
Indifference valuation and hedging of stock

options in stochastic volatility models

Ng Chu Ming

University of Oxford

March 2, 2016

Abstract

We review the theoretical foundation for utility-based indifference-
pricing of European claims on stocks driven by a stochastic volatility
model [8] and explore the implementation of a non-linear finite difference
scheme for solving the resultant pricing PDE. Specifically, we investigate
the numerical solution for indifference-valuation of such claims under the
Heston [6] stochastic volatility model.

1 Introduction

The pricing of European options under stochastic volatility is a central problem
in modern finance. Various methodologies have been proposed over the years
in the literature for the pricing of such options. The traditional view is that
the markets select a particular pricing measure that is reflected in the prices of
liquid traded assets, while more recent work broadly recasts the problem into
that of either (i) portfolio optimisation or (ii) optimisation over pricing measures
(see [9] for a comprehensive survey). In this review, we examine the portfolio
optimisation approach of utility-based indifference-pricing of European claims
under stochastic volatility.

Stochastic volatility models capture the volatility skew observed in many
options markets and are popular extensions to the standard Black-Scholes pric-
ing frameworks. While it successfully replicates option prices exhibiting implied
volitility skews, such models also inadvertently introduce an additional source
of uncertainty not traded in the market, resulting in incomplete markets.

In incomplete markets, there is no unique risk-neutral measure. Instead,
there are infinitely many of them, each producing a valid no arbitrage price. The
main challenge to pricing claims in incomplete markets is to choose an equivalent
martingale measure (EMM) to produce the “right” price. The method to do
so is to use arguments from mathematically precise and economically rational
optimisation problems to derive the EMM and obtain the “right price” at which

1

we should value our contingent claim. Any such method generally involves, a
selection mechanism which determines why one valid EMM is preferred over the
other.

The theory of utility-based indifference-pricing exploits the use of well-studied
investor risk preferences encoded via the choice of suitable utility functions. The
“right” EMM is deduced by optimizing a portfolio with respect to the utility
function in a manner similar to the classic Merton’s problem [7].

2 Preliminaries

In this section, we provide the basic theoretical setup and explain the mathe-
matical rationale behind indifference-pricing.

2.1 Market Setup

We consider a dynamic market with a riskless bond B and a stock S. The stock
price follows a diffusion process satisfying,

dSt = µStdt+ σ(Yt, t)StdWt

with the volatility term σ(Yt, t) modelled as driven by a correlated diffusion
process Y satisfying,

dYt = b(Yt, t)dt+ a(Yt, t)(ρdWt +
√

1− ρ2dW⊥)

The term ρ ∈ (−1, 1) is the correlation coefficient and W and W⊥ are indepen-
dent Brownian motions on a probability space (Ω,F , (Ft),P), where Ft is the
σ-algebra generated by ((Wu,W

⊥
u); 0 ≤ u ≤ t). The interest rate on the riskless

bond is assumed to be zero for ease of exposition and without loss of generality.
The derivative we are pricing is a European claim with payoff g(ST , YT) at

time T . The usual assumptions are made on the functions σ(·, ·), a(·, ·), b(·, ·)
so as to guarantee unique solutions for St and Yt, and we also require the payoff
function g(·, ·) to be smooth and bounded.

Unfortunately, this requirement on g(·, ·) precludes the standard call and put
payoffs. More careful handling of their discontinuities via regularization meth-
ods (such as that in [5]) is required before they would fit into this framework.
Nevertheless, we investigate approximate payoffs which satisfy the smoothness
conditions while at the same time, remain instructive in providing qualitative
and quantitative insights on prices produced by indifference-pricing.

2.2 Rationale behind Indifference-Pricing

We now briefly discuss the classical portfolio optimisation problem formulated
by Merton in [7]. Its significance is that indifference-pricing exploits two closely
related Merton-type problems to deduce a rational choice for the price of our
contigent claim.

2

2.2.1 Utility from Terminal Wealth

In Merton’s utility from terminal wealth problem, an investor with initial en-
dowment x dynamically rebalances his self-financing portfolio by trading in the
stock and bond. The objective of the investor is to maximize his utility from
terminal wealth.

Let πt = HtSt be the amount of wealth invested in the stock at time t, where
Ht is the holdings in stock. The wealth dynamics for the investor at time t is
thus given by

dXt = HtdSt + r(Xt −HtSt)dt

= HtSt(µdt+ σ(Yt, t)dWt) (since r=0)

= µπtdt+ σ(Yt, t)πtdWt

We assume that the investor has risk preferences expressed by the exponential
utility function,

U(x) = −exp(−αx), x ∈ R, α ≥ 0

The classical Merton problem, modified appropriately to account for stochastic
volatility, is the optimisation problem with the value function,

V (x, y, t) = sup
πt∈A

E [−exp(−αXT)|Xt = x, Yt = y]

where the investor seeks to maximize his utility of terminal wealth XT . (Note
: S appears only implicitly in πt in the above formulation.)

2.2.2 A Thought Experiment

Suppose we now consider a slight modification to the problem where the in-
vestor needs to pay out one unit of the claim g(ST , YT) at time T . The new
optimisation problem becomes,

V̄ (x, S, y, t) = sup
πt∈A

E [−exp(−α(XT − g(ST , YT)))|Xt = x, St = S, Yt = y]

For the same values of initial endowment x and volatility y at time t, we have
V̄ (x, S, y, t) ≤ V (x, y, t), since there is an additional g(ST , YT) subtracted off
from the terminal wealth.

Imagine the investor is given the option of choosing to optimize V versus V̄
(for the same set of starting values x, S, y, t) so as to obtain the highest utility
from either V or V̄ . Clearly, in the current setup, the investor would always
choose to work on the problem corresponding to V .

How could we incentivise the investor to consider working on the
problem for V̄ ?

