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Abstract

We review the mathematics of affine term-structure models with prin-
cipal components as state variables. Subsequently, we explore an exten-
sion of the model incorporating a stochastic market-price-of-risk in state
variables that we deem attract a risk compensation.

1 Introduction

Affine Term-Structure Models (ATSMs) are popular among researchers for struc-
tural yield curve modelling due to its analytical tractability under multi-factor
setups. Using specified variable approaches together with ATSMs, we are able
to specify rich dynamics (through time-varying risk-neutral drifts and volatility
coefficients) and impute econometric interpretations to the state variables in
the model. The resultant closed-form expressions from ATSMs for zero-coupon-
bond prices also greatly facilitate their pricing implementations in practice. For
the reasons above (and more), ATSMs have been a mainstay in the extensive
literature on bond-pricing and interest-rate derivatives.

Principal Components Analysis (PCA) is a well-known technique for di-
mensionality reduction when working with large, multi-dimensional datasets.
Yield-curve time-series data (now widely available) typically contains spot rate
data for terms ranging from 1 to 30 years in half-year steps. As such, yield
curve modelling is a canonical example demonstrating the high dimensionality
reduction made possible with PCA. The resultant principal components lend
themselves to a seductive interpretation as ‘level’, ‘slope’ and ‘curvature’ of the
yield curve. Furthermore, these three principal components account for a re-
markable 99.9% of yield curve variation, making PCA an extremely appealing
tool in term-struture modelling.
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In ATSMs, the link between the real-world measure and the risk-neutral
measure is usually established by the market-price-of-risk. We often make the
assumption that the market-price-of-risk is an affine function of the state vari-
ables. This means that the market-price-of-risk, while stochastic, remains a
deterministic function of the stochastic state variables.

In this work, we explore an extension of principal-components-based affine
term-structure model (PC-based ATSM) where we attempt to specify a stochas-
tic market-price-of-risk that is independent of the principal-component state
variables.

2 Preliminaries

In this section, we provide the basic theoretical setup for affine term-structure
models, principal components analysis as applied to yield curve modelling, and
also the market-price-of-risk specifications in affine models. We mainly follow
the terminologies in [5] and [6] and also extend some of their analysis when
specifying and solving our new model.

2.1 Notation

In expressions where ambiguity might arise, we denote a vector with a decorating

top arrow:
−→
θ . Matrices are decorated with an underscore: A.

2.2 Affine Term-Structure Models

An N -factor affine term structure model assumes an N -dimensional vector of
state variables −→xt = (x1(t), x2(t), . . . , xN (t))T with the following specifications,

1. The instantaneous short rate rt is given by an affine function of the state
variables,

rt = δ0 +

N∑
i=1

δixi(t) = δ0 + δT−→xt (1)

where δT = (δ1, δ2, . . . , δN ) so that δT−→xt specifies an inner product.

2. The state variables −→xt follow an affine diffusion under Q,

d−→xt = KQ
(−→
θ Q −−→xt

)
dt+ Sd−→ztQ

where−→ztQ is anN -dimensional independent Brownian motion. The matrix

S can be decomposed as S = Σ diag
(√

αj + βTj
−→xt
)

where αj is a scalar,

βj is an N -dimensional vector. KQ and Σ are N ×N matrices and diag(·)
denotes an N ×N diagonal matrix .

2



3. The market-price-of-risk takes the form,

λj(t) = λj

√
αj + βTj

−→xt

4. The state variables −→xt also follow an affine diffusion under P,

d−→xt = KP
(−→
θ P −−→xt

)
dt+ Sd−→zt P

where −→zt P is an N -dimensional independent Brownian motion.

The matrix S remains exactly the same as the one under the measure
Q. The matrix KP is related to KQ by KP = KQ − ΣΦ, with the j-th

row of the matrix Φ given by λjβ
T
j . The vector

−→
θ P is given by

−→
θ P =

(KP)−1(KQ−→θ Q + Σψ), with the i-th element of the vector ψ given by
λjαj .

From the above, the link between the P and Q measures is established
through the market-price-of-risk λj(t), albeit through a rather complicated
looking series of vector/matrix operations. In Section 2.4.1, we will show
the full details of the derivation.

5. The price of zero coupon bonds is given by,

PTt = EQ
[
e−
∫ T
t
rsds

]
and with an admissable parameterization, the solution (see [3]) is given
by,

PTt = eA
T
t +(BTt )T−→xt

2.3 Principal Components in Yield Curve Modelling

The yield curve at time-t is an N × 1 vector of yields −→yt = (yT1
t , yT2

t , . . . , yTNt )T .
Each element yTit is the yield of the corresponding discount bond with price PTit .
Following [5], we assume the yields have the dynamics,

−→
dyt = −→µydt+ σ

−→
dwQ,P

with
σ = diag(σ1, σ2, . . . , σn) and E

[−→
dw
−→
dwT

]
= ρdt

The exact forms of −→µy corresponding to the shocks
−→
dwQ,P (representing shocks

in P and Q depending on the measure we are considering) are inconsequential
for our current discussion. This is because we are mainly interested in the
covariance structure among the yields,

E
[−→
dy
−→
dyT

]
= σρσT = Σmktdt
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Suppose we have the covariance matrix Σmkt of the N yields constructed
from observing historical times series of the N yields. This exogeneous market
observable can be decomposed using eigenvalue decomposition to give,

Σmkt = V DV T

where
D = diag(ξ1, ξ2, . . . , ξN )

is a diagonal matrix of eigenvalues of Σmkt and V is an orthogonal matrix of
eigenvectors of Σmkt,

V =

 ↑ ↑ ↑
−→v1

−→v2 · · · −→vN
↓ ↓ ↓


The principal components −→xt are given by,

−→yt = −→u + V−→xt

where −→u is a constant vector.
In order to satisfy the requirements of an affine model, we need the short

rate to be an affine function of the state-variables (which are the principal
components in this case),

rt = δ0 + δT −→xt︸︷︷︸
principal components

2.3.1 Dynamics of Principal Components

With principal components explained in the previous section, we shall now spec-
ify their dynamics. We use the ATSM diffusion dynamics,

d−→xt = KQ
(−→
θ Q −−→xt

)
dt+ Sd−→ztQ

where d−→ztQ are independent Q-Brownian increments.

