
The Layman’s Guide to Volatility Forecasting:
Predicting the Future, One Day at a Time

•	Volatility forecasting can work reasonably well—but measuring results is not as easy as it appears.

•	Estimation methods have evolved from the 1980s through today as access to more data increased.

•	Capturing both intraday and overnight moves is important for proper risk management.

•	More sophisticated methods that place more weight on more recent observations tend to outperform.

•	Adding high frequency returns can significantly improve forecast accuracy using relatively  
simple methods.

Maintaining an accurate view on volatility is a critical task 
in investing. Keeping tabs  on market gyrations is not a 
perfect measure of risk—we care more about volatility on 
the downside than up. But volatility is a useful gauge for 
judging how much pain an investor is willing to tolerate 
or how assets can be combined in ways to diversify a 
portfolio to maximize risk-adjusted returns. 

Although compounding returns over time may be the 
goal, market volatility can strike quickly in a matter of 
days with even the most seasoned investors jarred by 
sudden shocks to their portfolio. Having an effective 
means of estimating day-to-day risk can help better 
prepare for volatility when it does arise and act smarter 
in response.

Measuring, forecasting, and interpreting volatility is 
another matter. There are very smart people with 
advanced degrees and training that specialize in the 

1	 We count ourselves in this category. While some of us have math degrees and/or training in data science, our approach remains grounded in our 

practical experience with institutional investors, technology, exchanges, and algorithmic trading. We value the contributions of academics and quants to 

the process and strive to keep learning from them. Many (but certainly not all) academic appers can be a slog through dense material and writing that 

is not conducive to absorption. And there is no getting around the fact the material can be difficult, requiring years of training to fully comprehend. Our 

objective is to share what we have learned wading through the literature and present it to wider, but informed, audience.

2	 Let’s be honest. We have all Googled things we didn’t know or forgot that would cause embarrassment to admit to a colleague.

modeling of volatility and how it gets used in pricing 
derivatives or managing risk. But there are some basic 
principles and even advanced techniques that can be 
used by a wider range of market participants that can 
help improve their knowledge.

The purpose of this guide is two-fold. The first is to 
clearly explain some of the foundational principles and 
different methods of forecasting volatility for practical 
use. While we attempt to keep the mix of Greek letters 
and inscrutable squiggles down to a minimum, the target 
audience is the generally informed, sophisticated investor 
or market professional.1 The goal is not to “dumb it 
down”—only make it more accessible. We take the time 
to explain key elements and provide additional detail in 
the footnotes that might be second nature to a quant but 
could serve as a refresher to those with limited day to day 
exposure to some of these concepts and methods.2

Risk Before Return: 
Targeting Volatility with Higher Frequency Data

Source: Bloomberg, January 1990 – March 2020

Figure 1: Cboe Volatility Index (VIX), Daily

• Volatility is generally easier to predict than future returns.

• Dynamically targeting volatility can lead to higher risk-adjusted returns vs. buy and hold.

• VIX can be a useful indicator but may not be ideal for targeting risk in some applications.

• Higher frequency data has the potential to boost performance in volatility targeting strategies.
 
• Volatility targeting compares favorably to trend-following strategies in reducing risk.

RESEARCH NOTE

Volatility is generally something investors 
seek to avoid. Most investors know increases 
in volatility are most often accompanied by 
declines in their account balances. 
 
From 1990 through April 2020, the 
correlation between S&P 500 daily returns 
and changes in the Cboe Volatility Index 
(VIX) has been strongly negative—about 
-0.70.1 

While volatility is undesirable, assuming 
some risk is required to earn a return. 
The name of the game is maximizing the 
amount of return captured per unit of risk, 
commonly measured by the Sharpe ratio—
the average excess return (above a risk-
free rate like Treasury bills) divided by its 
standard deviation (volatility). 

1Bloomberg data, January 1990 – March 2020
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The second is to highlight the efficacy of using 
higher frequency data to help improve accuracy and 
responsiveness in forecasting volatility. Although 
this uses many more data points in the process, even 
relatively simple methods leveraging high frequency data 
tend to perform as well or better than more complicated 
modeling techniques. We aim to demonstrate how 
powerful forecasting tools can be constructed using 
this more granular data along with basic math at the 
undergraduate level.

We begin with an overview of volatility’s unusual 
characteristics followed by a brief survey of different 
measures and techniques that have been developed 
over the years. Then we compare how accurately these 
different measures can predict the volatility in the S&P 
500 over a very short period—just one day. We conclude 
by showing how choices of forecasting tools and 
benchmarks can impact the ranking of these different 
models for use in practice.

Characteristics of Volatility

Volatility (and its squared cousin, variance, which we will refer to interchangeably throughout) has some unusual properties. 

Volatility is not directly observable, even after the 
fact.

We can observe prices and changes that are the result 

of volatility, but there is no single value that equates to a 

“true” value. As a result, we can only estimate volatility over 

specific periods of time.3 The inability to precisely measure 

its true value presents challenges in judging the accuracy of 

an estimate, even when using multiple benchmarks. 

Volatility levels are always changing.

It is apparent to any market watcher that volatility is 

not constant, adding more complexity to the process of 

modeling its impact. One of the weaknesses of the well-

known Black-Scholes model for pricing options is its 

assumption of constant or deterministic volatility. Like 

many economic assumptions, this was done for modeling 

simplicity rather than any real-world expectations. Many 

modern techniques assume volatility is a stochastic or time-

varying process (a random walk in a time series), which is 

more realistic but also more difficult to model.

Estimating volatility has both continuous and 
discrete elements.

Since most assets have set trading sessions with nights, 

holidays, and weekends, there are both continuous and 

discrete components that must be modeled somewhat 

separately and can be tricky to reconcile. Theoretically, 

volatility is a continuous process even though there may not 

be prices available to help estimate its level. But that will not 

be reflected until price forms at the start of the next session, 

creating a gap or “jump” that must be incorporated into the 

forecast. Focusing on one component at the expense of the 

other can lead to mismatches between theory and practice 

while introducing significant estimation errors.

3	 This is known as a latent variable, which must be inferred from other observable or measurable variables. With volatility, we use the known 

values of point to point returns to help estimate variance.

