
Beyond Multiprocessing ...
Multithreading the SunOS Kernel

J. R. Eykholt, S. R. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,
M. Smith, D. Stein, J. Voll, M. Weeks, D. Williams – SunSoft, Inc.

ABSTRACT
Preparing the SunOS/SVR4 kernel for today’s challenges: symmetric multiprocessing,

multi-threaded applications, real-time, and multimedia, led to the incorporation of several
innovative techniques. In particular, the kernel was re-structured around threads. Threads are
used for most asynchronous processing, including interrupts. The resulting kernel is fully
preemptible and capable of real-time response. The combination provides a robust base for
highly concurrent, responsive operation.

Introduction
When we started to investigate enhancements to

the SunOS kernel to support multiprocessors, we
realized that we wanted to go further than merely
adding locks to the kernel and keeping the user pro-
cess model unchanged. It was important for the ker-
nel to be capable of a high degree of concurrency on
tightly coupled symmetric multiprocessors, but it was
also a goal to support more than one thread of con-
trol within a user process. These threads must be
capable of executing system calls and handling page
faults independently. On multiprocessor systems,
these threads of control must be capable of running
concurrently on different processors. [Powell 1991]
described the user visible thread architecture.

We also wanted the kernel to be capable of
bounded dispatch latency for real-time threads
[Khanna 1992]. Real-time response requires absolute
control over scheduling, requiring preemption at
almost any point in the kernel, and elimination of
unbounded priority inversions wherever possible.

The kernel itself is a very complex multi-
threaded program. Threads can be used by user
applications as a structuring technique to manage
multiple asynchronous activities; the kernel benefits
from a thread facility that is essentially the same.

The resulting SunOS 5.0 kernel, the central
operating system component of Solaris 2.0, is fully
preemptible, has real-time scheduling, symmetrically
supports multiprocessors, and supports user-level
multithreading. Several of the locking strategies
used in this kernel were described in [Kleiman
1992]. In this paper we’ll describe some of the
implementation features that make this kernel
unique.

Overview of the Kernel Architecture
A kernel thread is the fundamental entity that is

scheduled and dispatched onto one of the CPUs of
the system. A kernel thread is very lightweight,

having only a small data structure and a stack.
Switching between kernel threads does not require a
change of virtual memory address space information,
so it is relatively inexpensive. Kernel threads are
fully preemptible and may be scheduled by any of
the scheduling classes in the system, including the
real-time (fixed priority) class. Since all other exe-
cution entities are built using kernel threads, they
represent a fully preemptible, real-time ‘‘nucleus’’
within the kernel.

Kernel threads use synchronization primitives
that support protocols for preventing priority inver-
sion, so a thread’s priority is determined by which
activities it is impeding by holding locks as well as
by the service it is performing [Khanna 1992].

SunOS uses kernel threads to provide asynchro-
nous kernel activity, such as asynchronous writes to
disk, servicing STREAMS queues, and callouts. This
removes various diversions in the idle loop and trap
code and replaces them with independently
scheduled threads. Not only does this increase
potential concurrency (these activities can be handled
by other CPUs), but it also gives each asynchronous
activity a priority so that it can be appropriately
scheduled.

Even interrupts are handled by kernel threads.
The kernel synchronizes with interrupt handlers via
normal thread synchronization primitives. If an
interrupt thread encounters a locked synchronization
variable, it blocks and allows the critical section to
clear.

A major feature of the new kernel is its support
of multiple kernel-supported threads of control,
called lightweight processes (LWPs), in any user pro-
cess, sharing the address space of the process and
other resources, such as open files. The kernel sup-
ports the execution of user LWPs by associating a
kernel thread with each LWP, as shown in Figure 1.
While all LWPs have a kernel thread, not all kernel
threads have an LWP.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 1

Multithreading the SunOS Kernel J.R. Eykholt, ...

= Thread = LWP = CPU

User

Kernel

Hardware

proc 1 proc 2 proc 3

Figure 1: Multi-thread architecture examples

A user-level library uses LWPs to implement
user-level threads [Stein 1992]. These threads are
scheduled at user-level and switched by the library to
any of the LWPs belonging to the process. User
threads can also be bound to a particular LWP.
Separating user-level threads from the LWP allows
the user thread library to quickly switch between
user threads without entering the kernel. In addition,
it allows a user process to have thousands of threads,
without overwhelming kernel resources.

