
Chip Multithreading Systems Need a New Operating System
Scheduler

Alexandra Fedorova*†, Christopher Small†, Daniel Nussbaum†, and Margo Seltzer*

*Harvard University, †Sun Microsystems

The unpredictable nature of modern workloads,

characterized by frequent branches and control transfers,
can result in processor pipeline utilization as low as 19%.
Chip multithreading (CMT), a processor architecture
combining chip multiprocessing and hardware
multithreading, is designed to address this issue. Hardware
vendors plan to ship CMT systems within the next two
years; understanding how such systems will perform is
crucial if we are to use them to full advantage.

Our simulation experiments show that a CMT-savvy
operating system scheduler could improve application
performance by a factor of two. In this paper we describe
our initial analysis of application performance on CMT
systems and propose a design for a scheduler tailored for
the needs of a CMT system.

1. INTRODUCTION

Modern server applications, such as application
servers, web services, and on-line transaction processing
systems, are notorious for poor utilization of CPU pipeline.
Such applications usually consist of multiple threads of
control, executing short stretches of integer operations,
with frequent dynamic branches. This negatively affects
cache locality and branch prediction and causes frequent
processor stalls [1,2]. Modern superscalar processors,
using speculative and out-of-order execution, typically
manage to wring instruction-level parallelism (ILP) from
scientific workloads, but can do little for transaction-
processing-like workloads. Even some SPEC CPU
benchmarks yield processor pipeline utilizations as low as
19% for some configurations [14].

Chip multiprocessing (CMP) and hardware
multithreading (MT) techniques were designed to improve
processor utilization for transaction-processing-like
workloads by offering better support for thread-level
parallelism (TLP). A CMP processor includes multiple
processor cores on a single chip, which allows more than
one thread to be active at a time and improves utilization of
chip resources. An MT processor has multiple sets of
registers and other thread state and interleaves execution of
instructions from different threads, either by switching
between threads (as often as on each cycle) or by executing
instructions from multiple threads simultaneously (if the
instructions use different functional units) [4,5,6,7]. As a
result, if one thread is blocked on a memory access or some
other long-latency operation, other threads can make
forward progress. IBM's Power4 and Sun's UltraSPARC

IV are CMP systems. Intel's hyper-threaded Xeon is an MT
system.

Driven by improvement in chip densities, hardware
vendors are proposing architectures that combine CMP and
MT. We will refer to such systems as chip multithreading
(CMT) systems. Sun Microsystems, Intel, and IBM have
announced plans to ship such systems as early as 2005 [8,
9,18]. Understanding what affects application performance
on such systems is critical to our ability to best use such
systems as they become available.

A major factor affecting performance on systems with
multiple hardware contexts is operating system scheduling.
For example, one OS scheduler that is tailored for MT
processors produces an average performance improvement
of 17% [10]. Moreover, it has been pointed out that a naïve
scheduler can hurt performance, making a multithreaded
processor perform worse than a single-threaded processor
[17]. Our experiments have shown that the potential for
performance gain from a specialized scheduler on CMT
systems is even greater, and can be as large as a factor of
two. We believe that scheduler designs proposed for
single-processor multithreaded systems do not scale up to
the dozens of hardware threads that we expect to find on
proposed CMT processors. Such systems will require a
fundamentally new design for the operating system
scheduler.

An ideal scheduler will assign threads to processors in
a way that minimizes resource contention and maximizes
system throughput, and would do so in a scalable fashion.
The scheduler must understand how its scheduling
decisions will affect resource contention, because resource
contention ultimately determines performance.

We undertook a simulation study to better understand
the causes and effects of resource contention on CMT
processors. In this paper we describe the results of our
experiments, which have led us to a design for a CMT-
savvy OS scheduler that improves application performance
by as much as a factor of two.

The rest of the paper is organized as follows. In
Section 2, we discuss related work and explain why
existing scheduling algorithms will not work on CMT
systems. We describe our system model and simulator in
Section 3. In Section 4, we present our study of resource
contention. In Section 5, we propose a design for a CMT-
tailored scheduler. We conclude in Section 6.

