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Complexity-Regularized Tree-Structured Partition for
Mutual Information Estimation
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Abstract—A new histogram-based mutual information es-
timator using data-driven tree-structured partitions (TSP) is
presented in this paper. The derived TSP is a solution to a com-
plexity regularized empirical information maximization, with the
objective of finding a good tradeoff between the known estimation
and approximation errors. A distribution-free concentration in-
equality for this tree-structured learning problem as well as finite
sample performance bounds for the proposed histogram-based
solution is derived. It is shown that this solution is density-free
strongly consistent and that it provides, with an arbitrary high
probability, an optimal balance between the mentioned estimation
and approximation errors. Finally, for the emblematic scenario
of independence, ����� � � �, it is shown that the TSP estimate
converges to zero with ����� ���� �����.

Index Terms—Complexity regularization, data-dependent parti-
tions, histogram-based estimates, minimum cost tree pruning, mu-
tual information (MI), strong consistency, tree-structured parti-
tions (TSPs), Vapnik and Chervonenkis inequality.

I. INTRODUCTION

L ET and be two random vectors taking values in
and , respectively, with a joint distribu-

tion defined on , where and
denotes the Borel sigma field. The mutual information (MI) be-
tween and can be expressed by [1], [2]

(1)

where is the probability distribution on
induced by multiplication of the marginals of and (distri-
bution where and are independent), and denotes
the Kullback–Leibler divergence (KLD) or information diver-
gence [2], [3]

(2)

is an indicator of the level of statistical dependency
between and , i.e., how differs from in the
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KLD sense [2], [3]. In fact, is a necessary and
sufficient condition for and to be independent.

MI has a fundamental role in information theory and statistics
[1]–[3], which justifies its large adoption in statistical learning
applications [4]–[11]. A particularly crucial need for these
applications is to have a distribution-free estimate of ,
based on independent and identically distributed (i.i.d.) realiza-
tions of , as the distribution in these settings is unknown.
An important requirement is that the estimate has to converge
to as the number of sample points tend to infinity
with probability one (strong consistency) [12]. In this learning
context, the MI estimation scenario relates with the problem
of distribution (density) estimation as MI is a functional of the
joint distribution of . In this classical problem, strong
consistency in the sense is well known [13], in particular for
histogram-based estimates [13], [14]. More recent extensions
on histogram-based estimator (the Barron type of estimator
[15]) has considered consistency under topologically stronger
notions, such as consistency in direct information divergence
by Barron et al. [15] and Györfi and van der Meulen [16],

-divergence and expected -divergence by Györfi et al. [17]
and Vajda and van der Meulen [18] and the general family of
Csiszár’s -divergence by Beirlant et al. [19].

In the context of estimating functionals of probability dis-
tributions, the differential entropy estimation has been system-
atically addressed for distributions defined on a finite-dimen-
sional Euclidean space . In particular, consistency
results are well known for histogram-based and kernel plug-in
estimates (see [12] and references therein). These constructions
and results extend to the case of MI estimation, since MI can
be expressed in terms of differences of differential entropies
[2]. However, for the important case of histogram-based esti-
mation, which is the focus of this study, these results usually
consider nonadaptive and product type of partitions of the space.
In this setting, every coordinate of the space is partitioned inde-
pendently to form the full partition of (a product partition),
and the partition is made only of a function of the amount of
data and independent of how the data is distributed in the space.
In contrast, nonproduct data-driven partitions [20]–[23] can ap-
proximate the nature of the empirical distribution better with
few quantization bins and provide the flexibility to improve the
approximation quality of histogram-based estimates [20], [21]
(see Fig. 1). This has been shown theoretically in a number of
learning problems, including density estimation, regression, and
classification [20], [24], [25]. Their full potential, however, re-
mains to be studied for the estimation of MI.

In addressing this problem, Darbellay and Vajda [21] pro-
posed an histogram-based approach based on a nonproduct
adaptive tree-structured partitions (TSPs), where the inductive
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Fig. 1. (a) Product type of partition of the space with nine cells. Every coordinate is partitioned independently to form the full partition. (b) Nonproduct data-driven
TSP with nine cells and its binary tree representation. The space is partitioned by axis-parallel hyperplanes with a statistically equivalent splitting criterion. This
splitting process is conducted inductively in a binary tree structured way, starting from the full space indexed by the node (0,0).

nature of TSP was used to dynamically increase the reso-
lution of the quantization in areas of the space that provide
higher empirical MI gains. This adaptive TSP estimate shows
promising empirical evidence, although ensuring strong con-
sistency remains an open problem. Alternatively, Wang et al.
[22], [23] and more recently Silva and Narayanan [26]–[29]
have studied the role of a more general family of data-driven
partitions based on partition schemes[20], [24] in the context
of MI and the KLD estimation. For MI estimation, these results
are summarized in the next section.