3

We could increase his initial endowment by some value w ≥ 0, should he
choose to work on V̄ . In other words, we modify the problem for V̄ to read,

V̄ (x+ w, S, y, t) = sup
πt∈A

E [−exp(−α(XT − g(ST , YT)))|Xt = x, St = S, Yt = y]

2.2.3 Deducing the Claim Price

Consider the value ∆V = V (x, y, t)− V̄ (x+w, S, y, t). As we increase the value
of w from zero, ∆V decreases to a point where we eventually get equality for
some w = w?. This makes it more attractive for the investor to consider working
on the problem V̄ . At equality, where we have V (x, y, t) = V̄ (x + w, S, y, t), it
no longer matters which optimisation problem the investor chooses, since he is
now able to extract the same level of optimal utility from either of them.

In short, the investor is now indifferent between the two optimisation prob-
lems. This is in essence, the motivating rationale behind the theory of utility-
based indifference-pricing.

Since the investor has to be compensated with extra initial endowment w?

in order for him to take on the liability of an additional payout g(ST , YT) at
time T , we must logically conclude that w? is the value he would place on the
claim g at time t. Hence we call w? the indifference price of the claim g.

3 Indifference Prices

We formally introduce indifference-pricing and the governing equations from
which we can compute options prices. For generality, we define the initial extra
endowment as h(x, S, y, t) to allow for general dependence on initial states.

The investor’s value function for utility from terminal wealth with claim g
payout at time T is given by,

u(x, S, y, t) = sup
πt∈A

E [−exp(−α(XT − g(ST , YT)))|Xt = x, St = S, Yt = y]

Note that in the above formulation, we view the investor as the writer of the
claim g (since the −g(ST , YT) above suggests that the investor has to pay out
the claim at T). An analogous setup is to adopt the point of view of a buyer
of the claim, receiving +g(ST , YT) at T and paying (subtracting) hb(x, S, y, t)
from initial endowment to buy the claim. The analysis from the point of view
as buyer is similar and we would omit for brevity.

The indifference price h(x, S, y, t) is defined as that for which the following
holds,

V (x, y, t) = u(x+ h(x, S, y, t), S, y, t) (1)

Notice in the definition of h above that the argument x appears. Recall that
x is the initial wealth of the investor, and we have just derived prices for our con-
tingent claim which is dependent on initial wealth. This is undesirable because
different investors, depending on their amount of initial wealth, would price the

4

same claim differently! It runs in stark constrast to the wealth independent
prices one would get from no-arbitrage pricing in complete markets.

Fortunately, the clever choice of exponential utlity leads to equations without
any wealth dependence (as we shall see in (9)). For other choices of utility func-
tions, wealth dependence continues to exist. In these cases, further extensions
of the current theory is required to reconcile the issue.

3.1 Merton’s problem under Stochastic Volatility

We consider the solution for V (x, y, t). By Ito,

dV =
(
Vt + L(x)V + L(y)V + ρπσ(y, t)a(y, t)Vxy

)
dt+ local martingale

where L(x) and L(y) are the infinitesimal generators of diffusion for Xt and Yt
respectively. By the martingale optimality principle, we know that V solves the
Hamilton-Jacobi-Bellman (HJB) equation,

Vt + L(y)V + sup
π

[
L(x)V + ρπσ(y, t)a(y, t)Vxy

]
= 0 (2)

We look for separable solutions of the form,

V (x, y, t) = −e−λxF (y, t) (3)

The partial derivatives for V are,

Vt = −e−λxFt, Vx = λe−λxF, Vxx = −λ2e−λxF
Vxy = λe−λxFy, Vy = −e−λxFy, Vyy = −e−λxFyy

Using first order conditions with respect to π for the supremum term in (2)
gives,

σ2(y, t)πVxx + ρσ(y, t)a(y, t)Vxy + µVx = 0

and hence the optimal control π? is given by,

π? = −ρσ(y, t)a(y, t)Vxy + µux
σ2(y, t)Vxx

Substituting π? into (2) we get,

Vt + L(y)V − 1

2

ρ2a2(y, t)V 2
xy

Vxx
− ρµa(y, t)VxyVx

σ(y, t)Vxx
− 1

2

µ2V 2
x

σ2(y, t)Vxx
= 0

⇒ Ft + L(y)F − ρµa(y, t)

σ(y, t)
Fy =

1

2

µ2

σ2(y, t)
F +

1

2
ρ2a2(y, t)

F 2
y

F

If we let F = fδ with δ = 1
1−ρ2 , we get,

ft + L(y)f − ρµa(y, t)

σ(y, t)
fy =

1

2

µ2(1− ρ2)

σ2(y, t)
f (4)

5

The terminal condition for the above is F (y, T) = fδ(y, T) = 1, since we require
that V (x, y, T) = −e−λx.

By Feynman-Kac’s theorem, we know that f admits the following proba-
bilistic representation,

f(y, t) = EQM
[

exp

(
−
∫ T

t

µ2(1− ρ2)

2σ2(Ys, s)
ds

)∣∣∣∣∣Yt = y

]
(5)

The probability measure QM in the above is the minimal martingale measure [4]
associated with the change of measure specified by the following Radon-Nicodym
derivative,

dQM

dP

∣∣∣∣
Ft

= E
(
−
∫ t

0

µ

σ(Ys, s)
dWs

)
where E(·) is the Doléans exponential.

By Girsanov’s theorem, the QM brownian motions associated with the above
change of measure are,

WQM
t = Wt +

∫ t

0

µ

σ(Ys, s)
dWs, W⊥,Q

M

t = W⊥t

from which we get the new dynamics of St and Yt under QM ,

dSt = σ(Yt, t)dW
QM
t

dYt =

(
b(Yt, t)−

ρµa(Yt, t)

σ(Yt, t)

)
dt+ a(Yt, t)(ρdW

QM
t +

√
1− ρ2dW⊥,Q

M

t)

and these complete the requirements for the Feynman-Kac representation in
equation (5).

