Stampery Blockchain
Timestamping Architecture (BTA)

ADAN SANCHEZ DE PEDRO CRESPO

STAMPERY, CTO

adan@stampery.com

Luts IvaAN CUENDE GARCiA *
UNPATENT, CEO

luis@unpatent.co

Version 5
August 30, 2016

Abstract

A standardized method for timestamping and anchoring a virtually unlimited amount of data in

one or more blockchains, focusing on scalability and cost-effectiveness while ensuring existence,

integrity and ownership by using cryptographic proofs that are independently verifiable by anyone
in the world without disclosure of the original data.

I. INTRODUCTION

decentralized, distributed and unedited
ledgers, have proved an undeniable ca-
pability to serve as a universal support for a
distributed monetary system.

n 3Lockchainsunderstood as immutable,

-

Since the appeareance of Bitcoin [I] and its
revolutionary approach to digital money, there
have been many attempts to develop methods
allowing anyone to leverage the immutability
of the blockchain technology for purposes other
than the transfer of currency.

The Bitcoin protocol itself provides a opcode
[2] called OP_RETURN [3] for embedding ar-
bitrary data into the Bitcoin blockchain since
version 0.9.0 of Bitcoin Core, released in March
2014.

Since OP_RETURN was made available,
tools like Proof of Existence [4], Stampery [5] or
Tierion [6] have been making use of the Bitcoin
blockchain to timestamp and verify data.

Nevertheless, the OP_ RETURN method has
several limitations that are intrinsic to the very
specificies of the bitcoin protocol:

*Luis Ivan—Stampery’s former CTO and now one
of our advisors—is credited for being the original deviser
and developer of BTA’s very first version back in 2014.

e In order to keep the average block size inside
acceptable bounds, the maximum length
for a single OP_ RETURN operation is 80
bytes.

e It is considered non-standard for a transac-
tion to carry more than one OP_ RETURN
output.

e Due to the existing block size limit, the
bitcoin network can handle up to 7 transac-
tions per second under ideal circumstances,
but the actual value is even lower.

e The fee that must be paid to the network
in order to rest assured that all transac-
tions are accepted and validated in a rea-
sonable time span is high and may keep
increasing over time as Bitcoin value fluc-
tuates. Broadcasting a transaction contain-
ing only one OP_RETURN costs 30,000
satoshi (0.0003 Bitcoins), which at the time
of writing roughly amounts to $0.17.

e The confirmation time for bitcoin transac-
tions is aproximately 10 minutes, which is
unacceptable for cases immediate feedback
upon success of the timestamping process
is needed.

In a very first approach to overcoming some
of those limitations, the aforementioned times-
tamping services do not actually embed the

mailto:adan@stampery.com
mailto:luis@unpatent.co

Stampery Blockchain Timestamping Architecture (BTA) e Version 5 e Aug 2016

whole piece of data to be timestamped. Instead,
they calculate a cryptographic hash of the data,
which serves as a univocal identifier that has a
length between 32 and 64 bytes and therefore
fits into a single bitcoin transaction. This is
what we refer as data anchoring.

Nevertheless, there are some use cases which
require bulk timestamping of hundreds or thou-
sands of files or timestamping the same piece
of data over and over in its successive versions.
This would require expending a huge amount of
data in transaction fees and would quickly lead
to saturation of the previously mentioned bit-
coin block size limit. These consequences would
obsviously render the OP_ RETURN unsuitable
for such use cases.

This technical paper proposes a method and
architecture that allows (1) carrying out scal-
able and cost-efective blockchain data anchor-
ing (overcoming all the already referrred limi-
tations), (2) generation of irrefutable proofs of
anchoring and (3) verification of the validity of
such proofs by any individual or system in the
world.

II. HASHES AGGREGATION

Many single hashes corresponding to different
pieces of data or files can be compiled into a
single hash by building a binary tree in which
every leaf node is populated with each of the
hashes while every non-leaf node is populated
with the hash of the merger of its child nodes.
This type of tree is commonly known as Merkle
tree [7].

@ B v 1)

N N
af ¥é
N
afyo

Figure 1: Example of Merkle tree with 4 hashes as
leaf nodes.

Merkle trees have been used for decades to
perform efficient and secure verification of the
contents of large data structures [8]. Indeed,

popular cryptocurrencies like Bitcoin, Litecoin
or Ethereum rely on Merkle trees for gathering
together transactions into every block of the
chain.

The tip node in the tree—the hash resulting
from aggregation of all the hashes in the leafs—is
called Merkle root or simply root.