A. Histogram-Based MI Estimation Based on Partition
Schemes

For a finite measurable partition of , we mean a finite
collection of elements in , such that

if and . Every ele-
ment of is called a cell, or partition cell, and

denotes its cardinality. In this context,
denotes the collection of finite measurable partitions of . A
partition scheme [20] is collection of
functions where, for each , maps the elements in
(the sequences of length in ) to . In this context, we say
that is a partition rule of length [20].

Let be i.i.d. realizations of
drawn from and let us consider a partition scheme

. In our learning scenario, receives the
empirical data and creates a partition of the space

. In addition, we impose that has a Cartesian product struc-
ture, in the sense that each element can be ex-
pressed by [21]

(3)

where and . With this, the learning-es-
timation process involves three phases: first, to use the empirical
data to partition by ; second, to use again the data
to estimate and restricted to the sigma field

1; and finally, to consider the plug-in technique to

1Given a collection of sets �, we denote by ���� the smallest sigma field
that contains � [30], [31]. When � is a finite partition, ���� is the collection
of elements written as unions of element of �.

get an empirical MI estimate on [28]. Con-
cerning the phase 2, the product bin condition in (3) is required
to estimate as well as the reference measure only
based on the i.i.d. realizations of the joint distribution [21],
[28]. More precisely, let denote the joint distribution and
its empirical version, i.e.,

(4)

Hence, the histogram-based MI estimate is given by

(5)

where denotes the product form of the event
. Note that can be interpreted as the KLD

restricted to the sigma field , between the empirical
joint distribution and its empirical product counterpart [21].

Silva and Narayanan [28] particularized this construction
to statistically equivalent blocks [32] and to a data-driven
TSP, where conditions were shown for strong consistency.
These conditions were derived from a theorem that stipulates
sufficient conditions on to guarantee that the estimation and
approximation error associated with individually
converge to zero almost-surely (a.s.). The work presented in
this paper builds upon this formulation, where the learning
and adaptation attributes of TSPs [24], [33]–[35] are further
explored. In particular, we investigate a complexity-regularized
type of learning principle [33] previously unexplored in this
inference problem. With this learning criterion, the idea is
not only to obtain conditions under which the estimation and
the approximation errors vanish asymptotically, but, with an
arbitrarily high probability, provide an optimal balance be-
tween these two errors [34]–[36]. In this context, the partition
is induced from in two stages. In the first, the space is
partitioned in a binary tree-structured way using the idea of
statistically equivalent splits [14], while in the second, the
induced full tree is pruned back in order to find a good balance
between the estimation and the approximation errors [33]–[35],
[37].



1942 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

Concerning the pruning stage, we address the problem of
deciding the optimal TSP for the MI estimation as a complexity
regularization problem. Here, we have adopted the ideas of
structural risk minimization (SRM) by Vapnik [38], [39], and
complexity regularized learning by Barron [40], Barron and
Cover [41], and others [42], where the learning principle is
designed to obtain the optimal balance between an empirical
fidelity indicator (the empirical MI) and a notion of learning
complexity. For this last part, we have adopted the concentra-
tion inequalities in [24], [39], and [43], in which the authors
offer closed forms for TSP [24], [35], [36]. Based on that,
Theorem 1 derives an analytical expression for the penalization
term (no resampling or cross validation is needed), which ends
up being proportional to the square root of the size of the
tree. Adopting this penalty in a complexity penalized criterion,
Theorem 2 shows that the solution of this problem is able
to find a nearly optimal balance between the estimation and
the approximation errors. As expected, Theorem 3 shows that
our estimator is density-free strongly consistent, refining the
results presented for TSP in [28]. Finally, for the important
case when ( and are independent), Theorem
4 shows that the proposed estimate is able to converge to
zero at a rate faster than any finite polynomial order decay,
i.e., is density-free. Con-
cluding, we present two concrete algorithms to solve the main
complexity regularization problem. These are derived from
dynamic programing and offer polynomial time solutions with
respect to the sampling length .

