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ABSTRACT 

Accurate historical evapotranspiration (ET) information for agricultural areas in the 
western U.S. is needed to support crop and pumpage inventories, water right applications, 
water budgets, and development of water management plans. Annual and monthly ET from 
irrigated agriculture is largely a function of water availability, atmospheric water demand, 
crop type, crop conditions, and land use. Landsat thermal and optical satellite imagery is 
ideal for monitoring the spatial and temporal variability of crops given its spatial and 
temporal resolution, making it ideal for monitoring crop ET.  

The objective of this study is to estimate and summarize monthly, seasonal, and 
annual ET from agricultural areas in northwestern Nevada and northeastern California from 
2001 through 2011 using Landsat satellite imagery. ET estimates from 57 Hydrographic 
Areas (HAs) are summarized in multiple ways including a geodatabase, maps, figures, and 
tables. Monthly and annual ET estimates for select HAs are discussed with respect to 
variations in climate, water supply, and land use changes, through visualizations and 
summaries of spatial and temporal ET distributions. Landsat based ET was estimated using a 
land surface energy balance model, Mapping EvapoTranspiration at high Resolution with 
Internalized Calibration (METRIC), using Landsat 5 and Landsat 7 imagery combined with 
reference ET. Results highlight that a range of geographic, climatic, hydrographic, and 
anthropogenic factors influence ET. For example, irrigators in Mason Valley have the ability 
to mitigate deficiencies in surface water by pumping supplemental groundwater, resulting in 
low annual ET variability. Conversely, irrigators in Lovelock are subject to limited upstream 
surface water storage and are not able to irrigate with groundwater due to high salinity. These 
factors result in high annual ET variability due to drought. ET estimates derived from 
METRIC for well-watered fields generally compare well to previous estimates derived from 
traditional reference ET – crop coefficient methods. Although there are limitations and 
uncertainties with the METRIC model, METRIC ET estimates are within 10 to 20 percent of 
ET reported from micrometeorological studies in Nevada for commonly grown crops of 
alfalfa and pasture grass. Landsat derived ET estimates reported in this study have many 
immediate applications relevant to water managers, researchers, and practitioners.  
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INTRODUCTION 

Reporting of field scale evapotranspiration from irrigated agriculture in the western 
US states is increasingly being required for surface and groundwater use inventories, 
development of historical pumpage estimates, and for supporting water right applications and 
evaluations. The arid landscape of Nevada and California is punctuated by agricultural 
communities that rely on water supplied by the diversion of surface waters, groundwater, or a 
combination of both. Like most western U.S. states, the majority of available water is used 
for irrigated agriculture. Many Hydrographic Areas (HAs) within northwestern Nevada and 
northeastern California are entirely reliant on groundwater due to the lack of surface water, 
while other HAs are entirely reliant on surface water due to poor groundwater quality. 
Precipitation in the form of winter snowfall largely determines the amount of surface water 
available for irrigation during the growing season. During years of insufficient surface water, 
many irrigators rely on supplemental groundwater in order to meet irrigation demands.  

The arid and yet relatively cool climate of Northern Nevada and California creates 
conditions optimal for producing high quality dairy and beef hay. Accordingly, alfalfa and 
grass hay make up the large majority of Nevada’s crop acreage, most of which is located in 
northern Nevada [USDA National Agricultural Statistics Service and Service, 2015]. Due to 
the large acreage and high water use of hay crops [Jensen et al., 1990], accurate estimates of 
historical and current water use from hay crops are extremely useful for water management 
and decision support. For example, the net irrigation water requirement of alfalfa is often 
used to define the upper limit for a change in the manner of use from irrigation to some other 
use, such as municipal, environmental, or industrial.  

Evapotranspiration (ET) is the combined processes of water lost from the soil surface 
by evaporation and water lost from plant stomata through transpiration. Several factors affect 
crop ET, including water availability, crop type, crop phenology, growing season length, 
management practices, and weather and environmental conditions [Allen et al., 1998; Katerji 
et al., 1998]. The evaporative demand is largely a function of weather variables such as solar 
radiation, air temperature, humidity and wind speed. The use of satellite imagery is arguably 
the only way to accurately estimate ET under actual field conditions over large areas and 
time periods. Landsat satellite imagery is able to capture field scale conditions, and 
accurately characterize spatial and temporal variations of crop phenology, stress, 
management, and therefore ET.  

During the past decade, the use of optical and thermal Landsat satellite imagery for 
estimating crop ET has increased significantly [Anderson et al., 2012; Serbina and Miller, 
2014]. This is due, in part, to free access of Landsat imagery as of 2009, coupled with 
significant advances of ET models, processing hardware, and software. These advances have 
led applications for mapping ET to the forefront of water management. This is especially true 
where water consumption from large agricultural areas has to be quantified at field scales for 



 2 

accurate water accounting. Given that crop ET rates are generally directly proportional to 
crop yields [Guitjens and Goodrich, 1994], satellite-based monitoring of ET can also provide 
useful information to growers as to why yields may vary across a field, from field to field, or 
from year to year. Operational satellite-based crop ET estimation in Nevada will prove 
extremely useful for water use inventories, developing or reassessing water budgets, crop 
yield analyses, and for quantifying effects of drought. This report is the basis for ongoing 
research at the Desert Research Institute focused on operational satellite-based crop ET 
estimation in Nevada. 

PREVIOUS WORK 

Huntington and Allen [2010] estimated daily, monthly, and annual Nevada state-wide 
crop ET and net irrigation water requirement (NIWR) rates at National Weather Service 
(NWS) Cooperative Observer (COOP) stations using a reference ET – dual crop coefficient 
approach. This approach assumes well-watered and stress-free conditions, therefore 
Huntington and Allen [2010] estimates crop ET and NIWR estimates are representative of 
potential crop ET rather than the actual crop ET that occurs as a result of spatial and temporal 
variations in water availability, crop stress and disease, crop management, and water and land 
use changes. Few studies have estimated field scale crop ET using satellite imagery in 
northwestern Nevada. While satellite imagery is often used to estimate crop acreage for a 
limited number of years, crop ET rates are often assumed and applied to respective areas to 
estimate crop ET volumes. For example, the U.S. Geological Survey (USGS) often assumes 
that crop ET rates are temporally and spatially constant [Maurer et al., 2006; Allander et al., 
2009]. These constant rate ET estimates are then used for developing water budgets [Maurer 
and Berger, 2006; Lopes and Allander, 2009] and boundary conditions for groundwater 
models [Halford and Plume, 2011; Yager et al., 2012].  

Morton et al. [2013] developed an automated approach for estimating crop ET using a 
land surface energy balance model applied to Landsat imagery acquired over western 
Nevada. Morton et al. [2013] compared model based crop ET estimates to ET estimates made 
at nine eddy covariance and Bowen ratio micrometeorological stations located within 
irrigated alfalfa and pasture grass fields in Carson Valley and Mason Valley, and reported 
that mean daily absolute differences between modeled and station based ET ranged from 1 to 
27 percent, with the mean absolute difference for all nine sites being approximately 11 percent. 
In this report, we apply the same Landsat based land surface energy balance model that was 
outlined in Morton et al. [2013], but with manual calibrations as later described.  