The binary hash chain [9] proving that a cer-
tain hash belongs to a tree—further discussed
in Section III—is called Merkle proof or simply
proof.

a — af — afyé
/ /
B o

Figure 2: Binary hash chain representing the
Merkle proof for the o hash in the tree
depicted in Figure 1. I1(a) = {8,750}

By aggregating multiple hashes into a Merkle
tree and then publishing only the root, it is
possible to anchor large volumes of data in a
blockchain with a single transaction, which dra-
matically reduces costs and avoids bottlenecks.

The algorithm followed to calculate the hash
in each non-leaf node by joining its two child
nodes is called mizing fuction, Merkle mizer or
simply mizer.

A very common mixer—used by early versions
of the Stampery API—can be expressed in the
form SHA256(\ + P) and represents the result
of calculating the SHA-256 hash of the concate-
nation of the left child A and the right child
P. However, given that concatenation is a non-
commutative binary operation (A + p # p +),
it makes necessary to distribute along the Merkle
proofs (1) the order in which the leaf hashes were
added, or (2) the order in which child nodes were
concatenated.

To avoid the need to deal with order bits, we
propose a novel approach to mixing functions:
commutative concatenation.

Commutative concatenation, 4, of two values
A and P can be easily achieved by ordering
them from lowest to highest before performing
the concatenation. This way, A+ p = p+ A.

In addition, we propose the use of the SHA-

Stampery Blockchain Timestamping Architecture (BTA) e Version 5 e Aug 2016

3 (Keccak) hashing algorithm [10] with a 512
bit key to ensure resistance to length exten-
ston attacks and many other vulnerabilities af-
fecting SHA-2 and all algorithms based on the
Merkle-Damgdrd construction [11].

algorithm mixer is
input: left hash A,
right hash p
output: parent node hash «

if A < p do
T 4= A+ p
else do
T4 p+ A
m < SHA3(w)
return m

Figure 3: The proposed commutable, SHA-3 pow-
ered mizing function, described in pseu-
docode.

Due to the way that binary trees work, the
root is always connected to every leaf hash by
a unique path with the exception of the cases
when the number of nodes in one of the levels
in the tree is odd. In such cases, in order to
find a root that is connected to all leaf hashes,
"orphan" nodes must be promoted to the next
level without applying any mixing function to
its value. This process is called closing a Merkle
tree.

Figure 4: Example of closing a Merkle tree with an
odd number of leaf nodes: the € node is
promoted to its immediately upper level
until it can be merged into the root.

III. ANCHORAGE PROCEDURES

As explained in the introduction, Bitcoin an-
choring is not perfectly suitable for cases in
which latency is paramount or a faster or near-
immediate confirmation is needed.

In the other hand, newer blockchain projects
like Ethereum have a lower hashing power—
which translates to lower certainty—but they are
much faster when it comes to the time needed
to put a hash in a block.

Table 1: Awverage block time comparison between
highest capitalization blockchains.

Chain Average block time
Bitcoin ~10 minutes
Ethereum ~14 seconds

Ripple ~4 seconds

Litecoin ~2.5 minutes

BTA is designed to allow anchoring data into
more than one blockchain, leveraging the ad-
vantages of each one. A recommended strategy
is combining Bitcoin and Ethereum anchoring
together to get certainty and responsiveness at
the same time.

Anchoring to multiple chains and different
ways to do so will be further discussed in Section
VII.

i. Bitcoin anchoring

Bitcoin anchoring is achieved by using the afore-
mentioned OP__ RETURN opcode.

Preliminary versions of BTA used SHA-256 as
its hashing algorithm and mixing function, be-
tween other reasons, because the OP_ RETURN
data length limit used to be set to 40 bytes be-
fore February 2015. Then the limit was raised
to 80 bytes [12], which allowed the use of longer
hashing digests.

The hashes resulting from the recommended
hashing algorithm in this document—SHA-3
(Keccak) in its 512 bit version—are 64 bytes long,
so they fit perfectly into a single OP_ RETURN
instruction.

Addition of a OP_ RETURN operation to a
Bitcoin transaction is made by adding a zero-

Stampery Blockchain Timestamping Architecture (BTA) e Version 5 e Aug 2016

value output with a scriptPubKey consisting of
"6A o O".

Where o is the size in bytes of the data to
attach to the transaction, and ¢ is the data
itself. Both values are encoded in hexadecimal
notation.