Finally, we conclude that the solution to Merton’s problem under stochastic
volatility V (x, y, t) is given by,

V (x, y, t) = −e−λx
(
EQM

[
exp

(
−
∫ T

t

µ2(1− ρ2)

2σ2(Ys, s)
ds

)∣∣∣∣∣Yt = y

]) 1
1−ρ2

3.2 Modified Merton’s problem with Claim Payout

We proceed to derive the solution for the modified Merton’s problem under
stochastic volality with claim payout. The value function is u where u satisfies,

u(x, S, y, t) = sup
πt∈A

E [−exp(−α(XT − g(ST , YT)))|Xt = x, St = S, Yt = y]

Applying Ito’s lemma, we get,

du =
(
ut + L(x)u+ L(y)u+ L(S)u+ ρπta(Yt, t)σ(Yt, t)uxy

+ρa(Yt, t)σ(Yt, t)SuSy + πtσ
2(Yt, t)SuSx

)
dt

+ local martingale

6

where L(x), L(y) and L(S) are the infinitesimal generators of diffusion for Xt,
Yt and St respectively. By the martingale optimality principle, we know that u
solves the HJB equation,

ut + L(y)u+ L(S)u+ ρa(Yt, t)σ(Yt, t)SuSy

+ sup
π

[
L(x)u+ ρπta(Yt, t)σ(Yt, t)uxy + πtσ

2(Yt, t)SuSx

]
= 0

(6)

We look for separable solutions of the form,

u(x, S, y, t) = −e−λxG(S, y, t) (7)

The partial derivatives for u are,

ut = −e−λxGt, ux = λe−λxG, uxx = −λ2e−λxG, uxy = λe−λxGy

uy = −e−λxGy, uyy = −e−λxGyy, uSy = −e−λxGSy
uS = −e−λxGS , uSS = −e−λxGSS , uSx = λe−λxGS

Using first order conditions with respect to π for the supremum term in (6)
gives,

σ2(y, t)πuxx + ρσ(y, t)a(y, t)uxy + σ2(y, t)SuSx + µux = 0

and hence the optimal control π? is given by,

π? = −ρσ(y, t)a(y, t)uxy + σ2(y, t)SuSx + µux
σ2(y, t)uxx

Substituting π? into (6) we get,

ut + L(y)u+ L(S)u+ ρa(y, t)σ(y, t)SuSy

− 1

2

(
ρσ(y, t)a(y, t)uxy + σ2(y, t)SuSx + µux

)2
σ2(y, t)uxx

= 0

⇒ Gt + L(y)G+ L(S)G+ ρa(Yt, t)σ(Yt, t)SGSy −
ρµa(y, t)

σ(y, t)
Gy

= µSGS +
1

2

µ2

σ2(y, t)
G+

1

2
σ2S2G

2
S

G
+ ρσ(y, t)a(y, t)S

GSGy
G

+
1

2
ρ2a2(y, t)

G2
y

G

Now let G = eφ. The partial derivatives of G in terms of φ are,

Gt = φtG, Gy = φyG, Gyy =
(
φ2y + φyy

)
G

GSy = (φSy + φsφy)G, GS = φSG, GSS =
(
φ2S + φSS

)
G

Substituting these into the PDE for G and continuing gives,

φt + L(y)φ+
1

2
(1− ρ2)a2(y, t)φ2y + ���µSφS +

1

2
σ2(y, t)S2φSS + ρa(y, t)σ(y, t)SφSy

−ρµa(y, t)

σ(y, t)
φy = ���µSφS +

1

2

µ2

σ2(y, t)
(8)

7

We note that there is a slight mistake in [8] for the above derivation involving
the elimination of the term µSφS , which was missed.

To conclude, we have the solution u(x, S, y, t) = −e−λxeφ(S,y,t), where φ
satisfies the PDE in (8).

3.3 The Indifference Price PDE

From the definition of the indifference price in (1) and the definitions of V and
u in (3) and (7) respectively, we have

V (x, y, t) = u(x+ h(x, S, y, t), S, y, t)

⇒ − e−λxfδ(y, t) = −e−λ(x+h(x,S,y,t))eφ(S,y,t)

⇒ fδ(y, t) = e−λh(x,S,y,t)eφ(S,y,t)

⇒ h(x, S, y, t) =
1

γ
ln

eφ(S,y,t)

f(y, t)1/(1−ρ2)

(9)

Using the above expression for the indifference price h, we can express φ in
terms of h and f to get,

φ(S, y, t) = γh(x, S, y, t) +
1

1− ρ2
lnf(y, t)

Notice in the above that h is independent of x (meaning that our wealth depen-
dence vanishes) so we can write h(S, y, t) ≡ h(x, S, y, t). The partial derivatives
of φ are,

φt = γht + δ
ft
f
, φy = γhy + δ

fy
f
, φyy = γhyy + δ

(
fyy
f
−
(
fy
f

)2
)

φSy = γhSy, φS = γhS , φSS = γhSS

8

Substituting the above into (8) gives,

γht + δ
ft
f

+ b(y, t)

(
γhy + δ

fy
f

)
+

1

2
a2(y, t)

(
γhyy + δ

(
fyy
f
−
(
fy
f

)2
))

+
1

2
(1− ρ2)a2(y, t)

(
γhy + δ

fy
f

)2

+
1

2
γσ2(y, t)S2hSS + γρa(y, t)σ(y, t)ShSy

−ρµa(y, t)

σ(y, t)

(
γhy + δ

fy
f

)
=

1

2

µ2

σ2(y, t)

⇒ γ

[
ht + L(y)h+

1

2
(1− ρ2)a2(y, t)

(
γh2y + 2δ

hyfy
f

+
δ2

γ

(
fy
f

)2
)

+
1

2
σ2(y, t)S2hSS +ρa(y, t)σ(y, t)ShSy −

ρµa(y, t)

σ(y, t)
hy

]
+
δ

f

[
ft + L(y)f − 1

2
a2(y, t)

f2y
f
− ρµa(y, t)

σ(y, t)
fy

]
=

1

2

µ2

σ2(y, t)

⇒ γ

[
ht + L(y)h+

1

2
γ(1− ρ2)a2(y, t)h2y + a2(y, t)

hyfy
f

+
1

2
σ2(y, t)S2hSS

+ρa(y, t)σ(y, t)ShSy −
ρµa(y, t)

σ(y, t)
hy

]
+
���

����
1

2
a2(y, t)

δ

f

f2y
f

+
δ

f

[
���

���ρµa(y, t)

σ(y, t)
fy

+
�
���

��
1

2

µ(1− ρ2)

σ2(y, t)
f −

��
����1

2
a2(y, t)

f2y
f
−
�

�����ρµa(y, t)

σ(y, t)
fy

]
=

�
����1

2

µ2

σ2(y, t)

where we substituted ft+L(y)f = ρµa(y,t)
σ(y,t) fy + 1

2
µ2(1−ρ2)
σ2(y,t) f from (4) to make the

cancellations in the last line.
Finally we have the indifference price PDE,

ht + L(y)h+
1

2
γ(1− ρ2)a2(y, t)h2y + a2(y, t)

hyfy
f

+
1

2
σ2(y, t)S2hSS

+ρa(y, t)σ(y, t)ShSy −
ρµa(y, t)

σ(y, t)
hy = 0

(10)

with terminal condition h(S, y, t) = g(S, y).