4	 A 32% annualized volatility equates to an expected daily move of 2% per day. Using the “Rule of 16”, an annualized figure can be converted 

into an estimated daily price swing and vice versa (1% daily moves would equate to 16% annualized volatility). To directly annualize a standard 

deviation, the result is multiplied by the square root of time. For daily returns, the square root of the average number of trading days in the US   

  16 becomes the scaling factor. 

Volatility tends to be highly autoregressive.

Fortunately for market practitioners, volatility experienced 

over the recent past can be a useful predictor of volatility in 

the future. In varying over time, volatility also tends to cluster 

around events and then takes some time to decay back to 

some normalized level. These properties lend themselves 

to some reasonably effective methods of forecasting in 

comparison to predicting returns, which can be much more 

difficult.

Due to its autoregressive properties, even a simple 10-

day historical standard deviation of returns can be a useful 

forecast of tomorrow’s volatility. If annualized volatility 

over this 10-day span is rather high at 32%, it is very likely 

tomorrow’s volatility will continue to be high.4 But what 

are the inputs used to calculate this measure? Like many 

estimates and forecasts, 10-day historical volatility only 

looks at the daily, close-to-close price returns. But what 

about the rest of the day?

It is also highly likely that large variations in the close-to-

close price indicating higher volatility will be mirrored in the 

moves intraday as well. But the collective swings in those 

relatively small daily returns could be an indication of even 

bigger day to day swings in the days to come.

One of the ways to capture some of this information is by 

incorporating the daily range (the differences between the 

open, high, low, and close for the day), which is explored 

in several of the methods in the next section. But we also 

delve into using intraday returns themselves, capturing the 

variation directly in a more continuous process that is closer 

to the theoretical ideal.
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Historical

A basic standard deviation of daily returns over the 
recent past is a logical starting point to begin measuring 
volatility. Even those with very sophisticated volatility 
models will find historical volatility a useful datapoint for 
comparison. Common lookback periods include 10 days 
(two weeks accounting for weekends), one month (22 
trading days or 30 calendar days), or out a few months 
or longer (100 or even 252 days).5

Historical volatility may be simple but there are still 
some assumptions and modifications to be made. For 
one, we typically use log returns for many volatility 
calculations, as they are continuously compounded, 
instead of simple returns.6 

5	 We tend to focus on annualized volatility from daily returns even over periods that go well beyond a year. It is certainly possible to use weekly or 

monthly returns that may be suitable for longer term analysis. But in general, daily volatility computed over the prior 504 days (2 years) will be higher 

than weekly volatility over the prior 104 weeks (the same two years). At lower sampling frequencies, the distribution gets closer to normal (Gaussian), 

with the “fat tails” (kurtosis) becoming less pronounced.

6	 At higher frequencies of sampling (daily), there is not much difference between simple and logarithmic returns. But log returns are computationally 

easier to deal with as you can simply add them to get a compounded end of period return. There are also some quirky mathematical modeling benefits 

that come with using log returns that are explained in detail (but plain English) here: https://tinyurl.com/2mu2a3zp. 

7	 While we use variance and volatility interchangeable, we present all formulas in the paper in their squared form as a daily variance. To 

convert to an annualized daily volatility, simply take the square root and multiply by  . Some will point out that multiplying by the 
square root of time is an imperfect method and tends to either under- or over-estimate volatility—and they are right—but everyone does it 

anyway. For additional details, see “Converting 1-Day Volatility to h-Day Volatility: Scaling by [Square Root of Time] is Worse than You Think”.

We also make some small changes to the standard 
variance formula7:

A standard sample variance is calculated by the sum of 
the squares of the differences between the observations 
and the sample mean divided by the number of 
observations minus 1. However, there is one modification 
we make that differs from standard variance in statistics: 
we assume the average daily log return (the “drift”) will 
be zero. This reduces it to the sum of the squares of the 
daily log returns divided by the number of observations 
minus one (as shown in the formula above). When looking 
at relatively short lookback periods such as 10 days, it 

Tools of the Trade
Including all the methods of estimating and forecasting volatility is well beyond the scope of this analysis. But a core 
range of techniques can be generally organized by their methods, sampling frequencies, and inputs ranging from the 
very simple to highly sophisticated. 

The academic literature often examines estimators more as proxies for the past unobserved latent variance, but many 
analyze the same tools for use in forecasting. They are highly related but not identical concepts. For our purposes, we 
focus on how well these measures can predict future short-term volatility by lagging them one day, which obviously 
needs appropriate proxies to measure results.  
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is possible for average returns to be so extraordinarily 
high or low, they become unrealistic to annualize and 
significantly distort the volatility calculation. As a result, 
it is often simpler to assume zero drift when computing 
historical volatility.

Easy to calculate and understand, historical volatility 
does have its limitations. For one, it is entirely backward-
looking and makes no attempt to make any adjustments 
to forecast future volatility. It treats every single day in 
the time series equally, giving more distant data points 
the same ability to influence the outcome even though 
conditions may have since changed. It also forces the 
selection of a lookback period, which can be an arbitrary 
decision with outsized impact. Lastly, the use of just 
close-to-close price information ignores intraday 
movements that may provide a more complete picture.

Range-Based

Another class of estimators attempts to address the 
limitation of only using closing prices by incorporating 
the daily range into the calculation. Introduced over time 
from about 1980 to 2000, the methods below build on 
each other, adding elements that were missing from 
prior versions to capture more real-world dynamics and 
improve accuracy.

Parkinson 

The earliest range-based estimator, Parkinson uses the 
range defined by the difference between the low and high 
of the day instead of closing prices.8

One key limitation is the assumption of continuous 
trading, as no information from the overnight gap (the 
prior close to next day’s open or “jump” in academic 
parlance) is included, which tends to underestimate 
volatility. Approximately one-fifth of the total daily price 
variation occurs overnight—a significant portion to be 
omitted in the estimate.9

Garman-Klass

Extending Parkinson, the Garman-Klass (GK) estimator 
adds two more range-based measures, the opening and 

8	 The squared range is divided by a constant to adjust it to be similar in magnitude to a statistical variance sampled over a number of 
days.