6A 40 9FA9D3E29260C3063268BCESEE44C573
96E215260FA6F841C44D556A729C1192
9DOF5692F0A7CCDBES554732094CFB52
589F5D8AD762BB54B77A1978462F01C2

Figure 5: Sample scriptPubKey for anchoring a
SHA-8 hash. Spaces and newlines must
be ignored.

A relatively high fee must be paid in order to
rest assured that a transaction gets successfully
accepted and confirmed by the Bitcoin network
in a reasonable time even under heavy load cir-
cumstances. Recommended values are between
20,000 and 60,000 satoshi.

ii. Ethereum anchoring

The Ethereum protocol provides a convenient
method for anchoring hashes or data into trans-
actions. This is done by creating a message call
transaction T in which the data attribute Ty is
set to be the Merkle root.

The protocol expects T to be an unlimited
size byte array [I3], so again the hashes resulting
from the recommended hashing algorithm in
this document—SHA-3 (Keccak) in its 512 bit
version—fit perfectly into a single transaction.

A gasﬂ value of about 25600 szabo is tipically
needed for broadcasting a message call transac-
tion containing a SHA-3 hash.

iii. Prefixing

Following Bitcoin community’s convention for
prefixing OP_ RETURN operations in order
to identify the generating application, a pre-
fix should be added in front of the data itself,

no matter which blockchain we are anchoring
to.

1Gas is the pricing or fee for running a transaction
or contract in Ethereum.

At the time of this writing, there is no stan-
darized format for prefixes, so different BTA
implementations may choose to use it in a dif-
ferent manner.

By way of illustration, Stampery’s BTA im-
plementation uses the prefix format "63 v ¢",
where 53 represents the letter "S"—standing for
"Stampery"—in ASCII format, v is one byte
telling the BTA version again in ASCII, and ¢
is a two-bytes string identifying the server that
broadcasted the transaction.

6A 44 53 35 9B73
9FA9D3E29260C3063268BCESEE44C573
96E215260FA6F841C44D556A729C1192
9DOF5692F0A7CCDBES554732094CFB52
589F5D8AD762BB54B77A1978462F01C2

Figure 6: Same scriptPubKey used in Figure 5,
this time with proper prefiring and val-
ues v = 5, ¢ = "9B73”. Spaces and
newlines must be ignored.

The ¢ value may be calculated by taking the
first two bytes from the MD5 hash of the server’s
host name.

IV. PROOF OF ANCHORAGE

As mentioned before, the binary hash chain [9)
that proves that a certain hash belongs to a tree
is called Merkle proof or simply proof.

The proof for a single leaf hash contains the
sibling hashes that need to be sequentially con-
catenated and rehashed in pairs in order to re-
construct the path from the leaf to the root.

M(a) = {8, 76, & TI(v) = {6, af, €}
I(B) = {a, 79, ¢ TI(e) = {apyd}
) = {v, ap, €}

Figure 7: Ezample illustrating the proofs (I1) for
all the hashes in the Merkle tree from
Figure 4. As it is noticeable, two con-
tiguous hashes will likely have similar
proofs, with the only one or two first
items in the hash chain being different.

In order to allow independent individuals and

Stampery Blockchain Timestamping Architecture (BTA) e Version 5 e Aug 2016

systems to verify the proofs of anchorage, there
are some other elements that need to be dis-
tributed along the hash chain. Those are: (1)
the hash of the original data piece, (2) a ref-
erence to the chain in which the root was em-
bedded, and (3) a transaction identifier that
unambiguously points to the transaction where
the root was embedded.

i. Proof formatting

Stampery’s approach to proof formatting is re-
ally minimalistic and concise. A BTA proof of
anchorage consists of one array or list containing
the following items:

ITjp;: BTA version (currently 5)
Iy Merkle proof (siblings list /hash chain)
Ij5): Merkle root

ITj5: Anchor tuple

[
- H[S][O]: Chain ID
— Ijz)y): Transaction ID

Current BTA version is 5. Prior versions used
a different proof format which is not compatible
with the one proposed here.

The Merkle root Iljy and all the hashes in
the proofs list IIjyy,) should be printed using
uppercase. On the contrary, the transaction
ID can be printed using either uppercase or
lowercase.

Merkle proof lists with zero siblings can be
represented by an empty brackets [], empty quo-
tation marks "" or a NULL value.

ii. Chain IDs

The chain id is an integer number representing
which blockchain is the proof anchored to.
Positive values correspond to production
chains—Ilivenets—while negative values corre-
spond to their test counterparts—testnets.