In the above, the matrix KQ is the reversion speed matrix, the vector
−→
θ Q is

the reversion-level vector, and S is the diffusion matrix.
A consequence of using principal components as state variables is that the

eigenvalues of Σmkt correspond to the variance explained by each of the principal
components. The eigenvectors are orthogonal, therefore, the matrix S has to
be a diagonal matrix of the form,

S = diag(
√
ξ1,
√
ξ2, . . . ,

√
ξN )

where ξi are the eigenvalues of the covariance matrix Σmkt.
When we specify S to be diagonal, one consequence is that it will be impossi-

ble for the matrix KQ to also be diagonal (see the proof in [7]). This means that
we will not be able to have intuitive mean-reversion dynamics where each xi(t)
reverts to its own reversion level θi in the drift terms in the diffusion dynamics
for dxi(t).
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2.4 (Affine) Market Price of Risk

In the usual affine setting, the market-price-of-risk is assumed to be an affine
function of the state variables,

−→
λt =

−→
λ0 + Π−→xt

where
−→
λ0 is a constant vector.

This definition means that the market-price-of-risk is a deterministic func-
tion of the stochastic state variables (principal components). Once the stochastic
principal components take on a certain value, the market-price-of-risk assumes
the same corresponding fixed value. It is important to note that the market-
price-of-risk does not have its own separate and independent stochasticity.

For example, assuming we have N = 3 and we use the first three principal
components (of ‘level’, ‘slope’, ‘curvature’) as state variables, then Π will be a
3× 3 matrix. If the market-price-of-risk depends only on the slope of the yield
curve, then Π will have the following form,

Π =

0 a 0
0 b 0
0 c 0


so that

Π−→xt =

0 a 0
0 b 0
0 c 0

x1(t)
x2(t)
x3(t)

 =

ax2(t)
bx2(t)
cx2(t)


As we can see, each of the xi(t) in −→xt will have their market-price-of-risk as
some factor times the value of the state variable x2(t) (representing the slope).

What we have specified above is that investors require compensation for
bearing ‘level’, ‘slope’ and ‘curvature’ risk (corresponding to the principal com-
ponent state variables x1(t), x2(t), x3(t) respectively). In addition, the amount
of risk compensation depends solely on the ‘slope’ (the x2(t) state variable).

If investors only require compensation for bearing ‘level’ risk, then Π would
take the form,

Π =

0 a 0
0 0 0
0 0 0


so that

Π−→xt =

0 a 0
0 0 0
0 0 0

x1(t)
x2(t)
x3(t)

 =

ax2(t)
0
0


Given this, when we adjust the drifts of −→xt using Π−→xt , only the element x1(t)
in −→xt will get an adjustment related to the ‘slope’ variable x2(t). This is what
we mean when we say that investors are rewarded for ‘level’ risk depending on
the ‘slope’ of the yield curve.
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2.4.1 Moving between P and Q Measures

As mentioned earlier, the market-price-of-risk is the link that allows us to move
between the P and Q measures, while preserving the affine structure in the
dynamics of the state variables.

We begin by considering the Q-measure dynamics (as stated in the affine
model specification),

d−→xt = KQ
(−→
θ Q −−→xt

)
dt+ Sd−→ztQ

If we introduce the compensation for risk via the market-price-of-risk into
the above, we get,

d−→xt = KQ
(−→
θ Q −−→xt

)
dt+ Sd−→zt P + S

−→
λtdt

= KQ
(−→
θ Q −−→xt

)
dt+ Sd−→zt P + S(

−→
λ0 + Π−→xt)dt

=
(
KQ−→θ Q + S

−→
λ0

)
dt−

(
KQ − SΠ

)−→xtdt+ Sd−→zt P

=
[(
KQ−→θ Q + S

−→
λ0

)
−
(
KQ − SΠ

)−→xt] dt+ Sd−→zt P

=
(
KQ − SΠ

)
︸ ︷︷ ︸

KP

(KQ − SΠ
)−1 (

KQ−→θ Q + S
−→
λ0

)
︸ ︷︷ ︸

−→
θ P

−−→xt

 dt+ Sd−→zt P

= KP
(−→
θ P −−→xt

)
dt+ Sd−→zt P

where we have the relations,

KP = KQ − SΠ and
−→
θ P =

(
KQ − SΠ

)−1 (
KQ−→θ Q + S

−→
λ0

)
(2)

3 Extending a PC-based ATSM with Stochastic
Market-Price-of-Risk

With the theoretical foundations set in the previous section, we shall examine
how a principal-components-based ATSM can be extended to feature a stochas-
tic market-price-of-risk.

3.1 Principal-Components-based Affine Model

In our model, we choose to use N = 3 principal components as our state vari-
ables, so that

−→xt =

x1(t)
x2(t)
x3(t)
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where x1(t), x2(t), x3(t) correspond to the first three principal-components of
‘level’, ‘slope’ and ‘curvature’ respectively.

