

dYdX Public Report

PROJECT: dYdX/solo
February 2019

Prepared For:
Brendan Chou | dYdX Trading, Inc.
brendan@dydx.exchange

Prepared By:

Jonathan Haas | ​Bramah Systems, LLC.

jonathan@bramah.systems

dYdX Solo Protocol

Table of Contents

Executive Summary 3
Scope of Engagement 3
Timeline 3
Engagement Goals 3
Protocol Specification 3
Overall Assessment 4
Timeliness of Content 5

General Recommendations 6
Usage of experimental Solidity version 6
nonReentrant functions not marked External 6
Choose “Base Currency” for consistency 6
Non-initialized Return Values 7
Completion of TODO’s & Incomplete Functionality 7
Usage of Block.timestamp 7
External call failure could be more verbose 7
Highly Privileged Owner Accounts 8
NPM Module Usage 8

Toolset Warnings 9
Extensive Test Coverage 9
Excess Gas Consumption & Costly Loops 9
Parsing Functions & Malformed Input 10
ERC-20 Race Condition 10

Directory Structure 11

Appendix 14
Mythril Detection Capabilities 14
Oyente Detection Capabilities 16

2

dYdX Solo Protocol

dYdX “Solo” Assessment

Executive Summary

Scope of Engagement
Bramah Systems, LLC was engaged in late January of 2019 to perform a comprehensive
security review of the dYdX Trading, Inc. “Solo” repository protocol. A review was conducted
over the period by a member of the Bramah Systems, LLC. executive staff. During this period,
all Solidity smart contract code (*.sol) as of commit
77917ea86771ea3b2deec2f9c21ac0b587148b60​ was included within scope, along with
TypeScript files (*.ts) relevant to testing. Bramah Systems completed the assessment using
manual, static and dynamic analysis techniques.

Timeline
Audit Commencement: February 11, 2019

Report Delivery: February 18, 2019

Engagement Goals
The primary scope of the engagement was to evaluate and establish the overall security of the
Solo system, with a specific focus on trading actions. In specific, the engagement sought to
answer the following questions:

● Is it possible for an attacker to steal or freeze tokens?
● Is there a way to interfere with the trading mechanisms?
● Are the arithmetic calculations trustworthy?

Protocol Specification
While minimal specification is proposed within the README, multiple checks and constants are
presented through the Truffle project to ensure intended actions are successfully performed.

3

dYdX Solo Protocol

Overall Assessment
Bramah Systems was engaged to evaluate and identify significant security concerns in the
codebase of the dYdX protocol architecture. During the course of our engagement, Bramah
Systems noted numerous instances wherein the protocol deviated from established best
practices and procedures of secure software development. ​With limited exceptions (as
described below), these instances were a result of structural limitations of Solidity and not
due to inactions on behalf of the development team.

Overall, the code reviewed is of excellent quality, written with clear awareness of current
smart contract development best practices, common security pitfalls, and overall readability. Its
interfaces are well designed and its use of patterns display strong code maturity.

In particular, Bramah Systems notes that the code is well commented, particularly in sections
where understanding the developer’s intent is essential. Additionally, the overall contract
organization is consistent throughout (within contracts themselves and their overarching
interactions with others).

While during the course of the review Bramah Systems discovered areas worthy of attention
by the dYdX team, these issues have since been addressed and no significant security concerns
remain. We applaud the dYdX team on their immense dedication in following security best
practices throughout the course of development of their protocol.

Disclaimer
As of the date of publication, the information provided in this report reflects the presently held,
commercially reasonable understanding of Bramah Systems, LLC.’s knowledge of security
patterns as they relate to the dYdX Protocol, with the understanding that distributed ledger
technologies (“DLT”) remain under frequent and continual development, and resultantly carry
with them unknown technical risks and flaws. The scope of the review provided herein is
limited solely to items denoted within “Scope of Engagement” and contained within “Directory
Structure”. The report does NOT cover, review, or opine upon security considerations unique to
the Solidity compiler, tools used in the development of the protocol, or distributed ledger
technologies themselves, or to any other matters not specifically covered in this report.
The contents of this report must NOT be construed as investment advice or advice of any other
kind. This report does NOT have any bearing upon the potential economics of the dYdX
protocol or any other relevant product, service or asset of dYdX or otherwise. This report is not
and should not be relied upon by dYdX or any reader of this report as any form of financial, tax,
legal, regulatory, or other advice.

