FirePerf: FPGA-Accelerated Full-System
Hardware/Software Performance

Profiling and Co-Design

Sagar Karandikar
University of California, Berkeley
sagark@eecs.berkeley.edu

Howard Mao
University of California, Berkeley
zhemao@eecs.berkeley.edu

Albert Ou

University of California, Berkeley
aou@eecs.berkeley.edu

Randy Katz
University of California, Berkeley
randy@eecs.berkeley.edu

Alon Amid
University of California, Berkeley
alonamid@eecs.berkeley.edu

Borivoje Nikoli¢
University of California, Berkeley
bora@eecs.berkeley.edu

Krste Asanovic
University of California, Berkeley
krste@eecs.berkeley.edu

Abstract

Achieving high-performance when developing specialized
hardware/software systems requires understanding and im-
proving not only core compute kernels, but also intricate and
elusive system-level bottlenecks. Profiling these bottlenecks
requires both high-fidelity introspection and the ability to
run sufficiently many cycles to execute complex software
stacks, a challenging combination. In this work, we enable
agile full-system performance optimization for hardware/
software systems with FirePerf, a set of novel out-of-band
system-level performance profiling capabilities integrated
into the open-source FireSim FPGA-accelerated hardware
simulation platform. Using out-of-band call stack reconstruc-
tion and automatic performance counter insertion, FirePerf
enables introspecting into hardware and software at appro-
priate abstraction levels to rapidly identify opportunities for
software optimization and hardware specialization, without
disrupting end-to-end system behavior like traditional pro-
filing tools. We demonstrate the capabilities of FirePerf with
a case study that optimizes the hardware/software stack of
an open-source RISC-V SoC with an Ethernet NIC to achieve
8% end-to-end improvement in achievable bandwidth for
networking applications running on Linux. We also deploy a
RISC-V Linux kernel optimization discovered with FirePerf
on commercial RISC-V silicon, resulting in up to 1.72x im-
provement in network performance.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

ASPLOS 20, March 16-20, 2020, Lausanne, Switzerland

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7102-5/20/03.
https://doi.org/10.1145/3373376.3378455

CCS Concepts. » General and reference — Performance;
« Hardware — Simulation and emulation; Hardware-
software codesign; - Computing methodologies — Sim-
ulation environments; - Networks — Network perfor-
mance analysis; - Software and its engineering — Op-
erating systems.

Keywords. performance profiling; hardware/software co-
design; FPGA-accelerated simulation; network performance

optimization; agile hardware

ACM Reference Format:

Sagar Karandikar, Albert Ou, Alon Amid, Howard Mao, Randy
Katz, Borivoje Nikoli¢, and Krste Asanovi¢. 2020. FirePerf: FPGA-
Accelerated Full-System Hardware/Software Performance Profiling
and Co-Design. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS °20), March 16—20, 2020, Lausanne,
Switzerland. ACM, New York, NY, USA, 17 pages. https://doi.org/
10.1145/3373376.3378455

1 Introduction

As hardware specialization improves the performance of
core computational kernels, system-level effects that used to
lurk in the shadows (e.g. getting input/output data to/from
an accelerated system) come to dominate workload runtime.
Similarly, as traditionally “slow” hardware components like
networks and bulk storage continue to improve in perfor-
mance relative to general purpose computation, it becomes
easy to waste this improved hardware performance with
poorly optimized systems software [9]. Due to scale and
complexity, these system-level effects are considerably more
difficult to identify and optimize than core compute kernels.

To understand systems assembled from complex compo-
nents, hardware architects and systems software developers
use a variety of profiling, simulation, and debugging tools.
Software profiling tools like perf [18] and strace [4] are

https://doi.org/10.1145/3373376.3378455
https://doi.org/10.1145/3373376.3378455
https://doi.org/10.1145/3373376.3378455

common tools of the trade for software systems developers,
but have the potential to perturb the system being evaluated
(as demonstrated in Section 4.6). Furthermore, because these
tools are generally used post-silicon, they can only introspect
on parts of the hardware design that the hardware devel-
oper exposed in advance, such as performance counters. In
many cases, limited resources mean that a small set of these
counters must be shared across many hardware events, re-
quiring complex approaches to extrapolate information from
them [34]. Other post-silicon tools like Intel Processor Trace
or ARM CoreSight trace debuggers can pull short sequences
of instruction traces from running systems, but these se-
quences are often too short to observe and profile system be-
havior. While these tools can sometimes backpressure/single-
step the cores when buffers fill up, they cannot backpressure
off-chip I/O and thus are incapable of reproducing system-
level performance phenomena such as network events.

Pre-silicon, hardware developers use software tools like ab-
stract architectural simulators and software RTL simulation
to understand the behavior of hardware at the architectural
or waveform levels. While abstract architectural simulators
are useful in exploring high-level microarchitectural trade-
offs in a design, new sets of optimization challenges and
bottlenecks arise when a design is implemented as realizable
RTL, since no high-level simulator can capture all details
with full fidelity. In both cases, software simulators are too
slow to observe end-to-end system-level behavior (e.g. a clus-
ter of multiple nodes running Linux) when trying to rapidly
iterate on a design. Furthermore, when debugging system
integration issues, waveforms and architectural events are
often the wrong abstraction level for conveniently diagnos-
ing performance anomalies, as they provide far too much
detail. FPGA-accelerated RTL simulation tools (e.g. [29]) and
FPGA prototypes address the simulation performance bot-
tleneck but offer poor introspection capabilities, especially
at the abstraction level needed for system-level optimization.
In essence, there exists a gap between the detailed hardware
simulators and traces used by hardware architects and the
high-level profiling tools used by systems software develop-
ers. But extracting the last bit of performance out of complete
hardware-software systems requires understanding the in-
teraction of hardware and software across this boundary.
Without useful profiling tools or with noisy data from ex-
isting tools, developers must blindly make decisions about
what to optimize. Mistakes in this process can be especially
costly for small agile development teams.

To bridge this gap and enable agile system-level hardware-
software optimization, we propose and implement FirePerf,
a set of profiling tools designed to integrate with FPGA-
accelerated simulation platforms (e.g. the open-source FireSim
platform [29]), and provide high-performance end-to-end
system-level profiling capabilities without perturbing the
system being analyzed (i.e. out-of-band). To demonstrate
the power of FirePerf, we walk through an extensive case

study that uses FirePerf to systematically identify and im-
plement optimizations that yield an 8x speedup in Ethernet
network performance on a commodity open-source RISC-V
SoC design. Optimizing this stack requires comprehensive
profiling of the operating system, application software, SoC
and NIC microarchitectures and RTL implementations, and
network link and switch characteristics. In addition to dis-
covering and improving several components of this system
in FPGA-accelerated simulation, we deploy one particular
optimization in the Linux kernel on a commercially available
RISC-V SoC. This optimization enables the SoC to saturate
its onboard Gigabit Ethernet link, which it could not do with
the default kernel. Overall, with the FirePerf profiling tools,
a developer building a specialized system can improve not
only the core compute kernel of their application, but also
analyze the end-to-end behavior of the system, including
running complicated software stacks like Linux with com-
plete workloads. This allows developers to ensure that no
new system-level bottlenecks arise during the integration
process that prevent them from achieving an ideal speedup.

2 Background

In this section, we introduce the tools we use to demonstrate
FirePerf as well as the networked RISC-V SoC-based system
that we will optimize using FirePerf in our case study.

2.1 Target System Design: FireChip SoC

In the case study in Section 4, we will use FirePerf to opti-
mize network performance on a simulated networked cluster
of nodes where each simulated node is an instantiation of
the open-source FireChip SoC, the default SoC design in-
cluded with FireSim. The FireChip SoC is derived from the
open-source Rocket Chip generator [6], which is written in
parameterized Chisel RTL [7] and provides infrastructure to
generate Verilog RTL for a complete SoC design, including
RISC-V cores, caches, and a TileLink on-chip interconnect.
Designs produced with the Rocket Chip generator have been
taped out over ten times in academia, and the generator has
been used as the basis for shipping commercial silicon, like
the SiFive HiFive Unleashed [46] and the Kendryte K210
SoC [1]. To this base SoC, FireChip adds a 200 Gbit/s Eth-
ernet NIC and a block device controller, both implemented
in Chisel RTL. The FireChip SoC is also capable of booting
Linux and running full-featured networked applications.

2.2 FireSim

FireSim [2, 29, 30] is an open-source, FPGA-accelerated,
cycle-exact hardware simulation platform that enables auto-
matically modeling RTL designs (including SoCs like FireChip)
on FPGAs at 10s to 100s of MHz. To provide a reproducible,
deterministic, and accurate simulation, FireSim also pro-
vides standard I/O models, such as DRAM [10], disk, UART,
and Ethernet network models. In our case study, we will

f1.4xlarge
CPU
FPGA X2 :
Simulation TOIF\{AS\(/JIVITh
Controllers || cae
FPGA x2
- FAME 1 Rocket Chip 1
gl ?—, z|l Rocket Tiles x2 >0
g. = % 2 -g‘
i ~+ 3 E g
o
8
Other Oth I_” -
Simulation [&B) er IEEI L2S |‘_f
Endpoints ‘-*Pevé [y
v
| DRAM Model |
FPGA-Attached DRAM |

Figure 1. FireSim simulation of a networked 2-node, dual-
core FireChip configuration on one AWS f1.4xlarge in-
stance with two FPGAs, which will form the basis of the
system we will instrument, analyze, and improve.

use FireSim’s network simulation capabilities, which allow
users to harness multiple cloud FPGAs to simulate clus-
ters of SoCs interconnected by Ethernet links and switches,
while maintaining global cycle-accuracy. FireSim also pro-
vides some hardware debugging capabilities, including hard-
ware assertion checking, printf synthesis [31], and auto-
matic Integrated Logic Analyzer (ILA) insertion. However,
these introspection capabilities are generally targeted to-
wards hardware-level waveform-style debugging or func-
tional checks and produce large amounts of output that is
not at a useful abstraction level for system-level profiling of
hardware running complex software stacks.

Figure 1 shows an example FireSim simulation of two
FireChip-based nodes running on two cloud FPGAs on Ama-
zon EC2 F1. We will later instrument this simulation with
FirePerf to use as the baseline for our case study. Because
FireSim exactly simulates the cycle-by-cycle and bit-by-bit
behavior of the transformed RTL designs with realistic I/O
timing and is sufficiently fast to enable running complete soft-
ware stacks (Linux + applications), the performance analyses
and optimizations we make with FirePerf directly translate
to real silicon (that is based on the FireSim-simulated RTL)
as we demonstrate at the end of the case study.