Table 2: Livenet Chain IDs

ID Chain

1 Bitcoin livenet
2 Ethereum Classic Livenet
3 Ethereum Fork Livenet

[
5,
[
"EFA4BASF7A66BC3B...D3C358038F5A9C27"
"7DDE76C5E472COAE...B7B9567DCB3E9551"
1,
"1FA2DF8ASABEA78E...EDC4E25207D2F125",
[
1,
"84ba00d2cebbb4dee...fbb06a053e4fbal0"

Figure 8: A BTA proof of anchorage, represented
using JSON format. All the hashes and
the transaction ID have been shortened
for fitting this document’s layout.

Table 3: Testnet Chain IDs

ID Chain
-1 Bitcoin livenet
-2 Ethereum Morden

ID no. 0 is left unassigned forever and shall
only be used for protocol testing purposes.

V. PROOFS VERIFICATION

Verification of Merkle proofs can be performed
by reconstructing the path between the original
data hash and the Merkle root. This is done
by applying the mixing function to the hash
and the first sibling Hm [0] in the proof, then
applying the same mixer to the resulting hash
and the next sibling, and continuing this pro-
cess subsequently with Iy, until there are no
more siblings left to merge. The resulting root
candidate hash p is expected to correspond to
the Merkle root IIjy.

In the event that the resulting hash and the
Merkle root mismatched, either the proof or the
original data hash were modified, corrupted or
tampered with at some time after the anchoring
took place. This can be used as a method for
checking file integrity over time—time stamp
the same file over and over and keep a history

Stampery Blockchain Timestamping Architecture (BTA) e Version 5 e Aug 2016

algorithm prover is
input: original data hash 7,
merkle proof w
output: merkle root p

p=n
for o in w

p = mixer(p, o)
return p

Figure 9: An iterative proof verification function,
described in pseudocode. The mizer func-
tion is the one described in Figure 3.

of the data hashes and proofs: if the file gets
modified, the hash will change, will not match
the one related to the previous proof and the
date of modification will become evident.

In order to verify the validity of the proof
and the anchor, it is also necessary to check if
the root candidate or the Merkle root match
the data payload in the transaction. This can
be done by searching the transaction ID H[3][1]
in a block explorerﬂ reading the payload and
then checking whether it contains the root as
a substring—probably at the end because of
prefixing.

n=1lp
ned

Figure 10: The candidate root n should match and
be a substring of the data payload §
found in the anchoring transaction.

VI. PROGRESSIVE PROOFING

Hashing is a quite intensive operation in terms
of CPU usage.

From all the hashing algorithms that were sub-
mitted to NISTE| for consideration when creating
the SHA-3 standard, the winner—Keccak—is
the most performing one only after Lujffa[T4].

2Some popular block explorers are Blockcypher for
Bitcoin and Etherchain for Ethereum.
3National Institute of Standards and Technology

Nevertheless, when dealing with big Merkle
trees—with hundreds, thousands or even mil-
lions of leaf nodes—closing the tree and finding
a final Merkle root is not trivial. Specifically,
For any number v of child nodes, the number
of hashing operations needed to find the root is
v—1.

In addition, calculating the proof for every
leaf node once the tree is closed means a lot
of time wasted traversing it and picking the
siblings.

Those are the reasons why we recommend
to build the Merkle tree and the proofs as the
hashes come and are appended to the leaf level
instead of doing it at the time of closing.

Taking this into account, the logic to be car-
ried out every time a new leaf node is added is
described in Figure 11.

algorithm pusher is
input: merkle tree T,
proofs list m,
new hash 7,
level A (default = 0)
output: merkle tree 7,
proofs list 7

¢ 7[0] do
o + T[] or []
o+ o + [1n]

if mod(|T[A]]) = 1 do
¢ « 7[A[-1]
w <« mizer(s, n)
7w + proofer(r, ™ n, s, A)
{r, m} <« pusher(r, m, @, A + 1)

return {7, =7}

Figure 11: A recursive hash appending routine, de-
scribed in pseudocode. The mizer func-
tion is the one in Figure 3, and the
proofer function is described in Figure
11.

Stampery Blockchain Timestamping Architecture (BTA) e Version 5 e Aug 2016

algorithm proofer is
input: merkle tree 7,
proofs list 7,
left hash a,
right hash (3,
level A (default = 0)
output: proofs list =

¢ < (0]

Kk T[]

p — [27(0 + 1]

o < [=p + [kl x (2°N)]

e +— min((c + p), l9|) — 1
L+~ o

for each hash (x) in ¢ € [0, €] do

if + < |p / 2] do
mx] « 7wx] + [of
else do
m[x] < 7x] + [A]
L+~ ¢t + 1
return 7

Figure 12: Auziliar function for progressive proof-
ing used by the pusher function in Fig-
ure 11.