OBJECTIVE 

The primary objective of this study is to develop and report field scale estimates of 
crop ET for irrigated agriculture in northwestern Nevada and north eastern California using 
Landsat satellite imagery (Figure 1). The study period spans from 2001 through 2011. The 
secondary objective of the study is to assess field scale seasonal and annual crop ET 
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estimates for selected HAs of Lovelock, Carson Desert (Fallon), Mason Valley, and Honey 
Lake Valley (Fish Springs Ranch) with respect to variations in climate, water supply, 
reference ET, and land use changes, through illustrations of spatial and temporal ET 
distributions.  

STUDY AREA 

The study area is defined by four Landsat scenes, located in northwestern Nevada and 
parts of northeastern California (Figure 1). The most extensive agricultural areas are located 
within the hydrographic basins of the Truckee River, Carson River, Walker River, and lower 
portions of the Humboldt River. The study area includes 57 HAs in total. HAs and respective 
yearly agricultural field acreages derived in this study are listed in Appendix 1. Climate 
within the study area is characterized as arid to semi-arid, with mean annual precipitation 
ranging from 100 to 250 mm within agricultural areas, and approximately 80 percent of 
precipitation occurring during winter months. The hottest month is July with an average high 
of 90 °F, and the coldest month is December, with an average low of 15 °F. Agricultural 
areas are surrounded by rangelands that are mostly composed of phreatophytic and 
xerophytic shrub species. Alfalfa and grass hay are the principal crops grown within the 
study area, with marginal amounts of spring and winter grain, corn, potatoes, onions, and 
garlic [USDA National Agricultural Statistics Service and Service, 2015].  

APPROACH 

A land surface energy balance approach is applied for estimating crop ET using 
model called Mapping EvapoTranspiration at high Resolution with Internalized Calibration 
(METRIC) [Allen et al., 2007a, 2007b]. Primary model inputs are derived from a 
combination of optical and thermal Landsat satellite imagery, and agriculturally 
representative station and gridded weather data. The desired spatial resolution to discriminate 
agricultural features and perform crop ET calculations so that they are applicable for field 
scale assessments, is approximately 100 m [Anderson et al., 2012; Yan and Roy, 2016]. 
Landsat imagery, which was made freely available to the public as of 2009, has a native 
spatial resolution of 30 m for optical channels and up to 120 m for thermal channels. Landsat 
imagery is available every 16 days with a single satellite (e.g. Landsat 5 Thematic Mapper 
(TM)), and every 8 days when combined with Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+). While the accuracy of ET estimates improves with coverage of two Landsat 
satellites, the temporal resolution provided by a single Landsat is sufficient in relatively 
cloud free areas, such as Nevada, to track crop phenology, agricultural management practices 
(e.g. cuttings and harvests), and ultimately crop ET [Tasumi et al., 2005; Cammalleri et al., 
2014]. The study period of 2001 through 2011 includes several years when both Landsat 5 
and Landsat 7 were fully functional (1999-2003). In addition, several large agricultural areas 
are located in areas of Landsat path overlaps (e.g. Mason Valley), creating twice the temporal  
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Figure 1. Study area contained within four Landsat scenes. Agricultural areas within Landsat 
scenes are summarized in this report. Agricultural weather stations and pseudo 
agricultural weather stations (where no actual stations exist but agricultural weather 
was estimated) are also illustrated. 
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coverage in those areas (Figure 1). Due to minimal cloud cover of northwestern Nevada, the 
probability of obtaining at least one cloud free image every 32 days is relatively high at 8 and 
16 day return intervals, and ranges from 95 to 50 percent, respectively [Morton et al., 2016]. 
The high spatial resolution of Landsat allows for determination and evaluation of field scale 
crop ET and within-field variability useful for water and agricultural management [Tasumi et 
al., 2005; Tasumi and Allen, 2007; Anderson et al., 2012; Serbina and Miller, 2014].  

Reference ET (i.e. evaporative demand of the atmosphere), surface temperature, 
albedo, vegetation indices, and land use / land cover are the primary input variables needed 
for the METRIC surface energy balance model. METRIC produces spatially explicit actual 
ET estimates that are generally accurate to within 10 to 20 percent [Allen et al., 2007a; 
Kalma et al., 2008]. The METRIC model has been successfully applied in Nevada by Morton 
et al. [2013] and Liebert et al. [2015], with results from these studies comparing well with 
micrometeorological station derived ET estimates. METRIC has also been recently applied 
by several state and federal agencies for estimating crop ET in New Mexico, Oregon, 
Wyoming, Montana, Nebraska, Colorado, and California [Hendrickx, 2010; Kjaersgaard and 
Allen, 2010; Anderson et al., 2012; Snyder et al., 2012; Serbina and Miller, 2014].  

Weather stations located in agricultural areas, and bias-corrected and spatially 
disaggregated North American Land Data Assimilation System gridded weather data 
(METDATA) [Abatzoglou, 2013] (recently renamed to gridMET), provide weather variables 
of daily maximum and minimum air temperature (Tmax and Tmin), actual vapor pressure (ea), 
daily average solar radiation (Rs) and daily average wind speed at a 2 m height (u2) needed 
for estimating reference ET. Reference ET is the estimated ET from a defined, standardized 
reference crop that is actively growing, not limited by soil moisture, and is at full cover and 
standardized height. Standardized reference crops in the U.S. are 0.5 m tall full-cover alfalfa, 
and 0.12 m tall clipped, cool-season grass as defined by the American Society of Civil 
Engineers (ASCE) Allen et al. [2005]. Reference ET (ETr) is estimated in this study with the 
ASCE Standardized Penmen-Monteith (ASCE-PM) reference ET equation for an alfalfa 
reference crop [Allen et al., 2005]. Daily ETr is used in the METRIC process to calculate the 
instantaneous fraction of reference ET, and to perform time integration of actual ET between 
Landsat image acquisitions for estimating daily to annual ET totals. Seasonal and annual ET 
totals include ET from April through October and January through December, respectively. 
Spatially distributed precipitation data are derived from the Parameter Regression on 
Independent Slopes Model (PRISM; [Daly et al., 2002]) at 800 m spatial resolution, and used 
for estimating monthly and annual precipitation and net ET (ET minus precipitation) for 
agricultural areas within each HA. 

Field scale monthly ET estimates are summarized by spatially averaging METRIC 
derived 30 m pixel resolution ET results to agricultural field boundaries based on the 
Common Land Unit (CLU) dataset [USDA Farm Service Agency, 2012]. CLU field 
boundaries were manually modified for each study year to accurately reflect changes in 
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agricultural land use and to eliminate or correct erroneous boundaries. Field scale monthly 
ET estimates serve as the primary dataset in which other datasets are populated and derived 
(e.g. geodatabase of ET, net ET, fraction of reference ET, and figures, tables, and 
appendices). 

METHODS 

The following subsections describe weather data quality assurance and control 
(QAQC) and bias correction process, image preparation and cloud masking, field boundary 
delineation, and METRIC model application and post processing.  

