
Unikernels and Event-driven
Serverless Platforms

Madhuri Yechuri

Agenda
● Bio

● Application Deployment Paradigms - Past, Present, Future

● Why Serverless?

● Advantages of Event-driven Serverless Model

● Event-driven application: shrink wrap needs

● Event-driven application: shrink wrap options (current)

● Unikernel definition, demo

● Event-driven application: shrink wrap options (future)

● Acknowledgements

● Q & A

Bio

● Bachelors in Computer Science (IIT Kharagpur)

● Masters in Computer Science (IU Bloomington)

● 11+ years at Oracle Database Server Technologies (RAC, TimesTen)

● 3 years at VMware (Distributed Resource Scheduler)

● 1.5 years at ClusterHQ (Flocker)

● 1 year at Elotl (stealth)

Application Deployment Paradigms - Past, Present, Future

● Past

○ (Heavyweight) Monolithic App

○ Platform: Private Cloud

○ Application Shrink Wrap: Virtual Machine

● Present

○ (Lightweight) Microservice App

○ Platform: Private Cloud, Public Cloud

○ Application Shrink Wrap: Containers

● Future

○ (Lightweight) Microservice App

○ Platform: Private Cloud, Public Cloud, IoT

○ Application Shrink Wrap: Containers, unikernels?

Why Serverless?
Always-on microservices lead to -

● Always burning (cpu, memory, network) resources

○ Resources == $$$

● Orchestration framework overhead

○ Start, health check, load balance a microservice that is only needed for “if this then that” event.

● Provisioning and Auto-scaling resource foresight

○ How many resources (cpu, memory) will each instance of my microservice need to be “happy” under peak
workload?

○ How will my microservice scale with workload?

● On-disk image backing always-on microservice needs to be in-situ on every IoT Edge
device

Advantages of Event-driven Serverless Model

● Reduce Operational costs == lower cloud bills

○ Use (cpu, memory, network) resources only when there is a need from application workload

● Reduce moving parts == reduce points of failure

○ Reduce orchestration framework bookkeeping when there is no client workload for the app

● Improve app performance == happier customer

○ Minimize application performance impact due to incorrect resource provisioning decisions made ahead of time

● Improve app mobility == expand into IoT markets

○ Minimize on-disk footprint of the app so that it can be easily stretched across Private/Public cloud and IoT Edge
devices.

Event-driven App: Shrink Wrap Needs
● Lightweight

○ On-disk

■ Image size should be small to allow functions to run across traditional and IoT compute nodes

○ Runtime

■ Resource (cpu, memory) overhead should be low

● Agile

○ Recyclable

■ Application startup and shutdown times should be low

○ Reusable

● Secure

■ Application runtime security vulnerabilities should be minimal

● Observable

○ Application Performance Monitoring hooks

Shrink-wrap evaluation - sample app

Nodejs webserver:

// Load the http module to create an http server.
var http = require('http');

// Configure our HTTP server to respond with Hello World to all requests.
var server = http.createServer(function (request, response) {
 response.writeHead(200, {"Content-Type": "text/plain"});
 response.end("Hello World\n");
});

// Listen on port 8002, IP defaults to 127.0.0.1
server.listen(8002);

// Put a friendly message on the terminal
console.log("Server running at http://127.0.0.1:8002/");

Event-driven App: Shrink Wrap Options (Current)

On-disk image
size
(MB)

Agility - Start
time
(seconds)

Agility -
Runtime
Memory
Overhead (MB)

Security
vulnerabilities

APM

Container
(Alpine 3.5
base)

53.48 1.13 274.4 Inherit Linux
vulnerabilities
(ex: VENOM
attack)

Vanilla (Amazon
CloudWatch),
Custom
(IOPipes)

App: Nodejs webserver
Platform: Ubuntu 16.04 Server (Linux 4.4.0-51-generic)

http://resources.infosecinstitute.com/venom-vulnerability-opens-millions-of-virtual-machines-to-attack/#gref
http://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-logs.html
https://www.iopipe.com/

Event-driven App: Shrink Wrap Options (Current)

AWS Lambda Google Functions Microsoft Azure
Functions

IBM OpenWhisk

Container Container Container Container

Event-driven App: Shrink Wrap Options (Future)

Are there any other shrink wrap options that meet Event-driven Application’s
needs?

Unikernel - Definition

● Unikernel (working definition)

○ Single purpose (single-process) virtual appliance (multi-threading available)

○ Statically linked image of your Application and a hypervisor (no general OS or extra library
code)

○ No extraneous services, no full-fledged shell, no fork() facility to start a second process

Unikernel - Demo

https://drive.google.com/file/d/0BwBeoiajup7icXFKZ1hLeHVjUU0/view

Event-driven App - Shrink Wrap options (future)

On-disk image
size
(MB) - lower is
better

Agility - Start
time
(seconds) -
lower is better

Agility -
Runtime
Memory
Overhead (MB)
- lower is better

Security
vulnerabilities

- Fewer is
better

APM

Container 53.48 1.13 274.4 (126%
smaller)

Inherit Linux
vulnerabilities
(ex: VENOM
attack)

Amazon
CloudWatch,
IOPipes, etc

Unikernel 27.8 (93%
smaller)

0.483 (134%
faster)

619 Minimal attack
surface

TBD

http://resources.infosecinstitute.com/venom-vulnerability-opens-millions-of-virtual-machines-to-attack/#gref

Takeaways

● Serverless is a good fit for cost effectively running microservice applications
on existing platforms (private/public cloud)

● Containers are a good fit to back serverless platforms on private/public cloud

● Unikernels exhibit promising characteristics to be a good fit for running
microservice applications on existing (private/public cloud) and emerging (IoT
edge) platforms.

Acknowledgements

● Emit organizers - Nick Gottlieb, Casey Shultz

● Serverless.com

● OSv

● Rean Griffith

● Audience - Thank you!

https://serverless.com/
http://osv.io/

Questions?

madhuri@elotl.co