VII. ANCHORING TO MULTIPLE

CHAINS

As explained in Section III, it is specially
convenient to perform anchoring to multiple
blockchains in order to leverage the best of each
one’s feature set and also to have auxiliary an-
chors just in case some day one blockchain is
somehow hacked or corrupted and the anchoring
transaction is reverted, tampered with or simply
disappears.

i. Parallel anchorage

Parallel anchorage is the simplest way to anchor
Merkle roots to multiple chains.

It involves closing the Merkle tree every few
minutes, calculating the root and then embed-
ding it into multiple blockchains at the same
time.

This way, the proofs for all the chains are iden-
tical with the exception of their last element—
the anchor tuple Ilj5—that will have different
values for the chain ID Il g and transaction

ii. Incremental anchorage

Incremental anchorage is a more complex but
also more powerful way to anchor Merkle roots
to multiple chains.

It involves creating several different types of
Merkle trees, each type corresponding to a chain
we want to anchor to. Every of them will have its
own lifetime—time before tree closing—based
on the average block time of the matching chain.

For example, if we were to perform incremen-
tal anchorage with Ethereum and Bitcoin, we
could define the following tree types and tree
lifetimes:

Chain Tree lifetime
Ethereum 1 minute
Bitcoin 10 minutes

A incremental anchorage procedure for those
chains and lifetimes could be the following:

1. Create one tree for Ethereum and one for
Bitcoin.

2. Receive all the hashes as they come and
push them as leafs into Ethereum tree.

3. After 1 minute:
(a) Close FEthereum tree and get its
Merkle root.

(b) Anchor the
blockchain.

(¢) Deliver the Ethereum proofs to the
requesting parties.

(d) Push the Ethereum root into the Bit-
coin tree as if it were a leaf hash.

root to Ethereum

(e) Create a new Ethereum tree for the
next 1-minute frame.

4. Repeat steps 2 and 3 until minute 10.

5. When minute 10 comes:

Stampery Blockchain Timestamping Architecture (BTA) e Version 5 e Aug 2016

(a) Close Bitcoin tree and get its Merkle
root.

(b) Anchor the root to Bitcoin blockchain.

(¢) Append each Bitcoin proof’s siblings
list ITjy; (proof head) to the end of all

/

the Ethereum proofs’ siblings list H[l]
(proof tail) whose root H'2 matches

the original data hash from the Bitcoin
proof.

(d) Deliver the whole "merged" proofs to
the requesting parties.

(e) Delete all the old Ethereum trees and
create a new Bitcoin tree for the next
10-minutes frame.

6. Start over the whole process.

Because of the way the Merkle proofs are
generated and merged together, the resulting
Ethereum proof will be a subset of the Bitcoin
proof, but both of them will still be perfectly
valid separately.

VIII. DisTrIBUTED BTA (DBTA)
It is easy to imagine that a computer handling a
Merkle tree with thousands or millions of nodes
in its leaf level will need a huge amount of RAM
memory. Furthermore, if the computer runs out
of memory while building a Merkle tree, it will
never be able to close it and all the hashes will
be simply lost.

This kind of bottlenecks and situations can
be easily overcome by using a Distributed BTA
implementation as described hereafter.

DBTA is a computation cluster formed by a
number v of BTA instances called nodes.

A messaging queue system is used to dis-
tribute messages and balance workload between
all the nodes.

In addition, a P2P protocol in conjunction to
a basic consensus algorithm are used to reduce
the number of Bitcoin transactions made by the
cluster.

i. The cluster

We analyzed many different technologies and
platforms when we built Stampery’s own DBTA
cluster, and finally opted for Erlang/OTP.

Erlang[I5] is a programming language and
virtual machine used to build massively scalable
soft real-time systems with requirements on high
availability. Some of its uses are in telecoms,
banking, e-commerce, computer telephony and
instant messaging. Erlang’s runtime system has
built-in support for concurrency, distribution
and fault tolerance.

OTP is a set of Erlang libraries and de-
sign principles providing middle-ware to develop
these systems. It includes its own distributed
database, applications to interface towards other
languages, debugging and release handling tools.