To the full extent permissible by applicable law, Bramah Systems, LLC. disclaims all warranties,
express or implied. The information in this report is provided “as is” without warranty,

4

dYdX Solo Protocol

representation, or guarantee of any kind, including the accuracy of the information provided.

Bramah Systems, LLC. makes no warranties, representations, or guarantees about the dYdX
Protocol. Use of this report and/or any of the information provided herein is at the users sole
risk, and Bramah Systems, LLC. hereby disclaims, and each user of this report hereby waives,
releases, and holds Bramah Systems, LLC. harmless from, any and all liability, damage,
expense, or harm (actual, threatened, or claimed) from such use.

Timeliness of Content
All content within this report is presented only as of the date published or indicated, to the
commercially reasonable knowledge of Bramah Systems, LLC. as of such date, and may be
superseded by subsequent events or for other reasons. The content contained within this
report is subject to change without notice. Bramah Systems, LLC. does not guarantee or
warrant the accuracy or timeliness of any of the content contained within this report, whether
accessed through digital means or otherwise.

Bramah Systems, LLC. is not responsible for setting individual browser cache settings nor can it
ensure any parties beyond those individuals directly listed within this report are receiving the
most recent content as reasonably understood by Bramah Systems, LLC. as of the date this
report is provided to such individuals.

5

dYdX Solo Protocol

General Recommendations
Best Practices & Solidity Development Guidelines

Usage of experimental Solidity version
A majority of the contracts associated with the protocol make usage of an experimental Solidity
version (​pragma experimental ABIEncoderV2​) which enables usage of the new ABI encoder.
ABIEncoderV2 ​allows for the usage of structs and arbitrarily nested arrays (such as​ ​string[]
and ​uint256[][]​) in function arguments and return values.

As no present non experimental version for these constructs exists, one must acknowledge the
associated risk in utilizing non release-candidate (“RC”) software. It is understood that software
in the beta phase will generally have more bugs than completed software as well as
speed/performance issues and may cause crashes or data loss.

File: Numerous

nonReentrant functions not marked External
The ​nonReentrant ​modifier prevents a contract from calling itself, directly or indirectly. If you
mark a function ​nonReentrant​, you should also mark it ​external​. Calling one ​nonReentrant
function from another is not supported. Instead, you can implement a ​private​ function doing the
actual work, and an ​external​ wrapper marked as ​nonReentrant​.

UPDATE​: Discussion with the dYdX team unveiled that current limitations within
ABIEncoderV2 ​restrict the ability to mark functions handling structs as both non-reentrant and
external. This ideally will be patched in a later version of Solidity.

File: Numerous

Choose “Base Currency” for consistency
Multiple digital currencies (and their respective components) are referenced throughout the
project. In order to maintain consistency, a core currency should be chosen (such as Ether or
Dai). As various stable-coins the protocol seeks to accept may differ in their relative price to the
dollar (USD), pegging these entities to their relative price in Ether will allow for the most
comprehensive price tracking.

File: Numerous

6

dYdX Solo Protocol

Non-initialized Return Values
Within​ protocol/lib/Storage.sol​ in the ​SetStatus ​function, the function's signature only denotes

the type of the return value, but the function's body does not contain return statement. If the
return value is not needed, the specification of the return type is not inherently necessary.

File: protocol/lib/Storage.sol
Lines: 531-540

Completion of TODO’s & Incomplete Functionality
Throughout the project, there are multiple instances in which TODO is referenced. In each,
establish whether or not the goal of the file has been established (e.g. in
contracts\protocol\State.sol​ it appears the state implementation is relatively feature complete).
In particular, pricing oracles appear to be heavily referenced throughout the code but their
actual implementation does not appear to be present at the time of review.