9

3.4 Summary

To recap what we have done so far,

1. We derived the PDE for the classic Merton’s problem with stochastic

volatility, writing the solution as V (x, y, t) = −e−λxf(y, t)
1

1−ρ2 , where f
satisfies the PDE,

ft + L(y)f − ρµa(y, t)

σ(y, t)
fy =

1

2

µ2(1− ρ2)

σ2(y, t)
f

f(y, T) = 1 (terminal condition)

2. We derived the PDE for the modified Merton’s problem with stochas-
tic volatility and claim payout, writing the solution as u(x, S, y, t) =
−e−λxeφ(S,y,t), where φ satisfies the PDE,

φt + L(y)φ+
1

2
(1− ρ2)a2(y, t)φ2y +

1

2
σ2(y, t)S2φSS + ρa(y, t)σ(y, t)SφSy

−ρµa(y, t)

σ(y, t)
φy =

1

2

µ2

σ2(y, t)

φ(S, y, T) = γg(S, y) (terminal condition)

3. Writing V (x, y, t) = u(x+h(S, y, t), S, y, t) and using the PDEs above, we
derived the PDE for the indifference price h(S, y, t),

ht + L(y)h+
1

2
γ(1− ρ2)a2(y, t)h2y + a2(y, t)

hyfy
f

+
1

2
σ2(y, t)S2hSS

+ρa(y, t)σ(y, t)ShSy −
ρµa(y, t)

σ(y, t)
hy = 0

h(S, y, T) = g(S, y) (terminal condition)

4 Numerical Solutions for the Indifference Price

Generally, the indifference price PDE in (10) does not have explicit solutions.
In this section, we explore numerical methods using finite differences for solving
the PDE. To do so, we must first select a stochastic volatility model for the
process Yt.

4.1 The Heston Model

We use the well-known Heston model [6], which describes the volatility process
Yt with the following dynamics,

dYt = κ(θ − Yt)dt+ ξ
√
Yt

(
ρdWt +

√
1− ρ2dW⊥t

)
The Heston model has the property that Yt positive and mean-reverting to θ.

10

The corresponding stock and wealth processes are,

dSt = µStdt+
√
YtStdWt

dXt = µπtdt+ πt
√
YtdWt

The PDE (4) for f then becomes,

ft + (κ(θ − y)− ρµξ) fy +
1

2
ξ2yfyy −

1

2

µ2(1− ρ2)

y
f = 0

f(y, T) = 1

and similarly the indifference price (10) becomes,

ht + (κ(θ − y)− ρµξ)hy +
1

2
ξ2yhyy +

1

2
γ(1− ρ2)ξ2yh2y + ξ2y

hyfy
f

+
1

2
yS2hSS + ρξyShSy = 0

h(S, y, T) = g(S, y)

4.2 Discretizing the PDE for f(y, t)

For discretizing f , we use the implicit Euler method (unconditionally stable)
with forward differences in the time dimension and central differences in the
space dimension.

The approximate partial derivatives are,

ft(yn, tm) ≈ fm+1
n − fmn

∆t

fy(yn, tm) ≈
fmn+1 − fmn−1

2∆y

fyy(yn, tm) ≈
fmn+1 − 2fmn + fmn−1

∆y2

where yn = n×∆y, tm = m×∆t.
Substituting the above into the PDE for f gives,

fm+1
n − fmn

∆t
+ (κ(θ − n∆y)− ρµξ)

fmn+1 − fmn−1
2∆y

+
1

2
ξ2n∆y

fmn+1 − 2fmn + fmn−1
∆y2

−1

2

µ2(1− ρ2)

n∆y
fmn = 0

11

and after collecting terms and re-arranging we have fm+1 in terms of fm,

fm+1
n =− 1

2

[
(κ(θ − n∆y)− ρµξ) + nξ2

] ∆t

∆y
fmn+1

+

[
1 + nξ2 +

1

2n
µ2(1− ρ2)

]
∆t

∆y
fmn

+
1

2

[
(κ(θ − n∆y)− ρµξ)− nξ2

] ∆t

∆y
fmn−1

= amn f
m
n+1 + bmn f

m
n + cmn f

m
n−1

where we abbreviate fmn = f(n∆y,m∆t). The terminal condition is f(n∆y, T) =
1.

The plot in Figure 1 shows the graph of f(t, y) for specific values of the
parameters ρ, θ, κ, ξ and the evolution of the shape of f from t = 1.0 down to
t = 0.0. We have projected the contours of f as it evolves through time onto
the f -y plane for greater clarity.

Figure 1: Plot of f(t, y) for ρ = 0.8, θ = 0.2, κ = 2.0, ξ = 0.3, µ = 0.2.

12

4.2.1 Error Analysis

From taylor series expansion, we know that

fm+1
n = fmn + ∆t

∂f

∂t
+

1

2
∆t2

∂2f

∂t2
+

1

6
∆t3

∂3f

∂t3
+ · · ·

⇒fm+1
n − fmn

∆t
=
∂f

∂t
+

1

2
∆t

∂2f

∂t2
+O(∆t)

Similarly,

fmn+1 − fmn−1
2∆y

=
∂f

∂y
+

1

6
∆y2

∂3f

∂y3
+O(∆y2)

fmn+1 − 2fmn + fmn−1
∆y2

=
∂2f

∂y2
+

1

12
∆y2

∂4f

∂y4
+O(∆y2)

Using the above, and after subtracting the exact PDE from the finite difference
approximation, we see that the finite difference scheme is consistent of order
O(∆t,∆y2).