Data Structures
In the traditional kernel, the user and proc

structures contained all kernel data for the process.
Processor data was held in global variables and data
structures. The per-process data was divided
between non-swappable data in the proc structure,
and swappable data in the user structure. The ker-
nel stack of the process, which is also swappable,
was allocated with the user structure in the user
area, usually one or two pages long.

The restructured kernel must separate this data
into data associated with each LWP and its kernel
thread, the data associated with each process, and the
data associated with each processor. Figure 2 shows
the relationship of these data structures in the res-
tructured kernel.

The per-process data is contained in the proc
structure. It contains a list of kernel threads associ-
ated with the process, a pointer to the process
address space, user credentials, and the list of signal
handlers. The proc structure also contains the ves-
tigial user structure, which is now much smaller
than a page, and is no longer practical to swap.

The LWP structure contains the per-LWP data
such as the process-control-block (pcb) for storing
user-level processor registers, system call arguments,
signal handling masks, resource usage information,
and profiling pointers. It also contains pointers to
the associated kernel thread and process structures.
The kernel stack of the thread is allocated with the

LWP structure inside a swappable area.
proc VM address space

User

LWP data
thread

.
..
..
..
..
..
..
..
..
..
..
..

swappable

lwp

stack

LWP data
thread

.
..
..
..
..
..
..
..
..
..
..
..

swappable

lwp

stack. . .

Figure 2: MT Data Structures for a Process

The kernel thread structure contains the kernel
registers, scheduling class, dispatch queue links, and
pointers to the stack and the associated LWP, pro-
cess, and CPU structures. The thread structure is not
swapped, so it also contains some data associated
with the LWP that is needed even when the LWP
structure is swapped out. Thread structures are
linked on a list of threads for the process, and also
on a list of all existing threads in the system.

Per-processor data is kept in the cpu structure,
which has pointers to the currently executing thread,
the idle thread for that CPU, and current dispatching
and interrupt handling information. There is a sub-
structure of the cpu structure that can be architec-
ture dependent, but the main body is intended to be
applicable to most multiprocessing architectures.

To speed access to the thread, LWP, process,
and CPU structures, the SPARC implementation uses
a global register, %g7, to point to the current thread
structure. A C-preprocessor macro, curthread,
allows access to fields in the current thread structure
with a single instruction. The current LWP, process,
and CPU structures are quickly accessible through
pointers in the thread structure. In the future we
may dedicate additional global registers for other fre-
quently accessed structures.

Kernel Thread Scheduling
SunOS 5.0 provides several scheduling classes.

A scheduling class determines the relative priority of
processes within the class, and converts that priority
to a global priority. With the addition of mul-
tithreading, the scheduling classes and dispatcher
operate on threads instead of processes. The

2 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

J.R. Eykholt, ... Multithreading the SunOS Kernel

scheduling classes currently supported are system,
timesharing, and real-time (fixed-priority).

The dispatcher chooses the thread with the
greatest global priority to run on the CPU. If more
than one thread has the same priority, they are
dispatched in round-robin order.

The kernel has been made preemptible to better
support the real-time class and interrupt threads.
Preemption is disabled only in a small number of
bounded sections of code. This means that a runn-
able thread runs as soon as is practical after its prior-
ity becomes high enough. For example, when thread
A releases a lock on which higher priority thread B
is sleeping, the running thread A immediately puts
itself back on the run queue and allows the CPU to
run thread B. On a multiprocessor, if thread A has
better priority than thread B, but thread B has better
priority than the current thread on another CPU, that
CPU is directed to preempt its current thread and
choose the best thread to run. In addition, user code
run by an underlying kernel thread of sufficient
priority (e.g., real-time threads) will execute even
though other lower priority kernel threads wait for
execution resources. Further details can be found in
[Khanna 1992].

System Threads
System threads can be created for short or

long-term activities. They are scheduled like any
other thread, but usually belong to the system
scheduling class. These threads have no need for
LWP structures, so the thread structure and stack for
these threads can be allocated together in a non-
swappable area, as shown in Figure 3.

thread

stack

allthreads
thread

stack

. . .

Figure 3: System Threads

A new segment driver, seg_kp, handles stack
allocations. It handles virtual memory allocations
for the kernel that can be paged or swapped out; it
also provides ‘‘red zones’’ to protect against stack
overflow. System threads use seg_kp for the stack
and the thread structure, in a non-swappable region.
LWPs use it to allocate the LWP structure and kernel
stack in a swappable region.