File: Numerous

Usage of Block.timestamp
Miners can affect block.timestamp for their benefits. Thus, one should not rely on the exact
value of block.timestamp. As a result of such, ​block.timestamp​ and ​now ​should traditionally
only be used within inequalities (note: the protocol ​does ​follow this strategy).

Block numbers and average block time can be used to estimate time, but this is not future proof
as block times may change (such as the changes expected during Casper).

File: protocol/lib/Time.sol
Lines: 46-46

External call failure could be more verbose
There is a non-zero possibility that for numerous reasons an external contract call could fail.
Especially when sending Ether, it is critical to check for relevant return values and ensure error
handling. Without verbose logging of the potential error (and only the arguments, as is
currently present), it may pose a large amount of difficulty to debug where potential errors may
stem from.

File: protocol/impl/OperationImpl.sol
Lines: 811-815

7

dYdX Solo Protocol

Highly Privileged Owner Accounts
Within the Admin.sol file, multiple onlyOwner gated actions exist, allowing configuration

changes of multiple market and risk functions. If the exchange/proxy owner is hacked, and their
Ethereum private key is exposed, catastrophic damage could be caused to the protocol. It is
suggested that a two week time-delay be added to new administrative actors in the event a
new owner is added, allowing individuals to withdraw their funds from the protocol in case an
untrusted address is authorized for administrative actions.

No changes are recommended to the contract system here, but we wish to underscore the
importance of the surrounding systems. Ensuring that these keys are protected is of the utmost
criticality.

File: protocol/Admin.sol

NPM Module Usage
Throughout the project, NPM modules are utilized in order to import various functionality
(notably, OpenZeppelin contracts). While this practice enables relatively minimal modifications
to be made in order to invoke certain functions securely (such as with SafeMath), these libraries
must be continuously updated in order to ensure they are used securely.

Virtually every non-blockchain application has these issues because most development teams
do not focus on ensuring their components/libraries are up to date. In the case of blockchain
codebases, however, knowing all outside components utilized is critical.

It is suggested the following steps are followed (as noted by the OWASP project):

1. Identify all components and the versions you are using, including all dependencies.
(NPM package lock can help determine these).

2. Monitor the security of these components in public databases, project mailing lists, and
security mailing lists, and keep them up to date.

3. Establish security policies governing component use, such as requiring certain software
development practices, passing security tests, and acceptable licenses.

4. Where appropriate, consider adding security wrappers around components to disable
unused functionality and/ or secure weak or vulnerable aspects of the component.

File: Numerous

8

dYdX Solo Protocol

Toolset Warnings
In addition to our manual review, our process involves utilizing concolic analysis and dynamic
testing in order to perform additional verification of the presence security vulnerabilities. An
additional part of this review phase consists of reviewing any automated unit testing
frameworks that exist.
The following sections detail warnings generated by the automated tools and confirmation of
false positives where applicable, in addition to findings generated through manual inspection.

Extensive Test Coverage
The contract repository heavily benefits from extensive unit test coverage throughout. This
testing provides a variety of unit tests which encompass the various operational stages of the
contract. The dYdX protocol (and its relevant components and their respective subcomponents)
possesses numerous tests validating functionality and ensuring that certain behaviors (those
relating to erroneous or overflow-prone input) do not see successful execution.

In particular, specific focus within the testing suite was placed upon validating that various
actions (such as setting, getting, approval, and various market actions) cannot occur after a
state change or as the result of bad input (such as an invalid address).

The dYdX team constructed tests in both TypeScript and native Solidity, allowing for a fairly
robust test-suite.

Excess Gas Consumption & Costly Loops
If the state variables ​.balance​ or ​.length​ are used several times, holding its value in a local
variable is more gas efficient (as the variable does not need to be accessed every loop iteration).

