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ABSTRACT

Quantum mechanics is reformulated in a way which eliminstes its
present dependence on the special treatment of observation of a system
by an external observer. The result is believed to be a more suitable
formulation for application to field theories, particularly general
relativity. The new formulation does not deny or contradict the conven-
tional formulation, but is a more general and complete formulation from
which the conventional interpretation can be deduced within its cwn
realm of applicability. In this sense the new theory plays the role of
a metatheory for the older theory, that is, it is an underlying theory
in which the nature and consistency of the conventional theory can be
investigated and clarified. The new theory results from the conventional
formulation by omitting the special postulates concerned with exterqal
observation. In their place a concept of "relativity of states" is
developed for treating and interpreting the quantum description of
isolated systems within which observation processes can occur. Abstract
models for observers are formulated that can be treated within the theory
as physical systems subject at all times to the same laws as all other
physical systems. Isolated systems containing these model observers in
interaction with other sybsystems are investigated, and certain changes
that occur in an observer as a consequence of the interaction with the
surrounding systems are deduced. When these changes are interpreted as
the experience of the observer this experience is found to be in accord
with the statistical predictions of the conventional "external observa-

tion" formulation of quantum mechanics.
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I. INTRODUCTION

When one considers the task of quantizing general relativity, he
raises serious questions about the meaning of the présent formulation and
interpretation of quantum mechanics when applied to so fundameﬁtal a struc-
ture as the space-time geometry itself.

The present paper seeks to clarify the foundations of quantum
mechanics. It presents a reformulation of quantum theory in a form be-
lieved suitable for application to general relativity.

Our aim is not to deny or contradict the conventional formulation
of quantum theory, which has demonstrated its usefulness in an overwhelm-
ing variety of problems. Rather it is our purpose to supply a new, more
general and complete formulation, from which the conventional interpreta-
tion can be deduced within its own realm of applicability.

The relationship of this new formulation to the older formulation
will therefore be the relationship of a metatheory to a theory, that is,
it will be an underlying theory in which the nature and consistency, as
well as the realm of applicability, of the older theory can be investigated
and clarified.

The new theory is not based on any radical departure from the con-
ventional one. The special postulates in the old theory which deal with
observation are omitted in the new theory. The altered theory thereby
acquires a new character. It has to be analyzed in and for itself before
any identification becomes possible between the quantities of the theory
and the properties of the world of experience. This identification, when
made, leads back to the omitted postulates of the conventional theory

that deal with observation, but in a manner which clarifies their role



and logical position.
We shall begin with a brief discussion of the conventional
formulation, and some of the reasons which motivate one to seek a

modification.
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IT. REAIM OF APPLICABILITY OF THE CONVENTIONAL OR
"EXTERNAL OBSERVATION" FORMULATION OF

QUANTUM MECHANICS

The Conventional Formulation

For purposes of discussion we shall take the conventional or
"external observation" formulation of quantum mechanics to be essen-
tially the following: }/ A physical system is completely described
by a state function }Apl which is an element of a Hilbert space, and
which furthermore gives information only to the extent of specifying
the probabilities of the results of various observations which can be
made on the system by external observers. There are two fundamentally
different ways in which the state function can change:
Process 1: The discontinuous change brought about by the
the observation of a qﬁantity with eigenstates
951] gép ... in which the state 7ﬁu will be changed
to the state #, with probability \( ¥, )1 £

Process 2: The continuous, deterministic change of state of
state of an isolated system with time according to a
wave equation %g%; = A'V” , where A 1is a linear
operator.

This formulation of quantum mechanics describes a wealth of experience.

No experimental evidence is known which contradicts it.

;/ We use the terminology and notation of J. von Neumann, Mathematical
Foundations of Quantum Mechanics, trans. by R. T. Beyer, Princeton
University Press, 1955.
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Question of Applicability to a System Containing an Observer

Not all conceivable situations fit into the framework of this
mathematical formulation. Consider for example an isolated system con-
sisting of an observer or measuring apparatus, plus an object system.

Can the change with time of the state of the total system be described by
Process 2% If so, then it would appear that no discontinuous probabil-
istic process like Process 1 can take place. If not, we are forced to
admit that systems which contain observers are not subject to the same
kind of quantum mechanical description as we admit for all other physical
systems. The question can not be ruled out as lying in the domain of
psychology. Much of the discussion of "observers" in quantum mechanics
has to do with photoelectric cells, photographic plates and similar de-
vices where a mechanistic attitude can hardly be contested. One reading

the following can limit himself to this class of problems if he is un-

willing to consider observers in the more familiar sense on the same

mechanistic level of analysis.