WEATHER DATA PREPARATION AND QUALITY ASSURANCE AND CONTROL 

Extensive preparation and QAQC of agricultural weather station data (Figure 1; 
Appendix 2) was performed prior to image processing and application of the METRIC 
model. Hourly and daily agricultural weather station data of air temperature, vapor pressure, 
relative humidity, solar radiation, and wind speed, were input into the software program, 
REF-ET [Allen, 2011] for QAQC and calculation of ETr. REF-ET was used to visualize, 
filter, and make necessary corrections to weather variables according to the recommendations 
and guidelines of Allen [1996; 2008] and Allen et al. [2005]. For example, many weather 
variables are compared to theoretical limits or typical differences such as clear sky solar 
radiation (Figure 2) and 100 percent RH, and dew point depression (Tmin – Tdew), 
respectively. Solar radiation corrections were the most common and are typically required 
due to possible debris on the pyranometer window, non-level base plate, sensor 
miscalibration or drift, or obstructions [Allen, 2008]. After extensive QAQC, ETr was 
calculated with filtered and corrected agricultural weather data for each weather station 
(Appendix 2). 

 

 

Figure 2. Example of 2005 Fallon AgriMet measured solar radiation (Rs) compared to 
theoretical clear sky solar radiation (Rso) before (left) and after (right) corrections. 
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Due to limited periods of record and lack of agricultural weather data for many HAs, 
simulated daily variables of Tmax, Tmin, ea, Rs, and u2 were acquired from 4 km spatial 
resolution METDATA [Abatzoglou, 2013] and used for computing ETr according to the 
ASCE-PM equation. Agricultural weather station derived ETr and coincident METDATA 
derived ETr time series were compared at monthly steps for common periods of record to 
assess potential biases. A positive bias in METDATA derived ETr was found at all 11 
agricultural weather stations (Appendix 3) due to METDATA Tmax, Tmin, Tdew, and or u2 being 
slightly warmer, dryer, and or higher wind speed than agricultural station measurements. A 
bias of this nature is typical when comparing ambient weather representative of the regional 
arid environment to observations collected within well-irrigated environments. For example, 
the Lovelock Soil Climate Analysis Network (SCAN) station is surrounded by well-irrigated 
pasture grass and alfalfa, and the monthly ETr at this station is consistently less than 
METDATA derived ETr (Figure 3). The primary input data source for the METDATA 
model, the North American Land Data Assimilation System [Rodell et al., 2015; Mitchell et 
al., 2004], does not account for irrigated areas and associated ET within land surface – 
boundary layer coupling processes [Ozdogan and Rodell, 2010]. Even in highly advective 
arid environments like northern Nevada, field scale land surface-atmospheric feedbacks have 
been well documented in irrigated areas surrounded by water-limited rangelands [Allen et al., 
1983; Temesgen et al., 1999; Szilagyi and Schepers, 2014; Huntington et al., 2015]. Despite 
this common knowledge, practitioners and researchers alike routinely and erroneously apply  

 

 
 

Figure 3. Lovelock USDA SCAN station derived monthly ETr and coincident METDATA 
derived monthly ETr. The USDA SCAN station is surrounded by well-irrigated 
alfalfa and pasture grass.  



 8 

ETr equations to estimate well-irrigated crop ET using arid or non-conditioned weather data. 
In order to bias correct METDATA, mean monthly ratios of station measured ETr to 
coincident METDATA ETr were computed at each agricultural weather station, and spatially 
distributed using inverse distance weighting. Spatial distributions of mean monthly bias 
correction factors were spatially averaged and assigned to study area HAs where no 
agricultural station based factors were available (Figure 4; Appendix 3). Mean monthly bias 
correction factors assigned to each HA (station based or interpolated) were applied to daily 
METDATA derived ETr for respective months.  

Daily precipitation and ETr data from the Fallon AgriMet weather station were used 
in a soil-water balance model [Allen et al., 2011] to estimate rates of bare soil evaporation 
associated with rainfall prior to each Landsat image. Bare soil evaporation for the day of image 
acquisition must be included in the METRIC model calibration procedure as later described. The 
soil-water balance model was parameterized based on soil type, available water capacity, soil 
water content at field capacity, and plant wilting point. Soil data used for defining these 
parameters were obtained from the NRCS SSURGO soils GIS database, and spatially averaged 
to CLU-based field boundaries [NRCS, 2015; USDA Farm Service Agency, 2012]. 

IMAGE PREPARATION AND LAND COVER 

To ensure that Landsat pixels were without smoke, haze, clouds, shadows, cold air 
pooling, or image banding, it was necessary to visually inspect all available images within 
the study period. In total, 323 individual images were acquired and visually inspected, and 
most images within the same path were merged (i.e. acquired on the same day). If images 
were excessively contaminated, the images were excluded. In the case that limited clouds or 
other contamination features were present, masks were manually digitized to omit these areas 
from the image (Figure 5). In order to identify contaminated areas within each Landsat 
image, false color images based on visible, infrared, and thermal infrared bands were used to 
enhance the appearance of clouds, shadows, and haze. 

Land cover information was used for parameterization of land surface roughness, 
emissivity, and energy balance functions within the METRIC model. Agricultural field 
boundaries were used to spatially average and summarize spatially distributed ET results for 
each field and HA. Land cover information was derived from a combination of datasets. CLU 
field boundaries representative of 2008 acreage [USDA Farm Service Agency, 2012], were 
manually modified for each study year based on visualizations of high resolution National 
Agricultural Imagery Program (NAIP) data. During years when NAIP was not available, 
Landsat false color composites for the year of interest were used in combination with NAIP 
and National Land Cover Database (NLCD) data from adjacent years. The end result was a 
complete annual field boundary dataset for each year of the study period. Field boundary 
changes most often occurred when traditionally flood or sprinkler line irrigated fields 
were converted to center-pivot irrigation systems, or new fields were put into production 
(Figure 6). 
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Figure 4. Spatial distribution of mean annual bias correction ratios of agricultural weather 
station derived ETr to METDATA derived ETr. Mean monthly bias correction ratios 
were computed at stations, spatially interpolated between stations at 4 km spatial 
resolution using Inverse Distance Weighting, and then spatially averaged to HAs 
where no station based ratios were available. 
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Figure 5. Example of cloud identification and masking. Potential contamination (due to 

smoke, haze, clouds, shadows, cold air pooling, or image banding) was identified by 
visualizing true color (a) and false color (with thermal and optical bands) (b) 
combinations. Cloud masks were manually digitized based on visually identified 
contamination areas (c).  Any pixels within masked areas were not include in ET 
calculations. 

 

Surface roughness used in the METRIC model was estimated from land cover data 
derived from three versions of NLCD [Homer et al., 2007, 2015; Fry et al., 2011], 
representing years 2001, 2006, and 2011. Detailed QAQC revealed that NLCD was not 
sufficiently accurate for the period of study due to misclassification and the omission of 
changes in land cover. To enhance NLCD agricultural land cover classes annual CLU-based 
field boundaries were integrated with NLCD resulting in a hybrid raster dataset. This hybrid 
land cover class dataset was used for estimating ground heat flux, surface roughness, and 
emissivity according to Allen et al. [2014]. 

