text
2nd Round

krgoodwin
Typewritten Text
1st Round

krgoodwin
Typewritten Text
2nd Round

krgoodwin
Typewritten Text
3rd Round

krgoodwin
Typewritten Text

krgoodwin
Typewritten Text

krgoodwin
Typewritten Text

krgoodwin
Typewritten Text

krgoodwin
Typewritten Text

krgoodwin
Typewritten Text

krgoodwin
Typewritten Text

krgoodwin
Typewritten Text
Vn

krgoodwin
Typewritten Text
Vnn

krgoodwin
Typewritten Text
Vnnn