4.3 Discretizing the Indifference Price PDE

Similar to the method used for f(t, y), we use forward differences in the time
dimension and central differences in the space dimensions, the partial derivatives
for h are,

ht(Si, yj , tm) ≈
hm+1
i,j − hmi,j

∆t
, hS(Si, yj , tm) ≈

hmi+1,j − hmi−1,j
2∆S

hy(Si, yj , tm) ≈
hmi,j+1 − hmi,j−1

2∆y
, hSS(Si, yj , tm) ≈

hmi+1,j − 2hmi,j + hmi−1,j
∆S2

hSS(Si, yj , tm) ≈
hmi+1,j − 2hmi,j + hmi−1,j

∆S2
, hyy(Si, yj , tm) ≈

hmi,j+1 − 2hmi,j + hmi,j−1
∆y2

hSy(Si, yj , tm) ≈
(hy)i+1,j − (hy)i−1,j

2∆S

=
hmi+1,j+1 − hmi+1,j−1 − hmi−1,j+1 + hmi−1,j−1

4∆S∆y(
h2y
)
≈
(
hmi,j+1 − hmi,j−1

2∆y

)2

=

(
hmi,j+1

)2 − 2hmi,j+1h
m
i,j−1 +

(
hmi,j−1

)2
4∆y2

13

Substituting the above into the PDE for h gives,

hm+1
i,j − hmi,j

∆t
+ (κ(θ − j∆y)− ρµξ)

hmi,j+1 − hmi,j−1
2∆y

+
1

2
ξ2j∆y

hmi,j+1 − 2hmi,j + hmi,j−1
∆y2

+
1

2
γ(1− ρ2)ξ2j∆y

(
hmi,j+1

)2 − 2hmi,j+1h
m
i,j−1 +

(
hmi,j−1

)2
4∆y2

+ξ2j∆y
hmi,j+1 − hmi,j−1

2∆y

fmj+1 − fmj−1
2∆yfmj

+
1

2
j∆y(i∆S)2

hmi+1,j − 2hmi,j + hmi−1,j
∆S2

ρξij∆y∆S
hmi+1,j+1 − hmi+1,j−1 − hmi−1,j+1 + hmi−1,j−1

4∆S∆y
= 0

where we abbreviate hmi,j = h(i∆S, j∆y,m∆t). The terminal condition is
h(i∆S, j∆y, T) = g(i∆S, j∆y). Rearranging terms we get,

hm+1
i,j = hmi,j −

1

2
(κ(θ − j∆y)− ρµξ) ∆t

∆y

[
hmi,j+1 − hmi,j−1

]
− 1

2
jξ2

∆t

∆y

[
hmi,j+1 − 2hmi,j + hmi,j−1

]
− 1

8
γj(1− ρ2)ξ2

∆t

∆y

[
(hmi,j+1)2 − 2hmi,j+1h

m
i,j−1 − (hmi,j−1)2

]
− 1

4
jξ2

∆t

∆y

[
hmi,j+1 − hmi,j−1

] [
fmj+1 − fmj−1

]
fmj

− 1

2
ji2∆y∆t

[
hmi+1,j − 2hmi,j + hmi−1,j

]
− 1

4
ijρξ∆t

[
hmi+1,j+1 − hmi+1,j−1 − hmi−1,j+1 + hmi−1,j−1

]
= −1

4
ci,j1 hmi+1,j+1 −

[
1

2

(
ci,j2 +

(
1 +

1

2
ci,jf

)
ci,j3

)]
∆t

∆y
hmi,j+1

+
1

4
ci,j1 hmi−1,j+1 −

1

2
ci,j4 hmi+1,j + (1 + ci,j3

∆t

∆y
+ ci,j4)hmi,j −

1

2
ci,j4 hmi−1,j

+

[
1

2

(
ci,j2 −

(
1− 1

2
ci,jf

)
ci,j3

)]
∆t

∆y
hmi,j−1 −

1

4
ci,j1 hmi−1,j−1

− 1

8
ci,j5

∆t

∆y

[
(hmi,j+1)2 − 2hmi,j+1h

m
i,j−1 + (hmi,j−1)2

]
where the constants ci,jk are given by,

ci,j1 = ijρξ∆t, ci,j2 = (κ(θ − j∆y)− ρµξ), ci,j3 = jξ2

ci,j4 = ji2∆y∆t, ci,j5 = jγ(1− ρ2)ξ2, ci,jf =
fmj+1 − fmj−1

fmj

4.3.1 Error Analysis

The truncation errors for h(S, y, t) for the first and second order derivatives in
both time and space are similar to those for f(t, y). In the following, we derive

14

the new truncation error terms for the mixed derivative term hSy.
Using taylor series expansion in the S direction, we have,

hmi±1,j+1 = hmi,j+1 ± ∆S
∂h

∂S

∣∣∣∣
j+1

+
1

2
∆S2 ∂

2h

∂S2

∣∣∣∣
j+1

± 1

6
∆S3 ∂

3h

∂S3

∣∣∣∣
j+1

+ · · ·

So we have,

hmi+1,j±1 − hmi−1,j±1 = 2 ∆S
∂h

∂S

∣∣∣∣
j±1

+
1

3
∆S3 ∂

3h

∂S3

∣∣∣∣
j±1

+ · · ·

Substitute into the expression for hSy, we get,

hSy ≈
hmi+1,j+1 − hmi+1,j−1 − hmi−1,j+1 + hmi−1,j−1

4∆S∆y

=
1

4∆y

[
2
∂h

∂S

∣∣∣∣
j+1

+
1

3
∆S2 ∂

3h

∂S3

∣∣∣∣
j+1

− 2
∂h

∂S

∣∣∣∣
j−1
− 1

3
∆S2 ∂

3h

∂S3

∣∣∣∣
j−1

+O(∆S2)

]

=
1

4∆y

[
2

(
∂h

∂S

∣∣∣∣
j+1

− ∂h

∂S

∣∣∣∣
j−1

)
+

1

3
∆S2

(
∂3h

∂S3

∣∣∣∣
j+1

− ∂3h

∂S3

∣∣∣∣
j−1

)
+O(∆S2)

