
Avoiding Release Anxiety in iOS
Bruno Rocha

The information in this document is not confidential to the person to whom it is addressed, so feel free to disclose it to any other person. It may be reproduced in whole or in part, allowing
you to disclose this information without the prior consent of the directors of iFood. It has been used as support material for an oral presentation and, therefore, it does not represent a
complete record of the topics presented in the mentioned presentation.

+

DDDD
DDDD!

Need to add a feature

Can’t do it properly without refactoring everything

Ignore the problem

Breaks in production, pushes hotfix

Codebase gets worse

DDDD
DDDD!

Testing efficiently
Avoiding Release Anxiety

Rapiddo’s Releases

🤖

🍎

~1 critical hotfix every 2 weeks

2 critical hotfixes in 2 years

Covering critical flows with UI Tests

Block-based UI Testing
Testing efficiently

Typesafe Mocks and Protocols
Testing efficiently

Mocks != Real APIs

Smoke Tests
UI Tests that run on real APIs, triggered by backend changes.

UI Testing Pro

• CI works == User’s app works

Reduce margin of error
Avoiding Release Anxiety

🚨
Buck is not for beginners!

CI/CD Damage Control
Reduce margin of error

CI Pipeline for PRs
1. Clone
2. Install Dependencies
3. make ci
4. — bundle exec danger
5. — gen_xcode
6. — test_components
7. — test_ifood
8. — test_ui
9. — run_ifood (just check if the app can be installed)

Danger

Danger

1. Run SwiftLint
2. Block if CHANGELOG wasn’t changed (Except [TRIVIAL])
3. Block if there aren’t tests (Except [TRIVIAL])
4. Warn about what was changed
5. danger_swiftinfo

master ✅🚫

feature1 feature2

✅ ✅

🚫

CI/CD Damage Control

Teams
Avoiding Release Anxiety

Communication

Code Review
Teams

Review exigency

Too little

Too much

(Instant release anxiety)

(Toxic)

🚫

🚫

Review Guidelines

1. Check if it follows the project’s style
2. Check if it works (is clearly unit tested)
3. Don’t be a dick

😡😡
Value your team’s relationship over nitpicking non-critical details

Review Etiquette

You should guard instead of if here.

We could use guard instead of if here.

Use guard instead of if here.

Review Etiquette

Questions instead of demands

Do this.
What do you think of this?

Review Etiquette: Being reviewed

1. Explain why the change was needed
2. Understand the reviewer's perspective
3. Don’t merge if you’re not confident it works

What should be reviewed?

Style Guide
Teams

(!(!(!(!(!(!(!(!(!(! 
(!(!(!(!(!(!(!(!(!(!
(!(!(!(!(!(!(!(!(!(! 
(!(!(!(!(!(!(!(!(!(! 
(!(!(!(!(!(!(!(!(!(!
(!(!(!(!(!(!(!(!(!(! 
(!(!(!(!(!(!(!(!(!(! 
(!(!(!(!(!(!(!(!(!(!
(!(!(!(!(!(!(!(!(!(!

-Chan

1. Every component is different
2. Changing squads has a learning curve
3. Code review becomes hard
4. “Legacy" code plagues the app

Not having a Style Guide can mean:

DDDD
DDDD!

Style Guide Pros

1. All code feels it was written by you
2. Changing others’ code is easy
3. Code review is easier/faster

Style Guide Topics

Architecture

Style Guide Topics

Clean Code & Naming

Style Guide Topics

Desired Usage of Compiler Syntax Sugar

Style Guides are Incremental

(! (! (! (! (!

App
❓❓

* + , - .* * * *

*

“But I don’t have time!”

iFood with Xcode

1. CI taking over 20 minutes to run
2. Infinite xcodeproj conflicts
3. Xcode failing to build due to swiftc argument size
4. Multiple bugs in production as tests from the inner Monorepo

modules aren’t checked in CI

iFood with Buck
1. Local/CI builds can take only a few seconds to run thanks to Buck HTTP

Cache
2. Creating new Monorepo modules is just a matter of creating the folders
3. Little to no conflicts thanks to Buck project generation
4. The main targets run the tests from all modules thanks to project generation

Your health

Obrigado!

!

swiftrocks.com

@rockthebruno

+