Synchronization Architecture
The kernel implements the same synchroniza-

tion objects for internal use as are provided by the
user-level libraries for use in multithreaded applica-
tion programs [Powell 1991]. These are mutual
exclusion locks (mutexes), condition variables, sema-
phores, and multiple readers, single writer
(readers/writer) locks. The interfaces are shown in
Figure 41.
/* Mutual exclusion locks */
void mutex_enter(kmutex_t *lp);
void mutex_exit(kmutex_t *lp);

void mutex_init(kmutex_t *lp, char *name,
kmutex_type_t type, void *arg);

void mutex_destroy(kmutex_t *lp);
int mutex_tryenter(kmutex_t *lp);

/* condition variables */
void cv_wait(kcondvar_t *cp, kmutex_t *lp);
int cv_wait_sig(kcondvar_t *cp,

kmutex_t *lp);
int cv_timedwait(kcondvar_t *cvp,

kmutex_t *lp, long tim);
void cv_signal(kcondvar_t *cp);
void cv_broadcast(kcondvar_t *cp);

/* multiple reader, single writer locks */
void rw_init(krwlock_t *lp, char *name,

krw_type_t type, void *arg);
void rw_destroy(krwlock_t *lp);
void rw_enter(krwlock_t *lp, krw_t rw);
int rw_tryenter(krwlock_t *lp, krw_t rw);
void rw_exit(krwlock_t *lp);
void rw_downgrade(krwlock_t *lp);
int rw_tryupgrade(krwlock_t *lp);

/* counting semaphores */
void sema_init(ksema_t *sp,

unsigned int val, char *name,
ksema_type_t type, void *arg);

void sema_destroy(ksema_t *sp);
void sema_p(ksema_t *sp);
int sema_p_sig(ksema_t *sp);
int sema_tryp(ksema_t *sp);
void sema_v(ksema_t *sp);

Figure 4: Kernel Thread Synchronization Interfaces

These are all implemented such that the
behavior of the synchronization object is specified
when it is initialized. Synchronization operations,
such as acquiring a mutex lock, take a pointer to the
object as an argument and may behave somewhat
differently depending on the type and optional type-
specific argument specified when the object was ini-
tialized.

Most of the synchronization objects have types
that enable collecting statistics such as blocking
counts or times. A patchable kernel variable can

1Note that kernel synchronization primitives must use a
different type name than user synchronization primitives so
that the types are not confused in applications that read
internal kernel data structures.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 3

Multithreading the SunOS Kernel J.R. Eykholt, ...

also set the default types to enable statistics gather-
ing. This allows the selection of statistics gathering
on particular synchronization objects or on the kernel
as a whole.

The semantics of most of the synchronization
primitives cause the calling thread to be prevented
from progressing past the primitive until some condi-
tion is satisfied. The way in which further progress
is impeded (e.g., sleep, spin, or other) is a function
of the initialization. By default, the kernel thread
synchronization primitives that can logically block,
can potentially sleep.

Some of the synchronization primitives are
strictly bracketing (e.g., the thread that locks a mutex
must be the thread that unlocks it) and a single
owner can be determined (i.e., mutexes and writer
locks). In these cases, the synchronization primitives
support the priority inheritance protocol, as described
in [Khanna 1992].

Some synchronization primitives are intended
for situations where they may block for long or
indeterminate periods. Variants of some of the prim-
itives are provided (e.g., cv_wait_sig() and
sema_p_sig()) that allow blocking to be inter-
rupted by a reception of a signal. There is no non-
local jump to the head of the system call, as there
was in the traditional sleep routine. When a sig-
nal is pending, the primitive returns with a value
indicating the blocking was interrupted by a signal
and the caller must release any resources and return.

Mutual Exclusion Lock Implementation.
Mutual exclusion locks (mutexes) prevent more

than one thread from proceeding when the lock is
acquired. They prevent races on access to shared
data and are by far the most heavily used primitive.

Mutexes are usually held for short intervals.
For example, it would not be good to hold a critical
system mutex while waiting for disk I/O to com-
plete. Mutexes are not recursive; the owner of the
lock cannot again call mutex_enter() for the same
lock. If a thread holds a mutex, the same thread
must be the one to release the mutex. These rules
are enforced to promote good programming practice
and to avoid deadlocks.