]

Now consider the terms ∂h
∂S

∣∣
j±1 and ∂3h

∂S3

∣∣∣
j±1

. Using taylor series expansion in

the y direction, we have,

∂h

∂S

∣∣∣∣
j±1

=
∂h

∂S

∣∣∣∣
j

±∆y
∂2h

∂S∂y

∣∣∣∣
j

+
1

2
∆y2

∂3h

∂S∂y2

∣∣∣∣
j

± 1

2
∆y3

∂4h

∂S∂y3

∣∣∣∣
j

+ · · ·

∂3h

∂S3

∣∣∣∣
j±1

=
∂3h

∂S3

∣∣∣∣
j

±∆y
∂4h

∂S3∂y

∣∣∣∣
j

+
1

2
∆y2

∂5h

∂S3∂y2

∣∣∣∣
j

± 1

2
∆y3

∂6h

∂S3∂y3

∣∣∣∣
j

+ · · ·

So hSy becomes,

hSy ≈
1

4∆y

[
4∆y

∂2h

∂S∂y
+ 2∆y3

∂4h

∂S∂y3
+O(∆y3)

+
1

3
∆S2

(
2∆y

∂4h

∂S3∂y
−∆y3

∂6h

∂S3∂y3
+O(∆y3)

)
+O(∆S2)

]
=

∂2h

∂S∂y
+O(∆S2) +O(∆y2)

Lastly, we note that the non-linear (hy)2 term contribute errors of order O(∆y2).
In conclusion, the scheme for h(S, y, t) is consistent of orderO(∆t,∆S2,∆y2).

4.3.2 Solving the Non-linear Finite Difference for h(S, y, t)

Due to the presence of the non-linear (hy)2 term, instead of the usual linear
system which we need to solve for the conventional black scholes PDE, we now

15

have to solve a system of non-linear equations. This is required for every time-
step in order to derive all the values of hmi,j from the known values of hm+1

i,j .
Specifically, we need to solve the non-linear system,

Fi,j(hi,j) = Fi,j(h
m+1
i,j , hmi+1,j+1, h

m
i,j+1, h

m
i−1,j+1, h

m
i+1,j , h

m
i,j ,

hmi−1,j , h
m
i+1,j−1, h

m
i,j−1, h

m
i−1,j−1) = 0

for each grid point (i, j) in our finite difference grid. Fi,j(·) is the residual
function defined by,

Fi,j(hi,j) = hm+1
i,j

+
1

4
ci,j1 hmi+1,j+1

+

[
1

2

(
ci,j2 −

(
1 +

1

2
ci,jf

)
ci,j3

)]
∆t

∆y
hmi,j+1

− 1

4
ci,j1 hmi−1,j+1

+
1

2
ci,j4 hmi+1,j

− (1 + ci,j3
∆t

∆y
− ci,j4)hmi,j

+
1

2
ci,j4 hmi−1,j

−
[

1

2

(
ci,j2 +

(
1− 1

2
ci,jf

)
ci,j3

)]
∆t

∆y
hmi,j−1

+
1

4
ci,j1 hmi−1,j−1

+
1

8
ci,j5

∆t

∆y

[
(hmi,j+1)2 − 2hmi,j+1h

m
i,j−1 + (hmi,j−1)2

]
4.4 Numerical Results

To solve the indifference price PDE, we researched techniques such as the
Alternating-Direction Implicit method [3], which handles mixed derivative terms,
but it is not easily extendible to handle non-linear terms. With no known effec-
tive techniques for solving non-linear finite differences, we explored the use of
non-linear solvers in the Scipy package in Python.

We use the Newton-Krylov [1] method in Scipy for solving large-scale non-
linear systems, along with the use of CUDA-based GPU acceleration available
through the NumbaPro [2] package.

Our initial experiments reveal that it is infeasible to compute the residual
function Fi,j(·) on the CPU for hundreds of thousands of grid points. Hence, we
moved the computation of the residual function onto the GPU via NumbaPro’s
@cuda.jit api. With GPU support, we managed to complete the full finite
difference computation within 35 minutes.

16

The following results were run from an iMac 3.4GHz Intel Core i7 with
NVIDIA GeForce GTX 680MX using seamless Python-CUDA integration pro-
vided by NumbaPro. The finite difference S-y grid is 256×256 and 216 steps for
the time dimension. The full python source is available in Appendix C.

4.4.1 Approximate Digital Payoff

The plot in Figure 2 shows the graph of h(0, S, y) for the same values of the
parameters ρ, θ, κ, ξ, µ, γ as those used for f(t, y). We used the terminal value
function h(T, S, y) = g(S) = 1.0/(1 + e−α(S−0.5)) where α = 500.0 to approxi-
mate a digital call with strike 0.5 and payoff 1.0 when option is in the money.

The choice of this approximation is to satisfy the smoothness criteria required
by the indifference price theory. Refer to Appendix A for the shape of g(S),
which corresponds to the graph for h(t, S, y) for t = 1.0.

y

0.0

0.2

0.4

0.6

0.8

1.0

S

0.0

0.2

0.4

0.6

0.8

1.0

h
(t,S

,y
)

-0.01

0.10

0.22

0.33

0.44

0.56

0.67

0.78

0.90

1.01

Plot of h(t,S,y) for t=1.0

Figure 2: Plot of h(0, S, y) for ρ = 0.8, θ = 0.2, κ = 2.0, ξ = 0.3, µ = 0.2,
γ = 0.1.

In the plot above, we have projected the contours of h as y changes onto
the h-y plane for greater clarity. From the figure, we can see the effects of the
initial value Y0 = y on the shape of the price function at time 0.

See Appendix A for more graphs of h(t, S, y) at various points in time for

17

an intuitive feel of how the price function evolves as we step backwards through
time from the terimal time T .

4.4.2 Approximate Put Payoff

We next use a smoothed put payoff with strike 0.5. The terminal value function
used is,

h(T, S, y) = g(S) = 0.5×
[
Φ

(
− logS/K − 0.5t√

t

)
− S

K
Φ

(
− logS/K + 0.5t√

t

)]
for small values of t.

The plot in Figure 3 shows the graph of h(0, S, y) for the same values of the
parameters ρ, θ, κ, ξ, µ, γ as those used for f(t, y).

y

0.0
0.2

0.4
0.6

0.8
1.0

S

0.0

0.2

0.4

0.6

0.8

1.0

h
(t,S

,y
)

-0.01

0.05

0.11

0.16

0.22

0.28

0.34

0.39

0.45

0.51

Plot of h(t,S,y) for t=0.0

Figure 3: Plot of h(0, S, y) for ρ = 0.8, θ = 0.2, κ = 2.0, ξ = 0.3, µ = 0.2,
γ = 0.1.

Also included in Appendix B are more graphs of the evolution of h(t, S, y)
for the approximate put.

5 Conclusion and Future Work

We have provided a concise exposition on the theory of utility-based indifference-
pricing and shown how to price a contingent claim for it under the Heston

18

stochastic volatility model using non-linear finite differences.
The investigation provides a qualitative understanding of prices produced

by indifference-pricing and also the computational complexities required by its
numerical methods.

We note that the finite difference pricing logic is highly computation-intensive
and impossible without the use of GPU methods. Thus, work should be done to
investigate more advanced techniques for accelerating the pricing computation.

A Evolution of the Price Function for Approxi-
mate Digital Call

The plots below show the price function for the smoothed digital call at times
t = 1.0, t = 0.75, t = 0.5 and t = 0.25. The terminal payoff function at t = 1.0
is g(S) = 1.0/(1 + e−α(S−0.5)) where α = 500.0.

y

0.0
0.2

0.4
0.6

0.8
1.0

S

0.0

0.2

0.4

0.6

0.8

1.0

h
(t,S

,y
)

-0.01

0.10

0.22

0.33

0.44

0.56

0.67

0.78

0.90

1.01

Plot of h(t,S,y) for t=1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

S

0.0

0.2

0.4

0.6

0.8

1.0

h
(t,S

,y
)

-0.01

0.10

0.22

0.33

0.44

0.56

0.67

0.78

0.90

1.01

Plot of h(t,S,y) for t=0.75

y

0.0
0.2

0.4
0.6

0.8
1.0

S

0.0

0.2

0.4

0.6

0.8

1.0

h
(t,S

,y
)

-0.01

0.10

0.22

0.33

0.44

0.56

0.67

0.78

0.90

1.01

Plot of h(t,S,y) for t=0.5

y

0.0
0.2

0.4
0.6

0.8
1.0

S

0.0

0.2

0.4

0.6

0.8

1.0

h
(t,S

,y
)

-0.01

0.10

0.22

0.33

0.44

0.56

0.67

0.78

0.90

1.01

Plot of h(t,S,y) for t=0.25

Figure 4: Time evolution of h(t, S, y) for ρ = 0.8, θ = 0.2, κ = 2.0, ξ = 0.3,
µ = 0.2, γ = 0.1.

19

B Evolution of the Price Function for Approxi-
mate Put

The plots below show the price function for the smoothed put at times t = 1.0,
t = 0.6, t = 0.3 and t = 0.0. The terminal payoff function at t = 1.0 is g(S) =

0.5×
[
Φ
(
− logS/K−0.5t√

t

)
− S

KΦ
(
− logS/K+0.5t√

t

)]
for small value of t = 1×10−6.

y

0.0
0.2

0.4
0.6

0.8
1.0

S

0.0

0.2

0.4

0.6

0.8

1.0

h
(t,S

,y
)

-0.01

0.05

0.11

0.16

0.22

0.28

0.34

0.39

0.45

0.51

Plot of h(t,S,y) for t=1.0

y

0.0
0.2

0.4
0.6

0.8
1.0

S

0.0

0.2

0.4

0.6

0.8

1.0

h
(t,S

,y
)

-0.01

0.05

0.11

0.16

0.22

0.28

0.34

0.39

0.45

0.51

Plot of h(t,S,y) for t=0.75

y

0.0
0.2

0.4
0.6

0.8
1.0

S

0.0

0.2

0.4

0.6

0.8

1.0

h
(t,S

,y
)

-0.01

0.05

0.11

0.16

0.22

0.28

0.34

0.39

0.45

0.51

Plot of h(t,S,y) for t=0.5

y

0.0
0.2

0.4
0.6

0.8
1.0

S

0.0

0.2

0.4

0.6

0.8

1.0

h
(t,S

,y
)

-0.01

0.05

0.11

0.16

0.22

0.28

0.34

0.39

0.45

0.51

Plot of h(t,S,y) for t=0.25

Figure 5: Time evolution of h(t, S, y) for ρ = 0.8, θ = 0.2, κ = 2.0, ξ = 0.3,
µ = 0.2, γ = 0.1.

C Python Finite Difference Code
from functools import partial

from numba import double, void

import numpy as np

from scipy import sparse

from scipy.sparse.linalg import spsolve

from scipy.optimize import newton_krylov

from numbapro import cuda

20

ONE_DIV_8 = 1 / 8.0

def payoff(S, alpha=500.0):

return 1.0 / (1 + np.exp(-alpha * (S - 0.5)))

#finite difference grid config

M = 65536 # this is for t axis

I = 255 # this is for S axis

J = 255 # this is for y axis

heston params

rho = 0.8

theta = 0.2

kappa = 2.0

xi = 0.3

mu = 0.2

gamma = 0.1

Ymin = 0.05

Ymax = 1.0

Smax = 10.0

Y = np.linspace(Ymin, 1.0, N+1)

S = np.linspace(0, Smax, I+1)

initialize the payoff function g(y)

grid_current = np.zeros((I+1, J+1))

p = np.array(map(payoff, S))

for j in xrange(J+1):

grid_current[:,j] = p

dt = T / float(M) # timestep : dt

dy = Ymax / float(N) # size of interval for y

dt_div_dy = dt/dy

dy_mul_dt = dt * dy

K1 = -0.5 * (kappa * theta - rho * mu *xi) * dt_div_dy

K2 = (0.5 - 0.5 * (xi**2)/dy) * Y * dt_div_dy

A = K1 + K2

A = np.roll(A, -1)