Question of Applicability to the Case of Approximate Measurements

What mixture of Processes 1 and 2 of the conventional formulation is
to be applied to the case where only an approximate megsurement is effected;
that is, where an apparatus or observer interacts only weakly and for a
limited time with an object system? In this case of an approximate measure-
ment a proper theory must specify (l) the new state of the object system
that corresponds to any particular reading of the apparatus and (2) the
probability with which this reading will occur. Von Neumann showed how to

treat a special class of approximate measurements by the method of
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projection operators.g/ However, a general treatment of all approximate
measurements by the method of projection operators can be shown to be

impossible. (Eq. 8 and footnote)

Question of Applicability to General Relativity

How is one to apply the conventional_formulation of quantum
mechanics to the space-time geometry itself? The issue becomes es-
pecially acute in the case of a closed universe.i/ There is no place
to stand outside the system to observe it. There is nothing outside it
to produce transitions from one state to another. Even the familiar con-
cept of a proper state of the energy is completely inapplicable. In the
derivation of the law of conservation of energy, one defines the total
energy by way of an integral extended over a surface large enough to
include all parts of the system and their interactions.é/ But in a
closed space, when a surface is made to include more and more of the
volume, it ultimately disappears into nothingness. Attempts to define
a total energy for a closed space collapse to the vacuous statement,
zero equals Zero.&/

How to make a quantum description of a closed universe; of approx-
imate measurements; and of a system that contains an observer? These

three questions have one feature in common. They all inquire about the

2/ Reference (1), Chap. 4, Section 4.

§/ See A. Einstein, The Meaning of Relativity, 3rd. edition, Princeton
University Press, Princeton, N. J., 1950, p. 107, for a summary of
the arguments for considering space to be closed.

&/ L. Landau and E. Lifshitz, The Classical Theory of Fields, trans-
lated by M. Hamermesh, Addison Wesley Press, Cambridge 42,
Massachusetts, 1951, p. 343.
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quantum mechanics that is internal to an isolated system.

No way i1s evident to apply the conventional formulation of quantum
mechanics to a system that is not subject to external observation. The
whole interpretative scheme of that formalism rests upon the notion of
external observation. The probabilities of the various possible outcomes
of the observation are prescribed exclusively by Process 1. Without that
part of the formalism there is no means whatever to ascribe a physical
interpretation to the conventional machinery. But Process 1 is out of

the question for systems not subject to external observation.

ITI. REFORMULATION: THE QUANTUM MECHANICS INTERNAL

TO AN ISOLATED SYSTEM; OUTLINE OF THE PAPER

This paper proposes to regard pure wave mechanics (Process 2 only)
as a complete theory. It postulates that a wave function that obeys a
linear wave equation everywhere and at all times supplies a complete
mathematical model for every isolated physical system without exception.
It further postulates that every system that is subject to external ob-
servation can be regarded as part of a larger system which is isolated.

In this theory the wave function is taken as the basic physical

entity with no a priori interpretation. The interpretation only comes

after an investigation of the logical structure of the theory. Here as
always the theory itself sets the framework for its interpretation.i/

For any interpretation it is necessary to put the mathematical

5/ See in particular the discussion of this point by N. Bohr and
L. Rosenfeld, Kgl. Dansk. Videnskab. Selskab, Mat.-fys. Medd.
12, No. 8, 1933.
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model of the theory into correspondence with experience. For this purpose
it is necessary (1) to formulate abstract models for observers that can be
treated within the theory itself as physical systems (2) to consider iso-
lated systems containing such model observers in interaction with other
subsystems (3) to deduce the changes that occur in an observer as a con-
sequence of interaction with the surrounding subsystems and (4) interpret
the changes in the familiar language of experience.

Section IV investigates the representations of the state of a
composite system in terms of states of the constituent subsystems. The
mathematies of such representations leads one to recognize the concept

of the relativity of states, in the following sense: 4 constituent

subsystem cannot be said to be in any single well-defined state, inde-
pendently of the remainder of the composite system. To any arbitrarily
chosen state for one subsystem there will correspond a unique relative
state for the remainder of the composite system. This relative stéte
will usually depend upon the choice of state for the first subsystem.
Thus the state of one subsystem does not have an independent existence,
but is fixed only by the state of the remaining subsystem. In other
words, the states occupied by the subsystems are not independent, but
correlated. Such correlations between systems arise whenever systems
interact. In the present formulation of quantum mechanics all measure-
ments and observation processes are to be regarded simply as interactions
between the physical systems involved--interactions which produce strong
correlations. A simple model for a measurement, due to von Neumann, is
analyzed from this viewpoint.

Section V gives an abstract treatment of the problem of observation.
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This treatment uses only the superposition principle, and general rules by
which composite system states are formed of subsystem states, in order
that the results shall have the greatest generality and be applicable to
any form of quantum theory for which these principles hold. Deductions
are drawn about the state of the observer relative to the state of the
object system. From this analysis it is found that the experiences of
the observer (magnetic tape memory, counter system, etc.) are in full
accord with the predictions of the conventional "external observer"
formulation of quantum mechanics, based on Process 1.

Section VI recapitulates the "relative state" formulation of

quantum mechanics.

IV. RELATTON BETWEEN STATE OF A COMPOSITE
SYSTEM AND STATES OF ITS CONSTITUENT

SUBSYSTEMS; THE CONCEPT OF RELATIVE STATE

Formalism for Composite Systems

We must now investigate some consequences of the wave mechanical
formalism of composite systems.