Moreover, as Ethereum miners impose a limit on the total number of gas consumed in a block, if
array.length​ is large enough, the function will exceed the block gas limit, and transactions
calling it will never be confirmed. As a result, if an external entity is to influence ​array.length​,
this could pose issue. Where possible, avoiding loops with a large number of iterations (or an
unknown number of iterations) is advised.

In particular, code concerning accounts on various markets within ​OperationImpl.sol ​appears to
be impacted by these constraints. With an immensely high number of markets (yet still within
the bounds of ​uint256​), various requests began to fail.

File: external/proxies/PayableProxyForSoloMargin.sol
Lines: 92-115
File: protocol/lib/Storage.sol
Lines: 499-511

9

dYdX Solo Protocol

File: protocol/lib/Storage.sol
Lines: 298-324
File: protocol/Permission.sol
Lines: 56-61
File: protocol/impl/OperationImpl.sol
Lines: 206-240
File: protocol/impl/OperationImpl.sol
Lines: 251-279
File: protocol/impl/OperationImpl.sol
Lines: 96-106
File: protocol/impl/OperationImpl.sol
Lines: 125-166
File: protocol/impl/OperationImpl.sol
Lines: 173-178

Parsing Functions & Malformed Input
Parsing functions within Actions.sol do not appear to handle malformed input (no reverting
statement within enforces such behavior). While this may be anticipated, as these contract
functions are not intended to be called directly, they could benefit from the inclusion of logic to
alert on missing arguments. Seen similarly within Token.sol, a number of instances exist in
which success must be assumed due to the lack of verbose failure. ​In general, these limitations
exist as underlying structural issues with Solidity (and the Ethereum platform as a whole),
as logging for each potential failure would require an exorbitant amount of gas, but not
logging presents potential risk. Overall, the dYdX team made careful and concise points of
inclusion for each potential area of alert.

File: protoco/lib/Actions.sol

ERC-20 Race Condition
A ​known race condition​ exists within the present implementation of the ERC20 standard. Due
to the nature of this vulnerability being an inherent flaw in the ERC20 standard, considerations
must be made for any divergence (as modifications made while no longer be ERC20 compliant).

With this noted, the dYdX protocol makes appropriate mitigations and utilizes the
suggested allowance approach in order to remove concern presented by this vulnerability.

10

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

dYdX Solo Protocol

Directory Structure
At time of review, the directory structure of the dYdX “Solo” contract repository was as follows:

Directory of \User\Audit\Documents\GitHub\solo\contracts

02/14/2019 03:39 PM <DIR> external
02/14/2019 03:39 PM 1,221 Migrations.sol
02/14/2019 03:39 PM <DIR> protocol
02/14/2019 03:39 PM <DIR> testing
 1 File(s) 1,221 bytes

Directory of \User\Audit\Documents\GitHub\solo\contracts\external

02/14/2019 03:39 PM <DIR> helpers
02/14/2019 03:39 PM <DIR> proxies
02/14/2019 03:39 PM <DIR> traders
 0 File(s) 0 bytes

Directory of \User\Audit\Documents\GitHub\solo\contracts\external\helpers

02/14/2019 03:39 PM 1,488 OnlySolo.sol
 1 File(s) 1,488 bytes

Directory of \User\Audit\Documents\GitHub\solo\contracts\external\proxies

02/14/2019 03:39 PM 3,724 PayableProxyForSoloMargin.sol
 1 File(s) 3,724 bytes

Directory of \User\Audit\Documents\GitHub\solo\contracts\external\traders

02/14/2019 03:39 PM 6,840 Expiry.sol
 1 File(s) 6,840 bytes

Directory of \User\Audit\Documents\GitHub\solo\contracts\protocol

02/14/2019 03:39 PM 4,867 Admin.sol
02/14/2019 03:39 PM 8,014 Getters.sol
02/14/2019 03:39 PM <DIR> impl
02/14/2019 03:39 PM <DIR> interfaces
02/14/2019 03:39 PM <DIR> lib