If mutex_enter cannot set the lock (because it is
already set), the blocking action taken depends on
the mutex type that was passed to mutex_init, and
stored in the mutex. The default blocking policy for
mutexes, called adaptive (type MUTEX_DEFAULT),
spins while the owner of the lock (recorded when the
lock is acquired) remains running on a processor.
This is done by polling the owner’s status in the spin
wait loop2. If the owner ceases to run, the caller

2In order to avoid locking while inspecting the owner’s
status during the spin, the state is determined indirectly.
The algorithm spins while the current thread pointer of any

stops spinning and sleeps3. This gives fast response
and low overhead for simple contention.

Spin mutexes are available as type
MUTEX_SPIN, which takes as its type-specific argu-
ment the interrupt level to be disabled while the
mutex is held. It is rarely used, as adaptive mutexes
are more efficient, in general.

Device drivers are restricted to using type
MUTEX_DRIVER, which takes a Sun-DDI-defined
opaque value as an argument. This argument is basi-
cally an interrupt priority in the current implementa-
tion, and determines whether the blocking policy is
adaptive or spin, based on whether the interrupt
priority is above the ‘‘thread level’’ (see below).

A simple trick speeds up mutex_enter()
for adaptive mutexes. Non-adaptive mutexes use a
separate primitive lock field in the mutex data struc-
ture, with the lock field used by the adaptive type
always in the locked state. This is so that
mutex_enter() can always attempt to apply an
adaptive lock first, and only if that fails, consider the
possibility that the mutex might be another type.

Turnstiles vs Queues in Synchronization Objects
Each synchronization object requires a way of

finding threads that are suspended waiting for that
object. It is important to keep the storage cost of
synchronization objects small, because many system
structures contain synchronization objects, so the
queue header is not directly in the object. Instead,
two bytes in the synchronization object are used to
find a turnstile structure containing the sleep queue
header and priority inheritance information [Khanna
1992]. Turnstiles are preallocated such that there are
always more turnstiles than the number of threads
active.

One alternative method would be to select the
sleep queue from an array using a hash function on
the address of the synchronization object. This is
essentially the approach used by sleep() in the
traditional kernel. The turnstile approach is favored
for more predictable real-time behavior, since they
are never shared by other locks, as hashed sleep
queues sometimes are.

Interrupts as Threads
Many implementations [Hamilton 1988]

[Peacock 1992] have a variety of synchronization
primitives that have similar semantics (e.g., mutual
exclusion) yet explicitly sleep or spin for blocking.
For mutexes, the spin primitives must hold interrupt
priority high enough while the lock is held to

CPU points to the owning thread, indicating it is running.
3On uniprocessors, this turns into always sleeping, since

the owner cannot be running.

4 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

J.R. Eykholt, ... Multithreading the SunOS Kernel

prevent any interrupt handlers that may also use the
synchronization object from interrupting while the
object is locked, causing deadlock. The interrupt
level must be raised before the lock is acquired and
then lowered after the lock is released.

This has several drawbacks. First, the raising
and lowering of interrupt priority can be an expen-
sive operation, especially on architectures that
require external interrupt controllers (remember that
mutexes are heavily used). Secondly, in a modular
kernel, such as SunOS, many subsystems are inter-
dependent. In several cases (e.g., mapping in kernel
memory or memory allocation) these requests can
come from interrupt handlers and can involve many
kernel subsystems. This in turn, means that the
mutexes used in many kernel subsystems must pro-
tect themselves at a relatively high priority from the
possibility that they may be required by an interrupt
handler. This tends to keep interrupt priority high
for relatively long periods and the cost of raising and
lowering interrupt priority must be paid for every
mutex acquisition and release. Lastly, interrupt
handlers must live in a constrained environment that
avoids any use of kernel functions that can poten-
tially sleep, even for short periods.

To avoid these drawbacks, the SunOS 5.0 ker-
nel treats most interrupts as asynchronously created
and dispatched high-priority threads. This enables
these interrupt handlers to sleep, if required, and to
use the standard synchronization primitives.

On most architectures putting threads to sleep
must be done in software. This must be protected
from interrupts if interrupts are to sleep themselves
or wakeup other threads. The restructured kernel
uses a primitive spin lock protected by raised priority
to implement this. This is one of a few bounded
sections of code where interrupts are locked out.