METRIC MODEL 

Crop ET from 2001 to 2011 was estimated using the METRIC land surface energy 
balance model. METRIC computes instantaneous ET for each 30 m by 30 m Landsat pixel 
by estimating surface energy balance components and estimating latent heat flux as a residual 
of the energy balance as: 

ܧܮ ൌ ܴ௡ െ ܩ െ  (1)      ܪ

where LE is the flux of latent energy (W/m2), Rn is the net radiation at the surface (W/m2), G 
is the ground heat flux (W/m2), and H is the sensible heat flux (W/m2). METRIC estimates of 
Rn, G, and H were derived from Landsat at-surface reflectance and thermal radiance, 
vegetation indices, and measured incoming solar radiation and wind speed at the Fallon 
AgriMet weather station. Radiometric and atmospheric corrections to estimate at-surface 
reflectance, surface temperature, and albedo were made following Tasumi et al. [2008]. Rn 
was estimated using Landsat derived albedo, emissivity, and estimates of shortwave and  
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Figure 6. Agricultural field boundaries for Carson Valley for 2002 and 2011. Yearly field 

boundaries were developed due to agricultural land use changes that occurred during 
the study period.  

 

longwave radiation. G was estimated as a function of land cover type, Rn, vegetation indices, 
and surface temperature. H was estimated as a function of surface temperature and 
atmospheric stability using an iterative Calibration using Inverse Modeling at Extreme 
Conditions (CIMEC) procedure [Allen et al., 2007a]. The CIMEC process factors out many 
of the biases in the energy balance, especially in surface temperature, estimated Rn, and 
inaccuracies associated with various model assumptions [Allen et al., 2007a]. 

The CIMEC procedure requires two calibration pixels, where ET can be easily 
approximated, so that the energy balance can be solved for H at locations that represent 
extreme ET conditions in the image. Once H is known at these extreme ET conditions, a 
linear relationship between Landsat surface temperature and the estimated temperature 
gradient (i.e. near surface air temperature difference (dT) just above the land surface) can be 
established and applied to the surface temperature image to estimate H, and therefore ET 
once Rn and G are estimated for every pixel in the image. Calibration pixels for each image 
were manually selected based on a combination of image data such as surface temperature, 
the Normalized Difference Vegetation Index (NDVI), and albedo, to ensure selection of 
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representative extreme ET conditions (i.e. extreme low and high ET rates). The following 
three paragraphs detail the selection of calibration pixels. 

The “hot pixel” calibration point is representative of the condition where there is 
substantial surface heating due to minimal ET (i.e. lack of evaporative and transpirative 
cooling). This calibration point ideally represents a location composed of bare, dry 
agricultural soil, and where surface temperature, albedo, and vegetation indices are generally 
homogenous within respective field boundaries. The criteria used to select hot pixels was 
based on recommendations outlined in the METRIC documentation [Allen et al., 2007a, 
2014]. Hot pixels selected most often exhibit NDVI and albedo within the range of 0.11 to 
0.2, and 0.17 to 0.23, respectively. 

The “cold pixel” calibration point is representative of the condition of maximal 
evaporative cooling and ET, where all available energy (Rn-G) is consumed through LE, and 
H is zero or slightly negative. The condition commonly occurs when alfalfa is well-irrigated 
and is near or at full vegetation cover. Full cover alfalfa typically exhibits an albedo in the 
range of 0.18 to 0.24 and NDVI range of 0.76 to 0.84 during the growing season [Allen et al., 
2014]. Images acquired early and late in the calendar year do not contain agricultural 
vegetation that is at full cover conditions, therefore, cold pixels selected during this 
timeframe were based on more relaxed albedo and NDVI criteria. Inaccuracies during this 
time have minimal impact on estimated annual ET due to low ETr during the non-growing 
season. Cold pixels were selected near centers of agricultural fields to prevent edge effects, 
and within fields that that were surrounded by similar land cover.  

Once hot and cold calibration pixels were selected, respective ET rates were specified 
at each location. The ET rate representative of the cold pixel was assumed to be 
approximately zero to five percent greater than the ETr since the ETr does not account for ET 
from wet canopy or soil, due to recent irrigation [Tasumi et al., 2005; Allen et al., 2007a]. 
The ET rate representative of the hot pixel was assumed to be zero to 10 percent of the ETr to 
account for residual water content and evaporation common in agricultural soils. Estimates of 
bare soil evaporation using the model of Allen et al. [2011] were used to approximate the hot 
pixel evaporation rates associated with rainfall events prior to Landsat image acquisitions. If 
bare soil evaporation was estimated to be above 10 percent of ETr, then the hot pixel ET rate 
was specified according to the estimated bare soil evaporation fraction of ETr.  

After all required input data was specified and organized for each Landsat image, the 
METRIC model was executed to compute instantaneous Rn, G, H, and LE. The instantaneous 
rate of ET at the time of image acquisition, ETinst (mm/hr) was calculated as  

ܧ ௜ܶ௡௦௧ ൌ 3600 ൈ  (2)      ߣ/௜௡௦௧ܧܮ

where LEinst is the instantaneous latent heat flux derived from METRIC (W/m2),  is the 
latent heat of vaporization for water (J/kg - i.e. the amount of energy absorbed when a 
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kilogram of water evaporates), and 3600 is a factor for time conversion from seconds to 
hours. While the ETinst is useful for many ecological and agricultural applications, such as 
detecting vegetation stress and water limitations, time integration of ETinst to estimate 
monthly and seasonal water use is needed for water resource applications. Time integration 
requires that a temporal index of ETinst be used to account for temporal variations in ET, 
caused primarily by changes in vegetation phenology, weather, and climate. This temporal 
index is developed by relating ETinst to the ETr at the time of image acquisition (ETr_inst). 
Hourly ETr computed at the Fallon AgriMet weather station was time interpolated to the 
exact image acquisition time (usually between 10:30am to 11:00am PST) to estimate ETr_inst. 
The ratio of ETinst to ETr_inst is termed the instantaneous fraction of reference ET (ETrF), 
otherwise known as the “crop coefficient”. This ratio, which can be computed over many 
different time scales, is commonly used in agricultural engineering and hydrology to relate 
actual ET to reference ET in time and space [Allen et al., 1998; Allen et al., 2007a]. 
Temporal and spatial variability in ETrF is primarily the result of differences in water 
availability, crop type, phenology, vegetation roughness and turbulent effects, and vegetation 
cover and geometry (i.e. full cover vs. row crops). Simply put, the effects of weather and 
climate are incorporated into ETr, whereas the effects that distinguish vegetated and bare 
surfaces from the reference surface are integrated into the ETrF [Allen et al., 1998; Hobbins 
and Huntington, 2016]. There are many biometeorological factors that determine ET, and the 
reference ET and ETrF approach integrates many of these factors [Allen et al., 2005; Bos et 
al., 2009].  