If a composite system S, is composed of two subsystems Sl and Sg,
with assoclated Hilbert spaces Hp and Hp, then according to the usual
formalism of composite systems the Hilbert space for S is taken to be the

tensor product of Hy and Hy (written H= Hy ®Hy). This has the conse-

S, ' Sg
quence that if the sets {:{. .} and {7?J } are complete orthonormal
{
sets of states for 57 and S, respectively then the general state of 8 can

be written as a superposition:
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)
’VS: Eé,i Qéj f;i 72;2- )

We notice immediately from ({1) that although S is in a definite
state }U-S, the subsystems Sq and Sp do not possess anything like definite
states independent of one another (except in the special case where all but
one of the 4 ; are Zero) .

We can, however, for any choice of a state in one subsystem,
uniquely assign a corresponding relative state in the other subsystem.

For example, if we choose §\< as the state for 57, while the composite
system S 1s in the state '}U.Sg,iven by (1), then the corresponding relative

S

state in 82, '}‘F

2
S i .
g €% will be:
K

Se

s
Y% _ |
/el §:" NK Z:& a‘Kj 77j (2)

where Ny is a normalization constant. It can be shown that this relative
state for §K is independent of the choice of basis {g L‘f {1 %k) for the
orthogonal complement of gk’ and is hence determined uniquely by §k alone.
(To find the relative state in Sp for an arbitra,ry state of S therefore,
one simply carries out the above procedure using any pair of bases for
S1 and Sy, which contains the desired state as one element of the basis for
S51- To find states in Sq relative to states in Sy, interchange 5; and S,
in the procedure.)

(Note: 1In the conventional or "external observation" formulation,

Ly

S
the relative state in S,, Vy_ a¢si for a state % Lin 51, has the

el
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significance that it gives the conditional probability distributions for
the results of all measurements in So,, given that S; has been measured
4 %1

and found to be in state ¢ —i.e., that 55 is the eigenfunction
of the measurement in Sq corresponding to the observed eigenvalue.)

For any choice of basis in Sy, {-gi.} , it is always possible
to represent the state of 8, (1), as a single superposition of pairs of
states, each consisting of a state from the basis {_g;} in 87 and its

relative state in S,. Thus, from (2), (1) can be written in the form:

S, 5,

—}ﬁ_s = ZL _(i]—; g; }fe.l 5,55— (3)

4

This is an important representation which we shall use frequently.

Summarizing: There does not, in general, exist anything like a

single state for one subsystem of a composite system. That is, subsystems

do not possess states independent of the states of the remainder of the

system, so that the subsystem states are generally correlated with one

pemt=———]

another. One can arbitrarily choose a state for one subsystem, and be

led to the relative state for the remainder. Thus we are faced with a

fundamental relativity of states, which is implied by the formalism of

composite systems. It is meaningless to ask the absolute state of a

subsystem--one can only ask the state relative to a given state of the

rempinder g the subsystem.

The von Neumann Example

At this point we shall consider a simple example, due to von
Neumann, which serves as a model of a measurement process. A discussion

of this example will prepare the ground for the analysis of "observation"
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in the next section. We start with a system of only one coordinate, q,
(such as position of a particle), and an apparatus of one coordinate r
(for example the position of a meter needle). Further suppose that they
are initially independent, so that the combined wave function is
‘-}”;S.m: ¢(3)7Z(k) where ;Z{(i.) is the initial system wave function,
and 'Y(r) is the initial apparatus function. The Hamiltonian is such
that the two systems never interact except during the interval t = O
tot = T, during which time the total Hamiltonian consists only of a

simple interaction,

lu

Hy = -ih 7 3 (1)

Y
Y

Then it is easily verified that the state

"F;Sm (3,v) = @) 7(r-3¢) (5

is a solution of the Schrodinger equation

' p Sth sthA
i ;:_;‘.z He 7. (6

for the specified initial conditions at time t =0.

We notice from (5) that at time t = T (at which time we suppose
the interaction to be discontinued) there is no longer any definite inde-
pendent apparatus state, nor any independent system state. The apparatus
therefore does not indicate any definite object-system value, and nothing

like Process 1 has occurred.
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Nevertheless, we can look upon the total wave function (5) as a

superposition of pairs of subsystem states, each element of which has a

definite q value and a correspondingly displaced apparatus state. Thus

after the interaction the state (5) has the form:
StA , S o’ ) , ) ’
F e )0 Grst ) n(r-4T)dy ("

which is a superposition of states 7@— = g/g—y’)f? (V—Z‘/ 77) . FEach
of these elements, }é‘ q"’ of the superposition describes a state in which
the system has the definite value q =q', and in which the apparatus has
a state that is displaced from its original state by the amount q'T.
These elements y;l‘ are then superposed with coefficients ;D/ (q") to form
the total state (7).

Conversely, if we transform to the representation where the

apparatus coordinate is definite, we write (5) as:

1= Jok 8 8 (r) de
were § (G =N BG)N (r'-47) (8)
i (V- [$GI G Ca tinlo-gT) 4

1
Then the 5 ¥'(q) are the relative system state functions for the
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apparatus states > (r - r') of definite value r = r'oé/

We notice that if T is sufficiently large, or 7?(10 sufficiently
sharp (near 5(r)), then §rl(q) is nearly S(q - r'/T) and the
relative system states gIJ(q) are nearly eigenstates for the values

= r'/T.
We have seen that (8) is a superposition of states '?U;" for

each of which the apparatus has recorded a definite value r', and the

system is left in approximately the eigenstate of the measurement corres-
ponding to q =7r'/T. The discontinuous "jump" into an eigenstate is
thus only a relative proposition, dependent upon our decomposition of the
total wave function into the superposition, and relative to a particu-
larly chosen apparatus-coordinate value. So far as the complete theory
is concerned all elements of the superposition exist simultaneously, and
the entire process is quite continuous.