9	 Hansen and Lunde (2005).

10	 There is another variant called Garman-Klass-Yang-Zhang that we omit for brevity that just adds an overnight return to Garman-Klass.

closing prices. If the opening price is unavailable, the 
model allows for the prior day’s close to be used in place. 

But absent that condition it normally ignores the 
overnight return so suffers from the same systematic 
underestimation error as Parkinson.

Rogers-Satchell

Unlike the previous estimators, Rogers-Satchell assumes 
a non-zero mean return with the same OHLC data points 
to construct a more sophisticated measure.

Despite the addition of drift to the model, it still ignores 
any of the information in the overnight jump, leading this 
measure to also under-estimate full day volatility.

Yang-Zhang

Finally, Yang-Zhang brings together the elements of the 
prior range-based models and attempts to address all 
their shortcomings.10 It combines overnight volatility with 
a weighted average of open to close and Rogers-Satchell 
volatility.

Where:

Overnight Volatility

 

Open to Close Volatility

The measure incorporates the overnight jumps while 
capturing elements of the trend (assumes non-zero mean 
return), creating a more robust measure than the other 
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range-based estimators.11 We address additional aspects 
of weighting overnight versus intraday volatility in a 
subsequent section on measures using high frequency, 
intraday returns instead of daily OHLC.

Exponential Weighting

While the Yang-Zhang model manages to address many 
of the weaknesses in the earlier range-based models, 
it still has a significant limitation: all the data points in 
the historical lookback are weighted equally. Given the 
tendency for volatility to spike and then take some time to 
fade, placing more weight on more recent observations 
yet accommodating the residual effects of an event that 
is still lingering in the market’s memory can help better 
model real-world conditions. Without some smoothing 
of the data, a volatility event will abruptly drop off from a 
moving window of historical data.

One approach is to use exponentially weighted moving 
average (EWMA) volatility, which applies a decay factor 
to prior observations to smooth out the series.12 

The decay (represented by lambda, ) must be a value 
less than one, typically set to 0.94 for daily data but can 
be adjusted a little higher (for slower decay) or lower (for 
faster decay). Using the default value of 0.94, starting at 
index 1 in the formula above results in a weight of (1-0.94) 
*(0.94)0 = 6.00% for the most recent day followed by (1-
0.94) * (0.94)1 = 5.64% for day prior, (1-0.94) * (0.94)2 = 
5.30% for the third prior day and so on.13

The ease of computation and performance of the EWMA 
estimator makes it a popular choice among practitioners. 
It is also used for index products such as structured notes 
and fixed index annuities that seek to target volatility 
levels with daily rebalancing.14

11	 The 1.34 in the formula is a constant  (the numerator is  - 1) that is intended to minimize variation in the estimator itself. This value is the default 
in the original Yang-Zhang paper.

12	 Exponential smoothing was popularized in the financial industry by JP Morgan’s RiskMetrics in the mid-1990s as a part of the widely adopted Value 

at Risk (VaR) framework. The formula shown above is a little easier to grasp conceptually but EWMA is also written in a reduced, recursive form that is 

easier for computation: .

13	 The lookback period for an exponentially weighted moving average is theoretically infinity as the weight will decay asymptotically into smaller 

numbers that become meaningless to the output. For the default value of 0.94, the cumulative weight remaining drops below 1% after about 75 days.

14	 Known as “risk-controlled” strategies, these products use a combination of assets and a risk-free asset such as T-Bills to dynamically target a specific 

volatility level. For example, the index may consist of the S&P 500 and cash and seek to target a 5% volatility level. If the estimator predicts the S&P 500 will 

have 20% volatility tomorrow, the strategy holds 25% in stocks and the rest in cash (25% = 5% target/20% estimate), rebalancing daily as volatility changes.

Figure 1 - Exponential Smoothing Following a Spike 

Despite its utility and simplicity as workhorse, EWMA also 
has its limitations. For one, it only uses daily returns, leaving 
it susceptible to shocks potentially concealed in large 
intraday swings that may be a precursor to a larger volatility 
event. Secondly, it forces you to somewhat arbitrarily select 
a lambda that can significantly impact the outcome (too 
fast or too slow). However, using a combination of two or 
more lambdas can help mitigate this, especially with simple 
rules that use the higher of the two values (a fast and a 
slow) to be on the conservative side.

GARCH

GARCH stands for Generalized Autoregressive Conditional 
Heteroskedasticity̧  and is a parameterized econometric 
modeling technique that can be used to estimate volatility. 
The key innovation with this model begins with the last 
part of the name—heteroskedasticity. In standard linear 
regression, the assumption is that the error term—the 
noise that will cause the dependent variable to deviate 
from its relationship with the independent one—will have 
a constant variance (homoscedasticity). With GARCH, 
the assumption is the variance of the error term will be 
time-varying but is also conditional on the overall level 
of variance. Cutting through a lot of the jargon, a GARCH 
process is well-matched to the clustering behavior and 
persistence of volatility following certain events in the 
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market. But with these more realistic assumptions come 
more complicated techniques to manage those conditions.

GARCH was developed in 1986 by Tim Bollerslev 
following the work of Robert Engle who introduced the  
 “ARCH” part in 1982.15 The most commonly used GARCH 
(1,1) model can be specified as follows16:

There is a lot to unpack in this relatively simple equation, 
but we begin with a plain English description of what the 
model is doing. Paraphrasing Engle, GARCH is a weighted 
average of the long run variance, the predicted variance, 
and the variance of the most recent squared residual, 
which correspond to the terms in the equation above in 
that order.17 

To fit the model, the constants  and must be 
estimated and have some constraints.18 Getting these 
parameters involves using maximum likelihood estimation, 
a statistical technique designed to find the values with 
the highest probability that the process in the model 
produced the observed data.19 Once fit, a variety of tests 
for significance are performed to confirm the model is 
correctly specified.20 Once specified, GARCH produces 
an entire time series of variance forecasts, easily updating 
with just the prior prediction and residual.