The rest of this paper is organized as follows. Section II intro-
duces the basic notations for TSP. Section III presents the com-
plexity penalized tree learning formulation. Section V reports
the minimax-oracle result and Section VI shows the conditions
for density-free strong consistency. Section VIII presents some
algorithmic solutions for the optimal tree-pruning problem. Fi-
nally, Section IX provides concluding comments. Some of the
proofs are presented in appendixes.

II. BINARY-TREES AND TSPS

Let us first introduce some conventions and notations for
binary trees to facilitate the description of the proposed TSP
scheme. Adopting conventions by Breiman et al. [33], a binary
tree is a collection of nodes with one node of degree 2 (the
root), and the remaining nodes of degree 3 (internal nodes) or
degree 1 (leaf or terminal nodes). Let and be the
collection of internal and terminal nodes of , respectively, and

be the size of a tree , given by the cardinality of .
If and is a binary tree by itself, we say that is a
subtree of and moreover, if both have the same root, we say
that is a pruned version of , denoted by .

A TSP can be represented by a pair [35], with
a binary tree and a function from to , with de-
noting the collection of closed halfspaces of the form

, for some and . Then, for any
(internal nodes), corresponds to the closed halfs-

pace that dichotomizes the cell associated with , denoted by ,
in two components and .
These resulting cells are associated with the left and right child

of , denoted by and , respectively, in the case when
. If we denote by the root node of , then initial-

izing the cell of by , provides a
way to characterize , . In particular, the partition in-
dexed by is denoted and constructed by

(6)

If is a TSP and , then there is a unique TSP
associated with by restricting to the domain . Note
that if , is a refinement of by (6), that we denote
consistently by . For the sake of simplicity, we will use
the binary tree notation to refer to both and, more
frequently, the partition .

Finally, an n-sample TSP rule is a function from the
space of finite sequences to the space of TSP with halfs-
pace splitting rules, and the resulting TSP partition scheme is the
collection of TSP rules, i.e., . In the scope of
this paper, we focus on the family of TSP induced by axis-par-
allel hyperplane cuts [24], presented in Section III-A.

III. COMPLEXITY PENALIZED TSP SCHEME

Adopting the ideas of classification and regression trees [33],
we propose a scheme that uses the empirical data to con-
struct a TSP of in two consecutive stages that involve a
growing and a pruning phase. In the growing phase, is used
to iteratively split the space and create a large TSP that we de-
note by . has, in general, few or no sample
points of in each of its cells [33]. In this context, the de-
viation of with respect to on the measurable events of

, more precisely, , is

expected to be large. This motivates the second stage of pruning,
where the idea is to prune-back in such a way that we
find a good balance between a notion of estimation error (cost)
and an approximation error (fidelity), both to be defined for our
problem.

A. Statistically Equivalent Splitting Criterion

For the growing stage, we consider a modified version of what
is known as balanced search tree [24, ch. 20.3]. Here, the idea
is to split the space in a nonproduct way (by axis-parallel hy-
perplanes) adopting a statistically equivalent splitting criterion.
More precisely, let be the root of the tree and .
Considering as the i.i.d. realizations of

, this scheme chooses a coordinate axis of the space
in a sequential order, let us say the dimension for the first step,
and then the axis-parallel halfspace by

(7)

where denotes the order
statistics [14] obtained by a permutation of the sample points

projected into the target dimension . Note that
this permutation exists with probability one as the -marginal
distribution of has a density [20], [24]. Using in (7),

is divided into two rectangles
and , in the coordinate axis . By con-
struction, and induce a partition of with almost



SILVA AND NARAYANAN: COMPLEXITY-REGULARIZED TSP FOR MUTUAL INFORMATION ESTIMATION 1943

the same empirical mass; in fact,
and this quantity is zero when is an even number. As-

signing the sample points to their belonging cell
in , we can choose a new coordinate axis
in the mentioned sequential order and continue with the afore-
mentioned splitting process, independently in each of the two
intermediate cells. Then, we keep with this process in an induc-
tive fashion, where as a stopping rule, we propose a criterion
that finishes the refinement of the cells to guarantee a critical
number of sample points, threshold denoted by ,
in each element of the resulting data-driven partition. Hence,
for a given intermediate cell , we split by the aforemen-
tioned process, if ; otherwise, we stop the refine-
ment process and is, consequently, a leaf node of .
Finally, we get a full-tree and the associated partition

, where a minimum magnitude for on the
events of is guaranteed. More precisely

(8)

with for all . This stopping crite-
rion was originally proposed by the authors for the problem of
KLD estimation in [26] and [27]. A graphical illustration of this
process is presented in Fig. 1. As pointed out by Darbellay and
Vajda [21], this binary splitting criterion provides a nonproduct
adaptive partition of the space with good approximation to the
underlying structure of the data, Fig. 1. On the other hand, the
adopted critical mass stopping criterion is the key to derive con-
centration inequalities for our problem [26]–[28]. Based on this,
we formulate pruning stage presented next. For the rest of the
paper, the full tree will be denoted by considering implicit
its dependency on .