Von Neumann's example is only a special case of a more general
situation. Conslder any measuring apparatus interacting with any object

system. As a result of the interaction the state of the measuring

é/ This example provides a model of an approximate measurement. How-
ever, the relative system states after the interactiongr (a)
cannot ordinarily be generated from the original system state 55 by
the application of any projection operator, E.

Proof: Suppose on the contrary that §r(/ Q)= NED(3)= N'P(g) 7[( regT)
where W, N’ are normalization constants. Then
E(VER(3)= N E“B(3) = N"B() 7 (r'-3T)
nd  grd(g)e "N Bg) 7 (-3 T)
But the condition E°= E which is necessary for E to be a pro-

' 2
jection implies thatz!' (q) s= 7/ (q) which is generally false.
N/I
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apparatus is no longer capable of independent definition. It can be de-
fined only relative to the. state of the object system. In other words,
there exists only a correlation between the states of the two systems.
It seems as 1f nothing can ever be settled by such a measurement.

This indefinite behavior seems to be quite at variance with our
observations, since physical objects always appear to us to have definite
positions. Can we reconcile this feature of the purely process 2 wave
mechanical theory with experience, or must we abandon the theory as un-
tenable? In order to answer this question we must consider the problem

of observation itself within the framework of the theory.

V. OBSERVATION

Formulation of the Problem; Memory Requirement

We are faced with the task of making deductions about the gppear-
ance of phenomena to observers which are considered as purely physical
systems and are treated within the theory. In order to accomplish this
it is necessary to identify some present properties of such an observer
with features of the past experience of the observer. Thus, in order to
say that an observer O has observed the event o< , it is necessary
that the state of O has become changed from its former state to a new
state which is dependent upon o< -

It will suffice for our purposes to consider our observers to
possess memories (i.e. parts of a relatively permanert nature whose states
are in correspondence with the past experience of the observer). In order
to make deductions about the past experience of an observer it is sufficient
to deduce the present contents of the memory as it appears within the

mathematical model.



- 17 -

Zﬁé models for observers we can, if we wish, consider automstically
functioning machines, possessing sensory apparatus and coupled to record-
ing devices capable of reglstering past sensory data and machine configura-
tions. We can further suppose that the machine is so constructed that its
present actions shall be determined not only by its present sensory data,
but by the contents of its memory as well. Such a machine will then be
capable of performing a sequence of observations (measurements), and
furthermore of deciding upon its future experiments on the basis of past
results. We note that if we consider that current sensory data, as well
as machine configuration, is immediately recorded in the memory, then the
actions of the machine at a given instant can be regarded as a function
of the memory contents only, and all relevant experience of the machine
is contained in the memory.

For such machines we are justified in using such phrases as "the
machine has perceived A" or "the machine is aware of A" if the occﬁrrence
of A i1s represented in fhe memory, since the future behavior of the
machine will be based upon the occurrence of A. In fact, all of the cus-
tomary language of subjective experience 1s quite applicable to such
machines, and forms the most natural and useful mode of expression when
dealing with éheir behavior, as is well known to individuals who work
with complex automata;7

- When dealing with a system representing an observer quantum mechan-
lcally we shall ascribe a state function, 70~0, to 1t. When the state 4}0-0
describes an observer whose memory contains representations of the events

4, B, ..., C we shall denote this fact by appending the memory sequence in
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brackets as a subscript, writing:
Vs
/A, By, oo, CJ (9)

The symbols A, B, ..., C, which we shall assume to be ordered time wise,
shall therefore stand for memory configurations which are in correspond-
ence with the past experience of the observer. These configurations can
be thought of as punches in a paper tape, impressions on a magnetic reel,
configurations of a relay switching circuit, or even configurations of
brain cells. We only require that they be capable of the interpretation
"The observer has experienced the sguccession of events A, B, ..., C."
(We shall sometimes write dots in a memory sequence, +...A, B, ..., C,
to indicate the possible presence of previous memories which are irrele-
vant to the case being considered.)

The mathematical model seeks to treat the interaction of such
observer-systems with other physical systems (observations), within
the framework of process 2 wave mechanics, and to deduce the resulting
memory configurations, which are then to be interpreted as records of

the past experiences of the observers.