The Q dynamics for the model is,dx1(t)
dx2(t)
dx3(t)

 =

κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33


︸ ︷︷ ︸

KQ

θQ1θQ2
θQ3

−
x1(t)
x2(t)
x3(t)


︸ ︷︷ ︸(−→

θ Q−−→xt
)

dt+

√ξ1 0 0
0

√
ξ2 0

0 0
√
ξ3


︸ ︷︷ ︸

S

dWQ
1 (t)

dWQ
2 (t)

dWQ
3 (t)



(3)
where ξi are the eigenvalues of the covariance matrix Σmkt. Since the eigen-
values correspond to the variance explained in each direction of the principal
components, we can see that the matrix S above correctly produces the required
variance in each of the Brownian-motions dWQ

1 (t), dWQ
2 (t), dWQ

3 (t).

3.2 Stochastic Market-Price-of-Risk

In Section 2.4, we showed the specification of an affine market-price-of-risk where
it is a deterministic (affine) function of the stochastic state variables.

In our new model, we choose to adopt a stochastic market-price-of-risk model
where it is driven by its own Brownian shock. To model our stochastic market-
price-of-risk, we posit that we have another latent state variable λ(t) with the
dynamics,

dλ(t) = κλ(θλ − λ(t))dt+ σλdB
Q(t)

where θλ is the reversion-level, κλ is the reversion-speed, and σλ is the volatility
of the market-price-of-risk. The driving Brownian motion dBQ(t) is independent
of the Brownian motions dWQ

i (t) in (3).
We assume that investors do not require a risk compensation for the stochas-

ticity in the above market-price-of-risk specification. Hence, moving forward,
we should be aware that the drift term for dλ(t) is the same in both the P and
Q measures.

Suppose (following results in [2]) investors are only compensated for ‘level’
risk, the stochastic market-price-of-risk should then apply only to the ‘level’
state-variable x1(t), with ‘dependence’ on the ‘slope’ state variable x2(t). Fol-
lowing the affine market-price-of-risk approach in Section 2.4, we thus modify
the dynamics for x1(t) in P to be,

dx1(t) = [κ11(θ1 − x1(t)) + κ12(θ2 − x2(t)) + κ13(θ3 − x3(t))]dt

+λ(t)
√
ξ1x2(t)dt+

√
ξ1dW

P
1 (t)

However, the explicit dependence on x2(t) above complicates the drift dynamics
and is undesirable (see Chapter 27 of [5]). To solve this, we change the above
term λ(t)

√
ξ1x2(t)dt to λ(t)

√
ξ1dt, removing the explicit dependence on x2(t).

By doing so, we break the link between the ‘slope’ return-predicting factor and
the market-price-of-risk, which is something we do not want.
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To reconcile the issue, we re-introduce the ‘dependence’ via a positive sta-
tistical correlation between the Brownian shock driving the ‘slope’ principal
component x2(t) and the Brownian shock driving λ(t). With the above adjust-
ments, the dynamics for x1(t) in P now becomes,

dx1(t) = [κ11(θ1 − x1(t)) + κ12(θ2 − x2(t)) + κ13(θ3 − x3(t))]dt

+λ(t)
√
ξ1dt+

√
ξ1dW

P
1 (t)

and the dynamics for the stochastic market-price-of-risk is modified to become,

dλ(t) = κλ(θλ − λ(t))dt+ σλ

(
ρdWQ

2 (t) +
√

1− ρ2dBQ(t)
)

where dWQ
2 (t) and dBQ(t) are independent Brownian motions.

So λ(t) is now a correlated diffusion process with x2(t) - the ‘slope’ principal
component - and we are able to generate a positive ‘dependence’ between the
slope of the yield curve and the market price of risk on average.

3.3 The Combined Model

Combining the PC-based Affine Model in Section 3.1 with the Stochastic Market-
Price-of-Risk in Section 3.2, we have an Affine A0(4) model (see [1] for affine
model classification). The dynamics of the model in P is given below,

dx1(t)
dx2(t)
dx3(t)
dλ(t)

 =


κ11 κ12 κ13 −

√
ξ1

κ21 κ22 κ23 0
κ31 κ32 κ33 0
0 0 0 κλ


︸ ︷︷ ︸

KP



θ1 +

√
ξ1θλ
κ11

θ2

θ3

θλ

−

x1(t)
x2(t)
x3(t)
λ(t)




︸ ︷︷ ︸(−→
θ P−−→xt

)
dt

+


√
ξ1 0 0 0
0

√
ξ2 0 0

0 0
√
ξ3 0

0 σλρ 0 σλ
√

1− ρ2


︸ ︷︷ ︸

S


dW P

1 (t)
dW P

2 (t)
dW P

3 (t)
dBP(t)


︸ ︷︷ ︸

d−→ztP

Using the relations in (2) we have,

KP = KQ − SΠ

⇒


κ11 κ12 κ13 −

√
ξ1

κ21 κ22 κ23 0
κ31 κ32 κ33 0
0 0 0 κλ

 =


κ11 κ12 κ13 0
κ21 κ22 κ23 0
κ31 κ32 κ33 0
0 0 0 κλ



−


√
ξ1 0 0 0
0

√
ξ2 0 0

0 0
√
ξ3 0

0 σλρ 0 σλ
√

1− ρ2




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
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where we specified the reversion-speed matrix KQ to have the nice form,