B. Complexity-Penalized Empirical Information Maximization

In tree-structured learning [33]–[35], [44], the idea of the
second stage is to prune the initial tree by a complexity
regularized objective criterion that tries to balance the estima-
tion and approximation errors (or the variance-bias tradeoff).
For our target problem, we consider the following inequality,

:

(9)

where

(10)
is the KLD of the true distributions restricted to the sigma field
induced by [2]. The first term on the right-hand side
(RHS) of (9) characterizes the estimation error, or the differ-
ence in the MI functional between the adoption of the empirical
and real measures. The second term on the RHS of (9) is non-
negative and corresponds to the approximation error, which is
a consequence of the well-known fact that quantization reduces
the magnitude of the information divergence and consequently
of the MI [1], [2].

Returning to the pruning problem, we propose the following
complexity-penalized empirical information maximization
(EIM) criterion

(11)

This regularization criterion attempts to find an optimal bal-
ance in between the empirical MI and an
indicator of complexity for that we denote by .
The penalization term has to reflect the estimation

error in (9). However, as the true
distribution is unknown, we consider the approach used in
classification trees of characterizing distribution-free expres-
sions to upper bound this quantity [34]–[36]. The next section
elaborates on this idea by considering the Vapnik–Chervonenkis
(VC) inequality[24], [38], [39], [43].

IV. CONCENTRATION RESULTS FOR TSPS

Let us first introduce some terminologies. Let and
be two sequences of nonnegative real numbers.

dominates , denoted by (or alternatively
is ), if there exists and such that

, . and (both strictly positive)
are asymptotically equivalent, denoted by , if there
exists such that . Finally, is
(for strictly positive) if .

Theorem 1: Let be a probability measure in
and be i.i.d. realizations driven by . Let be
the TSP of Section III-A where is the critical empirical
mass sequence. In addition, let
be the family of pruned TSPs of size induced from . Then,

, ,

(12)

where refers to the process distribution of .
This is the main finite sample concentration inequality con-

sidered in our problem to characterize and bound the estimation
error in (9). Note that the bound in (12) is distribution free and
is exclusively a function of the size of the tree, the dimension of
the space, and the critical empirical mass sequence of
our TSP construction. It is important to note that this inequality
is only valid for a finite range of values for the variable (de-
tails about this condition are in Section IV-B). However, this fi-
nite range is sufficient to obtain all the forthcoming results. The
proof of this result is presented at the end of this section.
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Corollary 1: Under the setting of Theorem 1, if
for some , then

(13)

-almost surely. Furthermore, if for some
, then with probability one with respect to

(14)

(The arguments to prove these results, derived from Theorem 1,
are presented in Appendix I).

Note that these two results in (13) and (14) constrain the rate
of how fast tends to zero to ensure that the estimation
error vanishes -almost surely. Rewriting Theorem 1, we can
bound the deviation of with respect to
in terms of an interval of confidence, and then, following the
ideas proposed in [34]–[36], we can construct a distribution-free
expression for the estimation error.

Corollary 2: Under the setting of Theorem 1, if
for some , then , , there exists

, such that , with probability of at
least

(15)

(The proof is presented in Appendix II).
For the rest of the exposition, we denote the interval of con-

fidence on the RHS of (15) by . It is important
to mention that this result is valid for a large sampling regime

to ensure that , which is
the domain where our concentration inequality in Theorem 1 is
valid (see Appendix II for details).

A. Arguments to Prove Theorem 1

The argument considers the following consequences of the
Vapnik and Chervonenkis inequality[24], [39], [43].