2. RELATED WORK
 Scheduling on single-processor MT systems has been
studied before [10-12]. The scheduling algorithms for
single-processor MT systems discussed in the literature
worked as follows: they ran all combinations of threads that
could be co-scheduled, determined which combination(s)
yielded the best performance, using this data to make
further scheduling decisions. These algorithms were shown
to work reasonably well on single-process MT systems,
yielding an average performance improvement of 17%.
Although this technique is applicable on a system that
supports a handful of threads, it does not scale well. An
OLTP workload may involve a hundred threads; on a CMT
system with 16 hardware contexts, there are 1027
combinations to evaluate. Moreover, while the scheduler is
evaluating schedules, it is bound to try those that do not
work well, and during these times the system is not running
at best performance. We argue that there is a need for a
different design. Our proposal involves building a
scheduler that would model relative resource contention
resulting from different potential schedules, and use this as
a basis for its decisions.

We realize that modeling resource contention is a hard
problem. In situations where a good prediction is difficult
to achieve, we may resort to using our model of resource
contention to reduce the size of the problem space, and then
use the algorithms proposed in earlier work [10-12] to
make final scheduling decisions.

3. EXPERIMENTAL PLATFORM

To study performance of these systems, we have built
a CMT system simulator toolkit [16] as a set of extensions
to the Simics simulation toolkit [15]. Our toolkit models
systems with multiple multithreaded CPU cores. The
number of CPU cores per chip and the degree of hardware
multithreading is configurable.

Our model of a multithreaded processor core is based
on the concept of fine-grained multithreading proposed by
Laudon et al. [6]. An MT core has multiple hardware
contexts (usually one, two, four or eight), where each
context consists of a set of registers and other thread state.
Such a processor interleaves execution of instructions from
the threads, switching between contexts on each cycle. A
thread may become blocked when it encounters a long-
latency operation, such as servicing a cache miss. When
one or more threads are unavailable, the system continues
to switch among the remaining available threads. For
multithreaded workloads, this improves processor
utilization and hides the latency of long operations. This
latency-hiding property is at the heart of hardware
multithreading.

Our simulated CPU core has a simple RISC pipeline,
with one set of functional units (arithmetic unit, load/store
unit, etc.). The processor that we model is typically
configured with four hardware contexts per CPU core.
Each core has a single shared TLB and L1 data and
instruction caches. The (integrated) L2 cache is shared by
all of the CPU cores on the chip.

One alternative to the architecture that we have
chosen is to have multiple sets of functional units on each
CPU core. This is termed a simultaneous multithreaded
(SMT) system [7, 14]. SMT systems are more complex
and require more chip real estate. We have instead taken
the approach of leveraging a simple, classical RISC core in
order to allow space for more cores on each chip. This
allows for a higher degree of multithreading in the system,
resulting in higher throughput for multithreaded and multi-
programmed workloads.

4. STUDYING RESOURCE CONTENTION

On a CMT system, each hardware context appears as
a logical processor to the operating system; a software
thread is assigned to a hardware context for the duration of
the scheduling time slice. Threads that share a processor
compete for resources. There are many different categories
of resources contended for; in this paper, we focus on the
processor pipeline because that category of contention
characterizes the difference between single-threaded and
multithreaded processors.

When assigning threads to hardware contexts, the
scheduler has to decide which threads should be run on the
same processor, and which threads should be run
separately. The optimal thread assignment should result in
high utilization of the processor. If we are to design a
scheduler that can find good thread assignments, we must
understand the causes and effects of contention among the
threads that share a processor. Our study of such contention
is the subject of this section.

We have observed that the instruction mix executed
by a workload is an important factor in determining the
level of contention for the processor pipeline. The key to
understanding why this is the case is the concept of
instruction delay latency, which we introduce next.

Recall from Section 3 that a processor keeps a copy of
architectural state for each active hardware context. When a
thread performs a long-latency operation, it is blocked;
subsequent instructions to be issued by that thread are
delayed until the operation completes. We term the
duration of this delay the instruction delay latency. ALU
instructions have 0 delay latency.1 A load that hits in the L1
cache has a latency of four cycles. A branch delays the
subsequent instruction by two cycles.