For convenience, we wrote our BTA implemen-
tation using Elixir[16], a dynamic, functional lan-
guage designed for building scalable and main-
tainable applications.

ii. The messaging queue

The messaging queue will fulfill a variety pur-
poses, most of them related to the incremental
anchoring procedure as described by Section
VIL.ii:

e Load balancing the distribution of incoming
hashes to the nodes.

e Keeping the hashes in memory until they
have been successfully anchored to all
chains and the corresponding proofs have
been delivered.

e Routing the Ethereum proofs back to their
requesting parties.

e Load balancing the
Ethereum roots from one node to another,
so that they all receive an even amount of
Ethereum roots to use as leaf hashes in
their Bitcoin trees.

e Routing the Bitcoin proof heads to the
nodes holding the matching proof tails.

e Routing the whole "merged" proofs to the
requesting parties.

e Re-delivering hashes and roots to different
nodes in case the ones that were assigned

distribution of

Stampery Blockchain Timestamping Architecture (BTA) e Version 5 e Aug 2016

originally fail to perform their functions.

Therefore, the messaging queue system that
we need must fulfill all those load balancing,
routing and re-delivering requirements.

That is the case with RabbitMQ, the most no-
table implementation of the AMQP protocol[17].
We have been successfully using it in Stampery
for DBTA since 2015 and it has proven to be
the perfect fit for the set of features previously
described.

To implement DBTA in RabbitMQ), the fol-
lowing queues are needed:

Queue name
eth
btc

In addition, it will be necessary to define the
following exchangeﬂ

Exchange name Type
eth direct
btc direct

proofs direct

When a hash is received by a DBTA imple-
mentation, it must be published to the ETH ex-
change, which will route it to a different DBTA
node every timeﬂ At the same time, a binding
will be created in the proofs exchange, using
the hash as the routing key and pointing to a
user-specific proof delivery queue, named in the
form of a user identifier plus the —cint suffix.

The node will then push the hash into its lat-
est Ethereum tree and will wait 1 minute before
closing it. During that time, it will predictably
receive approximately g hashes, where 7 is the
number of hashes sent to the exchange during
the 1-minute frame, and v is the number of
DBTA nodes consuming the ETH queue.

4Exchanges are AMQP entities where messages are
sent. Exchanges take a message and route it into zero
or more queues. The routing algorithm used depends on
the exchange type and rules called bindings.

5A direct exchange delivers messages to queues based
on the message routing key. Direct exchanges are of-
ten used to distribute tasks between multiple workers
(instances of the same application) in a round robin
manner.)

Once the 1-minute frame is over, all nodes
will close their Ethereum trees, get their roots
and publish them to the BTC exchange. Such
exchange will then route every root to a different
DBTA node. At the same time, another binding
will be created in the proofs exchange, using
the root as the routing key and pointing to the
same user-specific proof delivery queue, named
as already stated.

The nodes receiving the roots from the BTC
exchange will treat them as if they were hashes,
push them into their Bitcoin trees and wait for
10 minutes before closing the trees. During that
time, each node will predictably receive up to a
maximum of 10 roots.

Once the 10-minutes frame is over, all nodes
must close their Bitcoin trees and get their final
Merkle root.

One important advantage of using AMQP
is that if for some reason one or more nodes
went offline or got isolated from the rest of the
architecture—in case of network failure, system
maintenance, manual reboot, etc—it will collect
the unacknowledged messages previously sent
to such node(s) and reassign them to a different
set of live nodes.

iii. Cluster leadership

At this point, if every DBTA node were to broad-
cast its own Bitcoin transaction, we would be
incurring in a daily cost of up to 24 x 6 x v x 8
USDP| where v is the number of nodes in the
DBTA cluster, and § is the price of a Bitcoin
transaction in US Dollars.

Because we are focusing on scalability and
cost-effectiveness, we have figured out a way to
keep the number of Bitcoin transactions steady
so it is always the same regardless of the number
of nodes in the DBTA cluster.

The trick consists of choosing a random leader
node for every 10-minutes frame and letting it
join all the roots into one and make a single
transaction.

In Stampery’s DBTA, this is made possi-
ble by Erlang’s bundled distributed computing

6 At the time of writing, this corresponds to vx27.5
USD per day.

Stampery Blockchain Timestamping Architecture (BTA) e Version 5 e Aug 2016

system[I8].

All nodes must share the same magic cookieﬂ
so that they will be able to connect to each other
automatically as soon as their EPMljﬂ is set to
discover nodes in the right domain names.

All nodes must have their clocks synchronized
with one another with a maximum lead or lag
that needs to be less than a half the duration
of the tree lifetime corresponding to the fastest
blockchain being used. This amount of time is
called consensus time.