11

dYdX Solo Protocol

02/14/2019 03:39 PM 1,423 Operation.sol
02/14/2019 03:39 PM 1,552 Permission.sol
02/14/2019 03:39 PM 1,354 SoloMargin.sol
02/14/2019 03:39 PM 839 State.sol
 6 File(s) 18,049 bytes

Directory of \User\Audit\Documents\GitHub\solo\contracts\protocol\impl

02/14/2019 03:39 PM 8,835 AdminImpl.sol
02/14/2019 03:39 PM 25,825 OperationImpl.sol
 2 File(s) 34,660 bytes

Directory of \User\Audit\Documents\GitHub\solo\contracts\protocol\interfaces

02/14/2019 03:39 PM 1,309 IAutoTrader.sol
02/14/2019 03:39 PM 1,016 ICallee.sol
02/14/2019 03:39 PM 2,139 IErc20.sol
02/14/2019 03:39 PM 2,925 IExchangeWrapper.sol
02/14/2019 03:39 PM 1,242 IInterestSetter.sol
02/14/2019 03:39 PM 1,425 IPriceOracle.sol
 6 File(s) 10,056 bytes

Directory of \User\Audit\Documents\GitHub\solo\contracts\protocol\lib

02/14/2019 03:39 PM 1,410 Account.sol
02/14/2019 03:39 PM 9,481 Actions.sol
02/14/2019 03:39 PM 1,312 Decimal.sol
02/14/2019 03:39 PM 11,820 Events.sol
02/14/2019 03:39 PM 3,785 Exchange.sol
02/14/2019 03:39 PM 4,712 Interest.sol
02/14/2019 03:39 PM 2,829 Math.sol
02/14/2019 03:39 PM 1,797 Monetary.sol
02/14/2019 03:39 PM 6,191 Require.sol
02/14/2019 03:39 PM 17,199 Storage.sol
02/14/2019 03:39 PM 1,419 Time.sol
02/14/2019 03:39 PM 3,914 Token.sol
02/14/2019 03:39 PM 5,578 Types.sol
 13 File(s) 71,447 bytes

12

dYdX Solo Protocol

Directory of \User\Audit\Documents\GitHub\solo\contracts\testing

02/14/2019 03:39 PM 1,011 ErroringOmiseToken.sol
02/14/2019 03:39 PM 1,042 ErroringToken.sol
02/14/2019 03:39 PM 3,146 OmiseToken.sol
02/14/2019 03:39 PM 7,546 TestAutoTrader.sol
02/14/2019 03:39 PM 3,251 TestCallee.sol
02/14/2019 03:39 PM 1,592 TestInterestSetter.sol
02/14/2019 03:39 PM 1,372 TestPriceOracle.sol
02/14/2019 03:39 PM 3,112 TestSoloMargin.sol
02/14/2019 03:39 PM 3,459 TestToken.sol
02/14/2019 03:39 PM 1,035 TokenA.sol
02/14/2019 03:39 PM 1,035 TokenB.sol
02/14/2019 03:39 PM 1,035 TokenC.sol
 12 File(s) 28,636 bytes

 Total Files Listed:
 43 File(s) 176,121 bytes
 29 Dir(s)

13

dYdX Solo Protocol

Appendix

Mythril Detection Capabilities

Issue Description Mythril Detection
Module(s)

References

Unprotected
functions

Critical functions
such as sends with
non-zero value or
suicide() calls are
callable by anyone, or
msg.sender is
compared against an
address in storage
that can be written
to. E.g. Parity wallet
bugs.

Unchecked_suicide​,

Ether_send

unchecked_retval

Missing check on
CALL return value

 unchecked_retval Handle errors in
external calls

Re-entrancy Contract state should
never be relied on if
untrusted contracts
are called. State
changes after
external calls should
be avoided.

external calls to
untrusted contracts

Call external
functions lastAvoid
state changes after
external calls

Multiple sends in a
single transaction

External calls can fail
accidentally or
deliberately. Avoid
combining multiple
send() calls in a
single transaction.

