
UNIVERSITY OF CALIFORNIA,
IRVINE

Improving Iterative Analytics in GUI-Based Data-Processing Systems with Visualization,
Version Control, and Result Reuse

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Sadeem Alsudais

Dissertation Committee:
Professor Chen Li, Chair

Professor Michael J. Carey
Assistant Professor Faisal Nawab

2023

Chapter 2 © 2022 Association for Computing Machinery
Chapter 5 © 2023 Association for Computing Machinery

All other materials © 2023 Sadeem Alsudais

DEDICATION

To the loving memory of my brother Abdullah, without whom this PhD journey would not
have even begun. To my parents, who have always been supportive and understanding. I
hope this dissertation serves as a tribute to their sacrifices, especially during the period

when they needed me the most.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES xi

ACKNOWLEDGMENTS xii

VITA xiii

ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Technical Contributions . 6
1.3 Dissertation Outline . 9

2 GSViz: Progressive Visualization of Geospatial Influences in Social Net-
works 10
2.1 Introduction . 10
2.2 Related Work . 14
2.3 GSViz System Overview . 16
2.4 Incremental Edge-Aware Clustering of Geo-social Network Vertices 20

2.4.1 Incremental Clustering of Network Vertices 20
2.4.2 Achieving Edge-Awareness . 21
2.4.3 Improving Computational Efficiency 24

2.5 Incremental Edge Bundling for Network Simplification 26
2.5.1 Problem Specification . 26
2.5.2 PEB-Tree . 28
2.5.3 Incremental Edge Bundling Using PEB-tree 30
2.5.4 Sending Bundled Results to the Frontend 32

2.6 Integrating Vertex Clustering and Edge Bundling 32
2.6.1 Updating Edges Affected by Clustering 33
2.6.2 Supporting Zooming and Panning . 35

2.7 Experiments . 39
2.7.1 Experiment Setting . 39
2.7.2 Progressive Vertex Clustering . 40

iii

2.7.3 Progressive Edge Bundling . 42
2.7.4 Integrating Both Techniques . 44
2.7.5 A User Study . 47
2.7.6 Reduction of Visual Clutter. 49

2.8 Conclusion . 50

3 Drove: Tracking Data-Processing Versions and Executions to Facilitate Re-
producibility 51
3.1 Introduction . 51
3.2 Related Work . 55
3.3 Drove: Overview . 56
3.4 Version Control of the Runtime Environment 57
3.5 Version Control of a Workflow . 58

3.5.1 Tracking Workflow Versions . 59
3.5.2 Retrieval of a Particular Workflow Version 63
3.5.3 Highlighting Changes between two Workflow Versions 64

3.6 Workflow Execution Manager . 66
3.7 Conclusion . 68

4 Veer: Verifying Equivalence of Workflow Versions in Iterative Data Ana-
lytics 69
4.1 Introduction . 69
4.2 Related Work . 75
4.3 Problem Formulation . 76

4.3.1 Workflow Version Control . 77
4.3.2 Workflow’s Execution and Results . 79
4.3.3 Equivalence Verifiers (EVs) . 80

4.4 Veer: Verifying equivalence of a version pair 81
4.4.1 Veer: Overview . 81
4.4.2 Windows and Covering Windows . 82

4.5 Two Versions with a Single Edit . 86
4.5.1 Verification Using a Covering Window 86
4.5.2 EV Restrictions and Valid Windows 88
4.5.3 Maximal Covering Window (MCW) 89
4.5.4 Finding MCWs to Verify Equivalence 92

4.6 Two Versions with Multiple Edits . 93
4.6.1 Can we use overlapping windows? . 94
4.6.2 Version Pair Decomposition . 95
4.6.3 Maximal Decompositions w.r.t. an EV 99
4.6.4 Finding a Maximal Decomposition to Verify Equivalence (A Baseline

Approach) . 100
4.6.5 Improving the Completeness of Algorithm 4.2 102

4.7 Completeness of Veer . 105
4.7.1 Veer’s Completeness Dependency on Internal Components 105
4.7.2 Restrictions of Some EVs and Veer’s Completeness 106

iv

4.8 Veer+: Improving Verification Performance 108
4.8.1 Reducing Search Space Using Segmentations 109
4.8.2 Pruning Stale Decompositions . 112
4.8.3 Ranking-Based Search . 113
4.8.4 Identifying Inequivalent Pairs Efficiently 115

4.9 Extensions . 116
4.10 Experiments . 118

4.10.1 Experimental Setup . 118
4.10.2 Comparisons with Other EVs . 121
4.10.3 Evaluating Veer+ Optimizations . 122
4.10.4 Comparing Veer and Veer+ on Verifying Two Versions with Multiple

Edits . 123
4.10.5 Effect of the Distance Between Edits 126
4.10.6 Effect of the Number of Changes . 127
4.10.7 Effect of the Number of Operators 129

4.11 Conclusion . 130

5 Raven: Accelerating Execution of Iterative Data Analytics by Reusing Re-
sults of Previous Equivalent Versions 131
5.1 Introduction . 131
5.2 Related Work . 135
5.3 Problem Formulation . 136

5.3.1 Iterative Data-Processing Workflows 136
5.3.2 Workflow’s Execution and Result Equivalence 137

5.4 Raven: Overview . 137
5.5 Equivalence Verification of Multiple Sink Pairs in Two Workflow Versions . . 140

5.5.1 Dividing the Version Pair into sub-DAGs with a Single Sink 140
5.6 Avoiding Repeated Computation in Veer . 143

5.6.1 Using a Decomposition Verification for Multiple Sinks 143
5.6.2 Grouping Sub-DAGs of Windows in Equivalence Classes 149

5.7 Ranking Versions for Equivalence Check . 154
5.7.1 Ranking Versions by their Semantic Results of the Sinks 154
5.7.2 Ranking Versions Based on Edit Mapping 157

5.8 Experiments . 158
5.8.1 Experimental Setup . 159
5.8.2 Identifying Reuse . 160
5.8.3 Overhead Analysis . 160
5.8.4 Execution Speedup . 161
5.8.5 Effect of the Number of Sinks . 162

5.9 Conclusion . 163

6 Conclusions and Future Work 164
6.1 Conclusions . 164
6.2 Future Work . 166

v

Bibliography 169

Appendix A Real-workflow Workload Statistics 183

Appendix B Sample Real Workflows 185

vi

LIST OF FIGURES

Page

1.1 Example workflow to analyze tweets about “climate change,” including three
sink operators to show different final results, with a visual representation of
the tabular result. 2

1.2 A refined version of the workflow to inspect tweets in “California,” with a
visual representation of the spatial network result. Orange operators are mod-
ified, green operators are added, and a red cross indicates a deleted operator. 4

1.3 Overview of the scope of this dissertation. 7

2.1 A geo-social network of interactions between tweets containing keyword vaccine. 11
2.2 Sample results of applying our techniques to support progressive visualization

to simplify the network in Figure 2.1b. 12
2.3 GSViz system architecture. 18
2.4 Processing subnetworks in two batches in GSViz. 19
2.5 Incrementally clustering a new edge (l, r). For simplicity, we omit the edge

directions and cluster centers. 21
2.6 Progressive merging of super edges. We omitted the cluster shape for nota-

tional simplicity. 23
2.7 Using a grid to speed up edge-aware clustering. 25
2.8 Dragging a control point on edge a using spring and electrostatic forces of

compatible edges b1 and b2. 28
2.9 A PEB-tree for a set of edges. 29
2.10 Adding a new point in an existing cluster causes the cluster and its related

super edge to shift. 33
2.11 Maintaining updated edges affected by vertex clustering in batch Bi. 35
2.12 Abstract example to show usage of clusters from different zoom levels to reduce

the number of edges. 37
2.13 A geo-social network of tweets containing the keyword “vaccine” with 3, 651

edges. 37
2.14 Visual result of the network after applying GSViz’s techniques resulting in 473

edges. 37
2.15 Visual result after applying GSViz’s “tree-cut” approach to reduce the number

of edges to 390. 37
2.16 Sample clusters hierarchy and the highest ancestors of choice (highlighted in

blue) for those clusters outside the screen’s viewport. 38

vii

2.17 Time of vertex clustering per batch (fixed batch size using DRUM). 41
2.18 Graph density on different zoom levels (fixed batch size using DRUM). 42
2.19 Time of edge bundling for different batches. 43
2.20 Bundling time per batch for different slicing intervals. 43
2.21 Average response time per batch of all steps. 44
2.22 Total response time of all the steps. 45
2.23 Average time per batch to update super edges for different intervals. 46
2.24 Example network visualizations in the user study at one zoom level. 48
2.25 Reduction of visual clutter score compared to the original network. 49

3.1 Multiple versions of a workflow for tweet analysis. 53
3.2 Interface of the executions dashboard in Texera. Due to space considerations,

we do not show the rest of the table, which includes each execution’s workflow
version number, sample results, deletion button, etc. 54

3.3 Overview of tracking workflow versions and executions. 56
3.4 Example to show the components associated with a workflow that need to be

tracked. Due to space considerations, we omit the parts of the window that
show the results of the workflow execution and the engine version. 58

3.5 Example interface showing a list of versions in a reverse chronological order
after a user adds a Filter operator to the workflow. 64

3.6 Example of a workflow evolving into three versions and the content of each
“Version Table” to maintain the relation between these versions. 65

3.7 An interface showing that a deletion of an operator/s between the red arches
transforms the latest workflow version to the selected version. In this example,
deleting a Filter between the Source and Join operators is needed to transform
the displayed historical version to the latest version. 66

4.1 Example workflow and its evolution in two versions. 70
4.2 Example of an edit mapping between version v1 and v2. Portions of the

workflows are omitted for clarity. 79
4.3 Overview of Veer. Given an EV and two versions with their mapping, Veer

breaks (decomposes) the version pair into small windows, each of which sat-
isfies the EV’s restrictions. It finds different possible decompositions until it
finds one with each of windows verified as equivalent by the EV. 82

4.4 An example window ω and each sub-DAG of ω(v1) and ω(v2) contains two
sinks (shown as an Orange circle). 83

4.5 A covering window ω for adding Filterh. 84
4.6 An example covering window ω′ showing its pair of sub-DAGs are equivalent. 85
4.7 Two sub-DAGs in the window ω are not equivalent, as sub-DAG equivalence

in Definition 4.5 does not consider constraints from the upstream operators.
But the two complete workflow versions are indeed equivalent. 85

4.8 Conceptual examples to explain the relation between a “covering window”
and version pair equivalence. 87

4.9 Two MCW ω1 and ω2 satisfying the restrictions of Equitas to cover the change
of adding Filterh to v2. 91

viii

4.10 Example to illustrate the process of finding MCWs for the change of adding
Filterh to v2. 91

4.11 In this example, the blue window ω is equivalent and the purple window ω′ is
also equivalent. But the version pair is not equivalent. The shaded gray area
is the input to window ω′. 94

4.12 A decomposition θ with two covering windows ω1 and ω2 that cover the three
edits. 96

4.13 Using multiple covering windows on multiple edits to check the equivalence of
two versions. 97

4.14 Example to show equivalent pair of sub-DAGs of every covering window in a
decomposition θ′. 98

4.15 Hierarchy of valid decompositions w.r.t an EV. Each letter corresponds to a
pair of operators from the running example. We show the containment of
covering windows and we omit details of containment of non-covering windows.100

4.16 An example of two edit mappings, where one leads to a decomposition that
satisfies an EV’s restrictions, while the other does not. 104

4.17 Components related to the equivalence verification process. 106
4.18 An example where any covering window of an edit operation c1 never overlaps

with a covering window of another edit operation c2 or c3. 109
4.19 A sample abstract AND/OR tree to organize the components of the version

pair verification problem. 111
4.20 Two segments to reduce the decomposition-space of the running example. . . 111
4.21 Example to show the pruned paths after verifying the maximal window high-

lighted in blue to be not equivalent. 113
4.22 Example of two inequivalent workflow versions and their partial symbolic rep-

resentation. 116
4.23 Comparison between Veer and Veer+ for verifying equivalent pairs with two

edits. An “×” means the algorithm was not able to finish running within one
hour.Overhead of calling EV by Veer is not visible due to the logscale. 125

4.24 Comparison between Veer and Veer+ for verifying inequivalent pairs with two
edits. An “×” sign means the algorithm was not able to finish within an hour. 126

4.25 Effect of the distance between changes (on W2) 127
4.26 Effect of the number of changes (on W1). 128
4.27 Effect of the number of operators (on W2). 129

5.1 Three versions of a workflow for analyzing tweets mentioning a keyword. . . 132
5.2 Overview of Raven’s framework. 138
5.3 A pair of sub-DAGs on the first two versions that include the upstream oper-

ators of the Scatterplot sink from the running example. 141
5.4 A pair of sub-DAGs that include the upstream operators of the Wordcloud sink.141
5.5 A maximal decomposition of the pair of sub-DAGs that include the upstream

operators of the Scatterplot sink from the first two versions in the running
example. For simplicity, we only show the covering windows throughout the
chapter. 143

ix

5.6 A maximal decomposition of the pair of sub-DAGs that include the upstream
operators of the Wordcloud sink. 143

5.7 A window including operators (shown as a Blue circle) that can reach the
Wordcloud sink, and operators (shown as a Red circle) that can reach the
Scatterplot sink. Those operators that are not annotated can reach both sinks.144

5.8 An MD with three windows, including ω1 that can reach both Scatterplot
(shown as a Red circle) and Wordcloud (shown as a Blue circle) sink operators,
ω2 that can reach the Scatterplot sink, and ω3 that can reach the Result sink
(shown as an Orange circle). 146

5.9 An abstract example to show the proof of Lemma 5.2. 148
5.10 Example of testing three pairs of four versions to show three different windows

and the windows’ sub-DAGs belong to the same equivalence class. 149
5.11 A sample 2-D matrix for storing the equivalence tests between a pair of equiv-

alence classes. A cell initially is “X” and is changed to “O” when the two
classes are tested. 153

5.12 Example Recycler DAG to group the sub-DAGs of three windows and their
equivalence class. 154

5.13 A sample V2-structure to organize the saved results of sinks from the first two
versions in the running example. 156

5.14 Overhead analysis of the solutions. 161
5.15 Effectiveness of Raven on execution speedup. An “X” indicates the workflow

was not supported by the solution. 162
5.16 Effect of the number of sinks on the performance of verifying a version pair. 163

x

LIST OF TABLES

Page

2.1 Sample network data with tweets and their replies 17
2.2 Datasets. 39
2.3 User study results. The reported numbers for the visualization quality are

represented as “A—B,” where “A” is the average score given by all the par-
ticipants and “B” is the standard deviation. Compared to the baseline, GSViz
was much more efficient and had comparable visualization quality. 48

3.1 A comparison of related tools and systems that track evolution of data analytic
tasks . 55

4.1 Limitations of existing EVs to verify equivalence of workflow versions from
real workloads. 73

4.2 Notations used for a single workflow. 76
4.3 Example EVs and their restrictions along with how Veer is complete for veri-

fying a version pair that satisfy the EV’s restrictions. 107
4.4 Workloads used in the experiments. 119
4.5 Comparison evaluation of Veer and Veer+ against Spes. 121
4.6 Result of enabling optimizations (W3 with three edits). “S” indicates seg-

mentation, “P” indicates pruning, and “R” indicates ranking. A ✓means the
optimization was enabled, a × means the optimization was disabled. . . . 123

5.1 Workloads used in the experiments. 159
5.2 Comparison evaluation of Ravenb and Ravena against Recycler. 160

xi

ACKNOWLEDGMENTS

I could not have undertaken this Ph.D. journey without the help of my advisor, Professor
Chen Li. I am immensely grateful for the lessons I have learned by observing his unwavering
commitment to meeting deadlines and his tireless efforts to ensure the success of our projects.
Through his example, I have understood the true meaning of perseverance and hard work.
I am grateful for his prompt responses to my emails, his accessibility, and his willingness to
engage in discussions. His “open-door” policy has fostered an environment of collaboration
and innovation where ideas could flow freely. His mentorship has enabled me to tackle and
formulate practical research questions in complex systems. Professor Chen has consistently
provided me with opportunities to connect with other researchers and has always encouraged
my participation in conferences.

I would also like to express my deepest gratitude to the members of the committee (Professor
Michael J. Carey and Professor Faisal Nawab) for their valuable suggestions and guidance,
which have been instrumental in improving my research work. I would also like to thank Pro-
fessor Sharad Mehrotra, Professor Nalini Venkatasubramanian, and Professor Shuang Zhao
for their warm welcome and help. Their willingness to assist me has been truly commendable.

This endeavor would not have been possible without the generous financial support from
King Saud University. The work reported in this dissertation has been supported in parts
by NSF awards III 1745673 and III 2107150. I would also like to thank my mentor, Dr.
Rebecca Taft, for her guidance throughout the last year of my Ph.D. journey.

I would like to thank Dr. Qiushi Bai for his help in research discussions during the early years
of my Ph.D. and acknowledge the Texera team (Dr. Avinash Kumar, Dr. Zuozhi Wang,
Shengquan Ni, Yicong Huang, and Xiaozhen Liu) for their collaborations and contributions.

Lastly, I thank Dr. Thomas Hutter and Noura Alomar for providing feedback to improve my
writing. I want to thank Dr. Avinash Kumar, Yicong Huang, and Xiaozhen Liu for always
being there to help me on many different occasions. I thank my friends Norah Aljammaz and
Arwa Alnabit for always providing me with positive energy and listening to my concerns.
I want to thank my family members, especially my sisters Manal and Mona and my niece
Ghada Abahussain for their constant encouragement and kind words. I want to thank my
beloved cat, Blanco, who has given me company and the emotional strength to embark on
any difficulty I may have encountered.

The second chapter of this dissertation is a reprint of the material as it appears in “GSViz:
progressive visualization of geospatial influences in social networks.” In Proceedings of
(SIGSPATIAL ’22). The co-authors listed in this publication are Qiushi Bai, Shuang Zhao,
and Chen Li. The fifth chapter of this dissertation is a reprint of the material as it appears
in “Raven: Accelerating Execution of Iterative Data Analytics by Reusing Results of Pre-
vious Equivalent Versions.” In Proceedings of (HILDA ’23). The co-authors listed in this
publication are Avinash Kumar and Chen Li.

xii

VITA

Sadeem Alsudais

EDUCATION

Doctor of Philosophy in Computer Science 2023
University of California, Irvine Irvine, CA

Masters of Science in Computer Science 2016
University of Southern California Los Angeles, CA

Bachelors of Science in Information Technology 2011
King Saud University Riyadh, Saudi Arabia

SELECTED PUBLICATIONS

Raven: Accelerating Execution of Iterative Data Ana-
lytics by Reusing Results of Previous Equivalent Ver-
sions

2023

Human-In-the-Loop Data Analytics (HILDA@SIGMOD)

GSViz: Progressive Visualization of Geospatial Influ-
ences in Social Networks

2022

Proceedings of the 30th International Conference on Advances in Geographic Informa-
tion Systems (SIGSPATIAL)

Drove: Tracking Execution Results of Workflows on
Large Data

2022

Proceedings of the VLDB 2022 PhD Workshop

xiii

ABSTRACT OF THE DISSERTATION

Improving Iterative Analytics in GUI-Based Data-Processing Systems with Visualization,
Version Control, and Result Reuse

By

Sadeem Alsudais

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Professor Chen Li, Chair

GUI-based data processing systems simplify and accelerate data tasks with a user-friendly

interface, eliminating the need for extensive coding skills. This accessibility allows analysts

to easily design, modify, and execute workflows with intuitive drag-and-drop operations and

visual representations. Incorporating visualization operators into data processing systems to

represent the processed result enables analysts to quickly gain insights, understand patterns,

and make informed decisions from complex data. As analysts observe the results, they may

uncover new trends, leading to further questions or hypotheses that require modifications

and edits to the workflow. Each change to the workflow generates a new version. Given

the iterative nature of data analytics, modifying workflows is a common practice. The re-

sults produced from executing these versions are materialized, enabling users to refer back

to them to reproduce and replicate past experiments, ensuring the validity of reported out-

comes. While striving for improved results, in many cases, the results of new iterations are

equivalent to those of previous runs. Given the significant time required to execute analytical

tasks on large datasets, it becomes imperative to reduce redundant computations by reusing

previously-stored results. Hence, it is crucial to identify and verify the equivalence of results

across different runs.

xiv

This dissertation is driven by these pressing needs to enhance iterative data analytics within

GUI-based data processing systems by integrating visualization, version control, and result

reuse. The dissertation is structured into four main parts.

The first part addresses the challenge of incrementally visualizing large spatial networks

while minimizing visual clutter. To tackle this issue, we introduce GSViz, a general-purpose

middleware-based solution consisting of two modules, namely edge-aware vertex clustering

and incremental edge bundling to effectively visualize large spatial networks.

The second part focuses on the development of Drove, a framework designed to track changes

in workflows, environment dependencies, workflow executions, and the generated results. By

utilizing Drove, researchers and analysts can gain valuable insights into the evolution of

workflows and understand the impact of modifications on the final outcomes.

In the third part, we present Veer, an algorithm for verifying the equivalence of two complex

workflow versions. Additionally, we present a series of optimization techniques to improve

the performance of the baseline algorithm.

Lastly, we introduce Raven, an optimization framework that ranks the previously executed

workflow versions then tests their equivalence compared to a new workflow version execution

request. By reusing the results generated from these versions, Raven minimizes redundant

computations and significantly enhances performance when handling new workflow execu-

tion requests. Raven retrieves the previous versions from Drove and pushes testing their

equivalence to Veer.

xv

Chapter 1

Introduction

1.1 Motivation

The advent of online transactions, social media interactions, sensor-equipped devices, and

internet-connected systems has led to a large volume of data. This wealth of data presents

a tremendous opportunity for extracting valuable insights and driving innovation. Data-

processing systems such as Apache Spark [14] and Apache Flink [13] offer infrastructures

to process and analyze vast amounts of data. These tools often require specialized coding

skills and expertise, which can pose a challenge for domain scientists with limited coding

proficiency. To address this issue, GUI-based data-processing systems such as Alteryx [11],

Knime [81], Einblick [130], and Texera [138] have emerged. These tools offer a user-friendly

interface that simplifies and accelerates data tasks on large amounts of data, eliminating the

need for extensive coding skills and making them accessible to a wide range of users [138,

11, 42]. This accessibility empowers analysts to design, modify, and execute data-processing

workflows through intuitive drag-and-drop operations.

A data workflow is modeled as a Directed Acyclic Graph (DAG), where each node corre-

1

sponds to an operator that incorporates the processing logic, and the links represent the data

flow between the operators. Operators without incoming edges retrieve data from various

sources, such as datastores or files, and operators without outgoing edges serve as sinks,

representing the final output of the task from its upstream operators. Figure 1.1 shows an

example of a data-processing workflow for analyzing people’s perceptions of Tweets related

to “climate change” and the propagation of these tweets through replies and retweets. The

workflow includes three sink operators, each producing a different result.

Tweets

id, text
coordinate

id,coordinate
,dist

coordinate,
state

compute
dist result

spatial
network

wordcloud

word
search project join UDF project

join

project

states

replies

Figure 1.1: Example workflow to analyze tweets about “climate change,” includ-
ing three sink operators to show different final results, with a visual representa-
tion of the tabular result.

In the realm of data analytics, an essential aspect is an iterative refinement through a “trial-

and-error” approach to enhancing a workflow [151]. Many existing data-processing engines

primarily focus on interactivity and collaboration, falling short of fully providing the means

to improve the user experience of constructing and refining these workflows iteratively within

a GUI-based environment.

In this dissertation, we enhance iterative analytics in GUI-based data-processing workflow

systems with visualization, version control, and semantic execution optimization.

Importance of visualization. With the growing volumes of data, it becomes increasingly

challenging for analysts to comprehend the final result when it is presented with a large

number of tuples in a tabular format, as depicted in the visual representation of the Result

sink operator in Figure 1.1. By utilizing data-processing systems with visualization operators

2

to represent the processed tuples, analysts can quickly gain insights, discover patterns, and

make time-critical decisions from complex data that may not be immediately apparent in a

tabular representation [8]. Modern GUI-based data-processing systems equip their platforms

with visualization operators, allowing for both data processing and visualization during the

analytical task [130, 109, 11, 81, 138, 119]. User-facing data analytic systems often adopt a

progressive execution paradigm to ensure responsive analytics and engage the analysts’ focus

by enabling users to observe intermediate results during the execution instead of waiting for

prolonged durations until the end of the execution [130, 84, 13, 42]. Thus, these platforms

provide native support to handle incremental computation to update the visual results [130].

Some of these techniques focus on specific types of visualizations, such as bar charts, while

leaving other types unexplored, such as spatial networks [10], even though many applications

analyze and visualize spatial networks [90, 91, 61, 147, 17, 166]. In the first part of the

dissertation, we want to answer the following question:

How can we efficiently visualize a large spatial network progressively?

Importance of tracking workflow versions. As analysts observe the visual result after

executing the workflow, they may uncover new trends that lead to additional questions

requiring edits to the workflow to gain deeper insights. Making workflow edits is typical

in data analytics due to its iterative nature [154]. In the running example (Figure 1.1), an

analyst notices that the most discussed keyword in the visual representation of the Wordcloud

sink is “wildfire.” Consequently, the analyst makes changes to the workflow, resulting in the

creation of a second version (shown in Figure 1.2) of the workflow to observe tweets in

California, based on the assumption that most wildfire cases happen in this region.

Tracking workflow changes and materializing the corresponding results generated during the

execution of the workflow version is crucial for reproducibility, enabling users to replicate

and verify the results from previous runs [9]. There has been an increased interest in track-

3

Tweets
id,

coordinate
id,coordinate

,dist

coordinate,
state

compute
dist

state = 'CA'

result

spatial
network

word
search project join UDF project

join

filter project

states

replies

Figure 1.2: A refined version of the workflow to inspect tweets in “California,”
with a visual representation of the spatial network result. Orange operators are
modified, green operators are added, and a red cross indicates a deleted operator.

ing executions and results of data-processing tasks [98, 143, 95]. Many of these solutions

aim towards machine learning (ML)-based analytics, which is frequently constructed using

a programming interface such as Jupyter Notebook [77]. These solutions use Git-like tech-

niques to track versions of code, ML models, hyperparameters, and package dependencies.

Git-like approaches are not directly applicable to GUI-based workflow systems. A reason

is that constructing and refining workflows is an ad hoc process [123]. For example, many

usability changes (e.g., changing the position of an operator or annotating and commenting

on the workflow canvas) do not have any direct implications on the execution of the work-

flow. Since these non-semantic changes do not affect the results, there is no need to track

them to ensure reproducibility. We need a technique that captures changes at a higher level

of abstraction, such as modifications to the workflow structure, dependencies on external li-

braries, or changes to the data flow between operators. In the second part of the dissertation,

we address the following problem:

How can a workflow and its associated resources, including package dependencies

and results, be modeled to facilitate efficient and transparent tracking?

Workflow equivalence verification. As analysts make changes to achieve better results,

in many cases, these iterations produce outcomes that are equivalent to those of previous

runs [164]. For instance, the changes made to transform the initial workflow in Figure 1.1 to

4

the refined one in Figure 1.2 have no effect on the spatial network result, i.e., the two spatial

network results are the same in both versions. Testing the equivalence of two workflows

can be viewed as testing the equivalence of two SQL queries, which is undecidable [3].

Some equivalence verifiers (EV) [164] solve the problem under certain assumptions, such as

ignoring Union, Order by, and user-defined-function (UDF) operators. Workflows are complex

and rich in semantics, which can make them violate these assumptions in many cases [9]. For

instance, most EVs support only 2% of the TPC-DS workload [140], as detailed in Chapter 4.

Moreover, these EVs can not verify the equivalence of the workflow versions in the running

example, as they include complex operators, e.g., UDF. We need a verifier that can test

the equivalence of two workflows, i.e., it can verify if they produce the same results given

an instance of input sources. In the third part of the dissertation, we solve the following

problem:

Given two similar versions of a workflow, can we verify if they produce the same

results?

Workflow execution optimization. Since executing analytical tasks on large datasets can

take a significant amount of time [84], we aim to reduce redundant computation by reusing

previously-stored results and identifying the equivalence of a new execution request with

a previously executed version. There is a large body of work on optimizing the execution

of complex workflows by matching a workflow DAG or sub-DAG with previously executed

ones [49]. Adhering to a rigid approach of exact structure matching can overlook the potential

to identify semantic equivalence. In the running example, although the two versions do not

have the same structure, the sinks for producing the spatial network in both versions produce

equivalent results. Therefore, it is essential to consider alternative methods that go beyond

strict structural comparisons to recognize and utilize such equivalences. Other solutions

adopt a semantic approach to identifying reuse but are limited to a class of optimizations,

such as reusing shared predicates [154]. Such solutions identify overlapping tuples between

5

the results across different executions of the workflows and do not focus on reusing the entire

result. We want a way to identify reuse (of equivalent results) as in the running example.

In the final part of the dissertation, our objective is to address the following problem:

How can we efficiently identify a previously executed version of a workflow that is

equivalent to the latest version to reuse its results to answer the execution request

of the latest version?

In this dissertation, we discuss how we address the above four needs in Texera [138], a cloud-

based collaborative data-processing system, as an example. The solutions presented in this

dissertation are applicable to general GUI-based data-processing systems.

1.2 Technical Contributions

Typical GUI-based data-processing systems follow a three-tier architecture. This architec-

ture consists of a frontend responsible for handling processing task requests, a web server

that handles high-level services, such as parsing user requests and workflow DAG optimiza-

tions, and an execution engine that manages the execution of the workflow DAG, whether on

a single node or across multiple nodes [130, 84, 42, 154]. Figure 1.3 summarizes our technical

contributions and provides an overview of the components related to this dissertation and

how these components communicate. We propose a holistic approach to managing the end-

to-end lifecycle of orchestrating, refining, and executing workflows, examining their results,

and reusing the results to optimize the performance of pipelines in data-processing systems.

We also tackle the problems discussed above that arise in iterative data analytics settings.

GSViz: Progressive Visualization of Geospatial Influences in Social Networks.

In our first contribution, we examine a specific use case involving the visualization of a

6

Applications Webserver

Equivalence verifiers

Execution engine

CH4: VeerCH5: Raven

CH3: Drove

CH2: GSViz

User
versionsexecutions

catalog
store

?

batched
result
..
.

changes

execution

versions set

versionpair

optimized execution plan

Figure 1.3: Overview of the scope of this dissertation.

large geosocial network. One naive approach to visualizing such a spatial network, where

edges are progressively provided, is to append those edges in each batch. As the number of

network edges increases, the resulting visualization becomes visually cluttered, as illustrated

in Figure 1.2. We have observed that while the problem originated from visualizing workflow

results in a data-processing system, it is a general issue that extends beyond such systems

in the context of data analytics. We recognize the need to address this problem in a broader

context, and propose a middleware-based solution called GSViz.

Our approach proposes two techniques within GSViz to reduce visual clutter. Firstly, we

present an edge-aware clustering algorithm capable of clustering spatial network vertices

to minimize edges between clusters in an incremental manner. Secondly, we introduce a

novel data structure called the “PRB-tree,” which organizes edges from previous batches to

facilitate faster compatibility checks and edge bundling with new edges. Moreover, we show

how the two techniques, i.e., vertex clustering and edge bundling, can be integrated and

solve the technical challenges associated with the integration, such as updating the visual

result of edges from previous batches. Finally, we show how GSViz supports zooming and

panning, and use a hierarchical structure that supports zooming to further reduce the visual

clutter by proposing a novel tree-cut approach.

7

Drove: Tracking Data-Processing Workflow Versions and Executions to Facilitate

Reproducibility. To enable the versioning of data-processing workflows, we propose the

Drove framework. It adopts a strategy where the metadata information of a workflow is

stored based on its latest version. Whenever a user refines a workflow, its metadata details

are updated with the most recent snapshot. Simultaneously, the edit operations performed

on the workflow are stored as a patch, which can be applied when the user desires to view or

revert to a previous version. This lightweight approach to storing deltas effectively manages

workflow versioning without requiring explicit user commits for each version.

This approach also presents challenges that Drove addresses. One challenge involves deter-

mining the grouping of edit operations into a single commit. Another challenge arises as the

number of refinements increases, making it computationally expensive to list all historical

changes. Additionally, checking out an old version becomes costly due to the large number

of patches required to reconstruct it. To tackle these challenges, Drove proposes a periodic

checkpointing approach based on predefined rules. Finally, Drove ensures the reproducibility

of executions by storing metadata information related to these executions.

Veer: Verifying Equivalence of Workflow Versions in Iterative Data Analytics.

Given the undecidability of testing the equivalence of two workflows, any verifier developed

to address this problem will inherently possess limitations and incompleteness. Our objective

is to create a versatile solution that maximizes completeness by leveraging the capabilities of

existing EVs. This approach ensures that our solution remains adaptable and flexible, even

with the emergence of new EVs in the future. To achieve this, we propose Veer, a workflow

version equivalence verifier that incorporates knowledge of the edit operations between the

two versions in the decision-making process.

The methodology employed in Veer involves dividing and decomposing the version pair into

smaller portions, each satisfying the assumptions of an existing EV. These portions are

8

then verified for equivalence using the EV as a black box. There are a few challenges in

Veer, including how to capture the assumptions of the EVs and maximize completeness. We

also identify properties that allow us to prune the considered decompositions, striking a bal-

ance between exploring all potential decompositions and avoiding unnecessary computational

overhead.

Raven: Accelerating Execution of Iterative Data Analytics by Reusing Results of

Previous Equivalent Versions. One way to enhance the performance of executing a new

version is to check if it produces the same results as a previous one, which can be accom-

plished using Veer. This process can become computationally extensive as the number of

versions increases. To reduce this computational overhead, we propose Raven, an optimiza-

tion framework that ranks versions based on the semantics of their sinks, prioritizing those

with sinks similar to the latest version. To avoid recomputing decompositions into windows

for every new pair submitted to Veer, Raven extends Veer to consider the knowledge of edits,

decompositions, and equivalences from previous computations by introducing equivalence

classes.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows: Chapter 2 presents the GSVizmiddleware.

Chapter 3 discusses the Drove framework. Chapter 4 details the Veer algorithm. Chapter 5

presents the Raven optimization framework. Finally, we conclude the dissertation and discuss

open problems and future directions in Chapter 6.

9

Chapter 2

GSViz: Progressive Visualization of

Geospatial Influences in Social

Networks

2.1 Introduction

With the prevalent use of social media, it is becoming increasingly important to understand

binary relations between entities, such as users or their online posts. Example relationships

are “follows” between users and “retweets” between social-network posts. As many enti-

ties are location-based, naturally we want to analyze the geospatial relationships between

these entities. In fact, analytics of geospatial relationships on social networks can be used in

applications such as viral marketing (word-of-mouth information transfer between socially

connected users) [166] or personalized location-based recommendations using social relation-

ships [17]. Many recent efforts study the influence of geospatial relationships among entities

on social networks [157, 90, 91, 61, 36, 147].

10

reply-to

tweet

reply-to

(a) Example “replied-to” relationships
from a tweet (blue) to the original tweet
(red).

(b) A visual clutter of a network with
many tweets and replied-to relationships.

Figure 2.1: A geo-social network of interactions between tweets containing key-
word vaccine.

Motivation. As an example, it has been observed that Covid-19 vaccine hesitancy is influ-

enced by many factors such as geographic interactions [20] and social media interactions [116].

Analyzing tweets is a useful way to understand how vaccine information propagates across

different regions. Figure 2.1a shows a sample network, where a node is a tweet about vac-

cines, and an edge between two tweets is an interaction between them, i.e., “retweet” or

“reply-to.” For instance, the edge from node x to node z means that a user in Seattle (x)

replied to a tweet posted by a user in Austin (z).

Visualization is a powerful and efficient tool to help analysts gain quick insights from data [8].

In this chapter, we study how to visualize geo-social networks, i.e., geospatial relationships on

a social network, to help domain experts that need this type of data analytics. We consider

the common setting where the data is stored in a database system. As social media data

has semantically rich attributes such as temporal, spatial, and textual attributes, we are

particularly interested in the case where a user submits a visualization request with ad hoc

conditions on the attributes. For instance, a user wants to visualize the subnetwork of tweets

containing keywords such as Covid, Pfizer, or Moderna.

Challenges. Due to the ever increasing data size, visualizing large geo-social networks faces

11

the following computational challenges:

C.1 Visualization requests with ad hoc conditions can be computationally expensive in terms

of query execution in the database, network transfer, and frontend rendering. This

negatively affects the responsiveness and consequently the user experience [52, 132, 40].

C.2 Visualizing full networks without any simplification can produce results that are visually

too cluttered. For instance, Figure 2.1b shows a cluttered result that is very difficult

for the user to interpret.

(a) Result of edge-aware
vertex clustering (§2.4)

(b) Result of progressive
edge bundling (§2.5)

(c) Results of applying both
techniques (§2.6)

Figure 2.2: Sample results of applying our techniques to support progressive
visualization to simplify the network in Figure 2.1b.

To address these challenges, we develop a novel middleware-based system called “GSViz”,

which stands for “Geo-social network visualizer.” To overcome C1, we leverage progressive

computation by slicing a long-running query into multiple mini-queries, each of which has

an additional slicing predicate on an attribute. In this way, each mini-query can be executed

efficiently, and the results are returned in batches [75]. Similar to streaming videos, users are

willing to wait until the end of a long running query as long as there are bursts of frequent

updates “for keeping the user’s attention focused” [52] and to help users “lose their sense of

time” [132].

We address C2 by clustering network vertices and bundling the edges. The problem of

clustering spatial points has been studied extensively (e.g., [158, 111]). These solutions

cluster the points without considering the impact of edges between them. On the other hand,

12

graph-based solutions [1, 18, 139, 15, 126] do consider edges. However, they typically focus

on optimizing the overall layout of a graph, e.g., by minimizing edge crossings. In contrast to

vertices in general graphs, vertices in geo-social networks have geo-location. Thus, solutions

on graphs are not directly applicable in our case. We solve this problem by developing a new

algorithm that clusters geo-social network vertices in an edge-aware fashion (Figure 2.2a).