Once ETrF was computed for every pixel in the image from Landsat derived ETinst 

and ETr_inst derived from the Fallon AgriMet weather station, the ET rate for each 24-hour 
period (ET24i) (mm/d) was estimated as 

ܧ ଶܶସ௜ ൌ ܧ	 ௥ܶܨ௜ ൈ ܧ ௥ܶ_ଶସ௜      (3) 

where ETr 24i is the 24-hour ETr total (mm/d) and ETrFi is the fraction of ETr for day i 
(dimensionless). As previously described, because satellite imagery only provides 
instantaneous information at the time of acquisition, daily ETr is used to account for daily 
variations in atmospheric water demand. Two major assumptions in this approach are 1) the 
ratio of ETinst to ETr_inst is fairly stable over a 24-hour period, where the ETrF ratio at the time 
of image acquisition is approximately equal to the 24-hour value, and 2) daily ET is 
proportional to daily ETr. These assumptions are generally met for agricultural vegetation 
due to limited regulation of stomatal conductance, photosynthesis and transpiration 
[McNaughton and Jarvis, 1991; Allen et al., 1998; Tolk and Howell, 2001; Hunsaker et al., 
2003; Cammalleri et al., 2014]. Non-cultivated vegetation in riparian and desert vegetation 
systems use stomatal regulation of transpiration as a physiological water use strategy, thus 
affecting the hourly and daily ETrF, especially under water-limited conditions [Schulze et al., 
1972; Collatz et al., 1991; Liebert et al., 2015]. Liebert et al. [2015] showed for a generally 
well-watered riparian system in southern Nevada, that although the hourly ETrF was highly 
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variable, the measured ETrF between 10:30 to 11:00 was similar to the 24-hour average, 
therefore using the instantaneous ETrF as a proxy for the 24-hour average resulted in 
satisfactory daily ET estimates. For regionally expansive and water limited native vegetation, 
the evaporative fraction (EF) approach is recommended over the ETrF approach to account 
for stomatal regulation, where EF equals the LEinst divided by the available energy (Rn-G) 
[Bastiaanssen et al., 1998]. For irrigated areas surrounded by arid environments, the use of 
the ASCE-PM equation to estimate ETr for time integration is recommended due to the 
ability of ETr to capture the potential effects of advection on ET (i.e. clothesline or oasis 
effect where H can be negative). Because this study focuses on agricultural areas surrounded 
by arid lands, the ETr * ETrF approach was applied for time integration of ET24i for each 
respective HA. This approach has been shown to be accurate over a wide range of irrigated 
agricultural conditions [Kalma et al., 2008; Gonzalez-Dugo et al., 2009; Anderson et al., 
2012]. 

Time integration of ET24i to the monthly and seasonal time scale was performed as: 

ܶܧ ൌ ∑ ܧ ௥ܶܨ௜	
௠
௜ୀ௡ ∗ ܧ	 ௥ܶ	ଶସ௜     (4) 

where n and m are the first and last days of each month or season, respectively. In this study, 
n and m were specified to be the beginning and ending day of year (DOY) for each month to 
develop monthly ET totals each year. Temporal per-pixel linear interpolation of ETrF in-
between satellite image dates was performed to estimate the daily value of ETrF. Tasumi et 
al. [2005] and Liebert et al. [2015] show that this approach is effective for capturing changes 
due to growth stage, cuttings, harvests, and ultimately ET, however a minimum of one image 
per month is needed to capture these effects [Anderson et al., 2012, 2015]. As expected, 
errors in daily ET estimates due to per-pixel time interpolation of ETrF generally decrease as 
the interval between satellite overpass decreases. Due to northwestern Nevada experiencing 
many cloud free days during the growing season, it was rare to have less than one cloud-free 
image per month. For agricultural areas located in the overlap area between Landsat paths, 
cloud-free images with less than 8-day return times were frequent. The ETr 24 used to multiply 
by the daily interpolated ETrF was specific to each study area, and derived from METDATA 
bias corrected to locally measured agricultural weather station data so that local conditions 
were considered. Figure 7 illustrates an example where daily ETr is multiplied by time 
interpolated ETrF to estimate daily ET for an alfalfa field in Mason Valley, where alfalfa 
cuttings during the growing season were observed.  

Winter months were affected by a decrease in the number of usable Landsat images 
due to increased cloud cover, atmospheric inversions, and/or snow cover. Huntington and 
Allen [2010] found that monthly non-growing season alfalfa and pasture grass soil water 
balance derived ETrF generally ranged from 0.1 to 0.3 in western Nevada, and is similar to 
the range estimated using non-growing season alfalfa ET rates derived from water balance 
lysimeter studies in Fallon [Guitjens and Goodrich, 1994]. In order to provide ET estimates 
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for periods outside the growing season, temporal interpolations were anchored with an 
assumed ETrF of 0.1 for the first day of the year and linearly interpolated to the ETrF derived 
from the first usable Landsat image of the calendar year. Conversely, the ETrF from the last 
usable Landsat image of the calendar year was linearly interpolated to the last day of the 
year, which was also assigned an ETrF of 0.1 (Figure 7a).  

APPLICATION AND POST-PROCESSING 

Python programs outlined by Morton et al. [2013] were implemented to perform the 
METRIC process and time integration functions on multiple personal computers. Results 
were quality assured and controlled by evaluating statistics for each image through 
calculation and visualization of ETrF histograms, and calculation of the percentage of pixels 
above or below thresholds of 0.1 and 1.05, respectively. Large populations of pixels outside 
these extremes were cause for the re-calibration of METRIC through the re-selection of hot 
and cold pixels, and re-running METRIC until a reasonable distribution of ETrF was 
obtained. This iterative approach is similar to what is commonly employed during a 
automated calibration process of METRIC [Morton et al., 2013]. Once satisfactory results 
were obtained, per-pixel monthly, seasonal, and annual ET aggregations were made from 
2001 and 2011. Per-pixel monthly, seasonal, and annual ET estimates were then spatially 
averaged to field boundary polygons to develop spatially averaged totals and area-weighted 
averages for all fields within each HA. A buffer distance of -30 m was applied to field 
polygons prior to spatially averaging ET rates to minimize pixel edge effects from impacting 
the spatial average. Spatially averaged ET rates derived from buffered polygons were 
assigned to original (i.e. non-buffered) field polygon areas and attribute tables for area- 
weighted average ET calculations and HA summaries. Area-weighted average ET rates for 
each HA were calculated as the total ET volume divided by the total field acreage for all 
fields within each HA. PRISM precipitation estimates were subtracted from field polygon 
spatially averaged ET rates to estimate monthly, seasonal, and annual net ET and area-
weighted average net ET rates. The full amount of PRISM precipitation was subtracted from 
field polygon ET rates as a simple approximation of the lower bound of the net ET, and for 
QAQC and comparison to previously published NIWR rates assuming well-watered 
conditions. Some amount of precipitation is likely not consumed via ET due to runoff, deep 
percolation, and interception. Accurately estimating effective precipitation in each HA is 
complex and requires additional study. However, for further comparison purposes different 
approximations of effective precipitation and net ET (e.g. assuming 60 percent of annual 
precipitation in areas with significant sub-irrigation and runoff such as Carson Valley, 
Washoe Valley, etc.) could easily be made using the geodatabase of results. 