A Good Obgervation; Its Repeatablility

We begin by defining what shall constitute a "good" observation.
A good observation of a quantity A, with eigenfunctions ¢ 19 for g
0
system S, by an observer whose initial state is 70P, shall consist of
an interaction which, in a specified period of time, transforms each

(total) state

TCL_ 0
}”J - é%[.,, 7 (10)
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into a new state

st0 7 0
}”— - ;é }A—[ ;7 (11)

where o¢; characterizes the state gng/ (The symbol, ©< 19 might
stand for a recording of the eigenvalue, for example.) That is, we re-

quire (l) that the system state, if it is an eigenstate, shall be un-

changed, and (2) that the observer state shall change so as to describe
an observer that is "aware" of which eigenfunction it is; that is, some
property is recorded in the memory of the observer which characterizes

yé i such as the eigenvalue. The requirement that the eigenstates for
the system be unchanged is necessary if the observation is to be signif-
icant (repeatable), and the requirement that the observer state change
in a manner which is different for each eigenfunction is necessary if we
are to be able to call the interaction an observation at all. Zﬁbw'
closely a general interaction satisfies the definition of a good observa-
tion depends upon (l) the way in which the interaction depends upon the
dynamical variables of the observer system--including memory variables--
and upon the dynamical variables of the object system and (2) the initial
state of the observer system. Given (1) and (2), one can for example

gsolve the wave equation, deduce the state of the composite system after

a :
7/ It should be understood that }L [ ¥ J is a different state for each
S SRR A
o
i. A more precise notation would write }0TZT. q/_7" but no confusion
i ‘
0 i
can arise if we simply let the }0; be indexed only by the index of

the memory configuration symbol.
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the end of the interaction, and check whether an object system that was
originally in an eigenstate is left in an eigenstate, as demanded by the
repeatability postulate. This postulate is satisfied, for example, Dby

the model of von Neumann that has already been discussed17

Deductions from the Definition of Observation

From the definition of a good observation we shall first deduce the
result of an observation upon & system which is not in an eigenstate of
the observation. We know from our definition that the intersction trans-
forms stat ;25}1”0 to stat ;530'0 c t1ly th

orms states @; —...7into states il # onsequently these
f, weall® LV [k T

solutions of the wave equation can be superposed to give the final state

for the case of an arbitrary initial system state. Thus if the initial

system state is not an eigenstate, but a general state :E;iai 95 17

the final total state will have the form:
.3D_5+O / sz 9 -
= Q. ¢ '%"_
' « 17 La..ai] (12)
Ay

This superposition principle continues to apply in the presence of
further systems which do not interact during the measurement. Thus, if
systems Sl’ 82, v 5% Sn are present as well as 0O, with original states

! 2 m :

B y sesy , and the only interaction during the time of
measurement takes place between Sl and O, the measurement will transform
the initial totel state:

PRI ey

(13)
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into the final state:
y,"/ 51+ "'+5ﬂ#0 _ Z ¢Sﬂ. VSE Sﬂ_}[}_o .
s I . 7” [ea] (1)

5 51
where a. = ( c}ssi ’slr 1) and ¢ are eigenfunctions of the obsgervation.
i “ ) i
Thus we arrive at the general rule for the transformation of total
state functions which describe systems within which observation processes

occur:

Rule 1: The observation of a quantity A, with eigen-
S
functions ¢ , in a system Sl by the observer O,

transforms the total state according to:

1 0
|4 ﬁ}i_] —> Z:,a{ Qsj'ﬁ }ﬁ}”;aij (15)
where a; = ( ¢j€ }D_%'>

If we next consider a second observation to be made, where our
total state 1s now a superposition, we can apply Rule 1 separately to
each element of the superposition, since each element separately obeys
the wave equation and behaves independently of the remaining elements,
and then superpose the results to obtain the final solution. We formulate

this as:

Rule 2: Rule 1 may be applied separately to each element

of a superposition of total system states, the results

being superposed to obtain the final total state. Thus,
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S
a determination of B, with eigenfunctions 7?] , on 82

by the observer O transforms the total state
S Y 7Lf§h}&‘a
L
Z;_d,;?é.% - (16)

into the state

d
.Z A bj ész 7651}”5,5,.7}%}”2‘-'-%&7 (1)

43

where b‘ = (773 }p- ) , which follows from the applica-

tion of Rule 1 to each element ¢§_}@w5: /’ '"}Q ..MJ

and then superposing the results with the coefficients a; -

These two rules, which follow directly from the superposition prin-
ciple, give us a convenient method for determining final total states for

any number of observation processes in any combinations. We must now seek

the interpretation of such final total states.

Repeated Observations; Observations on a Set of Like Systems

Let us consider the simple case of a.single observation of a quantity
S
A, with eigenfunctions ¢i’ in the system S with initial state -}1/ y by
o
an observer O vwhose initial state is V’_/_— _7 . The final result ig, as

we have seen, the superposition
,}0_1 S+0 0
- Z; ¢ 7@?..%] (18)

We note thet there is no longer any independent system state or observer
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state, although the two have become correlated in a one-one manner. How-
o

ever, in each element of the superposition, 96" }Ar , the

object-system state is a particular eigenstate of the observation, and

furthermore the observer-system state describes the observer as def-

initely perceiving that particular system state. It is this correlation

which allows one to maintain the interpretation that a measurement has
been performed.