Notice that even though vertex clustering could produce clusters with locations slightly

different from the original spatial locations of points, the approximate results are still very

valuable to users.

Additionally, we simplify a network using edge bundling that merges edges with similar

directions and lengths (Figure 2.2b). Previous edge-bundling techniques [68, 64] are not

incremental and can take a long time, e.g., many seconds or even minutes, to handle large

input networks. To solve this problem, we develop a new technique to incrementally bundle

the network edges that arrive in batches as the results of mini-queries. We show that these

two techniques can be integrated to further simplify the network (Figure 2.2c). Note that

if the network structure changes across batches, then there should be a visible animation to

show those changes [69]. Smoothing the visual transition between the batches can be done

using frontend techniques when rendering the network and is out of the scope of this chapter.

In this chapter we make the following contributions:

1. Introducing the architecture of GSViz and describing the details of its components needed

to answer a visualization request with ad hoc conditions progressively (§2.3).

2. Developing a new technique that clusters network vertices in an incremental and edge-

aware fashion (§2.4).

3. Presenting an efficient technique to bundle network edges progressively by leveraging a

novel structure called PEB-tree (§2.5).

4. Integrating the two techniques, addressing related challenges, and supporting zooming

13

and panning. Moreover, we leverage the hierarchical structure that supports zooming to

further reduce the visual clutter using a novel tree-cut approach (§2.6).

5. Conducting an experimental evaluation, including a user study, on real data sets (§2.7).

The results show that, compared to previous methods, the proposed system offers better

performance without compromising the quality of visualization results.

2.2 Related Work

Big graph visualization systems. Some studies visualize the geo-social network as an

Origin-Destination relation between spatial points [25, 60, 26]. The Gephi and Tulip sys-

tems [18, 15] load graph data into memory and process it offline, allowing interactive online

filtering and exploration. These systems simplify the graphs and reduce visual clutter by per-

forming graph clustering and layout algorithms. Tulip additionally uses the Winding Roads

algorithm [86] to bundle the edges. GraphVizdb [21], CGV [139], and ASK-GraphView [1]

systems focus on graph retrieval from a database and allow interactive exploration on the

retrieved graph. Tableau [133] is a commercial tool to visualize data from local files and

remote databases. All these techniques are complementary to ours as they mostly focus on

visualizing graphs where the vertices have no predetermined spatial locations. Further, these

techniques do not allow progressive processing of user queries.

Graph clustering and trajectory clustering. Most graph clustering techniques [79, 153]

focus on discovering communities in a graph such as SCAN [153], which exhausts pairwise

similarities between all adjacent vertices to detect clusters. pSCAN [30], SCAN-XP [134],

anySCAN [96], and index-based SCAN [148] try to optimize SCAN’s performance. Other

graph clustering techniques [33, 155, 165] focus on partitioning a heterogeneous graph such

as attributed graphs. Some works focus on reducing the number of edges between the

clusters by optimizing modularity [22] or by local graph sparsification [126]. While these

14

solutions reduce the number of edges between the clusters, they rely on moving the vertices

to different clusters freely, hence not applicable to spatial networks. Trajectory cluster-

ing [152, 97, 149], on the other hand, focuses on clustering trajectories in a spatial network.

PIG [144] optimizes the performance of clustering trajectories into k representatives by uti-

lizing k-paths technique that combines map matching and representation of trajectories. Tr-

aClass [87] generates a hierarchy of features by dividing the trajectory data into region-based

and trajectory-based features. CACT [66] discovers frequent movement routes over time by

considering temporal information on the sub-trajectories as many other studies [145, 135].

Sub-trajectory clustering [112, 5] mostly focus on grouping part of the trajectories with other

similar sub-trajectories. TRACLUS [88], for example, uses a two-phase approach to parti-

tion the trajectories into sub-lines then group the similar ones. While these techniques do

cluster edges in a spatial network, they are not applicable to GSViz, where the focus is on

origin-destination spatial networks.

Visualization of spatial points. We present the works under two classes. The first

includes visualization of spatial points such as VAS [110], Kyrix-s [136], Nanocubes [92],

ImMens [94], Tabula [156], SOS [58], ForeCache [19], and HadoopViz [48] . The second

includes techniques to progressively cluster spatial points. IncrementalDBSCAN [50] clusters

spatial points by inserting each incoming point into a pre-existing nearby cluster or forming

its own cluster if it is an outlier. BIRCH [158] uses a tree structure to group spatial points

into clusters based on Euclidean distance. GRIN [32] groups points in a hierarchical structure

and uses the gravity theory to decide the position a new point should be inserted into the

hierarchy. These methods do not consider edges between points.

Edge bundling. Cost-based edge-bundling techniques [64, 129, 104] use a spatial metric

to measure the closeness of the edges and move them closer. These techniques produce

results with a high visual quality but can be very slow when handling a large graph with

many edges. Moreover, these methods bundle edges implicitly by deforming them, while

15

the total number of edges rendered on the screen remains unchanged. Geometry-based edge

bundling [63, 41, 161] uses geometric approaches such as Delaunay triangulation or grid-based

techniques to decide which edges should be grouped. Image-based algorithms [69, 137, 67]

use Gaussian filtering to measure edge densities. Although these implementations could be

applicable in GSViz’s setting, they do not support incremental computation.

Progressive visualization. A section of prior works [78, 115, 75] focus on progressive

computation from the database perspective. Whereas other solutions [141, 53] push the

progressive computation to later stages in the visualization lifecycle such as rendering the

results. There are works that are more general such as sampling techniques [117, 101] to give

an initial result using a sample, and gradually improve the sample result by decreasing the

error margin. These solutions are complementary to GSViz, e.g., we can use a progressive

query slicer, renderer, or sampler. GSViz’s focus is on how to incrementally cluster the

vertices of a network while considering the edges between them and bundle the edges of a

geo-social network.

2.3 GSViz System Overview

In this section, we explain the problem setting using an example, then describe the overall

architecture of GSViz and explain the lifecycle of a visualization request in the system.

Problem formulation. Consider a typical three-tier architecture comprised of: (i) a fron-

tend that submits visualization requests; (ii) a backend database that stores geo-social net-

works in tables; and (iii) a middleware layer that translates visualization requests to database

queries and forwards results to the frontend. To represent geo-social networks, we assume

there is a table T , where every record is an edge connecting two geo-located points that

may be associated with additional information such as text or timestamp. Table 2.1 shows

16

such an example, where individual data points are tweets and a directed edge represents a

reply-to relationship between an original tweet and a reply tweet.

Table 2.1: Sample network data with tweets and their replies

from-id from-
date

from-
coordinate

. . . to-id to-date to-
coordinate

. . .

667057004570 2020-
08-19

(-74.0266,
40.6839)

. . . 669057256558 2020-
08-17

(-73.9625,
40.5417)

. . .

669228452424 2020-
08-11

(-122.4221,
37.7700)

. . . 667131783385 2020-
08-11

(-70.3463,
43.6405)

. . .

669057004984 2020-
08-03

(-111.9217,
40.5933)

. . . 669225335465 2020-
08-01

(-71.1915,
42.2277)

. . .

The frontend layer allows a user to submit ad hoc visualization requests with arbitrary

filtering conditions on spatial, textual, and temporal attributes. The following is an example

query Q that requests for tweets and their replies posted during August 2020 and contain

the keyword vaccine:

Original Query Q

SELECT from-coordinate, to-coordinate

FROM tweet-replies

WHERE to_tsvector(from-text)@@to_tsquery(’vaccine’)

AND from-date between ’2020-08-01’ and ’2020-08-20’

AND from-coordinate box ’((-124.4, 36.5),(-70.1, 45.0))’;

For a large table T , these visualization requests can be computationally expensive as handling

them requires querying the database, transferring the results via the network, and performing

frontend rendering. To allow timely feedback to the user, it is desired to have the middleware

slice the original queryQ into multiplemini-queries, each of which has an additional predicate

on an attribute (which we call a slicing predicate). In the running example, we use “from-

date” as the slicing attribute.

A mini-query Qi

SELECT from-coordinate, to-coordinate

17

FROM tweet-replies

WHERE to_tsvector(from-text)@@to_tsquery(’vaccine’)

AND from-date between ’2020-08-01’ and ’2020-08-05’

AND from-coordinate box ’((-124.4, 36.5),(-70.1, 45.0))’;

The small date range in a mini-query makes it more selective, and an index on the slicing

predicate helps fast retrieval of the result, a subset of the requested network called a sub-

network. Moreover, the small date range in the mini-query captures the dynamic changes

on the network over time. In the running example, the mini-query Qi includes an additional

predicate (in blue) to yield the subnetwork containing the keyword vaccine in the first 5

days in August 2020. The main objective of the middleware is to quickly process and vi-

sualize a subnetwork, in addition to those given by previous mini-queries, in a progressive

fashion while minimizing visual clutter.

Middleware

query
manager

Fr
on
te
nd

bundle
manager

request

cluster
manager

response

request
handler

response
manager

...
generate

mini queries

D
at
ab
as
e...

mini
query
result

Figure 2.3: GSViz system architecture.

System architecture. We introduce a new system called GSViz that adopts the aforemen-

tioned three-tier architecture with a focus on the middleware layer for generating mini-queries

then simplifying its results to visualize the network in a user-friendly fashion. Figure 2.3

depicts the system’s architecture. Its query manager component answers long-running

queries progressively. To reduce visual clutter, the middleware has a cluster manager

and a bundle manager to incrementally cluster spatial points of a geo-social network and

18

bundle edges, respectively.

The lifecycle of a visualization starts when a user submits a request through the frontend

interface. The middleware begins with slicing the original query into multiple mini-queries

by using solutions from the literature [75] then forwards them to the backend database one

by one. Every mini-query request and its response form a batch. Whenever the middleware

receives the result of a mini-query from the database, it takes the following steps to process

the result of the batch: (i) Cluster the vertices of the subnetwork using an edge-aware

spatial point clustering (§2.4), which produces super edges between the clusters; (ii) Bundle

the super edges between the clusters in a progressive fashion; (iii) Forward the simplified

subnetwork to the frontend to render. We call an edge between two clusters a “super edge”

because it represents many edges between individual points across the two clusters. The

result of clustering the vertices and bundling the super edges of a subnetwork is called a

simplified subnetwork.

Batches

batchi

ClusteringBundling

batchi+1

D
at
ab
as
e

………

Tim
e

Process Pipeline

Figure 2.4: Processing subnetworks in two batches in GSViz.

Figure 2.4 shows an example of processing and accumulating the result of two subnetworks

from two batches, by clustering the vertices first as we describe in details in the next section,

then bundling the edges. Each batch is processed entirely before handling a subsequent

batch.

19

2.4 Incremental Edge-Aware Clustering of Geo-social

Network Vertices

A key operation performed by GSViz is incremental spatial clustering of geo-social network

vertices. This merge of nearby points and their associated edges reduces visual clutter of

visualizing large networks. In this section, we first revisit a widely used point-clustering tech-

nique in §2.4.1. Building upon this technique, we introduce in §2.4.2 an edge-aware clustering

algorithm. Lastly, we discuss in §2.4.3 performance optimizations of this algorithm.

2.4.1 Incremental Clustering of Network Vertices

We build the vertex clustering operation based on a widely used spatial point clustering

algorithm called supercluster [39]. At a high level, supercluster takes as input a set of points,

which map to vertices of network edges, and clusters the vertices iteratively. When a new edge

arrives, the algorithms first performs a range search for each vertex of the edge over centers of

existing clusters. The center of the cluster is the average of its points. If there are no existing

clusters, then a point forms its own cluster. The radius ρ of these searches is determined

empirically based on several factors such as the field of view and screen resolution. Note that

the range search can return multiple candidate clusters for each vertex. To determine which

cluster a vertex should be inserted into, supercluster takes a greedy approach by selecting the

cluster whose center lies closest to the vertex. Although this simple method works adequately

for clustering spatial points, it neglects network edges, thus can lead to a large number of

super edges after clustering.

Figure 2.5 illustrates such an example. For simplicity, we represent an edge e as two vertices

(l, r) to denote the left and right vertex respectively. Upon receiving a new edge (l, r),

supercluster performs a range search around l and r, as shown in Figure 2.5-i. Then, points

20

l and r are inserted in their nearest clusters, i.e., a and b respectively. This merge causes

the resulting network to contain a super edge (a, b), as demonstrated in Figure 2.5-ii. In

this example, since there already exists a super edge (c, d), inserting l into cluster c and

r into d is better, as shown in Figure 2.5-iii. This example demonstrates that, to produce

high-quality visualizations for geo-social networks, the point clustering algorithm needs to

be edge-aware. That is, it needs to consider the information of existing super edges between

the clusters during the clustering process. We present our solution to this problem next.

baba

d c d

a

c

b
dc

i) Finding nearest
clusters of vertices
of a new edge

ii) SUPERCLUSTER:
inserting a vertex to
its nearest cluster,
thus creating a new
super edge

iii) Proposed edge-aware
approach: inserting two
vertices to their nearby
clusters already connected
by a super edge

new
points

range
search

existing
cluster

new
edge

existing
edge

Figure 2.5: Incrementally clustering a new edge (l, r). For simplicity, we omit the
edge directions and cluster centers.

2.4.2 Achieving Edge-Awareness

Algorithm 2.1 details the steps of incrementally clustering vertices of a new batch of edges

E. For each edge e = (l, r) in E, our goal is to insert both of its vertices into nearby clusters

while minimizing the number of super edges. To this end, we start with checking if the

distance between the two vertices is within ρ. If so, we merge them into one point m and

insert it into its nearest cluster by performing a nearest neighbor search. The goal of this

step is to filter the edges that are too short (lines 2–5). If the distance is larger than ρ, we

find clusters closest to each each vertex by performing a nearest neighbor search (lines 7–8).

For each vertex, if it does not have any nearby clusters, we create a new cluster for it and

21

Algorithm 2.1: Clustering vertices in a batch of edges E

Input: A new batch of edges E; a set of existing clusters C; and a range radius ρ
Output: Updated set of clusters C

1 foreach edge e = (l, r) in E do
2 if distance(l,r) ≤ ρ then
3 merge them to a point m;
4 insert m to its nearest cluster;
5 continue;

6 end
7 Cl = C.rangeSearch(l, ρ) ; // find near clusters

8 Cr = C.rangeSearch(r, ρ);
9 if Cl is ∅ then

10 create a cluster cl for l and add cl to Cl;

11 end
12 if Cr is ∅ then
13 create a cluster cr for r and add cr to Cr;
14 end
15 if ∃cl ∈ Cl, ∃cr ∈ Cr with a super edge (cl, cr) then
16 cl.insert(l); cr.insert(r);
17 else
18 insert l to its nearest cluster;
19 insert r to its nearest cluster;
20 create a super edge between the two clusters;

21 end

22 end
23 return C;

insert the new cluster to the corresponding set (lines 9–13). We check if there exists a pair

of candidate clusters that already has a super edge connecting them (line 15). If a pair

exists, the edge vertices are inserted into these clusters. Revisiting the running example in

Figure 2.5-iii, using this technique, point l will be inserted into cluster c and point r into d.

If such a pair is not found, the two vertices are inserted into their nearest clusters (lines 18–

19). Then we create a super edge to connect the two clusters (line 20). One may ask about

the trade-off between merging vertices of edges with existing clusters and the accuracy of

the clustering. The range radius of the search is bounded by ρ so a vertex does not merge

with a far-off cluster. Moreover, we propose an objective function in future work to find the

optimal balance between efficiency, reducing visual clutter, and accuracy.

22

Increasing the chance of including more candidate clusters. Noticeably, we get

the benefit of edge-aware point clustering when the following two conditions are satisfied:

(i) both vertices have candidate clusters in the range radius; and (ii) there exists a super edge

between a pair of candidate clusters from each vertex. If one or both vertices do not have

candidate clusters in the range, we increase the radius ρ gradually to include more candidate

clusters. One would be interested in increasing the range search drastically to include as many

candidate clusters as possible to insert the new edge into an existing super edge, resulting

in a reduction in the visual clutter. However, this action might end up inserting an outlier

vertex to a very far cluster, causing misleading information in the resulting visualization. To

avoid this, we set a threshold on the maximum value of ρ.

Edge-aware merging of clusters. The edge-aware clustering discussed so far is utilized

on newly added edges and affects the decision of inserting both vertices into existing clusters

or creating new clusters. Recall that our motivation for clustering the points is to reduce the

clutter by reducing the number of super edges. We take advantage of the greedy approach of

this clustering algorithm to further reduce the number of super edges by merging two super

edges into one. We check if two super edges can be merged whenever a new point is inserted

into a cluster.

ii) Range radius
around the centroid of
the shifted cluster to
find nearby clusters

dc

i) Newly inserted
point causes the
cluster centroid to
shift

ba

new
point

range
search

existing
cluster

cluster
center

super
edge

f

e

f

e

hg
dc

ba
f

e

iii) Merge two
super edges their
corresponding
vertices overlap

dc

ba

Figure 2.6: Progressive merging of super edges. We omitted the cluster shape for
notational simplicity.

23

Figure 2.6 demonstrates the merge operation due to the insertion of a new point into cluster

a. When the new point is inserted into cluster a, the cluster’s center may shift due to the

new addition, as shown in Figure 2.6-i. Over time, this shift may cause the cluster’s center

to be within the range radius ρ of a nearby cluster, such as clusters e and c around a as

shown in Figure 2.6-ii. We say two clusters are “overlapping” if their centers are within ρ.

We take this opportunity to merge cluster a with one of its neighboring clusters to further

reduce the clutter. However, if we merge the two clusters without considering the super

edges connected to them, we may not solve the problem of reducing the number of super

edges. For example, if we merge the clusters e and a, the number of super edges remains

the same. To solve this problem, we add one more condition to the merge operation: two

clusters can be merged only if their corresponding other vertices connected to the clusters are

also overlapping. Using this approach, clusters a and c are merged into a larger set cluster

g, where its center is the weighted average of the centers of the two clusters. Similarly, the

other clusters connected to g are also merged, i.e., merge b and d into a cluster h, as shown

in Figure 2.6-iii. Notice that clusters b and d were not merged prior to the addition of the

new point as the condition was not satisfied.

2.4.3 Improving Computational Efficiency

Computational challenges. The computational complexity of the edge-aware clustering

algorithm is higher than that of traditional methods due to the need of examining connec-

tivity between candidate clusters. Specifically, traditional point clustering algorithms such

as supercluster always pick the nearest cluster, leading to a complexity of O(dN), where d is

the number of candidate clusters for a point n in a batch and N is the number of points in

the batch, i.e., N = 2E, where E is the size of a subnetwork in the batch. The complexity of

the edge-aware clustering is O(d2N), as we need to find the adjacency between every pair of

candidate clusters from each corresponding vertex to check if they are connected. This high

24

complexity negatively affects the visualization performance. To address the performance is-

sue, we propose a grid-based technique to quickly find a nearby super edge within the range

radius that is not necessarily the nearest.

Grid-based acceleration. We first divide the space into a grid, where the size of a cell

is determined by ρ. Then we build an in-memory hash table to store the super edges. A

key in the hash table consists of a pair of cell IDs and the value is a set of edges whose

vertices are in the corresponding cells. Whenever a new super edge is formed between two

clusters, we insert it to the hash table. Figure 2.7 shows how we use the hash table to insert

an edge e = (l, r) into an existing super edge. We first identify the grid cells within the

search radius from l and from r. Consider the cell-ID pair [⟨x2, y2⟩, ⟨x3, y6⟩] in the hash table

that includes a set of existing super edges in the cells. We choose any edge that both of

its vertices lie within the search radius. i.e., edge e1. We insert the points l and r to the

corresponding clusters represented as the vertices of the edge e1. The complexity of this

approach is reduced to O(E).

1st cell ID 2nd cell ID super edges

(x2,y2) (x3,y6) e1, e2

(x4,y6) (x2,y8) e3

e1

range
search new

edge
x1

e3
e2

existing
edges

cluster
centroid

Super Edge Hash Table

x2

x3

x4

y1 y2 y3 y4 y5 y6 y7 y8

Figure 2.7: Using a grid to speed up edge-aware clustering.

25

2.5 Incremental Edge Bundling for Network Simplifi-

cation

In this section, we first describe the problem of network simplification using edge bundling (§2.5.1).

Then, we present a new technique to enable efficient and incremental bundling of network

edges (§2.5.2 and §2.5.3). For simplicity, we assume vertices of an edge in the network do

not change in later batches and will relax this assumption in the next section.

2.5.1 Problem Specification

Given a geo-social network, we consider the problem of visually simplifying the network

while preserving as much information as possible. This has been typically achieved via edge

bundling—a process that deforms network edges so that nearby ones share similar shapes,

allowing the screen space to be used more efficiently. We utilize the widely adopted force-

directed edge bundling (FDEB) [64].

Force-directed edge bundling. We now provide a brief recap of the FDEB algorithm,

starting with the following key definitions:

Definition 2.1. For two edges e1 and e2, their compatibility measure, denoted Ce(e1, e2), is

a value computed using their angle, length, position, and visibility [64].

Definition 2.2. We say two edges e1 and e2 are compatible if Ce(e1, e2) ≥ δ for a given

constant threshold δ.

Given an edge a and a set of edges S = {b1, . . . , bn} compatible with a, FDEB deforms

the edge a based on S as follows. Assuming that the edge is represented as a polyline

a = (a0, a1, . . . , am) with a0 and am being the two fixed endpoints, the remaining points

26

a1, . . . , am−1 are called the edge’s control points. To deform a network edge a, FDEB applies

two types of forces—spring and electrostatic—to its control points. The spring force exists

between two adjacent points within the same edge. That is, each control point ai (with 0 <

i < m) received spring forces Fs(ai, ai−1) and Fs(ai, ai+1) that are determined, respectively,

by the positions of ai−1 and ai+1 [64]. The electrostatic force, on the other hand, is between

control points from different compatible edges. Specifically, let bj = (bj,0, . . . , bj,m) be an

edge from S. Then, for each 0 < i < m, the electrostatic force acting on ai by bj,i is

Fe(ai, bj,i) =

«

ai bj,i
∥ai − bj,i∥

, (2.1)

where
«

ai bj,i denotes the unit vector pointing from ai to bj,i. To avoid singularities, Fe is set

to zero when ∥ai − bj,i∥ is below a predetermined threshold.

In this way, the net force acting on ai (given S) is

F (ai, S) = Fs(ai, ai−1) + Fs(ai, ai+1) +
∑
bj∈S

Fe(ai, bj,i). (2.2)

All forces F , Fs, and Fe in the equation are two-dimensional vectors. By computing the

net force acting on each control point ai, we move these points accordingly, as shown in

Figure 2.8. We call the entire process “bundling edge a using the set of edges S.”

Given a set of edges E = {e1, . . . , en}, the FDEB algorithm bundles these edges as follows.

For each ei ∈ E, the algorithm first computes Si ⊆ E \ {ei} comprised of edges compatible

with ei, and then uses Si to bundle the edge ei using the aforementioned process. Lastly, the

bundling of each edge ei, using the compatible ones, is repeated for a predetermined number

of iterations.

27

a

curved a

b2

b1

control point

Figure 2.8: Dragging a control point on edge
a using spring and electrostatic forces of
compatible edges b1 and b2.

Computational challenges. To

adopt FDEB in GSViz, a main challenge

we need to overcome is its high com-

putational cost. Specifically, to enable

progressive visualization, we need to ef-

ficiently bundle edges of subnetworks

that arrive in batches. A näıve solu-

tion is to bundle the new edges using

existing subnetworks. This, however, is inefficient as computing the compatible set Si for

each new edge ei in the batch requires examining all the edges received so far. Moreover,

computing electrostatic forces using Eq. (2.1) requires examining all compatible edges from

earlier batches. This clearly cannot meet the responsiveness requirement in interactive visu-

alization. In the rest of this section, we present a novel technique for efficient incremental

edge bundling. Notice that the spring forces are computed within each edge locally, so they

can be computed with a low overhead. Thus we mainly focus on improving the performance

of 1 finding the compatible edges for each new edge and 2 the computation of electrostatic

forces.

2.5.2 PEB-Tree

At the core of our technique is a new hierarchical data structure—which we call the “PEB-

tree” —that represents a set of edges E. (“PEB” stands for Progressive Edge Bundling.) As

shown in Figure 2.9, each leaf of the PEB-tree corresponds to a “raw” edge from E. Each

internal node stores: (i) an edge as a representative of the raw edges in the descendants of

this node; and (ii) a weight ω that is the number of those raw edges. Edges of the same

parent siblings are initially compatible with each other, and the parent’s edge is the weighted

average edge computed using the child edges. Each vertex of the parent edge is a weighted

28

average of the corresponding vertices of the child edges. Figure 2.9 shows the details of

computing the vertex lp of the weighted edge in the node np, where (xp, yp) is the weighted

average of vertices l1 and l2 from the child nodes n1 and n2. The tree has a pseudo root as

the edges of its children are not required to be compatible with each other.

n1 n2 n3 n4

n5np

ni

root

......

e1
ep

e2

weight

edge

Figure 2.9: A PEB-tree for a set of edges.

Tree construction for the first batch. We construct a PEB-tree for the first batch in

progressive visualization as follows. Initially, we create a leaf node for each edge in this

batch with a weight of 1. We group these edges such that all the edges in each group are

compatible with each other. For each group, we construct a parent node that (i) stores an

edge given by the weighted average of all edges stored in its children; and (ii) has a weight

that equals the sum of the weights of its children. This process is repeated by grouping the

nodes without a parent until all edges in those nodes are mutually incompatible. For each

remaining leaf node that is incompatible with any other node, we construct a replica as its

parent to represent a group that includes the edge of the leaf, so that future compatible

edges could be merged into this group. Lastly, we construct a pseudo root as the parent of

these remaining edges.

29

2.5.3 Incremental Edge Bundling Using PEB-tree

We now describe how to use the PEB-tree to efficiently and incrementally bundle edges.

Algorithm 2.2 details the steps of incrementally maintaining the tree when bundling a new

batch of edges E. For every edge e ∈ E, we create a leaf node n with unit weight (lines 1–2).

To find a place on the tree to insert this new node, we traverse the PEB-tree top-down, and

use the compatibility value between each tree node and e to guide the traversal. We find

a deepest, i.e., farthest from the root, compatible non-leaf node n′. Recall that this node

stores an edge that is a representative of all raw edges in leaves that are descendants of this

node. We use the same method as the one introduced in [64] to compute the compatibility

value between a raw edge and a weighted edge (line 3). If there exists such an n′ node, we

add n as a child of n′ (line 7) and then traverse upward to the root to adjust the edges and

their weights on the way. As we already traversed the tree to node n′, we can efficiently

update the edges and weights along the path to the root. Notice that it is possible that the

new edge e is not compatible with every child edge of node n′. In this case, after making

n′ the parent of n, the children of n′ will no longer be mutually compatible. If we want

to keep this all-pair-compatible property, we could partition the children into groups such

that each group still has this property. A main downside of this approach is that there will

be too many groups, and a new node can cause cascading effect on the tree, which can be

computationally expensive. We could relax this property for each group of children of the

same parent node. On the other hand, if n′ does not exist, we create a new parent node n′

for the new leaf n, which is a replica of the new edge, then add n′ as a new child under the

root (line 5). The replica parent represents a group containing this singular edge to allow

future compatible edges to be merged into. Note that the time complexity of traversing

and maintaining the PEB-tree depends on its depth and branching factor, which can be

controlled using heuristics for efficient traversal.

After inserting all the edges of the new batch E into the PEB-tree, we use the new tree to

30

Algorithm 2.2: Incremental maintenance of PEB-tree and edge bundling

Input: A PEB-tree T of edges of previous batches; and a new batch of edges E;
Output: Updated T and a set of curved edges for E.
// Update T

1 foreach edge e in E do
2 n = create a new node (e,1);

// get lowest non-leaf node with an edge compatible with e

3 n′ = T .traverse(n);
4 if n′ is not found then
5 n′ = create a new parent node for n;
6 end
7 n′.insert(n) ; // insert n as a child of n′

8 end
// Bundle edges in E

9 S = ∅;
10 foreach edge e in E do
11 let n′(e′, ω) be the corresponding parent node of e;
12 ê = Edge-Curving(e, e′, ω) ; // drag e towards e′

13 S.add(ê) ;

14 end
15 return (T, S) ;

bundle these edges. For each edge e ∈ E, we use its corresponding parent node n′ on the

tree to bundle e using the two types of forces in the FDEB algorithm (lines 10–12). In order

to produce a similar edge bundling result of using all the child nodes under n′ by using only

their parent’s weighted edge e′, we redefine the electrostatic force on a control point ai to

include the weight information as follows:

Fe

(
ei, n

′(e′i, ω
′)
)
=

ω′

∥ei − e′i∥
«

eie
′
i. (2.3)

Deforming the new edge e using only the weighted average parent n′ offers a better perfor-

mance compared with using all raw edges from the leaf nodes under n′. We note that the

DEB algorithm [129] also considers edge weights in its revised electrostatic force function.

However, their approach does not use a single edge to represent multiple edges, thus does not

solve the efficiency issue. Lastly, the resulting curved edge, which contains the information

31

of the new location of the control points, is sent to the frontend to be visualized while the

edge in the tree remains the same as before the deformation (lines 13–15).

2.5.4 Sending Bundled Results to the Frontend

After incrementally bundling the edges in a new batch, the middleware needs to send the

curved edges to the frontend. One way to do so is to store the results of all the batches up

to now in the middleware, and send the accumulated results to the frontend to render from

scratch after every batch. This approach has a high overhead in terms of data transfer and

rendering cost, and the overhead further increases as more batches are processed. A more

efficient way is to send the results of each batch to the frontend, i.e., curved edges in the

new batch. Notice that a curved edge is a set of control points.

After the frontend receives the bundled results of each batch, it needs to render them on

top of previous results. There are mainly two ways (i) The frontend represents the graph

as an object, appends the new curved edges to the object, and re-renders the object from

scratch. (ii) The frontend has multiple layers, creates a new layer for the new curved edges,

and renders the new layer only. The second approach is more efficient. Moreover, as we will

see in §2.6, it makes updating previously rendered results more efficient.

2.6 Integrating Vertex Clustering and Edge Bundling

So far we developed two progressive network-simplification techniques: one for clustering the

vertices in a new batch, and one for bundling the new edges. In this section, we study how

to integrate them in GSViz and address related challenges.

We integrate the two techniques in two steps. For the subnetwork in the first batch B1, the

32

middleware first uses the edge-aware clustering algorithm in §2.4.2 to group these vertices and

generate a set of super edges between the clusters, where a super edge connects the centers of

two clusters. It then uses the technique in §2.5.2 to bundle these super edges. Finally, it sends

the results, including the clusters and the curved super edges, to the frontend to display.

For each new batch Bi, the middleware repeats the aforementioned steps. For simplicity,

we denote a super edge as e, and the curved super edge after bundling as ê throughout this

section.

One problem in integrating these two techniques for the batch Bi is the effect of the vertex

clustering on those existing super edges computed on earlier batches B1, . . . , Bi−1. There

are two cases where these existing super edges can be affected.

2.6.1 Updating Edges Affected by Clustering

Figure 2.6 shows the first case. When we merge two existing clusters, their connected super

edges will change. In the figure, after we merge clusters a and c to cluster g and merge

clusters b and d to h, we should also delete super edges (a, b) and (c, d), and add a new super

edge (g, h). ii) Figure 2.10 illustrates the second case. After adding a new vertex p in Bi to

an existing cluster c, the center of c shifts. As a result, the super edge e connected to this

center also shifts. In both cases, the changes to the existing super edges should be reflected

in both the PEB-tree and the displayed results on the frontend.

new point

clusterold edge

updated edge
old center
new center

Figure 2.10: Adding a new point in an exist-
ing cluster causes the cluster and its related
super edge to shift.

Updating PEB-tree. The changes

to existing super edges in both cases

include edge deletions and edge inser-

tions. In §2.5.3 we already discussed

how to insert edges to the tree. To

delete an existing edge from the tree,

33

we locate the leaf node that represents

the old edge, and delete it from the tree. We store a pointer for each edge to its leaf node.

Then, we propagate this deletion upwards and for each node on the path from the leaf to

the root, we adjust its weight and edge. For instance, consider the example in Figure 2.11.

Suppose e1 is a super edge before batch Bi. After the vertex-clustering step for the new

batch Bi, edge e1 shifts to e′1. We delete e1 from the PEB-tree and insert the new edge e′1

in the tree. If we were to directly update the edge e1 to the new edge e′1, then the new edge

may not be compatible with its siblings. To address this concern, we first delete e1, then

insert e′1 by using the compatibility score as discussed in §2.5 to traverse the PEB-tree. Thus

e′1 is still compatible with its new siblings. After we handle the updates of existing super

edges, we start progressively inserting the newly generated super edges in the batch, e.g., e2

in the running example.

Updating visualization results. As these updated super edges are already displayed to

the user in the frontend, we also need to “hide” the outdated ones when changes occur.

Consider the two approaches to rendering results in the frontend. Approach (i) that re-

renders the new results from scratch is not appealing due to its low performance. For

approach (ii) that renders new results as a new layer, we still need to identify the layers of

those affected edges in order to delete these layers. To know which super edge belongs to

which layer, the middleware stores for each super edge its batch number. We use the batch

number to identify which layer the frontend has to replace. When updating those affected

super edges, the middleware does not need to rebundle other edges. For those affected

super edges, the middleware identifies their batches, then sends these batches and notifies

the frontend to delete and redraw those corresponding layers. In the running example in

Figure 2.11, after batch Bi−1, the hash map includes ⟨Bi−1 : ê1 . . .⟩, since the super edge

e1 belongs to batch Bi−1. After the vertex-clustering step for batch Bi, the edge e1 shifts.

The middleware identifies its batch Bi−1, and notifies the frontend to delete and redraw the

34

layer for this batch. To reduce the overhead of redrawing multiple layers because of frequent

updates in super edges whenever a center of the cluster is shifted, we can optionally relax

the updates on existing super edges to be performed only when a vertex of a super edge is

located outside the boundary of its corresponding cluster.

batchi-1

batchi

……

c

…

c

c

PEB-tree

PEB-tree
c

Tim
e

Frontend Middleware

Batch# edges

Batch# edges

Xdelete

Figure 2.11: Maintaining updated edges affected by vertex clustering in batch
Bi.

2.6.2 Supporting Zooming and Panning

So far we discussed vertex clustering and edge bundling at one zoom level, where the result

of both steps is a set of clusters and super edges between the clusters on a queried region.

To support efficient zooming and panning operations, GSViz repeats the process of vertex

clustering and edge bundling per batch at multiple zoom levels [62] in the background. GSViz

maintains a PEB-tree at every level such that the leaves of the PEB-tree at each level rep-

resent the super edges between the clusters at that level. If a user wants to zoom or pan

on the map, GSViz instantaneously retrieves the computed subnetwork for the particular

region from the corresponding level. To reduce the overhead of redundantly finding candi-

date clusters using the range search at all levels for a particular vertex of an edge during

clustering, GSViz maintains a tree data structure to connect the clusters at lower levels with

35

the corresponding aggregated clusters at upper levels.

2.6.2.1 Reducing Network Edges with a Tree-cut

We now discuss how we leverage the hierarchical structure, which supports zooming, to

further reduce the number of edges and, consequently, the visual clutter. Let us consider

an abstract view of the visual result of a network after applying the edge-aware clustering

algorithm for a particular zoom level, as depicted in Figure 2.12a. In data analytics, users

are typically interested in a specific region of the result before shifting their focus to other

parts of the data [46]. In the provided example, the user’s viewport approximately covers

the western side of the US map. By knowing the direction and density of the remaining

edges, the analyst can make informed decisions regarding which region to explore next. In

this instance, the analyst might be interested in examining the eastern part of the map, as

most of the edges are directed towards that region rather than the north or south. With this

observation in mind, displaying only a few edges towards the eastern side of the map would

suffice to provide a comprehensive overview of the network and guide the analyst accordingly.

Notably, the number of edges visible on the screen in this example is 7. It is essential to

recall that the primary objective of visual decluttering is to minimize the number of edges

displayed on the screen.

We identify a technique that effectively reduces the number of edges by leveraging the hier-

archical structure of the clusters. This approach involves selecting network clusters from the

zoom level, which the user wishes to inspect within the viewport. At the same time, we con-

sider the network clusters from higher zoom levels that represent abstracted and aggregated

points outside the viewport. Revisiting the earlier example, we select the clusters inside the

user’s viewport from zoom level i while selecting those outside the screen to be from zoom

level i− 2 (namely, cluster c1), as shown in Figure 2.12b. By employing this method, we can

notably observe that the number of edges visible to the user has decreased from 7 to 5. Note

36

(a) Visual result of a clus-
tered network.

C5

C4C2

C3
zoom in

C0
C1

C1

(b) Visual result of a decluttered clustered network with
clusters from different zoom levels.

Figure 2.12: Abstract example to show usage of clusters from different zoom
levels to reduce the number of edges.

that this reduction in the number of edges is particularly significant when dealing with large

networks, as depicted in Figure 2.15, where the number of the network edges reduced from

3, 651 to 390. This technique primarily revolves around a careful selection of the network

clusters to minimize the number of visible edges. We formally model this approach as a

tree-cut problem, as we will detail in the subsequent section.

Figure 2.13: A geo-
social network of tweets
containing the keyword
“vaccine” with 3, 651
edges.

Figure 2.14: Visual result
of the network after ap-
plying GSViz’s techniques
resulting in 473 edges.

Figure 2.15: Visual re-
sult after applying GSViz’s
“tree-cut” approach to
reduce the number of
edges to 390.

Choice of clusters. A primary question we face is which clusters to choose. For example,

why did we replace the points outside the viewport in the abstract network example presented

in Figure 2.12b with clusters from leveli−2 instead of those in leveli−1? The objective is to

select network clusters from the highest (abstracted) possible levels, as long as they do not

conflict with those within the viewport. In Figure 2.16, we provide a sample hierarchy of

37

clusters to explain the definition of a conflict between the clusters. Each node in the hierarchy

represents a cluster, and the links indicate the parent relation from the upper zoom level.