While somewhat complex, GARCH is a very powerful 
tool and tends to perform well in forecasting. While 
not immediately apparent from the description of the 
process, the GARCH formula places more weight on the 
more recent data, similar to the previously described 
exponentially weighted volatility. In fact, EWMA is 

15	 The “generalized” extension of the model is the third term in the equation that helps the model adapt by using its past prediction errors. Bollerslev 

was Engle’s research assistant at the University of California San Diego and wrote the GARCH paper as a doctoral student. He currently teaches at 

Duke University and continues his work on volatility forecasting, lately more focused on realized volatility techniques using intraday returns.

16	 The “1,1” follows the general specification of the model (p,q) which defines p lags in the prior variances and q lags in the residual errors. In addition 

to being a representation of the most common model, the GARCH (1,1) notation is cleaner to show for our purposes.

17	 Googling “GARCH” and reading through many of the explanations yields some dreadful results. There are some very basic descriptions with no real 

details and then a lot of very dense academic references but not much in the middle. However, Engle’s GARCH 101 intro (available at https://www.stern.nyu.

edu/rengle/GARCH101.PDF) is an accessible read that is clearly targeted towards his students (he is currently a professor at NYU’s Stern School of Business).

18	 The parameters must sum to one but the  term is actually the long run variance multiplied by another weight (gamma). All parameters must also 
be greater than zero and alpha and beta must sum to a value less than 1.0. 

19	 This is commonly done using statistical packages or Python or R libraries. For additional information, check out this very clear and concise explainer 

available at Probability concepts explained: Maximum likelihood estimation | by Jonny Brooks-Bartlett | Towards Data Science.

20	 As with maximum likelihood, GARCH can be a lot simpler to specify and use with software packages and Python/R libraries that can include a 

number of these tests for significance in the package.

21	 To get EWMA from GARCH, the long run variance term is set to 0 and the rest reduces to two weights that equal 1.0 (lambda in EWMA, alpha and 

beta in GARCH), each multiplied by the identical variance and squared return terms in the recursive form of the EWMA equation and GARCH above 

(see footnote 12 for more details).

22	 Black, F. (1976) Studies in Stock Price Volatility Changes of the Nominal Excess Return on Stocks. Proceedings of the American Statistical 

Association, Business and Economics Statistics Section, 177-181.

23	 This is no different than the commonly accepted realized volatility, in which we are referring to the variability of returns that has been historically 

realized at a daily or lower frequency. Intraday realized volatility is simply a compressed version of this, measuring the variability within a single day via 

smaller (potentially tick-by-tick) intervals. 

a special case of GARCH (1,1)—and GARCH (1,1) is a 
generalized form of EWMA.21 What EWMA lacks is the 
“long memory” in GARCH that assumes reversion to 
some long-term mean level of variance over time. GARCH 
is not computationally difficult and open-source tools 
in Python and other platforms make it easier to manage 
with access to price data and some programming skill. It 
is widely used for tasks such as managing portfolio risk or 
pricing derivatives. However, it is not without drawbacks. 
One is that the basic GARCH (1,1) assumes that positive 
or negative shocks have an equal impact on volatility 
when in reality there is a strong negative relationship 
between returns and volatility, commonly referred to as 
the leverage effect.22 There have been a whole family 
of GARCH-based variants (EGARCH, FIGARCH, GJR-
GARCH, and others) developed to address asymmetry 
and add other features to the process, but they come 
at a cost of higher complexity and difficulty in fitting 
the model. More importantly, most GARCH models still 
generally use only daily closing prices, leaving them 
vulnerable to more sudden volatility shocks that could 
potentially be detected with higher-frequency intraday 
returns.

Realized Volatility

The use of high-frequency returns in modeling volatility 
has increased with the wider availability of intraday data 
by both practitioners and academics alike over the last 
20 years. Known as realized volatility (“RV”)23, it traces 
its intellectual roots back to a paper by Robert Merton 
from 1980, who concluded that volatility could be more 
precisely estimated from realized returns that improve 
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with higher sampling frequencies.24 The realized variance 
for a single day is simply the sum of squared intraday 
returns: 

The sampling frequency used generally ranges from  
5 to 30 minutes, with the “M” in the formula above 
corresponding to the number of bars that constitute a full 
day (78 for 5-minute bars in a 6.5-hour US trading day 
from 9:30AM-4PM).25 As with some of the earlier historical 
estimators, there is no “drift” or mean return subtracted 
from each squared return as the assumed return from 
intraday returns is even closer to zero than daily.

As a forecasting tool, RV suffers from some of the same 
limitations as some of the earlier range-based estimators. 
Without the overnight return, an RV-only estimator will 
tend to underestimate the total variation that is important 
to a practitioner. The overnight gap plus the variability 
during the day are both metrics that matter for a position 
or hedge and would be measured by a real-time risk 
management system.

In the next section, we focus on RV as a building block 
of more sophisticated forecasting techniques. But for 
completeness, we also evaluate its efficacy as a forecast 
tool itself alongside the other estimators.

HAR-RV

Introduced by Fulvio Corsi, the Heterogeneous 
Autoregressive Realized Volatility (HAR-RV) model has a 
relatively simple structure featuring three main drivers.26 
The first is the use of daily RV—the same measure defined 

24	 High-quality intraday historical data was not generally available in the 1980s. But as Merton also pointed out, there are theoretical limits to sampling 

at very high frequencies as the benefits of the increased precision can be swamped by the effects of market microstructure noise—the bouncing 

around between the bid/offer and any discrepancies in latency. The original paper can be accessed at https://www.nber.org/system/files/working_

papers/w0444/w0444.pdf.

25	 The standard in the academic literature is 5-minute returns but similar results are also generated from bars using anywhere from 10-30 minutes. Any more 

frequent sampling than 5 minutes is generally thought to introduce too much noise in the process to be useful although there are a handful of studies going 

down to 1 minute, especially on broad large-cap indices that are aggregates of many stocks and somewhat less susceptible to noisy microstructure effects.

26	 Corsi (2009).

27	 The rationale behind the Heterogeneous Markets Hypothesis (HMH) from Ulrich Muller (1993) is that volatility is a function of trading activity from 

multiple agents in the market with distinct investing horizons: short term speculators (intraday), medium term traders (days), and long-term investors 

(weeks or longer). A brief article by Muller himself that succinctly describes the theory is available at http://m.e-m-h.org/DMOP01.pdf.