We now carry the discussion a step further. Consider a situation
where the observer-system comes into interaction with the object system
for a second time. Then according to Rule 2 we arrive at the total

state after the second observation:
"
Syo 17
}II = Z;Laéé 7&1;-@&1,6{_7 (19)

Again, we see that each element ?ii }/CZ?.. a&’oci—7 describes a system
elgenstate, but this time also describes the observer as having obtained
the same result for each of the two observations. Thus for every sepa-
rate state of the observer in the final superposition the result of the
observatlion was repeatable, even though different for different states.
This repeatability is, of course, a consequence of the fact that after
an observation the relative system state for a particular observer state
is the corresponding eigenstate.

Consider now a different situation. An observer-system O, with
initial state 2;.;7 , measures the same quantity A in a number of
separate, identical, systems which are initially in the same state,

}ks‘f —_ 'y’"y? — = V;M_—_'—;Z;C('{ é,_ (where the ﬁi are, as

usual, eigenfunctions of A). The initial total state function is then

5

L P05, Yrs,yO
y - VY P

(20)
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We shall assume that the measurements are performed on the systems in

the order 87, Sp, ... S, - Then the total state after the first

measurement will be, by Rule 1,

YA Da gy It

L

(where ,;.<-1 refers to the first system, Sl)
4

After the second measurement it will be, by Rule 2,

77‘;541'5 'f‘. I+S '*O

e Zd a. .519{'57_}0-“53‘ }U-Sm}p—o’“x{_oczj (22)
A J A‘J J'

and in general, after r measurements have taken place (r & %), Rule 2

gives the result:

2““ . ¢1¢52 ¢ }VM}H”}U_L . (23)

‘jK L ] r
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Qualitative Interpretation; Appearance of Quantum Jumps

We can give this state, % , the following interpretation. It

consists of a superposition of states:

’ %45 b S d
AR A el G TR B

each of which describes the observer with a definite memory sequence

5( O<Jj 227, KJ Relative to him the (observed) system states
S

are the corresponding eigenfunctions }544‘ ¢ , the re-

maining systems, S ., S , belng unaltered.
n

T 4 :1’2. .
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/
A typical element } ‘J:"/< of the final superposition

2

describes a state of affalrs wherein the observer has perceived an
apparently random sequence of-definite results for the observations.
Furthermore, the object systems have been left in the corresponding
elgenstates of the observation. At this stage suppose that a rede-
termination of an earlier system observation (Sf ) takes place. Then
it follows that every element of the resulting final superposition will
describe the observer with a memory configuration of the form
L—o(f),,,fj) St D(A,VJ f_('fj in which the earlier memory coincides
with the later--i.e., the memory states are correlated. It will thus
appear to the observer, as described by a typical element of the super-
position, that each initial observation on a system caused the system
to "jump" into an eigenstate in a random fashion and thereafter remain
there for subsequent meassurements on the same system. Therefore--
disregarding for the moment quantitative questions of relative fre=-
quencies--we see that the probabilistic assertions of Process 1 appear
to be valid to the observer described by a typical element of the final
superposition.

We thus arrive at the following picture: Throughout all of a
sequence of observation processes there is only one physical system
representiﬁg the observer, yet there is no single unique state of the

observer (which follows from the representations of interacting systems).

Nevertheless, there ig a representation in terms of a superposition,

each element of which contains a definite observer state and a corres-

ponding system state. Thus with each succeeding observation (or
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interaction), the observer state "branches" into a number of different
states. Each branch represents a different outcome of the measurement

and the corresponding eigenstate fortthe object-system eigenstate. All

branches exist simultaneously in the superposition after any given se-
quence of observations.

The "trajectory" of the memory configuration of an observer
performing a sequence of measurements is thus not a linear sequence of
memory configurations, but a branching tree, with all possible outcomes
existing simultaneously in a final superposition with various coefficients
in the mathematical model. [fh any familiar memory device the branching
does not continue indefinitely, but must stop at a point limited by the

capaclty of the memory:7

Quantitative Interpretation; Measure; Relative Frequency of Results

of Observation

In order to establish quantitative results, we must put somé sort
of measure (weighting) on the elements of a final superposition. This
is necessary to be able to make assertions which will hold for almost
all of the observer states described by elements of a superposition.

We wish to make quantitative statements about the relative frequencies
of the different possible results of observation--which are recorded in
the memory--for a typlcal observer state; but to accomplish this we must
have a method for selecting a typical element from a superposition of
orthogonal states.

We therefore seek a general scheme to assign a measure to the
elements of a superposition of orthogonal states ZjA'CKQ gzz . We

require a positive function ) 1y of the complex coefficients of the
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elements of the superposition, so that m (a.i) shall be the measure
assigned to the element ¢/C . In order that this general scheme shall
be unambiguous we must first require that the states themselves always
be normalized, so that we can distinguish the coefficients from the

states. However, we can still only determine the coefficients, in dis-

tinction to the states, up to an arbitrary phase factor. In order to
avoid ambiguities the function m must therefore be a function of the
amplitudes of the coefficients alone, 77} (4.,:):071 7}:14"‘514) )

We now impose an additivity requirement. We can regard a subset

sl
s
of the superposition, say Z OLA' ¢~' , as a single element x@' :
i=4
7/
< f'= ﬁ a ¢, (25)
a4

. /
We then demand that the measure assigned to ¢ shall be the sum of the
measures assigned to the ¢».' (1 from 1 to n):

m

m(x)= 2L m(ay) (26)

<=4

Then we have already restricted the choice of m to the square amplitude
alone; in other words, we have WM ( qd; Qr a. , apart from a multi-
plicative constant.