We omit the details of the network edges between the clusters, in the figure, for simplicity. In

the case of cluster ‘a’, it shares the same parent as the clusters within the screen’s viewport,

which means we cannot choose its parent as the aggregated cluster. Likewise, with cluster

‘b’, since its parent serves as an ancestor of the clusters within the viewport, we cannot select

its parent.

...
clusters
inside
screen

viewport

indicates the highest
feasible ancestor for
the external clusters

tree-cut of
selected clusters

a

b

Figure 2.16: Sample clusters hierar-
chy and the highest ancestors of choice
(highlighted in blue) for those clusters
outside the screen’s viewport.

Process of selecting clusters. When the

user zooms into a specific region on the map

or pans over a particular location, we de-

termine which clusters and associated edges

to display. Starting from the zoom level of

the viewport, we select all of the network

clusters within the viewport. Next, for each

cluster outside the viewport at the same

level, we traverse in a bottom-up manner to

choose its ancestors. For each cluster in the

current zoom level, we examine its highest

ancestor that can be chosen. We perform a test to verify if the ancestor is also an ancestor of

the clusters within the viewport. Once we include an ancestor in the set of chosen clusters,

we cut off the path to all of its descendants and remove sibling clusters to avoid redundant

computations in the future.

Notice that this process implies that the choice of clusters, and consequently the edge bun-

dles, are only computed and known after the user pans or zooms a particular region on the

map, unlike the previous approach we discussed in Section 2.6.2. We trade-off between the

two discussed approaches to achieve efficiency or aesthetic of the visual representation.

38

2.7 Experiments

In this section, we report an experimental evaluation of GSViz1 using real datasets to answer

the following questions. (1) How does edge-aware clustering perform (§2.7.2)? (2) How does

the incremental edge bundling using PEB-tree perform (§2.7.3)? (3) How does GSViz perform

when integrating the techniques and how does it compare to similar systems (§2.7.4)? (4)

How is the quality of the final visual result perceived by users (§2.7.5)?.

2.7.1 Experiment Setting

We used three real geo-social network datasets as shown in Table 2.2. Gowalla [36] represents

users’ geotagged check-ins to places and their social friendship between early 2009 and late

2010. Foursquare [125] represents a social network between geo-tagged users collected from

late 2011 till early 2012 in the US. We generated a random timestamp for every tuple and

used it to specify a slicing predicate to query the data progressively. Twitter includes tweets

and their replies collected from late 2015 until February 2021.

Table 2.2: Datasets.

Dataset Content Vertex # Edge # Size (GB)

Gowalla Users’ checkins and their social relation 99, 563 913, 660 0.12
Foursquare Users’ location and their social relation 28, 419 7, 176, 141 2.5
Twitter Interaction between Twitter users by replies 33, 677, 670 20, 023, 731 8.6

We developed GSViz in Java. Additionally, to evaluate the developed algorithm of Progres-

sive Edge-aware Clustering (PEAC) in §2.4.2, we implemented a greedy incremental version of

Supercluster [62] called “Hierarchical Greedy Clustering” (HGC) in the middleware as “Base-

line”. Similarly, we implemented non-incremental FDEB [64] as the baseline to evaluate the

Incremental Edge Bundling (PEB) in §2.5.2. We used two approaches for slicing a query

into multiple mini-queries using the time predicate. The first one is called fixed-interval,

1GSViz is available on Github (https://github.com/sadeemsaleh/gsviz)

39

https://github.com/sadeemsaleh/gsviz

which slices a query into equi-size time intervals. The other strategy is called DRUM [75],

which slices a query into dynamic range intervals using a linear regression model to maintain

the same running time from the database for each mini-query. Unless otherwise stated, the

rhythm in DRUM was set to 500ms.

We ran the experiments on a 64-bit JVM on the Ubuntu 14 operating system on a machine

with an Intel Xeon CPU, 98 GB of RAM, and a 2-TB hard disk. The data was stored

in PostgreSQL 11.3 on the same machine. We built a B-tree index on the time attribute

on which we specified the slicing predicate. Additionally, we built an inverted index on

the text attribute on Twitter. We used keywords with different selectivity values to filter

Twitter’s “text”. The Foursquare and Gowalla datasets did not have a text attribute, so we

used the user-ID to specify range conditions. Each reported result is the average of three

runs. We used a query that resulted in around 100K edges in total unless otherwise stated.

To evaluate the quality of visualization on different zoom levels, we used levels ranging from

3 that showed north and central America to 7 that showed details of a US city. Experiments

in (§2.7.4) and (§2.7.5) are only done on the largest dataset Twitter.

2.7.2 Progressive Vertex Clustering

Effect of batch size on clustering performance. We evaluated the performance of

PEAC against the baseline HGC. We measured the effect of varying the batch size on the

performance of clustering vertices of a subnetwork in a new batch. We used the DRUM

approach for slicing the query to keep a constant running time and similar batch sizes. We

took the average of the batch size over all the batches from three runs. We varied the rhythm

in DRUM between 1 second to 3 seconds.

Figure 2.17 shows the average response time of all batches for one batch size. Both HGC and

PEAC had a sub-second response time when the batch had around 2K edges. As the batch

40

size increased to 7K edges, HGC’s response time increased to 2.8 seconds while PEAC’s time

was within 1.6 seconds. The reason PEAC’s response time increased at a slower rate compared

to HGC was due to the benefit of applying the grid-based technique discussed in §2.4.3 on

PEAC to cluster the edges in the batch. Hence its performance was proportional to the batch

size only, whereas HGC’s performance was additionally affected by the neighboring clusters

per vertex.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8

R
e
s
p
o
n
s
e

 T
im
e

 (
s
)

Batch Size (thousands)

HGC
PEAC

(a) Gowalla.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8

R
e
s
p
o
n
s
e

 T
im
e

 (
s
)

Batch Size (thousands)

HGC
PEAC

(b) Foursquare.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8

R
e
s
p
o
n
s
e

 T
im
e

 (
s
)

Batch Size (thousands)

HGC
PEAC

(c) Twitter.

Figure 2.17: Time of vertex clustering per batch (fixed batch size using DRUM).

Effect of edge-aware clustering on graph density. We evaluated PEAC’s reduction on

the number of super edges compared to HGC. We used graph density [103], which is measured

as the number of edges over the number of possible edges between the vertices in the graph.

In our setting, we used the number of super edges that resulted from the clustering over

the number of raw edges, i.e., # of super edges
of raw edges

. Figure 2.18 shows the results of the network’s

density for different zoom levels. For the Foursquare dataset, on zoom level 4, HGC resulted

in 2, 558 super edges, while PEAC significantly reduced the number to as low as 934. The

graph density of PEAC was more noticeable at zoom levels 4, 5, and 6. At zoom level 3,

the range radius ρ was large and it resulted in aggregating the network to include only a

few clusters, which led to only a few super edges connecting them in both HGC and PEAC.

Zoom level 7 had only a few clusters due to the small number of vertices in the small area

of a city. As a result, both HGC and PEAC had few super edges.

41

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 3 3.5 4 4.5 5 5.5 6 6.5 7

G
ra
p
h

 D
e
n
s
ity

Zoom Level

HGC
PEAC

(a) Gowalla.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 3 3.5 4 4.5 5 5.5 6 6.5 7

G
ra
p
h

 D
e
n
s
ity

Zoom Level

HGC
PEAC

(b) Foursquare.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 3 3.5 4 4.5 5 5.5 6 6.5 7

G
ra
p
h

 D
e
n
s
ity

Zoom Level

HGC
PEAC

(c) Twitter.

Figure 2.18: Graph density on different zoom levels (fixed batch size using
DRUM).

2.7.3 Progressive Edge Bundling

We evaluated the performance of the non-incremental baseline FDEB and our incremental

approach PEB. Since FDEB runs the bundling algorithm in each batch on the accumulated

result of previous batches, we made sure the result of a batch is the same across different

runs. In order to do that, we used the fixed-interval slicing approach. As there is no common

way to quantitatively measure the edge-bundling quality [128, 105, 160], we measured the

quality of the visual result of the entire network in (§2.7.5).

Bundling performance in different batches. Since the performance of FDEB was very

slow, we chose a query that resulted in a small network with 10k edges in total. Figure 2.19

shows the performance results for different batches, each with range of two months. Since

the time domain of the Twitter dataset was larger than the other two datasets, its number

of batches used to slice the time range was higher. The results show that, not surprisingly,

FDEB’s performance decreased in later batches, resulting in response time as high as a

minute. On the other hand, PEB had an average response time within 200ms on every

batch. The Foursquare dataset had more edges compatible to each other, which resulted in

a lower performance for FDEB (up to a minute) compared to the performance on Twitter

(half a minute). PEB was not affected by this issue since the technique only uses one edge

to bundle another edge. PEB showed a small spike in the early batches, of up to a second,

due to the special case of constructing the PEB-tree in the first batch using the baseline

42

FDEB. PEB had a spike of a second on the 7th batch using Gowalla dataset because that

batch contained most of the edges of the query.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10

R
e
s
p
o
n
s
e

 t
im
e

 (
s
)

Batch ID

FDEB
PEB

(a) Gowalla.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8

R
e
s
p
o
n
s
e

 t
im
e

 (
s
)

Batch ID

FDEB
PEB

(b) Foursquare.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35

R
e
s
p
o
n
s
e

 t
im
e

 (
s
)

Batch ID

FDEB
PEB

(c) Twitter.

Figure 2.19: Time of edge bundling for different batches.

Effect of interval size on bundling performance. We evaluated the effect of varying the

interval range size on the performance of FDEB and PEB. As the slicing interval increased,

the number of edges per batch increased as well. We used a query that generated around 3K

edges in total. Figure 2.20 shows the average response time of edge bundling per batch using

FDEB and PEB. When the range was two months in both Twitter and Foursquare, FDEB’s

response time was about 7.3 seconds, whereas PEB’s response time was about 100 ms. When

the slicing interval was 6 months, FDEB’s response time increased to more than 10 seconds,

while PEB’s response time was only 1.6 seconds. FDEB’s performance was better on Gowalla

than its performance on Twitter and Foursquare datasets because most the edges were not

compatible. We note that the response time of PEB on all datasets was mostly affected by

the first batch when we used the baseline to construct the PEB-tree.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 2.5 3 3.5 4 4.5 5 5.5 6

R
e
s
p
o
n
s
e

 t
im
e

 (
s
)

Interval range (months)

FDEB
PEB

(a) Gowalla.

 0

 2

 4

 6

 8

 10

 12

 2 2.5 3 3.5 4 4.5 5 5.5 6

R
e
s
p
o
n
s
e

 t
im
e

 (
s
)

Interval range (months)

FDEB
PEB

(b) Foursquare.

 0

 2

 4

 6

 8

 10

 12

 2 2.5 3 3.5 4 4.5 5 5.5 6

R
e
s
p
o
n
s
e

 t
im
e

 (
s
)

Interval range (months)

FDEB
PEB

(c) Twitter.

Figure 2.20: Bundling time per batch for different slicing intervals.

43

2.7.4 Integrating Both Techniques

We evaluated the performance of integrating both vertex clustering and edge bundling during

the whole lifecycle of a visualization request in GSViz, including querying the database,

clustering vertices, and bundling edges. We considered a baseline approach that used HGC

for vertex clustering and FDEB for edge bundling. We then considered GSViz’s approach that

used PEAC for vertex clustering and PEB for edge bundling. We used the Twitter dataset

and varied the keyword selectivity from 0.05% to 2.5%, resulting in a network that consisted

of 10K to 500K raw edges. The number of super edges after clustering ranged from 1K to

3K. Figure 2.21 shows the average response time per batch for different keyword selectivity

values. GSViz had a stable response time of 600 ms per batch regardless of the network size

because the batch size was almost the same for each mini-query. The baseline’s performance,

on the other hand, increased from 655 ms to 1.6 seconds when the network size increased.

This increase was because FDEB re-bundled the network edges from scratch for each batch.

0
200
400
600
800
1000
1200
1400
1600

0 0.5 1 1.5 2 2.5

R
es
po
ns
e
Ti
m
e
(m
s)

Query Selectivity (%)

Bundling
Clustering

DB querying

(a) Baseline.

0
200
400
600
800
1000
1200
1400
1600

0 0.5 1 1.5 2 2.5

R
es
po
ns
e
Ti
m
e
(m
s)

Query Selectivity (%)

Bundling
Clustering

DB querying

(b) GSViz.

Figure 2.21: Average response time per batch of all steps.

Total visualization time. To show the total time of visualizing the network across all the

steps, we collected the total time it took to issue a single query to the database and process

the data in a single batch. We call this method non-progressive. Figure 2.22a shows the

performance for keyword conditions with different selectivity values. As the network size

increased, the total time increased mostly to query the database and to cluster the vertices

44

up to 7 minutes, where the user waits in the dark not knowing if the request was successful

or not. Conversely, Figures 2.22b and 2.22c show the total response time of all the batches

when the computation is progressive. As the network size increased, the total time increased

due to the increase in the number of batches. GSViz’s total time was usually half the time

of the baseline to visualize the entire network. The baseline took about 23 minutes to query

the database, cluster the vertices, and bundle the super edges on a network of 500K edges.

GSViz took 10 minutes to show the same network.

 0

 100

 200

 300

 400

 500

 0 0.5 1 1.5 2 2.5

R
e
s
p
o
n
s
e
 T
im
e
 (
s
)

Query Selectivity (%)

Bundling
Clustering

DB querying

(a) non-progressive.

0
200
400
600
800
1000
1200
1400

0 0.5 1 1.5 2 2.5

R
es
po
ns
e
Ti
m
e
(s
)

Query Selectivity (%)

Bundling
Clustering

DB querying

(b) Baseline.

0
200
400
600
800
1000
1200
1400

0 0.5 1 1.5 2 2.5

R
es
po
ns
e
Ti
m
e
(s
)

Query Selectivity (%)

Bundling
Clustering

DB querying

(c) GSViz.

Figure 2.22: Total response time of all the steps.

Effect of updating clusters on bundling performance. We compared the performance

of updating the super edges with the performance of not updating them. To make sure

the batches are the same across different runs, we used the fixed-interval slicing method.

Figure 2.23 shows the performance on different interval sizes. Foursquare’s total date range

was a few months. When the interval range was 6 months, the number of batches was three.

As a result, the size of the first batch contained many raw edges and their vertices were

grouped to many clusters. In the second and third batches, almost all the existing clusters

were shifted due to insertions of new points, and the resulting response time was 1.9 seconds.

The Twitter experiment achieved a time that ranged from 50 ms to 200 ms when the interval

range increased from 2 months to 6 months, respectively. The results show that the overhead

of updating existing super edges was low.

Comparison with existing systems. We compared GSViz with two existing popular

graph visualization systems, namely Tableau [133] (version 2021.2) and Tulip [7] (version

45

0

500

1000

1500

2000

2 2.5 3 3.5 4 4.5 5 5.5 6

R
es
po
ns
e
Ti
m
e
(m
s)

Interval range (months)

PEB (without updates)
PEB (with updates)

(a) Foursquare.

0

50

100

150

200

2 2.5 3 3.5 4 4.5 5 5.5 6

R
es
po
ns
e
Ti
m
e
(m
s)

Interval range (months)

PEB (without updates)
PEB (with updates)

(b) Twitter.

Figure 2.23: Average time per batch to update super edges for different intervals.

5.5.1). We chose Tableau due to its capability of doing middleware-based visualizations. We

chose Tulip since it supports edge bundling. As these two systems could not be installed

on Ubuntu 14 OS, we used a machine that supported all three systems. It had an Intel

Core i5, 8GB RAM, and a 500GB hard disk, running MacOS 10.15.7 and PostgreSQL 12.5.

Tableau and Tulip were not open-source, hence we used a stopwatch to measure the end-to-

end performance of all three systems to visualize the network. We used database logging to

measure the database query time. Tulip was an in-memory solution, and the largest network

it could load had more than 900K nodes and 500K edges with a file size of 63MB. It filtered

the tweets using a keyword that resulted in a network of 10K edges, and this step took 11.55

seconds. It took additional 74.4 seconds to do edge bundling.

Tableau and GSViz support middleware-based visualization using a database, so we used

the Twitter dataset. We filtered the network on a keyword condition that resulted in more

than 200K edges. Tableau visualized the network on a map without any simplification. It

took 19.49 seconds, including 15.81 seconds for querying the database. While its results

were retrieved efficiently, the user had to wait for a long time before seeing any results.

Moreover, the network clutter significantly hindered the user experience. On the contrary,

GSViz retrieved the results progressively in 39 batches, each within 500 ms. The total time

was 71.00 seconds, including 54.52 seconds for all the mini-queries, and 16.48 seconds for the

46

steps of vertex clustering and edge bundling.

2.7.5 A User Study

We conducted a study to evaluate the user experience in GSViz. We mainly considered two

methods: 1 a baseline method using non-incremental HGC and FDEB to show its best visual

quality, and 2 GSViz using incremental PEAC and PEB. The goal of the user study is to

answer the following question: “How do the two methods differ in terms of visualization

quality?”

We invited 29 users, and each spent about 15 minutes to complete it. We generated 12

different sets from variations of 3 network sizes using different keywords at 4 zoom levels.

The size of the network ranged from 10K to 100K raw edges. The zoom level ranged from

an overview of North and Central America to a level of a few states in the US. Each set

had 3 different methods, resulting in a total of 36 images. We first showed the result of the

original network as is. We then showed the visual result yielded from the baseline and GSViz

presented anonymously to the participants. To make the comparison fair for the baseline,

we fixed the number of clusters and asked questions independently.

We used two metrics to measure the visualization quality:

1. Readability [105], which indicates how easy it is to read the visualized network. To

measure the readability, we asked the participants to subjectively answer a question for

each simplified network: “Q: Rate how cluttered you think the network is.” . The answer

is a rating score of 1 (very cluttered) up to 5 (very sparse).

2. Task faithfulness [105], which indicates how accurate the visualization of the simplified

network is to correctly perform tasks. To measure the faithfulness, we asked the partic-

ipants to answer analytical multiple-choice questions, each of which had 4 choices with

47

only one correct answer. A score of 0 means the network is unfaithful and a score of 1

indicates a very faithful network [105]. All of the questions had the following template:

“Q: Which of the points, highlighted with green boxes, has more original tweets compared

to reply-to tweets?”

Figure 2.24 shows sample images given to the users including labels to indicate the randomly

chosen clusters in the questions.

Original GSVizBaseline

Figure 2.24: Example network visualizations in the user study at one zoom level.

Table 2.3: User study results. The reported numbers for the visualization quality
are represented as “A—B,” where “A” is the average score given by all the
participants and “B” is the standard deviation. Compared to the baseline, GSViz
was much more efficient and had comparable visualization quality.

Network
Size

Time per
batch (ms)

Visualization Quality
Readability Faithfulness

baseline GSViz baseline GSViz baseline GSViz

10K 648.70 525.20 2.59—0.11 3.28—0.26 0.82—0.11 0.82—0.09
50K 2,603.54 635.42 2.15—0.17 2.85—0.13 0.53—0.25 0.63—0.33
100K 10,165.61 733.67 2.09—0.23 2.48—0.21 0.75—0.32 0.79—0.36

The results are shown in Table 2.3. The average response time using Baseline was 4,473ms

while GSViz was 631ms showing much higher performance. As the network size increased,

the time difference also increased. This increase was more noticeable in the baseline. The

average readability rating of Baseline was 2.3, which means the network was perceived as

cluttered. GSViz’s average readability rating was 2.9, which indicates that the network was

perceived as not cluttered nor sparse. The average faithfulness score of Baseline was 0.70, it

48

means that the network was faithful. GSViz had a better average faithfulness score of 0.74.

The user study showed that, compared to the Baseline, GSViz had much higher performance

and produced visualization with comparable quality.

2.7.6 Reduction of Visual Clutter.

We report the visual quality of the two methods used in the user study across the different

zoom levels. We used two common metrics to measure the visual display clutter, namely

“feature congestion” and “subband entropy” [121].

Figure 2.25 shows the percentage reduction on the visual clutter score using both metrics.

The higher the percentage, means the reduction was more. Figure 2.25a shows that the

baseline and GSViz on average reduced the clutter score by 26% and 35%, respectively.

Figure 2.25b shows that the baseline reduced the subband entropy clutter score by 15% at

zoom level 3.5 (which showed the entire US), and 7% at zoom level 5 (which showed cities).

GSViz reduced the score by 22% and 11%, respectively. We observe that both methods

reduced the visual clutter score compared to the original graph, and GSViz achieved a better

reduction. This finding was consistent with the readability result in the user study.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

3.5 4 4.5 5

F
e
a
tu
re

 C
o
n
g
e
s
tio
n

 R
e
d
u
c
tio
n

 (
%
)

Zoom Level

Baseline
GSViz

(a) Feature Congestion.

0

5

10

15

20

25

3.5 4 4.5 5S
u
b
b
a
n
d

 E
n
tr
o
p
y
 R
e
d
u
c
tio
n

 (
%
)

Zoom Level

Baseline
GSViz

(b) Subband Entropy.

Figure 2.25: Reduction of visual clutter score compared to the original network.

49

2.8 Conclusion

In this chapter, we presented GSViz, a system to enable progressive visualization of geo-social

networks. We first demonstrated how to improve incremental spatial clustering to make it

edge-aware to reduce visual clutter. We also studied supporting incremental edge bundling

by storing previous edges as nodes in a novel tree index called PEB-tree to optimize the

traversal and processing of bundling edges. Moreover, we discussed the integration of the

two techniques and solved new challenges. Lastly, we conducted an extensive evaluation

of GSViz compared to baseline algorithms for spatial clustering and edge bundling. The

experiments also included a user study to evaluate the quality of the produced visualization.

The results showed that the techniques can not only support efficient, responsive visualization

of networks progressively but also produce high-quality simplified network visualization.

50

Chapter 3

Drove: Tracking Data-Processing

Versions and Executions to Facilitate

Reproducibility

3.1 Introduction

Data analytics is an iterative process. An analyst constructs a workflow, executes it to ob-

serve results, and refines it to achieve better results or gain deeper insights. As the number of

iterations grows, information about the past executions is valuable, and storing such informa-

tion can be helpful in many ways [123, 9]. First, the analyst can use it to avoid repeating the

mistakes made in the previous executions and decide the next iteration of changes. Second,

the past executions can be shared with other analysts to repeat and reproduce a particular

execution of choice. Repeatability means performing a new execution by understanding the

details of how a previous execution was conducted [123]. Reproducibility means performing

an execution by re-running a script, which is expected to lead to the same results.

51

As an example, suppose an analyst is interested in analyzing tweets containing the keyword

“climate.” Figure 3.1 shows the workflow created by the analyst to achieve the task. After

running the initial workflow (3.1a), the analyst notices that “fire” is the most frequent

keyword in the output of the Wordcloud operator. Based on this observation, she revises the

workflow to a new version (3.1b), to inspect the tweets that are from California, based on the

assumption that California has many of the wildfires. To her surprise, the number of tweets

from California was not large. Then she refines the workflow again, and constructs a new

version (3.1c) to compute the count of climate-related tweets from each state. Surprisingly,

the number of tweets from California in the result of version 3.1c was different from what

she remembered seeing in the result of version 3.1b.

Importance of tracking executions. A natural question is what could have caused the

difference between the number of California tweets in the results of versions b and c. There

can be various reasons for unexpected results in data analytics, especially in a collaborative

environment. Following are a few possible reasons.

• Case 1 (change in the runtime environment): Between versions b and c, a new deployment

of the system was done to use a new csv-parsing library in the CSV Scan operator. The

new operator parsed some tweets erroneously, leading to a different number of California

tweets.

• Case 2 (change in the workflow): A collaborator changed the search predicate between

versions b and c.

• Case 3 (lost previous version’s results): The analyst may not remember the result of

version b.

The difference between the results of the two executions raises doubts about the integrity of

the analysis. A way to avoid doubt and maintain integrity is to keep track of these executions

and all the associated factors that affect them in a ledger.

52

(a) Version a: Initial workflow to analyze tweets containing “climate”.

(b) Version b: Adding a filter operator (highlighted in green) to filter the tweets from California.

(c) Version c: Removing the filter and adding an aggregate operator to show the count of tweets
from each state. The red arches indicate the start and end of the removed operators.

Figure 3.1: Multiple versions of a workflow for tweet analysis.

There has been an increased interest in tracking executions and results of data-processing

tasks [98, 143, 95]. Many of these solutions are geared towards Machine Learning (ML)-

based analytics, which is often carried out using a programming interface, such as Jupyter

Notebook. They use Git-like techniques to track versions of the code, ML model, hyper-

parameters, and package dependencies. This is not directly applicable to GUI-based workflow

systems. A reason is that constructing and refining workflows is an ad-hoc process [123],

wich makes tracking its evolution difficult. In addition, workflow execution depends on

many aspects, such as the input data sources, the workflow version, or the runtime depen-

dencies [123]. Moreover, many usability changes (e.g., changing the position of an operator,

53

or annotating and commenting on the workflow canvas) do not have any direct implications

on the execution of the workflow.

In this chapter, we showcase how we can automatically track runtime environment changes

(Section 3.4), workflow versions (Section 3.5), and executions (Section 3.6) to facilitate re-

producibility in Texera. We will also show how a user can do basic bookkeeping of executions

using an execution dashboard as shown in Figure 3.2, which provides various functionalities,

such as viewing, renaming, sorting, or filtering the executions. The dashboard also provides

charts to help summarize the statistics of the executions.

Figure 3.2: Interface of the executions dashboard in Texera. Due to space con-
siderations, we do not show the rest of the table, which includes each execution’s workflow
version number, sample results, deletion button, etc.

54

3.2 Related Work

There has been an increasing interest in enabling the reproducibility of data analytics

pipelines. These tools track the evolution and versioning of datasets, models, and re-

sults. At a high level they can be classified as two categories. The first includes those that

track experiment results of different versions of ML models and the corresponding hyper-

parameters [159, 31, 143, 80, 54, 100]. ML-based solutions [143, 95] for tracking executions

are suited for tech-savvy analysts as these solutions require them to install packages and use

API calls in the analytical task to enable tracking the executions, thus they are not suitable

for users who use GUI-based workflow analytical systems. The second category includes

solutions to track results of different versions of data-processing workflows [99, 150, 42, 9].

These workflow-based solutions [150, 98] track the result of executions using provenance, and

they do not track the version of the runtime environment. ReproZip [34] is a more general

tool used for reproducing an experiment in Linux. This tool requires users to be able to

know Linux commands. Moreover, it only generates the final result of an experiment and

does not show the historical sequence of constructing and executing a workflow.

Table 3.1: A comparison of related tools and systems that track evolution of
data analytic tasks

System
Task
Formulation

Usage of Enabling
Tracking

Tracking
Version Experiment Environment Result

ModelDB Notebook Python package calls Yes Yes No Yes

ProvDB Notebook
Unix commands or
Python package calls

Yes Yes No Yes

Reprozip Code files Linux commands No Yes No Yes

MLcask Notebook Script run Yes No No No

Sacred Notebook Python package calls Yes Yes No No

MlFlow Notebook Python package calls Yes Yes No Yes

Texera
GUI-based
workflows

Automatic and
transparent

Yes Yes Yes Yes

Compared to these efforts, Drove is the first open-source tool that tracks the evolution of

data-processing workflow versions, runtime environment dependencies, and executions of the

55

different versions. It does the tracking automatically and transparently. We say automatically

to indicate that once the tracking is enabled, all the necessary resources are tracked without

any manual intervention from the user. We say transparently to indicate that the tracking

is happening behind the scene and the user does need to know about the details of what

resources need to be tracked. Table 3.1 summarizes the differences between Drove and

existing solutions.

3.3 Drove: Overview

Figure 3.3 depicts an overview of the modules that track workflow versions and executions.

The Environment Version Manager manages the tracking of the engine version, i.e., code-

related changes to the source code of the system, e.g., changes to the frontend and the engine.

It also tracks operator versions, i.e., changes in the logic of operators, such as adding a capa-

bility to the Project operator to rename the projected columns.

Environment Version
Manager

Execution
Manager

Result
ManagerExecution

Engine

Web Server

...

...

Workflow Version
Manager

Catalog

DB

version
execution
request

execution
results

Figure 3.3: Overview of tracking work-
flow versions and executions.

Information about the environment versions

is stored in a catalog. The environment re-

lated versions are computed once after de-

ployment and stored in a catalog. TheWork-

flow Version Manager manages the tracking

of the workflow versions, each of which is

stored as an entry in a “versions” table in

the catalog. This module is also responsible

for retrieving and displaying a list of past

versions of a particular workflow on the GUI. It manages various operations related to a

version, such as checking-out a version, reverting to a previous version, comparing and high-

lighting the differences between two versions. The Execution Manager tracks every execution

56

of a workflow during the workflow’s lifecycle. It stores the information about every execution

in a table in the catalog. Each execution entry contains metadata information such as: 1)

the workflow version number, 2) the engine version number, 3) the user who submitted the

execution, 4) the starting time of the execution, 5) the duration of the execution, and 6)

pointers to the artifacts, such as the final results and the counts of input and output tuples

for each operator. Additionally, Texera supports interaction during the execution of a work-

flow such as pausing, resuming, debugging, and aborting a workflow during its execution.

Hence the workflow execution entry contains the status of the execution and is updated

periodically. The Result Manager manages the artifacts of executions including storage of

the results, and the statistics of each operator during its execution.

3.4 Version Control of the Runtime Environment

We use the Git hash ID of each commit of the system’s source code to track the version of

the runtime environment. During each deployment, the system takes the following steps to

capture runtime environment changes. First, it checks the latest Git commit ID of the code

used in the deployment and compares it against the previously persisted one in the catalog.

If the ID is different, we update the version stored in the catalog to reflect the latest one. We

use the JGit API [47] to get the Git log, which shows the history of the changes. The second

step is to check the operators affected by the latest commit. We do that by verifying if the

commit includes any changes on the files related to any of the operators. In the codebase

of the system, every operator is implemented in a separate file with the same name as the

operator. If the logic of an operator is changed as part of the latest commit, we update the

version of the operator in the catalog to reflect the latest commit ID. The user can view the

version of every operator in its properties, as highlighted in Figure 3.4.

57

Figure 3.4: Example to show the components associated with a workflow that
need to be tracked. Due to space considerations, we omit the parts of the window
that show the results of the workflow execution and the engine version.

3.5 Version Control of a Workflow

A workflow undergoes a series of refinements as part of the iterative and exploratory process

of data analytics. These refinements can be categorized as follows:

• Semantic workflow changes: which include addition of a new operator or a link, re-

moval of an existing operator or a link, modification of the properties of an operator (e.g.,

changing the predicate condition of a Select operator), and alteration on the input data

source (e.g., choosing a different data source as an input). Tracking the changes within

a particular data source, e.g., stream data sources or versioned data stores is out of the

scope of this chapter.

• Non-semantic workflow changes: which include addition, modification, or removal of

a user comment on the editor pane, modification of the position of an operator or a link

on the editor pane.

• Operator version changes: which include runtime environment changes that directly

affect the workflow, e.g., changes in the logic of an operator.

Given a workflow version vi, one or more of the above changes cause it to evolve into a

new version vi+1. Since the second category does not make any semantic difference in the

58

workflow but a user would like to persist their changes, we annotate those changes to indicate

that they are non-semantic changes.

In contrast to writing code, designing a workflow through the intuitive process of drag-

ging and dropping operators offers a user-friendly experience that involves numerous ad-hoc

steps [123]. To alleviate the burden on users and avoid overwhelming them with the task

of manually deciding when to commit a version, Drove takes an approach that automati-

cally and transparently tracks all user changes. This automated tracking frees users from

the cumbersome process of manual tracking. However, a question arises: How does Drove

determine what group of changes correspond to a new version? We will address this question

in the following discussion.

3.5.1 Tracking Workflow Versions

Now we discuss two events that trigger creating and persisting of a new workflow version.

1. User changes: A user can perform one or multiple edits from the first two categories

mentioned above. Since we want the tracking to be seamless and transparent to the users

to lessen their burden of explicitly saving versions, our approach follows a time-based

approach of periodically checking for the user’s modifications (e.g., every 300 ms) and

persisting the updated workflow version if any modifications are found.

2. Operator version changes: When the user loads a workflow after a new deployment,

we check the runtime environment versions table to detect any change in the versions of

the operators being used in the workflow. In case of a change, the properties panel of the

operator is updated to reflect the new operator version (Figure 3.4) and a new version of

the workflow is persisted.

Version storage. We store the metadata information and the version information of the

59

workflows in two tables in the catalog. Each version entry contains a foreign key of the

workflow it belongs to. One way to store every newly committed version is to store it as-is in

a separate entry. This is straightforward but can quickly explode the storage space because

there can be many versions and each version is a complex workflow. The approach we take

is to store a light-weight delta or the difference between a pair of consequent versions. This

approach is similar to code version control and data version control (DVC) [107]. We leverage

existing tools to efficiently compute the difference between two workflow versions. Since we

model a workflow as a JSON document, similar to many other workflow systems [150], we

use the JSON diff standard RFC-6902 [73] to compute a patch. This patch contains the

operations that can be applied to a version to transform it to the other version. Listing 3.5.1

shows a sample of the JSON file corresponding to the first version from the running example.

Listing 3.5.1 shows a sample of the patch file for adding the Filter operator to the first version

to transform it to the second version in the running example. Note that the patch includes

the operation of removing the filter opposite to the actual operation of adding the filter. The

reason is to be able to construct the previous version by applying the patch to the latest

version as we will explain in details next.

Listing 3.1: A sample JSON to represent the first workflow version in the running

example.

1 {

2 "operators":[

3 {"operatorID":"CSVFileScan -operator -...2a0",

4 "operatorType":"CSVFileScan",

5 "operatorVersion":"c14 ...503",

6 "operatorProperties":{

7 "customDelimiter":",",

8 "fileName":"states", ...},

9 "inputPorts":[],

60

10 "outputPorts":[{"portID":"output -0", ...}],

11 ...},

12 {"operatorID":"HashJoin -operator -...7 d7",

13 "operatorType":"HashJoin",

14 "operatorVersion":"7f2...94b",

15 "operatorProperties":{

16 "joinType":"inner",

17 "buildAttributeName":"geo_tag_stateid",

18 "probeAttributeName":"state_id"

19 },

20 "inputPorts":[

21 {"portID":"input -0"}

22 {"portID":"input -1"}

23],

24 "outputPorts":[

25 {"portID":"output -0"}

26],

27 ...},

28 ...],

29 "operatorPositions":{

30 "CSVFileScan -operator -...2 a0":

31 {"x":420,

32 "y":85},

33 ...},

34 "links":[

35 {"linkID":"d8c ...315",

36 "source":{

61

37 "operatorID":"CSVFileScan -operator -...2a0",

38 "portID":"output -0"},

39 "target":{

40 "operatorID":"HashJoin -operator -...7 d7",

41 "portID":"input -0"}

42 }, ...],

43 "groups":[],

44 "breakpoints":{ },

45 "commentBoxes":[]

46 }

Listing 3.2: A sample JSON to represent the patch of adding a Filter operator

to the first version.

1 [

2 {"op":"add","path":"/links /1","value":

3 {"linkID":"d8c ...315",

4 "source":{"operatorID":"CSVFileScan -operator -...2a0

","portID":"output -0"},

5 "target":{"operatorID":"HashJoin -operator -...7 d7","

portID":"input -0"}}

6 },

7 {"op":"remove","path":"/ operators /11"},

8 {"op":"remove","path":"/ operators /11/ operatorProperties/

predicates"},

9 {"op":"remove","path":"/ operatorPositions/Filter -operator

-...299" },

10 {"op":"remove","path":"/links /9"},

62

11 {"op":"remove","path":"/links /9"}

12]

Whenever a workflow changes, its content is updated in the workflow table, and a new entry

that only contains the edits applied to the workflow is added to the version table. The

version entry includes a flag to indicate whether it includes a semantic change or not. It

is worth noting that since Texera is a collaborative cloud-based system, the collaboration

module [93] handles the conflict resolution when multiple users make changes to the workflow

at the same time and is out of the scope of this chapter. Moreover, a version is immutable,

i.e., it cannot be modified once created. If the user wants to revert a workflow version to

a previous one, all the patches after the particular version need to be applied in order to

create a new version, which is a copy of the version being reverted to.

3.5.2 Retrieval of a Particular Workflow Version

After multiple iterations of refining a workflow, the user can revisit and check the previous

versions to help refine subsequent ones. Figure 3.5 shows the interface for showing the list

of versions preceding the one displayed on the canvas (i.e., the latest version). The user

can select any version to inspect from the list. To display the selected version, we apply all

the patches from the latest version up to the selected one to construct the workflow of that

version.

In some cases, the user wishes to inspect a version that is far from the latest one, leading

the system to apply a considerable number of patches, especially because there can be many

versions given the fact that we track all of the small edits to eradicate the burden of asking

users to commit a version.

Depending on the number of patches to be applied, it may take a considerable amount of

63

Figure 3.5: Example interface showing a list of versions in a reverse chronological
order after a user adds a Filter operator to the workflow.

time. To optimize the process, we maintain the version information of the workflows in two

tables: a table of fine-grained versions and a table of coarse-grained versions. The former

table contains entries of all the versions of the workflows. Periodically, we checkpoint a group

of fine-grained versions of a workflow to form a coarse-grained one, which is a snapshot of

the workflow version at that point, by applying the patches in the group. Every entry in the

fine-grained version table also has a pointer to the coarse-grained version it belongs to. We

apply the technique in OrpheusDB [65] to decide when to perform a checkpoint. Now, when

the user selects a previous version, we find the nearest coarse-grained version succeeding the

selected one. Then, starting from the coarse-grained version, we apply all the fine-grained

patches up to the selected version to construct the workflow. The two tables are used to

optimize the retrieval of a particular version by reducing the number of patches to be applied.

It becomes more efficient to compute the patches from a smaller subset from a checkpoint

instead of applying patches all the way to the beginning. Figure 3.6 shows an example of

three workflow versions to illustrate how the two version tables are maintained.