3 FirePerf

FirePerf makes two key contributions to the state-of-the-art
in system-level hardware/software profiling by automati-
cally instrumenting FPGA-accelerated simulations to im-
prove performance analysis at the systems software and hard-
ware counter levels. This section details these two contribu-
tions.

3.1 Software-level Performance Profiling

FirePerf enables software-level performance analysis by col-
lecting cycle-exact instruction commit traces from FPGA
simulations out-of-band (without perturbing the simulated
system) and using these traces to re-construct stack traces to
feed into a framework that produces Flame Graphs [13, 14,
25] (e.g. Figure 2). These cycle-exact flame graphs allow users
to see complete end-to-end Linux kernel (or other software)
behavior on simulated SoCs.

3.1.1 Instruction Commit Log Capture with TraceRV.
As the first step in constructing flame graphs of software
running on a simulated SoC, we implement TraceRV (pro-
nounced “tracer-five”), a FireSim endpoint for extracting
committed instruction traces from the FPGA onto the host
system. Endpoints in FireSim [29] are custom RTL modules
paired with a host-software driver that implement cycle-
accurate models that interface with the top-level I/Os of
the transformed design, like the NIC endpoint shown in Fig-
ure 1. As a FireSim endpoint, TraceRV is able to backpressure
the FPGA simulation when the instruction trace is not be-
ing copied to the host machine quickly enough. In essence,
when the trace transport is backed-up, simulated time stops
advancing and resumes only when earlier trace entries have
been drained from the FPGA, maintaining the cycle-accuracy
of the simulation. This backpressuring mechanism is built
into FireSim, and uses its token-based simulation manage-
ment features.

For the system we improve in the case study, TraceRV
attaches to the standard TracedInstruction top-level port
exposed by Rocket Chip and BOOM [15]. This port pro-
vides several signals that are piped out to the top-level of
the design for post-silicon debugging, including instruction
address, raw instruction bits, privilege level, exception/inter-
rupt status and cause, and a valid signal. In the examples in
this paper, we configure TraceRV to only copy the committed
instruction address trace for each core in the simulated sys-
tem to the host and omit all other trace-port data, though this
data remains visible to the TraceRV endpoint for triggering
purposes. Since trace ports are standard features integrated
in most SoCs, we expect that we will similarly be able to
attach TraceRV to other RISC-V SoCs without any modifica-
tions to the SoCs.

Directly capturing and logging committed instruction
traces has two significant drawbacks. Firstly, with high-speed
FPGA-simulators like FireSim, it is easy to generate hundreds

of gigabytes to terabytes of instruction traces even for small
simulations, which become expensive to store and bottle-
neck simulation rate due to the performance overhead of
transferring traces over PCle and writing the trace to disk.
Furthermore, architects are usually interested in traces for a
particular benchmark run, rather than profiling the entire
simulation run, which frequently involves booting the OS,
running code to prepare data for a benchmark, running the
benchmark, post-processing data, and powering off cleanly.
To address this problem, we provide trigger functionality in
TraceRV, which allows trace logging to begin/end when cer-
tain user-defined external or internal conditions are satisfied.
When trigger conditions are not satisfied, the TraceRV end-
point allows the simulation to advance freely without the per-
formance overhead of copying traces from the FPGA to the
host over PCle, in addition to avoiding writing to disk. These
trigger conditions can be set entirely at runtime (without
re-building FPGA images) and include cycle-count-based trig-
gers for time-based logging control, program-counter-based
triggers, and instruction-value-based triggers. Instruction-
value-based triggers are particularly useful, as some RISC-V
instructions do not have side effects when the write desti-
nation is the x0 register and can essentially be used as hints
to insert triggers at specific points in the target software
with single-instruction overhead. In this particular example
using the RISC-V ISA, the 12-bit immediate field in the addi
instruction can be used to signal 4096 different events to
TraceRV or to scripts that are processing the trace data. By
compiling simple one-line programs which consist of these
instructions, the user can even manually trigger trace record-
ing interactively from within the console of the simulated
system. When instruction addresses are known, program-
counter based triggers can be used to start and stop commit
trace logging without any target-level software overhead.
However, using this requires re-analyzing the object code
after re-compilation.

The other significant drawback with capturing complete
committed instruction traces is that, when initially profiling
a system, instruction-level tracing is usually excessively de-
tailed. Function-level profiling and higher-level visualization
of hotspots is more useful.

3.1.2 On-the-fly Call-stack Reconstruction. To thisend,
the TraceRV host-software driver is capable of ingesting
per-core committed instruction traces from the FPGA and
tracking the functions being called using DWARF debugging
information [20] generated by the compiler for the RISC-V
executable running on the system (e.g., the Linux kernel).
The driver automatically correlates the instruction address
with function names and applies DWAREF callsite information
to construct cycle-exact stack traces of software running on
the system. Functions in the stack trace are annotated with
the cycle at which they are called and later return. Stack trace
construction is done entirely on-the-fly and only function

entry points, returns, and cycle-counts are logged to disk by
the TraceRV host driver, drastically reducing the amount of
data written and improving simulation performance.

3.1.3 Integration with Flame Graph. To visualize this
stack trace data in a way that enables rapid identification of
hotspots, we use the open-source Flame Graph tool [13, 14].
This produces a flame graph, a kind of histogram that shows
the fraction of total time spent in different parts of the stack
trace [25].

An example flame graph generated from FirePerf data is
shown in Figure 2. The x-axis represents the portion of total
runtime spent in a part of the stack trace, while the y-axis
represents the stack depth at that point in time. Entries in the
flame graph are labeled with and sorted by function name
(not time). Given this visualization, time-consuming routines
can easily be identified: they are leaves (top-most horizontal
bars) of the stacks in the flame graph and consume a sig-
nificant proportion of overall runtime, represented by the
width of the horizontal bars. While it cannot be shown in
the format of this work, these flame graphs are interactive
and allow zooming into interesting regions of the data, with
each function entry labelled with a sample count. Tradition-
ally, flame graphs are constructed using samples collected
from software profiling tools like perf. In our case, the in-
struction traces collected with FirePerf allow us to construct
cycle-exact flame graphs; in essence, there is a sample of the
stack trace every cycle.

Putting all of these pieces together, FirePerf can produce
cycle-exact flame graphs for each core in the simulated sys-
tem that explain exactly where software executing on the
core is spending its time. Because of the cycle-exact nature
of the stack-traces available to us, once we identify a hotspot,
we can immediately drill down to construct additional visu-
alizations, like histograms of the number of cycles spent in
individual calls to particular functions, which is not possible
with only sampled data. In our case-study, we will use flame
graphs as well as custom visualizations generated from data
collected with FirePerf instrumentation extensively to under-
stand how software behaves and to identify and implement
various optimizations in our system.

3.2 Hardware Profiling with AutoCounter
Performance Counter Insertion

The second key contribution of FirePerf is AutoCounter,
which enables automatic hardware performance counter
insertion via cover points for productive hardware-level per-
formance profiling. Like commit traces, these counters can
be accessed out-of-band, meaning that reads do not affect
the state or timing of the simulated system—counters can be
added easily and read as often as necessary.

Cover points are existing boolean signals found through-
out the Rocket Chip SoC generator RTL that mark particular

hardware conditions intended to be of interest for a verifica-
tion flow. Unlike assertions, which only trigger when some-
thing has gone wrong in the design, cover points are used
to mark signals that may be high under normal operation
like cache hits/misses, coherency protocol events, and decou-
pled interface handshakes. By default, Rocket Chip does not
mandate an implementation of cover points; the particular
flow being used on the RTL can decide what to “plug-in”
behind a cover point. Unlike printfs, which print by default
in most simulators, cover points can be inserted into designs
without affecting other users of the same RTL codebase. This
is especially important in open-source projects such as the
Rocket Chip ecosystem. The cover API can also be expanded
to allow the designer to provide more context for particular
covers.

Performance counters are a common profiling tool em-
bedded in designs for post-silicon performance introspec-
tion [37]. However, since these counters are included as part
of the final silicon design’s area, power, and other budgets,
they are generally limited in number and frequently shared
amongst many events, complicating the process of extract-
ing meaningful information from them [34]. Pre-silicon use
of performance counters in FPGA-simulation is not limited
in this way. These counters do not need to be present in
the final production silicon, and an unlimited number of
counters can be read every cycle without perturbing the re-
sults of the simulated system (with the only trade-off being
reduced simulation speed). To enable adding out-of-band
performance counters to a design in an agile manner, Auto-
Counter interprets signals fed to cover points as events of
interest to which performance counters are automatically at-
tached. AutoCounter also supports an extended cover point
API that allows the user to supply multiple signals as well as
a function that injects logic to decide when to increment the
performance counter based on some combination of those
signals. This allows for a clean separation between the design
and instrumentation logic.

AutoCounter’s automatic insertion of the performance
counters is implemented by performing a transform over the
FIRRTL [26] intermediate representation of the target SoC
design. With a supplied configuration that indicates which
cover points the user wishes to convert into performance
counters, FirePerf finds the desired covered signals in the
intermediate representation of the design and generates 64-
bit counters that are incremented by the covered signals. The
counters are then automatically wired to simulation host
memory mapped registers or annotated with synthesizable
printf statements [31] that export the value of the counters,
the simulation execution cycle, and the counter label to the
simulation host.

By reducing the process of instrumenting signals to pass-
ing them to a function and automating the rest of the plumb-
ing necessary to pipe them off of the FPGA cycle-exactly,
FirePerf reduces the potential for time-consuming mistakes

that can happen when manually wiring performance coun-
ters. Unlike cases where mistakes manifest as functional
incorrectness, improperly wired performance counters can
simply give confusingly erroneous results, hampering the
profiling process and worsening design iteration time. This
is compounded by the fact that marking new counters to
profile does require re-generating an FPGA bitstream.

AutoCounter provides users with additional control over
simulation performance and visibility. The rate at which
counter values are read and exported by the simulation host
can be configured during simulation runtime. As exporting
counter values requires communication between the FPGA
and the simulation host, this runtime configuration enables
users to trade off frequency of counter readings for simula-
tion performance.

Also at runtime, collection of the performance counter
data can be enabled and disabled outright by the same trigger
functionality found in TraceRV. This enables designs to over-
come the latency of re-building FPGA bitstreams to switch
between different counters—many counters can be wired
up at synthesis time, restricted only by FPGA routing re-
sources, and can be enabled/disabled at runtime. Altogether,
triggers eliminate extraneous data and enable higher sim-
ulation speeds during less relevant parts of the simulation,
while enabling detailed collection during regions of interest
in the simulation.