Lemma 1 [20]: Let us consider the family of tree-structure
measurable partitions of with cells (or terminal nodes), and

i.i.d. realizations with distribution in .
Then, ,

Lemma 2 [43]: Under the setting of Lemma 1, if we instead
consider the family of measurable rectangle2 of , then,

,

Proof of Theorem 1: We use that

(16)

this bound derived from the triangular inequality and the critical
mass criterion of the full tree . In (16), is a short-hand
notation for the product of marginal measure, i.e.,

, where any set has
a product form denoted by . On the other hand,
is a short hand for the empirical version of , i.e.,

, for all .
Concerning the first term on the RHS of (16)

(17)

from Lemma 1 and the fact that . Concerning
the second term on the RHS of (16), for an arbitrary

, let us consider the following collection of se-
quences .
This can be written as

.
Using Taylor expansion, ,

, then ,

(18)

2The shatter coefficient � ��� associated with this family of events is
bounded by ��� �� (see details in [24] and [43]).
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where the last two inequalities are obtained from the fact that
the cells of are rectangles in , and Lemma 2,

respectively.
Concerning the last term in the RHS of (16), by definition, we

have that , .
Hence

(19)

From the same inequalities shown in (18)

(20)

The same bound in (20) is obtained for the term

and from (19),

(21)

To conclude, considering the inequality in (16) and the dis-
tribution free bounds obtained for its RHS terms (in (17), (18),
and (21), respectively), , we obtain

(22)

V. ORACLE RESULT

Returning to our central problem in (11), we propose the fol-
lowing expression for the penalization term derived from Corol-
lary 2, , :

(23)

for a sequence of confidence probabilities in such
that is . Here, is the short-
hand notation for the confidence interval given in the RHS of
(15) (see also (58) in Appendix II). Hence, is obtained
from the confidence interval expression derived in Corollary
2, as a way to upper bound the magnitude of the estimation
error with asymptotically high probability. Note that from the
inequality in Theorem 1, exclusively depends on the
size of the tree and not on its structure. Loosely speaking, the
motivation of this choice is justified by the concentration re-
sults presented in Section IV, but substantiated rigorously from
the oracle result presented next. Interestingly, as in the case of
classification trees [35], [36], [42], the complexity term is pro-
portional to the square root of the tree size, i.e.,

from (15) and (23).
Let

(24)

be the penalized fidelity criterion . We can express
(11) by

(25)

where

(26)

is the solution of the EIM constrained to the collection of pruned
trees of size , for all . The next result shows
that offers a nearly optimal solution for the estimation of

with respect to an oracle solution.

Theorem 2: Under the problem formulation of Theorem 1, if
1) for some and
2) is and is ,

then there exists , such that with
probability (with respect to )

(27)

(28)

and consequently, with probability (with respect to )

(29)

The result says two important things. Equation (27) shows
that with an arbitrary high probability our penalized indicator

is an underestimation of , which rat-
ifies the correctness of the penalization term in (23). More im-
portantly, (28) shows that, with an arbitrary high probability, the
deviation of the penalized quantity from
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is upper bounded by an expression that reflects the optimal bal-
ance between our estimation error bound in (23) and the true ap-
proximation error [first term from left to right in (28)]. In fact,
we can see the optimization in (28) as an oracle error bound, in
the sense that it is the performance of an ideal observer that has
access to the true distribution to balance the two error sources
in the learning problem, i.e., the selection of the oracle tree

(30)
Overall, this result is along the lines of the related oracle results
obtained in the context of complexity-based pruning schemes
for classification trees [34]–[36] and concept learning using
SRM [42].

It is important to emphasize that is nearly op-
timal with respect to our oracle solution in (30), which used
a distribution-free upper bound to quantify the estimation error.
The true estimation error is unaccessible given the learning
nature of the problem, and consequently, the tightness of the
adopted concentration inequalities is crucial to obtain good
estimation error expressions and results. This was one of the
reason to consider the VC concentration inequalities as the
driven tool, given its nonparametric nature and its recognized
goodness to model estimation errors for TSPs in other learning
settings (see, for instances, [20], [24], and [34]–[36]).

From the conditions on stated in Theorem 2,
we have that (the

argument is presented in Section V-B). Consequently, the
oracle error bound in (28) is governed by the asymp-
totic trend of asso-
ciated with the approximation goodness of the full tree.
In fact, the consistency of the two estimate candidates,

and , depends upon the analysis of

. Section VI formalizes
this observation and shows sufficient conditions where both

and are strongly consistent esti-
mates of .

A. Proof of Theorem 2

By definition in (23)

then considering that , it is simple to check that

with and being are
the weakest set of sufficient conditions to obtain that

(31)

This is crucial for the rest of the proof, as the inequality in The-
orem 1 is valid only for , represented in this case by the
intervals of deviation , . Let

be the -typical set, well defined for all such that .
From Corollary 2, if , then .
Consequently, from (31), there exists such that

and , .
Hence, defining , we have that

, . By definition, if ,

then ,

, which also implies that [24]

(32)

. Then, for an arbitrary

, where

is the oracle solution that maximizes the MI on .
Also, it is clear that ,

, and
consequently we have that

(33)

The argument concludes from the fact that has probability
of at least , and that is .