3.5.3 Highlighting Changes between two Workflow Versions

When a user clicks on a particular version from the list of previous versions, we display

the previous version and highlight its semantic differences compared to the latest one, as

64

Time

w# last
updated content

1 t1 {O:[states, twe ...
… … …
...

Workflow table
v# w# c# content

...

123 1 N/A + view

Fine-version table

w# last
updated content

1 t2 {O:[states, filter ...
… … …
...

Workflow table
v# w# c# content

123 1 N/A + view

… … ... …

200 1 N/A + filter

Fine-version table

w# last
updated content

1 t3 {O:[states, twe ...
… … …
...

Workflow table
v# w# c# content

123 1 5 + view

200 1 5 + filter

450 1 5 + aggregate

Fine-version table

c# w# content
5 1 {O:[states, tweets, aggregation ...

Coarse-version table

c# w# content
Coarse-version table

c# w# content
Coarse-version table

Figure 3.6: Example of a workflow evolving into three versions and the content
of each “Version Table” to maintain the relation between these versions.

65

shown in Figure 3.7. Unlike Git, highlighting the workflow version changes is not as simple

as highlighting the content of code. We need to differentiate between the resources and

their changes, for example, a change in the properties of an operator. We use three colors

to highlight the differences. A green highlight on an operator indicates that the operator

has to be added to transform the latest to the selected version, an orange highlight on an

operator indicates that the operator properties are modified, and red arches on either ends

of a link indicate that one or more operators have to be removed. We omit highlighting

the non-semantic changes, as too many highlights can overwhelm the user and hinder their

ability to grasp important changes.

Figure 3.7: An interface showing that a deletion of an operator/s between the
red arches transforms the latest workflow version to the selected version. In this
example, deleting a Filter between the Source and Join operators is needed to
transform the displayed historical version to the latest version.

3.6 Workflow Execution Manager

When a user submits a new request to execute a workflow version, we generate a new

entry for the execution and capture its metadata information, as previously discussed. This

execution entry encompasses the details of the most recent semantic version of the workflow.

We specifically associate the execution with the latest semantic version, which is annotated,

66

as it is only the semantic changes that impact the corresponding results. Additionally, we

store each operator’s statistics including input and output count of tuples. We also store the

results of each sink operator in the workflow. Since storing all the results of all the executions

can be costly, we can use Raven, as we will explain in Section 5, to answer the execution

request using previously stored results, if possible, and increase the reference point of the

results to indicate the number of workflow versions that have (and use) the same results. In

our implementation, we periodically clean and delete cached results to accommodate enough

storage to store new ones.

Retrieving a particular execution. When the user wants to inspect a particular exe-

cution, its details such as the engine version, each operator’s version, the workflow version,

and the results are retrieved. The system displays the version of the workflow used in the

execution and highlights the differences compared to the latest version of the workflow. We

also retrieve the statistic counts of processed tuples for each operator in the execution. After

the user views the details of the execution, they can repeat the execution by manually repli-

cating the specifications of the execution. Alternatively, the user may wish to reproduce the

execution. To do so, they can click on the “Run” button as shown in Figure 3.4. Note that

if the current engine version or any of the operator’s versions are different because of a new

deployment, the system notifies the user to indicate the presence of runtime environment

changes that may affect the results. We assume that an execution has been completed or

aborted before it can be repeated or reproduced. If the experiment is not completed or

aborted, we need to handle serializing the states of the execution and this is a future work

and out of the scope of this chapter.

After we retrieve the details of an execution, a user may want to export the execution into

a file. To do so, we retrieve the details of the execution the same as explained above, we

create a new workflow by applying the patches and create a single version, in our current

implementation, we only export a sample of the result, we leave storing and exporting the

67

entire result to a future work. Moreover, a user may wish to delete an execution entry. To do

so, we also delete the artifacts associated with it –operator statistics and workflow results.

Recall that some executions reuse other executions results. Therefore, we only delete the

artifact if the reference count of pointers from executions is 0.

3.7 Conclusion

Tracking experiments is an important feature that will greatly impact the way analysts

share their result. In this chapter, we showed how we support workflow version control

and bookkeeping of workflow executions. We demonstrated our implemented dashboard for

tracking the versions and executions.

68

Chapter 4

Veer: Verifying Equivalence of

Workflow Versions in Iterative Data

Analytics

4.1 Introduction

Big data-processing platforms, especially GUI-based systems, enable users to quickly con-

struct complex analytical workflows [11, 84, 42]. These workflows are refined in iterations,

generating a new version at each iteration, before a final workflow is constructed, due to the

nature of exploratory and iterative data analytics [45, 154]. For example, Figure 4.1 shows

a workflow for finding the relevant Tweets by the top k non-commercial influencers based

on their tweeting rate on a specific topic. After the analyst constructs the initial workflow

version (a) and executes it, she refines the workflow to achieve the desired results. This yields

the following edit operations highlighted in the figure, 1) deleting the filter ‘o’ operator, 2)

adding the filter ‘g’ operator, and 3) adding the filter ‘h’ operator.

69

2: related 3: non-related

sort count limit 10

scatterplot join

outer join aggregate
0: commercial

1: non-commercial
Users

Tweets "Tobacco"

view result

non-commercial
& related

filter "related"

a b
f

edc

i

k
j l m

n o p

(a) Version 1: Initial workflow with sinks si of all users’ tweets, and sp of top k non-
commercial influencers’ relevant tweets. The highlighted operator indicates that it is
deleted in a subsequent version.

2: related 3: non-related filter "related"

filter "related" sort count limit 10

scatterplot join

outer join aggregate
0: commercial

1: non-commercial
Users

Tweets "Tobacco"

view result

non-commercial
& related

i

a b
f

edc

h mlkj

png

(b) Version 2: Refined version to optimize the workflow performance and filter on
relevant tweets of all users. The highlighted operators are newly added in the new
version.

Figure 4.1: Example workflow and its evolution in two versions.

70

There has been a growing interest recently in keeping track of these workflow versions and

their execution results [80, 143, 42, 9, 150]. In many applications, these workflows have a

significant amount of overlap and equivalence [163, 76, 164, 9]. For example, 45% of the daily

jobs in Microsoft’s analytics clusters have overlaps [76]. 27% of 9, 486 workflows to detect

fraud transactions from Ant Financial have overlaps, 6% of which are equivalent [163]. In

the running example, the edits applied on version (a) that led to a new version (b) had no

effect on the result of the sink labeled ‘p’. Identifying such equivalence between the execution

results of different workflow versions is important. The following are two example use cases.

Use case 1: Optimizing workflow execution. Workflows can take a long time to run due

to the size of the data and their computational complexity, especially when they have ad-

vanced machine learning operations [163, 84, 13]. Optimizing the performance of a workflow

execution has been studied extensively in the literature [113, 46]. One optimizing tech-

nique is by leveraging the iterative nature of data analytics to reuse previously materialized

results [45, 76].

Use case 2: Reducing storage space. The execution of a workflow may produce a large

number of results and storing the output of all generated jobs is impractical [49]. Due to

the nature of the overlap and equivalence of consecutive versions, one line of works [6, 45]

periodically performs a view de-duplication to remove duplicate stored results. Identifying

the equivalence between the workflow versions can be used to avoid storing duplicate results

and helps in avoiding periodic clean-up of duplicate results.

These use cases show the need for effective and efficient solutions to decide the equivalence

of two workflow versions. We observe the following two unique traits of these GUI-based

iterative workflows. (T1) these workflows can be large and complex, with operators that

are semantically rich [11, 154, 45]. For example, the top 8 workflows in Alteryx’s workflows

hub [12] had an average of 29 operators, with one of the workflows containing 102 operators,

and comprised of mostly non-relational operators. Real workflows in Texera [138] had an

71

average size of 23 operators, and most of them had visualization and UDF operators. Some

operators are user-defined functions (UDF) that implement highly customized logic including

machine learning techniques for analyzing data of different modalities such as text, images,

audios, and videos [154]. For instance, the workflows in the running example contain two

non-relational operators, namely a Dictionary Matcher and a Classifier. (T2) Those adjacent

versions of the same workflow tend to be similar, especially during the phase where the

developer is refining the workflow to do fine tuning [46, 154]. For example, 50% of the

workflows belonging to the benchmarks that simulated real iterative tasks on video [154] and

TPC-H [46] data had overlap. The refinements between the successive versions comprised

of only a few changes over a particular part of the workflow. Thus, we want to study the

following:

Problem Statement: Given two similar versions of a complex workflow, verify if

they produce the same results.

Limitations of existing solutions. Workflows include relational operators and UDFs [84].

Thus, we can view the problem of checking the equivalence of two workflow versions as

the problem of checking the equivalence of two SQL queries. The latter is undecidable in

general [3] (based on the reduction from First-order logic). There have been many Equiva-

lence Verifiers (EVs) proposed to verify the equivalence of two SQL queries [37, 164, 163].

These EVs have restrictions on the type of operators they can support, and mainly focus

on relational operators such as SPJ, aggregation, and union. They cannot support many

semantically rich operators common in workflows, such as dictionary matching and classifier

operators in the running example, and other operators such as unnest and sentiment ana-

lyzer. To investigate their limitations, we analyzed the SQL queries and workflows from 6

workloads, and generated an equivalent version by adding an empty filter operator. Then, we

used EVs from the literature [37, 164, 163, 146] to test the equivalence of these two versions.

Table 4.1 shows the average percentage of pairs for each workload that can be verified by

72

these EVs, which is very low.

Table 4.1: Limitations of existing EVs to verify equivalence of workflow versions
from real workloads.

Workload # of pairs
AVG. % of pairs
supported by existing EVs

Calcite benchmark [27] 232 34.81%
Knime workflows hub [82] 37 2.70%
Orange workflows [109] 32 0.00%
IMDB sample workload [71] 5 0.00%
TPC-DS benchmark [140] 99 2.02%
Texera workflows [138] 105 0.00%

Our Approach. To solve the problem of verifying the equivalence of two workflow versions,

we leverage the fact that the two workflow versions are almost identical except for a few

local changes (T2). In this chapter, we present Veer1, a verifier to test the equivalence of two

workflow versions. It addresses the aforementioned problem by utilizing existing EVs as a

black box. In §4.4, we give an overview of the solution, which divides the workflow version

pair into small parts, called “windows”, so that each window satisfies the EV’s restrictions

in order to push testing the equivalence of a window to the EV. Our approach is simple yet

highly effective in solving a challenging problem, making it easily applicable to a wide range

of applications.

Why not develop a new EV? A natural question arises: why do we choose to use existing

EVs instead of developing a new one? Since the problem itself is undecidable, any developed

solution will inherently have limitations and incompleteness. Our goal is to create a general-

purpose solution that maximizes completeness by harnessing the capabilities of these existing

EVs. This approach allows us to effectively incorporate any new EVs that may emerge in

the future, ensuring the adaptability and flexibility of our solution.

1It stands for “Versioned Execution Equivalence Verifier.”

73

Challenges and Contributions. During the exploration of the proposed idea, we encoun-

tered several challenges in developing Veer: 1) How can we enhance the completeness of

the solution while maintaining efficiency and effectively handling the incompleteness of the

EVs? 2) How do we efficiently handle workflow versions with a single edit and perform the

verification? 3) How can we effectively handle workflow versions with multiple edits, and can

the windows overlap? We thoroughly investigate these challenges and present the following

contributions.

1. We formulate the problem of verifying the equivalence of two complex workflow versions in

iterative data analytics. To the best of our knowledge, Veer is the first work that studies

this problem by incorporating the knowledge of user edit operations into the solution

(§4.3).

2. We give an overview of the solution and formally define the “window” concept that is

used in the equivalence verification algorithm (§ 4.4).

3. We first consider the case where there is a single edit. We analyze how the containment

between two windows is related to their equivalence results, and use this analysis to derive

the concept of “maximal covering window”. We provide complexity analysis (§4.5).

4. We study the general case where the two versions have multiple edits. We analyze the

challenges of using overlapping windows, and propose a solution based on the “decom-

position” concept. We discuss the correctness and the completeness of our algorithm

(§4.6).

5. We provide a number of optimizations in Veer+ to improve the performance of the baseline

algorithm (§ 4.8).

6. We report the results of a thorough experimental evaluation of the proposed solutions.

The experiments show that the proposed solution is not only able to verify workflows that

cannot be verified by existing EVs, but also able to do the verification efficiently (§ 4.10).

74

4.2 Related Work

Equivalence verification. There are many studies to solve the problem of verifying the

equivalence of two SQL queries under certain assumptions. These solutions were applicable

to a small class of SQL queries, such as conjunctive queries [28, 4, 124, 74]. With the

recent advancement of developing proof assists and solvers [43, 44], there have been new

solutions [37, 164, 163] leveraging these solvers. UDP [37] and WeTune’s verifier [146] use

semirings to model the semantics of the pair and use a proof assist, such as Lean [44] to

prove if the expressions are equivalent. These two works support reasoning semantics of two

queries with integrity constraints. Equitas [164] and Spes [163] model the semantics of the

pair into a First-Order Logic (FOL) formula and push the formula to be solved by a solver

such as SMT [43]. These two works support queries with three-valued variables. Other

works also use an SMT solver to verify the equivalence of a pair of Spark jobs [56]. The

work in [29] finds a weighted edit distance based on the semantic equivalence of two queries

to grade students queries. Veer uses these verifiers as black boxes to verify the equivalence

of a version pair.

Tracking workflow executions. There has been an increasing interest in enabling the

reproducibility of data analytics pipelines. These tools track the evolution and versioning of

datasets, models, and results. At a high level they can be classified as two categories. The

first includes those that track experiment results of different versions of ML models and the

corresponding hyper-parameters [159, 31, 143, 80, 54, 100]. The second includes solutions

to track results of different versions of data-processing workflows [99, 150, 42, 9]. These

solutions are motivations for Veer.

Materialization reuse. There is a large body of work on answering data-processing work-

flows using views [122, 118, 46, 45, 76]. Some solutions [49] focus on deciding which results

to store to maximize future reuse. Other solutions [102, 162] focus on identifying material-

75

ization reuse opportunities by relying on finding an exact match of the workflow’s DAG. On

the other hand, semantic query optimization works [59, 51, 127, 83] reason about the seman-

tics of the query to identify reuse opportunities that are not limited to structural matching.

However, these solutions are applicable to a specific class of functions, such as user defined

function (UDF) [118, 154, 108], and do not generalize to finding reuse opportunities by

finding equivalence of any pair of workflows.

4.3 Problem Formulation

In this section, we use an example workflow to describe the setting. We also formally define

the problem of verifying equivalence of two workflow versions. Table 4.2 shows a summary

of the notations used in this section.

Table 4.2: Notations used for a single workflow.

Notation Description

W , DAG A data-processing workflow
Dw = {D1, . . . , Dl} A set of data sources in the workflow
Sw = {s1, . . . , sn} A set of sinks in the workflow
M An edit mapping between two versions
δj A set of edit operations to transform DAG vj to vj+1

⊕ Applying aggregated edit operations on a workflow version
Vw = [v1, . . . , vm] A list of workflow versions

Data-processing workflow. We consider a data-processing workflow W as a directed

acyclic graph (DAG), where each vertex is an operator and each link represents the direction

of data flow. Each operator contains a computation function, we call it a property such as

a predicate condition, e.g., Price < 20. Each operator has outgoing links, and its produced

data is sent on each outgoing link. An operator without any incoming links is called a Source.

An operator without any outgoing links is called a Sink, and it produces the final results as

a table to be consumed by the user. A workflow may have multiple data source operators

76

denoted as DW = {D1, . . . , Dl} and multiple sink operators denoted as SW = {s1, . . . , sn}.

For example, consider a workflow in Figure 4.1a. It has two source operators “Tweets” and

“Users” and two sink operators si and sp to show a tabular result and a scatterplot visual-

ization, respectively. The OuterJoin operator has two outgoing links to push its processed

tuples to the downstream Aggregate and Sink operators. The Filter operator’s properties

include the boolean selection predicate.

4.3.1 Workflow Version Control

A workflow W undergoes many edits from the time it was first constructed as part of the

iterative process of data analytics [99, 150]. A workflow W has a list of versions VW =

[v1, . . . , vm] along a timeline in which the workflow changes. Each vj is an immutable version

of workflow W in one time point following version vj−1, and contains a number of edit

operations to transform vj−1 to vj.

Definition 4.1 (Workflow edit operation). We consider the following edit operations on a

workflow:

• An addition of a new operator.

• A deletion of an existing operator.

• A modification of the properties of an operator while the operator’s type remains the same,

e.g., changing the predicate condition of a Select operator.

• An addition of a new link.

• A removal of an existing link. 2

A combination of these edit operations is a transformation, denoted as δj. The operation of

2We assume links do not have properties. Our solution can be generalized to the case where links have
properties.

77

applying the transformation δj to a workflow version vj is denoted as ⊕, which produces a

new version vj+1. Formally,

vj+1 = vj ⊕ δj. (4.1)

In the running example, the analyst makes edits to revise the workflow version v1 in Fig-

ure 4.1a. In particular, she (1) deletes the Filtero operator; (2) adds a new Filterh operator;

(3) and adds a new Filterg operator. These operations along with the necessary link changes

to add those operators correspond to a transformation, δ1 and applying it on v1 will result

in a new version v2, illustrated in Figure 4.1b.

Workflow edit mapping. Given a pair of versions (P,Q) and an edit mappingM, there

is a corresponding transformation from P to Q, which aligns every operator in P to at most

one operator in Q. Each operator in Q is mapped onto by at most one operator in P . A

link between two operators in P maps to a link between the corresponding operators in Q.

Those operators and links in P that are not mapped to any operators and links in Q are

assumed to be deleted. Similarly, those operators and links in Q that are not mapped onto

by any operators and links in P are assumed to be inserted. This mapping is similar to the

one discussed in Chapter 3.

Figure 4.2 shows an example edit mapping between the two versions v1 and v2 in the running

example. As Filtery from v1 is deleted, the operator is not mapped to any operator in v2.

78

(a) Mapping of operators. (b) Mapping of links.

Figure 4.2: Example of an edit mapping between version v1 and v2. Portions of
the workflows are omitted for clarity.

4.3.2 Workflow’s Execution and Results

A user submits an execution request to run a workflow version. The execution produces

result of each sink in the version.

Assumption. Multiple executions of a workflow (or a portion of the workflow) will always

produce the same results 3.

Result equivalence of workflow versions. The execution request for the version vj may

produce a sink result equivalent to the corresponding sink of a previous executed version

vj−k, where k < j. For example, in Figure 4.1b, executing the workflow version v2 produces

a result of the scatterplot sink s2 equivalent to the result of the corresponding scatterplot

of v1. In particular, v2’s edit is pushing down the Filter operator and the scatterplot result

remains the same. Notice however that the result of si in v2 is not equivalent to the result

of si in v1 because of the addition of the new Filterh operator. Now, we formally define “sink

equivalence.”

Definition 4.2 (Sink Equivalence and Version-Pair Equivalence). Consider two workflow

3This assumption is valid in many real-world applications as we detail in the experiment Section 4.10

79

versions P and Q with a set of edits δ = {c1 . . . cn} and the corresponding mapping M

from P to Q. Each version can have multiple sinks. For each sink s of P , consider the

corresponding sinkM(s) of Q. We say s is equivalent toM(s), denoted as “s ≡M(s),” if

for every instance of data sources of P and Q, the two sinks produce the same result. We

say s is inequivalent to M(s), denoted as “s ̸≡ M(s),” if there exists an instance of data

sources of P and Q where the two sinks produce different results. The two versions are called

equivalent, denoted as “P ≡ Q”, if each pair of their sinks under the mapping is equivalent.

The two versions are called inequivalent, denoted as “P ̸≡ Q, if any pair of their sinks under

the mapping is inequivalent.

In this chapter, we first study the problem where each of the two versions has a single sink.

We generalize the solution to the case of multiple sinks in Chapter 5.

Expressive power of workflows and SQL queries. Data-processing workflows may

involve complex operations, such as topic modeling and sentiment analysis on unstructured

data. Workflow DAGs can be viewed as a class of SQL queries that do not contain recursion.

Thus, the problem of testing the equivalence of two workflow versions can be treated as

testing the equivalence of two SQL queries.

4.3.3 Equivalence Verifiers (EVs)

An equivalence verifier (or “EV” for short) takes as an input a pair of SQL queries Q1

and Q2. An EV returns True when Q1 ≡ Q2, False when Q1 ̸≡ Q2, or Unknown when

the EV cannot determine the equivalence of the pair under a specific table semantics [146,

37, 164, 163, 43, 56]. For instance, UDP [37] and Equitas [164] are two EVs. The former

uses U-expressions to model a query while the latter uses a symbolic representation. Both

EVs internally convert the expressions to a first-order-logic (FOL) formula and then push the

formula to a solver such as an SMT solver [43] to decide its satisfiability. An EV requires two

80

queries to meet certain requirements (called “restrictions”) in order to test their equivalence.

We will discuss these restrictions in detail in Section 4.5.2.

Problem Statement. Given an EV and two workflow versions P and Q with their mapping

M, test the equivalence of the two versions.

4.4 Veer: Verifying equivalence of a version pair

In this section, we first give an overview of Veer for checking equivalence of a pair of workflow

versions (Section 4.4.1). We formally define the concepts of “window” and “covering window”

(Section 4.4.2).

4.4.1 Veer: Overview

To verify the equivalence of a pair of sinks in two workflow versions, Veer leverages the fact

that the two versions are mostly identical except for a few places with edit operations. It

uses existing EVs as a black box. Given an EV, our approach is to break the version pair into

multiple “windows,” each of which includes local changes and satisfies the EV’s restrictions

to verify if the pair of portions of the workflow versions in the window is equivalent, as

illustrated in Figure 1.3. We consider different semantics of equivalence between two tuple

collections, including sets, bags, and lists, depending on the application of the workflow and

the given EV. Veer is agnostic to the underlying EVs, making it usable for any EV of choice.

Next we define concepts used in this approach.

81

���
���

"

"

" (9

"

9HHU

Figure 4.3: Overview of Veer. Given an EV and two versions with their mapping,
Veer breaks (decomposes) the version pair into small windows, each of which
satisfies the EV’s restrictions. It finds different possible decompositions until it
finds one with each of windows verified as equivalent by the EV.

4.4.2 Windows and Covering Windows

Definition 4.3 (Window). Consider two workflow versions P and Q with a set of edits

δ = {c1 . . . cn} from P to Q and a corresponding mapping M from P to Q. A window,

denoted as ω, is a pair of sub-DAGs ω(P) and ω(Q), where ω(P) (respectively ω(Q)) is a

connected induced sub-DAG of P (respectively Q). Each pair of operators/links under the

mappingM should be either both in ω or both outside ω.

The operators in the sub-DAGs ω(P) and ω(Q) without outgoing links are called their sinks.

Recall that we assume each workflow has a single sink. However, the sub-DAG ω(P) and

ω(Q) may have more than one sink. This can happen, for example, when the window contains

a Replicate operator. A neighbor of a window is either an operator before a source operator of

the window or an operator after a sink of the window. Figure 4.4 shows a window ω, where

each sub-DAG includes the Classifier operator and two downstream operators Left-Outerjoin

and Join, which are two sinks of the sub-DAG.

Definition 4.4 (Covering window). Consider two workflow versions P and Q with a set of

edits δ = {c1 . . . cn} from P to Q and a corresponding mappingM from P to Q. A covering

82

sort limit

scatterplotjoin

outer join aggregate

classifier filter

filter

Figure 4.4: An example window ω and each sub-DAG of ω(v1) and ω(v2) contains
two sinks (shown as an Orange circle).

window, denoted as ωC, is a window to cover a set of changes C ⊆ δ. That is, the sub-DAG

in P (respectively sub-DAG in Q) in the window includes the sources if any (respectively

targets, if any) operators/links of the edit operations in C.

When the edit operations are clear in the context, we will simply write ω to refer to a covering

window. Figure 4.5 shows a covering window for the change of adding the operator Filterh

to v2. The covering window includes the sub-DAG ω(v1) of v1 and contains the Aggregate

operator. It also includes the sub-DAG ω(v2) of v2 and contains the Filterh and Aggregate

operators.

Definition 4.5 (Equivalence of the two sub-DAGs in a window). We say the two sub-DAGs

ω(P) and ω(Q) of a window ω are equivalent, denoted as “ω(P) ≡ ω(Q),” if they are equiva-

lent as two stand-alone DAG’s, i.e., without considering the constraints from their upstream

operators. That is, for every instance of source operators in the sub-DAGs (i.e., those opera-

tors without ancestors in the sub-DAGs), each sink s of ω(P) and the correspondingM(s) in

ω(Q) produces the same results. In this case, for simplicity, we say this window is equivalent.

83

sort limit

scatterplotjoin

outer join aggregate

classifier filter

non-commercial
& related

filter "related"

Figure 4.5: A covering window ω for adding Filterh.

Figure 4.6 shows an example of a covering window ω′, where its sub-DAGs ω′(v1) and ω
′(v2)

are equivalent.

Notice that for each sub-DAG in the window ω, the results of its upstream operators are the

input to the sub-DAG. The equivalence definition considers all instances of the sources of the

sub-DAG, without considering the constraints on its input data as the results of upstream

operators. For instance, consider the two workflow versions in Figure 4.7. The two sub-

DAGs of the shown window ω are clearly not equivalent as two general workflows, as the top

sub-DAG has a filter operator, while the bottom one does not. However, if we consider the

constraints of the input data from the upstream operators, the sub-DAGs in ω are indeed

equivalent, because each of them has an upstream filter operator with a predict age < 50,

making the predicate age < 55 redundant. We use this definition of sub-DAG equivalence

despite the above observation, because we treat the sub-DAGs in a window as a pair of

stand-alone workflow DAGs to pass to the EV for verification (see Section 4.5.1).

Definition 4.6 (Window containment). We say a window ω is contained in a window ω′,

donated as ω ⊆w ω
′, if ω(P) (respectively ω(Q)) of ω is a sub-DAG of the corresponding one

84

sort limit

scatterplotjoin

outer join aggregate

classifier filter

non-commercial
& related

filter "related"

Figure 4.6: An example covering window ω′ showing its pair of sub-DAGs are
equivalent.

DJH�����

DJH����� QDPH��DJH��VDODU\

QDPH��DJH�
VDODU\

DJH�����HPSOR\HHV

HPSOR\HHV

Figure 4.7: Two sub-DAGs in the window ω are not equivalent, as sub-DAG
equivalence in Definition 4.5 does not consider constraints from the upstream
operators. But the two complete workflow versions are indeed equivalent.

85

in ω′. In this case, we call ω a sub-window of ω′, and ω′ a super-window of ω.

For instance, the window ω in Figure 4.5 is contained in the window ω′ in Figure 4.6.

4.5 Two Versions with a Single Edit

In this section, we study how to verify the equivalence of two workflow versions P and

Q with a single change c of the corresponding mapping M from P to Q. We leverage a

given EV γ to verify the equivalence of two queries. We discuss how to use the EV to

verify the equivalence of the version pair in a window (Section 4.5.1), and discuss the EV’s

restrictions (Section 4.5.2). We present a concept called “maximal covering window”, which

helps in improving the performance of verifying the equivalence (Section 4.5.3), and develop

a method to find maximal covering windows to verify the equivalence of the two versions

(Section 4.5.4).

4.5.1 Verification Using a Covering Window

We show how to use a covering window to verify the equivalence of a version pair.

Lemma 4.1. Consider a version pair (P,Q) with a single edit c operation between them. If

there is a covering window ω = (ω(P), ω(Q)) of the edit operation such that the sub-DAGs

of the window are equivalent, then the version pair is equivalent.

Proof. Suppose ω(P) ≡ ω(Q). From the definition of a covering window, every operator in

one sub-DAG of the window ω has its corresponding mapped operator in the other sub-DAG

of the window, and the change c is included in the window. This means that the sub-

DAGs of P and Q that precede the window ω are isomorphic (structurally identical) and

86

the sub-DAGs of P and Q that follow the window are isomorphic as shown in Figure 4.8a.

Following the assumption that multiple runs of a workflow produce the same result, this

infers that given an instance of input sources D, the sub-DAGs before the window would

produce equivalent results according to definition 4.3.2. This result becomes the input source

for the window ω and given that the sub-DAGs in ω are equivalent, this means that each

sink of ω(P) is equivalent to the corresponding sink (according to the mapping) of ω(Q).

Hence, the output of the window, which is the input to the pair of sub-DAGs following the

window, is identical, and since the operators are isomorphic, the result of the sub-DAGs

following the window is equivalent. Thus, P ≡ Q.

edit operation

(a) Using a covering window to check the
equivalence of two versions.

edit operation

(b) Subsumption of windows and their re-
lation to version equivalence.

Figure 4.8: Conceptual examples to explain the relation between a “covering
window” and version pair equivalence.

Based on this lemma, we can verify the equivalence of a pair of versions as follows: We

consider a covering window and check the equivalence of its sub-DAGs by passing each pair

of sinks and the sink’s ancestor operators in the window (to form a query pair) to an EV. If

the EV shows that all the sink pairs are equivalent, then the two versions are equivalent.

A key question is how to find such a covering window. Notice that the two sub-DAGs in

Figure 4.5 are not equivalent. However, if we include the downstream Filterk in the covering

window to form a new window ω′ (shown in Figure 4.6) with a pair of sub-DAGs ω′(P) and

87

ω′(Q), then the two sub-DAGs in ω′ are equivalent. This example suggests that we may

need to consider multiple windows in order to find one that is equivalent.

4.5.2 EV Restrictions and Valid Windows

We cannot give an arbitrary window to the EV, since each EV has certain restrictions on

the sub-DAGs to verify their equivalence.

Definition 4.7 (EV’s restrictions). Restrictions of an EV are a set of conditions such that

for each query pair if this pair satisfies these conditions, then the EV is able to determine

the equivalence of the pair without giving ‘‘Unknown’’ as an answer.

We will relax this definition in Section 4.9, discuss the consequences of relaxing the definition,

and propose solutions. There are two types of restrictions.

• Restrictions due to the EV’s explicit assumptions: For example, UDP and Equitas support

reasoning of certain operators, e.g., Aggregate and SPJ, but not other operators such as

Sort.

• Restrictions that are derived due to the modules used by the EV: For example, Equi-

tas [164], Spes [163], and Spark Verifier [56] use an SMT solver [43] to determine if a FOL

formula is satisfiable or not. SMT solver is not complete for determining the satisfiability

of formulas when their predicates have non-linear conditions [24]. Thus, these EVs require

the predicate conditions in their expressions to to be linear to make sure to receive an

answer from the solver.

As an example, the following is an example of the explicit and derived restrictions of the

Equitas [164] to test the equivalence of two queries 4. Note that restrictions are not unique.

4Applications that use Veer need to extend it to include their EV of choice if it is not Equitas or Spes,
and incorporate the restrictions specific to those EVs.

88

R1. The table semantics has to be set semantics.5

R2. All operators have to be any of the following types: SPJ, Outer join, and/or Aggregate.

R3. The predicate conditions of SPJ operators have to be linear.

R4. Both queries should have the same number of Outer join operators, if present.

R5. Both queries should have the same number of Aggregate operators, if present.

R6. If they use an Aggregate operator with an aggregation function that depends on the

cardinality of the input tuples, e.g., COUNT, then each upstream operator of the Aggregate

operator has to be an SPJ operator, and the input tables are not scanned more than once.

Definition 4.8 (Valid window w.r.t an EV). We say a window is valid with respect to an

EV if it satisfies the EV’s restrictions.

In order to test if a window is valid, we pass it to a “validator”, in which checks if the window

satisfies the EV restrictions or not.

4.5.3 Maximal Covering Window (MCW)

A main question is how to find a valid covering window with respect to the given EV using

which we can verify the equivalence of the two workflow versions. A naive solution is to

consider all the covering windows of the edit change c. For each of them, we check its

validity, e.g., whether they satisfy the constraints of the EV. If so, we pass the window to

the EV to check the equivalence. This approach is computationally costly, since there can

be many covering windows. Thus our focus is to reduce the number of covering windows

that need to be considered without missing a chance to detect the equivalence of the two

workflow versions. The following lemma helps us reduce the search space.

Lemma 4.2. Consider a version pair (P , Q) with a single edit c between them. Suppose

5In this work, the application determines the desired table semantics, and Veer decides to use an EV that
supports the specified table semantics requested by the application by checking the restriction.

89

a covering window ω of c is contained in another covering window ω′. If the sub-DAGs in

window ω are equivalent, then the sub-DAGs of ω′ are also equivalent.

Proof. Suppose ω(P) ≡ ω(Q). Suppose a window ω′ consists of the sub-DAGs of the entire

version pair, i.e. ω′(P) = P and ω′(Q) = Q. This means that ω ⊆ ω′ as ω(P) ⊆ ω′(P)

and ω(Q) ⊆ ω′(Q). Given that the sub-DAGs in ω are equivalent, from Lemma 4.1, we

can infer the version pair is equivalent, which means the sub-DAGs in the window ω′ are

equivalent.

Based on Lemma 4.2, we can just focus on covering windows that have as many operators as

possible without violating the constraints of the EV. If the EV shows that such a window is

not equivalent, then none of its sub-windows can be equivalent. (A subtle case is when the

EV does not know if the window ω′ is equivalent, but can verify that ω is equivalent. We

will discuss this case in Section 4.9.) Based on this observation, we introduce the following

concept.

Definition 4.9 (Maximal Covering Window (MCW)). Given a workflow version pair (P,Q)

with a single edit operation c, a valid covering window ω is called maximal if it is not properly

contained by another valid covering window.

The change c may have more than one MCW, For example, suppose the EV is Equitas.

Figure 4.9 shows two MCWs to cover the change of adding the Filterh operator. One maximal

window ω1 includes the change Filterh and Left Outerjoin on the left of the change. The

window cannot include the Classifier operator from the left side because Equitas cannot reason

about its semantics. Similarly, the Aggregate operator on the right cannot be included in

ω1 because one of Equitas restrictions is that the input of an Aggregate operator must be

an SPJ operator and the window already contains Left OuterJoin. To include the Aggregate

operator, a new window ω2 is formed to exclude Left OuterJoin and include Filter on the right

but cannot include Sort because this operator cannot be reasoned by Equitas.

90

VRUW OLPLW

VFDWWHUSORWMRLQ

RXWHU�MRLQ DJJUHJDWH

FODVVLILHU ILOWHUR

ILOWHUN

ILOWHUK

Figure 4.9: Two MCW ω1 and ω2 satisfying the restrictions of Equitas to cover
the change of adding Filterh to v2.

The MCW ω2 is verified by Equitas to be equivalent, whereas ω1 is not. Notice that one

equivalent covering window is enough to show the equivalence of the two workflow versions.

find all MCWsadd outer-join add aggregate add classifier add filter

... ...

expand expand expand

Figure 4.10: Example to illustrate the process of finding MCWs for the change
of adding Filterh to v2.

91

4.5.4 Finding MCWs to Verify Equivalence

Next we study how to efficiently find an MCW to verify the equivalence of two workflow

pairs. We present a method shown in Algorithm 4.1. Given a version pair P and Q and a

single edit operation c based on the mappingM, the method finds an MCW that is verified

by the given EV γ to be equivalent.

Algorithm 4.1: Verifying equivalence of two workflow versions with a single edit

Input: A version pair (P,Q); A single edit c; A mappingM; An EV γ
Output: A flag to indicate if they are equivalent
// a True value to indicate the pair is equivalent, a False value to indicate the pair is not

equivalent, or Unknown when the pair cannot be verified

1 ω ← create an initial window to include the source and the corresponding target
(operator/link) of the edit c

2 Ω = {ω} // initialize a set for exploring widows

// using memoization, a window is explored only once

3 while Ω is not empty do
4 ωi ← remove one window from Ω
5 for every neighbor of ωi do
6 if adding neighbor to ωi meets EV’s restrictions then
7 add ω′

i (including the neighbor) to Ω

8 end
9 if none of the neighbors were added to ωi then

// the window is maximal

10 if ωi is verified equivalent by the EV then
11 return True

12 if ωi is verified not equivalent by the EV and the window is the entire version
pair then

13 return False

14 end
15 return Unknown

We use the example in Figure 4.10 to explain the details of Algorithm 4.1. The first step is

to initialize the window to cover the source and target operator of the change only (line 1).

In this example, for the window ω1, its sub-DAG ω1(v2) contains only Filterh and its corre-

sponding operator using the mappingM in ω1(v1). Then we expand all the windows created

so far, i.e., ω1 in this case (line 2). To expand the window, we enumerate all possible combi-

92

nations of including the neighboring operators on both ω1(v1) and ω1(v2) using the mapping.

For each neighbor, we form a new window and check if it has not been explored yet. If not,

then we check if the newly formed window is valid (lines 5-6).

In this example, we create the two windows ω2 and ω3 to include the operators Outer-join

and Aggregate in each window, respectively. We add those windows marked as valid in

the traversal list to be further expanded in the following iterations (line 7). We repeat the

process on every window. After all the neighbors are explored to be added and we cannot

expand the window anymore, we mark it as maximal (line 9). Then we test the equivalence

of this maximal window by calling the EV. If the EV says it is equivalent, the algorithm

returns TRUE to indicate the version pair is equivalent (line 10). If the EV says that it is not

equivalent and the window’s sub-DAGs are the complete version pair, then the algorithm

returns False (line 13). Otherwise, we iterate over other windows until there are no other

windows to expand. In that case, the algorithm returns Unknown to indicate that the version

equivalence cannot be verified as in line 15.

Some EVs [37, 164, 163] return False to indicate that the equivalence of the version pair

cannot be verified, but it does not necessarily mean that the pair is inequivalent. We take

note of these EVs, and in the algorithm mentioned above, we only report False if the EV

is capable of proving the inequivalence of the pair, such as COSETTE [38].