Unlike conventional debugging techniques used in FPGA
prototypes, such as Integrated Logic Analyzers (ILAs), the
FirePerf AutoCounter flow enables a more holistic view of ex-
ecution, as opposed to the limited capture window provided
by ILAs. At the same time, the FirePerf-injected counters
still enable flexibility, determinism, and reproducibility (un-
like post-silicon counters), while maintaining the fidelity of
cycle-exact simulation (unlike software architectural simula-
tors).

4 Using FirePerf to Optimize Linux
Network Performance

In this case study, we demonstrate the capabilities of FirePerf
by using the FirePerf tools to systematically identify opti-
mization opportunities in the Linux networking stack with
a two-node cluster of Ethernet-connected RISC-V SoCs. We
walk through, step-by-step, how an architect would harness
the FirePerf flow to make decisions about when and what to
optimize to produce a specialized hardware/software system
for high-bandwidth networking. By using FirePerf, we at-
tain an 8X improvement in maximum achievable bandwidth
on a standard network saturation benchmark in compari-
son to the off-the-shelf open-source version of the SoC and
software stack.

4.1 Baseline Hardware/Simulator Configuration

Cluster Configuration. We run network bandwidth satu-
ration benchmarks on one and two-node clusters simulated
in FireSim. For two-node clusters, the Ethernet network out-
side of the nodes is modeled with FireSim’s built-in network
model. The two nodes connect to the same two-port Ethernet
switch model using simulated links with 200 Gbit/s band-
width and 2 ps latency. For reference, our two-node cluster
simulations with FirePerf flame graph instrumentation (for
two cores on each SoC) and 15 AutoCounter-inserted per-
formance counters run at ~ 8 — 10 MHz, in contrast to the
equivalent FireSim simulation without FirePerf which runs
at =~ 40 MHz.

SoC Nodes. Our baseline SoC nodes are instantiations
of the open-source FireChip SoC, described earlier in Sec-
tion 2.1. We instantiate two configurations of FireChip, one
with a single in-order Rocket core and one with two in-order
Rocket cores. Both configurations have private 16 KiB L1 I/D
caches, a 1 MiB shared L2 cache, 16 GiB of DDR3 DRAM [10],
and a 200 Gbit/s Ethernet NIC. Each design boots Linux and
is capable of running complete Linux-based applications.

4.2 The iperf3 benchmark

Our driving benchmark is iperf3 [22], a standard Linux-
based benchmark for measuring the maximum achievable
network bandwidth on IP networks. The iperf3 benchmark
is usually run with one iperf3 process running as a server
on one node and another iperf3 process running as a client
on a separate node, with the machines connected by some
form of IP networking. In the default configuration, which
we use throughout this paper, the iperf3 client is aiming to
drive as much network traffic over TCP to the iperf3 server
as possible through one connection.

In our experiments, we configure iperf3 in two modes.
In the networked mode, the iperf3 server and client pro-
cesses are running on separate simulated nodes (using the
previously described two-node FireSim simulation). This
measures performance across the Linux networking stack,
the Linux NIC driver, the NIC hardware, and the simulated
network (links and switches). On the other hand, in the loop-
back mode, both the iperf3 server and client processes are
running on the same simulated node. This allows us to iso-
late software-only overheads in Linux that do not involve
the NIC hardware implementation, the network simulation
(links/switches), or the NIC’s Linux driver. In essence, the
loopback mode allows us to determine an approximate upper
bound network performance achievable on the SoC (since
only software overhead is involved in loopback), indepen-
dent of the particular NIC hardware used.

For all experiments, a flame graph and stack trace are gen-
erated for each core in each simulated system. For example,
a networked iperf3 run on dual-core nodes will produce

Linux 4.15-rc6 Linux 5.3-rc4

Single Dual Single Dual
(Gbit/s) (Gbit/s) (Gbit/s) (Gbit/s)

Networked 1.58 1.74 1.67 2.12
Loopback 1.54 2.95 4.80 3.01

Table 1. iperf3 maximum achieved bandwidth for the base-
line open-source hardware/software configuration on two
versions of Linux.

2 cores X 2 nodes = four flame graphs. AutoCounter perfor-
mance counter traces are also produced in a similar manner,
but are produced per simulated node. For both kinds of traces,
only the relevant workload is profiled in the trace—the soft-
ware workload is preceded by a call to a start-trigger bi-
nary and followed by a call to a end-trigger binary, which
issue the special instructions described earlier that allow
starting/stopping tracing from within the simulation.

4.3 Linux 4.15 vs. Linux 5.3

The default Linux kernel version supplied with open-source
FireSim is 4.15, the first upstream release to officially support
RISC-V. At time of writing, this is also the default kernel ver-
sion that ships with the SiFive HiFive Unleashed board [46],
which we will later use to demonstrate one of the improve-
ments we discover with FirePerf on real silicon. As a precur-
sor to the experimentation in this case study, we first upgrade
to 5.3-rc4, the latest mainline branch at time of writing. Un-
like 4.15, 5.3 also contains the necessary architecture-specific
support for running the commonly-used perf software pro-
filing tool on RISC-V systems. As we will see in the following
baseline comparison, 5.3 also provides a slight (albeit not
sufficient) improvement in maximum achievable bandwidth
in iperf3.

4.4 Baseline Performance Results

Prior work [29] has demonstrated that the hardware sys-
tem we are aiming to optimize is capable of driving in ex-
cess of 150 Gbit/sec when running a bare-metal bandwidth-
saturation benchmark. However, this same work identifies
that the system is only capable of driving 1.4 Gbit/sec over
TCP on Linux. We begin our case study by validating this
baseline result when running iperf3 in simulation and ana-
lyzing the information we collect with FirePerf.

4.4.1 iperf3 results on baseline hardware/software
configurations. Table 1 outlines the sustained bandwidth
achieved when running iperf3 in networked and loopback
modes on the two off-the-shelf hardware configurations, sin-
gle and dual core systems, without any of the optimizations
we will identify with FirePerf in this case study. Firstly, the
results demonstrate that bumping the kernel version was

Baseline Design, Single Core, Loopback iperf3, Linux 5.3 Flame Graph

[Eesmicopyforuser T

copyout Camcopy_tower
(EECHRONETN copyin H
[simple_copy_to_iter | [Zcopy_from_jiter_full T
__skb_datagram_iter tep_sendmsg_locked
SRBRCOP S (<»_scndmse
(fepErecvmsE] finet_sendmsg]
(inetirecymse I sock_sendmsg
sodkreadier sockwrite_iter

__vfs_ __vfs_write
Mread o vb_wite

| RSSLRER ksys_wiite

|| —se_sys_read __se_sys_write

| check_syscall_nr

Stack Depth

Proportion of Total Benchmark Cycles

| -

| il

I]

| []]

| [[]

|

]

[]

|
|| |
t | ESTICCHYNONSC | — |
| EoPViT— -]|
[SKBECOpySdAEEFAMEEIINN] _copy_from_iter_full 1=
ftep_recvmsg |tcp_sendmsg_locked ftep. |

Figure 2. Flame graph® for Baseline, Single Core, Loopback on Linux 5.3. This flame graph shows that as a percentage of
overall time spent in the workload, the __asm_copy_{to, from}_user function in Linux dominates runtime. Furthermore,
the userspace iperf3 code consumes a negligible amount of time (it is one of the small, unlabeled bars on the bottom left).
This flame graph suggests that even prior to interacting with the NIC driver and NIC hardware, there is a significant software

bottleneck hampering network performance.

worthwhile—we see performance improvements or similar
performance across-the-board. Consequently, going forward
we will only analyze the system running Linux 5.3.

Examining the baseline results for Linux 5.3, the best-case
performance in the networked case is observed on the dual-
core configuration, giving 2.12 Gbit/s, approximately two
orders-of-magnitude lower than the hardware is capable
of driving when running the bare-metal test. The loopback
test, which isolates software overhead and does not involve
the NIC hardware or NIC driver, does not fare much better,
achieving 4.80 Gbit/sec in the single-core case. The fact that
single-core performs better than dual-core is startling. We
will find that in this case, the system happened to avoid a
particular performance pathology that we will explore in
Section 4.5. Once this pathology is repaired, we will find
that dual-core loopback performs better than single-core
loopback, as expected. Overall, this loopback result means
that in its current state, regardless of NIC hardware/driver
implementations, this system is only capable of achieving
around 4.80 Gbit/s of network bandwidth. Flame graphs for
two of these runs are shown in Figures 2 and 3—we will
explore these in-depth in later sections.

4.4.2 Isthe NIC implementation a bottleneck? Given
that the bare-metal bandwidth test can drive 150 Gbit/s onto
the network, we suspect that the NIC hardware is not the pri-
mary bottleneck. To validate this and provide a framework

1Reading flame graphs: The x-axis represents the portion of total runtime
spent in a part of the stack trace, while the y-axis represents the stack
depth at that point in time. Entries in the flame graph are labeled with and
sorted by function name (not time). In these flame graphs, colors are not
particularly meaningful—they simply help visually distinguish bars.

for understanding the performance of the NIC hardware for
later use, we instrument several potential bottlenecks in the
NIC design. Figure 4 identifies key parts of the NIC microar-
chitecture. To understand NIC behavior, we add counters
with AutoCounter to track several of these potential bottle-
necks:

e Send request/send completion queue entry counts

e Receive request/receive completion queue entry counts
e Reader memory transactions in-flight

e Writer memory transactions in-flight

e Availability of receive frames and send buffer fullness
e Hardware packet drops

The request and completion queues in the controller are
the principal way the device driver interacts with the NIC. To
initiate the sending or receipt of a packet, the driver writes a
request to the send or recv request queues. When a packet
has been sent or received, a completion entry is placed on the
completion queue and an interrupt is sent to the CPU. The
reader module reads packet data from memory in response
to send requests. It stores the data into the send buffer, from
which the data is then forwarded to the Ethernet network.
Packets coming from the Ethernet network are first stored
in the receive buffer. The writer module pulls data from the
receive buffer in response to receive requests and writes
the data to memory. If the receive buffer is full when a new
packet arrives, the new packet will be dropped.