28	 While some researchers use overlapping data points in the regression (the one-day RV is a component of the 5-day RV), we find better results in an 

alternative approach that only spans unique information in each term. Effectively, the lags are computed as the simple averages of the Zero-th, 1st to 

4th, and 5th to 21st lags, respectively.

29	 This process purposefully weakens the predictive power of the model in the earlier periods as less information is available to use in the forecast. It 

involves recursively fitting the OLS regression every day, adding information to the model as it becomes available. Since the coefficients tend to be very 

unstable with an insufficient amount of data in the beginning, we “burn off” a year of historical data to provide time for them to stabilize. As more time 

passes, the marginal impact of a single day on the coefficients becomes very small, but will respond to true volatility shocks, which is a desired feature.

above that sums the squares of intraday returns for the 
day at a fixed interval such as 5 minutes. This adds the 
rich information available from higher frequency data, 
sampled at a low enough frequency to avoid distortion 
from market microstructure noise. Secondly, it uses a 
cascading series of lagged terms that are designed to 
capture the actions of market participants with differing 
time horizons in their investment process.27 Lastly, it 
uses simple linear regression (OLS) to estimate its three 
coefficients, capturing some longer-term historical 
patterns across multiple market regimes. This component 
mimics, but does not completely replicate, the “long 
memory” feature of GARCH.

The model in its simplest form can be specified as follows:

where , and represent realized variance 
(squared terms) for a one-day, one-week (5 day), and one-
month (22 day) period on day t.28 To get the multi-day 
measure, the “building block” of a single day’s RV is simply 
averaged over the desired period (e.g. sum up the RV for 5 
days and divide by 5).

Estimating the coefficients involves initializing the model at 
a point in the past using as much historical data as possible. 
However, for a more robust and practical implementation, 
we use an expanding window—only letting the model use as 
much information that existed up to the point of the forecast 
date. This “walk-forward” approach helps avoid look-ahead 
bias and reduces the potential for overfitting the model.29 

HAR-RV tends to perform very well against the more 
complex GARCH and is easier to fit. It possesses some of 
the mean-reverting properties of GARCH and places more 
weight on recent observations while capturing the dynamics 
of intraday price action for improved response to volatility 
shocks.  Like GARCH, HAR-RV has spawned a number of 
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extensions, focusing on correcting for asymmetry (using 
semi-variance in SHAR) or dynamically adjusting RV due 
to inherent measurement error (“integrated quarticity” in 
Bollerslev’s HARQ). But the biggest item to address is the 
glaring weakness in an RV-only estimator—the lack of any 
contribution from the overnight jump.

Without addressing the jump, HAR-based models will tend 
to underestimate volatility in comparison to methods like 
EWMA or GARCH that capture this information. A HAR-
based model may be very effective in forecasting the RV 
for a single day, but the overnight return represents risk to 
practitioners that cannot be ignored even if RV is a “better” 
representation of the integrated, unobservable variance.

Bollerslev added a jump term to the basic model with his 
HAR-J, simply folding in the previous day’s overnight return 
as another term in the regression. Others decompose the 
jump into separate components matching the 1-, 5-, 22-day 
lags in the RV terms. More recently, Bollerslev concluded that 
simply adding the squared overnight return to the sum in 
calculating RV itself can be a more effective means of adding 
the information.30 However, we find an alternative approach 
performs even better: scaling the RV-based forecast up to 
better approximate a measure using daily data.

As referenced before, Hansen and Lunde (2005) estimate 
that overnight returns contribute about one-fifth of the 
daily price variation based on their historical analysis of 

30	 Bollerslev, T, Tauchen, G, and Zhou, H (2009), “Expected Stock Returns and Variance Risk Premia”, Review of Financial Studies, 22, 4463—4492.

31	 Hansen and Lunde (2005).

32	 If one-fifth of whole-day variation is overnight that leaves 80% for the open to close period. Scaling up from 80% to 100% is 1.25x.

33	 Hansen and Lunde described differences in the relationship between the overnight and intraday volatility across different types of assets, noting 

a much larger impact from overnight returns in the limited number of technology stocks in their narrow universe of DJIA stocks. However, Todorova 

and Soucek and Ahonieme and Lanne further demonstrate these differing relationships using the broader market (S&P 500) and international markets 

(using Australian equities) in concluding the superiority of the optimal weighting to other methods.

Dow Jones Industrial Average stocks. In their paper that has 
been extensively referenced and replicated, they propose 
three ways to combine RV with overnight returns to get an 
equivalent variance for the entire day.31 The paper primarily 
focuses on the problem of getting the best estimator of 
integrated variance, but we use similar techniques to adjust 
HAR-RV-based forecasts to daily equivalents. 

The first is to simply multiply the RV-based measure by a 
static scalar representing the average contribution from 
the overnight return. Using Hansen and Lunde’s estimate 
of one-fifth, this translates to a scalar of 1.25x (squared for 
variance).32 This static scalar can perform well, especially 
for broad market indices, but can be improved with a more 
dynamic approach. The second method just adds the 
overnight return to the RV measure as Bollerslev suggests. 
But Hansen and Lunde argue this method adds a very noisy 
measure to the estimate, potentially distorting the result.

The last method involves an optimized weighting of the 
overnight and RV components that helps smooth out 
some of the noisiness in just adding the overnight return. 
The weighting method is complex and beyond the scope 
of this paper to go through in any detail but has been 
well-supported by subsequent research since its initial 
publication.33 We combine this optimization process with 
the HAR-RV in forming our preferred forecast detailed in the 
next section.

What about the VIX?

Most investors are familiar with the so-called “Fear Gauge”, the Cboe Volatility Index (VIX). The VIX was designed to 

measure market expectations of 30-day volatility implied by the pricing of S&P 500 index options. While forward-looking 

and driven by market prices, we omit the VIX for this analysis of volatility forecasting for several reasons. 

For starters, while the VIX is a very useful indicator for the level of market volatility, the index itself is not tradable. 