4.6 Two Versions with Multiple Edits

In the previous section, we assumed there is a single edit operation to transform a workflow

version to another version. In this section, we extend the setting to discuss the case where

multiple edit operations δ = {c1 . . . cn} transform a version P to a version Q. A main

challenge is finding covering windows for multiple edits (Section 4.6.1). We address the

93

challenge by decomposing the version pair into a set of disjoint windows. We formally define

the concepts of “decomposition” and “maximal decomposition” (Section 4.6.2). We explain

how to find maximal decompositions to verify the equivalence of the version pair and prove

the correctness of our solution (Section 4.6.4). We analyze the completeness of the proposed

algorithm (Section 4.6.5).

4.6.1 Can we use overlapping windows?

When the two versions have more than one edit, they can have multiple covering windows.

A natural question is whether we can use covering windows that overlap with each other to

test the equivalence of the two versions. We will use an example to show that we cannot

do that. The example, shown Figure 4.11, is inspired from the NY Taxi dataset [106] to

calculate the trip time based on the duration and starting time. Suppose the Selectx and

Selectz operators are deleted from a version v1 and Selecty operator is added to transform

the workflow to version v2. The example shows two overlapping windows ω and ω′, each

window is equivalent.

view resultNYC Taxi trip = starting trip = trip +
duration

trip = trip +
duration

location, trip,
duration

view resultNYC Taxi trip = starting trip = trip +
duration

location,
trip, duration

location,
time, trip,
duration

location,
time, trip,
duration

Figure 4.11: In this example, the blue window ω is equivalent and the purple
window ω′ is also equivalent. But the version pair is not equivalent. The shaded
gray area is the input to window ω′.

94

We cannot say the version pair is equivalent. The reason is that for the pair of sub-DAGs in

ω′ to be equivalent, the input sources have to be the same (the shaded area in grey in the

example). However, we cannot infer the equivalence of the outcome of that portion of the

sub-DAG. In fact, the pair of sub-DAGs in the shaded area in this example produce different

results. This problem does not exist in the case of a single edit, because the input sources

to any covering window (in a single edit case) will always be a one-to-one mapping of the

two sub-DAGs and there is no other change outside the covering window. The solution in

Section 4.5 finds any window such that its sub-DAGs are equivalent and cannot be directly

used to solve the case of verifying the equivalence of the version pair when there are multiple

edits.

To overcome this challenge and enable using windows to check the equivalence of the version

pair, we require the covering windows to be disjoint. In other words, each operator must be

included in one and only one window. A naive solution is to do a simple exhaustive approach

of decomposing the version pair into all possible combinations of disjoint windows. Next, we

formally define a version pair decomposition and how it is used to check the equivalence of

a version pair.

4.6.2 Version Pair Decomposition

Definition 4.10 (Decomposition). For a version pair P and Q with a set of edit operations

δ = {c1 . . . cn} from P to Q, a decomposition, θ is a set of windows {ω1, . . . , ωm} such that:

• Each edit is in one and only one window in the set;

• All the windows are disjoint;

• The union of the windows is the version pair.

Figure 4.12 shows a decomposition for the three changes in the running example. The

95

example shows two covering windows ω1 and ω2, each covers one or more edits 6. Next, we

show how to use a decomposition to verify the equivalence of the version pair by generalizing

Lemma 4.1 as follows.

classifier

sort limit

scatterplotjoin

outer join aggregate non-commercial
& related

filter "related"

filter "related"

filter "related"

Figure 4.12: A decomposition θ with two covering windows ω1 and ω2 that cover
the three edits.

Lemma 4.3. (Corresponding to Lemma 4.1) For a version pair P and Q with a set of edit

operations δ = {c1 . . . cn} to transform P to Q, if there is a decomposition θ such that every

covering window in θ is equivalent, then the version pair is equivalent.

Proof. Suppose every covering window ωi in a decomposition θ is equivalent. Every other

window that is not covering, its sub-DAGs are structurally identical, according to Defini-

tion 4.4.2. Given an instance of input sources D, we can have the following two cases.

(CASE1:) the input is processed by a pair of structurally identical sub-DAGs that are in

a non-covering window. In this case, the pair of sub-DAGs produce an equivalent result

since every operator is deterministic according to Assumption 4.3.2. (CASE2:) the input is

6For simplicity, we only show covering windows of a decomposition in the figures throughout this section.

96

processed by a pair of sub-DAGs in a covering window. In this case, the pair of sub-DAGs

produce equivalent result because we assumed each covering window is equivalent. In both

cases, the output acts as the input to the following portion of the sub-DAGs (either non-

covering or a covering window). This propagation continues along the pair of DAGs until

the end, thus the version pair produces equivalent results as shown in Figure 4.13.

edit operation

edit operation
Figure 4.13: Using multiple covering windows on multiple edits to check the
equivalence of two versions.

A natural question is how to find a decomposition where each of its windows is equivalent.

We could exhaustively consider all the possible decompositions, but the number can grow

exponentially as the size of the workflow and the number of changes increase. The follow-

ing “decomposition containment” concept, defined shortly, helps us reduce the number of

decompositions that need to be considered.

Definition 4.11 (Decomposition containment). We say a decomposition θ is contained in

another decomposition θ′, denoted as θ ⊆d θ
′, if every window in θ, there exists a window in

θ′ that contains it.

Figure 4.14 shows an example of a decomposition θ′ that contains the decomposition θ

in Figure 4.12. We can see that in general, if a decomposition θ is contained in another

decomposition θ′, then each window in θ′ is a concatenation of one or multiple windows in

θ.

97

classifier

sort limit

scatterplotjoin

outer join aggregate non-commercial
& related

filter "related"

filter "related"

filter "related"

Figure 4.14: Example to show equivalent pair of sub-DAGs of every covering
window in a decomposition θ′.

The following lemma, which is a generalization of Lemma 4.2, can help us prune the search

space by ignoring decompositions that are properly contained by other decompositions.

Lemma 4.4. (Corresponding to Lemma 4.2) Consider a version pair P and Q with a set

of edit operations δ = {c1 . . . cn} from P to Q. Suppose a decomposition θ is contained in

another decomposition θ′. If each window in θ is equivalent, then each window in θ′ is also

equivalent.

Proof. Suppose each window in a decomposition θ is equivalent and the decomposition is

contained in another decomposition θ′. Based on the Definition of decomposition contain-

ment 4.6.2, we know that each window in θ is contained in a window in θ′. According to

Lemma 4.2, if a window is equivalent then a window that contains it is also equivalent. We

can deduce that every window in θ′ is equivalent, therefore the version pair is equivalent as

per Lemma 4.3.

98

4.6.3 Maximal Decompositions w.r.t. an EV

Lemma 4.4 shows that we can safely find decomposition that contain other ones to verify

the equivalence of the version pair. At the same time, we cannot increase each window

arbitrarily, since the equivalence of each window needs to be verified by the EV, and the

window needs to satisfy the restrictions of the EV. Thus we want decompositions that are

as containing as possible while each window is still valid. We formally define the following

concepts.

Definition 4.12 (Valid Decomposition). We say a decomposition θ is valid with respect to

an EV if each of its covering windows is valid with respect to the EV.

Definition 4.13 (Maximal Decomposition (MD)). We say a valid decomposition θ is max-

imal if no other valid decomposition θ′ exists such that θ′ properly contains θ.

The decompositions w.r.t an EV form a unique graph structure, where each decomposition

is a node. It has a single root corresponding to the decomposition that includes every

operator as a separate window. A downward edge indicates a “contained-in” relationship.

A decomposition can be contained in more than one decomposition. Each leaf node at the

bottom of the hierarchy is an MD as there are no other decompositions that contain it and

the hierarchy may not be balanced. If the entire version pair satisfies the EV’s restrictions,

then the hierarchy becomes a lattice structure with a single leaf MD being the entire version

pair. Each branching factor depends on the number of changes, the number of operators,

and the EV’s restrictions. Figure 4.15 shows the hierarchical relationships of the valid

decompositions of the running example when the EV is Equitas. The example shows two

MD θ12 and θ16.

99

h g o.........

f, h g o h, j g o h g, n o h g n, o

h g, n, oh, j n, ogh, j g, n oh, j, k g o

h, j, k g, n o n, ogh, j, k h, j g, n, o

f, h g n, of, h g, n o

f, h g, n, o

h, j, k g, n, o

Figure 4.15: Hierarchy of valid decompositions w.r.t an EV. Each letter corresponds
to a pair of operators from the running example. We show the containment of covering
windows and we omit details of containment of non-covering windows.

4.6.4 Finding a Maximal Decomposition to Verify Equivalence (A

Baseline Approach)

Now we present an algorithm for finding maximal decompositions shown in Algorithm 4.2.

We will explain it using the example in Figure 4.15. We return True to indicate the pair is

equivalent if there are no changes and the two versions exactly match (Line 1-2). Otherwise,

we add the initial decomposition, which includes each operator as a window, to a set of

decompositions to be expanded (line 3). In each of the following iterations, we remove a

decomposition from the set, and iteratively expand its windows. To expand a window, we

follow the procedure as in Algorithm 4.1 to expand its neighbors. The only difference is

that the neighbors in this case are windows, and we merge windows if their union is valid

(line 10). If a window cannot be further expanded, then we mark the window as maximal to

avoid checking it again (line 14). If all of the windows in the decomposition are maximal, we

mark the decomposition as maximal, and verify whether each covering window is equivalent

by passing it to the given EV (line 17). If all of the windows are verified to be equivalent, we

return True to indicate that the version pair is equivalent (line 18). If in the decomposition

there is only a single window, which includes the entire version pair, and the EV decides

100

that the window is not equivalent, then the algorithm returns False (line 20). Otherwise, we

continue exploring other decompositions until there are no more decompositions to explore.

In that case, we return Unknown to indicate that the equivalence of the version pair cannot

be determined (line 22). This algorithm generalizes Algorithm 4.1 to handle cases of two

versions with multiple edits.

Algorithm 4.2: Verifying the equivalence of a workflow version pair with one or
multiple edits (Baseline)

Input: A version pair (P , Q); A set of edit operations δ and a mappingM from P
to Q; An EV γ

Output: A version pair equivalence flag EQ
// A True value indicates the pair is equivalent, a False value indicates the pair is not equivalent,

and an Unknown value indicates the pair cannot be verified

1 if δ is empty then
2 return True

3 θ ← decomposition with each operator as a window
4 Θ = {θ} // initial set of decompositions

5 while Θ is not empty do
6 Remove a decomposition θi from Θ
7 for every covering window ωj (in θi) not marked do
8 for each neighbor ωk of ωj do
9 if ωk ∪ ωj is valid and not explored before then

10 θ′i ← θ − ωk − ωj + ωk ∪ ωj

11 add θ′i to Θ

12 end
13 if none of the neighbor windows can be merged then
14 mark ωj

15 end
16 if every covering ω ∈ θi is marked then
17 if γ verifies each covering window in θi to be equivalent then
18 return True

19 if θi has only one window and γ verifies it not to be equivalent then
20 return False

21 end
22 return Unknown

Theorem 4.5. (Correctness). Given a workflow version pair (P , Q), an edit mapping, and

a sound EV, 1) if Veer returns True, then P ≡ Q, and 2) if Veer returns False, then P ̸≡ Q.

Proof. 1) Suppose P ̸≡ Q. According to definition 4.3.2, this means that for a given input

101

sources D, there is a tuple t that exists in the sink of P but does not exist in the sink of Q.

Following Assumption 4.3.2 that multiple runs of a workflow produce the same result, we

can infer that there must be a set of edit operations δ = {c1, . . . , cn} to transform P to Q

that caused the sink of P to contain the tuple t but does not exist in the sink of Q. Veer

must find a valid maximal decomposition θ following Algorithm 4.2. There are four cases

the procedure terminates and returns the result:

CASE1: The set of edits is empty and this is not the case as inferred above that there exists

a change.

CASE2: The set of maximal decompositions is empty, because none of the decompositions

satisfies the EV’s restrictions or none of the decompositions were verified equivalent. In this

case, Veer returns Unknown.

CASE3: There is a decomposition that is verified to be equivalent by a correct EV, which

according to Lemma 4.3, implies that the version pair is equivalent given the assumptions

in our setting. However, this is not the case because we assumed P ̸≡ Q.

CASE4: There is a single window in the decomposition and it is verified by the EV to be not

equivalent, when the EV can verify the inequivalence of the pair, in this case Veer returns

False.

In all cases, Veer did not return True, by contraposition, this proves that P ≡ Q.

2) We follow the same approach as above to prove the second case.

4.6.5 Improving the Completeness of Algorithm 4.2

In general, the equivalence problem for two workflow versions is undecidable [56, 3] (reduced

from First-order logic). So there is no verifier that is complete [38]. However, there are

102

classes of queries that are decidable such as SPJ [163]. In this section, we show factors that

affect the completeness of Algorithm 4.2 and propose ways to improve its completeness.

1) Window validity. In line 13 of Algorithm 4.2, if none of the neighbor windows of ωj

can be merged with ωj to become a valid window, we mark ωj and stop expanding it, hoping

it might be a maximal window. The following example shows that this approach could miss

some opportunity to find the equivalence of two versions.

Example 4.1. Consider the following two workflow versions:

P = {Project(all)→ Filter(age > 24)→ Aggregate(count by age)}.

Q = {Aggregate(count by age)→ Filter(age > 24)→ Project(all)}.

Consider the following mapping from P to Q: substituting Project in P with Aggregate in

Q and substituting Aggregate in P with Project in Q. Suppose the EV is Equitas and a

covering window ω contains the Project from P and its mapped operator Aggregate from

Q. Consider the window expansion procedure in Algorithm 4.2. If we add filter operator

of both versions to the window, then the merged window is not valid. The reason is that

it violates Equitas’s restriction R5 in Section 4.5.2, i.e., both DAGs should have the same

number of Aggregate operators. The algorithm thus stops expanding the window. However,

if we continue expanding the window till the end, the final window with three operators is

still valid.

Using this final window, we can see that the two versions are equivalent, but the algorithm

missed this opportunity. This example shows that even though the algorithm is correct in

terms of claiming the equivalence of two versions, it may miss opportunities to verify their

equivalence. A main reason is that the Equitas EV does not have the following property.

Definition 4.14 (EV’s Restriction Monotonicity). We say an EV is restriction monotonic

103

if for each version pair P and Q, for each invalid window ω, each containing window of ω

is also invalid.

Intuitively, for an EV with this property, if a window is not valid (e.g., it violates the EV’s

restrictions), we cannot make it valid by expanding the window. For an EV that has this

property such as Spes, when the algorithm marks the window ωj (line 14), this window must

be maximal. Thus further expanding the window will not generate another valid window,

and the algorithm will not miss this type of opportunity to verify the equivalence.

If the EV does not have this property such as Equitas, we can improve the completeness of

the algorithm as follows. We modify line 9 by not checking if the merged window ωj ∪ ωk is

valid or not. We also modify line 13 to test if the window ωj is maximal with respect to the

EV. This step is necessary in order to be able to terminate the expansion of a window. We

assume there is a procedure for each EV that can test if a window is maximal by reasoning

the EV’s restrictions.

2) Different edit mappings.

A P

FP A

F

A P

FP A

F

Figure 4.16: An example of two
edit mappings, where one leads
to a decomposition that satisfies
an EV’s restrictions, while the
other does not.

Consider two different edit mappings, M1 and M2,

for the version pair in Example 4.6.5, as shown in

Figure 4.16. Let us assume the given EV is Equitas.

If we follow the baseline Algorithm 4.2, mappingM1

results in a decomposition that violates Equitas’s R2

restriction. On the other hand, mappingM2 satisfies

the restrictions and allows the EV to test their equiv-

alence. This example shows that different edit map-

pings can lead to different decompositions. Notably,

the edit distance of the first mapping is 2, while the

edit distance of the second one is 4. This result shows

104

that a minimum-distance edit mapping does not always produce the best decomposition to

show the equivalence.

One way to address this issue is to enumerate all possible edit mappings [120] and perform

the decomposition search by calling Algorithm 4.2 for each edit mapping. If the changes

between the versions are tracked, then the corresponding mapping of the changes can be

treated as the first considered edit mapping before enumerating all other edit mappings.

4.7 Completeness of Veer

In this section, we first discuss the completeness of Veer and the dependence on the com-

pleteness of its internal components (§4.7.1). Then we show examples of using different

EVs to illustrate the restrictions that a workflow version pair needs to satisfy for Veer to be

complete for verifying the pair’s equivalence and formally prove its completeness (§4.7.2).

4.7.1 Veer’s Completeness Dependency on Internal Components

For any pair of workflow versions, if the pair is equivalent and there is a valid decomposition

w.r.t. to a given EV where each of its covering windows is verified as equivalent by the given

EV, Veer returns True. Recall that Veer considers all possible edit mappings and explores

all possible valid decompositions for each mapping. If there is a valid decomposition under

a mapping, Veer guarantees to find it. For any pair of workflow versions, if the pair is

inequivalent and there exists a valid decomposition that includes a single window consisting

of the entire version pair, and this window is verified as inequivalent by the EV, then Veer

returns False. For simplicity, throughout this section, in both cases we say there is a valid

decomposition whose equivalence is determined by the given EV. In both cases, Veer does

not return Unknown. Note that the completeness of Veer relies on the completeness of the

105

given EV. If the EV is incomplete and returns Unknown to all possible valid decompositions

generated by Veer, accordingly Veer returns Unknown.

Veer

EV

Solver

edit mapping &
decompositions

expression

Figure 4.17: Com-
ponents related to
the equivalence ver-
ification process.

The completeness of modern EVs [164, 163, 37, 56, 146] depends on

the internal components used. For instance, most EVs [164, 163, 37,

56, 146] model queries as expressions, such as FOL formulas, and

utilize a solver, e.g., SMT, to determine the satisfiability of formulas.

SMT solvers [43] are complete for testing the satisfiability of linear

formulas [24]. Therefore, EVs that use SMT solvers in their internal

verification procedure are complete for verifying the equivalence of

two queries (workflows or SQL) when the two queries include only

linear conditions in their predicates. Likewise, Veer is complete for

verifying the equivalence of two workflow versions that satisfy the

EV’s restrictions. Figure 4.17 illustrates the internal components

Veer uses and how these components contribute to Veer’s overall completeness.

4.7.2 Restrictions of Some EVs and Veer’s Completeness

We use the following examples on three EVs (summarized in Table 4.3) to explain Veer’s

completeness process. Suppose a given EV is Spes [163]. Spes determines the equivalence of

two queries under the “Bag” table semantics. Spes is complete for determining the equiv-

alence of two queries that satisfy the following restrictions [163]: 1) the two queries should

contain only SPJ operators; 2) the selection predicates in every query should not include

non-linear conditions.

Lemma 4.6. Given two SPJ workflow versions (P,Q), Spes as the EV, and Spes’ restric-

tions, if the two versions satisfy Spes’ restrictions, then Veer can determine the equivalence

of the pair. That is 1) if the two versions are equivalent, then Veer returns True, 2) and if

106

Table 4.3: Example EVs and their restrictions along with how Veer is complete
for verifying a version pair that satisfy the EV’s restrictions.

EV EV’s restrictions Explanation of why Veer is complete

Spes [163]

1. the pair should not include
other than Select-Project-Join (SPJ.)
2. queries should have only
linear predicate conditions.

Veer finds all possible windows that satisfy
the EV’s restrictions, and in this example,
the given pair satisfies the restrictions,
so Veer can find it.

UDP [37]

1. the pair should not include
other than Union-SPJ (USPJ.)
2. the two versions must have
a bijective mapping.

Veer finds all possible windows that satisfy
the EV’s restrictions under all possible
mappings, and in this example, Veer
finds a bijective mapping if there exists one.

Spark
Verifier [56]

1. the pair should not include
other than SPJ-Aggregate (SPJA.)
2. there should not be more than
one aggregate operator in each
version such that the aggregate
is without grouping and outputs
a primitive, e.g., MAX and MIN.

Veer finds all possible windows that satisfy
the EV’s restrictions, and in this example,
the given pair satisfies the restrictions,
so Veer finds it.

the pair is not equivalent then Veer returns False.

Proof. We prove this theorem with the method of contradiction.

1) Assume the two versions P and Q are equivalent. Assume Veer does not return True.

This means that Veer returns any of the following two values:

a) False. According to Algorithm 4.2, Veer returns False when there is a decomposition

with a single window of the entire version pair and verified inequivalent by the EV. In this

case, P ̸≡ Q, which contradicts the assumption.

b) Unknown. Veer calls Algorithm 4.2 multiple times on all possible mappings. Algorithm 4.2

returns Unknown when all valid decompositions w.r.t. the given EV (Spes) are explored and

there was no valid decomposition that each of its covering windows was verified equivalent.

This contradicts the given constraint that the pair satisfies Spes’s restrictions, and Veer finds

all possible valid windows and a window that includes the entire version pair is one of the

possible valid windows.

107

Given these two cases, we prove by contradiction that Veer can verify the equivalence of P

and Q.

2) We follow the same approach as above to prove the second case.

Theorem 4.7. (Completeness.) Veer using an EV is complete for determining the equiva-

lence of two workflow versions if the pair satisfies the restrictions of the EV.

Proof. Suppose the two versions satisfy the restrictions of the EV used in Veer. Since Veer

considers all possible mappings and all possible decompositions that satisfy the EV’s restric-

tions, it will for sure find a decomposition with a single window that includes the entire pair

because the given pair satisfies the EV’s restriction. According to Definition 4.5.2, the EV

is able to determine the equivalence of a pair.

4.8 Veer+: Improving Verification Performance

In this section, we develop four techniques to improve the performance of the baseline al-

gorithm for verifying the equivalence of two workflow versions. We show how to reduce the

search space of the decompositions by dividing the version pair into segments (Section 4.8.1).

We present a way to detect and prune decompositions that are not equivalent (Section 4.8.2).

We also discuss how to rank the decompositions to efficiently explore their search space (Sec-

tion 4.8.3). Lastly, we propose a way to efficiently identify the inequivalence of two workflow

versions (Section 4.8.4).

108

4.8.1 Reducing Search Space Using Segmentations

The size of the decomposition structure in Figure 4.15 depends on a few factors, such as the

number of operators in the workflow, the number of changes between the two versions, and

the EV’s restrictions. When the number of operators increases, the size of the possible de-

compositions increases. Thus we want to reduce the search space to improve the performance

of the algorithm.

The purpose of enumerating the decompositions is to find all possible cuts of the version

pair to verify their equivalence. In some cases a covering window of one edit operation will

never overlap with a covering of another edit operation, as shown in Figure 4.18. In this

case, we can consider the covering windows of those never overlapping separately. Based on

this observation, we introduce the following concepts.

independent
portion

independent
portion

Figure 4.18: An example where any covering window of an edit operation c1
never overlaps with a covering window of another edit operation c2 or c3.

Definition 4.15 (Segment and segmentation). Consider two workflow versions P and Q

with a set of edits δ = {c1, . . . , cn} from P to Q and a corresponding mappingM from P to

Q. A segment S is a window of P and Q under the mappingM. A segmentation ψ is a set

of disjoint segments, such that they contain all the edits in δ, and there is no valid covering

window that includes operators from two different segments.

109

A version pair may have more than one segmentation. For example, consider a version pair

with a single edit. One segmentation has a single segment, which includes the entire version

pair. Another segmentation includes a segment that was constructed by finding the union

of MCWs of the edit.

Computing a segmentation. We present two ways to compute a segmentation. 1) Using

unions of MCWs: For each edit ci ∈ δ, we compute all its MCWs, and take their union,

denoted as window Ui. We iteratively check for each window Ui if it overlaps with any other

window Uj, and if so, we merge them. We repeat this step until no window overlaps with

other windows. Each remaining window becomes a segment and this forms a segmentation.

Notice that a segment may not satisfy the restrictions of the given EV. 2) Using operators

not supported by the EV: We identify the operators not supported by the given EV. For

example, a Sort operator cannot be supported by Equitas. Then we mark these operators as

the boundaries of segments. The window between two such operators forms a segment.

Compared to the second approach, the first one produces fine-grained segments, but is

computationally more expensive.

Using a segmentation to verify the equivalence of the version pair. As there is no

valid covering window spanning over two segments, we can divide the problem of checking

the equivalence of P and Q into sub-problems, where each sub-problem is to check the

equivalence of the two sub-DAGs in a segment. Then to prove the equivalence of a version

pair, each segment in a segmentation needs to be equivalent. A segment is equivalent, if there

is any decomposition such that every covering window in the decomposition is equivalent.

We can organize the components of the version pair verification problem as an AND/OR

tree as shown in the Figure 4.19.

Lemma 4.8. For a version pair P and Q with a set of edit operations δ = {c1 . . . cn} from P

to Q, if every segment S in a segmentation ψ is equivalent, then the version pair is equivalent.

110

DAG

Segment

Maximal
Decomposition

Window AND

OR

AND

Figure 4.19: A sample abstract AND/OR tree to organize the components of
the version pair verification problem.

Proof. Suppose every segment Si in a segmentation ψ is equivalent. Since according to

Definition 4.8.1 a segment is a window and each change is covered in all of the segments in a

segmentation, then we can infer that any part of the version pair that is not in a segment is

structurally identical. Following the same procedure of the proof for Lemma 4.3, we can say

that the result is either from a structurally identical pair of sub-DAGs or from a segment,

which is said to be equivalent. We can deduce that the version pair is equivalent.

Algorithm 4.3 shows how to use a segmentation to check the equivalence of two versions.

g o......h

g, n, oh, j, k

g, n o g n, of, h h, j

Figure 4.20: Two segments to reduce the
decomposition-space of the running ex-
ample.

We first construct a segmentation. For each

segment we find if its pair is equivalent by

calling Algorithm 4.2. If any segment is not

equivalent, we can terminate the procedure

early. We repeat this step until all of the

segments are verified equivalent and we re-

turn True. Otherwise we return Unknown.

For the case where there is a single segment

consisting of the entire version pair and Al-

gorithm 4.2 returns False, the algorithm re-

111

turns False.

Algorithm 4.3: Using segments to verify the equivalence

Input: A version pair (P , Q); A set of edit operations δ and a mappingM from P
to Q; An EV γ

Output: A version pair equivalence flag EQ
// A True value indicates the pair is equivalent, a False value to indicate the version pair is not

equivalent, and an Unknown value indicates the pair cannot be verified

1 ψ ← constructSegmentation (P,Q,M)
2 for every segment Si ∈ ψ do
3 resulti ← Algorithm 4.2 (Si, δ,M, γ)
4 if resulti is not True then
5 break

6 end
7 if every resulti is True then
8 return True

9 if resulti is False and there is only one segment including the entire version pair
then

10 return False

11 return Unknown

Figure 4.20 shows the segments of the running example when using Equitas as the EV. Using

the second approach for computing a segmentation, we know Equitas does not support the

Sort operator, so we divide the version pair into two segments. The first one S1 includes

those operators before Sort, and the second one S2 includes those operators after the Sort.

The example shows the benefit of using segments to reduce the decomposition-space to a

total of 8 (the sum of number of decompositions in every segment) compared to 16 (the

number of all possible combinations of decompositions across segments) when we do not use

segments.

4.8.2 Pruning Stale Decompositions

Another way to improve the performance is to prune stale decompositions, i.e., those that

would not be verified equivalent even if they are further expanded. For instance, Figure 4.21

shows part of the decomposition hierarchy of the running example. Consider the decompo-

112

sition θ2. Notice that the first window, ω1(f, h), cannot be further expanded and is marked

“maximal” but the decomposition can still be further expanded by the other two windows,

thus the decomposition is not maximized. After expanding the other windows and reaching

a maximal decomposition, we realize that the decomposition is not equivalent because one

of its windows, e.g., ω1, is not equivalent.

Based on this observation, if one of the windows in a decomposition becomes maximal, we

can immediately test its equivalence. If it is not equivalent, we can terminate the traversal

of the decompositions after this one. To do this optimization, we modify Algorithm 4.2 to

test the equivalence of a maximal window after Line 147. If the window is equivalent, we

continue the search as before.

K J R���������

I��K J R K��M J R K J��Q R K J Q��R

K J��Q��RK��M Q��RJK��M J��Q RK��M��N J R

K��M��N J��Q R Q��RJK��M��N K��M J��Q��R

K��M��N J��Q��R

SUXQHG
SDWK

Figure 4.21: Example to show the pruned paths after verifying the maximal
window highlighted in blue to be not equivalent.

4.8.3 Ranking-Based Search

Ranking segments within a segmentation. Algorithm 4.3 needs an order to verify those

segments in a segmentation one by one. If any segment is not equivalent, then there is no need

for verifying the other segments. We want to rank the segments such that we first evaluate

7We can test the equivalence of the other windows for early termination.

113

the smallest one to get a quick answer for a possibility of early termination. We consider

different signals of a segment S to compute its score. Various signals and ranking functions

can be used. An example scoring function is F(S) = mS + nS, where mS is its number of

operators and nS is its number of changes. A segment should be ranked higher if it has

fewer changes. The reason is that fewer changes lead to a smaller number of decompositions,

and consequently, testing the segment’s equivalence takes less time. Similarly, if a segment’s

number of operators is smaller, then the number of decompositions is also smaller and would

produce the result faster.

For instance, the numbers of operators in S1 and S2 in Figure 4.20 are 4 and 3, respectively.

Their numbers of changes are 1 and 2, respectively. The ranking score for both segments is

the total of both metrics, which is 5. Then any of the two segments can be explored first,

and indeed the example shows that the number of decompositions in both segments is the

same.

Ranking decompositions within a segment. For each segment, we use Algorithm 4.2 to

explore its decompositions. The algorithm needs an order (line 6) to explore the decomposi-

tions. The order, if not chosen properly, can lead to exploring many decompositions before

finding an equivalent one. We can optimize the performance by ranking the decompositions

and performing a best-first search exploration. Again, various signals and ranking functions

can be used to rank a decomposition. An example ranking function for a decomposition d is

G(d) = od−wd, where od is the average number of operators in its covering windows, and wd

is the number of its unmerged windows (those windows that include a single operator and

are not merged with a covering window). A decomposition is ranked higher if it is closer

to reaching an MD for a chance of finding an equivalent one. Intuitively, if the number

of operators in every covering window is large, then it may be closer to reaching an MD.

Similarly, if there are only a few remaining unmerged windows, then the decomposition may

be close to reaching its maximality.

114

For instance, decomposition θ3 in Figure 4.15 has 11 unmerged windows, and the average

number of operators in its covering windows is 1. While θ6 has 10 unmerged windows, and

the average number of operators in its covering windows is 2. Using the example ranking

function, the score of θ3 is 1 − 11 = −10 and the score of θ6 is 2 − 10 = −8. Thus, θ6 is

ranked higher, and it is indeed closer to reaching an MD.

4.8.4 Identifying Inequivalent Pairs Efficiently

In this section, we use an example to show how to quickly detect the inequivalence between

two workflow versions using a symbolic representation to represent partial information of the

result of the sink of each version. Consider the case where two workflow versions P and Q

are inequivalent, as shown in Figure 4.22a. The approach discussed so far attempts to find

a decomposition in which all its windows are verified equivalent. However, in cases where

the version pair is inequivalent, as in this example, such a decomposition does not exist, and

the search framework would continue to look for one unsuccessfully. Moreover, detecting

the inequivalence of the pair happens if there exists a decomposition that includes the entire

version pair and satisfies the given EV’s restrictions. Although the cost of maximizing the

window and testing if it is valid could be low, testing the equivalence of maximal decom-

positions by pushing it to the EV incurs an overhead due to the EV’s reasoning about the

semantics of the window. Thus, we want to avoid sending a window to the EV if we can

quickly determine beforehand that the version pair is not equivalent.

To quickly identify the inequivalence between two workflow versions, our approach is to

create a lightweight representation that allows us to partially reason about the semantics of

the version pair. This approach relies on a symbolic representation similar to other existing

methods [89, 164], denoted as (S⃗, O⃗). In this representation, S⃗ and O⃗ are lists that represent

the projected columns in the table and the columns on which the result table is sorted,

115

3URMHFW)LOWHU

DJH��VDODU\DJH�!���

3URMHFW)LOWHU

DJH��VDODU\��,'DJH�!���

(a) A sample of two inequivalent workflow
versions.

(b) A partial symbolic representation
of two versions showing the projected
columns are different.

Figure 4.22: Example of two inequivalent workflow versions and their partial
symbolic representation.

respectively. To construct the representation, we follow the same techniques in existing

literature [37, 164] by using predefined transformations for each operator. Operators inherit

the representation from their upstream/parent operator and update the fields based on their

internal logic. In this way, if the list of projected columns (based on S⃗) of version P is

different from those in Q, as in Figure 4.22b, we can know the two versions do not produce

the same results. We can apply the same check to the sorted columns.

4.9 Extensions

In this section, we discuss relaxing the definition of EV’s restrictions then discuss the conse-

quences of relaxing the definition and propose extending Algorithm 4.2 to handle incomplete

EVs and handle multiple given EVs.

Relaxing EV’s restrictions. Recall an EV’s restrictions are conditions that a query pair

must satisfy to guarantee the EV’s completeness for determining the equivalence of the query

pair. This definition of restrictions limits the opportunity to cover more query pairs. Thus,

we relax the definition of EV’s restrictions as follows.

116

Definition 4.16 (Relaxed EV’s restrictions). Restrictions of an EV are a set of conditions

such that for each query pair if this pair satisfies these conditions, then the EV can attempt

to determine the equivalence of the pair.

However, relaxing the definition of an EV’s restriction may not guarantee the completeness

of the EV and may introduce the following implication.

Handling greedy window verification when an EV is incomplete. In Line 16 of

Algorithm 4.2 we push testing the equivalence of a decomposition to the given EV only

when the decomposition is marked maximal. The following example shows that this approach

could miss some opportunity to find the equivalence of two versions, because the EV is not

able to verify the equivalence of the two sub-DAGs in the maximal window.

Example 4.2. Consider two workflow versions P and Q with a single edit c based on a given

mapping M. Let γ be a given EV. Suppose a covering window ωc satisfies the restrictions

of γ, and the EV is able to verify the equivalence of the two sub-DAGs in ωc. According to

Algorithm 4.2, we do not check the equivalence of this window if it is not marked maximal.

Let ω′ be the only MCW that contains ω. Following Line 16 in Algorithm 4.2, if a window

is maximal (ω′ in this example) we push testing its equivalence to the EV. However, suppose

in this case, the EV returns Unknown, because EVs are mostly incomplete [38] for verifying

two general relational expressions. Since there is no other MCW to test, Veer accordingly

returns Unknown for verifying the equivalence of the sub-DAGs in ω′. However, if we pushed

testing the equivalence of the smaller window ωc, then Veer would have been able to verify

the equivalence of the pair.

This example highlights the significance of verifying the equivalence of sub-DAGs within

smaller windows before expanding to larger windows. The challenge arises when an EV can

verify the equivalence of a small window but fails to do so for a larger one. To address

this, we modify Line 16 in Algorithm 4.2 to check the equivalence of smaller windows by

117

backtracking when the maximal window is not verified. This modification ensures that we

do have more opportunities to verify the equivalence of the version pair. Note that this

approach may introduce a computational overhead due to the repeated checking of each

window and not just the maximal ones.

Using multiple EVs. As mentioned earlier, the problem of verifying the equivalence of

two relational expressions is undecidable [3]. Thus, any given EV would have limitations and

is incomplete for solving the problem of deciding the equivalence of two queries. To harness

the capabilities of different EVs, we extend Veer to take in a set of EVs and their associated

restrictions. We do not modify Algorithm 4.2. However, we extend the ‘isValid’ function in

Line 9 to encode a window is valid w.r.t which EV so that when we verify the equivalence of

the sub-DAGs in the window in Line 17, we call the corresponding EV the window satisfies.

4.10 Experiments

4.10.1 Experimental Setup

Synthetic workload. We constructed four workflows W1−W4 on TPC-DS [140] dataset

as shown in Table 4.4. For example, workflow W1’s first version was constructed based on

TPC-DS Q40, which contains 17 operators including an outer join and an aggregate operator.

Workflow W2’s first version was constructed based on TPC-DS Q18, which contains 20

operators. We omit details of other operators included in the workflows such as Unnest,

UDF, and Sort as these do not affect the performance of the experimental result as we

explain in each experiment.

Real-world workload. We analyzed a total of 179 real-world pipelines from Texera [138]

as summarized in Appendix A. We show a sample of some workflows used in the experiments

118

in Appendix B. Among the workflows, 81% had deterministic sources and operators, and we

focused our analysis on these workflows. Among the analyzed workflows, 8% consisted pri-

marily of 8 operators, and another 8% had 12 operators. Additionally, 33% of the workflows

contained 3 different versions, while 19% had 35 versions. 58% of the versions had a single

edit, while 22% had two edits. We also observed that the UDF operator was changed in 17%

of the cases, followed by the Projection operator (6% of the time) and the Filter operator (6%

of the time). From this set of workflows, we selected four as a representative subset, which

is presented as W5 . . .W8 in Table 4.4 and we used IMDB [70] and Twitter [142] datasets.

Table 4.4: Workloads used in the experiments.

Work
flow#

Description Type of operators
of
operators

of
links

of equivalent
version pairs /
total pairs

W1 TPC-DS Q40
4 joins and 1 aggregate
operators

17 16 4/5

W2 TPC-DS Q18
5 joins and 1 aggregate
operators

20 20 8/9

W3 TPC-DS Q71
1 replicate, 1 union,
5 joins, and 1 aggregate
operators

23 23 3/4

W4 TPC-DS Q33
3 replicates, 1 union,
9 joins, and 4 aggregates
operators

28 34 2/3

W5
IMDB ratio of
non-original to
original movie titles

1 replicate, 2 joins,
2 aggregate operators

12 12 2/3

W6
IMDB all movies
of directors with
certain criteria

2 replicates, 4 joins,
2 unnest operators

18 20 2/3

W7
Tobacco Twitter
analysis

1 outer join, 1 aggregate,
classifier

14 13 2/3

W8
Wildfire Twitter
analysis

1 join, 1 UDF 13 12 2/3

Edit operations. Table 4.4 shows the number of version pairs for each workflow, where one

version of the pair is always the original workflow and the other is produced by performing

edit operations on the original version. For each real-world workflow, we used the edits

performed by the users. For each synthetic workflow, we constructed versions by performing

119

edit operations. We used two types of edit operations.