KQ =


κ11 κ12 κ13 0
κ21 κ22 κ23 0
κ31 κ32 κ33 0
0 0 0 κλ


The other relation in (2) provides a specification for

−→
θ Q,

−→
θ P =

(
KQ − SΠ

)−1

KQ−→θ Q +�
��>
∅

S
−→
λ0


⇒
−→
θ Q =

(
KQ
)−1 (

KQ − SΠ
)−→
θ P =

(
KQ
)−1

KP−→θ P

=


κ11 κ12 κ13 0
κ21 κ22 κ23 0
κ31 κ32 κ33 0
0 0 0 κλ


−1 

κ11 κ12 κ13 −
√
ξ1

κ21 κ22 κ23 0
κ31 κ32 κ33 0
0 0 0 κλ



θ1 +

√
ξ1θλ
κ11

θ2

θ3

θλ


Combining everything, we can specify the Q dynamics for our model as,

dx1(t)
dx2(t)
dx3(t)
dλ(t)

 =


κ11 κ12 κ13 0
κ21 κ22 κ23 0
κ31 κ32 κ33 0
0 0 0 κλ


︸ ︷︷ ︸

KQ

−→θ Q −


x1(t)
x2(t)
x3(t)
λ(t)




︸ ︷︷ ︸(−→
θ Q−−→xt

)
dt

+


√
ξ1 0 0 0
0

√
ξ2 0 0

0 0
√
ξ3 0

0 σλρ 0 σλ
√

1− ρ2


︸ ︷︷ ︸

S


dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

dBQ(t)


︸ ︷︷ ︸

d−→ztQ

3.3.1 Solving the Combined Model

To solve the combined model in Section 3.3, we use the general framework for
solving affine models in [5].

In our setup, our state variable is −→xt = (x1(t), x2(t), x3(t), λ(t))T where we
have a vector of N = 3 key maturity yields plus a ‘dummy’ yield correspond-
ing to the market-price-of-risk latent state variable λ(t). As such, we have −→yt =
(yT1
t , yT2

t , yT3
t , yλt )T . This is basically the class of semi-observable affine factor models

A0(4) described in [7].
The affine yields for our combined model are given by,

−→yt = −→c + U−→xt (4)
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where −→c is a constant vector and U is a 4× 4 matrix given by

U =


v11 v12 v13 0
v21 v22 v23 0
v31 v32 v33 0
0 0 0 1

 =


↑ ↑ ↑ 0

−→v1
−→v2

−→v3

...
↓ ↓ ↓ 0
0 0 0 1


with −→v1,

−→v2 ,
−→v2 as the first three eigenvectors in the matrix V from the eigen-

decomposition of the market observable covariance matrix Σmkt = V DV T .

Expanded out in full, the yields are given by,
yT1
t

yT2
t

yT3
t

yλt

 =


c1
c2
c3
c4

+


v11 v12 v13 0
v21 v22 v23 0
v31 v32 v33 0
0 0 0 1



x1(t)
x2(t)
x3(t)
λ(t)


If we only consider the key maturity yields −→y 1...3 = (yT1

t , yT2
t , yT3

t )T , they
satisfy, yT1

t

yT2
t

yT3
t

 =

c1c2
c3

+

v11 v12 v13

v21 v22 v23

v31 v32 v33

x1(t)
x2(t)
x3(t)


⇒ −→y 1...3 = −→c 1...3 + V−→x 1...3

(5)

and we are back to the same setup as a principal-components-only model. All
the consistency contraints on V mentioned in [7] similarly apply.

We now specify that the first element of −→yt is the short rate rt. This is to
say that,

yT1
t = rt

where we let T1 → 0 and assume an overnight deposit rate (such as the Fed
Funds rate or the EONIA index) is a suitable proxy for the short rate (which is
strictly speaking unobservable).

Given the above assumption, we have,

rt = −→e T1−→yt
= −→e T1−→c︸ ︷︷ ︸

w0

+−→e T1 U︸ ︷︷ ︸
−→wT1

−→xt

= w0 +−→w T
1
−→xt

(6)

where −→e1 = (1, 0, . . . , 0)T . This is the same form as required by (1) except that
we used w instead of δ in the naming of variables.
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The 1× 4 vector −→w T
1 is given by,

−→w T
1 =

T−→e 1︸︷︷︸
1×4

U︸︷︷︸
4×4

= [v11, v12, v13, 0]

⇒ −→w 1 =


v11

v12

v13

0


With the definition of the short rate specified above, we know from no-arbitrage
that the price of the discount bond must be given by,

PTt = EQ
[
e−
∫ T
t
rsds

]
= EQ

[
e−
∫ T
t (w0+−→wT1

−→xt)ds
]

= EQ

[
exp

(
−
∫ T

t

w0 + v11x1(t) + v12x2(t) + v13x3(t) ds

)] (7)

This shows our setup correctly produces a price formula which does not involve
the latent state variable λ(t).