Futures, options, and exchange-traded funds on the VIX are available but do not track the current spot index all that well—

they align to what the market expects the VIX will be on expiration. They also have a term structure, with differing market-

driven expectations of where VIX will be one month out, two months out, and so on.

More importantly, VIX is not well-suited for a one-day forecast as it measures expectations over the next 30 days. In 

a prior study*, we did use VIX as an estimate for a simple volatility-targeting strategy with daily rebalancing and it 

performed relatively poorly, even compared to a naïve 10-day historical volatility estimate. 

To be clear, there is predictive value in the volatility implied by options pricing and some volatility models make use of this 

data.  But we can only cover so much material and VIX and implied volatility could span several volumes. 

*Barchetto, A and Poirier, R., “Risk Before Return: Targeting Volatility with Higher Frequency Data”, available at https://tinyurl.com/6nvjhrnc.



9

Comparing Forecast Accuracy

Now that we have defined a general set of estimators and forecasting methods ranging from basic to advanced, we 
compared the predictive power of each along with their pros and cons. For our test, we analyzed the ability of each 
estimator to forecast volatility one day ahead using a variety of proxies as benchmarks.

Data

As a proxy for US equity market volatility, we used returns from the SPDR S&P 500 ETF (SPY), with data from January 
1, 1997 through December 31, 2020. We sourced open, high, low, and closing prices from Bloomberg and intraday 
15-minute bars from Cboe’s Livevol Datashop.

Variance Proxies

Since true volatility is unobservable, selecting more than one proxy is advisable. To avoid biasing conclusions towards 
the more intraday-focused realized measures versus less frequent sampling using daily data, we used a range of both 
as proxies for all estimators.

Table 1 - Variance Proxy Calculations

Proxy Formula Description

Squared Return Daily return, squared

Realized Variance
The sum of squared intraday 15-minute returns (where 
M=26)

Range
The difference between the high and low of the day, 
squared34

Full Day Realized Variance 
Adds the squared overnight return to the intraday realized 
variance to capture the whole day35

Loss Functions

In addition to benchmarks to measure against, the tools used to measure the errors from the predictions are equally 
as important. Like with the proxies, we used a range of loss functions36 to provide more context. In the formulas in the 

following table,  represents the model-estimated value and the h represents the (true) variance proxy.

34	 The high-low range and squared range are traditional variance proxies in the academic literature. However, the range as a proxy is subject to 

some unrealistic assumptions in the process that generated the data to be properly evaluated—zero mean return, no jumps, and constant conditional 

volatility during the day. Patton (2008) proposes an adjustment to the range (dividing it by a constant, ), which when squared becomes 
an unbiased proxy for conditional variance. However, this does not change the ranking of our estimators in any way and adds some complexity, so we 

use the more traditional range for simplicity. For additional information on adjusted range and evaluating variance proxies, please see: http://public.

econ.duke.edu/~ap172/Patton_robust_forecast_eval_11dec08.pdf.

35	 This adjustment to realized variance is our preferred measure as it addresses both the intraday fluctuations as well as the opening gap. For 

practitioners, both are very relevant to a live position or hedge that is being monitored day to day. A miscalculation that leads to a mark that produces 

a significant hit to the P&L at the opening of trading or later in the day could lead to a tap on the shoulder—or worse.

36	 A “loss function” is a way of measuring how different a group of predicted values are from the true/known values and then expressing this as a 

single number. Lower values are preferred, indicating “less loss/error” from the true/known values.
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Table 2 - Loss Function Calculations 

Loss Function Formula Interpretation

Mean Squared Error (MSE) Penalizes more extreme errors

Root Mean Squared Error (RMSE)
Denominated in the same units as the underlying 
data, making it easier to compare across models 
(like standard deviation compared to variance)

Mean Absolute Error (MAE)
More robust to outliers, which may be an 
undesirable feature

Quasi-Likelihood (QLIKE)
An asymmetric measure that penalizes under-
estimation more harshly

Use of the “wrong” loss function can lead to some significant errors in ranking the efficacy of the forecasts. In prior 
work on volatility forecasting, MSE and QLIKE are shown to be more robust to noise in the proxy, making them 
generally preferred in terms of ranking.37 While we focus on these two robust measures in our analysis, we include 
the other loss functions to highlight strengths and weaknesses of the estimators and show how their rankings can be 
distorted.

Forecast Methods

We use all the estimators presented in this paper for a comprehensive comparison. For measures that require a 
historical lookback, we specified short (10 day), medium (22 day), and long (100 day) periods and calculated a set of 
results for each.

Table 3 - Estimators and Specifications

Estimator Short Name Additional Information

Historical Variance HV 10, 22, 100 days

Parkinson Park 10, 22, 100 days

Garman-Klass GK 10, 22, 100 days

Rogers-Satchell RS 10, 22, 100 days

Yang-Zhang YZ 10, 22, 100 days

EWMA EWMA 0.94 lambda

GARCH (1,1) GARCH Fit using maximum likelihood via arch v4.19 for Python

Realized Variance RV Prior day, uses 15-minute intraday bars

HAR-RV HAR-RV 1, 5, 22 lags, unique spans only38

Scaled HAR-RV HAR-RV+ Multiplies HAR-RV by 1.252 

Optimized HAR-RV HAR-RV*
A weighted sum of HAR-RV and the average squared overnight return over the 

prior month39

37	 See the previously referenced paper by Andrew Patton for more details on the robustness of forecasts, available at:  

http://public.econ.duke.edu/~ap172/Patton_robust_forecast_eval_11dec08.pdf.

38	 See footnote 28 on modification to the standard Corsi HAR process. Also uses the same 15-minute bars as RV.

39	 This process uses the same weighting technique from Hansen and Lunde only with different estimators for the intraday and overnight components. 