VI. DENSITY-FREE STRONG CONSISTENCY

Here, we restrict to the case where is equipped with a prob-
ability density function.

Theorem 3: Let be the TSP scheme indexed
by full trees and driven by the i.i.d. process with

for all . If is absolutely continuous with re-
spect to the Lebesque measure in and we impose
the conditions on and stipulated in Theorem 2, then
the MI estimates obtained from satisfy

(34)

(35)

-almost surely ( -a.s.).
The proof of this theorem reduces to showing that the estima-

tion and approximation errors in (7) converge to zero -almost
surely. We introduce three results to bound the estimation and
approximation errors. We begin with the approximation error,
and for that we introduce the following definition.

Definition 1 [21]: Let be a probability measure absolutely
continuous with respect to the Lebesgue measure in and
let be a partition scheme driven by
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, i.i.d. realizations with . said to be asymp-
totically sufficient for if

-a.s.

Lemma 3: (Asymptotic sufficiency of ) Under the setting
of Theorem 3, if for some , then

is asymptotically sufficient for ,

i.e., , -a.s. (The proof is
presented in Appendix III.)

Lemma 4: Under the setting of Theorem 3, if
with , then

(36)

-a.s. (The proof is presented in Appendix IV.)

Lemma 5: (Asymptotic sufficiency of ) Under the setting
of Theorem 3, if with ,
and , then , there exists such
that and

and consequently -almost everywhere

(37)

(The proof is presented in Appendix V.)
Proof of Theorem 3: The proof comes from the following

inequality:

(38)

where these RHS terms tend to zero -almost surely from
Lemma 3, Lemma 5, and Lemma 4, respectively. Finally,
the same result is obtained for the regularized estimate

, as by definition

(39)

VII. CASE OF STUDY:

An interesting scenario to study is when and are inde-
pendent. In this context, only the estimation error plays a role
and, from Theorem 2, we can guarantee a rate of convergence
of to its true value .

Theorem 4: Let and be two independent random vectors
and be i.i.d. realizations of the distribution . Under
the assumptions of Theorem 3, and specifically considering that

, is .
Theorem 4 implies that converges to zero faster

than any decreasing polynomial order -a.s. More formally, we
have the following result.

Corollary 3: Under the setting of Theorem 4, is
-a.s. for any finite .

(The proof is presented in Appendix VI.)

A. Proof of Theorem 4

Let and let us define
from (15). Let

be the collection of -typical sequences associated with
and be

the general collection of -typical sequences . In this
context, we can impose , , because for

, we only have the trivial partition in , and in
this domain, , . In
fact, even with this stronger definition ,
and .

Let be a -typical sequence. From the arguments
presented in the proof of Theorem 2, if is the solution of
the complexity-penalized problem in (25), considering our more
specific penalization term , then

where the last equality is from and the fact that
. Consequently, and from the

construction of , it is simple to show that , which

implies that . Then, restricted to the collection
of -typical sequences, we have a zero-error empirical estimate.

On the other hand, for an arbitrary sequence
we have that . This last inequality
is obtained from the fact that is bounded by
the entropy of restricted to , which is
upper bounded by the entropy of the uniform distribution with
critical probability mass . In addition to the Corollary 2, if

then , which
implies that

(40)

The rest of the proof reduces to finding a sequence that
tends to zero at the fastest possible rate while guaranteeing

(41)
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which from (40) allows us to show that such that

(42)

Note that in this context, we have that ; then,
we reduce to the original complexity regularized problem in
(25). Finally, from the construction of and (15), it is
simple to show that satisfies (41) considering
that with , which concludes the proof.

VIII. ALGORITHMIC SOLUTIONS

We conclude this paper by connecting the main learning-de-
cision problem in (25) with some results and algorithmic so-
lutions of well-understood complexity-regularized tree pruning
problems [33], [37], [44]. We first rewrite (25) in the following
form:

(43)

where and , with

. In this context,
is a nondecreasing and additive function of the tree.

It is nondecreasing in the sense that when
[2], [21], and it is additive (see definition in [37])

because it is written as the sum of terms indexed with the leaves
of [from (10) and (6)].

Concerning the additivity, let denote the branch of a tree
rooted at , and let be the conditional MI

gain obtained by partitioning in terms of , i.e.,

(44)

which is well defined for all . In this last expres-
sion, is a short-hand notation for the product of marginal
empirical measures, i.e., ,
which is well characterized when its argument has a product
form . In addition, and denote the left and right
children of , respectively. In the same way, we can define the
conditional mutual information (CMI) associated to a branch of

rooted at (or equivalently, the CMI gain of partitioning
in terms of ) by

(45)

where, in particular, ,
with denoting the root of . With these definitions, it

is simple to show that, such that and

(46)

A. Minimum Cost Tree Pruning Algorithm

It is known that belongs to
[37], which is the family of

the minimum cost trees given by

(47)

for all . Let denote the branch of
rooted at (i.e., ). Then, we can gener-
alize the family of trees in (47) as follows,

(48)

, where in particular .
Dynamic programing can be used to solve (48) by using the

additive structure of in (46).
Proposition 1[37]: For all and

, we have that

(49)

where3

(50)

This result offers a bottom-up algorithm to solve
(a pseudocode is presented

in [37]) and, by an exhaustive search on this family, a
way to find . Bohanec and Bratko [45] showed that
the computational complexity of this methodology is

for our case of bal-
anced trees.

B. Family Pruning Algorithm

An alternative solution can be derived from the analysis of
the more general problem

(51)

3Using Scott’s nomenclature [37], ���� � � � �� denotes a binary tree � with
root �, and branches � � � and � � � .
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for all , where in particular . Scott [37]
showed the following result for the case of a sub-additive
penalty (see [37, Def. 1]), which is our case as .

Theorem 5(see [37, Th. 2]): For the case when is sub-
additive and is an additive and nondecreasing function of
the tree, there exists , a strictly increasing
sequence of real numbers, ,
and a nested family of trees

, such that ,

(52)

The fact that the family of solutions is

nested allows to find and ef-
ficiently. Algorithms to solve this problem have been proposed
by Breiman et al. [33], Chou et al. [44], and more recently by
Scott [37]. The computational complexity for our case of bal-
anced trees is

[33], [44].

IX. CONCLUDING COMMENTS

The conditions on to ensure that the complexity-
regularized tree induces strongly consistent estimates for

(see Theorem 3) match the one stipulated on the full
tree, i.e., , to obtain that is strongly con-
sistent. This last result was presented by the authors in [28].
In other words, we have that the full tree obtained from the
growing phase induces a strongly consistent estimate as well.
At this point, it is important to highlight the adaptation char-
acter of our complexity regularized solution. This solution finds
the tree’s topology that offers a nearly optimal balance between
our developed estimation and approximation error expressions
(see Theorem 2) as a function of the data and not only its size.
To illustrate the idea, if the target value is high, then
we get a less conservative (or bigger) complexity regularized
tree than in the case of a moderate MI magnitude (in par-
ticular the case of independent random variables), this form the
oracle results of Theorem 2. In contrast, the full tree solution
does not allow for this tree structure adaptation to the problem.
Furthermore, the fact that the size of is able to adapt to the
underlying magnitude of is what is crucial to obtain
the rate of convergence result stated in Theorem 4.

Concerning Theorem 4, the rate of convergence obtained for
the independent scenario suggests that can be
used as an attractive statistic to construct a test of indepen-
dence between continuous random variables of the form: de-
cide when (with the hypothesis
of independence). Statistical tests of independence usually re-
quire the characterization of a significant level (probability of re-
jecting when it is true) using asymptotic distributions, which
are only valid for the large sampling regime. An advantage of
our setting is the existence of distribution-free concentration in-
equalities that can be used to define accurate significant levels
and, consequently, to construct a test with performance bounds
for any finite sampling length.

Finally, from the analysis of some empirical results for the
case when and are independent, it is observed that our solu-
tion is able to detect this condition and get a zero-error estimate

(associated with the trivial partition ) with a
finite number of samples. Consequently, the empirical evidence
shows that the estimate behaves better than what the theory pre-
dicts in Theorem 4. This suggests that the rate of convergence
obtained in Section VII can be improved on the lines of a re-
sult that guarantees an error-free estimate for a finite number of
sampling points almost surely. This conjecture is an interesting
direction to explore and it is left as a future work.

APPENDIX I
PROOF OF COROLLARY 1

From the distribution-free bound of
in

Theorem 1, we have two distinctive terms
proportional to

(53)

It is sufficient to check that these two last expressions are dom-
inated by , for some .

As for some then there exits
, such that . Working with

(54)

and con-
sequently, .
For the second term in (53)

(55)

and considering that , (because
by definition ), we also have that,

. Consequently, we obtain that
is dominated

by which from the Borel Cantelli lemma [30]
proves the result in (13).

Concerning the second part, from Theorem
1,
is bounded by an expression dominated by

. As in this case

for some , we just need to concentrate
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on the analysis of the second term, i.e., on getting a negative
asymptotic value for

(56)

for some . Note that by construction, .
Using this, the positive term of the RHS of (56) tends to zero
if is . On the other hand, using again
that , the second term of the RHS of
(56) tends to negative infinity if is . Finally,
noting that , from the assumption
about , we obtain that there exists such

that

, which proves (14).

APPENDIX II
PROOF OF COROLLARY 2

Note that the distribution-free bound of Theorem 1 can be
upper bounded by the following simpler expression:

(57)

Consequently, for an arbitrary and , the critical
such that (57) is equal to is

(58)

This is the probability . confidence interval of the
estimation error deviant. However, this is valid as long
as , from Theorem 1. Here is where

with comes into play, because this
condition implies that and

APPENDIX III
PROOF OF LEMMA 3

We need to first introduce some definitions and two results.
Let us state a sufficient condition to get that a partition scheme

is asymptotically sufficient for .

Theorem 6 (see [28, Th. 2]): Let be absolutely
continuous with respect to the Lebesgue measure in and
let be a partition scheme driven by

, i.i.d. realizations with for all . If

(59)

-a.s., then

(60)

Definition 2: Let be a binary tree. For all
let denote the depth of —the number of arcs
that connect with the root of . In this context, let

denote the truncated version of , formally given by
, where by construction

.

Definition 3: Let be a binary tree, we say that is a
balanced tree of height if , .

Definition 4: A TSP scheme is a uni-
form balanced tree-structured scheme (UBTSS), if each parti-
tion rule forms a balanced tree of height (only function
of ).

In the context of uniform balanced tree-structured scheme,
we have the following result.

Lemma 6 [46]: Let be a UBTSS in-
duced by the statistically equivalent splitting process presented
in Section III. Let denote its height sequence, then
satisfies the shrinking cell condition of Theorem 6, if there ex-
ists a non-negative real sequence , for some ,
such that

The result derives from the ideas presented by Devroye et al.
[24, Th. 20.2], and the proof can be found in [46, ch. 4, Lemma
4.3].

Proof of Lemma 3: From Theorem 6, the proof reduces
to checking the shrinking cell condition in (59). If we define

, by construction of ,
we have that

Let for all , then we can define the UBTSS

, by for all . By
construction, (and consequently is a re-
fined version of ), then the shrinking cell condition of

implies the property for . For , we can check the suffi-
cient conditions of Lemma 6. Considering that
for some , then as tends to infinity and,
furthermore, we can consider an arbitrary nonnegative sequence

with , where

(61)
as , because and is ,
which concludes the proof.

APPENDIX IV
PROOF OF LEMMA 4

Proof: Note that
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consequently from the estimation error expression in (57) (see
Appendix II)

(62)

Finally, using the same arguments adopted to bound the RHS
expression of (56) in Corollary 1 (see details in Appendix I),
we have that there exists such that ,

is dominated by the

sequence , which proves the result from the Borel-
Cantelli lemma [30].

APPENDIX V
PROOF OF LEMMA 5

Proof: By triangular inequality

(63)

Without loss of generality, let us consider . As
(see proof of

Theorem 2), there exists such that ,
, then for the first term in (63)

(64)

For the second term in (63),

(65)

where the first inequality comes from the definition of , the
third inequality uses the estimation error expression in (57) (see
Appendix II), the fourth uses that

, the fifth is by the definition of in (23) and the
fact that , and the last uses

that and .
Then, from (63)–(65), we get the inequality. Note that this

inequality is valid uniformly in and in par-
ticular for . Finally, evaluating this distri-
bution free bound in , this expression is asymptoti-
cally dominated by for some , by the
same arguments adopted to bound the RHS expression of (56) in
Corollary 1 (see details in Appendix I). Consequently, we prove
(37).

APPENDIX VI
PROOF OF COROLLARY 3

Proof: Let us consider and a sequence for
some . To show the result, we need to analyze the asymp-
totic decay of , with the probability
measure of . From the Markov’s inequality [31]

Note that , , then the Borel-Cantelli

lemma implies that is -almost surely.
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