In what follows, all mentions of K and
−→
θ refer to the Q measure reversion-

speed matrix and reversion-level vector.
From [1], the general solution to (7) is given by,

PTt = exp
ATt +

(−→
BTt

)T−→xt
with the vector

−→
B T
t (which we abbreviate

−→
B τ ) and the scalar ATt (abbreviated

Aτ ) satisfying the ODEs (with τ = T − t) below,

dAτ
dτ

= −w0 +
(−→
B τ

)T
K
−→
θ +

1

2

(−→
B τ

)T
S ST

−→
B τ

d
−→
B τ

dτ
= −−→w 1 −KT

−→
B τ

−→
B (τ = 0) = 0, A(τ = 0) = 0 (boundary conditions)

The solution for
−→
B τ (and hence

(−→
B τ

)T
) is given by,

−→
B τ =

(
e−K

T τ − In
) (
KT
)−1−→w 1

⇒
(−→
B τ

)T
= −→w T

1 K
−1
[
e−Kτ − In

]

11



The detailed expansions for
−→
B τ and

(−→
B τ

)T
for our setup is shown below,

−→
B τ =

(
e−K

T τ − In
)

κ11 κ21 κ31 0
κ12 κ22 κ32 0
κ13 κ23 κ33 0
0 0 0 κλ


−1 

v11

v12

v13

0


(−→
B τ

)T
=
[
v11 v12 v13 0

] 
κ11 κ12 κ13 0
κ21 κ22 κ23 0
κ31 κ32 κ33 0
0 0 0 κλ


−1 (

e−Kτ − In
)

(8)

where e−Kτ and e−K
T τ are matrix exponentials involving the matrix K and its

transpose.

To simplify the above expressions for
−→
B τ and

(−→
B τ

)T
, we assume that K is

diagonalizable, i.e. it has N = 4 distinct and real eigenvalues {li}. With that,
we can diagonalize the reversion-speed matrix K to obtain,

K = aΛ a−1

⇒ KT =
(
a−1

)T
Λ aT =

(
aT
)−1︸ ︷︷ ︸
b

Λ aT︸︷︷︸
b−1

= bΛ b−1

with
Λ = diag(l1, l2, l3, l4)

(Note : To ensure stability, we require all the eigenvalues li to be positive.)
Using this assumption that K can be written as aΛ a−1, we can write the

matrix exponential e−K
T τ as,

e−K
T τ = e−bΛb

−1τ

= e−bΛτb
−1

= be−Λτ b−1 (by up-and-down theorem)

= b
(
eΛτ
)−1

b−1

= b


e−l1τ 0 0 0

e−l2τ 0 0
0 0 e−l3τ 0
0 0 0 e−l4τ

 b−1

= bdiag(e−liτ ) b−1

Substituting the above expression for e−K
T τ into the expression for

−→
B τ , we
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get,

−→
B τ =

(
e−K

T τ − In
) (
KT
)−1−→w 1

=
(
bdiag(e−liτ ) b−1 − In

) (
bΛb−1

)−1−→w 1

= b
(
diag(e−liτ ) b−1 − b−1In

) (
bΛ−1b−1

)−→w 1 (since
(
bΛb−1

)−1
= bΛ−1b−1)

= b
(
diag(e−liτ )− b−1Inb

)
b−1bΛ−1b−1−→w 1

= b
(
diag(e−liτ )− In

)
Λ−1b−1−→w 1

= bdiag

[
e−liτ − 1

li

]
b−1−→w 1

With this, we finally see that
−→
B τ takes the following form,

−→
B τ = −bdiag

[
1− e−ljτ

lj

]
b−1−→w 1

Once the vector
−→
B τ has been computed, the scalar Aτ can be obtained by

integration. The full derivation for Aτ is given in Appendix A and the final
expression is as follows,

Aτ =

∫ τ

0

[
−w0 +

(−→
B s

)T
K
−→
θ +

1

2

(−→
B s

)T
S ST

−→
B s

]
ds

= −w0τ

+−→w T
1

(
a diag

[
1− e−liτ

li

]
a−1−→θ −

−→
θ τ

)
+

1

2
−→w T

1 K
−1aFsΛ

−1a−1−→w 1

− 1

2
−→w T

1 K
−1Cadiag

[
1− e−liτ

li

]
Λ−1a−1−→w 1

− 1

2
−→w T

1 K
−1adiag

[
1− e−liτ

li

]
a−1C

(
KT
)−1−→w 1

+
1

2
−→w T

1 K
−1C

(
KT
)−1−→w 1τ

13



4 Concise Summary of our Combined Model

To recap the results for our combined model, the following is a concise one-page
summary,

1. The dynamics of the model in Q is as follows,
dx1(t)
dx2(t)
dx3(t)
dλ(t)

 =


κ11 κ12 κ13 0
κ21 κ22 κ23 0
κ31 κ32 κ33 0
0 0 0 κλ


︸ ︷︷ ︸

K

−→θ −

x1(t)
x2(t)
x3(t)
λ(t)




︸ ︷︷ ︸(−→
θ −−→xt

)
dt

+


√
ξ1 0 0 0
0

√
ξ2 0 0

0 0
√
ξ3 0

0 σλρ 0 σλ
√

1− ρ2


︸ ︷︷ ︸

S


dWQ

1 (t)

dWQ
2 (t)

dWQ
3 (t)

dBQ(t)


︸ ︷︷ ︸

d−→ztQ

(9)

with the assumption that K admits an eigen-decomposition as,

K = aΛ a−1 ⇒ KT =
(
a−1

)T
Λ aT =

(
aT
)−1︸ ︷︷ ︸
b

Λ aT︸︷︷︸
b−1

= bΛ b−1

and Λ = diag(l1, l2, l3, l4) where li are the eigenvalues.