We substitute HAR-RV for RV in the intraday and the mean squared close to open return over the prior 22 trading days for the one day overnight. Both 

are intended to improve accuracy and smooth out some of the noise in the overnight return from day to day.
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Exhibit 1 - Ranked Forecast Performance by Estimator and Variance Proxy

Panel A: Squared Return
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All Estimators and Loss Functions Relative to EWMA

MSE RMSE MAE QLIKE MSE RMSE MAE QLIKE

Squared Return

Historical Variance 26.59 5.16 1.664 1.646 99.1% 99.6% 99.4% 106.9%

Parkinson 26.04 5.10 1.458 1.583 97.1% 98.5% 87.1% 102.8%

Garman-Klass 25.80 5.08 1.457 1.566 96.2% 98.1% 87.0% 101.7%

Rogers-Satchell 25.60 5.06 1.465 1.568 95.5% 97.7% 87.5% 101.8%

Yang-Zhang 25.95 5.09 1.639 1.474 96.8% 98.4% 97.9% 95.7%

EWMA 26.82 5.18 1.674 1.540 100.0% 100.0% 100.0% 100.0%

GARCH 25.59 5.06 1.633 1.493 95.4% 97.7% 97.6% 97.0%

Realized Variance 22.48 4.74 1.384 1.800 83.8% 91.6% 82.7% 116.9%

HAR-RV 24.68 4.97 1.403 1.501 92.0% 95.9% 83.8% 97.5%

Scaled HAR-RV 22.13 4.70 1.561 1.446 82.5% 90.8% 93.2% 93.9%

Optimized HAR-RV 22.18 4.71 1.550 1.447 82.7% 90.9% 92.6% 94.0%

Realized Variance

Historical Variance 6.77 2.60 0.936 0.347 128.3% 113.3% 98.7% 96.9%

Parkinson 3.27 1.81 0.611 0.252 62.0% 78.7% 64.4% 70.4%

Garman-Klass 3.46 1.86 0.626 0.259 65.6% 81.0% 66.0% 72.4%

Rogers-Satchell 3.74 1.93 0.650 0.272 70.9% 84.2% 68.5% 76.0%

Yang-Zhang 7.15 2.67 0.939 0.321 135.4% 116.4% 99.0% 89.5%

EWMA 5.28 2.30 0.949 0.358 100.0% 100.0% 100.0% 100.0%

GARCH 4.56 2.13 0.878 0.351 86.3% 92.9% 92.5% 98.0%

Realized Variance 3.45 1.86 0.561 0.307 65.4% 80.9% 59.2% 85.7%

HAR-RV 2.65 1.63 0.524 0.238 50.3% 70.9% 55.2% 66.4%

Scaled HAR-RV 3.98 1.99 0.841 0.367 75.4% 86.8% 88.6% 102.5%

Optimized HAR-RV 4.54 2.13 0.838 0.357 86.0% 92.7% 88.4% 99.8%

Range

Historical Variance 37.49 6.12 2.004 1.251 91.7% 95.8% 99.5% 149.1%

Parkinson 43.87 6.62 2.127 1.405 107.3% 103.6% 105.5% 167.4%

Garman-Klass 43.46 6.59 2.121 1.378 106.3% 103.1% 105.2% 164.2%

Rogers-Satchell 42.87 6.55 2.122 1.400 104.9% 102.4% 105.3% 166.8%

Yang-Zhang 38.53 6.21 2.002 0.894 94.3% 97.1% 99.3% 106.5%

EWMA 40.87 6.39 2.016 0.839 100.0% 100.0% 100.0% 100.0%

GARCH 38.50 6.21 1.955 0.724 94.2% 97.1% 97.0% 86.3%

Realized Variance 41.32 6.43 2.203 2.167 101.1% 100.6% 109.3% 258.2%

HAR-RV 44.51 6.67 2.163 1.141 108.9% 104.4% 107.3% 135.9%

Scaled HAR-RV 36.99 6.08 1.886 0.581 90.5% 95.1% 93.6% 69.2%

Optimized HAR-RV 37.08 6.09 1.927 0.649 90.7% 95.3% 95.6% 77.4%

Full Day RV

Historical Variance 11.10 3.33 1.000 0.398 90.2% 95.0% 97.8% 121.2%

Parkinson 11.88 3.45 0.836 0.384 96.5% 98.2% 81.8% 116.9%

Garman-Klass 11.74 3.43 0.839 0.377 95.4% 97.7% 82.0% 114.9%

Rogers-Satchell 11.60 3.41 0.853 0.386 94.2% 97.1% 83.4% 117.6%

Yang-Zhang 11.94 3.46 0.990 0.306 97.0% 98.5% 96.8% 93.1%

EWMA 12.31 3.51 1.023 0.329 100.0% 100.0% 100.0% 100.0%

GARCH 10.43 3.23 0.940 0.295 84.8% 92.1% 91.9% 89.7%

Realized Variance 10.28 3.21 0.838 0.595 83.5% 91.4% 81.9% 181.2%

HAR-RV 11.33 3.37 0.790 0.318 92.1% 95.9% 77.3% 96.8%

Scaled HAR-RV 10.03 3.17 0.894 0.293 81.5% 90.3% 87.4% 89.1%

Optimized HAR-RV 9.88 3.14 0.886 0.286 80.3% 89.6% 86.7% 87.2%

Exhibit 2 - All Forecast Results and Performance Relative to EWMA
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Results Overview

In Exhibit 1, we ranked all estimators by their forecasting 
performance against each proxy, focusing on the two 
robust loss functions, MSE and QLIKE. We limited analysis 
to the 10-day lookback period for all estimators that 
require one as they clearly outperformed the longer term 
22-day and 100-day lookbacks across all metrics by an 
overwhelming margin. 

Despite being considered a noisy proxy, Squared Return 
in Panel A in Exhibit 1 provides some initial insights into 
the strengths and weaknesses of each estimator. The 
realized variance measures (RV, HAR-RV*, HAR-RV+) 
performed best against MSE, but RV itself drops to the 
bottom using QLIKE. Since Squared Return includes the 
overnight jump, the intraday-only RV is penalized more for 
its under-estimation. EWMA performed relatively poorly 
against MSE but was much better using QLIKE, helped by 
its inclusion of the overnight return in its calculation and 
higher weighting of more recent observations. GARCH, 
and the three HAR variants are all consistently strong 
against both loss functions.