(1) Calcite transformation rules [27] for equivalent pairs: These edits are common for rewrit-

ing and optimizing workflows, so these edits would produce a version that is equivalent to

the first version. For example, ‘testEmptyProject’ is a single edit of adding an empty pro-

jection operator. In addition, ‘testPushProjectPastFilter’ and ‘testPushFilterPastAgg’ are

two example edits that produce more than a single change, in particular, one for deleting

an operator and another is for pushing it past another operator. We used a variation of a

different number of edits and their placements as we explain in each experiment.

(2) TPC-DS V2.1 [140] iterative edits for inequivalent pairs: These edits are common for

exploratory and the early stages of the iterative analytics, so they may produce a version

that is not equivalent to the first version. Example edits are adding a new filtering condition

or changing the aggregate function as in TPC-DS queries. We constructed one version for

each workflow using two edit operations from this type of transformations to test our solution

when the version pair is not equivalent.

We randomized the edits and their placements in the workflow DAG, such that it is a valid

edit. Unless otherwise stated, we used any two edit operations from Calcite in all of the

experiments.

Implementation. We implemented the baseline (Veer) and an optimized version (Veer+),

by including the optimization techniques presented in Section 4.8, in Java8. We implemented

Equitas [164] as the EV in Scala. We evaluated the solution by comparing Veer and Veer+

against a state of the art verifier (Spes), known for its proficiency in verifying query equiva-

lence compared to other solutions. We ran the experiments on a MacBook Pro running the

MacOS Monterey operating system with a 2.2GHz Intel Core i7 CPU, 16GB DDR3 RAM,

and 256GB SSD.

120

4.10.2 Comparisons with Other EVs

To our best knowledge, Veer is the first technique to verify the equivalence of complex

workflows. To evaluate its performance, we compared Veer and Veer+ against Spes. We

chose one equivalent pair and one inequivalent pair of versions with two edits from each

workflow. Among the 8 workflows examined, Spes failed to verify the equivalence and in-

equivalence of any of the pairs, because all of the workflow versions included operators not

supported by Spes. In contrast, Veer and Veer+ successfully verified the equivalence of 50%

(W1,W2,W3,W5) and 75% (W1 . . .W6), respectively, of the equivalent pairs as reported in

details in Section 4.10.4. Both Veer and Veer+ did not verify the equivalence of the equivalent

pair inW7 because none of the constructed decompositions were verified as equivalent by the

EV. Moreover, Veer and Veer+ did not verify the equivalent pair of W8 because the change

to its versions was made on a UDF operator, resulting in the absence of a valid window that

satisfies the EV’s restrictions used in our experiments. Veer+ was able to use the heuristic

discussed in Section 4.8.4 to detect the inequivalence of about 50% of the inequivalent pairs

(W5 . . .W8). We note that Veer and Veer+ can be made more powerful if we employ an EV

that can reason the semantics of a UDF operator. Table 4.5 summarizes the evaluation of

the compared techniques.

Table 4.5: Comparison evaluation of Veer and Veer+ against Spes.

Verifier
% of proved
equivalent pairs

Avg. time (s)
% of proved
inequivalent pairs

Avg. time (s)

Spes 0.0 NA 0.0 NA
Veer 50.0 32.1 0.0 44.5
Veer+ 75.0 0.1 50.0 4.1

121

4.10.3 Evaluating Veer+ Optimizations

We used an equivalent version pair from workflowW3 for evaluating the first three optimiza-

tion techniques discussed in Section 4.8. We used three edit operations: one edit was after

the Union operator (which is not supported by Equitas) and two edits (pushFilterPastJoin)

were before the Union. We used Veer to verify the equivalence of the pairs, and we tried

different combinations of enabling Veer+’s optimization techniques.

Table 4.6 shows the result of the experiments. The worst performance was the baseline

itself when all of the optimization techniques were disabled, resulting in a total of 19, 656

decompositions explored in 27 minutes. When only “pruning” was enabled, it was slower

than all of the other combinations of enabling the techniques because it tested 108 MCWs

for possibility of pruning them. Its performance was better than the baseline thanks to the

early termination, where it resulted in 3, 614 explored decompositions in 111 seconds. When

“segmentation” was enabled, there were only two segments, and the total number of explored

decompositions was lower. In particular, when we combined “segmentation” and “ranking”,

one of the segments had 8 explored decompositions while the other had 13. If “segmentation”

was enabled without “ranking”, then the total number of explored decompositions was 430,

which was only 2% of the number of explored decompositions when “segmentation” was not

enabled. The time it took to construct the segmentation was negligible. When “ranking”

was enabled, the number of decompositions explored was around 21. It took an average of

0.17 seconds for exploring the decompositions and 0.22 for testing the equivalence by calling

the EV. Since the performance of enabling all of the optimization techniques was the best,

in the remaining experiments we enabled all of them for Veer+.

122

Table 4.6: Result of enabling optimizations (W3 with three edits). “S” indicates
segmentation, “P” indicates pruning, and “R” indicates ranking. A✓means the optimization
was enabled, a × means the optimization was disabled.

S P R
of decompositions
explored

Exploration
time (s)

Calling EV (s)
Total
time (s)

× × × 19, 656 1, 629 0.22 1, 629
× ✓ × 3, 614 111 0.15 111
✓ ✓ × 430 0.82 0.20 1.02
✓ × × 430 0.51 0.18 0.69
× ✓ ✓ 20 0.39 0.12 0.52
✓ ✓ ✓ 21 0.20 0.31 0.51
× × ✓ 20 0.07 0.23 0.30
✓ × ✓ 21 0.03 0.21 0.24

4.10.4 Comparing Veer and Veer+ on Verifying Two Versions with

Multiple Edits

We compared the performance of the baseline and Veer+. We want to know how much time

each approach took to test the equivalence of the pair and how many decompositions each

approach explored. We used workflows W1 −W8 with two edits. We used one equivalent

pair and one inequivalent pair from each workflow to evaluate the performance in these two

cases. Most workflows in the experiment had one segment, except workflows W3, W5, and

W6, each of which has two segments. The overhead of calling ‘is maximal’ (line 13), ‘is

valid’ (line 9), and ‘merge’ (line 10) in Algorithm 4.2 was negligible, thus we only report the

overhead of calling the EV.

Performance for verifying equivalent pairs. Figure 4.23a shows the number of decom-

positions explored by each approach. In general, the baseline explored more decompositions,

with an average of 3, 354 compared to Veer+’s average of 16, which is less than 1% of the

baseline. The baseline was not able to finish testing the equivalence of W4 in less than an

hour. The reason is because of the large number of neighboring windows that were caused

by a large number of links in the workflow. Veer+ was able to find a segmentation for W3

123

and W6. It was unable to discover a valid segmentation for W5 because all of its operators

are supported by the EV, while we used the second approach of finding a segmentation as we

discussed in Section 4.8.1. We note that the overhead of constructing a segmentation using

the second approach was negligible. For workflow W7, the size of the windows in a decom-

position were small because the windows violated the restrictions of the used EV. Therefore,

the “expanding decompositions” step stopped early and thus the search space (accordingly

the running time) was small for both approaches. Veer and Veer+ detected that the change

on W8 was done on a non-supported operator (UDF) by the chosen EV (Equitas), thus

the decomposition was not expanded to explore other ones and the algorithm terminated

without verifying its equivalence.

Figure 4.23b shows the running time for each approach to verify the equivalence. The baseline

took 2 seconds to verify the equivalence of W1, and 2 minutes for verifying W3. Veer+, on

the other hand, had a running time of a sub-second in verifying the equivalence of all of

the workflows. Veer+ tested 9 MCWs for a chance of pruning inequivalent decompositions

when verifying W6. This caused the running time for verifying W6 to increase due to the

overhead of calling the EV. In general, the overhead of calling the EV was about the same

for both approaches. In particular, it took an average of 0.04 and 0.10 seconds for both the

baseline and Veer+, respectively, to call the EV.

Performance of verifying inequivalent pairs. Figure 4.24a shows the number of de-

compositions explored by each approach. Since the pairs are not equivalent, Veer almost

exhaustively explored all of the possible decompositions, trying to find an equivalent one.

Veer+ explored fewer decompositions compared to the baseline when testing W3, thanks to

the segmentation optimization. Both approaches were not able to finish testing W4 within

one hour because of the large number of possible neighboring windows. Veer+ was able

to quickly detect the inequivalence of the pairs of workflows W5 . . .W8 thanks to the par-

tial symbolic representation discussed in Scetion 4.8.4, resulting in Veer+ not exploring any

124

 0.1

 1

 10

 100

 1000

 10000

W1 W2 W3 W4 W5 W6 W7 W8
X

N
o
.
o
f
d
e
c
o
m
p
o
s
iti
o
n
s

Workflow

Veer
Veer+

(a) # of explored decompositions.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

W1 W2 W3 W4 W5 W6 W7 W8

X

P
e
rf
o
rm
a
n
c
e

 (
s
)

Workflow

Calling EV
Veer
Veer+

(b) Running time.

Figure 4.23: Comparison between Veer and Veer+ for verifying equivalent pairs
with two edits. An “×” means the algorithm was not able to finish running within one
hour.Overhead of calling EV by Veer is not visible due to the logscale.

decompositions for these workflows.

The result of the running time of each approach is shown in Figure 4.24b. Veer’s performance

when verifying inequivalent pairs was the same as when verifying equivalent pairs because,

in both cases, it explored the same number of decompositions. On the other hand, Veer+’s

running time was longer than when the pairs were equivalent for workflows W1 . . .W4. We

observe that for W1, Veer+’s running time was even longer than the baseline due to the

overhead of calling the EV up to 130, compared to only 4 times for the baseline. Veer+

called the EV more as it tried to continuously test MCWs when exploring a decomposition

for a chance of pruning inequivalent decompositions. Veer+’s performance on W3 was better

than the baseline. The reason is that there were two segments, and each segment had a

single change. We note that Veer+ tested the equivalence of both segments, even though

there could have been a chance of early termination if the inequivalent segment was tested

first. The time it took Veer+ to verify the inequivalence of the pairs in workflows W5 . . .W8

was negligible. The heuristic approach was not effective in detecting the inequivalence of

the TPC-DS workflows W1 . . .W4. This limitation arises from the technique’s reliance on

identifying differences in the final projected columns, which remained the same across all

versions of these workflows (due to the aggregation operator), with most changes occurring

125

in the filtering conditions.

 0.1

 1

 10

 100

 1000

 10000

 100000

W1 W2 W3 W4 W5 W6 W7 W8
X

N
o
.
o
f
d
e
c
o
m
p
o
s
iti
o
n
s

Workflow

Veer
Veer+

(a) # of explored decompositions.

 0.01

 0.1

 1

 10

 100

 1000

W1 W2 W3 W4 W5 W6 W7 W8

X

P
e
rf
o
rm
a
n
c
e

 (
s
)

Workflow

Calling EV
Veer
Veer+

(b) Running time.

Figure 4.24: Comparison between Veer and Veer+ for verifying inequivalent pairs
with two edits. An “×” sign means the algorithm was not able to finish within an hour.

4.10.5 Effect of the Distance Between Edits

We evaluated the effect of the placement of changes on the performance of both approaches.

We are particularly interested in how many decompositions would be explored and how long

each approach would take if the changes were far apart or close together in the version

DAG. We used an equivalent version pair from W2 for the experiment with two edits. We

use the ‘number of hops’ to indicate how far apart the changes were from each other. A 0

indicates that they were next to each other, and a 3 indicates that they were separated by

three operators between them. For a fair comparison, the operators that were separating

the changes were one-to-one operators, i.e., operators with one input and one output links.

Figure 4.25a shows the number of decompositions explored by each approach. The baseline’s

number of decompositions increased from 2, 770 to 11, 375 as the number of hops increased.

This is because it took longer for the two covering windows, one for each edit, to merge into a

single one. Before the two covering windows merge, each one produces more decompositions

to explore due to merging with its own neighbors. Veer+’s number of explored decompositions

remained the same at 21 thanks to the ranking optimization, as once one covering window

126

includes a neighboring window, its size is larger than the other covering window and would

be explored first until both covering windows merge.

Figure 4.25b shows the time each approach took to verify the equivalence of a pair. The

performance of each approach was proportional to the number of explored decompositions.

The baseline took between 9.7 seconds and 3 minutes, while Veer+’s performance remained

in the sub-second range (0.095 seconds).

Effect of the type of changed operators. We note that when any of the changes were

on an unsupported operator by the EV, then both Veer and Veer+ were not able to verify

their equivalence. We also note that the running time to test the pair’s equivalence, was

negligible because the exploration stops after detecting the initial covering window as it is

‘invalid’.

 0.1

 1

 10

 100

 1000

 10000

 100000

0 1 2 3

N
o
.
o
f
d
e
c
o
m
p
o
s
iti
o
n
s

No. of hops

Veer
Veer+

(a) # of explored decompositions.

 0.01

 0.1

 1

 10

 100

 1000

0 1 2 3

P
e
rf
o
rm
a
n
c
e

 (
s
)

No. of hops

Veer
Veer+

(b) Running time.

Figure 4.25: Effect of the distance between changes (on W2)

4.10.6 Effect of the Number of Changes

In iterative data analytics, when the task is exploratory, there can be many changes between

two consecutive versions. Once the analytical task is formulated, there are typically only

minimal changes to refine some parameters [154]. We want to evaluate the effect of the

number of changes on the number of decompositions and the time each approach takes to

127

verify a version pair. The number of changes, intuitively, increases the number of initial

covering windows, and consequently, the possible different combinations of merging with

neighboring windows increases. We used an equivalent version pair ofW1 in the experiment.

Figure 4.26a shows the number of decompositions explored by each approach and the total

number of “valid” decompositions. The latter increased from 356 to 11, 448 as we increased

the number of changes from 1 to 4. The baseline explored almost all those decompositions,

with an average of 67% of the total decompositions, in order to reach a maximal one that

was identified as equivalent. Veer+’s number of explored decompositions, on the other hand,

was not affected by the increase in the number of changes and remained the same at around

14, thanks to the ranking optimization.

Figure 4.26b shows the time taken by each approach to verify the equivalence of a pair. Both

approaches’ time was proportional to the number of explored decompositions. The baseline

showed a performance of around 0.42 seconds when there was a single change, up to slightly

more than a minute at 75 seconds when there were four changes. Veer+, on the other hand,

maintained a sub-second performance with an average of 0.1 seconds.

 0.1

 1

 10

 100

 1000

 10000

 100000

1 2 3 4

N
o
.
o
f
d
e
c
o
m
p
o
s
iti
o
n
s

No. of changes

all decompositions
Veer explored
Veer+ explored

(a) # of explored decompositions.

 0.01

 0.1

 1

 10

 100

1 2 3 4

P
e
rf
o
rm
a
n
c
e

 (
s
)

No. of changes

Veer
Veer+

(b) Running time.

Figure 4.26: Effect of the number of changes (on W1).

128

4.10.7 Effect of the Number of Operators

We evaluated the effect of the number of operators. We used an equivalent version pair from

W2 with two edits and varied the number of operators from 22 to 25. We varied the number

of operators in two different ways. One was varying the number of operators by including

only those supported by the EV. The other type was varying the number of non-supported

operators.

Varying the number of supported operators. Figure 4.27a shows the number of ex-

plored decompositions. The baseline explored 6, 650 decompositions when there were 22

operators, and 7, 700 decompositions when there were 25 operators. Veer+ had a linear in-

crease in the number of explored decompositions from 21 to 24 when we increased the number

of operators from 22 to 25. We observed that the performance of Veer was negatively affected

(from a minute up to 1.4 minutes) due to the addition of possible decompositions from these

operators’ neighbors while the performance of Veer+ remained in a sub-second as shown in

Figure 4.27b.

 0.1

 1

 10

 100

 1000

 10000

 100000

22 23 24 25

N
o
.
o
f
d
e
c
o
m
p
o
s
iti
o
n
s

No. of operators

Veer
Veer+

(a) # of explored decompositions.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

22 23 24 25

P
e
rf
o
rm
a
n
c
e

 (
s
)

No. of operators

Veer
Veer+

(b) Running time.

Figure 4.27: Effect of the number of operators (on W2).

Varying the number of unsupported operators. Veer and Veer+ were not affected

by the increase in the number of unsupported operators, as they were not included in the

covering windows.

129

4.11 Conclusion

In this chapter, we studied the problem of verifying the equivalence of two workflow versions.

We presented a solution called “Veer,” which leverages the fact that two workflow versions

can be very similar except for a few changes. We analyzed the restrictions of existing EVs

and presented a concept called a “window” to leverage the existing solutions for verifying

the equivalence. We proposed a solution using the windows to verify the equivalence of a

version pair with a single edit. We discussed the challenges of verifying a version pair with

multiple edits and proposed a baseline algorithm. We proposed optimization techniques to

speed up the performance of the baseline. We conducted a thorough experimental study and

showed the high efficiency and effectiveness of the solution.

130

Chapter 5

Raven: Accelerating Execution of

Iterative Data Analytics by Reusing

Results of Previous Equivalent

Versions

5.1 Introduction

When an analyst employs workflows for data analytics, she starts with a basic workflow and

iteratively revises it based on the observed execution results as part of the iterative process

of data analytics [45, 154]. She may edit the operators and links in the workflow during

each iteration, producing a new version of the workflow. Figure 5.1 shows an overview of

a workflow for analyzing tweets related to popular wildfires. The workflow includes three

sinks, each producing different results based on the logic of its upstream operators. The

example illustrates the workflow’s evolution in three different versions.

131

sort

relevant
non-relevant

joinagg filter limit

project

count 10 by userIDcommercial
non-commercial

label outer
join

word
search

non-commercial
& relvant

Users

Tweets

filter

"relevant"

state='CA'
label

word cloud

scatterplot

resultfilterjoin

States

(a) Version 1: An initial workflow with three sinks: a wordcloud, a scatterplot, and a
result. The highlighted operators in red indicates that they are deleted in a subsequent
version.

sort

relevant
non-relevant

joinagg limit

project

count 10 by userIDcommercial
non-commercial

label

word
search

non-commercial
& relvant

Users

Tweets

filterouter
join

"relevant"

"relevant"

filter

filter
agg

States

join
count by states

label

word cloud

scatterplot

result

(b) Version 2: A refined version to optimize the workflow’s performance and filter on
relevant tweets of all users. Operators in green are newly added in the new version
and operators in orange are modified.

sort

relevant
non-relevant

joinagg limit

project

count 10 by userIDcommercial
non-commercial

label

word
search

non-commercial
& relvant

Users

Tweets

filterouter
join

"relevant"

"relevant"
label

filter

States filter

state='CA'

join
filter

word cloud

scatterplot

result

(c) Version 3: A refined version to revert some of the earlier changes.

Figure 5.1: Three versions of a workflow for analyzing tweets mentioning a
keyword.

132

Motivation. As an analyst iteratively refines a workflow, many versions can be created.

For example, one deployment of Texera [93] recorded a total of 2, 424 executions of different

versions for one workflow [9]. Tracking the versions of a workflow and the outcomes of their

executions has gained significant interest recently [31, 150]. One observation in many appli-

cations is that versions of the same workflow frequently produce the same results [163, 76]. In

other words, given an instance of input sources, the versions produce the same sink results.

For instance, there is an overlap in 45% of the daily tasks performed by Microsoft’s analytics

clusters [76]. 27% of 9, 486 workflows from Ant Financial to detect fraud transactions share

common computation, and 6% of them are equivalent [163]. In the running example, the

modifications applied to the initial version (in Figure 5.1a) to transform it into the one in

Figure 5.1b resulted in the scatterplot sink to produce the same results as the corresponding

sink in the initial version.

The execution of a workflow can be time-consuming and resource intensive due to the large

amounts of input data and the workflow’s complex operators such as advanced machine

learning techniques and user-defined functions (UDFs) [84]. One way to save time and

resources is to reuse the results of previously executed versions of the same workflow by

identifying those that produce equivalent results. In particular, when a user submits a request

to execute a new version, we want to compare the version with a prior executed version. If

the two versions are equivalent, then the new version does not need to be executed, as we

can reuse the materialized result of the prior one.

Limitations of existing works. To reuse previous results to answer a new execution

request, a body of existing work [49, 76] relies on identifying the exact match between the

workflow versions. One limitation of these works is that they cannot identify reuse opportuni-

ties from versions when their DAGs have different structures. For example, the two workflow

versions in Figure 5.1a and Figure 5.1b in the running example are semantically equivalent

(i.e., their sinks produce the same results), but their DAGs have different structures. Other

133

works take a semantic approach by analyzing the workflows’ predicates [154, 118] to iden-

tify redundant and overlapping tuples between multiple jobs. However, these works cannot

identify the exact equivalence of the results of the two workflows.

We want to study the following the problem:

Problem Statement. Given a set of results from executions of previous versions of a

workflow and an execution request of a new version, find a subset of prior versions that

include sinks producing results equivalent to those in the requested execution.

Challenges and our approach. The problem of testing the equivalence of two queries has

been studied for SQL [37], Spark programs [56], and workflow versions, such as Veer discussed

in Chapter 4. A naive solution to the “result reuse” problem stated above is to iteratively

check every past version to see if it produces results equivalent to the new one by passing

the pair to a verifier. This approach is not efficient when the number of versions increases,

leading to many pairwise tests before finding an equivalent one. We want a framework

that can rank and prune the set of previous versions based on their semantic equivalence or

inequivalence compared to the new version’s execution. Moreover, when the verifier checks

to see if two workflow versions are equivalent, it does so by following an internal procedure.

Since the tested pairs share similar structures, there may be a lot of computational overlap

with previously-tested version pairs. To save computational resources and time, we want to

identify and avoid such repeated computation.

To address these challenges, we propose a novel framework called Raven, and we make the

following contributions in this chapter:

1. We formulate the problem of accelerating the execution of a workflow version by detecting

previously-stored semantically equivalent results from previous versions (§5.3).

2. We propose a framework and a novel technique to let a workflow optimizer reuse mate-

134

rialized results of previous equivalent versions of a workflow execution request through

identifying equivalence using Veer (§5.4).

3. We extend Veer to handle the case of verifying the equivalence of versions with multiple

sinks (§5.5).

4. We extend Veer to avoid repeated testing on portions of the workflow version pair, by

reusing shared computations (§5.6).

5. We propose an approach for ranking the versions using a novel semantic-aware hierarchy

to organize the saved results (§5.7).

6. We conduct a thorough experimental evaluation on a real-world dataset and workload to

evaluate the solutions and compare them with existing works (§5.8).

5.2 Related Work

There is an extensive work on optimizing the performance of executing complex data-

processing pipelines. These works are mainly categorized into rewrite based optimiza-

tion [146, 16], and materialization reuse optimization [49]. We focus the comparison with

the second class, which has been extensively studied as summarized in the following sur-

veys [59, 2, 35].

Exact matching. Compared to general materialization reuse methods, exact matching

is a more specific and syntax-based approach, commonly used in systems with high work-

loads [162, 76, 131]. Raven differs as it employs an approach by identifying semantic equiv-

alence and is not limited to exact DAG match.

Reusing intermediate results. Several works reuse intermediate results found in iter-

ative pipelines [72, 85, 113]. Restore [49] caches map-reduce intermediate jobs, while Re-

cycler [102] uses a graph to recycle fine-grained partial query results. Nectar [57] caches

135

sub-computations that are likely to be reused. Raven aims to identify previous equivalent

versions with respect to the final results even when there are structural differences.

Semantic reuse. Prior works such as Eva [154], Acorn [118], and the work in [89] proposed

methods to semantically reuse previous results by using techniques, such as converting UDFs

to native operators and predicate overlap detection. These methods focus on detecting

overlap of tuples between the results but cannot identify that the collection of tuples are

entirely equivalent.

Equivalence verification. Some works verify the equivalence of SQL queries under certain

assumptions [37, 164]. These solutions cannot reason about UDF semantics, making them

unsuitable for detecting the equivalence of two workflow versions, as they contain complex

operators such as UDFs. Veer addresses this limitation by verifying the equivalence of two

workflow versions with UDFs, and Raven leverages it in its solution.

5.3 Problem Formulation

In this section, we give an overview of the problem setting and we formally formulate the

problem.

5.3.1 Iterative Data-Processing Workflows

We consider a workflow DAG as described in Section 4.3. We also consider the edit operations

introduced in Section 4.3 to produce different versions, denoted as Vw = [v1, . . . , vm], of a

workflow W based on an edit mappingM.

136

5.3.2 Workflow’s Execution and Result Equivalence

A user submits a query request Q, corresponding to a version vj, to execute it. The execution

produces artifacts, which are the results of each sink sji ∈ Sw of the workflow version

vj. These artifacts are saved. In the running example, executing the workflow version v1

produces two results corresponding to the scatterplot and wordcloud operators.

Assumption. Multiple executions of a workflow (or a portion of the workflow) will always

produce the same results 1.

The execution request for a version may produce a sink result equivalent to its mapped sink

of a previously executed version. For example, in Figure 5.1b, executing the workflow version

v2 produces a result of the scatterplot sink equivalent to the result of the corresponding scat-

terplot of v1. In particular, v2’s edit is pushing down the Filter operator and the scatterplot

result remains the same. Notice that the result of the word cloud in v2 is not equivalent

to the result of its mapped sink in v1 because of the addition of a new Filter operator. We

consider the Definition of “sink equivalence” as discussed in Section 4.3.

Problem Statement. Given a workflow version request Q corresponding to a version vm,

a list of previously executed versions of the workflow V ′
w = [v1, . . . , vm−1], and a workflow

version equivalence verifier (α), we want to find a subset of the previously executed versions

P ⊆ V ′
w such that for every sink sj of Q, there is a sink si of a version P ∈ P that is

equivalent to sj, i.e., si ≡ sj.

5.4 Raven: Overview

Figure 5.2 gives an overview of the steps involved in Algorithm 5.1 to detail the optimization

lifecycle to accelerate the execution of a workflow version DAG by Raven. Given an execution

1We will relax this in a future work as we propose in Chapter 6.2.

137

request for a workflow version Q (corresponding to the latest version vm), the optimizer

searches for a prior version P ∈ [v1, . . . , vm−1], which has sinks equivalent to some or all of

the corresponding sinks in Q. It takes the following steps.

version
execution
request

workflow
plan

Execution Engine

Workflow Optimizer
(Raven)

...

...
versions

Veer

1. rank the versions

2. test
 equivalence

choose one

Figure 5.2: Overview of Raven’s framework.

Step 1. Ranking the prior versions. Raven ranks the previous versions in the order of

their likelihood of being equivalent to the current one (Line 1). To do this, we propose a two-

stage approach. First, Raven organizes the sinks belonging to previously-executed versions

in a hierarchy by modeling the sinks in a lightweight representation to speed up the traversal

search of the prior versions. In this way, we avoid testing the equivalence with every past

version. The second stage is to rank the versions that have the same sink representation by

using an edit mapping between the pairwise of Q and every other prior version P . Raven

chooses a prior version with the highest rank to test its equivalence with the current one

(Section 5.7).

Step 2: Testing the equivalence of the version pair. Raven uses an equivalence verifier

to test the equivalence of the pair of versions (Line 4). The verifier returns a flag to indicate if

the sinks in the two versions are equivalent. When we invoke the verifier multiple times to do

the equivalence testing by passing multiple pairwise versions with a lot of commonalities in

their structural DAG, some of the steps can be redundant. In this work, we show how Raven

138

Algorithm 5.1: Rewrite a workflow version to reuse previous equivalent results

Input:
A workflow version Q,
A list of previous executed versions of the workflow V ′

w = [v1, . . . , vm−1],
An equivalence verifier α;
Output: A rewritten workflow Q′ to reuse equivalent results from previous versions.

1 P← pruneAndRank(V ′
w) // prune and rank previous versions

2 while P is not empty AND there are sinks in Q that are unmarked do
3 remove a version P from P
4 S← findEQsinks(α, P,Q) // find a set of equivalent sinks

5 mark every si in S
6 end
7 Q′ ← rewrite Q
8 return Q′

uses Veer as the verifier and show how Raven extends Veer to return a set of equivalent sinks

(Section 5.5) and avoid repeated computation by performing memoization (Section 5.6).

We repeat the above steps till all the sinks in the version Q can be answered using prior

versions, or there are no more selected previous versions left to check (Line 2). An im-

provement is to re-rank the remaining workflow versions after finding the equivalent sinks in

Line 5 by only considering the unmarked sinks. We leave this improvement to future work.

Lastly, Raven rewrites the workflow version to reuse previous equivalent results by replacing

the path of operators leading to the sinks with a Load operator to load the saved results

(Line 7). The operators in the replaced path must not be ancestors of other sinks that are

not equivalent to a previous version because these operators need to be executed to produce

the results.

139

5.5 Equivalence Verification of Multiple Sink Pairs in

Two Workflow Versions

We want to know which sink operators in a workflow version Q are equivalent to the cor-

responding sinks under a mapping in a prior version P . We can ask an equivalence verifier

to verify which sinks are equivalent. However, verifiers expect a version pair with a single

sink as an input and return a Boolean flag to indicate whether the two sinks are equivalent.

In this section, we propose a baseline approach that divides the version pair into sub-DAGs

such that each sub-DAG includes a single sink, and we call the verifier iteratively for each

upstream sub-DAG of a sink.

5.5.1 Dividing the Version Pair into sub-DAGs with a Single Sink

A way to verify which sinks in a version are equivalent to the corresponding sinks in another

version is to divide each version’s DAG into sub-DAGs, where each sub-DAG includes a

sink and its ancestor operators. We use the running example to explain this approach in

Algorithm 5.2. Line 4 shows that for every sink s ∈ SQ of version Q, we do the following.

First, we construct the sub-DAG of Q consisting of the ancestor operators of s and their

edges, with s as the only sink, denoted as π(Q, s) (Line 5). Similarly, we construct the

sub-DAG of P consisting of the ancestor operators of M(s) and their edges, with M(s)

as the only sink, denoted as π(P,M(s)) (Line 6). In the running example, there are three

sinks. In particular, “Wordcloud,” “Scatterplot,” and “Result” sink operators. We first

construct a pair of sub-DAGs, where each sub-DAG includes the upstream operators that

reach the Scatterplot sink, as shown in Figure 5.3. Likewise, we construct a pair of sub-

DAGs, where each sub-DAG includes upstream operators that can reach the Wordcloud

operator, as depicted in Figure 5.4. We perform the same for the “Result” sink. Once we

140

construct the sub-DAGs for every sink in every version, we call the verifier to verify the

equivalence of a pair of sub-DAGs corresponding to a sink s. If the verifier decides that the

version pair is equivalent (Line 7), we add s to a set of equivalent sinks S (Line 8). We

repeatedly call the verifier for every pair of sub-DAGs that correspond to the ancestors of a

sink. Finally, we return the set of verified equivalent sinks (Line 10).

sort

label

relevant
non-relevant

joinagg filter limit

count 10 by userIDcommercial
non-commercial

label outer
join

word
search

non-commercial
& relvant

filter

"relevant"

sort

label

non-relevant

filter

"relevant"

joinfilter agg filter limit

"relevant" count 10 by userIDcommercial
non-commercial

label outer
join

word
search

non-commercial
& relvant

Users

Tweets

Users

Tweets

scatterplot

scatterplot

Figure 5.3: A pair of sub-DAGs on the first two versions that include the up-
stream operators of the Scatterplot sink from the running example.

label

relevant
non-relevant

project

commercial
non-commercial

label outer
join

word
search

Users

Tweets

label

relevant
non-relevant

filter project

"relevant"commercial
non-commercial

label outer
join

word
search

Users

Tweets

word cloud

word cloud

Figure 5.4: A pair of sub-DAGs that include the upstream operators of the
Wordcloud sink.

Overlapping computation. A main limitation of the baseline approach is the high overlap

and repeated computation that the verifier performs every time it verifies a pair of sub-DAGs.

For example, suppose the verifier is Veer. When Veer tests the equivalence of the sub-DAGs

that correspond to the Scatterplot sink, as shown in Figure 5.3, it expands window ω1 and

141

Algorithm 5.2: Verifying the equivalence of a workflow version pair with multiple
sinks (a baseline approach)

Input:
A version pair (P , Q);
An equivalence verifier α;
A set of edit operations δ and a mappingM from P to Q;
Output: A set of equivalent sinks

1 if δ is empty then
2 return sinks of SP ∩ SQ // mapped sinks

3 S = {} // an initial set of equivalent sinks

4 for s ∈ SQ do
5 qs ← π(Q, s) // construct the sub-DAG of Q consisting of ancestor operators of sink s

6 ps ← π(P,M(s)) // construct the sub-DAG of P consisting of ancestor operators ofM(s)

7 if α(ps, qs, δs,M) returns True then
8 add s to S
9 end

10 return S

tests if the window ‘isValid’ (Line 9 in Algorithm 4.2). If the window is valid, Veer expands

it until reaching maximality by testing if the window satisfies “isMaximal” (Line 16). Lastly,

if the window is maximal, the equivalence of its sub-DAGs is tested by passing the pair in

the window to the EV (Line 17). Notice that Veer repeats the above steps when verifying the

equivalence of the sub-DAGs that correspond to the Wordcloud sink, as shown in Figure 5.4.

Moreover, Section 4.10 reported that the time taken to verify a window by the EV takes,

on average, 87% of the total time. Since some of these windows may have been checked

in previous iterations when testing other pairs, memoizing the results of previous windows’

equivalence checks can help improve the performance.

Next we propose a way to avoid the aforementioned repeated computation by extending Veer

to take in a pair of workflow versions with multiple sinks and returning a set of equivalent

sinks (Section 5.6.1). We also extend Veer to reuse equivalence tests (Section 5.6.2).

142

sort

label

joinagg filter limit

count 10 by userID

outer
join

non-commercial
& relvant

filter

"relevant"

sort

label filter

joinfilter agg filter limit

"relevant" count 10 by userID

outer
join

non-commercial
& relvant

Figure 5.5: A maximal decomposition of the
pair of sub-DAGs that include the upstream op-
erators of the Scatterplot sink from the first two
versions in the running example. For simplicity,
we only show the covering windows throughout
the chapter.

label

relevant
non-relevant

project

commercial
non-commercial

label outer
join

word
search

label

relevant
non-relevant

filter project

"relevant"commercial
non-commercial

label outer
join

word
search

Figure 5.6: A maximal de-
composition of the pair of
sub-DAGs that include the
upstream operators of the
Wordcloud sink.

5.6 Avoiding Repeated Computation in Veer

In this section, we extend Veer to return a set of equivalent sinks by modifying the definition

of decompositions and equivalence to be w.r.t. a sink (Section 5.6.1). We also propose a

way to group sub-DAGs of windows in equivalence classes to reuse information about the

equivalence of previously tested windows (Section 5.6.2).

5.6.1 Using a Decomposition Verification for Multiple Sinks

To extend Veer to return a set of equivalent sinks when examining the equivalence of each

covering window in a decomposition, we need to know which sink of each covering window

affects the result of the final sink of the version DAG. We achieve that by annotating and

encoding each operator’s reachability to every sink.

Definition 5.1 (Reachability of a window to a sink). We say a window ω of two versions

P and Q is reachable to a sink s if any of the sub-DAGs ω(P) or ω(Q) includes an operator

that is an ancestor to the sink s.

143

Figure 5.7 shows a window ω and its reachability to both the Scatterplot and the Wordcloud

sinks in the running example. Now we extend Definition 4.5 of the equivalence of sub-DAGs

in a window to be with respect to a sink.

Definition 5.2 (Equivalence of the two sub-DAGs w.r.t. a sink). For a version pair P and

Q, we say the two sub-DAGs ω(P) and ω(Q) of a window ω are equivalent with respect

to a sink s, denoted as “ω(P) ≡s ω(Q),” if every sink (an operator without its downstream

operator in the window) oi in the window reachable to s is equivalent, as a stand-alone query,

to its mapped sinkM(ω(oi)).

For example, the two sub-DAGs in Figure 5.7 are equivalent w.r.t. the “Scatterplot” sink

in the running example because the two “Filter” operators, which are annotated with a red

circle in the window and can reach the scatterplot, are equivalent. The two sub-DAGs are

not equivalent w.r.t. the “Wordcloud” sink in the running example because the two “Project”

operators, which are annotated with a blue in the window and can reach the Wordcloud, are

not equivalent.

DJJ ILOWHU

SURMHFW

RXWHU
MRLQ

ILOWHU

SURMHFW

�UHOHYDQW�

RXWHU
MRLQ

DJJ ILOWHU

QRQ�FRPPHUFLDO
	�UHOYDQW

Figure 5.7: A window including operators (shown as a Blue circle) that can reach
the Wordcloud sink, and operators (shown as a Red circle) that can reach the
Scatterplot sink. Those operators that are not annotated can reach both sinks.

Lemma 5.1. For a version Q with a set of sinks SQ = {s1 . . . , sn}, a version P , and edit

operations δ = {c1 . . . co} based on an edit mapping M to transform P to Q, if there is a

144

decomposition θ such that every covering window in θ that reaches a sink s ∈ SQ is equivalent

w.r.t. sink s, then sink s is equivalent to its mapped sinkM(s).

Proof. Assume a decomposition θ and every covering window ωi ∈ θ reachable to a sink s, is

equivalent w.r.t. s. Every other window in θ is either a covering window and not reachable

to s, i.e., does not include an operator that is an upstream of s, or a not covering window,

i.e., its sub-DAGs are structurally identical, according to Definition 4.4.2. Given an instance

of input sources D, we can have the following three cases. (Case1:) the input sources are

processed by a pair of sub-DAGs in a covering window reachable to s. In this case, the sink

operators in the window that act as the input to the following windows and are reachable to

the sink s are equivalent based on our assumption. (Case2:) the input sources are processed

by a pair of sub-DAGs in a covering window not reachable to s. In this case, the result of

the pair of sub-DAGs does not act as the input to any other window that is reachable to

s. (Case3:) the input sources are processed by a pair of structurally identical sub-DAGs

that are in a non-covering window. In this case, the pair of sub-DAGs produce an equivalent

result since every operator is deterministic according to Assumption 5.3.2. In all cases, the

output acts as the input to the following portion of the sub-DAGs (either non-covering, a

covering window reachable to s, or a covering window non-reachable to s). This propagation

continues along the pair of DAGs until the end, thus the two sinks s produce equivalent

results.