Traditional UNIX kernel implementations
[Leffler 1989] [Bach 1986] also protect the
dispatcher by locking out interrupts, usually all inter-
rupts. The restructured kernel has a modifiable level
(the ‘‘thread level’’) above which interrupts are no
longer handled as threads and are treated more like
non-portable ‘‘firmware’’ (e.g., simulating DMA via
programmed I/O). These interrupt handlers can only
synchronize using the spin variants of mutex locks
and software interrupts. If the ‘‘thread level’’ is set
to the maximum priority, then all interrupts are
locked out during dispatching. For implementations
where the ‘‘firmware’’ cannot tolerate even the rela-
tively small dispatcher lockout time, the ‘‘thread
level’’ can be lowered. Typically this is lowered to
the interrupt level at which the scheduling clock
runs.

Implementing Interrupts as Threads
Previous versions of SunOS have treated inter-

rupts in the traditional UNIX way. When an inter-
rupt occurs the interrupted process is held captive
(pinned) until the interrupt returns. Typically, inter-
rupts are handled on the kernel stack of the inter-
rupted process or on a separate interrupt stack. The
interrupt handler must complete execution and get
off the stack before anything else is allowed to run
on that processor. In these systems the kernel syn-
chronizes with interrupt handlers by blocking out
interrupts while in critical sections.

In SunOS 5.0 interrupts behave like asynchro-
nously created threads. Interrupts must be efficient,
so a full thread creation for each interrupt is imprac-
tical. Instead, we preallocate interrupt threads,
already partly initialized. When an interrupt occurs,
we do the minimum amount of work to move onto
the stack of an interrupt thread, and set it as the
current thread. At this point, the interrupt thread and
the interrupted thread are not completely separated.
The interrupt thread is not yet a full-fledged thread
(it cannot be descheduled) and the interrupted thread
is pinned until the interrupt thread returns or blocks,
and cannot proceed on another CPU. When the inter-
rupt returns, we restore the state of the interrupted
thread and return.

Interrupts may nest. An interrupt thread may
itself be interrupted and be pinned by another inter-
rupt thread.

If an interrupt thread blocks on a synchroniza-
tion variable (e.g., mutex or condition variable), it
saves state (passivates) to make it a full-fledged
thread, capable of being run by any CPU, and then
returns to the pinned thread. Thus most of the over-
head of creating a full thread is only done when the
interrupt must block, due to contention4.

While an interrupt thread is in progress, the
interrupt level it is handling, and all lower-priority
interrupts, must be blocked. This is handled by the
normal interrupt priority mechanism unless the
thread blocks. If it blocks, these interrupts must
remain disabled in case the interrupt handler is not
reenterable at the point that it blocked or it is still
doing high-priority processing (i.e., should not be
interrupted by lower-priority work). While it is
blocked, the interrupt thread is bound to the proces-
sor it started on as an implementation convenience
and to guarantee that there will always be an inter-
rupt thread available when an interrupt occurs
(though this may change in the future). A flag is set
in the cpu structure indicating that an interrupt at
that level has blocked, and the minimum interrupt
level is noted. Whenever the interrupt level changes,

4On SPARC this overhead involves flushing the entire
register file. This is only done if the interrupt handler
sleeps, not during interrupt handling without contention.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 5

Multithreading the SunOS Kernel J.R. Eykholt, ...

the CPU’s base interrupt level is checked, and the
actual interrupt priority level is never allowed to be
below that.

There is also an interface which allows an
interrupt thread to continue as a normal, high-priority
thread. When release_interrupt() is called,
it saves the state of the the pinned thread and clears
the indication that the interrupt thread has blocked,
allowing the CPU to lower the interrupt priority
level.

An alternative approach to this is to use
bounded first-level interrupt handlers to capture dev-
ice state and then wake up an interrupt thread that is
waiting to do the remainder of the servicing [Barnett
1992]. This approach has the disadvantages of
requiring device drivers to be restructured and of
always requiring a full context switch to the second
level thread. The approach used in SunOS 5.0
allows full thread behavior without restructured
drivers and with very little additional cost in the no-
contention case.

Interrupt Thread Cost
The additional overhead in taking an interrupt

is about 40 SPARC instructions. The savings in the
mutex enter/exit path is about 12 instructions. How-
ever, mutex operations are much more frequent than
interrupts, so there is a net gain in time cost, as long
as interrupts don’t block too frequently. The work
to convert an interrupt into a "real" thread is per-
formed only when there is lock contention.