Processor pipeline contention depends on the latencies
of the instructions that the workload executes. If a thread is
running a workload dominated by instructions with long
delay latencies, such as memory loads, it will often let
functional units go unused, leaving ample opportunities for
other threads to use them. Resource contention in this case
is low. Alternatively, if a thread is running an instruction
mix consisting strictly of ALU operations it can keep the
pipeline busy at all times. The performance of other threads
co-scheduled with this thread will suffer accordingly.

1 We model a pipeline that implements result bypassing.

L …
T1 - -

L …
T2 - -

L …
T3 - -

L …
T4 - -

Ctx switch

A

B LT1

T2

T3

T4

L

L

L

L

L

L

L

L

L

L

L

C LT1

T2

T3

T4

- - - - L - - - - L - - - -

L - - - - L - - - - L - - - -

L - - - - L - - - - L - - - -

L - - - - L - - - - L - - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

- - - -

…

…

…

…

…

…

…

…

A …
T1 A A

A …
T2 A A

A …
T3 A A

A …
T4 A A

Ctx switch

A

B AT1

T2

T3

T4

A

A

A

A

A

A

A

A

A

A

A

C AT1

T2

T3

T4

A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A

Figure 1. CPU-bound workload. Threads T1 through T4
contend for ALU on each cycle. Systems A and B perform
comparably, because they each have one ALU. System C
has an ALU per each of its four processors, and it
outperforms A and B by a factor of four.

To assess the severity of pipeline contention for a

workload, it is useful to compare how it would perform on
an MT core with how it would perform on a conventional
single-threaded core and on a traditional multiprocessor.
Performance on the conventional processor provides the
theoretical lower bound; performance on the multiprocessor
provides the upper bound. When contention is low,
performance on an MT core should approach that of an MP
system, where each thread has all functional units to itself.
When contention is high, performance of an MT core will
be no better than that of a single-threaded processor, where
a single thread monopolizes all resources.

Now let us show by example how this reasoning can
apply in practice. We have two workloads: (1) a CPU-
bound workload, consisting of four threads that execute
only ALU instructions with delay latency of zero cycles,
and (2) a memory-bound workload, consisting of four
threads that execute only load instructions with delay
latency of four cycles. We wish to see how these workloads
would run on three systems: A, a single-threaded processor;
B, a multithreaded processor with four hardware contexts;
and C, a four-way multiprocessor.

When running the CPU-bound workload, A and B
will perform comparably; C will have a throughput four
times greater than the other two systems, because it has
four times as many functional units. Figure 1 illustrates
why this is the case.

Figure 2. Memory-bound workload. Systems B and C
outperform System A by a factor of four, because they are
able to overlap memory access latencies for the four threads.

When running the memory-bound workload, System

B and System C will perform comparably, outperforming
System A by a factor of four2. Figure 2 illustrates this.

Figure 3 shows how an experiment performed on our
simulator validates this theory. The instruction mixes
executed by the threads have been hand-crafted to consist
strictly of ALU instructions in the CPU-bound case, and
strictly of load instructions in the memory-bound case.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

CPU-bound mem-bound

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 (i

ns
t/s

ec
)

A

B

C

Figure 3. Combined throughput delivered by all threads in the
system for each type of workload. Throughput has been
normalized to the performance of System A.

2We assume that the cache hit rate and available memory
bandwidth is no worse on B than on A or C.

This simple experiment demonstrates that the
instruction mix, and, more precisely, the average
instruction delay latency, can be used as a heuristic for
approximating the processor pipeline requirements for a
workload. The scheduler can use the information on the
workload's instruction mix for its scheduling decisions. A
thread with an instruction mix dominated by long-latency
instructions can leave functional units underutilized.
Therefore, it is logical to co-schedule it with a thread that is
running a lot of short-latency instructions and has high
demand for functional units.

 We stress that this is a heuristic; since it does not
model contention for other resources, it does not always
predict performance. For example, this technique does not
take into account effects of cache contention that surface
when threads with large working sets are running on the
same processor.

Consider, for example, the memory-bound workload,
modified to vary the working set size of a thread from eight
bytes to 2MB. Figure 4 shows the results of this
experiment, comparing the three systems. According to our
simple heuristic, B and C should perform comparably.
However, in the middle part of the graph the two curves
diverge. The cause is the reduced L1 data cache hit rate on
B, where four threads share the cache on the processor.