We modify Algorithm 4.2 in Veer to return a set of equivalent sinks from a version pair as

we detail in Algorithm 5.3 using an example depicted in Figure 5.8. We follow the same

procedure in the original Algorithm 4.2 to initialize a decomposition and expand it to reach

maximality. When a decomposition θ is marked maximal (Line 7), we do the following. For

every covering window in the decomposition, we encode the window with the information

about the sinks it reaches. Then we test every covering window marked reachable to a

sink s if it is equivalent w.r.t. the sink (Line 9). If this is true, then we add the sink s

145

into a set of equivalent sinks S (Line 10). Figure 5.8 shows a maximal decomposition that

includes two covering windows. Covering window ω1 reaches both the Scatterplot and the

Wordcloud sink operators. Covering window ω2 includes operators that are ancestors to only

the Scatterplot operators. Both ω1 and ω2, which are covering windows that are reachable

to the Scatterplot, are verified to be equivalent w.r.t. the Scatterplot sink. Thus, we add

the Scatterplot operator to the set of equivalent sinks. Only window ω1 is reachable to the

Wordcloud sink. We test its equivalence w.r.t. the Wordcloud operator, and the window

is verified as not equivalent by the EV. We repeat the above steps until either all sinks

in Q are verified to be equivalent to their corresponding sinks in P , or there are no more

decompositions to maximize and test.

sort

label

relevant
non-relevant

joinagg filter limit

project

count 10 by userID

outer
join

non-commercial
& relvant

filter
"relevant"

sort

relevant
non-relevant

joinagg limit

project

count 10 by userIDnon-commercial
& relvant

filterouter
join

"relevant"

"relevant"

filter

filter

States

agg

States

join

join
count by states

label

state='CA'
filter

Figure 5.8: An MD with three windows, including ω1 that can reach both Scat-
terplot (shown as a Red circle) and Wordcloud (shown as a Blue circle) sink
operators, ω2 that can reach the Scatterplot sink, and ω3 that can reach the Re-
sult sink (shown as an Orange circle).

Now we show in the following Lemma 5.2 that the extended Algorithm 5.3 does not miss

the chance of verifying the equivalence of a sink s that can be verified by the baseline

Algorithm 5.2.

Lemma 5.2. Consider a version Q with a set of sinks SQ = {s1 . . . , sn}, a version P , an

146

Algorithm 5.3: Verifying the equivalence of a workflow version pair with multiple
sinks (an improved approach)

Input:
A version pair (P , Q);
A set of edit operations δ and a mappingM from P to Q;
An EV γ
Output: A set of equivalent sinks

1 if δ is empty then
2 return sinks of SP ∩ SQ // mapped sinks

3 θ ← decomposition with each operator as a window
4 Θ = {θ} // initial set of decompositions

5 S = {} // an initial set of equivalent sinks

6 while Θ is not empty AND S ⊂ SQ do
// Lines 6 - 15 from Algorithm 4.2 to find a possible maximal decomposition θi

7 if every covering window in θi is marked then
// i.e., θi is indeed a maximal decomposition

8 if there exists a covering window ω reachable to a sink s /∈ S then
// i.e., s is not verified equivalent yet

9 if γ verifies each covering window in θi that is reachable to a sink s to be
equivalent w.r.t. s then

10 add s to S
11 end
12 return S

EV γ, and edit operations δ = {c1 . . . co} based on an edit mapping M to transform P to

Q. If Algorithm 5.2 finds a maximal decomposition θ for a sink si such that each covering

window in θ is verified equivalent, then Algorithm 5.3 will find a maximal decomposition θ′

such that θ ⊆ θ′ and each covering window (in θ′) that reaches si is verified equivalent.

Proof. Suppose Algorithm 5.2 finds a maximal decomposition θ w.r.t. γ such that a sink si

in workflow version Q is verified equivalent to its mapped sinkM(si) in version P . Notice

Algorithm 5.3 considers all maximal decompositions. We construct a maximal decomposition

θ′ from θ using the following steps. We construct a decomposition on the version pair by

including every window in θ. Each remaining operator in the version pair not in θ forms

its own window. Then we merge every pair of windows if they satisfy the restrictions of γ.

We do this merging step iteratively until we cannot merge any two windows. We can infer

147

that θ ⊆d θ
′, and that θ′ is maximal. The operators in θ′ not in θ do not reach the sink

si; otherwise, it contradicts the assumption that θ is a maximal decomposition found by

Algorithm 5.2. From Lemma 5.1, a sink is equivalent to its mapped sink if every covering

window that reaches the sink is equivalent w.r.t. the sink, which is the case in θ. We can

deduce that using the decomposition θ′, Algorithm 5.3 can verify that the sink si is equivalent

to its mapped sinkM(si).

Figure 5.9 shows an abstract representation of the proof.

...
...

Figure 5.9: An abstract example to show the proof of Lemma 5.2.

Extending Veer+ to rank decompositions with multiple sinks.

In Section 4.8 we proposed a few optimization techniques to improve the performance of find-

ing maximal decompositions, namely the “segmentation” and “ranking” techniques. Segmen-

tation divides the version pair DAG into independent portions called “segments” (denoted

as S), where each segment includes decompositions such that there is no valid window in

a decomposition that includes operators from two different segments. Veer+ proposes two

ranking techniques. One is to rank which segment to evaluate first, and the other is to

rank which decomposition within a segment to expand first. Next we discuss how we extend

Veer+’s ranking to include a metric to score segments and decompositions, including the

information on the different sinks.

148

We consider F(S) = mS + nS + rS as an example scoring function to rank a segment

S. The details of mS and nS are in Chapter 4. rS indicates the number of sinks the

segment reaches. The higher the number is, the higher the segment is ranked, as it indicates

the segment can give us more answers about the equivalence of multiple sinks and the

possibility of early termination. Similarly, an example ranking function for a decomposition

d is G(d) = od−wd+ rd, where od and wd are detailed in Chapter 4. rd indicates the number

of sinks the decomposition reaches. The higher the number is, the higher the decomposition

is ranked, as it indicates the decomposition can give us more answers about the equivalence

of multiple sinks and the possibility of early termination.

5.6.2 Grouping Sub-DAGs of Windows in Equivalence Classes

Consider the following example of optimizing the execution of four different versions in a

workflow, as depicted in Figure 5.10. Suppose a user submits an execution request for the

v2 version of the workflow. Based on Raven’s procedure, it tests the equivalence of v2 with a

prior version v1 using Veer. After decomposing the pair and finding an MD, Veer verifies the

sub-DAGs’ equivalence in each covering window within the MD. In this example, a covering

window ω1 = ⟨ω1(v1), ω1(v2)⟩ (depicted in blue in the figure) of an MD needs to be tested for

equivalence. Suppose the EV can verify the equivalence of the two sub-DAGs in the window

in this example.

filter aggr
age,

count
dept, sal,

age

project

project aggr
age,

count
sal >10K

filter

filter aggr
age,

count
sal >10K

filter aggr
age,

count
sal >10K

sal >10K

dept, sal,
age

filter aggr
age,

count
dept, sal,

age

project

sal >10K

project aggrfilter
age,

count
sal >10K dept, sal,

age

Figure 5.10: Example of testing three pairs of four versions to show three differ-
ent windows and the windows’ sub-DAGs belong to the same equivalence class.

Suppose in a separate iteration for optimizing the performance of version v3, Raven tests the

149

equivalence of the pair (v2, v3) by pushing the pair to Veer. Again, Veer internally decomposes

the pair into windows. One of the covering windows is ω2 = ⟨ω2(v2), ω2(v3)⟩ (depicted in

purple in the figure). The two sub-DAGs in ω2 are proved to be equivalent by the EV.

Note that the sub-DAG ω2(v2) is equally or structurally the same as ω1(v2) as defined in

Recycler [102] and Restore [49] 2. Recall that ω1(v2) was tested for equivalence with the

sub-DAG ω1(v1).Then we deduce that the sub-DAGs ω1(v1) and ω2(v3) are equivalent by

transitivity [28].

Now, when Raven optimizes the execution of v4, it pushes a pair (v3, v4) to Veer to test

the pair’s equivalence. Suppose one of the covering windows that Veer needs to test its

equivalence is ω3 = ⟨ω3(v3), ω3(v4)⟩ (depicted in red in the figure). Notice that the sub-DAG

ω3(v3) is equal to ω2(v3) and the sub-DAG ω3(v4) is equal to ω1(v1). This means that testing

the equivalence of the sub-DAGs ω3(v3) and ω3(v4) is the same as testing the equivalence of

the sub-DAGs ω2(v3) and ω1(v1). The latter pair was proven to be equivalent by transitivity

in an earlier iteration. Had we stored the results of the previous covering window equivalence

tests, Veer would have avoided testing the equivalence of pairs that were tested before.

To store the result of equivalence tests, we group sub-DAGs of tested windows in equivalence

classes. An equivalence class is a set of equivalent elements. Each element in a class is a

sub-DAG from a window. The idea is to maintain a mapping of each tested sub-DAG to

its equivalence class number. For simplicity of the discussion, we explain the solution where

a window has a single sink, and we generalize to the case where a window has multiple

sinks in Section 5.6.2.1. We revisit the example in Figure 5.10 to explain how we modify

Algorithm 5.3 to memoize and use previous tests on the equivalence of windows. We extend

Veer, as shown in Algorithm 5.4, to let it check if the sub-DAGs in a covering window

were verified before by performing a lookup of a sub-DAG. Each stored sub-DAG includes a

pointer to the equivalence class the sub-DAG belongs to.

2For simplicity of the discussion, we say two sub-DAGs are equal to indicate their exact structure match.

150

Algorithm 5.4: Verifying the equivalence of a workflow version pair with multiple
sinks (Reusing equivalence result of previously-tested sub-DAGs).

Input: A version pair (P , Q); A set of edit operations δ and a mappingM from P
to Q; An EV γ

Output: A set of equivalent sinks
// Lines 1-16 in Algorithm 4.2

1 switch lookup each sub-DAG in ωj do
2 case both sub-DAGs were not seen before do
3 if γ proves the window is equivalent then
4 assign both sub-DAGs the same class
5 else
6 assign each sub-DAG a new class
7 end

8 case one sub-DAG only was seen before do
9 if γ proves the window is equivalent then

10 assign unseen sub-DAG the same class as the seen sub-DAG
11 else
12 assign the unseen sub-DAG a new class
13 end

14 case both sub-DAG were seen before do
15 if both sub-DAGs are not in the same class and they were never tested

together before then
16 test their equivalence using γ and assign the appropriate class

17 end
// Line 20 from Algorithm 4.2

The lookup check yields the following possible cases.

1. None of the two sub-DAGs were tested before: Veer pushes the window to the EV

to test their equivalence. If the EV proves the two sub-DAGs in the window are equivalent,

then Veer uses this knowledge to group them in the same equivalence class. The newly

created equivalence class is assigned a new identifying label (Line 4). On the other hand, if

the EV proves the two sub-DAGs are not equivalent, then each sub-DAG will be assigned

a new equivalence class label (Line 6). Then Veer store the sub-DAG and assigns a pointer

to the sub-DAG’s equivalence class. Following the example in Figure 5.10, testing the sub-

DAGs in ω1 falls under this case, as both sub-DAGs were not tested before. After the EV

proves that the two sub-DAGs are equivalent, Veer stores the new sub-DAGs and assigns

151

their equivalence pointers the same equivalence class, say in this example, a value of 1.

2. One sub-DAG only was tested before: Veer pushes the pair to the EV, and if the

EV proves the pair is equivalent, then we add the unseen sub-DAG to the same equivalence

class as the other one (Line 10). Otherwise, we create a new equivalence class for the unseen

sub-DAG (Line 12). In the above example, testing the equivalence of the sub-DAGs in the

window ω2 falls under this case. The reason is because the sub-DAG ω2(v1) was previously

tested but ω2(v2) was not. After the EV proves the equivalence of the pair in the window,

Veer stores the new sub-DAG ω2(v2) and assigns it with the same equivalence class as ω2(v1),

i.e., 1. A subtle case is when the EV is incomplete and returns “Unknown” as an answer

for the pair’s equivalence test. One way to solve this is to replace the previously-tested

sub-DAG with another sub-DAG from the same class, and repeat this replacement until we

get an answer from the EV other than “Unknown” or there are no other sub-DAGs in the

class.

3. Both sub-DAGs were tested before: Veer checks if the pair is in the same equivalence

class by checking the value of their equivalence class. If the two equivalence classes are the

same, Veer marks the pair’s equivalence, and there is no need to push testing the pair’s

equivalence to the EV. Otherwise, every sub-DAG is in a different equivalence class. Thus,

we ask the EV to verify if the two sub-DAGs are equivalent in order to merge the two

equivalence classes of the sub-DAGs into one. If the EV determines that the two sub-DAGs

are equivalent, we merge the two classes and update the sub-DAGs’ pointers to point to the

newly merged class. In the above example, the two sub-DAGs in window ω3 were both seen

before, and their equivalence class is 1. Following this procedure, we can see the benefit of

not pushing the last pair of the covering window ω3 to the EV, as we know their equivalence

from previous tests.

Memoizing the check of two different equivalence classes: In order to prevent redundant

tests of two equivalence classes to determine whether they need to be merged or not, we

152

employ a memoization technique. We maintain a 2-D matrix of flags associated with the

equivalence classes, as depicted in Figure 5.11. This matrix allows us to track whether a

pair of equivalence classes have already been tested. We update the flag in the matrix each

time we verify the equivalence of two distinct equivalence classes.

EC 1 2 3
1

2

3 ...

O

X

X X O

X

X

O

X

...

Figure 5.11: A sample 2-D matrix for storing the equivalence tests between a
pair of equivalence classes. A cell initially is “X” and is changed to “O” when
the two classes are tested.

5.6.2.1 Looking up a Sub-DAG by Performing a Structure Match

A natural question is how to lookup whether a sub-DAG has been tested before. Veer

maintains a “recycler DAG” [102], which is a structural representation of the previously-

tested sub-DAGs. Each node in the recycler DAG represents an operator of a sub-DAG. The

recycler DAG combines and groups the sub-DAGs from previous tests. When we want to

check if a sub-DAG has been tested before, we traverse the sub-DAG simultaneously with

the recycler DAG, matching each node from the sub-DAG with the corresponding node in

the recycler DAG. If a node matches, we continue the traversal. If a node is not matched,

we update the recycler DAG to insert the new node. Two nodes v and u exactly match if:

(i) v and u represent the same operator type; (ii) they have the same properties; (iii) their

upstream operators also match [102]. Lastly, in the recycler DAG, nodes without outgoing

edges, i.e., leaves, include pointers indicating their respective equivalence classes. These

pointers signify the equivalence class of the sub-DAG, which includes the upstream nodes

that lead to each particular leaf. Figure 5.12 shows an example of a recycler DAG for storing

153

the sub-DAGs in the three windows of the example in Figure 5.10.

filter aggr
age,

count
dept, sal,

age

project

filter aggr
age,

count
sal >10K

Input
tables

sal >10K

project aggrfilter
age,

count
sal >10K dept, sal,

age

1

1

1

Figure 5.12: Example Recycler DAG to group the sub-DAGs of three windows
and their equivalence class.

5.7 Ranking Versions for Equivalence Check

When given a new workflow version execution request Q, we want to rank the prior versions

before verifying the equivalence of version Q and each prior version P ∈ P. In this section,

we discuss how Raven follows a two-stage approach to ranking the prior executed versions.

In the first stage, Raven prunes the inequivalent versions based on a partial representation

of the semantics of the sinks in a version following a novel structure to organize the versions

(Section 5.7.1). In the second stage, Raven ranks the chosen prior versions from the first

stage based on their edit distance compared to version Q (Section 5.7.2).

5.7.1 Ranking Versions by their Semantic Results of the Sinks

To efficiently identify reusable artifacts across different versions, we need a lightweight fin-

gerprint representation that models the semantics of the sinks’ results. In this section, we

use “views”, “artifacts”, and “sinks” interchangeably. We organize the sinks in a hierarchy

to facilitate traversal for finding reusable views and avoid inspecting versions that include

154

sinks that are guaranteed to be not equivalent to the execution request. We model the result

of a sink as a tuple (T, S⃗, O⃗), where T is a First-Order-Logic (FOL) formula indicating the

existence of a tuple in the table, and S⃗ and O⃗ are the lists of fields in the table and the

fields on which the table is ordered on, respectively. By using (S⃗, O⃗), we can quickly identify

and eliminate views that are not equivalent to the sinks in the execution request, without

considering the complexity of determining a tuple’s existence and its cardinality [37, 89]

represented by T in this work.

Representation construction. To construct the view representation, we follow the same

techniques in existing literature [37, 164] by using predefined transformations for each oper-

ator. Operators inherit the representation from their upstream/parent operator and update

the fields based on their internal logic. We leverage the knowledge of the changes made to

the previous version and build the representation incrementally by propagating the difference

starting from a changed operator closest to the source. This requires tracking and storing

transformation results on every operator, not just in the sink. We can choose between con-

structing the representation from scratch or propagating the delta considering factors such

as how far the changes are from the sinks and the size of the workflow.

View organization in a V2-structure. We organize the sinks in the versions in a hierar-

chy “V2”, which stands for “versioned views”. A node includes the view representation and

includes physical pointers to where the sinks that have the same representation (not nec-

essarily equivalent) are grouped. An edge between two nodes means the result of the child

node is a subset of the result of the parent node (when ignoring the T field). A subset result

can be detected by running two tests, one for each field in the representation, as discussed

below.

Definition 5.3 (V2 Node Subsumption Test). Given a node v and a child node u, we say

u is a proper subset of node v, denoted as“ u ⊂ v,” when O⃗v is a subset of O⃗u and S⃗u is a

subset of S⃗v.

155

The intuition is that the set of projected columns in v includes all of the elements in the

set of projected columns in u, and the ordering fields in v are more general than in u. The

structure may have multiple root nodes. Figure 5.13 shows a sample V2-structure to organize

the sinks in the running example. Each node has a physical pointer to its saved result of the

sink.

===

symbol -- field
name

i -- id
t -- text

c -- coordinate
d -- dist
l -- loc

n -- count

u -- user

Figure 5.13: A sample V2-structure to organize the saved results of sinks from
the first two versions in the running example.

V2-structure traversal and maintenance. We use the task of finding an equivalent view

for the word cloud sink in v3 of the running example to explain the traversal and maintenance

of the hierarchy. We first construct the view representation of the word cloud sink, S⃗ = [i, c]

and O⃗ = []. After that, we traverse the hierarchy in a depth-first-search manner. Starting

from a root node, we simultaneously run two tests, one to ask if the list S⃗ in the node

contains the one in the current version, and the other is to ask if the list O⃗ in the word

cloud sink contains the one in the node. Both tests must return True; otherwise, we stop

traversing the children of that node.

In this example, one of the tests on the first node in Figure 2.12b returns False. Therefore,

we continue the search by inspecting a sibling node. When both tests return True, we

further test if both (S⃗, O⃗) in the node are the same as those in the current version. If the

two representations are not the same, we expand the search to test the child nodes. In this

example, both tests return True when testing the second node and their representations

156

are not the same, so we consider the child nodes and follow the same procedure. In this

example, the test on the child node shows that the two representations are the same. If the

two representations are the same, we retrieve the physical pointers to the versions the node

points to. We iterate through every version on the list and push it to the given verifier with

the current version to test their equivalence until we find one that includes sinks equivalent

to the current version. Additionally, we add a new pointer to point to the current version.

When all of the sibling nodes are traversed and none of them are expanded to test their

child nodes, we insert a new node containing the current version’s sink representation and a

physical pointer to its result. We do the same for every sink in the version. The benefit of

this lightweight representation resulted in pushing one pair to the verifier, instead of iterating

over every past version. Finally, because a node can have multiple parent nodes, we memoize

if the node was visited for the particular current version to avoid exploring the same node

multiple times and performing the test.

We repeat this process for each sink of the version Q. Once we identify a node for each sink,

we may end up with a list of versions. Raven starts the second stage to rank those versions.

We rank a version Pa higher than another version Pb if the version Pa is more similar to the

version Q compared to the similarity of the version pair (Pb, Q). As an example, we use the

edit distance as one factor as we explain next.

5.7.2 Ranking Versions Based on Edit Mapping

We rank a version with less edit to Q higher than another. To find the edits for each pair

of the current version and a prior one, we iterate over every prior version DAG and pass the

pair to a Graph Edit Distance (GED) algorithm, which returns the set of edit operations

needed to transform one graph to the other [23]. We then rank the versions based on the

number of differences, giving a higher score to those with fewer edits.

157

The following example shows that using the minimum edit distance for ranking may not

necessarily find an equivalent version,

Example 5.1. Consider the following three versions:

v1 = {Project(all)→ Filter(age > 24)→ Aggr(count by age)}.

v2 = {Project(all)→ Aggr(count by age)}.

v3 = {Filter(age > 24)→ Project(all)→ Aggr(count by age)}.

Consider a mapping for transforming v1 to v3, which involves substituting Project in v1 with

Filter in v3 and substituting Filter in v1 with Project in v3 yielding two edits. The mapping

to transform v2 to v3 is done by adding a Filter operator, yielding a single edit operation.

Given the ranking proposed above, the algorithm chooses v2 as it has fewer differences with

v3 i.e., 1 compared to the differences between the pair (v1, v3) i.e., 2. However, v2 ̸≡ v3 while

v1 ≡ v3.

While this approach helps us quickly get an answer if a prior and the current version pair

are equivalent or not, running the GED algorithm from scratch every time for every version

pair can be computationally expensive due to its NP -hard complexity [23]. We exploit the

analysts’ interactions recorded when refining the workflow versions iteratively in the form of

deltas to maintain an incremental sequence of the deltas for a lighter-weight mapping.

5.8 Experiments

In this section, we report our experimental results of evaluating the effectiveness of Raven

on execution speedup.

158

5.8.1 Experimental Setup

Real workload. We created similar workflows, which are presented as W1 . . .W4 in Ta-

ble 5.1, from the collected real workflows from one deployment of Texera [138] as summarized

in Appendix A. We show a sample of some workflows used in the experiments in Appendix B.

We used IMDB [70] (≈ 3GB) and Twitter [142] (≈ 0.5GB) datasets. All versions included

UDF operators. The average time it took to execute a version without reuse is 1.9 minutes.

Table 5.1: Workloads used in the experiments.

Workflow# Description
of
operators

of
sinks

of
versions

% of
equivalent
sinks

W1
IMDB ratio of non-original
to original movie titles

13 3 3 55

W2
IMDB all movies of directors
with certain criteria

26 3 3 55

W3 Tobacco Twitter analysis 18 1 5 60
W4 Wildfire Twitter analysis 12 3 12 16

Implementation. We evaluated our solution against the Recycler [102] baseline, which

compares a workflow query DAG with previously executed workflow DAGs by examining

their structures for equality. We implemented a basic Raven, denoted as Ravenb, which is

a basic approach that iterates over past versions without ranking them, divides the version

pair into sub-DAGs of a single sink then calls Veer, and uses Veer without enabling reusing

previous tests on windows. We implemented Ravena, which is advanced Raven and included

ranking past versions and extending Veer to return a set of equivalent sinks and reuse previous

equivalence tests. We implemented the Veer 4 verifier and used Equitas [164] as its EV. We

implemented the baseline and Raven using Java8 in Texera [93]. The system ran on a single

node of a MacBook Pro running the MacOS Monterey operating system with a 2.2GHz Intel

Core i7 CPU, 16GB DDR3 RAM, and a 256GB SSD.

159

5.8.2 Identifying Reuse

We evaluated Raven’s effectiveness in identifying semantic equivalence of workflows with

UDFs compared to the baseline. Table 5.2 shows the results of the experiment. Recycler

successfully identified 25% of the equivalent cases, while both Ravenb and Ravena successfully

identified 60% of the equivalent cases. Recycler failed to rewrite any of the workflow versions

to reuse the identified equivalent results. On the other hand, Ravenb and Ravena were able

to rewrite the workflows to reuse the results for 40% of the equivalent sinks. The inability to

rewrite a workflow version to reuse the identified equivalent sinks, in some cases, is due to the

following: the workflow version DAG may include a sink that is not identified as equivalent,

and its output depends on executing all of the operators in the DAG. To overcome this

limitation, storing intermediate results could be a potential solution.

Table 5.2: Comparison evaluation of Ravenb and Ravena against Recycler.

Approach % of identified equivalent sinks % of used equivalent sinks

Recycler 25.0 0.0
Ravenb 60.0 40.0
Ravena 60.0 40.0

5.8.3 Overhead Analysis

We recorded the overhead of each approach and the time each approach spent to identify

reuse. Figure 5.14a shows the overhead of the three approaches. The time it took Recycler

to match a DAG with previous DAGs was negligible due to the small size of historically

seen queries, so we do not report its overhead in Figure 5.14a. Ravenb and Ravena had more

overhead than Recycler because they needed to invoke Veer multiple times. The overhead of

Ravena (up to 126.6 ms on W2) is less than Ravenb (up to 199.4 ms on W3) because it used

the equivalence class concept and the ranking approach to optimize and reduce the time

spent on Veer.

160

Breakdown of Ravena’s overhead. Figure 5.14b shows the time Ravena spent on “rank-

ing”, “checking the equivalence class of windows”, and “calling Veer” for each version of the

workflow. Each boxplot represents the following: 1st percentile for the bottom line, 25th for

the beginning of the box and 75th percentile for the end of the box, median is represented by

a line crossing the body of the box, and the 99th percentile for the top line. In general the

performance of the “ranking” ranged between 14 and 97 milliseconds with an average of 42

milliseconds. The time it took to find equivalence classes of sub-DAGs in the window (check

EC) ranged from a few milliseconds to 72 milliseconds with an average of 24.9 milliseconds.

There was a high variation of the time taken to “call Veer” (a few milliseconds to 190 ms)

caused by the following reasons: either because the two versions did not have any changes

(due to reverting the changes to a previous version), thus Veer’s call terminated early; or

because Veer identified equivalence reuse using the equivalence classes and it internally did

not call the EV.

 0

 50

 100

 150

 200

 250

W1 W2 W3 W4

T
im
e

 (
m
s
)

Workflow

Ravenb
Ravena's Ranking

Ravena's Calling Veer

(a) Time taken to identify reuse.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

ranking check EC calling Veer

T
im
e

 (
m
s
)

Sources of overhead

(b) Breakdown of Ravena’s overhead.

Figure 5.14: Overhead analysis of the solutions.

5.8.4 Execution Speedup

Figure 5.15 shows the speedup of the approaches. Because Recycler failed to rewrite any of

the workflow versions to reuse the identified equivalent results, it had a speedup of 1. On the

other hand, Ravenb and Ravena were able to rewrite the workflows to reuse the results for 40%

161

of the equivalent sinks, yielding speedups of up to 322 using Ravenb and 747 using Ravena

for W3. Overall, Ravena outperformed Ravenb by achieving a higher speedup, thanks to the

utilization of ranking and reusing tests of other windows by grouping them in equivalence

classes. None of the three approaches could reason about the semantics of W4 because W4

involved changes made to an ML model that were not supported by the approaches.

 0.1

 1

 10

 100

 1000

W1 W2 W3 W4

X

E
x
e
c
u
tio
n

 s
p
e
e
d
u
p

 (
X
)

Workflow

Recycler
Ravenb
Ravena

Figure 5.15: Effectiveness of Raven on execution speedup. An “X” indicates the
workflow was not supported by the solution.

5.8.5 Effect of the Number of Sinks

We evaluated the performance of verifying a pair with multiple sinks using the baseline

approach discussed in Algorithm 5.2 against extending Veer to handle multiple sinks, as in

Algorithm 5.3. We can see that as we increase the number of sinks, the time it takes to

verify a pair also increases up to 243 ms for the baseline as shown in Figure 5.16, while the

time taken to do the verification by Veer remains the same around 70 ms.

162

 0

 50

 100

 150

 200

 250

 300

1 2 3 4

T
im
e

 (
m
s
)

No. of sinks

baseline
Veer

Figure 5.16: Effect of the number of sinks on the performance of verifying a
version pair.

5.9 Conclusion

In this chapter, we proposed Raven, a novel optimization technique that uses stored results

from previously executed versions to answer a given version execution request after testing

their equivalence using a verifier. We discussed how Raven extends Veer to handle verifying

a pair with multiple sinks, and to reuse previous computations. We also showed how Raven

follows a two-stage approach to ranking the versions. We evaluated the effectiveness of the

solution on real workflows from Texera, observing actual speedup benefits of up to several

orders of magnitude in some cases.

163

Chapter 6

Conclusions and Future Work

Overall, we studied the challenges and opportunities of iterative data analytics using complex

data-processing workflows. This dissertation contributes to the advancement of GUI-based

data-processing systems by integrating visualization, version control, and equivalence verifi-

cation for optimizing the execution of data-processing tasks. By bridging these areas, ana-

lysts are empowered with enhanced tools and techniques for effective data analytics, leading

to improved productivity and reproducibility. In this chapter, we present the conclusions of

the four works presented in this dissertation and motivate the future work.

6.1 Conclusions

In Chapter 2, we addressed the problem of visualizing large spatial networks in a progres-

sive setting and introduced GSViz, a general-purpose middleware solution. GSViz effectively

resolves this problem along with its associated challenges, particularly visual clutter. We pro-

posed three techniques to mitigate visual clutter, including an edge-aware vertex clustering

algorithm. Additionally, we presented a tree-like data structure that enhances the efficiency

164

of searching for compatible edges, enabling incremental and efficient bundling. Furthermore,

we integrated these two techniques, addressing the challenges that arise from their combined

use, such as the frequent updating of visual results. We also discussed how our solution

supports various interaction techniques like zooming and panning. We also discussed how

we leverage the hierarchical structure, in which supports zooming, to further reduce visual

clutter.

In Chapter 3, we presented Drove, a holistic end-to-end approach to provide an infrastruc-

ture to allow users to orchestrate, refine, and execute workflows while ensuring the repro-

ducibility of their experiments. We addressed the challenge of enabling effective tracking in

workflow-based systems and presented our innovative solution, which leverages the concept

of maintaining deltas and tracking the edit operations performed. This lightweight approach

provides users with the necessary tools to track and analyze changes in their workflows,

enabling a more streamlined and transparent workflow management process.

In Chapter 4, we studied the problem of verifying the equivalence of two workflow versions.

We presented a solution called “Veer,” which leverages minor edits between two workflow

versions. We analyzed the restrictions of existing EVs and proposed a concept called a “win-

dow” to leverage the existing solutions for verifying equivalence. We proposed a verification

algorithm using “windows” to verify the equivalence of a version pair with a single edit.

We discussed the challenges of testing the equivalence of a version pair with multiple edits

and proposed a baseline algorithm. We proposed optimization techniques to speed up the

baseline’s performance. We discussed the correctness and completeness of the equivalence

verification algorithm. We conducted a thorough experimental study and showed the high

efficiency and effectiveness of the solution.

In Chapter 5, we proposed Raven, a novel optimization technique that uses stored results from

previously executed versions to answer a given version execution request after testing their

equivalence. We discussed how Raven uses Veer in its modules to test the pair’s equivalence.

165

We presented a ranking based on the semantics of the saved results corresponding to the

sinks in the version. We also discussed how Raven extends Veer to handle multiple sinks.

Moreover, Raven extends Veer to avoid pushing newly constructed windows into an EV if

the window was tested before in previous iterations. We group the windows’ sub-DAGs into

equivalence classes when storing them. We saw speedup of benefits of up to several orders

of magnitude in some cases.

6.2 Future Work

GSViz stores the clustering hierarchy and the PEB-tree in memory and follows a heuristic ap-

proach to reducing the tree size by merging nodes when a tree size meets a certain threshold.

We plan to devise a cost-based technique to reduce the tree size to satisfy a given memory

budget. Moreover, GSViz currently follows a heuristic and greedy approach to clustering the

vertices and bundling the edges. Although the algorithm is bounded by the range radius ρ

for clustering and the compatibility score in edge bundling, the quality and accuracy are not

compromised. However, we are interested in proposing an objective function to trade off the

visualization accuracy and performance efficiency in the future.

Drove assumes that the workflow execution is completed when retrieving and displaying its

details. To handle ongoing executions, we need to be able to serialize the states of the

execution. We plan to tackle this problem in future work. Moreover, we plan to capture

more environmental information, such as details of other jobs or processes running, as these

may affect the performance or result of the experiment. We also plan to allow the user to

compare a pair of executions and their corresponding results in a fine-grained fashion, e.g.,

by highlighting the different tuples. One approach to achieve highlighting the difference

between two results is to compare every pair-wise tuple from the two results, which can be

expensive, but this is sufficient when the user views a small number of tuples at a time on

166

the screen.

Veer tests the equivalence or inequivalence of two workflow versions. We want to extend the

solution to detect the containment of the two versions. The current window-based solution

works for identifying equivalence but not containment. The reason is from the two outputs

of a non-covering window that act as the input to a covering window (whether they are

equivalent or one contains the other), we cannot infer how the data is transformed in each

covering window. One way to track that is to encode the order and structure of the windows

and the data flow. Another future improvement is that the solution in Veer assumes the

workflow version is a DAG, i.e., there is no loop ore recursion, but we want to propose ways

to handle versions that contain loop blocks and recursion. We also want to propose a more

powerful EV that handles reasoning the semantics of operators beyond relational ones, such

as UDFs. The objective is to incorporate this powerful EV into the Veer search framework.

One way to do so is to propose an API that the UDF developer needs to adhere to in order to

be able to capture the semantics of the UDF operator. One example API is ⟨T, S, C,O⟩ [9].

T is a first-order logic (FOL) formula that indicates if an input tuple exists in the output

result or not. S represents the set of columns, i.e., the schema of the tuple in the output

result. C indicates the cardinality of a tuple in the entire relation and is represented in a

sum-product normal form (SPNF). O contains the columns the result is ordered in.

Raven assumes the operators’ logic is deterministic, and the data sources are static and not

changing. We want to extend the solution to detect and handle non-determinism. There can

be many ways to detect non-deterministic workflow versions as follows: a) the user specifies

that the workflow includes sources of non-determinism, b) the developer of the operator indi-

cates the logic of the developed operator includes non-determinism, e.g., in PostgreSQL the

CREATE FUNCTION expects a user to specify that a UDF is VOLATILE [114], c) Raven applies

logic such as to look for certain keywords, e.g., “random,” to detect non-determinism. To

handle non-deterministic versions, we can apply some of the techniques proposed to support

167

reproducibility [55]. These include for example, using pseudo-random number generators

that take a seed and generate seemingly random numbers in a deterministic fashion [55].

Moreover, we want the Raven optimizer to follow a best-effort optimization given a time

budget. Once there is a time budget, we need to maximize the chance that Raven chooses

a set of the most promising workflows (those that are equivalent). To this end, we plan to

study the semantic similarity between the workflows to return a set of the most semantically

similar workflow versions to a given version.

168

Bibliography

[1] J. Abello, F. van Ham, and N. Krishnan. Ask-graphview: A large scale graph visual-
ization system. IEEE Trans. Vis. Comput. Graph., 12(5):669–676, 2006.

[2] S. Abiteboul and O. M. Duschka. Complexity of answering queries using material-
ized views. In A. O. Mendelzon and J. Paredaens, editors, Proceedings of the Seven-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, June 1-3, 1998, Seattle, Washington, USA, pages 254–263. ACM Press, 1998.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The Logical Level.
Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1995.

[4] F. N. Afrati, C. Li, and P. Mitra. On containment of conjunctive queries with arith-
metic comparisons. In EDBT, pages 459–476, 2004.

[5] P. K. Agarwal, K. Fox, K. Munagala, A. Nath, J. Pan, and E. Taylor. Subtrajectory
clustering: Models and algorithms. In J. V. den Bussche and M. Arenas, editors,
Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, Houston, TX, USA, June 10-15, 2018, pages 75–87. ACM, 2018.

[6] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: Higher-order delta
processing for dynamic, frequently fresh views. Proc. VLDB Endow., 5(10):968–979,
2012.

[7] R. Alhajj and J. G. Rokne, editors. Encyclopedia of Social Network Analysis and
Mining, 2nd Edition. Springer, 2018.

[8] S. M. Ali, N. Gupta, G. K. Nayak, and R. K. Lenka. Big data visualization: Tools
and challenges. In 2016 2nd International Conference on Contemporary Computing
and Informatics (IC3I), pages 656–660, 2016.

[9] S. Alsudais. Drove: Tracking execution results of workflows on large data. In Z. Bao
and T. K. Sellis, editors, Proceedings of the VLDB 2022 PhD Workshop co-located with
the 48th International Conference on Very Large Databases (VLDB 2022), Sydney,
Australia, September 5, 2022, volume 3186 of CEUR Workshop Proceedings. CEUR-
WS.org, 2022.

[10] S. Alsudais, Q. Bai, S. Zhao, and C. Li. Gsviz: progressive visualization of geospatial
influences in social networks. In SIGSPATIAL, 2022.

169

[11] Alteryx Website, https://www.alteryx.com/.

[12] Alteryx Weekly Challenge, https://community.alteryx.com/t5/

Weekly-Challenge/bd-p/weeklychallenge.

[13] Apache Flink http://flink.apache.org.

[14] Apache Spark http://spark.apache.org.

[15] D. Auber. Tulip - A huge graph visualization framework. In M. Jünger and P. Mutzel,
editors, Graph Drawing Software, pages 105–126. Springer, 2004.

[16] Q. Bai, S. Alsudais, C. Li, and S. Zhao. Maliva: Using machine learning to rewrite vi-
sualization queries under time constraints. In J. Stoyanovich, J. Teubner, N. Mamoulis,
E. Pitoura, and J. Mühlig, editors, Proceedings 26th International Conference on Ex-
tending Database Technology, EDBT 2023, Ioannina, Greece, March 28-31, 2023,
pages 157–170. OpenProceedings.org, 2023.