Figure 5 shows that, at this point, the NIC hardware is not
a bottleneck when running iperf3. The histogram shows
the number of cycles spent at different levels of send queue
occupancy. We clearly see that the NIC is hampered by soft-
ware not supplying packets quickly enough, as the queue is

Baseline Design, Single Core, Networked (Server) iperf3, Linux 5.3 Flame Graph

do..
fes.
d. N
_copy..
- simpl.
= _skb..
53 skbe.
a fepr.]
< e
8 sock_r.. |
& newsy. NS
VI process b.
|vfs_read | net_rx_ac.
Ksys_r.] _do_soft.
.. [Jirq_exit

Proportion of Total Benchmark Cycles

Figure 3. Flame graph for Baseline, Single Core, Networked on Linux 5.3 (server-side). This flame graph shows that while not
as severe as the loopback case, in the networked case __asm_copy_{to, from}_user still dominates runtime as a percentage
of overall time spent during the workload. Due to space constraints, we elide the client-side flame graph. It has greater CPU
idle time, but __asm_copy_{to, from}_user similarly plays a significant role on the client.

%ﬁ' alloc| Send | To Ethernet
cts |

Buffer |~ Network
Controller JJ"tI-a tl-d[[data
|

send req — [[H ’

send comp [[[+

SoC Memory Interface

recv req *»I[}—L
tl-a| tl-d .
recv comp - [[data |Receive| From Ethernet
L @ Buffer | Network

Writer
Figure 4. FireChip NIC microarchitecture.

, le7 Send Request Queue Occupancy Histogram

Hl Baseline

Optimized,

No Interrupt Mitigation
Optimized,

With Interrupt Mitigation

()]
L

Cycles

N
L

=

28 32 36

0- .‘.l.‘.l.‘.l.‘.l.‘.l. .|. .|. .|. .|.‘.|.‘.|. .|.
1 4 8 12 16 20 24

Queue Occupancy

Figure 5. NIC send request queue occupancy analysis col-
lected via AutoCounter performance counter instrumenta-
tion.

empty most of the time. Similarly low utilizations are visible
in the other injected performance counters in the NIC.

With this understanding, the following sections will first
aim to optimize parts of the software stack before we return
to analyzing the hardware. As we optimize the software
stack, we will return to Figure 5 to demonstrate that our
software improvements are improving hardware utilization
of the NIC.

4.5 Optimizing __asm_copy_{to, from}_user in the
Linux Kernel

As shown in Table 1, even our best-case result (loopback
mode) falls orders-of-magnitude short of what the NIC hard-
ware is capable of driving, indicating that Linux-level soft-
ware overhead is a significant limiting factor. Before experi-
menting with the NIC hardware, in this section we identify
and improve a performance pathology in a critical assembly
sequence in the Linux/RISC-V kernel port that significantly
improves loopback performance and to a lesser extent per-
formance in the networked case.

The flame graphs in Figures 2 and 3 show that one par-
ticular function, __asm_copy_to_user?, dominates the time
spent by the processor in the loopback case and is nearly half
the time spent by the processor in the networked case. This is
the assembly sequence® in the Linux kernel that implements
user-space to kernel-space memory copies and vice-versa.

2Collectively denoted throughout this work as __asm_copy_{to, from}
_user, since __asm_copy_to_user and __asm_copy_from_user are equiv-
alent symbols that refer to the same assembly sequence.
3https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
arch/riscv/lib/uaccess.S?h=v5.3-rc4

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/riscv/lib/uaccess.S?h=v5.3-rc4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/riscv/lib/uaccess.S?h=v5.3-rc4

Single

Loopback (Gbgit /s)
Baseline 4.80
Baseline straced 5.43
Software-optimized

__asm_copy_{to,from}_user 6.36
Hwacha-accelerated

__asm_copy_{to,from}_user 16.1

Table 2. iperf3 maximum achieved bandwidth on loop-
back, single-core for various __asm_copy_{to, from}_user
optimizations.

Naturally, if this system is to be optimized, significant im-
provements need to be made within this function.

4.5.1 Software-only optimization of __asm_copy_{to,
from}_user. It turns out there is a key performance flaw
in the code: When the source and destination buffers do
not share the same alignment, the original implementation
resorts to a simple byte-by-byte copy, thus severely under-
utilizing memory bandwidth. We improve __asm_copy_{to,
from}_user by enabling word-oriented copies for the 8-byte-
aligned subset of the destination. Data re-alignment for 64-bit
stores is handled by right-shifting the 64-bit load data and
bitwise-ORing with the left-shifted previous word.

Because this pathology is only triggered when the assem-
bly sequence happens to receive unaligned buffers, we see
wide variation in loopback performance depending on en-
vironmental and timing conditions. In Section 4.6, we will
find that traditional profiling tools that run within the simu-
lated system can significantly perturb the outcome of iperf3
benchmarks, precisely because they impact the proportion
of unaligned vs. aligned buffers passed to the __asm_copy
_{to, from}_user function. The software-optimized row in
Table 2 shows the overall speedup achieved by the software
fix. Because this is a generic software fix to the Linux kernel,
it also improves networking performance on shipping com-
mercial RISC-V silicon, as we will demonstrate in Section 5.

An additional question is whether our new __asm_copy
_{to, from}_user implementation is close to an optimal im-
plementation, i.e., have we exhausted the capabilities of the
hardware with our new software routine? To understand
this, we add AutoCounter instrumentation with fine-grained
triggers inside the Rocket core to collect the following infor-
mation about the new __asm_copy_{to, from}_user imple-
mentation:

e 1.39 bytes are copied per cycle (compared to baseline
of 0.847)

e IPC during copies is 0.636

® 56.1% of dynamic instructions are loads/stores during
copies

Extract upper part of word i

srl %[temp@], %[datal, %[offset]

Load word i+1 from source

1d %[datal, ((i+1)*8)(%[srcl)

Extract lower part of word i+1
sll %[temp1], %[datal, 64-%[offset]
Merge

or %[temp@], %[temp@], %[templ]

Store to destination

sd %[temp@], (i*8)([%dest])

Figure 6. Realignment code for optimized __asm_copy_{to,
from}_user implementation.

e The blocking L1D cache is 51.1% utilized during copies
e The L1D cache has a 0.905% miss rate during copies

These numbers may not seem outwardly impressive, but
for unaligned copies, it should be noted that L1D bandwidth
is not the fundamental limiting factor with a single-issue
in-order pipeline like Rocket. In the key unaligned block-
oriented copy loop, each 64-bit data word requires five in-
structions to perform realignment, shown in lightly stylized
assembly in Figure 6.

Assuming an ideal IPC of 1, the maximum throughput
is therefore 8/5 = 1.6 bytes per cycle. The actual sustained
performance is 86.9% of this peak, with losses due to the
usual overhead of loop updates, edge case handling, I-cache
and D-cache misses, and branch mispredicts. Even factoring
in an additional 13.1% speed-up to hit peak, the pure soft-
ware implementation falls significantly short of the Hwacha-
accelerated version we introduce in the following section.

4.5.2 Hardware acceleration of __asm_copy_{to, from}
_user. Even with this software fix, the overall potential net-
work performance is still capped at 6.36 Gbit/s. Since the

software fix is a relatively compact assembly sequence that

we could analyze with instrumentation in the previous sec-
tion, we know that we are approaching the best-case imple-
mentation for the in-order Rocket cores on which our system

is based. To achieve further improvement, we augment the

system with the open-source Hwacha vector accelerator [33],

a co-processor that attaches to Rocket over the RoCC inter-
face. Because we are able to capture system-level profiling

information pre-silicon, we can easily demonstrate that we

have maximized the capabilities of the baseline design and

thus can trivially justify the inclusion of this accelerator in

our specialized system for network processing, assuming we

see further speedups from its inclusion.

We write a vectorized implementation of __asm_copy
_{to, from}_user that dispatches the copying to Hwacha,
which can achieve a much higher memory bandwidth utiliza-
tion than the in-order Rocket cores. Table 3 shows the signif-
icant speedups achieved with the integration of Hwacha into

Baseline Hwacha-accel.

Single Dual Single Dual
(Gbit/s) (Gbit/s) (Gbit/s) (Gbit/s)

Networked 1.67 2.12 2.82 3.21
Loopback 4.80 3.01 16.1 24.9

Table 3. iperf3 maximum achieved bandwidth for the
Hwacha-accelerated system, as compared to baseline. The
Single and Dual columns refer to the number of cores

the design, across the two hardware configurations and two
iperf3 modes. While prior work has pointed out the need
for systems-level accelerators for memcpy () [28], FirePerf
allows us to systematically identify and justify when such
improvements are necessary, pre-silicon. As we move for-
ward to continue optimizing network performance on our
system, we assume from this point forward that we are run-
ning on a system with hardware-accelerated __asm_copy
_{to, from}_user calls with Hwacha.

4.6 Comparing with in-band tracing: Tracing with
strace

As a brief aside, let us explore the challenges involved in solv-
ing the __asm_copy_{to, from}_user performance pathol-
ogy discussed in the previous section using an existing pro-
filing/tracing tool. As a post-silicon alternative to FirePerf,
one common tool used to understand application behavior is
strace, a Linux utility that allows developers to inspect sys-
tem calls made by a user program, such as reads and writes
to a network socket.

When running iperf3 within strace on our system with-
out the optimizations introduced in the previous section,
we noticed a startling result: iperf3 performance improved
under strace, contrasting with the common wisdom that
profiling tools introduce overheads that worsen the perfor-
mance of the system being measured. The “Baseline Loop-
back straced” row in Table 2 demonstrates this result. As it
turns out, while running with strace, the buffers passed to
the __asm_copy_{to, from}_user sequence in the course of
running iperf3 happen to be aligned more often, avoiding
the performance pathology we discovered in the previous
section! We confirmed this result both by logging addresses
within the kernel and observing flame graphs with and with-
out strace measuring the iperf3 run. The flame graphs
confirm that __asm_copy_{to, from}_user is able to move
more bytes per cycle in the straced case, suggesting that the
byte-oriented copy is being avoided. Unlike strace, because
FirePerf is an out-of-band tool, there is no such danger of
perturbing the outcome of the system being measured.

4.7 Checksum Offload

Now that __asm_copy_{to, from}_user has been optimized,
there are no further obvious software routines to optimize
in the loopback-only iperf3 runs. Going forward, we will
focus only on the networked runs of iperf3 that involve the
actual NIC hardware. Looking at the updated flame graph for
the Hwacha-accelerated networked iperf3 case in Figure 7,
we find that one new software routine appears to consume
significant cycles—do_csum, which implements checksum-
ming for network protocols in Linux. After implementing
hardware checksum offload in the NIC, we see improved per-
formance in the networked case, as shown in the “+Check-
sum Offload” row of Table 4.

4.8 Interrupt Mitigation

Once do_csum is optimized away, there is no clear hotspot
function visible in the flame graphs. Instead, we again an-
alyze the performance counters for the NIC’s send-request
queue to gauge the impact of our current optimizations on
NIC utilization. The “Optimized, No Interrupt Mitigation”
bars in Figure 5 reflect the queue utilization with Hwacha-
accelerated copies and checksum offload. We can see that
it has improved somewhat from the baseline, implying that
software is doing a better job feeding the NIC, but still re-
mains relatively low:.