RESULTS 

Estimates of ET, net ET, ETr, and precipitation are summarized for the study period 
of 2001 through 2011 at monthly, seasonal (April – October), and annual time steps, and at  
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Figure 7. Time series of the fraction of reference ET (ETrF), reference ET (ETr), and crop ET 

for an alfalfa field in Mason Valley, where the daily time interpolated ETrF (a) is 
multiplied by the daily reference ETr (b) to estimate daily ET (c). The temporal 
distribution of ETrF illustrates crop development, cuttings, and dormancy.  
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field and/or basin scales depending on the variable. ET and net ET estimates are summarized 
by field and HA, and ETr and precipitation estimates are summarized by HA. Results are 
organized and illustrated multiple ways, including a ArcGIS geodatabase that contains all 
spatial and temporal data, map figures of field level seasonal and annual ET rates, histograms 
of annual ET vs. field acreage per HA, and matrix plots of monthly ET for each year. Area-
weighted average annual ET rates for range from 1.25 to 3.98 ft/yr for all HAs, with the 
study period average of 2.89 ft/yr (Appendix 4a). Area-weighted average annual net ET rates 
range from -1.07 to 3.24 ft/yr for all HAs, with the study period average of 1.85 ft/yr 
(Appendix 4b). Figure 8 illustrates that there are large differences between METRIC derived 
ET (Figure 8a) and net ET (Figure 8b), and respective mean annual well-watered ET and 
NIWR rates reported by Huntington and Allen [2010] in many HAs. These differences 
represent the average difference between the potential crop ET of well-watered alfalfa and 
the actual crop ET derived from METRIC, which is a function of crop type, water 
availability, fallowing, crop-stress, disease, etc. Many of the study period maximum annual 
ET and net ET rates (shown as the top most whiskers) compare well to results from 
Huntington and Allen [2010], indicating that when ample water is available for irrigation, the 
actual ET derived from METRIC approaches well-watered ET and NIWR rates, as would be 
expected.  

Yearly maps of field averaged annual and seasonal ET for all HAs are presented in 
Appendix 5 by HA and year. Figure 9 illustrates an example of field averaged seasonal ET 
for Lovelock for the years 2004 and 2008, which correspond to below and above average 
water years, respectively. Appendix 6 contains histograms of field averaged annual, seasonal, 
net annual, and net seasonal ET vs. field acreage for all HAs and study years. Figure 10 
illustrates histograms of net annual ET vs. field area for Mason Valley and Lovelock Valley 
for years 2004 and 2008. The impact of below and above average water supply is clearly 
evident in Lovelock, however, Mason Valley maintains similar distributions of net annual ET 
due to supplemental groundwater pumping. Appendix 7 contains matrix plots of area-
weighted average monthly ET distributions for each HA. Area-weighted average monthly ET 
distributions for Mason Valley and Lovelock are illustrated in Figure 11, and for Fish 
Springs Ranch and Fallon in Figure 12, which further illustrate how ET varies at monthly and 
annual timescales according to surface and groundwater availability and land use changes.  

Annual and seasonal ET estimates summarized in this study compare well with 
previous estimates derived from micrometeorological, water balance lysimetry, and soil 
moisture depletion techniques. Figure 13 and Appendix 8 illustrate and list daily and seasonal 
average ET comparisons for respective time periods based on ET estimates from this study, 
and micrometeorological station derived ET estimates for alfalfa and pasture grass in Mason 
Valley and Carson Valley reported by Allander et al. [2009] and Maurer et al. [2006] and 
summarized by Morton et al. [2013]. METRIC ET estimates from this study are generally 
well within the error of micrometeorological station derived ET at daily and seasonal time 
scales (~10 to 20 percent; Appendix 8). Also, a historical well-watered average annual alfalfa 
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Figure 8a. Study period area-weighted average and interquartile, and maximum and minimum 

ET compared to annual average well-watered alfalfa ET estimates reported by 
Huntington and Allen [2010].  

 
 

 
Figure 8a (cont.). Study period area-weighted average and interquartile, and maximum and 

minimum ET compared to annual average well-watered alfalfa ET estimates 
reported by Huntington and Allen [2010]. 
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Figure 8a (cont.). Study period area-weighted average and interquartile, and maximum and 

minimum ET compared to annual average well-watered alfalfa ET estimates 
reported by Huntington and Allen [2010]. 

 
 

 
Figure 8b. Study period area-weighted average and interquartile, and maximum and minimum 

net ET (ET minus PPT) compared to annual average well-watered alfalfa Net 
Irrigation Water Requirement (NIWR) estimates reported by Huntington and Allen 
[2010].  
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Figure 8b (cont.). Study period area-weighted average and interquartile, and maximum and 

minimum net ET (ET minus PPT) compared to annual average well-watered alfalfa 
Net Irrigation Water Requirement (NIWR) estimates reported by Huntington and 
Allen [2010]. 

 
 

 
Figure 8b (cont.). Study period area-weighted average and interquartile, and maximum and 

minimum net ET (ET minus PPT) compared to annual average well-watered alfalfa 
Net Irrigation Water Requirement (NIWR) estimates reported by Huntington and 
Allen [2010]. 
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Figure 9. Spatial distribution of field averaged seasonal ET for Lovelock Valley for 2004 and 
2008, which correspond to dry and wet years, respectively. 

 

ET estimate of 3.70 ft/yr, derived from water balance lysimetry techniques in Fallon (Carson 
Desert) [Guitjens and Mahannah, 1977; Rashedi, 1983; Guitjens and Goodrich, 1994], 
compares well to the METRIC derived area weighted well-watered average ET rate in Fallon 
of 3.57 ft/yr. 

METRIC derived annual ET and net ET rates representative of well-watered 
conditions were approximated as the top 25th percentile of field averaged ET rates, and 
compare well with previous ETr – crop coefficient and daily soil water balance model 
estimates of well-watered annual crop ET and NIWR estimates for most HAs [Huntington 
and Allen, 2010] (Figure 14a, b; Appendix 9). While a comparison of ET for respective years 
was not possible due to non-overlapping study periods, comparing well-watered mean annual 
alfalfa ET estimates to top 25th percentile of field averaged ET estimates from this study is 
useful for evaluating general similarities for respective HAs. For example, Huntington and 
Allen [2010] reported mean annual alfalfa ET to be 3.5, 3.7, and 4.1 ft/yr, for Mason Valley, 
Fallon, and Lovelock, respectively. These estimates are within 20 percent of the top 25th 
percentile average annual ET estimates from this study of 3.93, 3.57, and 3.79 ft/yr for 
Mason Valley, Fallon, and Lovelock, respectively. Differences between METRIC derived top  
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Figure 10. Histograms of net annual ET vs. field acreage for Mason Valley (top row) and 
Lovelock Valley (bottom row) for years 2004 and 2008. The impact of drought is 
clearly evident in Lovelock, however, Mason Valley maintains similar distributions 
of ET both years due to supplemental groundwater pumping.  