The time frames are fixed in time so that they
can be synchronized across all nodes without
need for signaling. For example, the Ethereum
1-minute frames will start at 00:01:00, 00:02:00,
00:03:00, etc.; while Bitcoin 10-minutes frames
will take place at 00:10:00, 00:20:00, 00:30:00
and so on.

Every time a frame expires, the nodes make
a list of their peers. Then they take the peers’
names, append the Epoch tim(ﬂ for the starting
second of the just finished frame, and hash the
resulting string. Finally, the list of hashes is
sorted alphabetically and the first one in the list
is considered to be the leader.

Once the leader node has been chosen, the
other nodes will report their Bitcoin roots to it,
which will then build a final Merkle tree joining
its own Bitcoin root and all the ones from its
peers. After consensus time, it should close the
tree, get the final Merkle root and anchor it to
the Bitcoin blockchain.

The last thing the leader needs to do is re-
porting the Bitcoin transaction ID and the final
proof heads to each of its peers, so that they can
join them to their own Bitcoin proofs and report
their proof heads back to the nodes holding the
proof tails.

If the leader node failed to fulfill its duty in
twice consensus time, the runner-up node in the
list will take over and be the new leader for the

"When an Erlang node tries to connect to another
node, the magic cookies are compared. If they do not
match, the connected node rejects the connection.

8Erlang Port Mapping Daemon

9Epoch time is a system for describing instants in
time, defined as the number of seconds that have elapsed
since 00:00:00 (UTC), Thursday, 1 January 1970, not
counting leap seconds.

10

unconfirmed frame. If it failed too, it will be the
turn of the third node in the list, and so forth.

iv. Proofs delivery

When an Ethereum proof is ready to be deliv-
ered to the requesting party, it just needs to
be published to the PROOFS exchange using the
original data hash as the routing key.

Likewise, when a Bitcoin proof is ready to be
delivered to the requesting party, it just needs
to be published to the same PROOFS exchange,
this time using the Ethereum root as the routing
key.

Due to the way in which AMQP direct ex-
changes work, both the Ethereum and Bitcoin
proofs will be routed into the right proof deliv-
ery queue thanks to the routing keys and the
previously created bindings.

All requesting parties will share the same
AMQP user named consumer, client or simi-
lar. This user must compulsorily:

e Not have any configure or write permis-
sions.

e Have a read permission corresponding to
the regular expression (. * —clnt)$ (allow
reading messages from queues whose name
ends with —clnt).

This way, all that a requesting party needs
to do in order to receive the proofs for its re-
quested timestamps is connecting to AMQP
identifying itself as the consumer user, subscrib-
ing to the proof delivery queue matching its
name and wait for incoming messages. For ex-
ample, when a user with ID 72dc4b51ed9a68c
requests a timestamp, (s)he should subscribe
to the 72dc4b51ed9a68c-clnt queue, where (s)he
will receive one proof for every blockchain as
soon as they are ready.

Stampery Blockchain Timestamping Architecture (BTA) e Version 5 e Aug 2016

1]

[10]

[11]

REFERENCES

S. Nakamoto, “Bitcoin: A peer-to-peer
electronic cash system,” 2009. https://
bitcoin.org/bitcoin.pdfl

Wikipedia, “Opcode — wikipedia,
the free encyclopedia.” https:
//en.wikipedia.org/w/index.php?

title=0Opcode&oldid=728968013.

Bitcoin Wiki, “Op_return — bitcoin
wiki” https://en.bitcoin.it/w/index.
php7title=0P_RETURN&oldid=60872

M. Arédoz, “What is proof of existence?,”
2014. https://proofofexistence.com/
about.

Stampery, “21st century notarization,”
2014. https://stampery.com.

Tierion, “Blockchain proof engine,” 2014.
https://tierion.com.

Wikipedia, “Merkle tree — wikipedia,
the free encyclopedia.” https:
//en.wikipedia.org/w/index.php?
title=Merkle tree&oldid=734149217.

R. C. Merkle, A Digital Signature Based
on a Conventional Encryption Function.
CRYPTO ’87. Lecture Notes in Computer
Science. 293. p. 396.

Wikipedia, “Hash chain — wikipedia,
the free encyclopedia.” https!
//en.wikipedia.org/w/index.php?
title=Hash chain&oldid=731737984!

U.S. National Institute of Standards and
Technology, “Sha-3 standard: Permutation-
based hash and extendable-output func-
tions.” Federal Information Processing Stan-
dards Publication no. 202, 2015. https!
//dx.doi.org/10.6028/NIST.FIPS.202.