To see this we note that the normality of % ! requires that
‘0‘! = 'LJ Z‘.af q.(, . From our remarks about the dependence of m upon the
amplitude alone, we replace the ay by their amplitudes //{; = I a ,;‘ .

Eq. (26) then imposes the requirement,

m(x) = 'MKJZQE a;,)= m (E;“?) = 2 mlas) P (W) (27)
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Defining a new function g(x)

q()= (T )

(28)

we see that (27) requires that

%(Z/’(’?) = Z % W‘:a) (29)

Thus g 1is restricted to be linear and necessarily has the form:

3 (?C) = C ¢ (¢ constant) (30)

Therefore 8(?:2) =C vj(a': f//}(xr;:?)= /)’Vi(f) and we have deduced that m is
restricted to the form

m(a;) = m4;) = cu’ = c afa, (31)

We have *lius shown that the only choice of measure consistent with our
additivity requirement is the square amplitude measure, apart from an
arbitrary multiplicative constant which may be fixed, if desired, by
normelization requirements. (The requirement that the total measure be
unity implies that this constant is 1.)

The situation here is fully analogous to that of classical statis-
tical mechanics, where one puts a measure on trajectories of systems in
the phase space by placing a measure on the phase space itself, and then

making assertions (such as ergodicity, quasi-ergodicity, etc.) which
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hold for "almost all" trajectories. This notion of "almost all" depends
here also upon the choice of measure, which is in this case taken to be
the Lebesgue measure on the phase space. One could, of course, contra-
dict the statements of classical statistical mechanics by choosing a
megsure for which only the exceptional trajectories had non-zero
measure. Nevertheless the choice of Lebesgue measufe on the phase

space can be justified by the fact that it is the only choice for which
the "conservation of probability" holds, (Liouville's theorem) and hence
the only choice which makes possible any reasonable statistical deduc-
tions at all.

In our case, we wish to make statements about "trajectories” of
observers. However, for us a trajectory is comstantly branching (trans-
forming from state to superposition) with each successive measurement.
To have a requirement analogous to the "conservation of probability" in
the classical case, we demand that the measure assigned to a trajectory
at one time shall equal the sum of the measures of its separate branches
at a later time. This is precisely the additivity requirement which we
imposed and which leads uniquely to the choice of square-amplitude measure.
Our procedure 1ls therefore quite as Justified as that of classical statis-
tical mechanics.

Having deduced that there is a unique measure which will satisfy
our requirements, the square-amplitude measure, we continue_our deduc-~
tion. This measure then assigns to the i, j, ... kth element of the

superposition (24),

J 7] |
éf’éﬁu ésr}[j’.sn,' . }0_447”[.(-1 °<f/m <l 7 (32)

~/
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the measure (weight)

X
M":J'" < = (a]._a'j ak) (aiaj... ak) (33)
: . 1 ) r
so that the observer state with memory configuration [;<4,/ °<.j) c=<K
¥ ¥ 3
is assigned the measure aéa{ aq:a;j.n aK .QK = Mij K . We see imme-
diately that this is a product measure, namely,
M. = M, M, M
(0K L " (3h)

¥
where - a
so that the measure assigned to a particular memory sequence
[o(i -2 ol _/ is simply the product of the measures for the
A FEPAN
individual components of the memory sequence.

We notice now a direct correspondence of our measure structure to
the probability theory of random sequences. Namely, if we regard the
MA,J ..l a8 probabilities for the sequences then the sequences are
equivalent to the random sequences which are generated by ascribing to

' %
each term the independent probabilities M 9 =. q_{ a 9 - Now proba-
bility theory is equivalent to measure theory mathematically, so that
we can make use of it, while keeping in mind that all results should be
translated back to measure theoretic language.

Thus, 1n particular, if we consider the sequences to become
longer and longer (more and more observations performed) each memory

sequence of the final superposition will satisfy any given criterion
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for a randomly generated sequence, generated by the independent
probabilities 6{: CQQ' , except for a set of total measure which
tends toward zero as the number of observations becomes unlimited.
Hence all averages of functions over any memory sequence, including
the special case of frequencies, can be computed from the probabili-
ties CL: Cli. , except for a set of memory sequences of measure
zero. We have therefore shown that the statistical assertions of
Process 1 will appear to be valid to the observer, in almost all ele-
ments of the superposition (24), in the limit as the number of observa-
tions goes to infinity.

While we have so far considered only sequences of observations
of the same quantity upon identical systems, the result is equally true
for arbitrary sequences of observations, as may be easily verified by
writing more general sequences of measurements, and applying Rules 1 and
2 in the same manner as presented here.

We can therefore summarize the situation when the sequence of
observations is arbitrary, when these observations are made upon the
same or different systems in any order, and when the number of observa-
tions of each quantity in each system is very large, with the following
result:

Except for a set of memory sequences of measure nearly zero,
the averages of any functions over a memory sequence can be calcu-
lated approximately by the use of the independent probabilities
given by Process 1 for each initial observation, on a system, and
by the use of the usual transition probabilities for succeeding

observations upon the same system. In the limit, as the number of
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all types of observations goes to infinity the calculation is

exact, and the exceptional set has measure zero.