There is a cost in terms of memory usage also.
Currently an interrupt thread is preallocated for each
potentially active interrupt level below the thread
level for each CPU5. An additional interrupt thread
is preallocated for the clock (one per system). Since
each thread requires a stack and a data structure,
perhaps 8K bytes or so, the memory cost can be
high.

However, it is unlikely that all interrupt levels
are active at any one time, so it is possible to have a
smaller pool of interrupt threads on each CPU and
block all subsequent interrupts below the thread level
when the pool is empty, essentially limiting how
many interrupts may be simultaneously active.

Clock Interrupt
The clock interrupt6 is handled specially.

There is only one clock interrupt thread in the sys-
tem (not one per CPU), and the clock interrupt
handler invokes the clock thread only if it is not
already active.

5There are nine interrupt levels on the Sun SPARC
implementation that can potentially use threads.

6This occurs 100 times a second on current Sun SPARC
implementations.

The clock thread could possibly be delayed for
more than one clock tick by blocking on a mutex or
by higher-level interrupts. When a clock tick occurs
and the clock thread is already active, the interrupt is
cleared and a counter is incremented. If the clock
thread finds the counter non-zero before it returns, it
will decrement the counter and repeat the clock pro-
cessing. This occurs very rarely in practice. When
it occurs, it is usually due to heavy activity at higher
interrupt levels. It can also occur while debugging.

Kernel Locking Strategy
The locking approach used almost exclusively

in the kernel to ensure data consistency is data-based
locking. That is, the mutex and readers/writer locks
each protect a set of shared data, as opposed to pro-
tecting routines (monitors). Every piece of shared
data is protected by a synchronization object.

Some aspects of locking in the virtual memory,
file system, STREAMS, and device drivers have
already been discussed in [Kleiman 1992]. Here
we’ll elaborate a bit on device driver issues, as they
are closely related to interrupt threads.

Non-MT Driver Support
Some drivers haven’t been modified to protect

themselves against concurrency in a multithreaded
environment. These drivers are called MT-unsafe,
because they don’t provide their own locking.

In order to provide some interim support for
MT-unsafe drivers, we provided wrappers that acquire
a single global mutex, unsafe_driver. These
wrappers insure that only one such driver will be
active at any one time. This wrapper is illustrated
by Figure 5.

MT-unsafe
driver

signal
longjmp

locking wrapper

calls

interrupts
Figure 5: Unsafe Driver Wrapper

There are several ways a driver may be entered,
from the explicit driver entry points, interrupts, and
call-backs. Each of these entries must acquire the
unsafe_driver mutex if the driver isn’t safe.
For example, if an MT-unsafe driver uses
timeout() to request a function call at a later

6 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

J.R. Eykholt, ... Multithreading the SunOS Kernel

time, the callout structure is marked so that the
unsafe_driver mutex will be held during the
function call.

MT-unsafe drivers can also use the old
sleep/wakeup mechanism. Sleep() safely
releases the unsafe_driver mutex after the
thread is asleep, and reacquires it before returning.

The longjmp() feature of sleep() is
maintained as well. When a thread is signalled in
sleep(), if it specified a dispatch value greater
than PZERO, a longjmp() takes the thread to a
setjmp() that was performed in the unsafe driver
entry wrapper, which returns EINTR to the caller of
the driver.

Sleep() checks to make sure it is called by
an MT-unsafe driver, and panics if it isn’t. It isn’t
safe to use sleep() from a driver which does its
own locking.

It is fairly easy to provide at least simple lock-
ing for a driver, so almost all drivers in the system
have some of their own locking. These drivers are
called MT-safe, regardless of how fine-grained their
locking is. Some developers have used the term
MT-hot to indicate that a driver does fine-grained
locking.

SVR4/MP DKI Locking Primitives
As we implemented our driver interfaces, UNIX

International and USL were defining the SVR4 Mul-
tiprocessor Device Driver Interface and Driver-
Kernel Interface (DDI/DKI), with a different set of
locking primitives, based around the traditional UNIX
interrupt-blocking model.

SunOS 5.0 implements those interfaces to the
extent defined so far, using our locking primitives
and ignoring any spin semantics. This allows drivers
using those interfaces to be more easily ported.
SunOS drivers typically use the the SunOS syn-
chronization primitives.

Implementation Technology
Some interesting techniques made it easier to

get this all working.