Wikipedia, “Length extension attack
wikipedia, the free encyclopedia.”
https://en.wikipedia.org/w/index.
php?title=Length_extension_attack&
01did=733680211.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

F. Charlon, “Change the default max-
imum op_return size to 80 bytes.”
https://github.com/bitcoin/bitcoin/
pull/5286!

Dr. Gavin Wood, “Ethereum: A secure de-
centralised generalised transaction ledger
- homestead revision,” 2016. http://
gavwood.com/paper . pdfl

Xu Guo, Sinan Huang, Leyla Nazhan-

dali and Patrick Schaumont, “Fair
and comprehensive performance eval-
uation of 14 second round sha-3
asic implementations,” 2010. http:

//csrc.nist.gov/groups/ST/hash/
sha-3/Round2/Aug2010/documents/
papers/SCHAUMONT_SHA3. pdf|

Joe Armstrong, Bjarne Décker, Thomas
Lindgren, Hékan Millroth, et al., “Open-
source erlang - white paper,” 2000. http:
//wwwl.erlang.org/white_paper.html.

J. Valim, “Elixir,” 2012.

elixir-lang.org/.

http://

Sanjay Aiyagari, Matthew Arrot, Mark
Atwell, Jason Brome, Alan Conway, Robert
Greig, Pieter Hintjens, John O’Hara, Mar-
tin Ritchie, Shahrokh Sadjadi, Rafael
Schloming, Steven Shaw, Gordon Sim, Mar-
tin Sustrik, Carl Trieloff, Kim van der Riet
and Steve Vinoski, “Amqp advanced mes-
sage queuing protocol - protocol specifica-
tion,” 2006. https://www.rabbitmq.com/
resources/specs/amqp0-9.pdf.

Ericcson AB, “Distributed erlang,” 2003.
http://erlang.org/doc/reference_
manual/distributed.htmll

11

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://en.wikipedia.org/w/index.php?title=Opcode&oldid=728968013
https://en.wikipedia.org/w/index.php?title=Opcode&oldid=728968013
https://en.wikipedia.org/w/index.php?title=Opcode&oldid=728968013
https://en.bitcoin.it/w/index.php?title=OP_RETURN&oldid=60872
https://en.bitcoin.it/w/index.php?title=OP_RETURN&oldid=60872
https://proofofexistence.com/about
https://proofofexistence.com/about
https://stampery.com
https://tierion.com
https://en.wikipedia.org/w/index.php?title=Merkle_tree&oldid=734149217
https://en.wikipedia.org/w/index.php?title=Merkle_tree&oldid=734149217
https://en.wikipedia.org/w/index.php?title=Merkle_tree&oldid=734149217
https://en.wikipedia.org/w/index.php?title=Hash_chain&oldid=731737984
https://en.wikipedia.org/w/index.php?title=Hash_chain&oldid=731737984
https://en.wikipedia.org/w/index.php?title=Hash_chain&oldid=731737984
https://dx.doi.org/10.6028/NIST.FIPS.202
https://dx.doi.org/10.6028/NIST.FIPS.202
https://en.wikipedia.org/w/index.php?title=Length_extension_attack&oldid=733680211
https://en.wikipedia.org/w/index.php?title=Length_extension_attack&oldid=733680211
https://en.wikipedia.org/w/index.php?title=Length_extension_attack&oldid=733680211
https://github.com/bitcoin/bitcoin/pull/5286
https://github.com/bitcoin/bitcoin/pull/5286
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SCHAUMONT_SHA3.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SCHAUMONT_SHA3.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SCHAUMONT_SHA3.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/SCHAUMONT_SHA3.pdf
http://www1.erlang.org/white_paper.html
http://www1.erlang.org/white_paper.html
http://elixir-lang.org/
http://elixir-lang.org/
https://www.rabbitmq.com/resources/specs/amqp0-9.pdf
https://www.rabbitmq.com/resources/specs/amqp0-9.pdf
http://erlang.org/doc/reference_manual/distributed.html
http://erlang.org/doc/reference_manual/distributed.html

	Introduction
	Hashes aggregation
	Anchorage procedures
	Bitcoin anchoring
	Ethereum anchoring
	Prefixing

	Proof of anchorage
	Proof formatting
	Chain IDs

	Proofs verification
	Progressive proofing
	Anchoring to multiple chains
	Parallel anchorage
	Incremental anchorage

	Distributed BTA (DBTA)
	The cluster
	The messaging queue
	Cluster leadership
	Proofs delivery

	References