This prescription for the calculation of averages over memory
sequences by probabilities assigned to individual elements is precisely
that of the conventional "external observation" theory (Process 1).
Moreover, these predictions hold for almost all memory sequences.
Therefore all predictions of the usual theory will appear to be valid
to the observer in almost all observer states.

In particular, the uncertainty principle is never violated since
the latest measurement upon a system supplies all possible information
about the relative system state, so that there is no direct correlation
bétween any earlier results of observation on the system, and the suc-
ceeding observation. Any observation of a quantity B, between two
successive observations of quantity A (all on the same system) will
destroy the one-one correspondence between the earlier and later memory
states for the result of A. Thus for alternating observations of
different quantities there are fundamental limitations upon the corre-
lations between memory states for the same observed quantity, these
limitations expressing the content of the uncertainty principle.

As a final step one may investigate the consequences of sllowing
several observer-systems to interact with (observe) the same object
system, as well as to interact with one another (communicate). The
latter interaction can be treated simply as an interaction which corre-
lates parts of the memory configuration of one observer with another.
When these observer systems are investigated, in the same manner as we

have already presented in this section using Rules 1 and 2, one finds
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that in all elements of the final superposition<

1.

When several observers have separately observed the same
quantity in the object-system and then communicated the
results to one another they find that they are in agree-
ment. This agreement persists even when an observer
performs his observation after the result has been com-
municated to him by another observer who has performed

the observation.

Let one observer perform an observation of a quantity A

in the object system, then let a second perform an observa-
tion of a quantity B in this object system which does not
commute with A, and finally let the first observer repeat
his observation of A. Then the memory system of the first
observer will not in general show the same result for'both
observations. The intervening observation by the other
observer of the noncommuting quantity B prevents the
possibility of any one to one correlation between the

two observations of A.

Consider the case where the states of two object systems
are correlated, but where the two systems do not interact.
Let one observer perform a specified observation on the
first system, then let another observer perform an cobserva-
tion on the second system, and finally let the first ob-
gserver repeat his observation. Then it is found that the
first observer always gets the same result both times, and

the observation by the second observer has no effect
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whatsoever on the outcome of the first's observations.
Ficticious paradoxes like that of Einstein, Rosen, and
Podolsky,g/ which are concerned with such correlated,
noninteracting systems are easily investigated and

clarified in the present scheme.

Many further combinations of several observers and systems can
be studied within the present framework. The results of the present
"relative state" formalism agree with those of the conventional
"external observation" formalism in all those cases where that familiar
machinery is applicable.

In conclusion, the continuous evolution of'the state function of
a composite system with time gives a complete mathematical model for
processes that involve an idealized observer. When interaction occurs,
the result of the evolution in time is a superposition of states, each
element of which assigns a different state to the memory of the obsérver.
Judged by the state of the memory in almost all of the observer states,

the probabilistic conclusionsof the usual "external observation" formu-
lation of quantum theory are valid. In other words, pure Process 2
wave mechanics, without any initial probability assertions, leads to

all the probability concepts of the familiar formalism.

8/ A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).
For a thorough discussion of the physics of observation, see the
chapter by N. Bohr in Albert Einstein, Philosopher-Scientist, The
Library of Living Philosophers, Inc., Evanston, Illinois, 1949.
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VI. DISCUSSION

The theory based on pure wave mechanics is a conceptually simple,
causal theory, which gives predictions in accord with our experience.
It constitutes a framework in which one can investigate in detail,
mathematically, and in a logically consistent manner a number of some-
times puzzling subjects, such as the meésuring process itself and the
interrelationship of several observers. Objections have been raised
in the past to the conventional or "external observation" formulation
of quantum theory on the grounds that its probabilistic features are
postulated in advance instead of being derived from the theory itself.
We believe that the present "relative-state" formulation meets this
objection, while retaining all of the content of the standard formula-
tion.

While our theory ultimately justifies the use of the proba-
bilistic interpretation as an aid to making practical predictions,
it forms a broader frame in which to understand the consistency of
that interpretation. In this respect it can be said to form a
metatheory for the standard theory. It transcends the usual "external
observation" formulation, however, in its ability to deal logically
with questions of imperfect observation and approximate measurement.

The "relative state" formulation will apply to all forms of
quantum mechanics which mgintain the superposition principle. It may
therefore prove a fruitful framework for the quantization of general
relativity. The formalism invites one to construct the formal theory

first, and to supply the statistical interpretation later. This method
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should be particularly useful for interpreting quantized unified field
theories where there is no question of ever isolating observers and
object systems. They all are represented in a single structure, the
field. Any interpretative rules can probably only be deduced in and
through the theory itself.

Asgide from any possible practical advantages of the theory, it
remains a matter of intellectual interest that the statistical asser-
tions of the usual interpretation do not have the status of independent
hypotheses, but are deducible (in the present sense) from the pure wave

mechanics that starts completely free of statistical postulates.