 

25th percentile average annual ET and net ET reported in this study and respective mean 
annual alfalfa ET and NIWR estimates reported by Huntington and Allen [2010] are likely 
due to multiple factors, including differences in study period length and timing (e.g. 2001-
2010 vs. ~1978-2007), inaccuracies and differences in reference ET and modeling 
approaches, areas included (e.g. inclusion of numerous sub-irrigated pasturelands / wetlands 
in the METRIC analysis such as in Mason Valley and Carson Valley) differences in crop 
type, phenology, growing season lengths, harvest times, and calculation of effective 
precipitation. Given that the majority of crop acreage grown within the study areas is alfalfa 
(i.e. a high water consuming crop), it is reassuring that that alfalfa ET estimates from 
Huntington and Allen [2010] generally compare well with top 25th percentile average annual 
ET rates reported in this study.  

DISCUSSION 

To assess how agricultural ET varies across different study area HAs, METRIC 
derived ET estimates were evaluated with respect to drought and land use changes through  



 23 

 

 
 

Figure 11. Matrix plots of field area-weighted average monthly ET over the study period for 
Mason Valley (top) and Lovelock Valley (bottom).  Annual monthly distributions of 
ET illustrate monthly an annual variability according to surface and groundwater 
availability, where Lovelock ET is more variable due to drought and lack of 
supplemental groundwater pumping.  

 

illustrations of spatio-temporal ET distributions. Lovelock, Fish Springs Ranch (i.e. Honey 
Lake Valley), Fallon, and Mason Valley HAs were selected to highlight how differences in 
surface and groundwater rights, land use changes, and upstream storage can impact ET in 
space and time. Impacts from drought are clearly demonstrated by evaluating and discussing 
the temporal distributions of METRIC derived monthly ET estimates for select HAs. 
Temporal ET distributions indicate that field area-weighted average monthly ET rates were 
much more variable from 2001- 2011 for Lovelock and Fish Springs Ranch than for Fallon 
and Mason Valley (Figures 11 and 12). Fallon and Mason Valley exhibited among the 
highest mean and lowest range in annual ET rates, while Lovelock and Fish Springs Ranch 
exhibited among the lowest mean and highest range in annual ET rates over the study period 
(Figure 8). Lovelock is almost entirely dependent on the Humboldt River for surface water 
irrigation due to poor groundwater quality within the basin. Rye Patch Reservoir provides 
limited upstream storage for irrigation water throughout the growing season, and due to the 
limited capacity of the reservoir (213,000 acre-feet of water storage [Hoffman et al., 1990],  
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Figure 12. Matrix plots of field area-weighted average monthly ET over the study period for 
Fish Springs Ranch – Honey Lake Valley (top) and Fallon (bottom). Change in land 
use in 2009 (fallowing) at Fish Springs Ranch reduced ET, whereas Fallon ET has 
relatively low annual variability due to upstream reservoir storage and irrigation 
during drought years. 

 

extended droughts often result in little to no delivery of irrigation water to Lovelock. The 
impact of drought is clearly evident in Lovelock during the early 2000s, and increasing with 
severity from 2001-2004 (Figure 11). Another period of drought occurred from 2009 through 
2011, corresponding to a second period of reduced ET in Lovelock (Figure 11). 

In 2000, Fish Springs Ranch located in Honey Lake Valley was acquired by Vidler 
Water Company to export up to 13,000 acre-feet of groundwater irrigation rights associated 
with the property [Vidler Water Company, 2015]. A change in the manner of use, from 
irrigation to municipal, and an inter-basin transfer from the Honey Lake HA to the Lemmon 
Valley HA was approved by the Nevada State Engineer in 2000. Figure 12 illustrates a sharp 
decline in ET in 2005, when irrigation largely ceased and much of the ranch was fallowed. 
Vidler continued to operate the ranch with minimal irrigation until 2007, when water works 
were installed to transfer pumped groundwater into Lemmon Valley via a pipeline. After 
2007, ET rates fell to background levels due to the fallowing of all irrigated lands. 
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Figure 13. Comparisons of METRIC derived ET and micrometeorological station derived ET 
for alfalfa and pasture grass in Mason Valley and Carson Valley reported by 
Allander et al. [2009] and Maurer et al. [2006] and summarized by Morton et al. 
[2013]. Comparison plots are daily ET for Landsat image acquisition days (a), mean 
daily ET for each month (b), and mean daily ET for the seasonal measurement 
period (c). 

 

 

(a) (b) 

(c) 
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Figure 14a. Study period area-weighted average average top 25 percentile ET compared to 

annual average well-watered alfalfa ET estimates reported by Huntington and Allen 
[2010].  

 
 
 

 
Figure 14a (cont.). Study period area-weighted average average top 25 percentile ET compared 

to annual average well-watered alfalfa ET estimates reported by Huntington and 
Allen [2010]. 
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Figure 14a (cont.). Study period area-weighted average average top 25 percentile ET compared 

to annual average well-watered alfalfa ET estimates reported by Huntington and 
Allen [2010]. 

 
 
 

 
Figure 14b. Study period area-weighted average top 25 percentile net ET (ET minus PPT) 

compared to annual average well-watered alfalfa Net Irrigation Water Requirement 
(NIWR) estimates reported by Huntington and Allen [2010].  
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Figure 14b (cont.). Study period area-weighted average top 25 percentile net ET (ET minus PPT) 

compared to annual average well-watered alfalfa Net Irrigation Water Requirement 
(NIWR) estimates reported by Huntington and Allen [2010].  

 

 
 
 

 
Figure 14b (cont.). Study period area-weighted average top 25 percentile net ET (ET minus PPT) 

compared to annual average well-watered alfalfa Net Irrigation Water Requirement 
(NIWR) estimates reported by Huntington and Allen [2010].  
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Both Mason Valley and Fallon ET rates have relatively low seasonal variability from  
2001-2011 primarily due to supplemental groundwater pumping and upstream storage, 
respectively (Figure 11 and 12). Mason Valley receives water primarily from surface water 
diversions of the Walker River, and secondarily from supplemental groundwater pumping 
during periods of drought. Fallon lacks supplemental groundwater pumping, however, it is 
relatively well-buffered from drought due to ample upstream storage on the Truckee River 
and Carson River systems. In Mason Valley and Fallon, each year begins with minimal ET 
due to low ETr, followed by an increase in ET during crop green-up and development stages 
of April and May, with ET reaching a maximum during June and July during full canopy 
cover and maximum ETr. ET rates decline sharply in September due to alfalfa, and onion and 
garlic harvests in Mason Valley, and remain at minimal levels until April the following 
spring. This seasonal distribution of ET reflects the seasonal distribution of ETr combined 
with initial development, maturity, harvest, and dormancy crop stages for well-irrigated 
agriculture in Nevada. The seasonal ET distribution is relatively consistent from year to year, 
even during prolonged periods of drought that occurred from 2001-2003 and  
2009-2010 (Figure 11).  