Kernel Time Slicing
Since the kernel is fully preemptible we were

able to make kernel threads time-slice. We simply
added code to the clock interrupt handler to preempt
whatever thread was interrupted. This allows even a
uniprocessor to have almost arbitrary code interleav-
ings. Increasing the clock interrupt rate made this
even more valuable in finding windows where data
was unprotected. By causing kernel threads to
preempt each other as often as possible we were able
to find locking problems using uniprocessor
hardware before multiprocessor hardware was avail-
able. Even when working multiprocessor hardware

arrived, there were far more uniprocessors available
than multiprocessors. We intend this only as a
debugging feature, since it does have some adverse
performance impact, however slight.

Lock Hierarchy Violation Detection
Instead of establishing a system lock hierarchy

a priori, we developed a static analysis tool that
would check for lock ordering violations in the sys-
tem. This lint-like tool, called locknest, reads C
source code, constructs call graphs and reports on
locking cycles. We feel it helped during early
implementation debugging, and probably reduced the
amount of time spent debugging deadlocks. A simi-
lar tool is described in [Korty 1989].

Deadlock Detection
A side-benefit of the priority inheritance

mechanism [Khanna 1992], is that deadlocks caused
by hierarchy violations are usually detected at run
time as well. It does a good job on mutexes and
readers/writer locks held for write, but since there
isn’t a complete list of threads holding a read lock, it
can’t always find deadlocks involving readers/writer
locks. There are other deadlocks possible with con-
dition variables; these aren’t detected.

Summary
SunOS 5.0 is a multithreaded and symmetric

multiprocessor version of the SVR4 kernel. The pri-
mary features are:

• Fully preemptible, real-time kernel
• High degree of concurrency on symmetric

multiprocessors
• Support for user threads
• Interrupts handled as independent threads
• Adaptive mutual-exclusion locks

The thread models inside the kernel and at user
level are almost identical. The scheduling of kernel
threads onto CPUs is analogous to the way the
threads library schedules user-level threads onto
LWPs. The use of threads for structuring the kernel
has mostly good effects though they can be over-
used. Threads do have a cost. The stacks are large,
and must be allocated on separate pages if protection
for potential stack overrun is needed. Also, context
switching is still expensive. Some things are still
better implemented by callouts and other ‘‘zero-
weight’’ processes, but threads provide a nice struc-
turing paradigm for the kernel.

References
[Bach 1986] Maurice J. Bach, The Design of the

UNIX Operating System, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1986.

[Hamilton 1988] Graham Hamilton and Daniel S.
Conde, An Experimental Symmetric Multipro-
cessor Ultrix Kernel, USENIX, Winter 1988,

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 7

Multithreading the SunOS Kernel J.R. Eykholt, ...

Dallas, Texas.
[Kleiman 1992] S. Kleiman, J. Voll, J. Eykholt, A.

Shivalingiah, D. Williams, M. Smith, S. Barton,
and G. Skinner, Symmetric Multiprocessing in
Solaris 2.0, COMPCON Spring 1992, p181, San
Francisco, California.

[Khanna 1992] Sandeep Khanna, Michael Sebrée,
John Zolnowsky, Realtime Scheduling in SunOS
5.0, USENIX, Winter 1992, San Francisco, Cali-
fornia. This describes the real-time features
and considerations in this kernel.

[Korty 1989] Joe Korty, Sema: a Lint-Like Tool for
Analyzing Semaphore Usage in a Multithreaded
Unix Kernel, USENIX Winter 1989, San Diego,
California. This describes a tool for doing
static lock hierarchy analysis.

[Leffler 1989] Samuel J. Leffler, Marshall Kirk
McKusick, Michael J. Karels, John S. Quarter-
man, The Design and Implementation of the
4.3BSD UNIX Operating System, Addison-
Wesley, Reading, MA, 1989.

[Barnett 1992] David Barnett, Kernel Threads and
their Performance Benefits, Real Time, Vol. 4,
No. 1, Lynx Real-Time Systems, Inc., Los
Gatos, CA., 1992.

[Peacock 1992] J. Kent Peacock, Sunil Saxena, Dean
Thomas, Fred Yang and Wilfred Yu, Experi-
ences from Multithreading System V Release 4,
Symposium on Experiences with Distributed &
Multiprocessor Systems (SEDMS) III, March
1992, Newport Beach, California.

[Powell 1991] M.L. Powell, S.R. Kleiman, S. Bar-
ton, D. Shah, D. Stein, M. Weeks, SunOS
Multi-thread Architecture, USENIX Winter
1991, Dallas, Texas. This describes the archi-
tecture for user-level multi-threading.