K3 = (xi**2) * Y * (dt_div_dy / dy)

K4 = (0.5 * (mu**2) * (1 - rho**2) * dt) / Y

B = 1 + K3 + K4

K5 = -K1

K6 = (-0.5 - 0.5 * (xi**2)/dy) * Y * dt_div_dy

C = K5 + K6

C = np.roll(C, 1)

V = np.ones(N + 1) # initialize terminal value for f

Mat = sparse.spdiags([A, B, C], [-1,0,1], N + 1, N + 1)

precompute consts

xi_2 = xi**2

rho_2 = rho**2

rho_xi_dt = rho*xi*dt

rho_mu_xi = rho*mu*xi

gamma_1_rho2_xi2 = gamma * (1 - rho_2) * xi_2

@cuda.jit(double(double, double, double, double, double, double,

double, double, double, double, double, double, double,),

device=True, inline=True)

def residual(i, j, cf, h_previous, h0, h1, h2, h3, h4, h5, h6, h7, h8):

h_previous is h_{i,j}^m

hnew is [i+1, j+1], [i,j+1], [i-1, j+1] 0, 1, 2

[i+1, j] , [i,j] , [i-1,j] 3, 4, 5

[i+1, j-1], [i,j-1], [i-1,j-1] 6, 7, 8

c1 = i*j*rho_xi_dt

c2 = (kappa * (theta - j*dy) - rho_mu_xi)

c3 = j * xi_2

c4 = j * i * i * dy_mul_dt

c5 = j * gamma_1_rho2_xi2

t1 = -0.25 * c1 * h0

t2 = -(0.5 * (c2 + (1 + 0.5 * cf) * c3)) * dt_div_dy * h1

t3 = 0.25 * c1 * h2

t4 = -0.5 * c4 * h3

t5 = (1 + c3 * dt_div_dy + c4) * h4

t6 = -0.5 * c4 * h5

t7 = 0.25 * c1 * h6

t8 = (0.5 * (c2 - (1 - 0.5 * cf) * c3)) * dt_div_dy * h7

t9 = -0.25 * c1 * h8

t10 = -ONE_DIV_8 * c5 * dt_div_dy * ((h1 * h1) - (2 * h1 * h7) + (h7 * h7))

return -h_previous + t1 + t2 +t3 + t4 + t5 + t6 + t7 + t8 + t9 + t10

@cuda.jit(void(double[:,:], double[:,:], double[:], double[:,:]))

def _F(candidate, hgrid, fgrid, ret):

21

maxS, maxy = hgrid.shape

i, j = cuda.grid(2)

h0=h1=h2=h3=h4=h5=h6=h7=h8=candidate[i,j]

if (i+1 != maxS) and (j+1 != maxy):

h0 = candidate[i+1,j+1]

if (j+1 != maxy):

h1 = candidate[i,j+1]

if (i-1 >= 0) and (j+1 != maxy):

h2 = candidate[i-1,j+1]

if (i+1 != maxS):

h3 = candidate[i+1,j]

h4 = candidate[i,j]

if (i-1 >= 0):

h5 = candidate[i-1,j]

if (i+1 != maxS) and (j-1 >= 0):

h6 = candidate[i+1,j-1]

if (j-1 >= 0):

h7 = candidate[i,j-1]

if (i-1 >= 0) and (j-1 >= 0):

h8 = candidate[i-1,j-1]

fplus = fminus = fgrid[j]

if (j-1 >= 0):

fminus = fgrid[j-1]

if (j+1 != maxy):

fplus = fgrid[j+1]

cf = (fplus - fminus) / fgrid[j]

ret[i,j] = residual(i, j, cf, hgrid[i,j], h0, h1, h2, h3, h4, h5, h6, h7, h8)

cuda params setup

tpb = 32

blockdim = (tpb, tpb)

griddim = (I / blockdim[0], J / blockdim[1])

stream = cuda.stream()

for i in xrange(M):

def FEntry(guess, hgrid, fgrid):

ret = np.zeros_like(hgrid)

dV = cuda.to_device(V, stream) # data for f, only stream once

dret = cuda.to_device(ret, stream) # the array for the results

dhgrid = cuda.to_device(hgrid) # the m+1 time-step grid

dguess = cuda.to_device(guess, stream) # the guess answer

_F[griddim, blockdim, stream](dguess, dhgrid, dV, dret)

dret.to_host(stream)

stream.synchronize()

return ret

F = partial(FEntry, hgrid=grid_current, fgrid=V)

res = newton_krylov(F, grid_current, verbose=False)

V = spsolve(Mat, V)

grid_current = res.copy()

22

References

[1] A.H. Baker, E.R. Jessup, and T.A. Manteuffel. A technique for
accelerating the convergence of restarted gmres. SIAM Journal on Matrix
Analysis and Applications, 26:962–984, 2005.

[2] Continuum Analytics. NumbaPro http://docs.continuum.io/numbapro/index.

[3] I. J. D. Craig and A. D. Sneyd. An alternating-direction implicit scheme
for parabolic equations with mixed derivatives. Computers & Mathematics
with Applications, 16(4):341–350, 1988.

[4] Hans Foellmer and Martin Schweizer. Hedging of contingent claims
under incomplete information. Applied Stochastic Analysis, 1990.

[5] J.-P. Fouque, G. Papanicolaou, Sircar K.R., and K. Solna. Singu-
lar perturbations in option pricing. SIAM Journal on Applied Mathematics,
63(5):1648–1665, 2003.

[6] Steven Heston. A closed-form solution for options with stochastic volatil-
ity with applications to bond and currency options. The Review of Financial
Studies, 6(2):327–343, 1993.

[7] R.C. Merton. Lifetime portfolio selection under uncertainty: the
continuous-time case. The Review of Economics and Statistics, 51:247–257,
1969.

[8] Ronnie Sircar and Thaleia Zariphopoulou. Bounds & asymptotic
approximations for utility prices when volatility is random. SIAM Journal
of Control & Optimization, 43(4):1328–1353, 2005.

[9] Jeremy Staum. Incomplete markets. Handbooks in OR & MS, Volume
15 : Financial Engineering:511–563, 2007.

23