Since Realized Variance removes the overnight 
component, it should be no surprise that RV, HAR-RV, and 
the range-based estimators without a jump component 
performed relatively better in Panel B. The relatively poor 
performance of standard industry methods GARCH and 
EWMA against QLIKE suggests that Realized Variance is 
not well-aligned with practice as a benchmark, as both are 
widely used in real-world applications. And the addition 
of an overnight component to HAR-RV+ and HAR-RV* 
is designed to make them equivalent to measures like 
GARCH and EWMA.

Panel C shows that despite their name, the range-based 
estimators (Parkinson, Garman-Klass, Rogers-Satchell) 
except for Yang-Zhang were relatively poor predictors 
of the Range. The more sophisticated models performed 
well, especially against QLIKE, with the weighting of 
more recent results helping EWMA and GARCH guard 
against under-estimation. HAR-RV* and HAR-RV+ also 
place more weight on recent results, but also capture 
intraday variation which apparently leads to some value 
in forecasting the daily range.

Lastly, using the full range of intraday and overnight 
variation as a proxy in Panel D, the more sophisticated 
estimators that either directly capture or model both 
components perform well whereas the range-based 
(Parkinson, Garman-Klass, Rogers-Satchell) and more 
naïve ones (RV, HV) performed poorly, especially RV 
against QLIKE.

Exhibit 2 shows the full range of values by variance proxy 
for each estimator against all four loss functions. The 
top two most accurate estimators in each column for 
each proxy are colored in green and the least accurate 
two in red. To the right of the performance against each 

proxy, we also report performance of all estimators 
benchmarked relative to EWMA, a standard estimator 
with wide application throughout the financial industry. 
All values below one (more accurate than EWMA) are 
colored green whereas values greater than one (less 
accurate than EWMA) are colored red. 

Focusing on the results relative to EWMA highlights some 
broad differences in how these estimators work. The HAR 
models and GARCH are clustered fairly closely to EWMA 
across the range of variance proxies, owing to their 
inclusion of jump returns and weighting of more recent 
values.

The output for QLIKE and MSE (and indirectly RMSE as 
it is just the square root of MSE) aligns with the rankings 
in Exhibit 1. But looking at the other metrics such as MAE 
is quite instructive as it demonstrates the importance of 
using the correct loss function for the task. Estimators 
like RV or HAR-RV that use intraday data and exclude 
the jump component look strong compared to EWMA, 
GARCH, HAR-RV*, or HAR-RV+ when measured against 
a Squared Return proxy and MAE. But when factoring in 
the risk of under-estimation, HAR-RV slips and RV falls to 
the worst ranked estimator in using QLIKE to evaluate.

Across the loss functions and multiple proxies, the 
realized volatility estimators that adjust for overnight 
returns—Scaled HAR-RV (HAR-RV+) and Optimized HAR-
RV (HAR-RV*)—are consistently top performers. While 
measuring against the combination of intraday squared 
returns and the squared overnight gap might seem tailor-
made for these estimators, their strong performance 
against all the proxies further supports their case as very 
effective forecasting tools. And while not showing up in 
the top two for any column, EWMA and especially GARCH 
also performed very well, reflective of their traditional 
and continued use by practitioners. The more naïve early 
estimators based on historical standard deviation or daily 
range are simply less effective, only scoring well against a 

limited combination of proxy and loss functions.

Conclusion

The wider availability of intraday data over the last 
twenty years has encouraged more research into its use 
for volatility forecasting. But while realized volatility 
is used in practice among quantitatively-oriented 
asset managers, investment banks, and other financial 
institutions, anecdotally EWMA and GARCH are still more 
prevalent in practice. For specialized volatility-targeted 
products such as risk control indices used in structured 
products or fixed index annuities, EWMA-based 
forecasts for targeting are clearly dominant (although 
different models are used to help hedge their exposure). 
For portfolio risk management and derivatives pricing, 
more sophisticated variants of GARCH are widely in use, 
which may perform significantly better than the standard 
GARCH (1,1) presented here. There are also some GARCH 
models that use realized volatility components, adding 
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the increased responsiveness of intraday data to improve 
their forecasts. But they come at the cost of increased 
complexity in fitting and maintaining these models. For 
accuracy, responsiveness, and ease of calculation, it is 
difficult to beat some of the HAR-based estimators that 
are properly tuned for the full day’s volatility.

While the basic HAR-RV has been in use for over a 
decade, there are still ongoing efforts to improve its 
forecasting accuracy using the same basic structure. 
Bollerslev, who initially developed GARCH, has been 
primarily focused on research using realized volatility 
and HAR-based models in recent years. The fine-tuning 
of the continuous intraday and overnight components 
into an estimate that best captures the desired risk 
characteristics for a given day is of critical importance. 
While the realized variance may be an unbiased proxy 
for the latent integrated variance, it fails to account for 
all the practical risks that a professional with capital at 
risk faces. A sharp loss at the opening of trading in a 
volatile market that is exacerbated by an inferior risk 
model is a threat to one’s P&L and potentially their job. 
In our opinion, the impact of the overnight return plus 
the variation experienced throughout the trading session 
is most aligned with the practitioner and the best proxy 
for volatility. As a result, a risk forecast that explicitly 
accounts for these components with solid performance 
across a range of variance proxies such as HAR-RV+ or 

HAR-RV* is very well suited for practical application in 
day-to-day risk management applications.

As stated previously, covering all forms of volatility 
forecasting in a relatively brief overview would be 
impossible. In addition to many variants in the GARCH 
family of models, there are other methods we do not 
even mention (the Heston model, Markov chains, Monte 
Carlo simulations, and other stochastic volatility models). 
Market-derived inputs such as option implied volatility 
or VIX are another form of forward-looking measure that 
can be used to help predict future volatility. 

Regardless of the tools and methods used, we 
believe that higher frequency data will continue to 
be an evolving part of volatility forecasting and risk 
management for years to come. Intuitively, having more 
frequent sampling of data should lead to more accurate 
results. If asked to forecast tomorrow’s temperature 
at 3pm, would you rather use the seasonal average, 
the average over the last two weeks, or the hourly 
temperature over the last 48 hours? With the low cost 
of computing power and data storage compared to 
even ten years ago, we expect the future of forecasting 
will harness this data for even more sophisticated 
techniques, especially where they tend to be most 
effective in the short-term.
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