2. The solution to the combined model is given by,

PTt = exp
ATt +

(−→
BTt

)T−→xt
where the vector

−→
B T
t ≡

−→
B τ and the scalar ATt ≡ Aτ ( with τ = T − t )

are given by,
−→
B τ = −bdiag

[
1− e−ljτ

lj

]
b−1−→w 1

Aτ = −w0τ +−→w T
1

(
a diag

[
1− e−liτ

li

]
a−1−→θ −

−→
θ τ

)
+

1

2
−→w T

1 K
−1aFτΛ−1a−1−→w 1

− 1

2
−→w T

1 K
−1Cadiag

[
1− e−liτ

li

]
Λ−1a−1−→w 1 +

1

2
−→w T

1 K
−1C

(
KT
)−1−→w 1τ

− 1

2
−→w T

1 K
−1adiag

[
1− e−liτ

li

]
a−1C

(
KT
)−1−→w 1

with w0 and −→w T
1 defined in (6). C is defined as C = S ST . The matrix

Fτ is given by Fτ =
[∫ τ

0
e−Λsa−1Cae−Λsds

]
.
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5 Calibration of the Combined Model

Having presented the solution for our combined model, we proceed to discuss
how to calibrate our new model. To obtain the data needed for calibration, we
can use the US Treasury and Fed Funds rate data available for download in [4].

5.1 Choosing Eigenvalues for the Reversion-Speed Matrix

The analysis for choosing eigenvalues of the reversion-speed matrix is the same
as that in [6].

We recall from the Q dynamics of our model in (9) that there is no interac-
tion/dependence between the parameters driving the principal-component state
variables (x1(t), x2(t), x3(t)) and the parameters driving λ(t).

If we drop the λ(t) from consideration for now, we end up with exactly the
same setup as in [6], which is,

dx1(t)
dx2(t)
dx3(t)

 =

κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33


︸ ︷︷ ︸

KPC

−→θ PC −

x1(t)
x2(t)
x3(t)


︸ ︷︷ ︸(−→

θ PC−−→xt
)

dt+

√ξ1 0 0
0

√
ξ2 0

0 0
√
ξ3


︸ ︷︷ ︸

SPC

dWQ
1 (t)

dWQ
2 (t)

dWQ
3 (t)


︸ ︷︷ ︸

d−→ztQ

where in the above, we abbreviated the symbols in the system with ‘PC’ to
avoid confusion. (Note : the values for

√
ξ1,
√
ξ2,
√
ξ3 will come from PCA, and

are the variances captured in each of the principal-component directions).
We also recall from (5) that the key maturity yields are given by,yT1

t

yT2
t

yT3
t

 =

c1c2
c3

+

v11 v12 v13

v21 v22 v23

v31 v32 v33

x1(t)
x2(t)
x3(t)


⇒ −→y PC = −→c PC + V−→x PC

This put us exactly in the same setup as [6], and we proceed with the cali-
bration of our model to obtain the entries of KPC in the same way as described
in the paper.

To summarize, the problem setup is such that the only choice we need to
make in the calibration of our model is to choose the eigenvalues {lj} of the
matrix KPC. Assuming that KPC is diagonalizable to KPC = φΛKPC

φ−1 with
ΛKPC

the diagonal matrix of eigenvalues {lj}, then it is shown in [6] that KPC

is given by,
KPC = V TF−1ΛKPC

FV

with F the 3× 3 matrix with elements [F ]ij given by,

Fij =
1

τj

1− e−liτj
li

15



The 3-factor principal component setup can exactly recover three key matu-
rity yields which are exogeneous market observables. However, the non-reference
yields will not be exactly recovered, and the choice of our eigenvalues {lj} will
be to minimize the discrepancy of the covariance matrix and yield curve that is
recovered for these non-key maturity yields.

5.2 Calibrating the Stochastic Market-Price-of-Risk

Recall that our stochastic market-price-of-risk state variable has the following
dynamics,

dλ(t) = κλ(θλ − λ(t))dt+ σλ

(
ρdWQ

2 (t) +
√

1− ρ2dBQ(t)
)

Our calibration process involves finding values for κλ, θλ, σλ and ρ. We follow
closely the analysis in Chapter 8 of [5], whereby the market-price-of-risk is
inferred from the excess returns from the strategy of being consistently long a
T -maturity bond, and funding it with a very-short-maturity bond.

For example, we can look at the strategy of being long a 10-yr bond and
funding it with a 1-yr bond. Using this setup, we will show that the market-
price-of-risk is closely related to the Sharpe Ratio of the above strategy.

We begin the analysis by assuming that we have the following bond price
dynamics,

dPTt
PTt

= µPdt+ σPdW P(t)

We know from (7) that our bond price is a function of the state variables
x1(t), x2(t), x3(t). However, since we only assign a market-price-of-risk to the
state variable x1(t) by construction, we will only consider the drift terms in-
volving x1(t) in the workings below, where we analyse the difference in drifts
of the bond between the P and Q measures. As the state variables x2(t) and
x3(t) do not have a market-price-of-risk, their drifts would be the same in both
measures and would cancel.

Using Ito’s Lemma on the bond price function (and only considering terms
involving x1(t)), we have,

dPTt =
∂PTt
∂t

dt+
∂PTt
∂x1

dx1(t) +
1

2

∂2PTt
∂x2

1

d〈x1〉t

=
∂PTt
∂t

dt+
∂PTt
∂x1

[
µx1dt+ σx1dW

P
1 (t)

]
+

1

2
σ2
x1

∂2PTt
∂x2

1

d〈x1〉t

=

[
∂PTt
∂t

+ µx1

∂PTt
∂x1

+
1

2
σ2
x1

∂2PTt
∂x2

1

]
dt+ σx1

∂PTt
∂x1

dW P
1 (t)

⇒ dPTt
PTt

=
1

PTt

[
∂PTt
∂t

+ µx1

∂PTt
∂x1

+
1

2
σ2
x1

∂2PTt
∂x2

1

]
︸ ︷︷ ︸

µP

dt+ σx1

1

PTt

∂PTt
∂x1︸ ︷︷ ︸

σP

dW P
1 (t)