We examine the low-level function in the Linux device
driver (icenet_start_xmit) responsible for passing an out-
going packet to the NIC. By directly extracting informa-
tion from the trace itself about the timing and control flow
through icenet_start_xmit, we find that the method by
which the NIC and driver acknowledge request completions
introduces significant overhead. There are almost exactly
twice as many jumps entering the body of icenet_start
_xmit as packets sent and a bimodal distribution of call
lengths centered around 2000 cycles and 8 cycles. Looking at
the detailed trace, the icenet_start_xmit function, which
should be called repeatedly in a tight loop for bulk packet
transmission, is almost always interrupted by the NIC to
trigger buffer reclamation for completed sends. These fre-
quent interrupt requests (IRQs) prevent packets from being
batched effectively.

With this insight, we modify the Linux NIC driver to sup-
port the Linux networking subsystem’s NAPI facility, which
adaptively disables device IRQs and switches to polling dur-
ing high activity. This significantly reduces IRQ load at the
cost of some latency, allowing us to reach the results shown
in row “+Interrupt Mitigation” in Table 4. The “Optimized,
With Interrupt Mitigation” bars in Figure 5 represent NIC
queue occupancy once interrupt mitigation is enabled. We
see a significant increase in queue occupancy which mani-
fests as improved network performance.

Hwacha-accelerated Design, Single Core, Networked (Server) iperf3, Linux 5.3 Flame Graph

[| |
i 8 8 11 \
i o m I [|
i BN b BN | | |
s B OW || o | | | I
o @ 8m || alloc_. | | | [I =
A ol - icenet_rx_isr | | g [y
= 0N B _handle_ir. | | | || | |
S WIC W || hadeige. [| : [| s 1l —cop-
i [| n. | | 'handle_irq_e.. | EElip_rcv | csum_partial_ext 5B ES simp.. |
Z | Wl ||| OSSP _neif_eceive skb_one. | CE LAY ey
W e | | Eenerichundl | CRCGEISCEVESKEIII| kb checksum_complete Bl Bl @ |
U |) GG | PSRN process_backlos ' tep_rov_established wpree.

Proportion of Total Benchmark Cycles

Figure 7. Flame graph for Hwacha-accelerated, Single Core, Networked on Linux 5.3 (server-side). This flame graph shows
that a previously-insignificant software routine consumes a significant number of cycles in the networked case once kernel-
userspace copies are accelerated: do_csum. Due to space constraints, we again elide the client-side flame graph—it has greater
CPU idle time, but do_csum similarly plays a significant role on the client.

Conversely, it would be difficult to observe this phenom-
enon with the standard perf tool, whose sampling mech-
anism (being based on supervisor timer interrupts) lacks
any visibility into critical regions. In particular, “top-half”
IRQ handlers, which run with interrupts globally disabled,
would be completely absent from the perf capture. Mitigat-
ing this deficiency requires repurposing platform-specific
non-maskable interrupts (NMIs). However, these are not
supported generically in the perf framework and are not
enabled by all architectures.* Since FirePerf is able to pre-
cisely record all executed instructions out-of-band, the true
IRQ overhead becomes obvious.

A curious result is the overall lack of improvement on the
single-core system. We instrument the FireSim switch model
to dump all Ethernet traffic to a pcap file. Analysis of the TCP
flow and kernel SNMP counters indicate a higher transfer
rate from the iperf3 client, but the server becomes compute-
bound and cannot keep pace. With very rare exceptions,
all TCP segments arrive in order, yet discontinuities in the
Selective Acknowledgement (SACK) sequences suggest that
packets are being internally dropped by the server during
upper protocol processing. This leads to frequent TCP fast
retransmissions (1% of packets) that degrade the effective
bandwidth.

4.9 Jumbo Frames

From the flame graph and performance counters at this point
(not shown), we no longer see obvious places for improve-
ment in the software or hardware. With the understanding
that the bottleneck is the receive path in software, one fur-
ther avenue for improvement is to amortize the overhead

40n RISC-V, this would likely involve extending the Supervisor Binary
Interface (SBI) to expose some functionality of high-privilege M-mode timer
interrupts, a potentially invasive change.

of individual packet processing with a larger payload. By
default, our system uses the standard Ethernet Maximum
Transmission Unit (MTU) size of 1500, which sets a limit
on the length of an Ethernet frame. However, the loopback
driver, which produces the upper-bound result in excess of
20 Gbit/s from Table 3, defaults to an MTU of 65536. The
Ethernet equivalent is using jumbo frames with a commonly
chosen MTU of 9000. This is a standard optimization for
high-performance networking in datacenter contexts—for
example, Amazon’s networking-focused EC2 instances de-
fault to an MTU of 9001 [3]. Given this insight, we implement
jumbo frame support in our NIC RTL and driver. The final
speedup is shown in row “+Jumbo Frames” of Table 4. In
combination with earlier improvements, the system is now
capable of 17.5 Gbit/s on iperf3.

4.10 Final performance results

Table 4 summarizes the optimizations discovered with FirePerf
throughout the case study and their respective contribu-
tion to the overall speedup. As is generally the case with
system-integration-level improvements, there is no silver-
bullet—the overall speedup consists of several small speedups
compounded together.

To demonstrate that our final results are realistic, we com-
pare against a real datacenter cluster by running iperf3
with identical arguments as our prior simulations on two
c5n.18xlarge instances on Amazon EC2. These instances
are optimized for networking, with AWS Nitro hardware
acceleration [8], and support 100 Gbit/s networking. We also
place the instances in a placement group to ensure that they
are physically co-located. By default, these instances have
jumbo frames (9001 MTU) enabled, and give a result of 9.42
Gbit/s on iperf3. Reducing the MTU to the standard Eth-
ernet MTU (1500), we see a result of 8.61 Gbit/s. Returning

Single Dual

Core Core

(Gbit/s) (Gbit/s)
Baseline 1.67 2.12
+Hwacha-accel.

__asm_copy_{to,from}_user 2.82 3.21
+Checksum Offload 4.86 4.24
+Interrupt Mitigation 3.67 6.73
+Jumbo Frames 12.8 17.5

Table 4. Final iperf3 maximum achieved bandwidth results
for each optimization. Features are cumulative (i.e. “+Inter-
rupt Mitigation” also includes “+Checksum Offload”).

Baseline Optimized
HiFive Role, __asm_copy __asm_copy
MTU _{to,from} _{to,from} Speed-up
_user _user
Server, 1500 572 Mbit/s 935 Mbit/s 1.63
Server, 3000 553 Mbit/s 771 Mbit/s 1.39
Client, 1500 719 Mbit/s 739 Mbit/s 1.03
Client, 3000 483 Mbit/s 829 Mbit/s 1.72

Table 5. iperf3 performance gain on commercial RISC-V
silicon by deploying __asm_copy_{to, from}_user fix dis-
covered with FirePerf.

to our simulated cluster, when we configure our simulated
nodes to have a similar end-to-end network latency as the
two nodes on EC2, we obtain results of 17.6 Gbit/s and 6.6
Gbit/s for jumbo frames and standard MTU, respectively.
Naturally, the EC2 instances have to contend with a less
controlled environment than our simulated nodes. However,
these results show that our achieved bandwidth is reasonable
for a single network flow between two datacenter nodes.

5 Applying Findings to Commercial Chips

The software-only optimization in the Linux kernel __asm_copy

_{to, from}_user function that we developed in the case
study applies to RISC-V systems in general, not only the
FireChip SoC. To demonstrate the impact of this improve-
ment on real silicon, we apply our patch to the __asm_copy
_{to, from}_user function to the Linux kernel for the SiFive
HiFive Unleashed board, a commercially available RISC-V
platform that includes a Cadence Gigabit Ethernet MAC. We
then connect the HiFive Unleashed board directly to an x86
host with an Intel Gigabit NIC and run iperf3 in the same
networked mode as our case study. Table 5 shows the result
of this benchmark, before and after software __asm_copy
_{to, from}_user optimization. We alternate between the
HiFive and x86 host being client/server and vice-versa, as

well as trying a large MTU. We see improvements in all cases,
and in the “Server, 1500 MTU” case, the HiFive is now able
to saturate its link.

6 Related Work

Prior work has demonstrated the use of various profiling
techniques to analyze system-level performance bottlenecks,
including using pre-silicon abstract software simulation, as
well as post-silicon software-level profiling and hardware
tracing.

Abstract system-level simulators have long been used in
the architecture and design automation communities for per-
formance estimation and analysis [11, 19, 27, 38, 39, 42, 44,
49, 52]. In particular, [12] used system simulation to evaluate
the interaction between the OS and a 10 Gbit/s Ethernet NIC.
In contrast, our case study does not rely on timing mod-
els of particular NIC components but rather optimizes a full
SoC/NIC RTL implementation that can be taped-out. FirePerf
targets a different phase of the design flow. FirePerf focuses
on optimizing the design at the stage where it is being imple-
mented as realizable RTL, after the high-level modeling work
has been done. Implementing a design exposes new bottle-
necks, since no high-level simulator can capture all details
with full fidelity. Other prior work focuses on debugging in
the context of co-simulation frameworks [5, 43], rather than
application performance analysis.

Sampling-based methods have also been widely used for
profiling [21, 35, 41, 50]. These are proficient at identifying
large bottlenecks but may not capture more intricate timing
interactions, such as latency introduced by interrupts during
the NIC transmit queuing routine as identified using FirePerf.

At the post-silicon software profiling level, in addition to
coarser-grained tools like strace and perf, other work [32]
has enabled cycle-accurate profiling of the FreeBSD network-
ing stack. This work measures function execution time on
real hardware by using the processor timestamp register,
which is incremented each clock cycle. In order to reduce the
overhead of reading the timestamp register, they profile only
functions that are specified by the user. In contrast, FirePerf’s
out-of-band instrumentation allows for cycle-accurate pro-
filing of the entire software stack with no overhead, and
therefore does not require prior knowledge about details of
the software networking stack. Other work aims to perform
out-of-band profiling post-silicon. [51] uses hardware trac-
ing of network frames and network emulation techniques
to optimize a system for 10 Gbit/s Ethernet, but does not
directly profile software on network endpoints. Additional
case-studies demonstrate the intricate methods required for
system-level post-silicon profiling and performance debug-
ging [36].