 Favor pull over push
for external calls

14

https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/suicide.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/ether_send.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/unchecked_retval.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/unchecked_retval.py
https://consensys.github.io/smart-contract-best-practices/recommendations/#use-caution-when-making-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#use-caution-when-making-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#use-caution-when-making-external-calls
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/external_calls.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/external_calls.py
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-state-changes-after-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-state-changes-after-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-state-changes-after-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-state-changes-after-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#favor-pull-over-push-for-external-calls
https://consensys.github.io/smart-contract-best-practices/recommendations/#favor-pull-over-push-for-external-calls

dYdX Solo Protocol

External call to
untrusted contract external calls to

untrusted contracts

Delegatecall or
callcode to untrusted
contract

 delegatecall_forward

Integer
overflow/underflow integer Validate arithmetic

Timestamp
dependence Dependence on

predictable variables
Miner time
manipulation

Payable transaction
does not revert in
case of failure

Use of tx.origin tx_origin Solidity
documentation,

Avoid using tx.origin

Type confusion
Predictable RNG Dependence on

predictable variables

Transaction order
dependence Transaction order

dependence
Front Running

Information exposure
Complex fallback
function (uses more
than 2,300 gas)

A too complex
fallback function will
cause send() and
transfer() from other
contracts to fail. To
implement this we
first need to fully
implement gas
simulation.

15

https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/external_calls.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/external_calls.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/delegatecall.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/integer.py
https://consensys.github.io/smart-contract-best-practices/known_attacks/#integer-overflow-and-underflow
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/dependence_on_predictable_vars.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/dependence_on_predictable_vars.py
https://consensys.github.io/smart-contract-best-practices/known_attacks/#timestamp-dependence
https://consensys.github.io/smart-contract-best-practices/known_attacks/#timestamp-dependence
https://solidity.readthedocs.io/en/develop/security-considerations.html#tx-origin
https://solidity.readthedocs.io/en/develop/security-considerations.html#tx-origin
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-using-txorigin
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/dependence_on_predictable_vars.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/dependence_on_predictable_vars.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/transaction_order_independence.py
https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/transaction_order_independence.py
https://consensys.github.io/smart-contract-best-practices/known_attacks/#transaction-ordering-dependence-tod-front-running

dYdX Solo Protocol

Use require()instead
of assert()

Use assert() only to
check against states
which should be
completely
unreachable.

Exceptions Solidity docs

Use of depreciated
functions

Use revert()instead of
throw(), selfdestruct()
instead of suicide(),
keccak256() instead
of sha3()

Detect tautologies Detect comparisons
that always evaluate
to 'true', see also​ #54

Call depth attack Deprecated

Oyente Detection Capabilities

Issue Description

Re-entrancy Contract state should never be relied on if
untrusted contracts are called. State changes
after external calls should be avoided.

Timestamp Dependence The timestamp of the block can be
manipulated by the miner, and so should not
be used for critical components of the
contract. Block numbers and average block
time can be used to estimate time, but this is
not future proof as block times may change
(such as the changes expected during
Casper).

Assertion Failure An assertion is a boolean expression at a
specific point in a program which will be true
unless there is a bug in the program.

16

https://github.com/ConsenSys/mythril/blob/master/mythril/analysis/modules/exceptions.py
https://solidity.readthedocs.io/en/develop/control-structures.html#error-handling-assert-require-revert-and-exceptions
https://github.com/ConsenSys/mythril/issues/54

dYdX Solo Protocol

Assertion failures as such denote critical
instances in which assumptions made by the
developer no longer hold to be true.

Callstack Depth Attack Deprecated

Transaction Order Dependence (TOD) Since a transaction is in the mempool for a
short while, one can know what actions will
occur, before it is included in a block. This can
be troublesome for things like decentralized
markets, where a transaction to buy some
tokens can be seen, and a market order
implemented before the other transaction
gets included.

Parity Multisig Bug 2 Unchecked kill/selfdestruct functions, such as
those within the Parity Multisig Bug 2 can
lead to destruction of the contract, sending
funds to the given address provided.

17