(10)
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We also know that the market-price-of-risk is given by,

λ =
µP − r
σP

⇒ µP = r + λσP

⇒ µP = r +
1

PTt

∂PTt
∂x1

λσx1

We define the excess returns as,

E
[
xretTt

]
= µP − r = E

[
dPTt
PTt

− r
]

=
1

PTt

∂PTt
∂x1

λσx1

This implies the drift of the bond in the P measure is given by (note that the
stochastic term in (10) drops out on taking expectation below),

E
[
dPTt
PTt

− r
]

=
1

PTt

∂PTt
∂x1

λσx1

⇒ 1

PTt

[
∂PTt
∂t

+ µx1

∂PTt
∂x1

+
1

2
σ2
x1

∂2PTt
∂x2

1

]
︸ ︷︷ ︸

µP

= r +
1

PTt

∂PTt
∂x1

λσx1

(11)

If we absorb the 1
PTt

∂PTt
∂x1

λσx1
term into the left hand side, we get,

1

PTt

[
∂PTt
∂t

+
∂PTt
∂x1

(µx1
− λσx1

) +
1

2
σ2
x1

∂2PTt
∂x2

1

]
︸ ︷︷ ︸

µQ

= r
(12)

which is nothing but an expression for the drift of the bond in the Q measure
(which has to be equal to r).

In summary, what we have worked out in (11) and (12) above are expressions
for the drifts (µP and µQ ) of the bond in the P and Q measures respectively.

Next, we consider the Sharpe Ratio of our bond strategy, which is given by,

SR =
µP − r
σP

=
µP − µQ

σP

=

dPTt
PTt

∂PTt
∂x1

λσx1

σx1

dPTt
PTt

∂PTt
∂x1

= λ

where in the above, we used all the relations in (10), (11) and (12).
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Ultimately, we see that the market-price-of-risk equals the Sharpe Ratio of
our bond strategy. This means that from the historical time-series of Sharpe
Ratio values, we can back out the reversion-level, volatility and reversion-speed
of λ(t). This gives us the means of calibrating the parameters κλ, θλ, σλ.

The last parameter we have to calibrate is the value for ρ. Recall that ρ
is the correlation of the shocks driving λ(t) with the shocks driving x2(t), the
‘slope’ principal-component.

Following [2], we can regress the excess returns of our bond strategy against
the term-structure slope (where slope of the term structure is measured, for ex-
ample, by the difference between five-year and three-month zero-coupon yields).
From the regression, we will be able to get the R2 value.

It is well-known that R2 equals the squared Pearson correlation coefficient
of the dependent and explanatory variable in a univariate linear least squares
regression. Therefore, we will choose ρ = R in the dynamics of our stochastic
market-price-of-risk, and this completes its full calibration.

5.3 Calibrating the Reversion-Level Vector

To calibrate the reversion-level vector
−→
θ Q, we follow (again) the same strategy

in [6], which is to,

1. Estimate time averages of yields or principal components using a very-
long-term historical record.

2. Equate these quantities to the reversion levels
−→
θ P (in the P measure).

3. Translate this vector
−→
θ P to the Q measure using equation (2).

To reiterate, the relation in (2) linking
−→
θ Q and

−→
θ P is,

−→
θ P =

(
KQ − SΠ

)−1

KQ−→θ Q +�
��>
∅

S
−→
λ0


⇒
−→
θ Q =

(
KQ
)−1 (

KQ − SΠ
)−→
θ P

For brevity, we would exclude the lengthy discussion of this calibration and
refer the reader to the details in [6].
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6 Conclusion and Future Work

We have given a concise review of the theoretical underpinnings of affine term-
structure models, principal components analysis and market-price-of-risk as ap-
plied to bonds.

We also showed how a principal-component-based ATSM can be extended
to include a new latent state variable which models a stochastic market-price-
of-risk. Details on the calibration of the model were also presented.

For future work, it would be good to perform an analysis of the calibrated
model and compare it against other existing models in pricing and fore-casting.

A Derivation of Solution for Aτ

For completeness, we provide a concise recap (following the derivations in [5])
of the closed-form solution for Aτ using our current symbols.

It is assumed that K can be written as K = aΛ a−1. The integral expression
for Aτ is,

Aτ =

∫ τ

0

[
−w0 +

(−→
B s

)T
K
−→
θ +

1

2

(−→
B s

)T
S ST

−→
B s

]
ds

= −
∫ τ

0

w0ds+

∫ τ

0

(−→
B s

)T
K
−→
θ ds+

∫ τ

0

1

2

(−→
B s

)T
S ST

−→
B sds

= I1 + I2 + I3

We consider each of I1, I2 and I3 in turn.

Evaluating I1.

I1 = −
∫ τ

0

w0ds = −w0τ
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Evaluating I2.