Figure 4. Memory-bound workload with varying working set
size.

Although this model has limitations, we will show in

the next section that it is a good starting point. We are
currently extending our model to include effects of cache
contention and cooperative data sharing.

5. SCHEDULING

In the previous section we argued that properties of
the instruction mix can be useful in assessing pipeline
contention and making scheduling decisions.

Mean cycles-per-instruction (CPI), easily determined
using hardware counters, gives us a useful window into the
dynamic instruction mix of a workload. CPI nicely captures
average instruction delay, which can serve as a first
approximation for making scheduling decisions.

In the following experiment, we make use of a
thread's single-threaded CPI (the CPI that would be
observed if the thread were running on a dedicated
processor). Threads with high CPIs usually have low
pipeline resource requirements, because they spend much
of their time blocked on memory or executing long-latency
instructions, leaving functional units unused. Threads with
low CPIs have high resource requirements, as they spend
little time stalled.

 Core 0 Core 1 Core 2 Core 3

(a) 1, 6, 11, 16 1, 6, 11, 16 1, 6, 11, 16 1, 6, 11, 16
(b) 1, 6, 6, 6 1, 6, 11, 11 1, 11, 11, 16 1, 16, 16, 16
(c) 1, 1, 6, 6 1, 1, 6, 6 11, 11, 11, 11 16, 16, 16, 16
(d) 1, 1, 1, 1 6, 6, 6, 6 11, 11, 11, 11 16, 16, 16, 16

Table 1: Assignment of threads to cores for schedules (a)-(d).
Numbers in cells show the single-threaded CPIs of threads
assigned to this core.

In this experiment we configured our simulated
processor with four cores and four threads on each core.
The workload consists of 16 threads, four each with CPI of
one (CPU-bound), six, 11, and 16. We run four different
schedules, assigning threads to cores as shown in Table 1.

We expect schedules (a) and (b) to perform better
than schedules (c) and (d), because they schedule threads
with low resource requirements (high CPI) together with
threads that have high resource requirements (low CPI). In
schedules (c) and (d), there are two processor cores running
multiple threads with a single-threaded CPI of 1. Those
cores would be fully utilized, while other cores would be
under-utilized. Figure 5 shows the experimental results.
Schedules (a) and (b) perform twice as well as (d) and 1.5
times better than (c).

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

0K 2K 8K 32K 128K 512K 1MB

Working set size (per thread)

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

A
B
C

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

(a) (b) (c) (d)

A
gg

re
ga

te
 th

ro
ug

ht
pu

t (
tx

n/
se

c)

Figure 5. Aggregate throughput achieved by each schedule.

This begs the question as to how a scheduler can

make these decisions in practice. We have measured the
CPI of a number of applications and benchmarks over time,
and found that (a) measured CPI can vary by an order of

magnitude among applications, and (b) given recent
behavior, we can predict the near-term CPI of a thread.
Given the range and predictability of CPI, constructing a
scheduler that balances load across CPU cores on a CMT
processor should be a simple matter of engineering. Due to
space constraints, we do not elaborate any further on these
results in this paper, but we plan to do so in future work.

6. SUMMARY

We have demonstrated that basing scheduling
decisions on CPIs works well for simple workloads.
However, we envision some limitations of this approach.
CPI does not give precise information on the types of
instructions that the workload is executing. For example,
using just the CPI, the scheduler cannot tell which threads
will compete for other resources, such as the cache
hierarchy or a floating-point unit. Another disadvantage is
that when the CPI of the workload is measured on a busy
system, it may be affected by the resource contention that is
already present.

We are currently investigating the following topics to
develop better CMT schedulers:
• Techniques for inferring single-threaded CPI, given

CMT CPI.
• Determining the effects of cache contention on the

throughput of co-scheduled threads.
• Investigating other workload characteristics, e.g., static

instruction mix, to improve scheduling decisions.
• Studying the nature and dynamics of CPIs exhibited by

real workloads to understand whether this is a viable
metric to be used for scheduling real applications.