[17] J. Bao, Y. Zheng, D. Wilkie, and M. F. Mokbel. Recommendations in location-based
social networks: a survey. GeoInformatica, 19(3):525–565, 2015.

[18] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for exploring
and manipulating networks. In E. Adar, M. Hurst, T. Finin, N. S. Glance, N. Nicolov,
and B. L. Tseng, editors, Proceedings of the Third International Conference on Weblogs
and Social Media, ICWSM 2009, San Jose, California, USA, May 17-20, 2009. The
AAAI Press, 2009.

[19] L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of data tiles for inter-
active visualization. In F. Özcan, G. Koutrika, and S. Madden, editors, Proceedings
of the 2016 International Conference on Management of Data, SIGMOD Conference
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 1363–1375. ACM, 2016.

[20] T. Beleche, J. Ruhter, A. Kolbe, J. Marus, L. Bush, and B. Sommers. Covid-19 vaccine
hesitancy: Demographic factors, geographic patterns, and changes over time. Published
online, 27, 2021.

[21] N. Bikakis, J. Liagouris, M. Krommyda, G. Papastefanatos, and T. K. Sellis.
graphvizdb: A scalable platform for interactive large graph visualization. In 32nd
IEEE International Conference on Data Engineering, ICDE 2016, Helsinki, Finland,
May 16-20, 2016, pages 1342–1345. IEEE Computer Society, 2016.

[22] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of com-
munities in large networks. Journal of statistical mechanics: theory and experiment,
2008(10):P10008, 2008.

[23] D. B. Blumenthal, N. Boria, J. Gamper, S. Bougleux, and L. Brun. Comparing heuris-
tics for graph edit distance computation. VLDB J., 29(1):419–458, 2020.

170

https://www.alteryx.com/
https://community.alteryx.com/t5/Weekly-Challenge/bd-p/weeklychallenge
https://community.alteryx.com/t5/Weekly-Challenge/bd-p/weeklychallenge

[24] C. Borralleras, D. Larraz, E. Rodŕıguez-Carbonell, A. Oliveras, and A. Rubio. Incom-
plete SMT techniques for solving non-linear formulas over the integers. ACM Trans.
Comput. Log., 20(4):25:1–25:36, 2019.

[25] I. Boyandin, E. Bertini, and D. Lalanne. Using flow maps to explore migrations over
time. In Geospatial Visual Analytics Workshop in conjunction with The 13th AGILE
International Conference on Geographic Information Science, volume 2, 2010.

[26] F. Brodkorb, A. Kuijper, G. L. Andrienko, N. V. Andrienko, and T. von Landesberger.
Overview with details for exploring geo-located graphs on maps. Inf. Vis., 15(3):214–
237, 2016.

[27] Calcite benchmark, https://github.com/uwdb/Cosette/tree/master/examples/

calcite.

[28] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In J. E. Hopcroft, E. P. Friedman, and M. A. Harrison, editors,
Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6,
1977, Boulder, Colorado, USA, pages 77–90. ACM, 1977.

[29] B. Chandra and S. Sudarshan. Automated grading of SQL queries. IEEE Data Eng.
Bull., 45(3):17–28, 2022.

[30] L. Chang, W. Li, L. Qin, W. Zhang, and S. Yang. pscan: Fast and exact structural
graph clustering. IEEE Trans. Knowl. Data Eng., 29(2):387–401, 2017.

[31] A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, S. A. Hong, A. Konwin-
ski, C. Mewald, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, A. Singh, F. Xie,
M. Zaharia, R. Zang, J. Zheng, and C. Zumar. Developments in mlflow: A system to
accelerate the machine learning lifecycle. In DEEM@SIGMOD’20, 2020.

[32] C. Chen, S. Hwang, and Y. Oyang. An incremental hierarchical data clustering algo-
rithm based on gravity theory. In Advances in Knowledge Discovery and Data Mining,
6th Pacific-Asia Conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002, Proceed-
ings, volume 2336 of Lecture Notes in Computer Science, pages 237–250. Springer,
2002.

[33] L. Chen, Y. Gao, Y. Zhang, C. S. Jensen, and B. Zheng. Efficient and incremental
clustering algorithms on star-schema heterogeneous graphs. In 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pages
256–267. IEEE, 2019.

[34] F. Chirigati, R. Rampin, D. E. Shasha, and J. Freire. Reprozip: Computational
reproducibility with ease. In SIGMOD, 2016.

[35] R. Chirkova, C. Li, and J. Li. Answering queries using materialized views with mini-
mum size. VLDB J., 15(3):191–210, 2006.

171

https://github.com/uwdb/Cosette/tree/master/examples/calcite
https://github.com/uwdb/Cosette/tree/master/examples/calcite

[36] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in
location-based social networks. In C. Apté, J. Ghosh, and P. Smyth, editors, Pro-
ceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Diego, CA, USA, August 21-24, 2011, pages 1082–1090. ACM,
2011.

[37] S. Chu, B. Murphy, J. Roesch, A. Cheung, and D. Suciu. Axiomatic foundations and
algorithms for deciding semantic equivalences of SQL queries. VLDB’18, 2018.

[38] S. Chu, C. Wang, K. Weitz, and A. Cheung. Cosette: An automated prover for
SQL. In 8th Biennial Conference on Innovative Data Systems Research, CIDR 2017,
Chaminade, CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org, 2017.

[39] Clustering millions of points on a map with supercluster. https://blog.mapbox.com/
clustering-millions-of-points-on-a-map-with-supercluster-272046ec5c97.
Accessed: 2019-10-23.

[40] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and T. Kraska. The case for
interactive data exploration accelerators (ideas). In C. Binnig, A. Fekete, and
A. Nandi, editors, Proceedings of the Workshop on Human-In-the-Loop Data Ana-
lytics, HILDA@SIGMOD 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
page 11. ACM, 2016.

[41] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge clustering for
graph visualization. IEEE Trans. Vis. Comput. Graph., 14(6):1277–1284, 2008.

[42] Databricks Data Science Website, https://www.databricks.com/product/

data-science.

[43] L. M. de Moura and N. S. Bjørner. Z3: an efficient SMT solver. In TACAS’08, 2008.

[44] L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The lean
theorem prover (system description). In A. P. Felty and A. Middeldorp, editors, Au-
tomated Deduction - CADE-25 - 25th International Conference on Automated Deduc-
tion, Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes
in Computer Science, pages 378–388. Springer, 2015.

[45] B. Derakhshan, A. R. Mahdiraji, Z. Kaoudi, T. Rabl, and V. Markl. Materialization
and reuse optimizations for production data science pipelines. In SIGMOD ’22: Inter-
national Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17,
2022, pages 1962–1976. ACM, 2022.

[46] K. Dursun, C. Binnig, U. Çetintemel, and T. Kraska. Revisiting reuse in main memory
database systems. In SIGMOD’17, 2017.

[47] Eclipse JGit https://www.eclipse.org/jgit/, 2023. last accessed: 2023-01-08.

172

https://blog.mapbox.com/clustering-millions-of-points-on-a-map-with-supercluster-272046ec5c97
https://blog.mapbox.com/clustering-millions-of-points-on-a-map-with-supercluster-272046ec5c97
https://www.databricks.com/product/data-science
https://www.databricks.com/product/data-science
https://www.eclipse.org/jgit/

[48] A. Eldawy, M. F. Mokbel, and C. Jonathan. Hadoopviz: A mapreduce framework for
extensible visualization of big spatial data. In 32nd IEEE International Conference on
Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 601–612.
IEEE Computer Society, 2016.

[49] I. Elghandour and A. Aboulnaga. Restore: Reusing results of mapreduce jobs.
VLDB’12, 2012.

[50] M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental clustering
for mining in a data warehousing environment. In VLDB’98, Proceedings of 24rd
International Conference on Very Large Data Bases, August 24-27, 1998, New York
City, New York, USA, pages 323–333. Morgan Kaufmann, 1998.

[51] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[52] M. Fiedler et al. State-of-the-art with regards to user-perceived quality of service and
quality feedback. In Euro-NGI Deliverable D. WP. JRA. 6. 1. 1. 2004.

[53] S. Frey, F. Sadlo, K. Ma, and T. Ertl. Interactive progressive visualization with space-
time error control. IEEE Trans. Vis. Comput. Graph., 20(12):2397–2406, 2014.

[54] G. Gharibi, V. Walunj, R. Alanazi, S. Rella, and Y. Lee. Automated management of
deep learning experiments. In DEEM@SIGMOD’19, 2019.

[55] K. Greff, A. Klein, M. Chovanec, F. Hutter, and J. Schmidhuber. The sacred infras-
tructure for computational research. In SCIPY, 2017.

[56] S. Grossman, S. Cohen, S. Itzhaky, N. Rinetzky, and M. Sagiv. Verifying equivalence
of spark programs. In CAV’17, 2017.

[57] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang. Nectar: Auto-
matic management of data and computation in datacenters. In R. H. Arpaci-Dusseau
and B. Chen, editors, 9th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada, Proceedings,
pages 75–88. USENIX Association, 2010.

[58] T. Guo, K. Feng, G. Cong, and Z. Bao. Efficient selection of geospatial data on maps
for interactive and visualized exploration. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, pages 567–582. ACM, 2018.

[59] A. Y. Halevy. Answering queries using views: A survey. The VLDB Journal, 10(4):270–
294, Dec. 2001.

[60] S. Y. Han, K. C. Clarke, and M. Tsou. Animated flow maps for visualizing hu-
man movement: Two demonstrations with air traffic and twitter data. In A. Magdy,
X. Zhou, and Y. Huang, editors, Proceedings of the 1st ACM SIGSPATIAL Workshop
on Analytics for Local Events and News, Redondo Beach, CA, USA, November 7-10,
2017, pages 5:1–5:10. ACM, 2017.

173

[61] S. Hasan, S. V. Ukkusuri, and X. Zhan. Understanding social influence in activity lo-
cation choice and lifestyle patterns using geolocation data from social media. Frontiers
ICT, 3:10, 2016.

[62] Hierarchical clustering. https://github.com/mapbox/supercluster.

[63] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierar-
chical data. IEEE Trans. Vis. Comput. Graph., 12(5):741–748, 2006.

[64] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph visualization.
Comput. Graph. Forum, 28(3):983–990, 2009.

[65] S. Huang, L. Xu, J. Liu, A. J. Elmore, and A. G. Parameswaran. Orpheusdb: Bolt-on
versioning for relational databases. VLDB, 2017.

[66] C. Hung, W. Peng, and W. Lee. Clustering and aggregating clues of trajectories for
mining trajectory patterns and routes. VLDB J., 24(2):169–192, 2015.

[67] C. Hurter, O. Ersoy, S. I. Fabrikant, T. R. Klein, and A. C. Telea. Bundled visualization
of dynamicgraph and trail data. IEEE Trans. Vis. Comput. Graph., 20(8):1141–1157,
2014.

[68] C. Hurter, O. Ersoy, and A. Telea. Graph bundling by kernel density estimation.
Comput. Graph. Forum, 31(3):865–874, 2012.

[69] C. Hurter, O. Ersoy, and A. Telea. Smooth bundling of large streaming and sequence
graphs. In IEEE Pacific Visualization Symposium, PacificVis 2013, February 27 2013-
March 1, 2013, Sydney, NSW, Australia, pages 41–48. IEEE Computer Society, 2013.

[70] Imdb datasets website. https://www.imdb.com/interfaces/.

[71] Imdb workload website. https://github.com/juanmanubens/

SQL-Advanced-Queries/blob/master/imdb.sql.

[72] M. Ivanova, M. L. Kersten, N. J. Nes, and R. Goncalves. An architecture for recycling
intermediates in a column-store. In U. Çetintemel, S. B. Zdonik, D. Kossmann, and
N. Tatbul, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July
2, 2009, pages 309–320. ACM, 2009.

[73] https://www.rfc-editor.org/rfc/rfc6902, 2023. last accessed: 2023-01-07.

[74] T. S. Jayram, P. G. Kolaitis, and E. Vee. The containment problem for REAL conjunc-
tive queries with inequalities. In S. Vansummeren, editor, Proceedings of the Twenty-
Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, June 26-28, 2006, Chicago, Illinois, USA, pages 80–89. ACM, 2006.

[75] J. Jia, C. Li, and M. J. Carey. Drum: A rhythmic approach to interactive analytics
on large data. In BigData, pages 636–645, 2017.

174

https://github.com/mapbox/supercluster
https://www.imdb.com/interfaces/
https://github.com/juanmanubens/SQL-Advanced-Queries/blob/master/imdb.sql
https://github.com/juanmanubens/SQL-Advanced-Queries/blob/master/imdb.sql
https://www.rfc-editor.org/rfc/rfc6902

[76] A. Jindal, K. Karanasos, S. Rao, and H. Patel. Selecting subexpressions to materialize
at datacenter scale. Proc. VLDB Endow., 11(7):800–812, 2018.

[77] Jupyter Notebook Website, https://jupyter.org/.

[78] M. A. Khan, L. Xu, A. Nandi, and J. M. Hellerstein. Data tweening: Incremental
visualization of data transforms. Proc. VLDB Endow., 10(6):661–672, 2017.

[79] J. Kim and J. Lee. Community detection in multi-layer graphs: A survey. SIGMOD
Rec., 44(3):37–48, 2015.

[80] Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and Jürgen Schmidhuber.
The Sacred Infrastructure for Computational Research. In SciPy’17, 2017.

[81] Knime Website, https://www.knime.com/.

[82] Knime workflows website. https://hub.knime.com/search?type=Workflow&sort=

maxKudos.

[83] J. Kossmann, T. Papenbrock, and F. Naumann. Data dependencies for query opti-
mization: a survey. VLDB J., 31(1):1–22, 2022.

[84] A. Kumar, Z. Wang, S. Ni, and C. Li. Amber: A debuggable dataflow system based
on the actor model. Proc. VLDB Endow., 13(5):740–753, 2020.

[85] M. Kunjir, B. Fain, K. Munagala, and S. Babu. ROBUS: fair cache allocation for data-
parallel workloads. In S. Salihoglu, W. Zhou, R. Chirkova, J. Yang, and D. Suciu,
editors, Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages 219–
234. ACM, 2017.

[86] A. Lambert, R. Bourqui, and D. Auber. Winding roads: Routing edges into bundles.
Comput. Graph. Forum, 29(3):853–862, 2010.

[87] J. Lee, J. Han, X. Li, and H. Gonzalez. TraClass : trajectory classification using hierar-
chical region-based and trajectory-based clustering. Proc. VLDB Endow., 1(1):1081–
1094, 2008.

[88] J. Lee, J. Han, and K. Whang. Trajectory clustering: a partition-and-group framework.
In C. Y. Chan, B. C. Ooi, and A. Zhou, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, Beijing, China, June 12-14, 2007,
pages 593–604. ACM, 2007.

[89] J. LeFevre, J. Sankaranarayanan, H. Hacigümüs, J. Tatemura, N. Polyzotis, and M. J.
Carey. Opportunistic physical design for big data analytics. In C. E. Dyreson, F. Li,
and M. T. Özsu, editors, International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014, pages 851–862. ACM, 2014.

175

https://jupyter.org/
https://www.knime.com/
https://hub.knime.com/search?type=Workflow&sort=maxKudos
https://hub.knime.com/search?type=Workflow&sort=maxKudos

[90] G. Li, S. Chen, J. Feng, K. Tan, and W. Li. Efficient location-aware influence maxi-
mization. In C. E. Dyreson, F. Li, and M. T. Özsu, editors, International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014,
pages 87–98. ACM, 2014.

[91] J. Li, T. Sellis, J. S. Culpepper, Z. He, C. Liu, and J. Wang. Geo-social influence
spanning maximization. In 34th IEEE International Conference on Data Engineer-
ing, ICDE 2018, Paris, France, April 16-19, 2018, pages 1775–1776. IEEE Computer
Society, 2018.

[92] L. D. Lins, J. T. Klosowski, and C. E. Scheidegger. Nanocubes for real-time exploration
of spatiotemporal datasets. IEEE Trans. Vis. Comput. Graph., 19(12):2456–2465,
2013.

[93] X. Liu, Z. Wang, S. Ni, S. Alsudais, Y. Huang, A. Kumar, and C. Li. Demonstration
of collaborative and interactive workflow-based data analytics in texera. Proc. VLDB
Endow., 15(12):3738–3741, 2022.

[94] Z. Liu, B. Jiang, and J. Heer. imMens : Real-time visual querying of big data. Comput.
Graph. Forum, 32(3):421–430, 2013.

[95] Z. Luo, S. H. Yeung, M. Zhang, K. Zheng, L. Zhu, G. Chen, F. Fan, Q. Lin, K. Y.
Ngiam, and B. C. Ooi. Mlcask: Efficient management of component evolution in
collaborative data analytics pipelines. In ICDE, 2021.

[96] S. T. Mai, M. S. Dieu, I. Assent, J. Jacobsen, J. Kristensen, and M. S. Birk. Scalable
and interactive graph clustering algorithm on multicore cpus. In 33rd IEEE Inter-
national Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, April
19-22, 2017, pages 349–360. IEEE Computer Society, 2017.

[97] E. Masciari. A framework for trajectory clustering. In N. Trigoni, A. Markham, and
S. Nawaz, editors, GeoSensor Networks, Third International Conference, GSN 2009,
Oxford, UK, July 13-14, 2009. Proceedings, volume 5659 of Lecture Notes in Computer
Science, pages 102–111. Springer, 2009.

[98] H. Miao, A. Chavan, and A. Deshpande. Provdb: Lifecycle management of collabora-
tive analysis workflows. In HILDA@SIGMOD, 2017.

[99] H. Miao and A. Deshpande. Provdb: Provenance-enabled lifecycle management of
collaborative data analysis workflows. IEEE Data Eng. Bull., 2018.

[100] H. Miao, A. Li, L. S. Davis, and A. Deshpande. Towards unified data and lifecycle
management for deep learning. In ICDE’17, 2017.

[101] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but verify: Optimistic visualiza-
tions of approximate queries for exploring big data. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, Denver, CO, USA, May 06-11,
2017, pages 2904–2915. ACM, 2017.

176

[102] F. Nagel, P. A. Boncz, and S. Viglas. Recycling in pipelined query evaluation. In
ICDE’13, 2013.

[103] J. Nesetril and P. O. de Mendez. Sparsity - Graphs, Structures, and Algorithms,
volume 28 of Algorithms and combinatorics. Springer, 2012.

[104] Q. H. Nguyen, P. Eades, and S. Hong. Streameb: Stream edge bundling. In Graph
Drawing - 20th International Symposium, GD 2012, Redmond, WA, USA, Septem-
ber 19-21, 2012, Revised Selected Papers, volume 7704 of Lecture Notes in Computer
Science, pages 400–413. Springer, 2012.

[105] Q. H. Nguyen, P. Eades, and S. Hong. Towards faithful graph visualizations. CoRR,
abs/1701.00921, 2017.

[106] NYC Taxi Data, https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.
page.

[107] DVC Website https://dvc.org/, 2023. last accessed: 2023-01-07.

[108] Optimizing apache spark udfs website. https://www.databricks.com/session_

eu20/optimizing-apache-spark-udfs.

[109] Orange data mining workflows. https://orangedatamining.com/workflows/.

[110] Y. Park, M. J. Cafarella, and B. Mozafari. Visualization-aware sampling for very large
databases. In 32nd IEEE International Conference on Data Engineering, ICDE 2016,
Helsinki, Finland, May 16-20, 2016, pages 755–766. IEEE Computer Society, 2016.

[111] B. K. Patra, V. Ollikainen, R. Launonen, S. Nandi, and K. S. Babu. Distance based
incremental clustering for mining clusters of arbitrary shapes. In Pattern Recognition
and Machine Intelligence - 5th International Conference, PReMI 2013, Kolkata, India,
December 10-14, 2013. Proceedings, volume 8251 of Lecture Notes in Computer Science,
pages 229–236. Springer, 2013.

[112] N. Pelekis, P. Tampakis, M. Vodas, C. Panagiotakis, and Y. Theodoridis. In-dbms
sampling-based sub-trajectory clustering. In V. Markl, S. Orlando, B. Mitschang,
P. Andritsos, K. Sattler, and S. Breß, editors, Proceedings of the 20th International
Conference on Extending Database Technology, EDBT 2017, Venice, Italy, March 21-
24, 2017, pages 632–643. OpenProceedings.org, 2017.

[113] L. L. Perez and C. M. Jermaine. History-aware query optimization with materialized
intermediate views. In I. F. Cruz, E. Ferrari, Y. Tao, E. Bertino, and G. Trajcevski,
editors, IEEE 30th International Conference on Data Engineering, Chicago, ICDE
2014, IL, USA, March 31 - April 4, 2014, pages 520–531. IEEE Computer Society,
2014.

[114] PostgreSQL UDF Create Function Website, https://www.postgresql.org/docs/

current/sql-createfunction.html.

177

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://dvc.org/
https://www.databricks.com/session_eu20/optimizing-apache-spark-udfs
https://www.databricks.com/session_eu20/optimizing-apache-spark-udfs
https://orangedatamining.com/workflows/
https://www.postgresql.org/docs/current/sql-createfunction.html
https://www.postgresql.org/docs/current/sql-createfunction.html

[115] M. Procopio, C. Scheidegger, E. Wu, and R. Chang. Selective wander join: Fast
progressive visualizations for data joins. Informatics, 6(1):14, 2019.

[116] V. Raghupathi, J. Ren, and W. Raghupathi. Studying public perception about vacci-
nation: A sentiment analysis of tweets. International journal of environmental research
and public health, 17(10):3464, 2020.

[117] S. Rahman, M. Aliakbarpour, H. Kong, E. Blais, K. Karahalios, A. G. Parameswaran,
and R. Rubinfeld. I’ve seen ”enough”: Incrementally improving visualizations to sup-
port rapid decision making. Proc. VLDB Endow., 10(11):1262–1273, 2017.

[118] L. Ramjit, M. Interlandi, E. Wu, and R. Netravali. Acorn: Aggressive result caching
in distributed data processing frameworks. In Proceedings of the ACM Symposium on
Cloud Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019, pages
206–219. ACM, 2019.

[119] RapidMiner Website, https://rapidminer.com/.

[120] K. Riesen, S. Emmenegger, and H. Bunke. A novel software toolkit for graph edit dis-
tance computation. In W. G. Kropatsch, N. M. Artner, Y. Haxhimusa, and X. Jiang,
editors, Graph-Based Representations in Pattern Recognition - 9th IAPR-TC-15 In-
ternational Workshop, GbRPR 2013, Vienna, Austria, May 15-17, 2013. Proceedings,
volume 7877 of Lecture Notes in Computer Science, pages 142–151. Springer, 2013.

[121] R. Rosenholtz, Y. Li, Z. Jin, and J. Mansfield. Feature congestion: A measure of visual
clutter. Journal of Vision - J VISION, 6:827–827, 06 2010.

[122] A. Roy, A. Jindal, P. Gomatam, X. Ouyang, A. Gosalia, N. Ravi, S. Mann, and
P. Jain. Sparkcruise: Workload optimization in managed spark clusters at microsoft.
Proc. VLDB Endow., 14(12):3122–3134, 2021.

[123] L. Rupprecht, J. C. Davis, C. Arnold, Y. Gur, and D. Bhagwat. Improving repro-
ducibility of data science pipelines through transparent provenance capture. VLDB,
2020.

[124] Y. Sagiv and M. Yannakakis. Equivalences among relational expressions with the union
and difference operators. J. ACM, 27(4):633–655, 1980.

[125] M. Sarwat, J. J. Levandoski, A. Eldawy, and M. F. Mokbe. Umn sarwat foursquare
dataset (september 2013), 2013.

[126] V. Satuluri, S. Parthasarathy, and Y. Ruan. Local graph sparsification for scalable
clustering. In T. K. Sellis, R. J. Miller, A. Kementsietsidis, and Y. Velegrakis, editors,
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 721–732. ACM, 2011.

[127] M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query optimization.
In L. Segoufin, editor, Database Theory - ICDT 2010, 13th International Conference,
Lausanne, Switzerland, March 23-25, 2010, Proceedings, ACM International Confer-
ence Proceeding Series, pages 4–33. ACM, 2010.

178

https://rapidminer.com/

[128] S. Schöttler, Y. Yang, H. Pfister, and B. Bach. Visualizing and interacting with geospa-
tial networks: A survey and design space. CoRR, abs/2101.06322, 2021.

[129] D. Selassie, B. Heller, and J. Heer. Divided edge bundling for directional network data.
IEEE Trans. Vis. Comput. Graph., 17(12):2354–2363, 2011.

[130] Z. Shang, E. Zgraggen, B. Buratti, P. Eichmann, N. Karimeddiny, C. Meyer, W. Run-
nels, and T. Kraska. Davos: A system for interactive data-driven decision making.
Proc. VLDB Endow., 14(12):2893–2905, 2021.

[131] Y. N. Silva, P. Larson, and J. Zhou. Exploiting common subexpressions for cloud query
processing. In A. Kementsietsidis and M. A. V. Salles, editors, IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012, pages 1337–1348. IEEE Computer Society, 2012.

[132] Y. Skadberg and J. R. Kimmel. Visitors’ flow experience while browsing a Web site: its
measurement, contributing factors and consequences. Computers in Human Behavior,
20(3):403–422, 2004.

[133] Tableau website. https://www.tableau.com.

[134] T. Takahashi, H. Shiokawa, and H. Kitagawa. SCAN-XP: parallel structural graph
clustering algorithm on intel xeon phi coprocessors. In A. Arora, S. Roy, and A. Bhat-
tacharya, editors, Proceedings of the 2nd International Workshop on Network Data
Analytics, NDA@SIGMOD 2017, Chicago, IL, USA, May 19, 2017, pages 6:1–6:7.
ACM, 2017.

[135] P. Tampakis, N. Pelekis, N. V. Andrienko, G. L. Andrienko, G. Fuchs, and Y. Theodor-
idis. Time-aware sub-trajectory clustering in hermes@postgresql. In 34th IEEE In-
ternational Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19,
2018, pages 1581–1584. IEEE Computer Society, 2018.

[136] W. Tao, X. Liu, Ç. Demiralp, R. Chang, and M. Stonebraker. Kyrix: Interactive visual
data exploration at scale. In 9th Biennial Conference on Innovative Data Systems
Research, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.
www.cidrdb.org, 2019.

[137] A. Telea and O. Ersoy. Image-based edge bundles: Simplified visualization of large
graphs. Comput. Graph. Forum, 29(3):843–852, 2010.

[138] Texera Website, https://github.com/Texera/texera.

[139] C. Tominski, J. Abello, and H. Schumann. CGV - an interactive graph visualization
system. Comput. Graph., 33(6):660–678, 2009.

[140] TPC-DS http://www.tpc.org/tpcds/.

[141] C. Turkay, E. Kaya, S. Balcisoy, and H. Hauser. Designing progressive and interactive
analytics processes for high-dimensional data analysis. IEEE Trans. Vis. Comput.
Graph., 23(1):131–140, 2017.

179

https://www.tableau.com
https://github.com/Texera/texera

[142] Twitter api v1.1. https://developer.twitter.com/en/docs/twitter-api/v1/

tweets/filter-realtime/overview.

[143] M. Vartak, H. Subramanyam, W. Lee, S. Viswanathan, S. Husnoo, S. Madden,
and M. Zaharia. Modeldb: a system for machine learning model management. In
HILDA@SIGMOD’16, 2016.

[144] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, and X. Qin. Fast large-scale trajectory
clustering. Proc. VLDB Endow., 13(1):29–42, 2019.

[145] X. Wang, X. Niu, J. Zhu, and Z. Liu. An approach to spatiotemporal trajectory cluster-
ing based on community detection. Wirel. Commun. Mob. Comput., 2021:5582341:1–
5582341:10, 2021.

[146] Z. Wang, Z. Zhou, Y. Yang, H. Ding, G. Hu, D. Ding, C. Tang, H. Chen, and J. Li.
Wetune: Automatic discovery and verification of query rewrite rules. In SIGMOD ’22:
International Conference on Management of Data, Philadelphia, PA, USA, June 12 -
17, 2022, pages 94–107. ACM, 2022.

[147] H. Wei, J. Sankaranarayanan, and H. Samet. Measuring spatial influence of twitter
users by interactions. In A. Magdy, X. Zhou, and Y. Huang, editors, Proceedings of the
1st ACM SIGSPATIAL Workshop on Analytics for Local Events and News, Redondo
Beach, CA, USA, November 7-10, 2017, pages 2:1–2:10. ACM, 2017.

[148] D. Wen, L. Qin, Y. Zhang, L. Chang, and X. Lin. Efficient structural graph clustering:
an index-based approach. VLDB J., 28(3):377–399, 2019.

[149] A. T. Wilson, M. D. Rintoul, and C. G. Valicka. Exploratory trajectory clustering
with distance geometry. In D. D. Schmorrow and C. M. Fidopiastis, editors, Founda-
tions of Augmented Cognition: Neuroergonomics and Operational Neuroscience - 10th
International Conference, AC 2016, Held as Part of HCI International 2016, Toronto,
ON, Canada, July 17-22, 2016, Proceedings, Part II, volume 9744 of Lecture Notes in
Computer Science, pages 263–274. Springer, 2016.

[150] S. Woodman, H. Hiden, P. Watson, and P. Missier. Achieving reproducibility by
combining provenance with service and workflow versioning. In WORKS’11, 2011.

[151] D. Xin, S. Macke, L. Ma, J. Liu, S. Song, and A. G. Parameswaran. Helix: Holis-
tic optimization for accelerating iterative machine learning. Proc. VLDB Endow.,
12(4):446–460, 2018.

[152] H. Xu, Y. Zhou, W. Lin, and H. Zha. Unsupervised trajectory clustering via adaptive
multi-kernel-based shrinkage. In 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 4328–4336. IEEE
Computer Society, 2015.

[153] X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. SCAN: a structural clustering
algorithm for networks. In P. Berkhin, R. Caruana, and X. Wu, editors, Proceedings of

180

https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-realtime/overview
https://developer.twitter.com/en/docs/twitter-api/v1/tweets/filter-realtime/overview

the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Jose, California, USA, August 12-15, 2007, pages 824–833. ACM, 2007.

[154] Z. Xu, G. T. Kakkar, J. Arulraj, and U. Ramachandran. EVA: A symbolic approach to
accelerating exploratory video analytics with materialized views. In Z. Ives, A. Bonifati,
and A. E. Abbadi, editors, SIGMOD ’22: International Conference on Management
of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 602–616. ACM, 2022.

[155] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to at-
tributed graph clustering. In K. S. Candan, Y. Chen, R. T. Snodgrass, L. Gravano,
and A. Fuxman, editors, Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012,
pages 505–516. ACM, 2012.

[156] J. Yu and M. Sarwat. Turbocharging geospatial visualization dashboards via a mate-
rialized sampling cube approach. In 36th IEEE International Conference on Data En-
gineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 1165–1176. IEEE,
2020.

[157] C. Zhang, L. Shou, K. Chen, G. Chen, and Y. Bei. Evaluating geo-social influence in
location-based social networks. In X. Chen, G. Lebanon, H. Wang, and M. J. Zaki,
editors, 21st ACM International Conference on Information and Knowledge Manage-
ment, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012, pages 1442–1451.
ACM, 2012.

[158] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data clustering method
for very large databases. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec, Canada, June 4-6, 1996, pages
103–114. ACM Press, 1996.

[159] Y. Zhang, F. Xu, E. Frise, S. Wu, B. Yu, and W. Xu. Datalab: a version data
management and analytics system. In BIGDSE@ICSE’16, 2016.

[160] H. Zhou, P. Xu, X. Yuan, and H. Qu. Edge bundling in information visualization.
Tsinghua Science and Technology, 18(2):145–156, 2013.

[161] H. Zhou, X. Yuan, W. Cui, H. Qu, and B. Chen. Energy-based hierarchical edge
clustering of graphs. In IEEE VGTC Pacific Visualization Symposium 2008, PacificVis
2008, Kyoto, Japan, March 5-7, 2008, pages 55–61. IEEE Computer Society, 2008.

[162] J. Zhou, P. Larson, J. C. Freytag, and W. Lehner. Efficient exploitation of similar
subexpressions for query processing. In SIGMOD’07, 2007.

[163] Q. Zhou, J. Arulraj, S. B. Navathe, W. Harris, and J. Wu. SPES: A symbolic approach
to proving query equivalence under bag semantics. In 38th IEEE International Con-
ference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022,
pages 2735–2748. IEEE, 2022.

181

[164] Q. Zhou, J. Arulraj, S. B. Navathe, W. Harris, and D. Xu. Automated verification of
query equivalence using satisfiability modulo theories. VLDB’19, 2019.

[165] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute
similarities. Proc. VLDB Endow., 2(1):718–729, 2009.

[166] W. Zhu, W. Peng, L. Chen, K. Zheng, and X. Zhou. Exploiting viral marketing for
location promotion in location-based social networks. ACM Trans. Knowl. Discov.
Data, 11(2):25:1–25:28, 2016.

182

Appendix A

Real-workflow Workload Statistics

The following Figure A.1 shows the details of a real workload collected from one deployment

of Texera [138].

183

F
ig
u
re

A
.1
:
D
e
ta
il
s
o
f
w
o
rk

fl
o
w

fr
o
m

o
n
e
re
a
l
w
o
rk

lo
a
d

184

Appendix B

Sample Real Workflows

The following Figures B.1- B.7 show samples of the initial version of the workflows used

in some of the experiments in Chapter 4 and Chapter 5. The UDF operator included in

the transformed TPC-DS queries to Texera workflows, is to include the logic of Order By,

because Sort operator was not part of the Texera system at the time the workflow was

constructed. The workflows include in some cases a sequence of filter operators, because at

the time the workflows were constructed, Texera did not support the AND operation to join

multiple predicate conditions. The sample workflows include a single sink only to show a

portion of the task.

Figure B.1: Sample workflow of TPC-DS Q71 in Texera.

185

Figure B.2: Sample workflow of TPC-DS Q18 in Texera.

Figure B.3: Sample workflow of TPC-DS Q40 in Texera.

186

Figure B.4: Sample workflow of TPC-DS Q33 in Texera.

Figure B.5: Sample workflow of Tweets to infer the gender of the Tweeter.

Figure B.6: Sample workflow of IMDB movies to calculate the ratio of original
to non-original movies.

187

Figure B.7: A portion of a workflow to get all movies of directors that have
certain criteria.

188

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Technical Contributions
	Dissertation Outline

	GSViz: Progressive Visualization of Geospatial Influences in Social Networks
	Introduction
	Related Work
	GSViz System Overview
	Incremental Edge-Aware Clustering of Geo-social Network Vertices
	Incremental Clustering of Network Vertices
	Achieving Edge-Awareness
	Improving Computational Efficiency

	Incremental Edge Bundling for Network Simplification
	Problem Specification
	PEB-Tree
	Incremental Edge Bundling Using PEB-tree
	Sending Bundled Results to the Frontend

	Integrating Vertex Clustering and Edge Bundling
	Updating Edges Affected by Clustering
	Supporting Zooming and Panning

	Experiments
	Experiment Setting
	Progressive Vertex Clustering
	Progressive Edge Bundling
	Integrating Both Techniques
	A User Study
	Reduction of Visual Clutter.

	Conclusion

	Drove: Tracking Data-Processing Versions and Executions to Facilitate Reproducibility
	Introduction
	Related Work
	Drove: Overview
	Version Control of the Runtime Environment
	Version Control of a Workflow
	Tracking Workflow Versions
	Retrieval of a Particular Workflow Version
	Highlighting Changes between two Workflow Versions

	Workflow Execution Manager
	Conclusion

	Veer: Verifying Equivalence of Workflow Versions in Iterative Data Analytics
	Introduction
	Related Work
	Problem Formulation
	Workflow Version Control
	Workflow's Execution and Results
	Equivalence Verifiers (EVs)

	Veer: Verifying equivalence of a version pair
	Veer: Overview
	Windows and Covering Windows

	Two Versions with a Single Edit
	Verification Using a Covering Window
	EV Restrictions and Valid Windows
	Maximal Covering Window (MCW)
	Finding MCWs to Verify Equivalence

	Two Versions with Multiple Edits
	Can we use overlapping windows?
	Version Pair Decomposition
	Maximal Decompositions w.r.t. an EV
	Finding a Maximal Decomposition to Verify Equivalence (A Baseline Approach)
	Improving the Completeness of Algorithm 4.2

	Completeness of Veer
	Veer's Completeness Dependency on Internal Components
	Restrictions of Some EVs and Veer's Completeness

	Veer+: Improving Verification Performance
	Reducing Search Space Using Segmentations
	Pruning Stale Decompositions
	Ranking-Based Search
	Identifying Inequivalent Pairs Efficiently

	Extensions
	Experiments
	Experimental Setup
	Comparisons with Other EVs
	Evaluating Veer+ Optimizations
	Comparing Veer and Veer+ on Verifying Two Versions with Multiple Edits
	Effect of the Distance Between Edits
	Effect of the Number of Changes
	Effect of the Number of Operators

	Conclusion

	Raven: Accelerating Execution of Iterative Data Analytics by Reusing Results of Previous Equivalent Versions
	Introduction
	Related Work
	Problem Formulation
	Iterative Data-Processing Workflows
	Workflow's Execution and Result Equivalence

	Raven: Overview
	Equivalence Verification of Multiple Sink Pairs in Two Workflow Versions
	Dividing the Version Pair into sub-DAGs with a Single Sink

	Avoiding Repeated Computation in Veer
	Using a Decomposition Verification for Multiple Sinks
	Grouping Sub-DAGs of Windows in Equivalence Classes

	Ranking Versions for Equivalence Check
	Ranking Versions by their Semantic Results of the Sinks
	Ranking Versions Based on Edit Mapping

	Experiments
	Experimental Setup
	Identifying Reuse
	Overhead Analysis
	Execution Speedup
	Effect of the Number of Sinks

	Conclusion

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix Real-workflow Workload Statistics
	Appendix Sample Real Workflows