I2 =

∫ τ

0

(−→
B s

)T
K
−→
θ ds

=

∫ τ

0

−→w T
1 K
−1
[
e−Ks − In

]
K
−→
θ ds

=

∫ τ

0

−→w T
1 K
−1e−KsK

−→
θ ds−

∫ τ

0

−→w T
1 K
−1K
−→
θ ds

= −→w T
1 K
−1

∫ τ

0

e−KsK
−→
θ ds−−→w T

1

−→
θ τ

= −→w T
1 K
−1

∫ τ

0

e−aΛsa−1

K
−→
θ ds−−→w T

1

−→
θ τ

= −→w T
1 K
−1

∫ τ

0

ae−Λsa−1K
−→
θ ds−−→w T

1

−→
θ τ (by up-and-down theorem)

= −→w T
1

(
aΛa−1

)−1
a

∫ τ

0

e−Λsa−1
(
aΛa−1

)−→
θ ds−−→w T

1

−→
θ τ

= −→w T
1 aΛ−1a−1a

∫ τ

0

e−Λsa−1
(
aΛa−1

)−→
θ ds−−→w T

1

−→
θ τ

= −→w T
1 aΛ−1

∫ τ

0

e−ΛsΛa−1−→θ ds−−→w T
1

−→
θ τ

= −→w T
1 aΛ−1

[∫ τ

0

e−Λsds

]
Λa−1−→θ −−→w T

1

−→
θ τ

= −→w T
1 a

[∫ τ

0

e−Λsds

]
Λ−1Λa−1−→θ −−→w T

1

−→
θ τ (commutativity)

= −→w T
1 a

[∫ τ

0

(
eΛs
)−1

ds

]
a−1−→θ −−→w T

1

−→
θ τ

= −→w T
1 a diag

[
1− e−liτ

li

]
a−1−→θ −−→w T

1

−→
θ τ

= −→w T
1

(
a diag

[
1− e−liτ

li

]
a−1−→θ −

−→
θ τ

)

20



Evaluating I3.

I3 =

∫ τ

0

1

2

(−→
B s

)T
S ST︸ ︷︷ ︸
C

−→
B sds

=

∫ τ

0

1

2
−→w T

1 K
−1
[
e−Ks − In

]
C
[
e−K

T s − In
] (
KT
)−1−→w 1ds

=

∫ τ

0

1

2

[−→w T
1 K
−1e−Ks −−→w T

1 K
−1
] [
Ce−K

T s
(
KT
)−1−→w 1 − C

(
KT
)−1−→w 1

]
ds

=

∫ τ

0

1

2
−→w T

1 K
−1e−KsCe−K

T s
(
KT
)−1−→w 1ds

−
∫ τ

0

1

2
−→w T

1 K
−1Ce−K

T s
(
KT
)−1−→w 1ds

−
∫ τ

0

1

2
−→w T

1 K
−1e−KsC

(
KT
)−1−→w 1ds

+

∫ τ

0

1

2
−→w T

1 K
−1C

(
KT
)−1−→w 1ds

= Ia + Ib + Ic + Id

Consider Id,

Id =

∫ τ

0

1

2
−→w T

1 K
−1C

(
KT
)−1−→w 1ds

=
1

2
−→w T

1 K
−1C

(
KT
)−1−→w 1

∫ τ

0

ds

=
1

2
−→w T

1 K
−1C

(
KT
)−1−→w 1τ

Consider Ic,

Ic = −
∫ τ

0

1

2
−→w T

1 K
−1e−KsC

(
KT
)−1−→w 1ds

= −1

2
−→w T

1 K
−1

∫ τ

0

e−KsC
(
KT
)−1−→w 1ds

= −1

2
−→w T

1 K
−1a

[∫ τ

0

e−Λsds

]
a−1C

(
KT
)−1−→w 1

= −1

2
−→w T

1 K
−1adiag

[
1− e−liτ

li

]
a−1C

(
KT
)−1−→w 1
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Consider Ib,

Ib = −
∫ τ

0

1

2
−→w T

1 K
−1Ce−K

T s
(
KT
)−1−→w 1ds

= −1

2
−→w T

1 K
−1C

[∫ τ

0

e−K
T sds

] (
KT
)−1−→w 1

= −1

2
−→w T

1 K
−1Ca

[∫ τ

0

e−Λsds

]
a−1

(
KT
)−1−→w 1 (since KT = K, and up-and-down theorem)

= −1

2
−→w T

1 K
−1Cadiag

[
1− e−liτ

li

]
a−1aΛ−1a−1−→w 1

= −1

2
−→w T

1 K
−1Cadiag

[
1− e−liτ

li

]
Λ−1a−1−→w 1

Consider Ia,

Ia =

∫ τ

0

1

2
−→w T

1 K
−1e−KsCe−K

T s
(
KT
)−1−→w 1ds

=
1

2
−→w T

1 K
−1

∫ τ

0

e−aΛsa−1

Ce−aΛsa−1

aΛ−1a−1−→w 1ds

=
1

2
−→w T

1 K
−1a

∫ τ

0

e−Λs a−1Ca︸ ︷︷ ︸
M

e−Λsa−1aΛ−1a−1−→w 1ds

=
1

2
−→w T

1 K
−1a

[∫ τ

0

e−ΛsMe−Λsds

]
︸ ︷︷ ︸
Fτ=

[
mij

1−e−(li+lj)τ

li+lj

]
ij

Λ−1a−1−→w 1

=
1

2
−→w T

1 K
−1aFτΛ−1a−1−→w 1

Finally, we assemble all the various integrals we’ve computed to get Aτ as,

Aτ =

∫ τ

0

[
−w0 +

(−→
B s

)T
K
−→
θ +

1

2

(−→
B s

)T
S ST

−→
B s

]
ds

= −w0τ

+−→w T
1

(
a diag

[
1− e−liτ

li

]
a−1−→θ −

−→
θ τ

)
+

1

2
−→w T

1 K
−1aFsΛ

−1a−1−→w 1

− 1

2
−→w T

1 K
−1Cadiag

[
1− e−liτ

li

]
Λ−1a−1−→w 1

− 1

2
−→w T

1 K
−1adiag

[
1− e−liτ

li

]
a−1C

(
KT
)−1−→w 1

+
1

2
−→w T

1 K
−1C

(
KT
)−1−→w 1τ
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