• Investigating ways to integrate these ideas with other
scheduling policies.

• Testing our scheduling ideas on real workloads.

In this paper we have demonstrated that CMT systems

need new schedulers: a naïve scheduler may squander up to
half of available application performance, and existing
SMT scheduling algorithms do not scale to dozens of
threads.

We have reported results of our simulation study that
helped us better understand some of the causes and effects
of pipeline contention on CMT processors. Based on our
findings we proposed a scheduler that makes use of CPI.
Our scheduler yields a two-fold performance improvement
over a naïve scheduler.

7. ACKNOWLEDGMENTS
 We would like to thank Tim Hill and Miriam
Kadansky of Sun Microsystems for their useful suggestions
and help with preparation of this paper.

8. REFERENCES
[1] James R. Larus and Michael Parkes, “Using Cohort

Scheduling to Enhance Server Performance”, USENIX
Tech. Conf., June 2002.

[2] Jack Lo et al., “An Analysis of Database Workload
Performance on Simultaneous Multithreaded
Processors”, ISCA, June 1998.

[3] Deborah T. Marr et al., “Hyper-Threading
Technology Architecture and Microarchitecture”,
Intel Technology Journal Q1, 2002.

[4] Robert Alverson et al., “The Tera Computer System”,
In Proc. 1990 Intl. Conf. on Supercomputing.

[5] Anant Agrawal, Beng-Hong Lim, David Kranz and
John Kubiatowicz, “APRIL: A Processor Architecture
for Multiprocessing”, ISCA, June 1990.

[6] James Laudon, Anoop Gupta, and Mark Horowitz,
“Interleaving: A Multithreading Technique Targeting
Multiprocessors and Workstations”, ASPLOS VI,
October 1994.

[7] Jack Lo, Susan Eggers, Joel Emer, Henry Levy,
Rebecca Stamm, and Dean Tullsen, “Converting
thread-level parallelism into instruction-level
parallelism via simultaneous multithreading”, ACM
TOCS 15, 2, August 1997.

[8] Sun Microsystems web site, http://www.sun.com/
processors/throughput/datasheet.html

[9] Intel web site, http://www.intel.com/pressroom/
archive/speeches/otellini20030916.htm

[10] Allan Snavely and Dean Tullsen, “Symbiotic
Jobscheduling for a Simultaneous Multithreading
Machine”, In ASPLOS IX, November 2000.

[11] Allan Snavely, Dean Tullsen, and Geoff Voelker,
“Symbiotic Jobscheduling with Priorities for a
Simultaneous Multithreading Processor”,
SIGMETRICS, 2002.

[12] Sujay Parekh, Susan Eggers, Henry Levy, Jack Lo,
“Thread-sensitive Scheduling for SMT Processors”,
http://www.cs.washington.edu/research/smt/, 2000.

[13] Nathan Tuck and Dean M. Tullsen, “Initial
Observations of the Simultaneous Multithreading
Pentium 4 Processor”, PACT, September 2003.

[14] Dean M. Tullsen, Susan J. Eggers, and Henry M.
Levy, “Simultaneous Multithreading: Maximizing
On-Chip Parallelism”, ISCA, June 1995.

[15] Peter S. Magnusson, Fredrik Dahlgren, Håkan Grahn,
Magnus Karlsson, Fredrik Larsson, Fredrik
Lundholm, Andreas Moestedt, Jim Nilsson, Per
Stenström, and Bengt Werner, “SimICS/sun4m: A
Virtual Workstation”, USENIX Tech. Conf., June
1998.

[16] Daniel Nussbaum, Alexandra Fedorova, Christopher
Small, “The Sam CMT Simulator Kit.” Sun Labs TR.
In preparation; contact fedorova@eecs.harvard.edu.

[17] Duc Vianney, “Hyperthreading Speed Linux”,
http://www-106.ibm.com/developerworks/linux/
library/l-htl/

[18] “IBM Readies Power5 Microprocessor”,
http://www.supercomputingonline.com/nl.php?sid=43
08

mailto:fedorova@eecs.harvard.edu
http://www-106.ibm.com/developerworks/linux/
http://www106.ibm.com/developerworks/linux/library/

	1. INTRODUCTION