The spatial distribution of seasonal ET during dry and wet years is primarily a 
function of surface and groundwater availability, and water rights priority. For example, 
differences in seasonal field scale ET from a dry (2004) to a wet (2008) year is large, and 
generally uniform for most fields in Lovelock due to limited surface water supply, absence of 
groundwater pumping, and irrigation district water rights (Figure 9). Fairly uniform 
reductions are common for irrigation districts where water right priorities are similar across 
the district. In Mason Valley, where water rights are commonly a mix of both surface water 
and groundwater, and with large ranges in priority dates, the magnitude and spatial 
uniformity of reduced ET is not as evident when comparing wet and dry years. For example, 
Figure 15 illustrates the spatial distribution of seasonal ET in Mason Valley for 2002 and 
2006, which were dry and wet years, respectively. During 2002, high ET fields are 
presumably concentrated in areas where senior surface water rights exist, and where 
groundwater pumping is a primary or secondary water right and used during times of 
drought. ET changes during wet and dry years are more pronounced in Fallon due to the lack 
of supplemental groundwater, however, not as extreme as Lovelock due to ample upstream 
storage on the Truckee and Carson River systems. Figure 16 illustrates the spatial distribution 
of Fallon seasonal ET for 2009 and 2010, which were dry and wet years, respectively. The 
prolonged drought during the late 2000s caused a shortage of irrigation water by 2009. 
However, in 2010 reservoir storage deficits were replenished, and irrigation demands were 
generally met. Figure 16 illustrates higher ET for some fields, and higher spatial variability in 
2009 than 2010. This is the result of higher ETr in 2009, and potentially fields with higher 
water right priorities that received full or nearly full water allocations. In 2010 ET was more 
spatially uniform than 2009, a likely result of ample water supply for the entire irrigation 
district. 
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While many water budget and groundwater modeling studies in Nevada assume that 
crop ET rates are temporally and spatially constant [Maurer and Berger, 2006; Allander et 
al., 2009; Lopes and Allander, 2009; Carroll et al., 2010; Halford and Plume, 2011; Yager et 
al., 2012], results from this study indicate that temporal and spatial distributions of crop ET 
are highly variable in space and time, and should therefore be considered when developing 
water budgets, surface and groundwater models, and impact assessments. For example, based 
on the work presented in this study Carson Valley crop ET volumes vary by approximately 
29,000 ac-ft/yr from a wet year (2006) to a dry year (2009), which equates to over one and a 
half times the average groundwater pumping of 17,000 ac-ft/yr [Maurer and Berger, 2006]. 
Incorporating spatial and temporal ET variability into surface and groundwater budget and 
modeling studies will more realistically represent one of the largest water budget components 
of many HAs in northwestern Nevada, the crop ET. Landsat-based remote sensing is 
currently the only way to accurately assess historical crop ET at field scales and over large 
areas and long time periods. Moreover, evaluating crop ET over long time histories will 
improve our understanding of potential agricultural impacts due to climate, drought, water 
rights and transfers, and land use changes. 

LIMITATIONS 

The methods applied to estimate ET in this report are not absent of uncertainties and 
limitations. Potential sources of uncertainty include METRIC inaccuracies, inaccuracies in  

 

 
Figure 15. Spatial distribution of field average seasonal ET in Mason Valley for 2002 and 

2006, dry and wet years, respectively. 
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Figure 16. Spatial distribution of field average seasonal ET in Fallon for 2009 and 2010, dry 
and wet years, respectively 
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observed meteorological data, estimated weather data from METDATA, inaccuracies in 
Landsat radiance and reflectance, time integration of ETrF in between Landsat images, and 
inaccuracies in field polygon areas. However, the METRIC model applied in this study has 
been shown to generally be accurate to within 10 to 20 percent of measured crop ET in 
Nevada and other states in the western U.S. [Kalma et al., 2008; Morton et al., 2013; Serbina 
and Miller, 2014; Liebert et al., 2015]. For more information about limitations of the 
approaches applied in this study see Kalma et al. [2008], Morton et al. [2013], Huntington 
and Allen [2010], and Huntington et al. [2015]. These studies provide lengthy discussions 
about the uncertainty and limitations of remote sensing and reference ET – crop coefficient 
approaches for estimating crop ET. 

SUMMARY 

The primary objective of this study was to develop field scale monthly, seasonal, and 
annual ET and net ET estimates for northwestern Nevada and northeastern California, and 
provide a brief discussion on the spatial and temporal variability of ET with respect to 
drought and land use changes. Crop ET estimates were computed from a remotely sensed 
land surface energy balance model, METRIC, using Landsat 5 TM and Landsat 7 ETM+ 
satellite imagery combined with gridded weather data estimates of ETr. Results of estimated 
ET, net ET, ETr, and precipitation were summarized for the study period of 2001 through 
2011 at monthly, seasonal (April – October), and annual time steps, and at field and basin 
scales depending on the variable.  

Results were organized and illustrated several ways, including an ArcGIS 
geodatabase that contains all spatial and temporal data, map figures of field average seasonal 
and annual ET rates (Appendix 5), histograms of ET vs. field area per HA (Appendix 6), and 
annual distributions of monthly ET for each HA (Appendix 7). METRIC ET estimates 
compared well with previously reported ET estimates based on micrometeorological, water 
balance lysimetry, and soil moisture depletion techniques. METRIC ET estimates were 
generally well within the error of micrometeorological station derived ET estimates (~10 to 
20 percent) at daily, monthly, and seasonal time steps (Figure 13; Appendix 8). METRIC ET 
results that represent well-watered conditions also generally compare well with ETr - crop 
coefficient and water balance estimates of crop ET for most HAs (Figure 14).  

To assess how ET varies spatially and temporally across the study area, METRIC 
derived ET estimates were evaluated with respect to drought and land use changes for select 
HAs. Select HAs chosen to illustrate and analyze spatial and temporal ET distributions were 
Lovelock, Fish Springs Ranch (i.e. Honey Lake Valley), Fallon, and Mason Valley. The 
impact of drought was most notable in Lovelock. Fallon and Mason Valley exhibited the 
least amount of temporal variability in ET due to ample upstream storage and supplemental 
groundwater pumping, respectively. Land use change at Fish Springs Ranch was clearly 
evident due to a sharp reduction in ET (Figure 12). 
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While many previous studies have assumed that crop ET rates are temporally and 
spatially constant within the study area of northern Nevada, results from this study indicate 
that temporal and spatial distributions of crop ET are highly variable. It is recommended that 
spatial and temporal distributions of crop ET be considered in water budget and modeling 
studies for HAs where significant irrigation occurs. Landsat surface energy balance derived 
crop ET estimates produced in this study have many immediate applications relevant to water 
managers, practitioners, and researchers. Analyzing ET over long time histories and with 
respect to climate, crop type, water rights and availability, and land use change, is an 
effective way to assess historical and future impacts of drought, cumulative impacts of 
changing water source and crop type, and land use change. Obtaining information on 
historical ET and assessing this information with respect to water supply and demand will be 
useful for planning, adaptation, and mitigation strategies. Approaches for estimating 
remotely sensed crop ET, such as those outlined in this report, are now being applied by 
report authors in more automated and programmatic ways so that operational crop ET 
estimates can be easily and effectively used for water use inventories in Nevada, California, 
and other western U.S. states. 
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