Some methods to reduce the overhead of software profiling
and debugging come in the form of architectural support for
software debugging such as IWatcher [53]. The triggers used

in FirePerf use similar concepts to those in IWatcher for tar-
geted observability. Other techniques exploit side channels
for out-of-band profiling [45] at the cost of coarser granular-
ity and non-negligible imprecision.

Prior FPGA-accelerated simulators [16, 17, 40, 47, 48] do
not cycle-exactly simulate tapeout-ready RTL like FireSim,
but rather use handwritten FPGA-specific models of designs.
Additionally, most of these works do not mention profiling
or only suggest it as an area for future exploration, with the
exceptions of Atlas [48], which includes profiling tools partic-
ularly for transactional memory, rather than automated gen-
eral purpose profiling. By adding TraceRV and AutoCounter
within the FireSim environment, FirePerf addresses a com-
mon complaint against FPGA prototypes and simulators,
providing not just high fidelity and simulation performance
(10s of MHz with profiling features), but also high-levels of
introspection.

The results of our case study have also emphasized the
importance of offloading networking stack functions to hard-
ware and support further research into balancing software
and hardware flexibility in SmartNICs [24], as well as spe-
cialization for network-centric scale-out processors [23].

7 Discussion and Future Work

Open-sourcing. The FirePerf tools are open-sourced as part
of FireSim, which is available on GitHub: https://github.
com/firesim/firesim. Documentation that covers how to use
FireSim and FirePerf is available at https://docs.fires.im. The
artifact appendix at the end of this paper also provides in-
structions for reproducing the experiments in this paper.

Extensibility. Several opportunities exist to extend the
FirePerf tools to gain even more introspection capability into
FPGA-simulated designs. For example, we describe FirePerf
in this paper in the context of optimizing a networked RISC-
V SoC. However, because the ISA-specific components of
FirePerf stack unwinding are provided by common libraries
(e.g. libdwarf and libelf), other ISA support is possible.

Furthermore, in this work we were primarily interested
in analyzing OS-level overheads. As shown in the flame
graphs in the case study, time spent in userspace is a small
fraction of our total CPU cycles. Accordingly, the current
stack trace construction code does not distinguish between
different userspace programs, instead consolidating them
into one entry. Handling userspace more effectively will
require extensible plugin support per-OS.

Lastly, while the designs we simulate in the case study sup-
ply top-level trace ports, FIRRTL passes available in FireSim
can also automatically plumb out signals (like committed in-
struction PC) from deep within arbitrary designs, removing
the need to rely on a standard TracedInstruction port in
the SoC design.

Achieving Introspection Parity between FPGA and
Software Simulation. Traditionally, FPGA-simulators and

open-hardware have not been widely adopted in architec-
ture research due to the infrastructural complexity involved
in deploying them. With cloud FPGAs and FireSim, many
of these difficulties are abstracted away from the end-user.
However, prior to FirePerf, there remained a gap between
the level of introspection into design behavior available in
FPGA-simulation of open hardware vs. abstract software
simulators. We believe that open-source tools like FirePerf
can make profiling of RTL designs in FPGA simulation as
productive as software simulation. Furthermore, cover points
can provide a consistent interface for open-source hardware
developers to expose common performance metrics to FPGA
simulation environments for use by architecture researchers,
bridging the gap between open-hardware and architecture
research.

Full-system workloads vs. Microbenchmarks. A key
case for FPGA-accelerated simulation is that FPGA simula-
tors have sufficiently high simulation rates to enable running
real workloads. As our case study has shown, the full range
of emergent behavior of a pre-emptive multitasking operat-
ing system is difficult to re-create in a microbenchmark that
can be run on software simulators. Instead, when feasible,
running FPGA-accelerated simulation with introspection ca-
pabilities is a productive way to rapidly understand system
behavior.

8 Conclusion

In this work we proposed and implemented FirePerf, a set of
profiling tools designed to integrate with FPGA-accelerated
simulation platforms, to provide high-performance end-to-
end system-level profiling capabilities without perturbing
the system being analyzed. We demonstrated FirePerf with a
case study that used FirePerf to systematically identify and
implement optimizations to achieve an 8x speedup in Eth-
ernet network performance on an off-the-shelf open-source
RISC-V SoC design.

Acknowledgments

The information, data, or work presented herein was funded
in part by the Advanced Research Projects Agency-Energy
(ARPA-E), U.S. Department of Energy, under Award Number
DE-AR0000849. Research was also partially funded by RISE
Lab sponsor Amazon Web Services and ADEPT Lab indus-
trial sponsors and affiliates Intel, Apple, Futurewei, Google,
and Seagate. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

References

[1] 2018. Kendryte K210 Announcement. https://cnrv.io/bi-week-rpts/
2018-09-16.

[2] 2019. FireSim: Easy-to-use, Scalable, FPGA-accelerated Cycle-accurate
Hardware Simulation in the Cloud. https://github.com/firesim/firesim.

https://github.com/firesim/firesim
https://github.com/firesim/firesim
https://docs.fires.im
https://cnrv.io/bi-week-rpts/2018-09-16
https://cnrv.io/bi-week-rpts/2018-09-16
https://github.com/firesim/firesim

(3]

(10]

(11]

(12]

(13]
(14]

[15

=

(16]

(17]

2019. Network Maximum Transmission Unit (MTU) for Your EC2
Instance. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
network_mtu.html.

2019. strace: strace is a diagnostic, debugging and instructional
userspace utility for Linux. https://github.com/strace/strace.

B. Agrawal, T. Sherwood, C. Shin, and S. Yoon. 2008. Addressing
the Challenges of Synchronization/Communication and Debugging
Support in Hardware/Software Cosimulation. In 21st International
Conference on VLSI Design (VLSID 2008). 354-361. https://doi.org/10.
1109/VLS1.2008.74

Krste Asanovi¢, Rimas AviZienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John
Hauser, Adam Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim,
John Koenig, Yunsup Lee, Eric Love, Martin Maas, Albert Magyar,
Howard Mao, Miquel Moreto, Albert Ou, David A. Patterson, Brian
Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew Water-
man. 2016. The Rocket Chip Generator. Technical Report UCB/EECS-
2016-17. EECS Department, University of California, Berkeley.

J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZienis, J.
Wawrzynek, and K. Asanovi¢. 2012. Chisel: Constructing hardware
in a Scala embedded language. In DAC Design Automation Conference
2012.1212-1221. https://doi.org/10.1145/2228360.2228584

Jeff Barr. 2018. New Cb5n Instances with 100 Gbps Network-
ing. https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-
gbps-networking/.

Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. 2017. Attack of the Killer Microseconds. Commun. ACM 60,
4 (March 2017), 48-54. https://doi.org/10.1145/3015146

David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, An-
drew Waterman, Jonathan Bachrach, and Krste Asanovi¢. 2019. FASED:
FPGA-Accelerated Simulation and Evaluation of DRAM. In The 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays (FPGA’19) (Seaside, CA, USA) (FPGA °19). ACM, New York, NY,
USA, 10. https://doi.org/10.1145/3289602.3293894

N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt. 2006. The M5 Simulator: Modeling Networked Systems.
IEEE Micro 26, 4 (July 2006), 52—60. https://doi.org/10.1109/MM.2006.
82

N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L. Schultz,
and S. K. Reinhardt. 2005. Performance analysis of system over-
heads in TCP/IP workloads. In 14th International Conference on Par-
allel Architectures and Compilation Techniques (PACT’05). 218-228.
https://doi.org/10.1109/PACT.2005.35

Brendan Gregg. 2019. Flame Graphs. http://www.brendangregg.com/
flamegraphs.html.

Brendan Gregg. 2019. FlameGraph: Stack trace visualizer. https:
//github.com/brendangregg/FlameGraph.

Christopher Celio, David A. Patterson, and Krste Asanovié¢. 2015.
The Berkeley Out-of-Order Machine (BOOM): An Industry-Competitive,
Synthesizable, Parameterized RISC-V Processor. Technical Report
UCB/EECS-2015-167. EECS Department, University of California,
Berkeley.

Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William
Reinhart, Darrel Eric Johnson, Jebediah Keefe, and Hari Angepat.
2007. FPGA-Accelerated Simulation Technologies (FAST): Fast, Full-
System, Cycle-Accurate Simulators. In Proceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO 40). IEEE Computer Society, Washington, DC, USA, 249-261.
https://doi.org/10.1109/MICRO.2007.36

Eric S. Chung, Michael K. Papamichael, Eriko Nurvitadhi, James C.
Hoe, Ken Mai, and Babak Falsafi. 2009. ProtoFlex: Towards Scalable,
Full-System Multiprocessor Simulations Using FPGAs. ACM Trans.
Reconfigurable Technol. Syst. 2, 2, Article 15 (June 2009), 32 pages.
https://doi.org/10.1145/1534916.1534925

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Arnaldo Carvalho De Melo. 2010. The New Linux perf Tools. In Slides
from Linux Kongress, Vol. 18.

S. De Pestel, S. Van den Steen, S. Akram, and L. Eeckhout. 2019. RPPM:
Rapid Performance Prediction of Multithreaded Workloads on Mul-
ticore Processors. In 2019 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). 257-267. https:
//doi.org/10.1109/ISPASS.2019.00038

DWARF Debugging Information Format Committee. 2017. DWARF
Debugging Information Format Version 5. Standard. http://www.
dwarfstd.org/doc/DWARF5.pdf

Lieven Eeckhout. 2010. Computer Architecture Performance Eval-
uation Methods. Synthesis Lectures on Computer Architecture 5, 1
(2010), 1-145. https://doi.org/10.2200/S00273ED1V01Y201006CACO010
arXiv:https://doi.org/10.2200/S00273ED1V01Y201006 CAC010
ESnet/LBNL. 2019. iPerf - The ultimate speed test tool for TCP, UDP
and SCTP. https://iperf.fr/.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. 2014. A Case
for Specialized Processors for Scale-Out Workloads. IEEE Micro 34, 3
(May 2014), 31-42. https://doi.org/10.1109/MM.2014.41

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18). USENIX Association, Renton, WA, 51-66. https:
//www.usenix.org/conference/nsdi18/presentation/firestone
Brendan Gregg. 2016. The Flame Graph. Commun. ACM 59, 6 (May
2016), 48-57. https://doi.org/10.1145/2909476

A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach. 2017. Reusabil-
ity is FIRRTL ground: Hardware construction languages, compiler
frameworks, and transformations. In 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). 209-216. https:
//doi.org/10.1109/ICCAD.2017.8203780

M. Jahre and L. Eeckhout. 2018. GDP: Using Dataflow Properties to
Accurately Estimate Interference-Free Performance at Runtime. In
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 296-309. https://doi.org/10.1109/HPCA.2018.
00034

Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-
filing a Warehouse-scale Computer. In Proceedings of the 42nd An-
nual International Symposium on Computer Architecture (Portland,
Oregon) (ISCA ’15). ACM, New York, NY, USA, 158-169. https:
//doi.org/10.1145/2749469.2750392

Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,
Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin
Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic,
Randy Katz, Jonathan Bachrach, and Krste Asanovi¢. 2018. FireSim:
FPGA-accelerated Cycle-exact Scale-out System Simulation in the Pub-
lic Cloud. In Proceedings of the 45th Annual International Symposium on
Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE Press,
Piscataway, NJ, USA, 29-42. https://doi.org/10.1109/ISCA.2018.00014
Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,
Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin
Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic,
Randy Katz, Jonathan Bachrach, and Krste Asanovi¢. 2019. FireSim:
FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html
https://github.com/strace/strace
https://doi.org/10.1109/VLSI.2008.74
https://doi.org/10.1109/VLSI.2008.74
https://doi.org/10.1145/2228360.2228584
https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-networking/
https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-networking/
https://doi.org/10.1145/3015146
https://doi.org/10.1145/3289602.3293894
https://doi.org/10.1109/MM.2006.82
https://doi.org/10.1109/MM.2006.82
https://doi.org/10.1109/PACT.2005.35
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html
https://github.com/brendangregg/FlameGraph
https://github.com/brendangregg/FlameGraph
https://doi.org/10.1109/MICRO.2007.36
https://doi.org/10.1145/1534916.1534925
https://doi.org/10.1109/ISPASS.2019.00038
https://doi.org/10.1109/ISPASS.2019.00038
http://www.dwarfstd.org/doc/DWARF5.pdf
http://www.dwarfstd.org/doc/DWARF5.pdf
https://doi.org/10.2200/S00273ED1V01Y201006CAC010
http://arxiv.org/abs/https://doi.org/10.2200/S00273ED1V01Y201006CAC010
https://iperf.fr/
https://doi.org/10.1109/MM.2014.41
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1145/2909476
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/HPCA.2018.00034
https://doi.org/10.1109/HPCA.2018.00034
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1109/ISCA.2018.00014

(31]

(34]

(35

—

(36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

Public Cloud. IEEE Micro 39, 3 (May 2019), 56-65. https://doi.org/10.
1109/MM.2019.2910175

D. Kim, C. Celio, S. Karandikar, D. Biancolin, J. Bachrach, and K.
Asanovi¢. 2018. DESSERT: Debugging RTL Effectively with State
Snapshotting for Error Replays across Trillions of Cycles. In 2018 28th
International Conference on Field Programmable Logic and Applications
(FPL). 76-764. https://doi.org/10.1109/FPL.2018.00021

Hyong-youb Kim and Scott Rixner. 2005. Performance characterization
of the FreeBSD network stack. Technical Report.

Yunsup Lee, Colin Schmidt, Albert Ou, Andrew Waterman, and Krste
Asanovié. 2015. The Hwacha Vector-Fetch Architecture Manual, Ver-
sion 3.8.1. Technical Report UCB/EECS-2015-262. EECS Department,
University of California, Berkeley.

Y. Lv, B. Sun, Q. Luo, J. Wang, Z. Yu, and X. Qian. 2018. CounterMiner:
Mining Big Performance Data from Hardware Counters. In 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). 613-626. https://doi.org/10.1109/MICR0O.2018.00056

Margaret Martonosi, Anoop Gupta, and Thomas Anderson. 1993. Ef-
fectiveness of Trace Sampling for Performance Debugging Tools.
In Proceedings of the 1993 ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems (Santa Clara, Califor-
nia, USA) (SIGMETRICS ’93). ACM, New York, NY, USA, 248-259.
https://doi.org/10.1145/166955.167023

John D. McCalpin. 2018. HPL and DGEMM Performance Variability on
the Xeon Platinum 8160 Processor. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis (Dallas, Texas) (SC °18). IEEE Press, Piscataway, NJ, USA,
Article 18, 13 pages. https://doi.org/10.1109/SC.2018.00021

Tipp Moseley, Neil Vachharajani, and William Jalby. 2011. Hardware
Performance Monitoring for the Rest of Us: A Position and Survey.
In 8th Network and Parallel Computing (NPC) (Network and Parallel
Computing), Erik Altman and Weisong Shi (Eds.), Vol. LNCS-6985.
Springer, Changsha, China, 293-312. https://doi.org/10.1007/978-3-
642-24403-2_23 Part 8: Session 8: Microarchitecture.

L Moussa, T. Grellier, and G. Nguyen. 2003. Exploring SW performance
using SoC transaction-level modeling. In 2003 Design, Automation
and Test in Europe Conference and Exhibition. 120-125 suppl. https:
//doi.org/10.1109/DATE.2003.1186682

U. Y. Ogras and R. Marculescu. 2007. Analytical Router Modeling for
Networks-on-Chip Performance Analysis. In 2007 Design, Automation
Test in Europe Conference Exhibition. 1-6. https://doi.org/10.1109/
DATE.2007.364440

M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer. 2011. HAsim:
FPGA-based high-detail multicore simulation using time-division mul-
tiplexing. In 2011 IEEE 17th International Symposium on High Perfor-
mance Computer Architecture. 406-417. https://doi.org/10.1109/HPCA.
2011.5749747

Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy
Sherwood, and Brad Calder. 2003. Using SimPoint for Accurate
and Efficient Simulation. In Proceedings of the 2003 ACM SIGMET-
RICS International Conference on Measurement and Modeling of Com-
puter Systems (San Diego, CA, USA) (SIGMETRICS ’03). Association
for Computing Machinery, New York, NY, USA, 318-319. https:
//doi.org/10.1145/781027.781076

Kishore Punniyamurthy, Behzad Boroujerdian, and Andreas Ger-
stlauer. 2017. GATSim: Abstract Timing Simulation of GPUs. In
Proceedings of the Conference on Design, Automation & Test in Eu-
rope (Lausanne, Switzerland) (DATE ’17). European Design and Au-
tomation Association, 3001 Leuven, Belgium, Belgium, 43-48. http:
//dl.acm.org/citation.cfm?id=3130379.3130390

J. A. Rowson. 1994. Hardware/Software Co-Simulation. In 31st Design
Automation Conference. 439-440. https://doi.org/10.1109/DAC.1994.
204143

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Jurgen Schnerr, Oliver Bringmann, Alexander Viehl, and Wolfgang
Rosenstiel. 2008. High-performance Timing Simulation of Embedded
Software. In Proceedings of the 45th Annual Design Automation Con-
ference (Anaheim, California) (DAC °08). ACM, New York, NY, USA,
290-295. https://doi.org/10.1145/1391469.1391543

N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic. 2016. Spectral
profiling: Observer-effect-free profiling by monitoring EM emanations.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 1-11. https://doi.org/10.1109/MICRO.2016.7783762
SiFive. 2018. SiFive HiFive Unleashed Getting Started Guide.
https://sifive.cdn.prismic.io/sifive/fa3a584a-a02f-4fda-b758-
a2def05f49f9_hifive-unleashed-getting-started-guide-v1p1.pdf.
Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry
Cook, David Patterson, and Krste Asanovi¢. 2010. RAMP Gold: An
FPGA-based Architecture Simulator for Multiprocessors. In Proceed-
ings of the 47th Design Automation Conference (Anaheim, California)
(DAC ’10). ACM, New York, NY, USA, 463-468. https://doi.org/10.
1145/1837274.1837390

Sewook Wee, Jared Casper, Njuguna Njoroge, Yuriy Tesylar, Daxia
Ge, Christos Kozyrakis, and Kunle Olukotun. 2007. A Practical FPGA-
based Framework for Novel CMP Research. In Proceedings of the 2007
ACM/SIGDA 15th International Symposium on Field Programmable Gate
Arrays (Monterey, California, USA) (FPGA '07). ACM, New York, NY,
USA, 116-125. https://doi.org/10.1145/1216919.1216936

G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and D. Chiou. 2015.
GPGPU performance and power estimation using machine learning. In
2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA). 564-576. https://doi.org/10.1109/HPCA.2015.
7056063

Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C.
Hoe. 2003. SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling. SIGARCH Comput. Archit. News 31, 2,
84-97. https://doi.org/10.1145/871656.859629

T. Yoshino, Y. Sugawara, K. Inagami, J. Tamatsukuri, M. Inaba, and
K. Hiraki. 2008. Performance optimization of TCP/IP over 10 Gigabit
Ethernet by precise instrumentation. In SC *08: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing. 1-12. https://doi.org/10.
1109/5C.2008.5215913

Xinnian Zheng, Lizy K. John, and Andreas Gerstlauer. 2016. Accurate
Phase-level Cross-platform Power and Performance Estimation. In
Proceedings of the 53rd Annual Design Automation Conference (Austin,
Texas) (DAC ’16). ACM, New York, NY, USA, Article 4, 6 pages. https:
//doi.org/10.1145/2897937.2897977

Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas.
2004. iWatcher: Efficient Architectural Support for Software Debug-
ging. In Proceedings of the 31st Annual International Symposium on
Computer Architecture (Miinchen, Germany) (ISCA °04). IEEE Com-
puter Society, Washington, DC, USA, 224-. http://dl.acm.org/citation.
cfm?id=998680.1006720

https://doi.org/10.1109/MM.2019.2910175
https://doi.org/10.1109/MM.2019.2910175
https://doi.org/10.1109/FPL.2018.00021
https://doi.org/10.1109/MICRO.2018.00056
https://doi.org/10.1145/166955.167023
https://doi.org/10.1109/SC.2018.00021
https://doi.org/10.1007/978-3-642-24403-2_23
https://doi.org/10.1007/978-3-642-24403-2_23
https://doi.org/10.1109/DATE.2003.1186682
https://doi.org/10.1109/DATE.2003.1186682
https://doi.org/10.1109/DATE.2007.364440
https://doi.org/10.1109/DATE.2007.364440
https://doi.org/10.1109/HPCA.2011.5749747
https://doi.org/10.1109/HPCA.2011.5749747
https://doi.org/10.1145/781027.781076
https://doi.org/10.1145/781027.781076
http://dl.acm.org/citation.cfm?id=3130379.3130390
http://dl.acm.org/citation.cfm?id=3130379.3130390
https://doi.org/10.1109/DAC.1994.204143
https://doi.org/10.1109/DAC.1994.204143
https://doi.org/10.1145/1391469.1391543
https://doi.org/10.1109/MICRO.2016.7783762
https://sifive.cdn.prismic.io/sifive/fa3a584a-a02f-4fda-b758-a2def05f49f9_hifive-unleashed-getting-started-guide-v1p1.pdf
https://sifive.cdn.prismic.io/sifive/fa3a584a-a02f-4fda-b758-a2def05f49f9_hifive-unleashed-getting-started-guide-v1p1.pdf
https://doi.org/10.1145/1837274.1837390
https://doi.org/10.1145/1837274.1837390
https://doi.org/10.1145/1216919.1216936
https://doi.org/10.1109/HPCA.2015.7056063
https://doi.org/10.1109/HPCA.2015.7056063
https://doi.org/10.1145/871656.859629
https://doi.org/10.1109/SC.2008.5215913
https://doi.org/10.1109/SC.2008.5215913
https://doi.org/10.1145/2897937.2897977
https://doi.org/10.1145/2897937.2897977
http://dl.acm.org/citation.cfm?id=998680.1006720
http://dl.acm.org/citation.cfm?id=998680.1006720

A Artifact Appendix
A.1 Abstract

This artifact appendix describes how to reproduce results
demonstrated earlier in this paper by running FirePerf/FireSim
simulations on Amazon EC2 F1 instances.

A.2 Artifact check-list (meta-information)

e Run-time environment: AWS FPGA Developer AMI 1.6.0

e Hardware: AWS EC2 Instances (c5.4xlarge/f1.4xlarge)

e Metrics: Bandwidth Results (Gbits/s)

e Output: Bandwidth Results, TraceRV Flame Graphs, AutoCounter
Queue Occupancy Graphs

o Experiments: iperf3 benchmarks

¢ How much disk space required?: 75GB (on EC2 instance)

e How much time is needed to prepare workflow?: 1.5 hours
(scripted installation)

e How much time is needed to complete experiments?: 1
hour

o Publicly available?: Yes

o Code licenses: Several, see download

e Archived: https://doi.org/10.5281/zenodo.3561040

A.3 Description

A.3.1 How delivered. A version of FirePerf that repro-
duces the results in this paper is available openly on Zenodo;
its use is described in this artifact appendix. FirePerf is also
open-sourced within the FireSim project. Those intending
to use the FirePerf tools for their own designs should use
FireSim directly: https://github.com/firesim/firesim.

A.3.2 Hardware dependencies. One c5.4x1large instance
(also referred to as the “manager” instance) and at least one
f1.4xlarge instance on Amazon EC2 are required.

A.3.3 Software dependencies. Installing mosh (https://
mosh.org/) on your local machine is highly recommended
for reliable access to EC2 instances.

A.4 Installation.

First, follow the instructions on the FireSim website (https:
//docs.fires.im/en/1.6.0/Initial-Setup/index.html) to create a
manager instance on AWS. You must complete up to and
including Section 2.3.1.2, “Key Setup, Part 2”, with the fol-
lowing changes in Section 2.3.1:

1. When instructed to launch a c4 . 4x1arge instance, choose
a c5.4xlarge instead.

2. When instructed to copy a long script into the text box in
“Advanced Details,” instead copy only the following script:

#1/bin/bash
sudo yum install -y mosh
echo "PS1="\u@\H:\w\\$ '" >> /home/centos/.bashrc

3. When entering the root EBS volume size, use 1000GB
rather than 300GB.

At this point, you should have a manager instance setup,
with an IP address and key. Use either ssh or mosh to login to
the instance. From this point forward, all commands should
be run on the manager instance. Begin by pulling the FirePerf
codebase from Zenodo onto the instance, like so:

Enter the wget as a single line:

$ wget -0 fireperf.zip
https://zenodo.org/record/3561041/files/fireperf.zip

$ unzip fireperf.zip

Next, from the home directory, run the following to install
some basic dependencies:

’ $./fireperf/scripts/machine-launch-script.sh ‘

This step should take around 3 minutes. At the end, the
script will print:

’Setup complete. You should log out and log back in now. ‘

At this point, you need to log out and log back into the
manager instance. Once logged into the manager again, run:

$ cd fireperf
$./scripts/first-clone-setup-fast.sh

This step should take around 1 hour. Upon successful
completion, it will print:

first-clone-setup-fast.sh complete.

To finish-up the installation process, run the following:

$ source sourceme-fl-manager.sh
$ cd deploy
$ firesim managerinit

A.5 Experiment workflow

For rapid exploration, we provide a short workload that runs
a FirePerf/FireSim simulation for the baseline, single-core,
networked result in our paper (the 1.67 Gbit/s number in
Table 1), incorporating both TraceRV/Flame Graph construc-
tion and AutoCounter logging. The included infrastructure
will automatically dispatch simulations to an f1.4xlarge
instance, which has two Xilinx FPGAs. The target design
consists of two nodes simulated by FireSim (one on each
FPGA), each with a NIC, that communicate through a simu-
lated two-port Ethernet switch. To run the experiment, first
we build target-software for the simulation, which should
take approximately 2 minutes:

$ cd workloads
$ make iperf3-trigger-slowcopy-cover

Next, we must make a change to the run-ae-short.sh
script to support running on your own EC2 instances. Open
run-ae-short. sh (located in the workloads directory you
are currently in) in a text editor. You will need to uncomment
line 40 and comment out line 41, so that they look like so:

https://doi.org/10.5281/zenodo.3561040
https://github.com/firesim/firesim
https://mosh.org/
https://mosh.org/
https://docs.fires.im/en/1.6.0/Initial-Setup/index.html
https://docs.fires.im/en/1.6.0/Initial-Setup/index.html

runserialwithlaunch $1
#runserialnolaunch $1

Now, we can run the simulation:

’$./run-ae-short.sh

This process will take around 1 hour. Upon completion, it
will print:

’AE run complete.

A.6 Evaluation and expected result

Results from the run of run-ae-short. sh will be located in
asubdirectory in ~/fireperf/deploy/results-workload/
on your manager instance. The subdirectory name will look
like the following, but adjusted for the date/time at which
you run the workload:
2020-01-18--06-00-00-iperf3-trigger-slowcopy-cover-singlecore

We will refer to this subdirectory as your “AE Subdirectory”
in the rest of this document. Once in this subdirectory, there
are three results we are interested in looking at, described
in the following subsections.

A.6.1 Overall performance result. Within your “AE Sub-
directory”, open iperf3-client/uartlog in a text editor

and search for “Gbits”. You will be taken to a section of the

console output from the simulated system that is produced

by iperf3 running on the system. The number we are inter-

ested in will be listed in the “Bitrate” column, with “sender”

written in the same row. This is the workload used to pro-

duce the Linux 5.3-rc4, Single-core, Networked number in

Table 1 of the paper (with a result of 1.67 Gbits/s).

A.6.2 Generated Flame Graph. The generated flame graph

from this run (constructed with FirePerf/TraceRV trace col-
lection) is available in iperf3-server/TRACEFILEQ.svg in
your “AE Subdirectory”. This flame graph should be very
similar to that shown in Figure 3, since it is generated from
your run of the same workload.

A.6.3 AutoCounter output. As this workload was run-
ning, AutoCounter results were also being collected from
the simulations. The scripts post-process these into a graph
that will be similar to Figure 5 in the paper, but will contain
a single bar. Your generated version of this graph will be
located in iperf3-client/nic_queue_send_req. pdf, rel-
ative to your “AE Subdirectory”. You should expect a single
bar at queue-occupancy 1, with around 900000 cycles., close
to the Baseline bar in Figure 5.

A.7 Experiment customization

FirePerf is heavily customizable as a result of being inte-
grated into the FireSim environment, which itself provides a
vast number of configuration options. FirePerf’s TraceRV/s-
tack unwinding feature works with any RISC-V processor

simulated in FireSim that can pipe out its PC trace to the
top level. FirePerf’s AutoCounter feature is more general—it
can be added to any Chisel design simulated in FireSim. The
FireSim documentation describes the extensive customiza-
tion options available: https://docs.fires.im

We provide pre-built FPGA images for the designs in this
paper, encoded in the configuration files included in the arti-
fact. Regenerating the supplied FPGA images is also possible,
by running firesim buildafi in ~/fireperf/deploy/.

A.7.1 Extended Benchmarks. We also include a script
in the artifact to reproduce the other FirePerf workloads in
the paper, covering Tables 1, 2, 3, and 4 and Figures 2, 3, 7,
and 5 from the paper.

Before running this script, it is first required to run the
following in ~/fireperf/deploy/workloads to build all
target-software images:

$ make all-iperf3

Next, we must make a change to the run-all-iperf3.sh
script to support running on your own EC2 instances. Open
run-all-iperf3.sh (located in the workloads directory
you are currently in) in a text editor. You will need to uncom-
ment line 39 and comment out line 41, so that lines 39-41
look like so:

runparallelwithlaunch $1
#runserialwithlaunch $1
#runserialnolaunch $1

Next, ensure that your results directory (~/fireperf/
deploy/results-workload/) does not contain existing re-
sults from a previous run. Finally, to start all 21 simulations,
run the following:

$ cd fireperf-dataprocess
$./full-runner.sh

Once this script completes, final results will be located in:
~/fireperf/deploy/workloads/fireperf-dataprocess/
02_covered/. This directory contains the following:

e generated-tables/: Contains KIEX source for Tables 1,
2, 3, and 4, populated with bandwidth results from this run.
e generated-flamegraphs/: Contains newly generated PDFs
for the flame graphs in our paper: Figures 2, 3, and 7.

e nic_queue_send_req.pdf: A newly generated version of
Figure 5.

A.8 Methodology

Submission, reviewing and badging methodology:

e http://cTuning.org/ae/submission-20190109.html

e http://cTuning.org/ae/reviewing-20190109.html

o https://www.acm.org/publications/policies/artifact-review-

badging

https://docs.fires.im
http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Background
	2.1 Target System Design: FireChip SoC
	2.2 FireSim

	3 FirePerf
	3.1 Software-level Performance Profiling
	3.2 Hardware Profiling with AutoCounter Performance Counter Insertion

	4 Using FirePerf to Optimize Linux Network Performance
	4.1 Baseline Hardware/Simulator Configuration
	4.2 The iperf3 benchmark
	4.3 Linux 4.15 vs. Linux 5.3
	4.4 Baseline Performance Results
	4.5 Optimizing __asm_copy_{to,from}_user in the Linux Kernel
	4.6 Comparing with in-band tracing: Tracing with strace
	4.7 Checksum Offload
	4.8 Interrupt Mitigation
	4.9 Jumbo Frames
	4.10 Final performance results

	5 Applying Findings to Commercial Chips
	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation.
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Methodology