[Stein 1992] D. Stein, D. Shah, Implementing Light-
weight Threads, USENIX Summer 1992, San
Antonio, Texas. This describes the implemen-
tation of the user-level threads package.

Author Information
Joseph Eykholt is a Senior Staff Engineer and

technical leader in the OS-Multithreading group at
SunSoft. He received an MSEE from Purdue Univer-
sity in 1978, and a BSEE from Purdue in 1977. Prior
to coming to Sun, he was one of the leading
developers of multiprocessing features for the
Amdahl UTS system, and a logic designer for the
Amdahl 580 CPU. His address is SunSoft, Inc., M/S
MTV5-40, 2550 Garcia Avenue, Mountain View,
CA, 94043. His E-mail address is
jre@Eng.Sun.COM. By phone: (415) 336-1849.

Steve Kleiman is a Distinguished Engineer in
the Operating Systems Technology Department of
SunSoft. He is currently architect of Multi-threading
in SunOS. He received an M.S. in Electrical
Engineering from Stanford University in 1978 and a

B.S. in Electrical Engineering and Computer Science
from M.I.T in 1977. He has been involved with the
design and development of UNIX and workstation
architecture since 1977; first at Bell Telephone
Laboratories and then at Sun. He was one of the
developers of NFS, Vnodes, and of the original port
of SunOS to SPARC. His E-mail address is
srk@Eng.Sun.COM. By phone: (415) 336-7295.

Steve Barton graduated from the University of
California, Santa Cruz in 1982 with a BA in Com-
puter and Information Sciences. Since then he has
worked at Zilog Inc., Parallel Computers, Counter-
Point Computers, and Telestream Corp. He is
currently a Member of Technical Staff at Sunsoft.
He’s been with Sun for the last four years. Reach
him electronically at steve.barton@Eng.Sun.COM.

Roger Faulkner is a Senior Staff Engineer in
the OS-Multithreading group at SunSoft. He
received a B.S. in Physics from N. C. State Univer-
sity in 1963 and a Ph.D. in Physics from Princeton
University in 1967, then joined Bell Laboratories,
where he was seduced by computers. He has been
actively involved in the inner workings of the UNIX
kernel since 1976 and has done compiler and
debugger development along the way. He is one of
the principals involved in the development of the
/proc file system for SVR4. His E-mail address is
raf@Eng.Sun.COM. By phone: (415) 336-1115.

Anil Shivalingiah is a Staff Engineer in the
OS-Virtual Memory group at SunSoft. He received
an M.S. in Computer Science from University of
Texas, Arlington in 1983 and a B.S. in Electronics
Engineering from UVCE, India in 1981. He’s been
with Sun for the last three years. His E-mail address
is ans@Eng.Sun.COM.

Mark Smith graduated with a B.S. in Computer
Science from the University of California, Santa Bar-
bara in 1986. He is currently a Member of Techni-
cal Staff at SunSoft in the OS-Multithreading group.
Prior to coming to Sun he worked in the Design
Automation department of Amdahl Corp. He can be
reached by E-mail at mds@Eng.Sun.COM.

Dan Stein is currently a Member of Technical
Staff at Sunsoft where he is one of the developers of
the SunOS Multi-thread Architecture. He graduated
from the University of Wisconsin in 1981 with a BS
in Computer Science.

Jim Voll works in the OS-Multithreading group
at SunSoft. He received his B.S. from the Univer-
sity of California, Santa Barbara in 1981. Prior to
working at Sun he has worked at Amdahl and
Cygnet Systems. He routinely destroys his home
directory. His E-mail address is jjv@Eng.Sun.COM.

Mary Weeks has been a member of technical
staff at Sun Microsystem since 1986. Prior to Sun,
she worked at Xerox. She received her B.A. in com-
puter science from the University of California at

8 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

J.R. Eykholt, ... Multithreading the SunOS Kernel

Berkeley in 1984.
Dock Williams is a Staff Engineer in the OS-

Multithreading group at SunSoft. He received a S.B.
in Electrical Engineering and Computer Science from
M.I.T. in 1980. He has been with Sun for over six
years. Prior to joining Sun, he worked at American
Information Systems, ONYX Systems, Tri-Comp Sys-
tems, and Hughes Aircraft Radar Systems. His E-
mail address is dock@Eng.Sun.COM, phone: (415)
336-1246.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 9

10 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX

