
Document Number: MD00249
Revision 02.03

August 29, 2008

MIPS32® M4K™ Processor Core
Software User’s Manual

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

aLt{онϯ aпYϰ tǊƻŎŜǎǎƻǊ /ƻǊŜ {ƻŦǘǿŀǊŜ ¦ǎŜǊΩǎ aŀƴǳŀƭΣ wŜǾƛǎƛƻƴ лнΦло

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 3

Table of Contents

Chapter 1: Introduction to the MIPS32® M4K™ Processor Core... 13
1.1: Features .. 14
1.2: M4K™ Core Block Diagram .. 16

1.2.1: Required Logic Blocks ... 17
1.2.2: Optional Logic Blocks... 21

Chapter 2: Pipeline of the M4K™ Core ... 23
2.1: Pipeline Stages.. 23

2.1.1: I Stage: Instruction Fetch ... 24
2.1.2: E Stage: Execution... 25
2.1.3: M Stage: Memory Fetch... 25
2.1.4: A Stage: Align .. 25
2.1.5: W Stage: Writeback ... 26

2.2: Multiply/Divide Operations... 26
2.3: MDU Pipeline (High-Performance MDU)... 26

2.3.1: 32x16 Multiply (High-Performance MDU) .. 29
2.3.2: 32x32 Multiply (High-Performance MDU) .. 29
2.3.3: Divide (High-Performance MDU) ... 30

2.4: MDU Pipeline (Area-Efficient MDU) .. 31
2.4.1: Multiply (Area-Efficient MDU)... 32
2.4.2: Multiply Accumulate (Area-Efficient MDU) ... 32
2.4.3: Divide (Area-Efficient MDU) ... 33

2.5: Branch Delay ... 33
2.6: Data Bypassing ... 34

2.6.1: Load Delay ... 35
2.6.2: Move from HI/LO and CP0 Delay... 35

2.7: Coprocessor 2 Instructions.. 36
2.8: Interlock Handling.. 37
2.9: Slip Conditions... 38
2.10: Instruction Interlocks.. 38
2.11: Hazards ... 39

2.11.1: Types of Hazards ... 40
2.11.2: Instruction Listing ... 41
2.11.3: Eliminating Hazards ... 41

Chapter 3: Memory Management of the M4K™ Core .. 43
3.1: Introduction.. 43
3.2: Modes of Operation ... 43

3.2.1: Virtual Memory Segments.. 44
3.2.2: User Mode.. 46
3.2.3: Kernel Mode... 47
3.2.4: Debug Mode... 49

3.3: Fixed Mapping MMU ... 51
3.4: System Control Coprocessor... 53

Chapter 4: Exceptions and Interrupts in the M4K™ Core... 55

4 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

4.1: Exception Conditions... 55
4.2: Exception Priority... 56
4.3: Interrupts ... 57

4.3.1: Interrupt Modes .. 57
4.3.2: Generation of Exception Vector Offsets for Vectored Interrupts .. 65

4.4: GPR Shadow Registers... 66
4.5: Exception Vector Locations ... 67
4.6: General Exception Processing .. 68
4.7: Debug Exception Processing .. 70
4.8: Exceptions ... 72

4.8.1: Reset/SoftReset Exception .. 72
4.8.2: Debug Single Step Exception .. 72
4.8.3: Debug Interrupt Exception ... 73
4.8.4: Non-Maskable Interrupt (NMI) Exception... 74
4.8.5: Interrupt Exception ... 74
4.8.6: Debug Instruction Break Exception.. 75
4.8.7: Address Error Exception — Instruction Fetch/Data Access... 75
4.8.8: Bus Error Exception — Instruction Fetch or Data Access.. 76
4.8.9: Debug Software Breakpoint Exception .. 76
4.8.10: Execution Exception — System Call.. 76
4.8.11: Execution Exception — Breakpoint.. 77
4.8.12: Execution Exception — Reserved Instruction .. 77
4.8.13: Execution Exception — Coprocessor Unusable .. 77
4.8.14: Execution Exception — CorExtend Unusable.. 78
4.8.15: Execution Exception — Coprocessor 2 Exception... 78
4.8.16: Execution Exception — Implementation-Specific 1 Exception... 78
4.8.17: Execution Exception — Integer Overflow... 79
4.8.18: Execution Exception — Trap.. 79
4.8.19: Debug Data Break Exception... 79
4.8.20: Complex Break Exception.. 80

4.9: Exception Handling and Servicing Flowcharts .. 80

Chapter 5: CP0 Registers of the M4K™ Core .. 85
5.1: CP0 Register Summary... 85
5.2: CP0 Register Descriptions .. 86

5.2.1: HWREna Register (CP0 Register 7, Select 0) ... 87
5.2.2: BadVAddr Register (CP0 Register 8, Select 0).. 88
5.2.3: Count Register (CP0 Register 9, Select 0) .. 88
5.2.4: Compare Register (CP0 Register 11, Select 0) ... 89
5.2.5: Status Register (CP0 Register 12, Select 0).. 89
5.2.6: IntCtl Register (CP0 Register 12, Select 1).. 93
5.2.7: SRSCtl Register (CP0 Register 12, Select 2) .. 95
5.2.8: SRSMap Register (CP0 Register 12, Select 3).. 98
5.2.9: Cause Register (CP0 Register 13, Select 0).. 99
5.2.10: Exception Program Counter (CP0 Register 14, Select 0) .. 102
5.2.11: Processor Identification (CP0 Register 15, Select 0) ... 103
5.2.12: EBase Register (CP0 Register 15, Select 1) ... 104
5.2.13: Config Register (CP0 Register 16, Select 0).. 105
5.2.14: Config1 Register (CP0 Register 16, Select 1).. 106
5.2.15: Config2 Register (CP0 Register 16, Select 2).. 107
5.2.16: Config3 Register (CP0 Register 16, Select 3).. 108
5.2.17: Debug Register (CP0 Register 23, Select 0) ... 109
5.2.18: Trace Control Register (CP0 Register 23, Select 1) .. 112

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 5

5.2.19: Trace Control2 Register (CP0 Register 23, Select 2) .. 114
5.2.20: User Trace Data Register (CP0 Register 23, Select 3).. 116
5.2.21: TraceBPC Register (CP0 Register 23, Select 4) ... 117
5.2.22: Debug2 Register (CP0 Register 23, Select 6) ... 118
5.2.23: Debug Exception Program Counter Register (CP0 Register 24, Select 0) 118
5.2.24: ErrorEPC (CP0 Register 30, Select 0) ... 119
5.2.25: DeSave Register (CP0 Register 31, Select 0) ... 120

Chapter 6: Hardware and Software Initialization of the M4K™ Core ... 121
6.1: Hardware-Initialized Processor State .. 121

6.1.1: Coprocessor 0 State .. 121
6.1.2: Bus State Machines ... 122
6.1.3: Static Configuration Inputs ... 122
6.1.4: Fetch Address .. 122

6.2: Software Initialized Processor State.. 122
6.2.1: Register File ... 122
6.2.2: Coprocessor 0 State .. 122

Chapter 7: Power Management of the M4K™ Core ... 125
7.1: Register-Controlled Power Management .. 125
7.2: Instruction-Controlled Power Management ... 126

Chapter 8: EJTAG Debug Support in the M4K™ Core .. 127
8.1: Debug Control Register ... 128
8.2: Hardware Breakpoints ... 129

8.2.1: Features of Instruction Breakpoint ... 130
8.2.2: Features of Data Breakpoint .. 130
8.2.3: Features of Complex Breakpoints.. 130
8.2.4: Conditions for Matching Breakpoints ... 130
8.2.5: Debug Exceptions from Breakpoints.. 132
8.2.6: Breakpoint Used as TriggerPoint ... 133
8.2.7: Instruction Breakpoint Registers .. 134
8.2.8: Data Breakpoint Registers ... 138
8.2.9: Complex Breakpoint Registers... 144

8.3: Complex Breakpoint Usage... 148
8.3.1: Checking for Presence of Complex Break Support.. 148
8.3.2: General Complex Break Behavior.. 149
8.3.3: Usage of Pass Counters .. 149
8.3.4: Usage of Tuple Breakpoints... 150
8.3.5: Usage of Priming Conditions.. 150
8.3.6: Usage of Data Qualified Breakpoints ... 150
8.3.7: Usage of Stopwatch Timers ... 151

8.4: Test Access Port (TAP) ... 151
8.4.1: EJTAG Internal and External Interfaces... 152
8.4.2: Test Access Port Operation ... 152
8.4.3: Test Access Port (TAP) Instructions .. 156

8.5: EJTAG TAP Registers... 158
8.5.1: Instruction Register .. 158
8.5.2: Data Registers Overview ... 158
8.5.3: Processor Access Address Register.. 165
8.5.4: Fastdata Register (TAP Instruction FASTDATA) ... 166

8.6: TAP Processor Accesses .. 167

6 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.6.1: Fetch/Load and Store from/to the EJTAG Probe through dmseg .. 168
8.7: Trace Mechanisms .. 169
8.8: iFlowtrace™ Mechanism ... 169

8.8.1: A Simple Instruction-Only Tracing Scheme ... 170
8.8.2: ITCB Overview... 171
8.8.3: ITCB IFlowTrace Interface ... 171
8.8.4: ITCB IFlowTrace Storage Representation ... 172
8.8.5: ITCB IFlowTrace Interface ... 172
8.8.6: ITCB IFlowTrace Off-Chip Interface... 173
8.8.7: Breakpoint-Based Enabling of Tracing... 174

8.9: EJTAG Trace... 174
8.9.1: Processor Modes ... 175
8.9.2: Software Versus Hardware Control.. 175
8.9.3: Trace Information ... 175
8.9.4: Load/Store Address and Data Trace Information... 176
8.9.5: Programmable Processor Trace Mode Options... 177
8.9.6: Programmable Trace Information Options ... 177
8.9.7: Enable Trace to Probe/On-Chip Memory... 178
8.9.8: TCB Trigger.. 178
8.9.9: Cycle by Cycle Information .. 179
8.9.10: Trace Message Format .. 179
8.9.11: Trace Word Format .. 179

8.10: PDtrace™ Registers (Software Control).. 179
8.11: Trace Control Block (TCB) Registers (Hardware Control)... 180

8.11.1: TCBCONTROLA Register.. 180
8.11.2: TCBCONTROLB Register.. 183
8.11.3: TCBDATA Register .. 187
8.11.4: TCBCONFIG Register (Reg 0)... 188
8.11.5: TCBTW Register (Reg 4) ... 189
8.11.6: TCBRDP Register (Reg 5) ... 190
8.11.7: TCBWRP Register (Reg 6) .. 190
8.11.8: TCBSTP Register (Reg 7).. 190
8.11.9: TCBTRIGx Register (Reg 16-23) ... 191
8.11.10: Register Reset State .. 193

8.12: EJTAG Trace Enabling.. 194
8.12.1: Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints .. 194
8.12.2: Turning On PDtrace™ Trace ... 194
8.12.3: Turning Off PDtrace™ Trace ... 195
8.12.4: TCB Trace Enabling... 196
8.12.5: Tracing a Reset Exception ... 196

8.13: TCB Trigger logic... 197
8.13.1: Trigger Units Overview... 197
8.13.2: Trigger Source Unit .. 198
8.13.3: Trigger Control Units .. 198
8.13.4: Trigger Action Unit ... 198
8.13.5: Simultaneous Triggers ... 198

8.14: EJTAG Trace Cycle-by-Cycle Behavior .. 199
8.14.1: Fifo Logic in PDtrace and TCB Modules .. 199
8.14.2: Handling of Fifo Overflow in the PDtrace Module .. 200
8.14.3: Handling of Fifo Overflow in the TCB... 200
8.14.4: Adding Cycle Accurate Information to the Trace.. 201

8.15: TCB On-Chip Trace Memory... 201
8.15.1: On-Chip Trace Memory Size.. 201

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 7

8.15.2: Trace-From Mode .. 202
8.15.3: Trace-To Mode... 202

Chapter 9: Instruction Set Overview... 203
9.1: CPU Instruction Formats ... 203
9.2: Load and Store Instructions... 204

9.2.1: Scheduling a Load Delay Slot .. 204
9.2.2: Defining Access Types... 204

9.3: Computational Instructions .. 205
9.3.1: Cycle Timing for Multiply and Divide Instructions... 206

9.4: Jump and Branch Instructions ... 206
9.4.1: Overview of Jump Instructions ... 206
9.4.2: Overview of Branch Instructions .. 206

9.5: Control Instructions.. 206
9.6: Coprocessor Instructions... 206

Chapter 10: M4K™ Processor Core Instructions .. 207
10.1: Understanding the Instruction Descriptions... 207
10.2: M4K™ Opcode Map .. 207
10.3: MIPS32® Instruction Set for the M4K™ core .. 210

CACHE.. 217
LL .. 220
PREF... 222
SC ... 224
SYNC .. 226
WAIT ... 227

Chapter 11: MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set 229
11.1: Instruction Bit Encoding... 229
11.2: Instruction Listing... 232

Appendix A: Revision History ... 235

8 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

List of Figures

Figure 1.1: M4K™ Processor Core Block Diagram .. 17
Figure 1.2: Address Translation During a SRAM Access ... 19
Figure 2.1: M4K™ Core Pipeline Stages (with high-performance MDU) ... 24
Figure 2.2: M4K™ Core Pipeline Stages (with area-efficient MDU) .. 24
Figure 2.3: MDU Pipeline Behavior During Multiply Operations .. 28
Figure 2.4: MDU Pipeline Flow During a 32x16 Multiply Operation ... 29
Figure 2.5: MDU Pipeline Flow During a 32x32 Multiply Operation ... 30
Figure 2.6: High-Performance MDU Pipeline Flow During a 8-bit Divide (DIV) Operation 30
Figure 2.7: High-Performance MDU Pipeline Flow During a 16-bit Divide (DIV) Operation 30
Figure 2.8: High-Performance MDU Pipeline Flow During a 24-bit Divide (DIV) Operation 31
Figure 2.9: High-Performance MDU Pipeline Flow During a 32-bit Divide (DIV) Operation 31
Figure 2.10: M4K™ Area-Efficient MDU Pipeline Flow During a Multiply Operation ... 32
Figure 2.11: M4KC Area-Efficient MDU Pipeline Flow During a Multiply Accumulate Operation 32
Figure 2.12: M4K™ Area-Efficient MDU Pipeline Flow During a Divide (DIV) Operation 33
Figure 2.13: IU Pipeline Branch Delay ... 34
Figure 2.14: IU Pipeline Data bypass .. 34
Figure 2.15: IU Pipeline M to E bypass .. 35
Figure 2.16: IU Pipeline A to E Data bypass .. 35
Figure 2.17: IU Pipeline Slip after a MFHI .. 36
Figure 2.18: Coprocessor 2 Interface Transactions ... 37
Figure 2.19: Instruction Cache Miss Slip .. 38
Figure 3.1: Address Translation During SRAM Access ... 43
Figure 3.2: M4K™ processor core Virtual Memory Map .. 45
Figure 3.3: User Mode Virtual Address Space ... 46
Figure 3.4: Kernel Mode Virtual Address Space ... 48
Figure 3.5: Debug Mode Virtual Address Space .. 50
Figure 3.6: FM Memory Map (ERL=0) in the M4K™ Processor Core ... 52
Figure 3.7: FM Memory Map (ERL=1) in the M4K™ Processor Core ... 53
Figure 4.1: Interrupt Generation for Vectored Interrupt Mode .. 61
Figure 4.2: Interrupt Generation for External Interrupt Controller Interrupt Mode .. 64
Figure 4.3: General Exception Handler (HW) .. 81
Figure 4.4: General Exception Servicing Guidelines (SW) .. 82
Figure 4.5: Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines ... 83
Figure 5.1: HWREna Register Format .. 87
Figure 5.2: BadVAddr Register Format .. 88
Figure 5.3: Count Register Format ... 88
Figure 5.4: Compare Register Format ... 89
Figure 5.5: Status Register Format ... 90
Figure 5.6: IntCtl Register Format... 94
Figure 5.7: SRSCtl Register Format ... 95
Figure 5.8: SRSMap Register Format... 98
Figure 5.9: Cause Register Format... 99
Figure 5.10: EPC Register Format ... 103
Figure 5.11: PRId Register Format .. 103
Figure 5.12: EBase Register Format... 104
Figure 5.13: Config Register Format — Select 0 ... 105
Figure 5.14: Config Register Field Descriptions.. 105

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 9

Figure 5.15: Config1 Register Format — Select 1 ... 106
Figure 5.16: Config2 Register Format — Select 2 ... 107
Figure 5.17: Config3 Register Format... 108
Figure 5.18: Debug Register Format .. 110
Figure 5.19: TraceControl Register Format ... 112
Figure 5.20: TraceControl2 Register Format ... 114
Figure 5.21: User Trace Data Register Format \... 116
Figure 5.22: Trace BPC Register Format ... 117
Figure 5.23: Debug2 Register Format .. 118
Figure 5.24: DEPC Register Format .. 119
Figure 5.25: ErrorEPC Register Format ... 120
Figure 5.26: DeSave Register Format ... 120
Figure 8.1: TAP Controller State Diagram ... 153
Figure 8.2: Concatenation of the EJTAG Address, Data and Control Registers .. 157
Figure 8.3: TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected 158
Figure 8.4: Endian Formats for the PAD Register .. 166
Figure 8.5: Trace Logic Overview ... 171
Figure 8.6: EJTAG Trace Modules in the M4K™ Core .. 175
Figure 8.7: TCB Trigger Processing Overview ... 197
Figure 9.1: Instruction Formats .. 204
Figure 10.1: Usage of Address Fields to Select Index and Way... 217

10 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

List of Tables

Table 2.1: MDU Instruction Latencies (High-Performance MDU) ... 27
Table 2.2: MDU Instruction Repeat Rates (High-Performance MDU)... 28
Table 2.3: M4K™ Core Instruction Latencies (Area-Efficient MDU) ... 31
Table 2.4: Pipeline Interlocks.. 37
Table 2.5: Instruction Interlocks .. 39
Table 2.6: Execution Hazards... 40
Table 2.7: Instruction Hazards .. 40
Table 2.8: Hazard Instruction Listing .. 41
Table 3.1: User Mode Segments .. 46
Table 3.2: Kernel Mode Segments ... 48
Table 3.3: Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces 50
Table 3.4: CPU Access to drseg Address Range ... 50
Table 3.5: CPU Access to dmseg Address Range ... 51
Table 3.6: Cache Coherency Attributes .. 51
Table 3.7: Cacheability of Segments with Block Address Translation .. 52
Table 4.1: Priority of Exceptions ... 56
Table 4.2: Interrupt Modes.. 58
Table 4.3: Relative Interrupt Priority for Vectored Interrupt Mode... 61
Table 4.4: Exception Vector Offsets for Vectored Interrupts... 65
Table 4.5: Exception Vector Base Addresses... 67
Table 4.6: Exception Vector Offsets ... 68
Table 4.7: Exception Vectors .. 68
Table 4.8: Value Stored in EPC, ErrorEPC, or DEPC on an Exception.. 69
Table 4.9: Debug Exception Vector Addresses .. 71
Table 4.10: Register States an Interrupt Exception .. 75
Table 4.11: CP0 Register States on an Address Exception Error... 76
Table 4.12: Register States on a Coprocessor Unusable Exception .. 78
Table 5.1: CP0 Registers .. 85
Table 5.2: CP0 Register Field Types .. 86
Table 5.3: HWREna Register Field Descriptions .. 87
Table 5.4: BadVAddr Register Field Description... 88
Table 5.5: Count Register Field Description ... 88
Table 5.6: Compare Register Field Description .. 89
Table 5.7: Status Register Field Descriptions... 90
Table 5.8: IntCtl Register Field Descriptions... 94
Table 5.9: SRSCtl Register Field Descriptions ... 95
Table 5.10: Sources for new SRSCtlCSS on an Exception or Interrupt ... 98
Table 5.11: SRSMap Register Field Descriptions... 98
Table 5.12: Cause Register Field Descriptions... 99
Table 5.13: Cause Register ExcCode Field .. 101
Table 5.14: EPC Register Field Description.. 103
Table 5.15: PRId Register Field Descriptions ... 103
Table 5.16: EBase Register Field Descriptions... 104
Table 5.17: Cache Coherency Attributes .. 106
Table 5.18: Config1 Register Field Descriptions — Select 1 .. 106
Table 5.20: Config3 Register Field Descriptions... 108
Table 5.19: Config1 Register Field Descriptions — Select 1 .. 108

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 11

Table 5.21: Debug Register Field Descriptions... 110
Table 5.22: TraceControl Register Field Descriptions .. 112
Table 5.23: TraceControl2 Register Field Descriptions .. 115
Table 5.24: UserTraceData Register Field Descriptions... 116
Table 5.25: TraceBPC Register Field Descriptions... 117
Table 5.26: Debug2 Register Field Descriptions... 118
Table 5.27: DEPC Register Formats... 119
Table 5.28: ErrorEPC Register Field Description.. 120
Table 5.29: DeSave Register Field Description .. 120
Table 8.1: Debug Control Register Field Descriptions.. 128
Table 8.2: Addresses for Instruction Breakpoint Registers ... 134
Table 8.3: IBS Register Field Descriptions ... 134
Table 8.4: IBAn Register Field Descriptions ... 135
Table 8.5: IBMn Register Field Descriptions... 135
Table 8.6: IBASIDn Register Field Descriptions ... 136
Table 8.7: IBCn Register Field Descriptions ... 136
Table 8.8: IBCCn Register Field Descriptions... 137
Table 8.10: Addresses for Data Breakpoint Registers .. 138
Table 8.9: IBPCn Register Field Descriptions... 138
Table 8.11: DBS Register Field Descriptions.. 139
Table 8.12: DBAn Register Field Descriptions.. 139
Table 8.13: DBMn Register Field Descriptions ... 140
Table 8.14: DBASIDn Register Field Descriptions.. 140
Table 8.15: DBCn Register Field Descriptions.. 141
Table 8.16: DBVn Register Field Descriptions.. 142
Table 8.17: DBCCn Register Field Descriptions ... 142
Table 8.18: DBPCn Register Field Descriptions ... 143
Table 8.19: DVM Register Field Descriptions ... 144
Table 8.20: Addresses for Complex Breakpoint Registers ... 144
Table 8.21: CBTC Register Field Descriptions ... 145
Table 8.23: Priming Conditions and Register Values.. 146
Table 8.22: PrCndA Register Field Descriptions... 146
Table 8.24: STCtl Register Field Descriptions .. 147
Table 8.25: STCtl Register Field Descriptions .. 148
Table 8.26: EJTAG Interface Pins .. 152
Table 8.27: Implemented EJTAG Instructions .. 156
Table 8.28: Device Identification Register... 159
Table 8.29: Implementation Register Descriptions ... 160
Table 8.30: EJTAG Control Register Descriptions.. 161
Table 8.31: Fastdata Register Field Description... 166
Table 8.32: Operation of the FASTDATA access ... 167
Table 8.33: Data Bus Encoding .. 172
Table 8.34: Registers in the ITCB... 173
Table 8.35: Registers that Enable/Disable Trace from Complex Triggers and their drseg Addresses 174
Table 8.36: A List of Coprocessor 0 Trace Registers ... 179
Table 8.37: TCB EJTAG registers... 180
Table 8.38: Registers selected by TCBCONTROLB... 180
Table 8.39: TCBCONTROLA Register Field Descriptions .. 180
Table 8.40: TCBCONTROLB Register Field Descriptions .. 183
Table 8.41: Clock Ratio encoding of the CR field ... 187
Table 8.43: TCBCONFIG Register Field Descriptions .. 188
Table 8.42: TCBDATA Register Field Descriptions .. 188
Table 8.44: TCBTW Register Field Descriptions .. 189

12 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Table 8.45: TCBRDP Register Field Descriptions .. 190
Table 8.46: TCBWRP Register Field Descriptions.. 190
Table 8.47: TCBSTP Register Field Descriptions ... 191
Table 8.48: TCBTRIGx Register Field Descriptions.. 191
Table 9.1: Byte Access Within a Word.. 205
Table 10.1: Encoding of the Opcode Field.. 208
Table 10.2: Special Opcode encoding of Function Field... 208
Table 10.3: Special2 Opcode Encoding of Function Field .. 208
Table 10.4: Special3 Opcode Encoding of Function Field .. 209
Table 10.5: RegImm Encoding of rt Field.. 209
Table 10.6: COP2 Encoding of rs Field .. 209
Table 10.7: COP2 Encoding of rt Field When rs=BC2.. 209
Table 10.8: COP0 Encoding of rs Field .. 210
Table 10.9: COP0 Encoding of Function Field When rs=CO.. 210
Table 10.10: Instruction Set .. 210
Table 10.1: Usage of Effective Address.. 217
Table 10.2: Encoding of Bits[17:16] of CACHE Instruction... 218
Table 10.3: Encoding of Bits [20:18] of the CACHE Instruction.. 218
Table 10.1: Values of hint Field for PREF Instruction ... 222
Table 11.1: Symbols Used in the Instruction Encoding Tables... 229
Table 11.2: MIPS16e Encoding of the Opcode Field .. 230
Table 11.3: MIPS16e JAL(X) Encoding of the x Field... 230
Table 11.4: MIPS16e SHIFT Encoding of the f Field .. 230
Table 11.5: MIPS16e RRI-A Encoding of the f Field... 230
Table 11.6: MIPS16e I8 Encoding of the funct Field... 230
Table 11.7: MIPS16e RRR Encoding of the f Field... 231
Table 11.8: MIPS16e RR Encoding of the Funct Field ... 231
Table 11.9: MIPS16e I8 Encoding of the s Field when funct=SVRS .. 231
Table 11.10: MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)... 231
Table 11.11: MIPS16e RR Encoding of the ry Field when funct=CNVT ... 231
Table 11.12: MIPS16e Load and Store Instructions ... 232
Table 11.13: MIPS16e Save and Restore Instructions ... 232
Table 11.14: MIPS16e ALU Immediate Instructions ... 232
Table 11.15: MIPS16e Arithmetic Two or Three Operand Register Instructions .. 232
Table 11.16: MIPS16e Special Instructions .. 233
Table 11.17: MIPS16e Multiply and Divide Instructions.. 233
Table 11.18: MIPS16e Jump and Branch Instructions.. 234
Table 11.19: MIPS16e Shift Instructions... 234

Chapter 1

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 13

Introduction to the MIPS32® M4K™ Processor Core

The MIPS32® M4K™ core from MIPS Technologies is a high-performance, low-power, 32-bit MIPS RISC proces-
sor core intended for custom system-on-silicon applications. The core is designed for semiconductor manufacturing
companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic and peripher-
als with a high-performance RISC processor. A M4K core is fully synthesizable to allow maximum flexibility; it is
highly portable across processes and can easily be integrated into full system-on-silicon designs. This allows develop-
ers to focus their attention on end-user specific characteristics of their product.

The M4K core is ideally positioned to support new products for emerging segments of the routing, network access,
network storage, residential gateway, and smart mobile device markets. It is especially well-suited for applications
where high performance density is critical, especially those requiring multiple processor cores on a single chip.

The M4K family has two members, distinguished by the range of build-time options available:

• MIPS32 M4K™ Core: Fully configurable cacheless core.

• MIPS32 M4K™ Lite Core: A subset of the full M4K core, with a reduced set of build-time configuration
choices.

The term M4K core used throughout this document generally refers to all members of the M4K family. Since the
M4K Lite core has fewer configuration options than the M4K core, certain features described in this document may
not be available on the M4K Lite version.

The core implements the MIPS32 Release 2 Instruction Set Architecture (ISA), and may optionally support the
MIPS16e Application Specific Extension (ASE) for code compression. The MMU consists of a simple Fixed Map-
ping Translation (FMT) mechanism, for applications that do not require the full capabilities of a Translation Looka-
side Buffer- (TLB-) based MMU available on other MIPS cores.

The M4K core is cacheless; in lieu of caches, it includes a simple interface to SRAM-style devices. This interface
may be configured for independent instruction and data devices or combined into a unified interface. The SRAM
interface allows deterministic latency to memory, while still maintaining high performance.

The core includes one of two different Multiply/Divide Unit (MDU) implementations, selectable at build-time, allow-
ing the user to trade off performance and area for integer multiply and divide operations. The high-performance MDU
option implements single cycle multiply and multiply-accumulate (MAC) instructions, which enable DSP algorithms
to be performed efficiently. It allows 32-bit x 16-bit MAC instructions to be issued every cycle, while a 32-bit x 32-bit
MAC instruction can be issued every other cycle. The area-efficient MDU option handles multiplies with a
one-bit-per-clock iterative algorithm.

The basic Enhanced JTAG (EJTAG) features provide CPU run control with stop, single stepping and re-start, and
with software breakpoints through the SDBBP instruction. Additional EJTAG features - instruction and data virtual
address hardware breakpoints, complex hardware breakpoints, connection to an external EJTAG probe through the
Test Access Port (TAP), and PC/Data tracing, may optionally be included.

 Introduction to the MIPS32® M4K™ Processor Core

14 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

The rest of this chapter provides an overview of the MIPS32 M4K processor core and consists of the following sec-
tions:

• Section 1.1 “Features”

• Section 1.2 “M4K™ Core Block Diagram”

1.1 Features

• 5-stage pipeline

• 32-bit Address and Data Paths

• MIPS32-Compatible Instruction Set

• Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)

• Targeted multiply instruction (MUL)

• Zero and one detect instructions (CLZ, CLO)

• Wait instruction (WAIT)

• Conditional move instructions (MOVZ, MOVN)

• Prefetch instruction (PREF)

• MIPS32 Enhanced Architecture (Release 2) Features

• Vectored interrupts and support for an external interrupt controller

• Programmable exception vector base

• Atomic interrupt enable/disable

• GPR shadow sets

• Bit field manipulation instructions

• MIPS16e Application Specific Extension

• 16 bit encodings of 32-bit instructions to improve code density

• Special PC-relative instructions for efficient loading of addresses and constants

• Data type conversion instructions (ZEB, SEB, ZEH, SEH)

• Compact jumps (JRC, JALRC)

• Stack frame set-up and tear down “macro” instructions (SAVE and RESTORE)

• Programmable Memory Management Unit

1.1 Features

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 15

• Simple Fixed Mapping Translation (FMT)

• Address spaces mapped using register bits

• Simple SRAM-Style Interface

• Cacheless operation enables deterministic response and reduces size

• 32-bit address and data; input byte enables enable simple connection to narrower devices

• Single or multi-cycle latencies

• Configuration option for dual or unified instruction/data interfaces

• Redirection mechanism on dual I/D interfaces permits D-side references to be handled by I-side

• Transactions can be aborted to improve interrupt latency

• Multi-Core Support

• External lock indication enables multi-processor semaphores based on LL/SC instructions

• External sync indication allows memory ordering

• Debug support includes cross-core triggers

• CorExtend™ User Defined Instruction capability (access to this feature is available in the M4K Pro™ cores and
requires a separate license)

• Optional support for the CorExtend feature allows users to define and add instructions to the core (as a
build-time option)

• Single or multi-cycle instructions

• Source operations from register, immediate field, or local state

• Destination to a register or local state

• Full featured Coprocessor 2 Interface

• Almost all I/Os registered

• Separate unidirectional 32-bit instruction and data buses

• Support for branch on Coprocessor condition

• Processor to/from Coprocessor register data transfers

• Direct memory to/from Coprocessor register data transfers

• Multiply-Divide Unit (High performance build-time option)

• Maximum issue rate of one 32x16 multiply per clock

 Introduction to the MIPS32® M4K™ Processor Core

16 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

• Maximum issue rate of one 32x32 multiply every other clock

• Early-in divide control. Minimum 11, maximum 34 clock latency on divide

• Multiply-Divide Unit (Area-efficient build-time option)

• Iterative multiply and divide. 32 or more cycles for each instruction.

• Power Control

• No minimum frequency

• Power-down mode (triggered by WAIT instruction)

• Support for software-controlled clock divider

• Support for extensive use of fine-grain clock gating

• EJTAG Debug Support

• CPU control with start, stop and single stepping

• Software breakpoints via the SDBBP instruction

• Optional simple hardware breakpoints on virtual addresses; 4 instruction and 2 data breakpoints, 2 instruc-
tion and 1 data breakpoint, or no breakpoints

• Optional complex hardware breakpoints with 6 instruction and 2 data simple breakpoints, plus ability to
specify combinations of breakpoints for more specific break conditions

• Optional Test Access Port (TAP) facilitates high speed download of application code

• Optional trace hardware to enable real-time tracing of executed code

1.2 M4K™ Core Block Diagram

The M4K core contains both required and optional blocks, as shown in the block diagram in Figure 1.1. Required
blocks are the lightly shaded areas of the block diagram and are always present in any core implementation. Optional
blocks may be added to the base core, depending on the needs of a specific implementation. The required blocks are
as follows:

• Execution Unit

• Multiply-Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Cache Controller

• SRAM Interface

1.2 M4K™ Core Block Diagram

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 17

• Power Management

Optional blocks include:

• Enhanced JTAG (EJTAG) Controller

• MIPS16e support

• Coprocessor 2 Interface (CP2)

• CorExtend® User Defined Instructions (UDI)

Figure 1.1 shows a block diagram of a M4K core.

Figure 1.1 M4K™ Processor Core Block Diagram

1.2.1 Required Logic Blocks

The following subsections describe the various required logic blocks of the M4K processor core.

1.2.1.1 Execution Unit

The core execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU) opera-
tions (logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains thirty-two 32-bit gen-
eral-purpose registers(GPRs) used for scalar integer operations and address calculation. Optionally, one or three
additional register file shadow sets (each containing thirty-two registers) can be added to minimize context switching
overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is
fully bypassed to minimize operation latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

System
Coprocessor

MDU

FMT

MMU

TAP

EJTAG

 Power
Mgmt

Off-Chip Debug
I/F

Fixed/Required Optional

 Execution Core
(RF/ALU/Shift)

O
n-

ch
ip

 S
R

AM

Trace

 Off/On-Chip
Trace I/F

CP2

UDI

On-Chip
Coprocessor 2

SRAM Interface

 Dual or Unified
SRAM I/F

 Introduction to the MIPS32® M4K™ Processor Core

18 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

• Address unit for calculating the next instruction address

• Logic for branch determination and branch target address calculation

• Load aligner

• Bypass multiplexers used to avoid stalls when executing instruction streams where data-producing instructions
are followed closely by consumers of their results

• Zero/One detect unit for implementing the CLZ and CLO instructions

• ALU for performing bitwise logical operations

• Shifter and Store aligner

1.2.1.2 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply divide operations. Two configuration options exist for the MDU, select-
able at build time: an area-efficient iterative MDU and a higher performance 32x16 array. The MDU consists of an
iterative or32x16 multiplier, result-accumulation registers (HI and LO), multiply and divide state machines, and all
multiplexers and control logic required to perform these functions. The high-performance, pipelined MDU supports
execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every
other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back 32x32 multiply opera-
tions. Divide operations are implemented with a simple 1 bit per clock iterative algorithm and require 35 clock cycles
in worst case to complete. Early-in to the algorithm detects sign extension of the dividend, if it is actual size is 24, 16
or 8 bit. the divider will skip 7, 15 or 23 of the 32 iterations. An attempt to issue a subsequent MDU instruction while
a divide is still active causes a pipeline stall until the divide operation is completed.

The area-efficient, non-pipelined MDU consists of a 32-bit full-adder, result-accumulation registers (HI and LO), a
combined multiply/divide state machine, and all multiplexers and control logic required to perform these functions. It
performs any multiply using 32 cycles in an iterative 1 bit per clock algorithm. Divide operations are also imple-
mented with a simple 1 bit per clock iterative algorithm (no early-in) and require 35 clock cycles to complete. An
attempt to issue a subsequent MDU instruction while a multiply/divide is still active causes a pipeline stall until the
operation is completed.

The M4K implements an additional multiply instruction, MUL, which specifies that lower 32-bits of the multiply
result be placed in the register file instead of the HI/LO register pair. By avoiding the explicit move from LO (MFLO)
instruction, required when using the LO register, and by supporting multiple destination registers, the throughput of
multiply-intensive operations is increased.

Two instructions, multiply-add (MADD/MADDU) and multiply-subtract (MSUB/MSUBU), are used to perform the
multiply-add and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the
product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands
and then subtracts the product from the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations
are commonly used in Digital Signal Processor (DSP) algorithms.

1.2.1.3 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, cache protocols, the
exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mode), and
the enabling/disabling of interrupts. Configuration information such as presence of build-time options are available
by accessing the CP0 registers. Refer to Chapter 5, “CP0 Registers of the M4K™ Core” on page 85 for more infor-

1.2 M4K™ Core Block Diagram

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 19

mation on the CP0 registers. Refer to Chapter 8, “EJTAG Debug Support in the M4K™ Core” on page 127 for more
information on EJTAG debug registers.

1.2.1.4 Memory Management Unit (MMU)

The M4K core contains an MMU that interfaces between the execution unit and the SRAM controller, shown in
Figure 1.2.

The M4K implement a FMT-based MMU.The FMT performs a simple translation to get the physical address from
the virtual address. Refer to Chapter 3, “Memory Management of the M4K™ Core” on page 43 for more information
on the FMT.

Figure 1.2 shows how the address translation mechanism interacts with SRAM access.

Figure 1.2 Address Translation During a SRAM Access

1.2.1.5 SRAM Interface

Instead of caches, the M4K core contains an interface to SRAM-style memories that can be tightly coupled to the
core. This permits deterministic response time with less area than is typically required for caches. The SRAM inter-
face includes separate unidirectional 32-bit buses for address, read data, and write data.

Dual or Unified Interfaces

The SRAM interface includes a build-time option to select either dual or unified instruction and data interfaces.The
dual interface enables independent connection to instruction and data devices. It generally yields the highest perfor-
mance, since the pipeline can generate simultaneous I and D requests which are then serviced in parallel. For simpler
or cost-sensitive systems, it is also possible to combine the I and D interfaces into a common interface that services
both types of requests. If I and D requests occur simultaneously, priority is given to the D side.

Backstalling

Typically, read or write transactions will complete in a single cycle. If multi-cycle latency is desired, however, the
interface can be stalled to allow connection to slower devices.

Redirection

When the dual I/D interface is present, a mechanism exists to divert D-side references to the I-side, if desired. The
redirection is employed automatically in the case of PC-relative loads in MIPS16e mode. The mechanism can be

Instruction
Address
Calculator

FMT

Data
Address
Calculator PhysicalVirtual

Address

Virtual
Address

Address

Physical
Address

SRAM
interface

Data
SRAM

Instn
SRAM

 Introduction to the MIPS32® M4K™ Processor Core

20 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

explicitly invoked for any other D-side references, as well. When the DS_Redir signal is asserted, a D-side request is
diverted to the I-side interface in the following cycle, and the D-side will be stalled until the transaction is completed.

Transaction Abort

Because the core does not know whether loads or stores are re-startable, it cannot arbitrarily interrupt a request which
has been initiated on the SRAM interface. However, cycles spent waiting for a multi-cycle transaction to complete
can directly impact interrupt latency. In order to minimize this effect, the interface supports an abort mechanism. The
core requests an abort whenever an interrupt is detected and a transaction is pending. The external system logic can
choose to acknowledge the abort, if it wants to reduce interrupt latency.

MIPS16e Execution

When the core is operating in MIPS16e mode, instruction fetches only require 16-bits of data to be returned. For
improved efficiency, however, the core will fetch 32-bits of instruction data whenever the address is word-aligned.
Thus for sequential MIPS16e code, fetches only occur for every other instruction, resulting in better performance and
reduced system power.

Connecting to Narrower Devices

The instruction and data read buses are always 32-bits in width. To facilitate connection to narrower memories, the
SRAM interface protocol includes input byte enables that can be used by system logic to signal validity as partial read
data becomes available. The input byte enables conditionally register the incoming read data bytes within the core,
and thus eliminate the need for external registers to gather the entire 32-bits of data. External muxes are required to
redirect the narrower data to the appropriate byte lanes.

Lock Mechanism

The SRAM interface includes a protocol to identify a locked sequence, and is used in conjunction with the LL/SC
atomic read-modify-write semaphore instructions.

Sync Mechanism

The interface includes a protocol that externalizes the execution of the SYNC instruction. External logic might
choose to use this information to enforce memory ordering between various elements in the system.

External Call Indication

The interface has an indication when a fetch is for the target of a call-type instruction like JAL or BAL. A system with
prefetching might choose to save prefetched instructions to be executed when there is a return from the subroutine.

1.2.1.6 Power Management

The core offers a number of power management features, including low-power design, active power management,
and power-down modes of operation. The core is a static design that supports a WAIT instruction designed to signal
the rest of the device that execution and clocking should be halted, hence reducing system power consumption during
idle periods.

The core provides two mechanisms for system-level, low-power support:

• Register-controlled power management

• Instruction-controlled power management

1.2 M4K™ Core Block Diagram

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 21

In register-controlled power management mode the core provides three bits in the CP0 Status register for software
control of the power management function and allows interrupts to be serviced even when the core is in power-down
mode. In instruction-controlled power-down mode execution of the WAIT instruction is used to invoke low-power
mode.

Refer to Chapter 7, “Power Management of the M4K™ Core” on page 125 for more information on power manage-
ment.

1.2.2 Optional Logic Blocks

The core consists of the following optional logic blocks as shown in the block diagram in Figure 1.1.

1.2.2.1 MIPS16e™ Application Specific Extension

The M4K core includes optional support for the MIPS16e ASE. This ASE improves code density through the use of
16-bit encodings of MIPS32 instructions plus some MIPS16e-specific instructions. PC relative loads allow quick
access to constants. Save/Restore macro instructions provide for single instruction stack frame setup/teardown for
efficient subroutine entry/exit. Sign- and zero-extend instructions improve handling of 8bit and 16bit datatypes.

A decompressor converts the MIPS16e 16-bit instructions fetched from the external interface back into 32-bit instruc-
tions for execution by the core.

1.2.2.2 EJTAG Controller

All cores provide basic EJTAG support with debug mode, run control, single step and software breakpoint instruction
(SDBBP) as part of the core. These features allow for the basic software debug of user and kernel code.

Optional EJTAG features include hardware breakpoints. A M4K core may have up to six instruction breakpoints and
two data breakpoints and potentially support for complex breakpoints. The hardware instruction breakpoints can be
configured to generate a debug exception when an instruction is executed anywhere in the virtual address space. Bit
mask values may apply in the address compare. These breakpoints are not limited to code in RAM like the software
instruction breakpoint (SDBBP). The data breakpoints can be configured to generate a debug exception on a data
transaction. The data transaction may be qualified with both virtual address, data value, size and load/store transac-
tion type. Bit mask values may apply in the address compare, and byte mask may apply in the value compare.

Complex breakpoints can be configured to match on more intricate scenarios. Complex break features include pass
counters to enable the breakpoint after N matching occurrences, requiring matching of both data and instruction
breaks on one instruction, priming to enable after another breakpoint condition has been met, and qualifying to enable
instruction breaks when certain data conditions have been met.

An optional TAP, enabling communication between an EJTAG probe and the CPU through a dedicated port, may also
be applied to the core. This provides the possibility for debugging without debug code in the application, and for
download of application code to the system.

Another optional block is EJTAG Trace which enables real-time tracing capability. The trace information can be
stored to either an on-chip trace memory or to an off-chip trace probe. The trace of program flow is highly flexible
and can include instruction program counter as well as data addresses and data values. The trace features provides a
powerful software debugging mechanism.

Refer to Chapter 8, “EJTAG Debug Support in the M4K™ Core” on page 127 for more information on the EJTAG
features.

 Introduction to the MIPS32® M4K™ Processor Core

22 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

1.2.2.3 Coprocessor 2 Interface (CP2)

The optional coprocessor 2 (CP2) interface provides a full-featured interface for a coprocessor. It provides full sup-
port for all the MIPS32 COP2 instructions, with the exception of the 64-bit Load/Store instructions (LDC2/SDC2).

The CP2 interface can provide access to a graphics accelerator coprocessor or a simple register file. There is no sup-
port for the floating-point coprocessor COP1, which requires 64-bit data transfers.

Refer to Chapter 10, “M4K™ Processor Core Instructions” on page 207 for more information on the Coprocessor 2
supported instructions.

1.2.2.4 CorExtend® User Defined Instructions (UDI)

This optional module contains support for CorExtend user defined instructions. These instructions must be defined at
build-time for the M4K core. Access to UDI requires a separate license from MIPS, and the core is then referred to as
the M4K Pro™ core. When licensed, 16 instructions in the opcode map are available for UDI, and each instruction
can have single or multi-cycle latency. A UDI instruction can operate on any one or two general-purpose registers or
immediate data contained within the instruction, and can write the result of each instruction back to a general purpose
register or local register. Implementation details for UDI can be found in other documents available from MIPS.

Refer to Table 10.3 “Special2 Opcode Encoding of Function Field” for a specification of the opcode map available
for user defined instructions.

Chapter 2

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 23

Pipeline of the M4K™ Core

The M4K processor core implements a 5-stage pipeline similar to the original R3000 pipeline. The pipeline allows
the processor to achieve high frequency while minimizing device complexity, reducing both cost and power con-
sumption. This chapter contains the following sections:

• Section 2.1 “Pipeline Stages”

• Section 2.2 “Multiply/Divide Operations”

• Section 2.3 “MDU Pipeline (High-Performance MDU)”

• Section 2.4 “MDU Pipeline (Area-Efficient MDU)”

• Section 2.5 “Branch Delay”

• Section 2.6 “Data Bypassing”

• Section 2.8 “Interlock Handling”

• Section 2.9 “Slip Conditions”

• Section 2.10 “Instruction Interlocks”

• Section 2.11 “Hazards”

2.1 Pipeline Stages

The pipeline consists of five stages:

• Instruction (I stage)

• Execution (E stage)

• Memory (M stage)

• Align (A stage)

• Writeback (W stage)

A M4K core implements a “Bypass” mechanism that allows the result of an operation to be sent directly to the
instruction that needs it without having to write the result to the register and then read it back.

The M4K soft core includes a build-time option that determines the type of multiply/divide unit (MDU) imple-
mented. The MDU can be either a high-performance array or an iterative, area-efficient array. The MDU choice has a

 Pipeline of the M4K™ Core

24 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

significant effect on the MDU pipeline, and the latency of multiply/divide instructions executed on the core. Software
can query the type of MDU present on a specific implementation of the core by querying the MDU bit in the Config
register (CP0 register 16, select 0); see 5.2.13 “Config Register (CP0 Register 16, Select 0)” for more details.

Figure 2.1 shows the operations performed in each pipeline stage of the M4K processor core, when the high-perfor-
mance multiplier is present.

Figure 2.1 M4K™ Core Pipeline Stages (with high-performance MDU)

Figure 2.2 shows the operations performed in each pipeline stage of the M4K processor core, when the area-efficient
multiplier is present.

Figure 2.2 M4K™ Core Pipeline Stages (with area-efficient MDU)

2.1.1 I Stage: Instruction Fetch

During the Instruction fetch stage:

• An instruction is fetched from the instruction SRAM.

• MIPS16e instructions are converted into MIPS32-like instructions.

MUL

Divide

: I-SRAM read
: Instruction Decode
: Register file read
: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations
: Data Address Calculation
: D-SRAM read
: Load data aligner
: Register file write
: MUL instruction
: Carry Propagate Adder
: Multiply and Multiply Accumulate instructions
: Divide instructions
: Last stage of Divide is a sign adjust

: One or more cycles.

: Result can be read from MDU

I E M A W

I-SRAM ALU Op

MDU Res RdyMult, Macc CPA

MDU Res Rdy

MDU Res RdyCPA

Sign Adjust

MDU Res Rdy

RegW

32x32

16x16, 32x16

Mult, Macc

RegRd

RegW

D-AC

I Dec

I-AC2I-AC1

A gn

I-SRAM

I Dec

RegRd
I-AC2I-AC1

ALU Op
D-AC

MUL

Align
RegW

CPA
Mult, Macc

Divide
Sign Adjust

MDU Res Rdy

A->E Bypass
M->E Bypass

IU
-P

ip
el

in
e

M
DU

-P
ip

el
in

e

A->E Bypass

D-SRAM

D-SRAM

MUL

Multiply, Divide

: Instruction Decode
: Register file read
: Instruction Address Calculation stage 1 and 2
: Arithmetic Logic and Shift operations
: Data Address Calculation

: Load data aligner
: Register file write
: MUL instruction
: Multiply, Multiply Acc. And Divide

: One or more cycles.

: Result can be read from MDU

I E M A W

ALU Op

MDU Res Rdy

MDU Res Rdy

RegW
RegRd

RegW

D-AC

I Dec

I-AC2I-AC1

A ignI Dec

RegRd
I-AC2I-AC1

ALU Op
D-AC

MUL

Align
RegW

Multiply, Divide
MDU Res Rdy

A->E Bypass
M->E Bypass

IU
-P

ip
el

in
M

DU
-P

ip
el

i

A->E Bypass

: I-SRAM readI-SRAM

: D-SRAM readD-SRAM

I-SRAM
D-SRAM

2.1 Pipeline Stages

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 25

2.1.2 E Stage: Execution

During the Execution stage:

• Operands are fetched from the register file.

• Operands from the M and A stage are bypassed to this stage.

• The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for register-to-register instructions.

• The ALU calculates the data virtual address for load and store instructions and the MMU performs the fixed vir-
tual-to-physical address translation.

• The ALU determines whether the branch condition is true and calculates the virtual branch target address for
branch instructions.

• Instruction logic selects an instruction address and the MMU performs the fixed virtual-to-physical address
translation.

• All multiply divide operations begin in this stage.

2.1.3 M Stage: Memory Fetch

During the Memory Fetch stage:

• The arithmetic or logic ALU operation completes.

• The data SRAM access is performed for load and store instructions.

• A 16x16 or 32x16 MUL operation completes in the array and stalls for one clock in the M stage to complete the
carry-propagate-add in the M stage (high-performance MDU option).

• A 32x32 MUL operation stalls for two clocks in the M stage to complete the second cycle of the array and the
carry-propagate-add in the M stage (high-performance MDU option).

• A multiply operation stalls the MDU pipeline for 31 cycles in the M stage (area-efficient MDU option).

• Multiply and divide calculations proceed in the MDU. If the calculation completes before the IU moves the
instruction past the M stage, then the MDU holds the result in a temporary register until the IU moves the instruc-
tions to the A stage (and it is consequently known that it won’t be killed).

2.1.4 A Stage: Align

During the Align stage:

• A separate aligner aligns loaded data with its word boundary.

• A MUL operation makes the result available for writeback. The actual register writeback is performed in the W
stage.

• From this stage load data or a result from the MDU are available in the E stage for bypassing.

 Pipeline of the M4K™ Core

26 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

2.1.5 W Stage: Writeback

During the Writeback stage:

• For register-to-register or load instructions, the result is written back to the register file.

2.2 Multiply/Divide Operations

The M4K core implement the standard MIPS II™ multiply and divide instructions. Additionally, several new instruc-
tions were standardized in the MIPS32 architecture for enhanced performance.

The targeted multiply instruction, MUL, specifies that multiply results be placed in the general purpose register file
instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register,
and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Four instructions, multiply-add (MADD), multiply-add-unsigned (MADDU) multiply-subtract (MSUB), and multi-
ply-subtract-unsigned (MSUBU), are used to perform the multiply-accumulate and multiply-subtract operations. The
MADD/MADDU instruction multiplies two numbers and then adds the product to the current contents of the HI and
LO registers. Similarly, the MSUB/MSUBU instruction multiplies two operands and then subtracts the product from
the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations are commonly used in DSP algo-
rithms.

All multiply operations (except the MUL instruction) write to the HI/LO register pair. All integer operations write to
the general purpose registers (GPR). Because MDU operations write to different registers than integer operations, fol-
lowing integer instructions can execute before the MDU operation has completed. The MFLO and MFHI instructions
are used to move data from the HI/LO register pair to the GPR file. If a MFLO or MFHI instruction is issued before
the MDU operation completes, it will stall to wait for the data.

2.3 MDU Pipeline (High-Performance MDU)

The M4Kprocessor core contains an autonomous multiply/divide unit (MDU) with a separate pipeline for multiply
and divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does not stall when the
IU pipeline stalls. This allows multi-cycle MDU operations, such as a divide, to be partially masked by system stalls
and/or other integer unit instructions.

The MDU consists of a 32x16 booth encoded multiplier array, a carry propagate adder, result/accumulation registers
(HI and LO), multiply and divide state machines, and all necessary multiplexers and control logic. The first number
shown (‘32’ of 32x16) represents the rs operand. The second number (‘16’ of 32x16) represents the rt operand. The
core only checks the latter (rt) operand value to determine how many times the operation must pass through the mul-
tiplier array. The 16x16 and 32x16 operations pass through the multiplier array once. A 32x32 operation passes
through the multiplier array twice.

The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations
can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back
32x32 multiply operations. Multiply operand size is automatically determined by logic built into the MDU. Divide
operations are implemented with a simple 1 bit per clock iterative algorithm with an early in detection of sign exten-
sion on the dividend (rs). Any attempt to issue a subsequent MDU instruction while a divide is still active causes an
IU pipeline stall until the divide operation is completed.

2.3 MDU Pipeline (High-Performance MDU)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 27

Table 2.1 lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for the
first instruction to produce the result needed by the second instruction.

In Table 2.1 a latency of one means that the first and second instructions can be issued back to back in the code with-
out the MDU causing any stalls in the IU pipeline. A latency of two means that if issued back to back, the IU pipeline
will be stalled for one cycle. MUL operations are special because it needs to stall the IU pipeline in order to maintain
its register file write slot. Consequently the MUL 16x16 or 32x16 operation will always force a one cycle stall of the
IU pipeline, and the MUL 32x32 will force a two cycle stall. If the integer instruction immediately following the
MUL operation uses its result, an additional stall is forced on the IU pipeline.

Table 2.1 MDU Instruction Latencies (High-Performance MDU)

Size of Operand

1st Instruction[1]

Instruction Sequence
Latency
Clocks1st Instruction 2nd Instruction

16 bit MULT/MULTU,
MADD/MADDU
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU or

MFHI/MFLO

1

32 bit MULT/MULTU,
MADD/MADDU, or

MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU or

MFHI/MFLO

2

16 bit MUL Integer operation[2] 2[3]

32 bit MUL Integer operation[2] 2[3]

8 bit DIVU MFHI/MFLO 9

16 bit DIVU MFHI/MFLO 17

24 bit DIVU MFHI/MFLO 25

32 bit DIVU MFHI/MFLO 33

8 bit DIV MFHI/MFLO 10[4]

16 bit DIV MFHI/MFLO 18[4]

24 bit DIV MFHI/MFLO 26[4]

32 bit DIV MFHI/MFLO 34[4]

any MFHI/MFLO Integer operation[2] 2

any MTHI/MTLO MADD/MADDU or
MSUB/MSUBU

1

[1] For multiply operations, this is the rt operand. For divide operations, this is the rs operand.
[2] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
[3] This does not include the 1 or 2 IU pipeline stalls (16 bit or 32 bit) that the MUL operation causes irre-

spective of the following instruction.These stalls do not add to the latency of 2.
[4] If both operands are positive, then the Sign Adjust stage is bypassed. Latency is then the same as for

DIVU.

 Pipeline of the M4K™ Core

28 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Table 2.2 lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply accumu-
late/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In this table ‘repeat rate’ refers to the
case where the first MDU instruction (in the table below) if back-to-back with the second instruction.

Figure 2.3 below shows the pipeline flow for the following sequence:

1. 32x16 multiply (Mult1)

2. Add

3. 32x32 multiply (Mult2)

4. Subtract (Sub)

The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 multiply operation
requires two clocks in the MMDU pipe-stage. The MDU pipeline is shown as the shaded areas of Figure 2.3 and
always starts a computation in the final phase of the E stage. As shown in the figure, the MMDU pipe-stage of the
MDU pipeline occurs in parallel with the M stage of the IU pipeline, the AMDU stage occurs in parallel with the A
stage, and the WMDU stage occurs in parallel with the W stage. In general this need not be the case. Following the 1st
cycle of the M stages, the two pipelines need not be synchronized. This does not present a problem because results in
the MDU pipeline are written to the HI and LO registers, while the integer pipeline results are written to the register
file.

Figure 2.3 MDU Pipeline Behavior During Multiply Operations

The following is a cycle-by-cycle analysis of Figure 2.3.

1. The first 32x16 multiply operation (Mult1) is fetched from the instruction cache and enters the I stage.

Table 2.2 MDU Instruction Repeat Rates (High-Performance MDU)

Operand Size of 1st
Instruction

Instruction Sequence
Repeat

Rate1st Instruction 2nd Instruction

16 bit MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU

1

32 bit MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU, MSUB/MSUBU 2

I E A WM

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8

Mult1

Add

Mult2

I E AMDU WMDUMMDU

I E AMDU WMDUMMDUMMDU

Sub

I E A WM

2.3 MDU Pipeline (High-Performance MDU)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 29

2. An Add operation enters the I stage. The Mult1 operation enters the E stage. The integer and MDU pipelines
share the I and E pipeline stages. At the end of the E stage in cycle 2, the MDU pipeline starts processing the
multiply operation (Mult1).

3. In cycle 3 a 32x32 multiply operation (Mult2) enters the I stage and is fetched from the instruction cache. Since
the Add operation has not yet reached the M stage by cycle 3, there is no activity in the M stage of the integer
pipeline at this time.

4. In cycle 4 the Subtract instruction enters I stage. The second multiply operation (Mult2) enters the E stage. And
the Add operation enters M stage of the integer pipe. Since the Mult1 multiply is a 32x16 operation, only one
clock is required for the MMDU stage, hence the Mult1 operation passes to the AMDU stage of the MDU pipeline.

5. In cycle 5 the Subtract instruction enters E stage. The Mult2 multiply enters the MMDU stage. The Add operation
enters the A stage of the integer pipeline. The Mult1 operation completes and is written back in to the HI/LO reg-
ister pair in the WMDU stage.

6. Since a 32x32 multiply requires two passes through the multiplier, with each pass requiring one clock, the 32x32
Mult2 remains in the MMDU stage in cycle 6. The Sub instruction enters M stage in the integer pipeline. The Add
operation completes and is written to the register file in the W stage of the integer pipeline.

7. The Mult2 multiply operation progresses to the AMDU stage, and the Sub instruction progress to the A stage.

8. The Mult2 operation completes and is written to the HI/LO registers pair the WMDU stage, while the Sub instruc-
tion write to the register file in the W stage.

2.3.1 32x16 Multiply (High-Performance MDU)

The 32x16 multiply operation begins in the last phase of the E stage, which is shared between the integer and MDU
pipelines. In the latter phase of the E stage, the rs and rt operands arrive and the booth-recoding function occurs at
this time. The multiply calculation requires one clock and occurs in the MMDU stage. In the AMDU stage, the
carry-propagate-add (CPA) function occurs and the operation is completed. The result is ready to be read from the
HI/LO registers in the WMDU stage.

Figure 2.4 shows a diagram of a 32x16 multiply operation.

Figure 2.4 MDU Pipeline Flow During a 32x16 Multiply Operation

2.3.2 32x32 Multiply (High-Performance MDU)

The 32x32 multiply operation begins in the last phase of the E stage, which is shared between the integer and MDU
pipelines. In the latter phase of the E stage, the rs and rt operands arrive and the booth recoding function occurs at this
time. The multiply calculation requires two clocks and occurs in the MMDU stage. In the AMDU stage, the CPA func-
tion occurs and the operation is completed.

Booth Array CPA

E MMDU AMDU WMDU

Clock 1 2 3 4

Res Rdy

 Pipeline of the M4K™ Core

30 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Figure 2.5 shows a diagram of a 32x32 multiply operation.

Figure 2.5 MDU Pipeline Flow During a 32x32 Multiply Operation

2.3.3 Divide (High-Performance MDU)

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only for
positive operands, hence the first cycle of the MMDU stage is used to negate the rs operand (RS Adjust) if needed. Note
that this cycle is spent even if the adjustment is not necessary. During the next maximum 32 cycles (3-34) an iterative
add/subtract loop is executed. In cycle 3 an early-in detection is performed in parallel with the add/subtract. The
adjusted rs operand is detected to be zero extended on the upper most 8, 16 or 24 bits. If this is the case the following
7, 15 or 23 cycles of the add/subtract iterations are skipped.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is spent even
if the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. The sign
adjust stage is skipped if both operands are positive. In this case the Rem Adjust is moved to the AMDU stage.

Figure 2.6, Figure 2.7, Figure 2.8 and Figure 2.9 show the latency for 8, 16, 24 and 32 bit divide operations, respec-
tively. The repeat rate is either 11, 19, 27 or 35 cycles (one less if the sign adjust stage is skipped) as a second divide
can be in the RS Adjust stage when the first divide is in the Reg WR stage.

Figure 2.6 High-Performance MDU Pipeline Flow During a 8-bit Divide (DIV) Operation

Figure 2.7 High-Performance MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Booth Array

E MMDU MMDU AMDU WMDU

CPAArray

Booth

Clock 1 2 3 4 5

Res Rdy

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-10 11 12

WMDU Stage

13

Sign Adjust

MMDU Stage

Add/Subtract

3

Early In

MDU Res Rdy

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-18 19 20

WMDU Stage

21

Sign Adjust

MMDU Stage

Add/Subtract

3

Early In

MDU Res Rdy

2.4 MDU Pipeline (Area-Efficient MDU)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 31

Figure 2.8 High-Performance MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

Figure 2.9 High-Performance MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

2.4 MDU Pipeline (Area-Efficient MDU)

The area-efficient multiply/divide unit (MDU) is a separate autonomous block for multiply and divide operations.
The MDU is not pipelined, but rather performs the computations iteratively in parallel with the integer unit (IU) pipe-
line. It does not stall when the IU pipeline stalls. This allows the long-running MDU operations to be partially masked
by system stalls and/or other integer unit instructions.

The MDU consists of one 32-bit adder result-accumulate registers (HI and LO), a combined multiply/divide state
machine and all multiplexers and control logic. A simple 1-bit per clock recursive algorithm is used for both multiply
and divide operations. Using booth’s algorithm all multiply operations complete in 32 clocks. Two extra clocks are
needed for multiply-accumulate. The non-restoring algorithm used for divide operations will not work with negative
numbers. Adjustment before and after are thus required depending on the sign of the operands. All divide operations
complete in 33 to 35 clocks.

Table 2.3 lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for the
second instruction to use the results of the first.

Table 2.3 M4K™ Core Instruction Latencies (Area-Efficient MDU)

Operand Signs of
1st Instruction

(Rs,Rt)

Instruction Sequence
Latency
Clocks1st Instruction 2nd Instruction

any, any MULT/MULTU MADD/MADDU,
MSUB/MSUBU, or

MFHI/MFLO

32

any, any MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU, or

MFHI/MFLO

34

any, any MUL Integer operation[1] 32

any, any DIVU MFHI/MFLO 33

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-26 27 28

WMDU Stage

29

Sign Adjust

MMDU Stage

Add/Subtract

3

Early In

MDU Res Rdy

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-34 35 36

WMDU Stage

37

Sign Adjust

MMDU Stage

Add/Subtract

3

Early In

MDU Res Rdy

 Pipeline of the M4K™ Core

32 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

2.4.1 Multiply (Area-Efficient MDU)

Multiply operations are executed using a simple iterative multiply algorithm. Using Booth’s approach, this algorithm
works for both positive and negative operands. The operation uses 32 cycles in MMDU stage to complete a multiplica-
tion. The register writeback to HI and LO are done in the A stage. For MUL operations, the register file writeback is
done in the WMDU stage.

Figure 2.10 shows the latency for a multiply operation. The repeat rate is 33 cycles as a second multiply can be in the
first MMDU stage when the first multiply is in AMDU stage.

Figure 2.10 M4K™ Area-Efficient MDU Pipeline Flow During a Multiply Operation

2.4.2 Multiply Accumulate (Area-Efficient MDU)

Multiply-accumulate operations use the same multiply machine as used for multiply only. Two extra stages are
needed to perform the addition/subtraction. The operations uses 34 cycles in MMDU stage to complete the multi-
ply-accumulate. The register writeback to HI and LO are done in the A stage.

Figure 2.11 shows the latency for a multiply-accumulate operation. The repeat rate is 35 cycles as a second multi-
ply-accumulate can be in the E stage when the first multiply is in the last MMDU stage.

Figure 2.11 M4KC Area-Efficient MDU Pipeline Flow During a Multiply Accumulate Operation

pos, pos DIV MFHI/MFLO 33

any, neg DIV MFHI/MFLO 34

neg, pos DIV MFHI/MFLO 35

any, any MFHI/MFLO Integer operation[1] 2

any, any MTHI/MTLO MADD/MADDU,
MSUB/MSUBU

1

[1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

Table 2.3 M4K™ Core Instruction Latencies (Area-Efficient MDU)

Operand Signs of
1st Instruction

(Rs,Rt)

Instruction Sequence
Latency
Clocks1st Instruction 2nd Instruction

Add/sub-shift HI/LO Write

E-Stage MMDU-Stage AMDU-Stage

Reg WR

WMDU-Stage

Clock 1 2-33 34 35

Add/Subtract Shift

E Stage MMDU Stage MMDU Stage MMDU Stage

HI/LO Write

AMDU Stage

Accumulate/HIAccumulate/LO

Clock 1 2-33 34 35 36

WMDU Stage

37

2.5 Branch Delay

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 33

2.4.3 Divide (Area-Efficient MDU)

Divide operations also implement a simple non-restoring algorithm. This algorithm works only for positive operands,
hence the first cycle of the MMDU stage is used to negate the rs operand (RS Adjust) if needed. Note that this cycle is
executed even if negation is not needed. The next 32 cycle (3-34) executes an interactive add/subtract-shift function.

Two sign adjust (Sign Adjust 1/2) cycles are used to change the sign of one or both the quotient and the remainder.
Note that one or both of these cycles are skipped if they are not needed. The rule is, if both operands were positive or
if this is an unsigned division; both of the sign adjust cycles are skipped. If the rs operand was negative, one of the
sign adjust cycles is skipped. If only the rs operand was negative, none of the sign adjust cycles are skipped. Register
writeback to HI and LO are done in the A stage.

Figure 2.12 shows the pipeline flow for a divide operation. The repeat rate is either 34, 35 or 36 cycles (depending on
how many sign adjust cycles are skipped) as a second divide can be in the E stage when the first divide is in the last
MMDU stage.

Figure 2.12 M4K™ Area-Efficient MDU Pipeline Flow During a Divide (DIV) Operation

2.5 Branch Delay

The pipeline has a branch delay of one cycle. The one-cycle branch delay is a result of the branch decision logic oper-
ating during the E pipeline stage. This allows the branch target address to be used in the I stage of the instruction fol-
lowing 2 cycles after the branch instruction. By executing the 1st instruction following the branch instruction
sequentially before switching to the branch target, the intervening branch delay slot is utilized. This avoids bubbles
being injected into the pipeline on branch instructions. Both the address calculation and the branch condition check
are performed in the E stage.

The pipeline begins the fetch of either the branch path or the fall-through path in the cycle following the delay slot.
After the branch decision is made, the processor continues with the fetch of either the branch path (for a taken branch)
or the fall-through path (for the non-taken branch).

The branch delay means that the instruction immediately following a branch is always executed, regardless of the
branch direction. If no useful instruction can be placed after the branch, then the compiler or assembler must insert a
NOP instruction in the delay slot.

Figure 2.13 illustrates the branch delay.

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage MMDU Stage

Sign Adjust 1Add/Subtract Shift

Clock 1 2 3-34 35 36

AMDU Stage

37

HI/LO WriteSign Adjust 2

WMDU Stage

38

 Pipeline of the M4K™ Core

34 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Figure 2.13 IU Pipeline Branch Delay

2.6 Data Bypassing

Most MIPS32 instructions use one or two register values as source operands. These operands are fetched from the
register file in the first part of E stage. The ALU straddles the E to M boundary, and can present the result early in M
stage. The result is not written to the register file before the W stage however. If no precautions were made, it would
take 3 cycles before the result was available for the following instructions. To avoid this, data bypassing is imple-
mented.

Between the register file and the ALU a data bypass multiplexer is placed on both operands (see Figure 2.14). This
enables the M4K core to forward data from a preceding instruction whose target is a source register of a following
instruction. An M to E bypass and an A to E bypass feed the bypass multiplexers. A W to E bypass is not needed, as
the register file is capable of making an internal bypass of Rd write data directly to the Rs and Rt read ports.

Figure 2.14 IU Pipeline Data bypass

Figure 2.15 shows the data bypass for an Add1 instruction followed by a Sub2 and another Add3 instruction. The Sub2

instruction uses the output from the Add1 instruction as one of the operands, and thus the M to E bypass is used. The
following Add3 uses the result from both the first Add1 instruction and the Sub2 instruction. Since the Add1 data is

One Cycle

Jump Target Instruction

Delay Slot Instruction

One Clock
Branch Delay

One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

I E M A W

I E M A

Jump or Branch

Bypass
multiplexers

E stage M stage A stage W stageI stage

Load data, HI/LO Data or
CP0 data

A to E bypass

M to E bypass

Instruction
ALU

M stage

ALU

E stageReg File

Rs Addr

Rt Addr
Rs Read

Rt Read
Rd Write

2.6 Data Bypassing

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 35

now in A stage, the A to E bypass is used, and the M to E bypass is used to bypass the Sub2 data to the Add2 instruc-
tion.

Figure 2.15 IU Pipeline M to E bypass

2.6.1 Load Delay

Load delay refers to the fact, that data fetched by a load instruction is not available in the integer pipeline until after
the load aligner in A stage. All instructions need the source operands available in the E stage. An instruction immedi-
ately following a load instruction will, if it has the same source register as was the target of the load, cause an instruc-
tion interlock pipeline slip in the E stage (see 2.10 “Instruction Interlocks” on page 38). If an instruction following
the load by 1 or 2 cycles uses the data from the load, the A to E bypass (see Figure 2.14) serves to reduce or avoid
stall cycles. An instruction flow of this is shown in Figure 2.16.

Figure 2.16 IU Pipeline A to E Data bypass

2.6.2 Move from HI/LO and CP0 Delay

As indicated in Figure 2.14, not only load data, but also data moved from the HI or LO registers (MFHI/MFLO) and
data moved from CP0 (MFC0) enters the IU-Pipeline in the A stage. That is, data is not available in the integer pipe-
line until early in the A stage. The A to E bypass is available for this data. But as for Loads, an instruction following
immediately after one of these move instructions must be paused for one cycle if the target of the move is among the
sources of that following instruction. This then causes an interlock slip in the E stage (see 2.10 “Instruction
Interlocks” on page 38). An interlock slip after a MFHI is illustrated in Figure 2.17.

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

R3=R2+R1
E M A W

I E M A W

I E M A

ADD1

R4=R3-R7

SUB2

R5=R3+R4

ADD3

I

A to E bypassM to E bypass

M to E bypass

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

I E M A W

I E M A

Load Instruction

Consumer of Load Data Instruction

Data bypass from A to E

One Clock
Load Delay

 Pipeline of the M4K™ Core

36 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Figure 2.17 IU Pipeline Slip after a MFHI

2.7 Coprocessor 2 Instructions

If a coprocessor 2 is attached to the M4K core, a number of transactions has to take place on the CP2 Interface, for
each coprocessor 2 instruction. First of all if the CU[2] bit in the CP0 Status register is not set, then no coprocessor 2
related instruction will start a transaction on the CP2 Interface. Rather a Coprocessor Unusable exception will sig-
naled. If the CU[2] bit is set, and a coprocessor 2 instruction is fetched, the following transactions will occur on the
CP2 Interface:

1. The Instruction is presented on the instructions bus in E-stage. The coprocessor 2 can do a decode in the same
cycle.

2. The Instruction is validated from the core in M-stage. From this point the core will accept control and data sig-
nals back from coprocessor 2. All control and data signals from the coprocessor 2 is captured on input latches to
the core.

3. If all the expected control and data signals was presented to the core in the previous M-stage, the core will pro-
ceed executing the A-stage. If some return information is missing, the A-stage will not advance and cause a slip
on all I, E and M-stage, see 2.9 “Slip Conditions” on page 38.
If this instruction involved sending data from the core to the coprocessor 2, then this data is send in A-stage.

4. The instruction completion is signaled to the coprocessor 2 in the W-stage. Potential data from the coprocessor is
written in the register file.

Figure 2.18 Show the timing relationship between the M4K core and the coprocessor 2 for all coprocessor 2 instruc-
tion.

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

E M A WE (slip)I

MFHI (to R3)

ADD (R4=R3+R5)

Data bypass from A to E

2.8 Interlock Handling

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 37

Figure 2.18 Coprocessor 2 Interface Transactions

As can be seen all control and data from the coprocessor must occur in the M-stage. If this is not the case, the A-stage
will start slipping in the following cycle, and thus stall the I, E, M and A pipeline stages; but if all expected control
and data is available in the M-stage, a Coprocessor 2 instructions can execute with no stalls on the pipeline.

There is only one exception to this, and that is the Branch on Coprocessor conditions (BC2) instruction. All branch
instructions, including the regular BEQ, BNE... etc. must be resolved in E-stage. The M4K core does not have branch
prediction logic, and thus the target address must be available before the end of E-stage. The BC2 instruction has to
follow the same protocol as all other coprocessor 2 instructions on the CP2 Interface. All core interface operations
belonging to the E, M and A stages will have to occur in the E-stage for BC2 instructions. This means that a BC2
instructions always slips for a minimum of 2 cycles in E-stage. Any delay in return of branch information from the
Coprocessor 2 will add to the number of slip cycles. All other Coprocessor 2 instructions can operate without slips,
provided that all control and data information from the Coprocessor 2 is transferred in the M-stage.

2.8 Interlock Handling

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected. Interruptions
handled entirely in hardware, such as cache misses, are referred to as interlocks. At each cycle, interlock conditions
are checked for all active instructions.

Table 2.4 lists the types of pipeline interlocks for the M4K processor core.

Table 2.4 Pipeline Interlocks

Interlock Type Sources Slip Stage

I-side SRAM Stall SRAM Access not complete E Stage

Instruction Producer-consumer hazards E/M Stage

Hardware Dependencies (MDU) E Stage

BC2 waiting for COP2 Condition Check

D-side SRAM Stall SRAM Access not complete A Stage

Coprocessor 2 completion slip Coprocessor 2 control and/or data delay
from coprocessor

A Stage

One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

ToData CompleteValidate inst.Instrucion

COP2 inst.

Core to CP2 info.

Control &
FromData

CP2 to Core info. Ready

Decode and setup
valid

Core internal
operations

Get ToData from
memory

Capture Control &
FromData

Fetch instrucion

Get ready for new
inst.

CP2 internal
operations

Decode & get
FromData

See
Valid

Capture ToData Complete
instruction

 Pipeline of the M4K™ Core

38 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

In general, MIPS processors support two types of hardware interlocks:

• Stalls, which are resolved by halting the pipeline

• Slips, which allow one part of the pipeline to advance while another part of the pipeline is held static

In the M4K processor core, all interlocks are handled as slips.

2.9 Slip Conditions

On every clock internal logic determines whether each pipe stage is allowed to advance. These slip conditions propa-
gate backwards down the pipe. For example, if the M stage does not advance, neither does the E or I stage.

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline advances normally
during slips. This resolves the conflict when the slip was caused by a missing result. NOPs are inserted into the bub-
ble in the pipeline. Figure 2.19 shows an instruction cache miss.

Figure 2.19 Instruction Cache Miss Slip

Figure 2.19 shows a diagram of a two-cycle slip. In the first clock cycle, the pipeline is full and the cache miss is
detected. Instruction I0 is in the A stage, instruction I1 is in the M stage, instruction I2 is in the E stage, and instruc-
tion I3 is in the I stage. The cache miss occurs in clock 2 when the I4 instruction fetch is attempted. I4 advances to the
E-stage and waits for the instruction to be fetched from main memory. In this example it takes two clocks (3 and 4) to
fetch the I4 instruction from memory. Once the cache miss is resolved in clock 4 and the instruction is bypassed to the
E stage, the pipeline is restarted, causing the I4 instruction to finally execute it’s E-stage operations.

2.10 Instruction Interlocks

Most instructions can be issued at a rate of one per clock cycle. In order to adhere to the sequential programming
model, the issue of an instruction must sometimes be delayed. This to ensure that the result of a prior instruction is

1 Cache miss detected

1 2

00

E

M I1 I2 I3

A

I

0I3I0 I1 I2

I4I4I2 I3 I4

I5I5I3 I4 I5

3 Execute E-stage

Stage

I4

0

I5

I6

3

Clock 1 2 3 4 5 6

2 Critical word received

2.11 Hazards

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 39

available. Table 2.5 details the instruction interactions that prevent an instruction from advancing in the processor
pipeline.

2.11 Hazards

In general, the M4K core ensures that instructions are executed following a fully sequential program model. Each
instruction in the program sees the results of the previous instruction. There are some deviations to this model. These
deviations are referred to as hazards.

Prior to Release 2 of the MIPS32® Architecture, hazards (primarily CP0 hazards) were relegated to implementa-
tion-dependent cycle-based solutions, primarily based on the SSNOP instruction. This has been an insufficient and
error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such a way that they are back-
ward-compatible with existing MIPS processors.

Table 2.5 Instruction Interlocks

Instruction Interlocks

First Instruction Second Instruction
Issue Delay (in
Clock Cycles) Slip Stage

LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage

MFC0 Consumer of destination regis-
ter

1 E stage

MULTx/MADDx/MSUBx
(high-performance MDU)

16bx32b MFLO/MFHI 0

32bx32b 1 M stage

MUL
(high-performance MDU)

16bx32b Consumer of target data 2 E stage

32bx32b 3 E stage

MUL
(high-performance MDU)

16bx32b Non-Consumer of target data 1 E stage

32bx32b 2 E stage

MFHI/MFLO Consumer of target data 1 E stage

MULTx/MADDx/MSUBx
(high-performance MDU)

16bx32b MULT/MUL/MADD/MSUB
MTHI/MTLO/DIV

0[1] E stage

32bx32b 1[1] E stage

DIV MUL/MULTx/MADDx/
MSUBx/MTHI/MTLO/
MFHI/MFLO/DIV

Until DIV completes E stage

MULT/MUL/MADD/MSUB/MTHI/MTLO/MF
HI/MFLO/DIV
(area-efficient MDU)

MULT/MUL/MADD/MSUB/
MTHI/MTLO/MFHI/MFLO/
DIV

Until 1st MDU op
completes

E stage

MUL
(area-efficient MDU)

Any Instruction Until MUL completes E stage

MFC0/MFC2/CFC2 Consumer of target data 1 E stage

 Pipeline of the M4K™ Core

40 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

2.11.1 Types of Hazards

With one exception, all hazards were eliminated in Release 1 of the Architecture for unprivileged software. The
exception occurs when unprivileged software writes a new instruction sequence and then wishes to jump to it. Such
an operation remained a hazard, and is addressed by the capabilities of Release 2.

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below.

2.11.1.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 2.6 lists execution hazards.

2.11.1.2 Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 2.7 lists instruction hazards.

Table 2.6 Execution Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

MTC0 → Coprocessor instruction execution depends on the new value of Sta-
tusCU

StatusCU 1

MTC0 → ERET EPC
DEPC

ErrorEPC

1

MTC0 → ERET Status 0

MTC0, EI, DI → Interrupted Instruction StatusIE 1

MTC0 → Interrupted Instruction CauseIP 3

MTC0 → RDPGPR
WRPGPR

SRSCtlPSS 1

MTC0 → Instruction not seeing a Timer Interrupt Compare
update that

clears Timer
Interrupt

41

1. This is the minimum value. Actual value is system-dependent since it is a function of the sequential logic between the SI_TimerInt
output and the external logic which feeds SI_TimerInt back into one of the SI_Int inputs, or a function of the method for handling
SI_TimerInt in an external interrupt controller.

MTC0 → Instruction affected by change Any other CP0
register

2

Table 2.7 Instruction Hazards

Producer → Consumer Hazard On
Spacing

(Instructions)

MTC0 → Instruction fetch seeing the new value (including a change to ERL fol-
lowed by an instruction fetch from the useg segment)

Status

2.11 Hazards

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 41

2.11.2 Instruction Listing

Table 2.8 lists the instructions designed to eliminate hazards. See the document titled MIPS32® Architecture for Pro-
grammers Volume II: The MIPS32® Instruction Set (MD00086) for a more detailed description of these instructions.

2.11.2.1 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen
because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

2.11.3 Eliminating Hazards

The Spacing column shown in Table 2.6 and Table 2.7 indicates the number of unrelated instructions (such as NOPs
or SSNOPs) that, prior to the capabilities of Release 2, would need to be placed between the producer and consumer
of the hazard in order to ensure that the effects of the first instruction are seen by the second instruction. Entries in the
table that are listed as 0 are traditional MIPS hazards which are not hazards on the M4K core.

With the hazard elimination instructions available in Release 2, the preferred method to eliminate hazards is to place
one of the instructions listed in Table 2.8 between the producer and consumer of the hazard. Execution hazards can be
removed by using the EHB, JALR.HB, or JR.HB instructions. Instruction hazards can be removed by using the
JALR.HB or JR.HB instructions, in conjunction with the SYNCI instruction. Since the M4K core does not contain
caches, the SYNCI instruction is not strictly necessary, but is still recommended to create portable code that can be
run on other MIPS processors that may contain caches.

Instruction stream
write via redi-
rected store

→ Instruction fetch seeing the new instruction stream Cache entries 3

Table 2.8 Hazard Instruction Listing

Mnemonic Function

EHB Clear execution hazard

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SYNCI Synchronize caches after instruction stream write

Table 2.7 Instruction Hazards (Continued)

Producer → Consumer Hazard On
Spacing

(Instructions)

 Pipeline of the M4K™ Core

42 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Chapter 3

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 43

Memory Management of the M4K™ Core

The M4K processor core includes a Memory Management Unit (MMU) that interfaces between the execution unit
and the cache controller. The core implements a simple Fixed Mapping (FM) style MMU.

This chapter contains the following sections:

• Section 3.1 “Introduction”

• Section 3.2 “Modes of Operation”

• Section 3.3 “Fixed Mapping MMU”

• Section 3.4 “System Control Coprocessor”

3.1 Introduction

The MMU will translate any virtual address to a physical address before a request is sent to the SRAM interface for
an external memory reference.

In the M4K processor core, the MMU is based on a simple algorithm to translate virtual addresses into physical
addresses via a Fixed Mapping (FM) mechanism. These translations are different for various regions of the virtual
address space (useg/kuseg, kseg0, kseg1, kseg2/3).

Figure 3.1 shows how the memory management unit interacts with the SRAM access in the M4K core.

Figure 3.1 Address Translation During SRAM Access

3.2 Modes of Operation

A M4K processor core supports three modes of operation:

Instruction
Address
Calculator

FMT

Data
Address
Calculator PhysicalVirtual

Address

Virtual
Address

Address

Physical
Address

SRAM
interface

Data
SRAM

Instn
SRAM

 Memory Management of the M4K™ Core

44 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

• User mode

• Kernel mode

• Debug mode

User mode is most often used for application programs. Kernel mode is typically used for handling exceptions and
privileged operating system functions, including CP0 management and I/O device accesses. Debug mode is used for
software debugging and most likely occurs within a software development tool.

The address translation performed by the MMU depends on the mode in which the processor is operating.

3.2.1 Virtual Memory Segments

The Virtual memory segments are different depending on the mode of operation. Figure 3.2 shows the segmentation

for the 4 GByte (232 bytes) virtual memory space addressed by a 32-bit virtual address, for the three modes of opera-
tion.

The core enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode, software has
access to the entire address space, as well as all CP0 registers. User mode accesses are limited to a subset of the vir-
tual address space (0x0000_0000 to 0x7FFF_FFFF) and can be inhibited from accessing CP0 functions. In User
mode, virtual addresses 0x8000_0000 to 0xFFFF_FFFF are invalid and cause an exception if accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same
address space and CP0 registers as for Kernel mode. In addition, while in Debug mode the core has access to the
debug segment dseg. This area overlays part of the kernel segment kseg3. dseg access in Debug mode can be turned
on or off, allowing full access to the entire kseg3 in Debug mode, if so desired.

3.2 Modes of Operation

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 45

Figure 3.2 M4K™ processor core Virtual Memory Map

Each of the segments shown in Figure 3.2 are either mapped or unmapped. The following two sub-sections explain
the distinction. Then sections 3.2.2 “User Mode”, 3.2.3 “Kernel Mode” and 3.2.4 “Debug Mode” specify which
segments are actually mapped and unmapped.

3.2.1.1 Unmapped Segments

An unmapped segment does not use the FM to translate from virtual-to-physical addresses.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the transla-
tions the FM provides for the M4K core, but we will still make the distinction.

All segments are treated as uncached within the M4K core. Cache coherency attributes of cached or uncached can be
specified and this information will be sent with the request to allow the system to make a distinction between the two.

useg kuseg kuseg

kseg0

kseg1

kseg2

kseg3

kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF

0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFF1F_FFFF

0xFF3F_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xFF20_0000

0xFF40_0000

0x0000_0000

3.2 Modes of Operation

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 47

All valid user mode virtual addresses have their most significant bit cleared to 0, indicating that user mode can only
access the lower half of the virtual memory map. Any attempt to reference an address with the most significant bit set
while in user mode causes an address error exception.

The system maps all references to useg through the FM.

3.2.3 Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains
one or more of the following values:

• UM = 0

• ERL = 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the
end of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET
instruction jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User
mode.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual address,
as shown in Figure 3.4. Also, Table 3.2 lists the characteristics of the Kernel mode segments.

 Memory Management of the M4K™ Core

48 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Figure 3.4 Kernel Mode Virtual Address Space

Table 3.2 Kernel Mode Segments

Address Bit
Values

Status Register Is One
of These Values

Segment
Name Address Range

Segment
SizeUM EXL ERL

A(31) = 0 (UM = 0
or

EXL = 1
or

ERL = 1)
and

DM = 0

kuseg 0x0000_0000
through

0x7FFF_FFFF

2 GBytes (231

bytes)

A(31:29) = 1002 kseg0 0x8000_0000
through

0x9FFF_FFFF

512 MBytes

(229 bytes)

A(31:29) = 1012 kseg1 0xA000_0000
through

0xBFFF_FFFF

512 MBytes

(229 bytes)

A(31:29) = 1102 kseg2 0xC000_0000
through

0xDFFF_FFFF

512 MBytes

(229 bytes)

A(31:29) = 1112 kseg3 0xE000_0000
through

0xFFFF_FFFF

512 MBytes

(229 bytes)

Kernel virtual address space
Unmapped, 512MB

kuseg

kseg0

kseg1

kseg2

kseg3

Fixed Mapped, 2048MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Fixed Mapped, 512MB

Kernel virtual address space
Fixed Mapped, 512MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF

3.2 Modes of Operation

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 49

3.2.3.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address

space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - 0x7FFF_FFFF.

When ERL = 1 in the Status register, the user address region becomes a 231-byte unmapped and uncached address
space. While in this setting, the kuseg virtual address maps directly to the same physical address.

3.2.3.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 1002, 32-bit kseg0 virtual address

space is selected; it is the 229-byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 -
0x9FFF_FFFF. References to kseg0 are unmapped; the physical address selected is defined by subtracting
0x8000_0000 from the virtual address. The K0 field of the Config register controls cacheability.

3.2.3.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual

address space is selected. kseg1 is the 229-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
0xBFFF_FFFF. References to kseg1 are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address.

3.2.3.4 Kernel Mode, Kernel Space 2 (kseg2)

In Kernel mode, when UM = 0, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug register, and
the most-significant three bits of the 32-bit virtual address are 1102, 32-bit kseg2 virtual address space is selected. In

the M4K core, this 229-byte (512-MByte) kernel virtual space is located at physical addresses 0xC000_0000 -
0xDFFF_FFFF..

3.2.3.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1112 , the kseg3 virtual address

space is selected. In the M4K core, this 229-byte (512-MByte) kernel virtual space is located at physical addresses
0xE000_0000 - 0xFFFF_FFFF.

3.2.4 Debug Mode

Debug mode address space is identical to Kernel mode address space with respect to mapped and unmapped areas,
except for kseg3. In kseg3, a debug segment dseg co-exists in the virtual address range 0xFF20_0000 to
0xFF3F_FFFF. The layout is shown in Figure 3.5.

3.3 Fixed Mapping MMU

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 51

unpredictable, and writes are ignored to any unimplemented register in the drseg. Refer to Chapter 8, “EJTAG Debug
Support in the M4K™ Core” on page 127 for more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the processor
is undefined for other transaction sizes.

3.2.4.2 Conditions and Behavior for Access to dmseg, EJTAG Memory

The behavior of CPU access to the dmseg address range at 0xFF20_0000 to 0xFF2F_FFFF is determined by the table
shown in Table 3.5 .

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. Debug
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If
such a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that
there will never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race
between the debug software sampling the ProbEn bit as 1 and the probe clearing it to 0.

3.3 Fixed Mapping MMU

The M4K core implements a simple Fixed Mapping (FM) memory management unit that is smaller than the a full
translation lookaside buffer (TLB) and more easily synthesized. Like a TLB, the FM performs virtual-to-physical
address translation and provides attributes for the different memory segments. Those memory segments which are
unmapped in a TLB implementation (kseg0 and kseg1) are translated identically by the FM in the M4K MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via bits in the Config regis-
ter. Table 3.6 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and K0 (bits 2:0) of the Config register.
The M4K core does not contain caches and will treat all references as uncached, but these Config fields will be sent
out to the system with the request and it can choose to use them to control any external caching that may be present.

Table 3.5 CPU Access to dmseg Address Range

Transaction
ProbEn bit in
DCR register

LSNM bit in
Debug register Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care dmseg

Load / Store 1 0

Fetch 0 Don’t care See comments below

Load / Store 0 0

Table 3.6 Cache Coherency Attributes

Config Register Fields
K23, KU, and K0 Cache Coherency Attribute

2 Uncached.

3 Cacheable

 Memory Management of the M4K™ Core

54 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Chapter 4

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 55

Exceptions and Interrupts in the M4K™ Core

The M4K processor core receives exceptions from a number of sources, including arithmetic overflows, I/O inter-
rupts, and system calls. When the CPU detects one of these exceptions, the normal sequence of instruction execution
is suspended and the processor enters kernel mode.

In kernel mode the core disables interrupts and forces execution of a software exception processor (called a handler)
located at a specific address. The handler saves the context of the processor, including the contents of the program
counter, the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it
can be restored when the exception has been serviced.

When an exception occurs, the core loads the Exception Program Counter (EPC) register with a location where
execution can restart after the exception has been serviced. Most exceptions are precise, which mean that EPC can be
used to identify the instruction that caused the exception. For precise exceptions the restart location in the EPC regis-
ter is the address of the instruction that caused the exception or, if the instruction was executing in a branch delay slot,
the address of the branch instruction immediately preceding the delay slot. To distinguish between the two, software
must read the BD bit in the CP0 Cause register. Bus error exceptions and CP2 exceptions may be imprecise. For
imprecise exceptions the instruction that caused the exception can not be identified.

This chapter contains the following sections:

• Section 4.1 “Exception Conditions”

• Section 4.2 “Exception Priority”

• Section 4.3 “Interrupts”

• Section 4.4 “GPR Shadow Registers”

• Section 4.5 “Exception Vector Locations”

• Section 4.6 “General Exception Processing”

• Section 4.7 “Debug Exception Processing”

• Section 4.8 “Exceptions”

• Section 4.9 “Exception Handling and Servicing Flowcharts”

4.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are cancelled.
Accordingly, any stall conditions and any later exception conditions that may have referenced this instruction are
inhibited—there is no benefit in servicing stalls for a cancelled instruction.

 Exceptions and Interrupts in the M4K™ Core

56 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions
that follow. When this instruction reaches the W stage, the exception flag causes it to write various CP0 registers with
the exception state, change the current program counter (PC) to the appropriate exception vector address, and clear
the exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent instructions
from completing. Thus, the value in the EPC (ErrorEPC for errors, or DEPC for debug exceptions) is sufficient to
restart execution. It also ensures that exceptions are taken in the order of execution; an instruction taking an exception
may itself be killed by an instruction further down the pipeline that takes an exception in a later cycle.

4.2 Exception Priority

Table 4.1 lists all possible exceptions, and the relative priority of each, highest to lowest. Several of these exceptions
can happen simultaneously, in that event the exception with the highest priority is the one taken.

Table 4.1 Priority of Exceptions

Exception Description

Reset Assertion of SI_ColdReset signal.

Soft Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT
input, or by setting the EjtagBrk bit in the ECR register.

NMI Asserting edge of SI_NMI signal.

Interrupt Assertion of unmasked hardware or software interrupt signal.

DIB EJTAG debug hardware instruction break matched.

AdEL Fetch address alignment error.
User mode fetch reference to kernel address.

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

CEU Execution of a CorExtend instruction with CorExtend disabled.

RI Execution of a Reserved Instruction.

C2E Execution of coprocessor 2 instruction which caused a general exception in the
coprocessor.

IS1 Execution of coprocessor 2 instruction which caused an Implementation Spe-
cific exception 1 in the coprocessor.

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of a trap (when trap condition is true).

DDBL / DDBS EJTAG Data Address Break (address only) or EJTAG Data Value Break on
Store (address and value).

AdEL Load address alignment error.
User mode load reference to kernel address.

4.3 Interrupts

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 57

4.3 Interrupts

Older 32-bit cores available from MIPS that implemented Release 1 of the Architecture included support for two soft-
ware interrupts, six hardware interrupts, and a special-purpose timer interrupt. (Note that the Architecture also defines
a performance counter interrupt, but this is not implemented on the M4K core.) The timer interrupt was provided
external to the core and typically combined with hardware interrupt 5 in an system-dependent manner. Interrupts
were handled either through the general exception vector (offset 16#180) or the special interrupt vector (16#200),
based on the value of CauseIV. Software was required to prioritize interrupts as a function of the CauseIP bits in the
interrupt handler prologue.

Release 2 of the Architecture, implemented by the M4K core, adds an upward-compatible extension to the Release 1
interrupt architecture that supports vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports
the use of an external interrupt controller by changing the interrupt architecture.

4.3.1 Interrupt Modes

The M4K core includes support for three interrupt modes, as defined by Release 2 of the Architecture:

• Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architec-
ture.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. This mode is architecturally optional; but it is always present on
the M4K core, so the VInt bit will always read as a 1 for the M4K core.

• External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This presence of
this mode denoted by the VEIC bit in the Config3 register. Again, this mode is architecturally optional. On the
M4K core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to indicate
the presence of an external interrupt controller.

The reset state of the processor is to interrupt compatibility mode such that a processor supporting Release 2 of the
Architecture, like the M4K core, is fully compatible with implementations of Release 1 of the Architecture.

AdES Store address alignment error.
User mode store to kernel address.

DBE Load or store bus error.

DDBL EJTAG data hardware breakpoint matched in load data compare.

CBrk EJTAG complex breakpoint.

Table 4.1 Priority of Exceptions (Continued)

Exception Description

 Exceptions and Interrupts in the M4K™ Core

58 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Table 4.2 shows the current interrupt mode of the processor as a function of the coprocessor 0 register fields that can
affect the mode.

4.3.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 16#180 (if CauseIV = 0) or vector offset
16#200 (if CauseIV = 1). This mode is in effect if any of the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

A typical software handler for interrupt compatibility mode might look as follows:

/*
 * Assumptions:
 * - CauseIV = 1 (if it were zero, the interrupt exception would have to
 * be isolated from the general exception vector before getting
 * here)
 * - GPRs k0 and k1 are available (no shadow register switches invoked in
 * compatibility mode)
 * - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */

Table 4.2 Interrupt Modes

S
ta

tu
s B

E
V

C
au

se
IV

In
tC

tl
V

S

C
o

n
fi

g
3 V

IN
T

C
o

n
fi

g
3 V

E
IC

Interrupt Mode

1 x x x x Compatibly

x 0 x x x Compatibility

x x =0 x x Compatibility

0 1 ≠0 1 0 Vectored Interrupt

0 1 ≠0 x 1 External Interrupt Controller

0 1 ≠0 0 0 Can’t happen - IntCtlVS can not be non-zero if neither

Vectored Interrupt nor External Interrupt Controller mode
is implemented.

“x” denotes don’t care

4.3 Interrupts

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 59

clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simply UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some
 * collection of other StatusIM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simple return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */

 Exceptions and Interrupts in the M4K™ Core

60 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with a thread running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

4.3.1.2 Vectored Interrupt Mode

Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This
mode also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Inter-
rupt mode is in effect if all of the following conditions are true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer
interrupt is combined in a system-dependent way (external to the core) with the hardware interrupts (the interrupt
with which they are combined is indicated by the IntCtlIPTI field) to provide the appropriate relative priority of the
timer interrupt with that of the hardware interrupts. The processor interrupt logic ANDs each of the CauseIP bits
with the corresponding StatusIM bits. If any of these values is 1, and if interrupts are enabled (StatusIE = 1, Statu-

 Exceptions and Interrupts in the M4K™ Core

62 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

handler may take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInter-
rupt code shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look as follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
mfc0 k0, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
lw k0, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, C0_EPC /* and EPC */
mtc0 k0, C0_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

4.3 Interrupts

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 63

4.3.1.3 External Interrupt Controller Mode

External Internal Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to pro-
vide support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts,
including hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the
priority level and vector number of the highest priority interrupt. EIC interrupt mode is in effect if all of the following
conditions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0) and the timer
interrupt request (CauseTI) to the external interrupt controller, where it prioritizes these interrupts in a system-depen-
dent way with other hardware interrupts. The interrupt controller can be a hard-wired logic block, or it can be config-
urable based on control and status registers. This allows the interrupt controller to be more specific or more general as
a function of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the priority level and vector number of
the highest priority interrupt to be serviced. The priority level, called the Requested Interrupt Priority Level (RIPL), is
a 6-bit encoded value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are pending. The
values 1..63 represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt controller
passes this value on the 6 hardware interrupt lines, which are treated as an encoded value in EIC interrupt mode. The
vector number that the interrupt should be serviced with is also passed to the core.

StatusIPL (which overlays StatusIM7..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP7..IP2) and signals the external
interrupt controller to notify it that the request is being serviced. Because CauseRIPL is only loaded by the processor
when an interrupt exception is signaled, it is available to software during interrupt processing. The vector number that
the EIC passes to the core is combined with the IntCtlVS to determine where the interrupt service routine is located.
The vector number is not stored in any software-visible registers.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
CauseRIPL, it also loads the GPR shadow set number into SRSCtlEICSS, which is copied to SRSCtlCSS when the
interrupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 4.2.

4.3 Interrupts

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 65

mfc0 k1, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

4.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to 16#200 to create the
exception vector offset. For VI interrupt mode, the vector number is in the range 0..7, inclusive. For EIC interrupt
mode, the vector number is in the range 0..63, inclusive. The IntCtlVS field specifies the spacing between vector loca-
tions. If this value is zero (the default reset state), the vector spacing is zero and the processor reverts to Interrupt
Compatibility Mode. A non-zero value enables vectored interrupts, and Table 4.4 shows the exception vector offset
for a representative subset of the vector numbers and values of the IntCtlVS field.

The general equation for the exception vector offset for a vectored interrupt is:

Table 4.4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtlVS Field

2#00001 2#00010 2#00100 2#01000 2#10000

0 16#0200 16#0200 16#0200 16#0200 16#0200

1 16#0220 16#0240 16#0280 16#0300 16#0400

2 16#0240 16#0280 16#0300 16#0400 16#0600

3 16#0260 16#02C0 16#0380 16#0500 16#0800

4 16#0280 16#0300 16#0400 16#0600 16#0A00

5 16#02A0 16#0340 16#0480 16#0700 16#0C00

6 16#02C0 16#0380 16#0500 16#0800 16#0E00

7 16#02E0 16#03C0 16#0580 16#0900 16#1000

•
•
•

61 16#09A0 16#1140 16#2080 16#3F00 16#7C00

62 16#09C0 16#1180 16#2100 16#4000 16#7E00

63 16#09E0 16#11C0 16#2180 16#4100 16#8000

 Exceptions and Interrupts in the M4K™ Core

66 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

vectorOffset ← 16#200 + (vectorNumber × (IntCtlVS || 2#00000))

When using large vector spacing and EIC mode, the offset value can overlap with bits that are specified in the EBase
register. Software must ensure that any overlapping bits are specified as 0 in EBase. This implementation ORs
together the offset and base registers, but it is architecturally undefined and software should not rely on this behavior.

4.4 GPR Shadow Registers

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option on the M4K core. Although Release 2 of the Architecture
defines a maximum of 16 shadow sets, the core allows one (the normal GPRs), two, four, or eight shadow sets. The
highest number actually implemented is indicated by the SRSCtlHSS field. If this field is zero, only the normal GPRs
are implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. Once a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtl register provides
the number of the current shadow register set, and the PSS field of the SRSCtl register provides the number of the
previous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl
register. When an exception or interrupt occurs, the value of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is
set to the value taken from the appropriate source. On an ERET, the value of SRSCtlPSS is copied back into
SRSCtlCSS to restore the shadow set of the mode to which control returns. More precisely, the rules for updating the
fields in the SRSCtl register on an interrupt or exception are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, steps 2 and 3 are
skipped.

• The exception is one that sets StatusERL: Reset, Soft Reset, or NMI.

• The exception causes entry into EJTAG Debug Mode.

• StatusBEV = 1

• StatusEXL = 1

2. SRSCtlCSS is copied to SRSCtlPSS.

3. SRSCtlCSS is updated from one of the following sources:

4.5 Exception Vector Locations

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 67

• The appropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, CauseIV = 1,
Config3VEIC = 0, and Config3VInt = 1. These are the conditions for a vectored interrupt.

• The EICSS field of the SRSCtl register if the exception is an interrupt, CauseIV = 1, and Config3VEIC = 1.
These are the conditions for a vectored EIC interrupt.

• The ESS field of the SRSCtl register in any other case. This is the condition for a non-interrupt exception,
or a non-vectored interrupt.

Similarly, the rules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, step 2 is
skipped.

• A DERET is executed.

• An ERET is executed with StatusERL = 1.

2. SRSCtlPSS is copied to SRSCtlCSS.

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialize (StatusBEV = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlPSS, loading EPC with a
target address, and doing an ERET.

4.5 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 16#BFC0.0000. EJTAG Debug excep-
tions are vectored to location 16#BFC0.0480, or to location 16#FF20.0200 if the ProbTrap bit is zero or one,
respectively, in the EJTAG_Control_register. Addresses for all other exceptions are a combination of a vector offset
and a vector base address. In Release 1 of the architecture, the vector base address was fixed. In Release 2 of the
architecture, software is allowed to specify the vector base address via the EBase register for exceptions that occur
when StatusBEV equals 0. Table 4.5 gives the vector base address as a function of the exception and whether the
BEV bit is set in the Status register. Table 4.6 gives the offsets from the vector base address as a function of the
exception. Note that the IV bit in the Cause register causes Interrupts to use a dedicated exception vector offset,
rather than the general exception vector. For implementations of Release 2 of the Architecture, Table 4.4 gives the
offset from the base address in the case where StatusBEV = 0 and CauseIV = 1. For implementations of Release 1 of
the architecture in which CauseIV = 1, the vector offset is as if IntCtlVS were 0. Table 4.7 combines these two tables
into one that contains all possible vector addresses as a function of the state that can affect the vector selection. To
avoid complexity in the table, the vector address value assumes that the EBase register, as implemented in Release 2
devices, is not changed from its reset state and that IntCtlVS is 0.

Table 4.5 Exception Vector Base Addresses

Exception

StatusBEV

0 1

Reset, Soft Reset, NMI 16#BFC0.0000

 Exceptions and Interrupts in the M4K™ Core

68 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

4.6 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own spe-
cial processing as described below, exceptions have the same basic processing flow:

EJTAG Debug (with ProbEn = 0 in the
EJTAG_Control_register)

16#BFC0.0480

EJTAG Debug (with ProbEn = 1 in the
EJTAG_Control_register)

16#FF20.0200

Other For Release 1 of the architecture:
16#8000.0000

For Release 2 of the architecture:
EBase31 12 || 16#000

Note that EBase31 30 have the

fixed value 2#10

16#BFC0.0200

Table 4.6 Exception Vector Offsets

Exception Vector Offset

General Exception 16#180

Interrupt, CauseIV = 1 16#200 (In Release 2 implementa-
tions, this is the base of the vectored
interrupt table when StatusBEV = 0)

Reset, Soft Reset, NMI None (Uses Reset Base Address)

Table 4.7 Exception Vectors

Exception StatusBEV StatusEXL CauseIV

EJTAG
ProbEn

Vector

For Release 2
Implementations, assumes
that EBase retains its reset
state and that IntCtlVS = 0

Reset, Soft Reset, NMI x x x x 16#BFC0.0000

EJTAG Debug x x x 0 16#BFC0.0480

EJTAG Debug x x x 1 16#FF20.0200

Interrupt 0 0 0 x 16#8000.0180

Interrupt 0 0 1 x 16#8000.0200

Interrupt 1 0 0 x 16#BFC0.0380

Interrupt 1 0 1 x 16#BFC0.0400

All others 0 x x x 16#8000.0180

All others 1 x x x 16#BFC0.0380

‘x’ denotes don’t care

Table 4.5 Exception Vector Base Addresses

Exception

StatusBEV

0 1

4.6 General Exception Processing

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 69

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 5.12). The value loaded into the
EPC register is dependent on whether the processor implements the MIPS16e ASE, and whether the instruction
is in the delay slot of a branch or jump which has delay slots. Table 4.8 shows the value stored in each of the CP0
PC registers, including EPC. For implementations of Release 2 of the Architecture if StatusBEV = 0, the CSS
field in the SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCtl register is not changed.

• The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither EPC nor CauseBD nor SRSCtl are modified */
if StatusEXL = 1 then

vectorOffset ← 16#180
else

if InstructionInBranchDelaySlot then
EPC ← restartPC/* PC of branch/jump */
CauseBD ← 1

else
EPC ← restartPC /* PC of instruction */
CauseBD ← 0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ← SRSCtlESS /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

Table 4.8 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16e
Implemented?

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with the ISA Mode bit

Yes Yes Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16e ISA Mode and PC-4 in the 32-bit ISA
Mode), combined with the ISA Mode bit

 Exceptions and Interrupts in the M4K™ Core

70 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

vectorOffset ← 16#000
elseif (ExceptionType = Interrupt) then

if (CauseIV = 0) then
vectorOffset ← 16#180

else
if (StatusBEV = 1) or (IntCtlVS = 0) then

vectorOffset ← 16#200
else

if Config3VEIC = 1 then
VecNum ← CauseRIPL
NewShadowSet ← SRSCtlEICSS

else
VecNum ← VIntPriorityEncoder()
NewShadowSet ← SRSMapIPL×4+3..IPL×4

endif
vectorOffset ← 16#200 + (VecNum × (IntCtlVS || 2#00000))

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if ((ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) and

(StatusERL = 0)) then
SRSCtlPSS ← SRSCtlCSS
SRSCtlCSS ← NewShadowSet

endif
endif /* if StatusEXL = 1 then */

CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
StatusEXL ← 1

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase ← 16#BFC0.0200
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase31..30 forces the base to be in kseg0 or kseg1 */
vectorBase ← EBase31..12 || 16#000

else
vectorBase ← 16#8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset */
PC ← vectorBase31..30 || (vectorBase29..0 + vectorOffset29..0)

/* No carry between bits 29 and 30 */

4.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

• The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if

4.7 Debug Exception Processing

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 71

the instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot
of a branch.

• The DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, and DDBSImpr bits in the Debug register
are updated appropriately depending on the debug exception type.

• The Debug2 register is updated with additional information for complex breakpoints.

• Halt and Doze bits in the Debug register are updated appropriately.

• DM bit in the Debug register is set to 1.

• The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug reg-
ister unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr,
and DDBSImpr bits in the Debug register.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC ← PC-4
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DebugD* bits ← DebugExceptionType
DebugHalt ← HaltStatusAtDebugException
DebugDoze ← DozeStatusAtDebugException
DebugDM ← 1
if EJTAGControlRegisterProbTrap = 1 then

PC ← 0xFF20_0200
else

PC ← 0xBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the Prob-
Trap bit in the EJTAG Control register (ECR), as shown in Table 4.9.

Table 4.9 Debug Exception Vector Addresses

ProbTrap bit in ECR
Register Debug Exception Vector Address

0 0xBFC0_0480

1 0xFF20_0200 in dmseg

 Exceptions and Interrupts in the M4K™ Core

72 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

4.8 Exceptions

The following subsections describe each of the exceptions listed in the same sequence as shown in Table 4.1.

4.8.1 Reset/SoftReset Exception

A reset exception occurs when the SI_ColdReset signal is asserted to the processor. A soft reset occurs when the
SI_Reset signals is asserted. These exception is not maskable. When one of these exceptions occurs, the processor
performs a full reset initialization, including aborting state machines, establishing critical state, and generally placing
the processor in a state in which it can execute instructions from uncached, unmapped address space. On a Reset/Soft-
Reset exception, the state of the processor is not defined, with the following exceptions:

• The Config register is initialized with its boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC. Note that this value may
or may not be predictable.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Config ← ConfigurationState
StatusRP ← 0
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0/1 (depending on Reset or SoftReset)
StatusNMI ← 0
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

4.8.2 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non
jump/branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction

4.8 Exceptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 73

in the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug regis-
ter, and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instruction
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is never
set for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in one
step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and the DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch)
just before the SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP
instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

4.8.3 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled through
the TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. The DEPC register is set to the instruction where execution should con-
tinue after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was execut-
ing in the delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

 Exceptions and Interrupts in the M4K™ Core

74 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

4.8.4 Non-Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge
sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 1
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← PC - 4
else

ErrorEPC ← PC
endif
PC ← 0xBFC0_0000

4.8.5 Interrupt Exception

The interrupt exception occurs when one or more of the six hardware, two software, or timer interrupt requests is
enabled by the Status register and the interrupt input is asserted. See 4.3 “Interrupts” on page 57 for more details
about the processing of interrupts.

Register ExcCode Value:

Int

4.8 Exceptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 75

Additional State Saved:

Entry Vector Used:

See 4.3.2 “Generation of Exception Vector Offsets for Vectored Interrupts” on page 65 for the entry vector used,
depending on the interrupt mode the processor is operating in.

4.8.6 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:

DIB

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

4.8.7 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs on an instruction or data access when an attempt is made to execute one of the fol-
lowing:

• Fetch an instruction, load a word, or store a word that is not aligned on a word boundary

• Load or store a halfword that is not aligned on a halfword boundary

• Reference the kernel address space from user mode

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data
access the exception is taken if either an unaligned address or an address that was inaccessible in the current proces-
sor mode was referenced by a load or store instruction.

Cause Register ExcCode Value:

ADEL: Reference was a load or an instruction fetch

ADES: Reference was a store

Table 4.10 Register States an Interrupt Exception

Register State Value

CauseIP indicates the interrupts that are pending.

 Exceptions and Interrupts in the M4K™ Core

76 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.8.8 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request and that request terminates in an
error. The bus error exception can occur on either an instruction fetch or a data access. Bus error exceptions that occur
on an instruction fetch have a higher priority than bus error exceptions that occur on a data access.

Bus errors taken on any external access on the M4K core are always precise.

Cause Register ExcCode Value:

IBE: Error on an instruction reference

DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.9 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and
DBD bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:

DBp

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

4.8.10 Execution Exception — System Call

The system call exception is one of the nine execution exceptions. All of these exceptions have the same priority. A
system call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value:

Sys

Table 4.11 CP0 Register States on an Address Exception Error

Register State Value

BadVAddr failing address

4.8 Exceptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 77

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.11 Execution Exception — Breakpoint

The breakpoint exception is one of the nine execution exceptions. All of these exceptions have the same priority. A
breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.12 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the nine execution exceptions. All of these exceptions have the same pri-
ority. A reserved instruction exception occurs when a reserved or undefined major opcode or function field is exe-
cuted. This includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2.

Cause Register ExcCode Value:

RI

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.13 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the nine execution exceptions. All of these exceptions have the same
priority. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for
one of the following:

• a corresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

• CP0 instructions, when the unit has not been marked usable, and the processor is executing in user mode

Cause Register ExcCode Value:

CpU

 Exceptions and Interrupts in the M4K™ Core

78 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.8.14 Execution Exception — CorExtend Unusable

The CorExtend unusable exception is one of the nine execution exceptions. All of these exceptions have the same pri-
ority. A CorExtend Unusable exception occurs when an attempt is made to execute a CorExtend instruction when Sta-
tusCEE is cleared. It is implementation dependent whether this functionality is supported. Generally, the functionality
will only be supported if a CorExtend block contains local destination registers

Cause Register ExcCode Value:

CEU

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.15 Execution Exception — Coprocessor 2 Exception

The Coprocessor 2 exception is one of the nine execution exceptions. All of these exceptions have the same priority.
A Coprocessor 2 exception occurs when a valid Coprocessor 2 instruction cause a general exception in the Coproces-
sor 2.

Cause Register ExcCode Value:

C2E

Additional State Saved:

Depending on the Coprocessor 2 implementation, additional state information of the exception can be saved in a
Coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

4.8.16 Execution Exception — Implementation-Specific 1 Exception

The Implementation-Specific 1 exception is one of the nine execution exceptions. All of these exceptions have the
same priority. An implementation-specific 1 exception occurs when a valid coprocessor 2 instruction cause an imple-
mentation-specific 1 exception in the Coprocessor 2.

Table 4.12 Register States on a Coprocessor Unusable Exception

Register State Value

CauseCE unit number of the coprocessor being referenced

4.8 Exceptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 79

Cause Register ExcCode Value:

IS1

Additional State Saved:

Depending on the coprocessor 2 implementation, additional state information of the exception can be saved in a
coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

4.8.17 Execution Exception — Integer Overflow

The integer overflow exception is one of the nine execution exceptions. All of these exceptions have the same priority.
An integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.18 Execution Exception — Trap

The trap exception is one of the nine execution exceptions. All of these exceptions have the same priority. A trap
exception occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value:

Tr

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.19 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store
instruction that caused the data hardware breakpoint to match. The load/store instruction that caused the debug excep-
tion has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from
the debug handler.

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

 Exceptions and Interrupts in the M4K™ Core

80 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

4.8.20 Complex Break Exception

A complex data break exception occurs when the complex hardware breakpoint detects an enabled breakpoint. Com-
plex breaks are taken imprecisely—the instruction that actually caused the exception is allowed to complete and the
DEPC register and DBD bit in the Debug register point to a following instruction.

Debug Register Debug Status Bit Set:

DIBImpr, DDBLImpr, and/or DDBSImpr

Additional State Saved:

Debug2 fields indicate which type(s) of complex breakpoints were detected.

Entry Vector Used:

Debug exception vector

4.9 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

• General exceptions and their exception handler

• Reset, soft rese,t and NMI exceptions, and a guideline to their handler

• Debug exceptions

4.9 Exception Handling and Servicing Flowcharts

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 81

Figure 4.3 General Exception Handler (HW)

To General Exception Servicing Guidelines

=1 (bootstrap)=0 (normal)
Status.BEV

Comments

PC ← 0x8000_0000 + 180
(unmapped, cached)

PC ← 0xBFC0_0200 + 180
(unmapped, uncached)

EXL ← 1

EPC ← (PC - 4)
Cause.BD ← 1

EPC ← PC
Cause.BD ← 0

Instr. in Br.Dly.
Slot?

Yes

Processor forced to Kernel Mode
&interrupt disabled

=0

=1
Check if exception within another

exception EXL

BadVA is set only for AdEL/S exceptions. Note:
not set if it is a Bus ErrorSet Cause EXCCode,CE

BadVA ← VA

Exceptions other than Reset, Soft Reset, NMI, or first-level TLB missNote: Interrupts can be
masked by IE or IMs and Watch is masked if EXL = 1

No

 Exceptions and Interrupts in the M4K™ Core

82 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Figure 4.4 General Exception Servicing Guidelines (SW)

ERET

MTC0 -
EPC,STATUS

EXL = 1

Service Code

* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the ERET’s
branch delay slot
* PC ← EPC; EXL ← 0
* LLbit ← 0

Check Cause value & Jump to appropriate
Service Code

* After EXL=0, all exceptions allowed. (except
interrupt if masked by IE)

(Optional - only to enable Interrupts while keeping Kernel Mode)

MTC0 -
Set Status bits:

UM ← 0, EXL ←0, IE←1

MFC0 -
EPC, Status, Cause

* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible.

Comments

4.9 Exception Handling and Servicing Flowcharts

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 83

Figure 4.5 Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines

Status:
BEV ← 1
TS ← 0

SR ← 1/0
NMI ← 0/1
ERL ← 1

(Optional)

Reset Service CodeSoft Reset Service Code

NMI Service Code

ERET

=0

=1

=0

=1

Status.SR

Status.NMI

PC ← 0xBFC0_0000

ErrorEPC ← PC

Config ← Reset state
Status:

RP ← 0
BEV ← 1
TS ← 0
SR ← 0
NMI ← 0
ERL ← 1

Reset Exception

Soft Reset or NMI Exception
R

es
et

, S
of

t R
es

et
 &

 N
M

I E
xc

ep
tio

n
H

an
dl

in
g

(H
W

)
R

es
et

, S
of

t R
es

et
 &

 N
M

I S
er

vi
ci

ng
G

ui
de

lin
es

 (S
W

)

 Exceptions and Interrupts in the M4K™ Core

84 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Chapter 5

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 85

CP0 Registers of the M4K™ Core

The System Control Coprocessor (CP0) provides the register interface to the M4K processor core and supports mem-
ory management, address translation, exception handling, and other privileged operations. Each CP0 register has a
unique number that identifies it; this number is referred to as the register number. For instance, the PageMask regis-
ter is register number 5. For more information on the EJTAG registers, refer to Chapter 8, “EJTAG Debug Support in
the M4K™ Core” on page 127.

After updating a CP0 register there is a hazard period of zero or more instructions from the update instruction
(MTC0) and until the effect of the update has taken place in the core. Refer to Chapter 10, “M4K™ Processor Core
Instructions” on page 207 for further details on CP0 hazards.

The current chapter contains the following sections:

• Section 5.1 “CP0 Register Summary”

• Section 5.2 “CP0 Register Descriptions”

5.1 CP0 Register Summary

Table 5.1 lists the CP0 registers in numerical order. The individual registers are described throughout this chapter.
Where more than one registers shares the same register number at different values of the “sel” field of the instruction,
their names are listed using a slash (/) as separator.

Table 5.1 CP0 Registers

Register
Number Register Name Function

0-6 Reserved Reserved in the M4K core.

7 HWREna Enables access via the RDHWR instruction to selected hardware
registers in non-privileged mode.

8 BadVAddr1 Reports the address for the most recent address-related excep-
tion.

9 Count1 Processor cycle count.

10 Reserved Reserved in the M4K core.

11 Compare1 Timer interrupt control.

12 Status/

IntCtl/
SRSCtl/
SRSMap1

Processor status and control; interrupt control; and shadow set
control.

13 Cause1 Cause of last exception.

14 EPC1 Program counter at last exception.

 CP0 Registers of the M4K™ Core

86 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

5.2 CP0 Register Descriptions

The CP0 registers provide the interface between the ISA and the architecture. Each register is discussed below, with
the registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the reset state
of the field. For the read/write properties of the field, the following notation is used:

15 PRId/
EBase

Processor identification and revision; exception base address.

16 Config/
Config1/
Config2/
Config3

Configuration registers.

17-22 Reserved Reserved in the M4K core.

23 Debug/
Debug2/
TraceControl/
TraceControl2/
UserTraceData/

TraceBPC2

Debug control/exception status and EJTAG trace control.

24 DEPC2 Program counter at last debug exception.

25-29 Reserved Reserved in the M4K core.

30 ErrorEPC1 Program counter at last error.

31 DeSAVE2 Debug handler scratchpad register.

1. Registers used in exception processing.
2. Registers used in debug.

Table 5.2 CP0 Register Field Types

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visi-
ble by hardware reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition of UNDEFINED behavior.

Table 5.1 CP0 Registers (Continued)

Register
Number Register Name Function

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 87

5.2.1 HWREna Register (CP0 Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction.

Figure 5.1 shows the format of the HWREna Register; Table 5.3 describes the HWREna register fields.

R A field that is either static or is updated only by
hardware.
If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero or
to the appropriate state, respectively, on pow-
erup.
If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software is
ignored by hardware. Software may write any
value to this field without affecting hardware
behavior. Software reads of this field return the
last value updated by hardware.
If the Reset State of this field is “Undefined,”
software reads of this field result in an UNPRE-
DICTABLE value except after a hardware
update done under the conditions specified in
the description of the field.

W A field that can be written by software but which can not be read by software.
Software reads of this field will return an UNDEFINED value.

0 A field that hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software
must be zero. Software writes of non-zero val-
ues to this field may result in UNDEFINED
behavior of the hardware. Software reads of this
field return zero as long as all previous software
writes are zero.
If the Reset State of this field is “Undefined,”
software must write this field with zero before it
is guaranteed to read as zero.

Figure 5.1 HWREna Register Format
31 4 3 0

0
0000 0000 0000 0000 0000 0000 0000

Mask

Table 5.3 HWREna Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31..4 Must be written with zero; returns zero on read 0 0

Mask 3..0 Each bit in this field enables access by the RDHWR
instruction to a particular hardware register (which
may not be an actual register). If bit ‘n’ in this field is
a 1, access is enabled to hardware register ‘n’. If bit
‘n’ of this field is a 0, access is disabled.
See the RDHWR instruction for a list of valid hard-
ware registers.

R/W 0

Table 5.2 CP0 Register Field Types (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation

 CP0 Registers of the M4K™ Core

88 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Privileged software may determine which of the hardware registers are accessible by the RDHWR instruction. In
doing so, a register may be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to provide direct access to the
Count register, access to that register may be individually disabled and the return value can be virtualized by the
operating system.

5.2.2 BadVAddr Register (CP0 Register 8, Select 0)

The BadVAddr register is a read-only register that captures the most recent virtual address that caused the following
exception:

• Address error (AdEL or AdES)

The BadVAddr register does not capture address information for bus errors, since they are not addressing errors.

Figure 5.2 BadVAddr Register Format

5.2.3 Count Register (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. The counter increments every other clock, if the DC bit in the
Cause register is 0.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
sors.

By writing the CountDM bit in the Debug register, it is possible to control whether the Count register continues
incrementing while the processor is in debug mode.

Figure 5.3 Count Register Format

31 0

BadVAddr

Table 5.4 BadVAddr Register Field Description

Fields

Description
Read/Wr

ite Reset StateName Bits

BadVAddr 31:0 Bad virtual address. R Undefined

31 0

Count

Table 5.5 Count Register Field Description

Fields

Description
Read/Wr

ite Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 89

5.2.4 Compare Register (CP0 Register 11, Select 0)

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function.
The timer interrupt is an output of the cores. The Compare register maintains a stable value and does not change on
its own.

When the value of the Count register equals the value of the Compare register, the SI_TimerInt pin is asserted. This
pin will remain asserted until the Compare register is written. The SI_TimerInt pin can be fed back into the core on
one of the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with hardware
interrupt 5 to set interrupt bit IP(7) in the Cause register.

For diagnostic purposes, the Compare register is a read/write register. In normal use, however, the Compare register
is write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt.

Figure 5.4 Compare Register Format

5.2.5 Status Register (CP0 Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to
3.2 “Modes of Operation” on page 43 for a discussion of operating modes, and 4.3 “Interrupts” on page 57 for a dis-
cussion of interrupt modes.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, then the settings of the IM and IE bits enable the interrupts.

Operating Modes: If the DM bit in the Debug register is 1, then the processor is in debug mode; otherwise the pro-
cessor is in either kernel or user mode. The following CPU Status register bit settings determine user or kernel mode:

• User mode: UM = 1, EXL = 0, and ERL = 0

31 0

Compare

Table 5.6 Compare Register Field Description

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Compare 31:0 Interval count compare value. R/W Undefined

 CP0 Registers of the M4K™ Core

90 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

• Kernel mode: UM = 0, or EXL = 1, or ERL = 1

Coprocessor Accessibility: The Status register CU bits control coprocessor accessibility. If any coprocessor is unus-
able, then an instruction that accesses it generates an exception.

Figure 5.5 shows the format of the Status register; Table 5.7 describes the Status register fields.

Figure 5.5 Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

CU3..CU0 RP FR RE R BEV TS SR NMI R CEE R IM7..IM2 IM1..IM0 R UM R ERL EXL IE

IPL

Table 5.7 Status Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

CU3 31 Controls access to coprocessor 3. COP3 is not supported.
This bit cannot be written and will read as 0.

R 0

CU2 30 Controls access to coprocessor 2. This bit can only be writ-
ten if coprocessor is attached to the COP2 interface. (C2 bit
in Config1 is set). This bit will read as 0 if no coprocessor
is present.

R/W 0

CU1 29 Controls access to Coprocessor 1. COP1 is not supported.
This bit cannot be written and will read as 0.

R 0

CU0 28 Controls access to coprocessor 0
0: access not allowed
1: access allowed
Coprocessor 0 is always usable when the processor is run-
ning in kernel mode, independent of the state of the CU0
bit.

R/W Undefined

RP 27 Enables reduced power mode. The state of the RP bit is
available on the external core interface as the SI_RP sig-
nal.

R/W 0 for Cold
Reset only.

FR 26 This bit is related to floating point registers. Since the M4K
core does not contain a floating point unit, this bit is
ignored on write and read as zero.

R 0

RE 25 Used to enable reverse-endian memory references while
the processor is running in user mode:

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

R/W Undefined

R 24:23 Reserved. This field is ignored on write and read as 0. R 0

Encoding Meaning

0 User mode uses configured endianness

1 User mode uses reversed endianness

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 91

BEV 22 Controls the location of exception vectors: R/W 1

TS 21 TLB shutdown.
Since the M4K core does not contain a TLB, this bit is
ignored on write and read as 0.

R 0

SR 20 Indicates that the entry through the reset exception vector
was due to a Soft Reset:

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W 1 for Soft
Reset; 0 other-

wise

NMI 19 Indicates that the entry through the reset exception vector
was due to an NMI:

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W 1 for NMI; 0
otherwise

R 18 Reserved. Ignored on write and read as zero. R 0

CEE 17 CorExtend Enable: Implementation dependent. If CorEx-
tend block indicates that this bit should be used, any
attempt to execute a CorExtend instruction with this bit
cleared will result in a CorExtend Unusable exception.
This bit is reserved if CorExtend is not present.

R/W Undefined

R 16 Reserved. Ignored on write and read as zero. R 0

Table 5.7 Status Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0 Normal

1 Bootstrap

Encoding Meaning

0 Not Soft Reset (NMI or Reset)

1 Soft Reset

Encoding Meaning

0 Not NMI (Soft Reset or Reset)

1 NMI

 CP0 Registers of the M4K™ Core

92 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

IM7..IM2 15..10 Interrupt Mask: Controls the enabling of each of the hard-
ware interrupts. Refer to 4.3 “Interrupts” on page 57 for a
complete discussion of enabled interrupts.
An interrupt is taken if interrupts are enabled and the corre-
sponding bits are set in both the Interrupt Mask field of the
Status register and the Interrupt Pending field of the Cause
register and the IE bit is set in the Status register.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled, these bits take on a
different meaning and are interpreted as the IPL field,
described below.

R/W Undefined

IPL 15..10 Interrupt Priority Level.
In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled , this field is the
encoded (0..63) value of the current IPL. An interrupt will
be signaled only if the requested IPL is higher than this
value.
If EIC interrupt mode is not enabled, these bits take on a
different meaning and are interpreted as the IM7..IM2 bits,
described above.

R/W Undefined

IM1..IM0 9..8 Interrupt Mask: Controls the enabling of each of the soft-
ware interrupts. Refer to Section 4.3 “Interrupts”for a
complete discussion of enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled, these bits are writ-
able, but have no effect on the interrupt system.

R/W Undefined

R 7:5 Reserved. This field is ignored on write and read as 0. R 0

UM 4 This bit denotes the base operating mode of the processor.
See 3.2 “Modes of Operation” on page 43 for a full dis-
cussion of operating modes. The encoding of this bit is:

Note that the processor can also be in kernel mode if ERL
or EXL is set, regardless of the state of the UM bit.

R/W Undefined

R 3 This bit is reserved. This bit is ignored on write and read as
zero.

R 0

Table 5.7 Status Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 93

5.2.6 IntCtl Register (CP0 Register 12, Select 1)

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

ERL 2 Error Level; Set by the processor when a Reset, Soft Reset,
NMI or Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode
• Interrupts are disabled
• The ERET instruction will use the return address held in

ErrorEPC instead of EPC

• The lower 229 bytes of kuseg are treated as an unmapped
and uncached region. See Chapter 3, “Modes of
Operation” on page 43. This allows main memory to be
accessed in the presence of cache errors. The operation
of the processor is UNDEFINED if the ERL bit is set
while the processor is executing instructions from kuseg.

R/W 1

EXL 1 Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, or NMI exceptions is taken.

When EXL is set:
• The processor is running in Kernel Mode
• Interrupts are disabled.
• EPC, CauseBD and SRSCtl (implementations of Release

2 of the Architecture only) will not be updated if another
exception is taken

R/W Undefined

IE 0 Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

In Release 2 of the Architecture, this bit may be modified
separately via the DI and EI instructions.

R/W Undefined

Table 5.7 Status Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

Encoding Meaning

0 Normal level

1 Error level

Encoding Meaning

0 Normal level

1 Exception level

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled

 CP0 Registers of the M4K™ Core

94 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Figure 5.6 shows the format of the IntCtl register; Table 5.8 describes the IntCtl register fields.

Figure 5.6 IntCtl Register Format
31 29 28 26 25 10 9 5 4 0

IPTI IPPCI 0 VS 0

Table 5.8 IntCtl Register Field Descriptions

Fields

Description
Read/Wr

ite
Reset
StateName Bits

IPTI 31..29 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Timer Interrupt request is merged, and allows software
to determine whether to consider CauseTI for a potential

interrupt.

The value of this bit is set by the static input,
SI_IPTI[2:0]. This allows external logic to communi-
cate the specific SI_Int hardware interrupt pin to which
the SI_TimerInt signal is attached.
The value of this field is not meaningful if External
Interrupt Controller Mode is enabled. The external inter-
rupt controller is expected to provide this information
for that interrupt mode.

R Externally
Set

IPPCI 28..26 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Performance Counter Interrupt request is merged, and
allows software to determine whether to consider
CausePCI for a potential interrupt.

Since performance counters are not implemented on the
M4K core (Config1PC = 0), this field is ignored on write

and returns zero on read.

R 0

0 25..10 Must be written as zero; returns zero on read. 0 0

Encoding IP bit
Hardware Interrupt

Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 95

5.2.7 SRSCtl Register (CP0 Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor. This register does not exist in imple-
mentations of the architecture prior to Release 2.

Figure 5.7 shows the format of the SRSCtl register; Table 5.9 describes the SRSCtl register fields.

VS 9..5 Vector Spacing. If vectored interrupts are implemented
(as denoted by Config3VInt or Config3VEIC), this field

specifies the spacing between vectored interrupts.

All other values are reserved. The operation of the pro-
cessor is UNDEFINED if a reserved value is written to
this field.

R/W 0

0 4..0 Must be written as zero; returns zero on read. 0 0

Figure 5.7 SRSCtl Register Format
31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0
00

HSS
0

00 00
EICSS

0
00

ESS
0
00

PSS
0
00

CSS

Table 5.9 SRSCtl Register Field Descriptions

Fields

Description
Read/Wr

ite
Reset
StateName Bits

0 31..30 Must be written as zeros; returns zero on read. 0 0

Table 5.8 IntCtl Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite
Reset
StateName Bits

Encoding

Spacing
Between

Vectors (hex)

Spacing
Between
Vectors

(decimal)

16#00 16#000 0

16#01 16#020 32

16#02 16#040 64

16#04 16#080 128

16#08 16#100 256

16#10 16#200 512

 CP0 Registers of the M4K™ Core

96 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

HSS 29..26 Highest Shadow Set. This field contains the highest
shadow set number that is implemented by this proces-
sor. A value of zero in this field indicates that only the
normal GPRs are implemented.
Possible values of this field for the M4K processor are:

The value in this field also represents the highest value
that can be written to the ESS, EICSS, PSS, and CSS
fields of this register, or to any of the fields of the
SRSMap register. The operation of the processor is
UNDEFINED if a value larger than the one in this field
is written to any of these other fields.

R Preset

0 25..22 Must be written as zeros; returns zero on read. 0 0

EICSS 21..18 EIC interrupt mode shadow set. If Config3VEIC is 1

(EIC interrupt mode is enabled), this field is loaded from
the external interrupt controller for each interrupt
request and is used in place of the SRSMap register to
select the current shadow set for the interrupt.
See 4.3.1.3 “External Interrupt Controller Mode” on
page 63 for a discussion of EIC interrupt mode. If
Config3VEIC is 0, this field must be written as zero, and

returns zero on read.

R Undefined

0 17..16 Must be written as zeros; returns zero on read. 0 0

ESS 15..12 Exception Shadow Set. This field specifies the shadow
set to use on entry to Kernel Mode caused by any excep-
tion other than a vectored interrupt.
The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

R/W 0

0 11..10 Must be written as zeros; returns zero on read. 0 0

Table 5.9 SRSCtl Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite
Reset
StateName Bits

Encoding Meaning

0 One shadow set (normal GPR set) is
present.

1 Two shadow sets are present.

3 Four shadow sets are present.

7 Eight shadow sets are present

2, 4-6, 9-15 Reserved

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 97

PSS 9..6 Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the next
paragraph, this field is copied from the CSS field when
an exception or interrupt occurs. An ERET instruction
copies this value back into the CSS field if StatusBEV =

0.
This field is not updated on any exception which sets
StatusERL to 1 (i.e., Reset, Soft Reset, NMI, cache

error), an entry into EJTAG Debug mode, or any excep-
tion or interrupt that occurs with StatusEXL = 1, or Sta-

tusBEV = 1. This field is not updated on an exception

that occurs while StatusERL = 1.

The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

R/W 0

0 5..4 Must be written as zeros; returns zero on read. 0 0

CSS 3..0 Current Shadow Set. If GPR shadow registers are imple-
mented, this field is the number of the current GPR set.
With the exclusions noted in the next paragraph, this
field is updated with a new value on any interrupt or
exception, and restored from the PSS field on an ERET.
Table 5.10 describes the various sources from which the
CSS field is updated on an exception or interrupt.
This field is not updated on any exception which sets
StatusERL to 1 (i.e., Reset, Soft Reset, NMI, cache

error), an entry into EJTAG Debug mode, or any excep-
tion or interrupt that occurs with StatusEXL = 1, or Sta-

tusBEV = 1. Neither is it updated on an ERET with

StatusERL = 1 or StatusBEV = 1. This field is not updated

on an exception that occurs while StatusERL = 1.

 The value of CSS can be changed directly by software
only by writing the PSS field and executing an ERET
instruction.

R 0

Table 5.9 SRSCtl Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite
Reset
StateName Bits

 CP0 Registers of the M4K™ Core

98 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

5.2.8 SRSMap Register (CP0 Register 12, Select 3)

The SRSMap register contains 8 4-bit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from
SRSCtlESS.

If SRSCtlHSS is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single
shadow register set number.

Figure 5.8 shows the format of the SRSMap register; Table 5.11 describes the SRSMap register fields.

Table 5.10 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Non-Vectored Inter-
rupt

CauseIV = 0 SRSCtlESS Treat as exception

Vectored Interrupt CauseIV = 1 and

Config3VEIC = 0 and

Config3VInt = 1

SRSMapVECTNUM Source is internal map register.
(for VECTNUM see Table 4.3)

Vectored EIC Inter-
rupt

CauseIV = 1 and

Config3VEIC = 1

SRSCtlEICSS Source is external interrupt con-
troller.

Figure 5.8 SRSMap Register Format
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table 5.11 SRSMap Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bits

SSV7 31..28 Shadow register set number for Vector Number 7 R/W 0

SSV6 27..24 Shadow register set number for Vector Number 6 R/W 0

SSV5 23..20 Shadow register set number for Vector Number 5 R/W 0

SSV4 19..16 Shadow register set number for Vector Number 4 R/W 0

SSV3 15..12 Shadow register set number for Vector Number 3 R/W 0

SSV2 11..8 Shadow register set number for Vector Number 2 R/W 0

SSV1 7..4 Shadow register set number for Vector Number 1 R/W 0

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 99

5.2.9 Cause Register (CP0 Register 13, Select 0)

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC,
IV, and WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure 5.9 shows the format of the Cause register; Table 5.12 describes the Cause register fields.

SSV0 3..0 Shadow register set number for Vector Number 0 R/W 0

Figure 5.9 Cause Register Format
31 30 29 28 27 26 25 24 23 22 21 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP 0 IP7..IP2 IP1..IP0 0 Exc Code 0

RIPL

Table 5.12 Cause Register Field Descriptions

Fields

Description
Read/Wri

te Reset StateName Bits

BD 31 Indicates whether the last exception taken occurred in a
branch delay slot:

The processor updates BD only if StatusEXL was zero

when the exception occurred.

R Undefined

TI 30 Timer Interrupt. This bit denotes whether a timer inter-
rupt is pending (analogous to the IP bits for other inter-
rupt types):

The state of the TI bit is available on the external core
interface as the SI_TimerInt signal

R Undefined

CE 29..28 Coprocessor unit number referenced when a Coproces-
sor Unusable exception is taken. This field is loaded by
hardware on every exception, but is UNPREDICT-
ABLE for all exceptions except for Coprocessor Unus-
able.

R Undefined

Table 5.11 SRSMap Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bits

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

 CP0 Registers of the M4K™ Core

100 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

DC 27 Disable Count register. In some power-sensitive appli-
cations, the Count register is not used and is the source
of meaningful power dissipation. This bit allows the
Count register to be stopped in such situations.

R/W 0

PCI 26 Performance Counter Interrupt. In an implementation of
Release 2 of the Architecture, this bit denotes whether a
performance counter interrupt is pending (analogous to
the IP bits for other interrupt types):

Since performance counters are not implemented
(Config1PC = 0), this bit must be written as zero and

returns zero on read.

R 0

IV 23 Indicates whether an interrupt exception uses the gen-
eral exception vector or a special interrupt vector:

In implementations of Release 2 of the architecture, if
the CauseIV is 1 and StatusBEV is 0, the special interrupt

vector represents the base of the vectored interrupt table.

R/W Undefined

WP 22 Indicates that a watch exception was deferred because
StatusEXL or StatusERL were a one at the time the watch

exception was detected. This bit both indicates that the
watch exception was deferred, and causes the exception
to be initiated once StatusEXL and StatusERL are both

zero. As such, software must clear this bit as part of the
watch exception handler to prevent a watch exception
loop.
Software should not write a 1 to this bit when its value is
a 0, thereby causing a 0-to-1 transition. If such a transi-
tion is caused by software, it is UNPREDICTABLE
whether hardware ignores the write, accepts the write
with no side effects, or accepts the write and initiates a
watch exception once StatusEXL and StatusERL are both

zero.
Since watch registers are not implemented on the M4K
core, this bit is ignored on write and read as zero.

R 0

Table 5.12 Cause Register Field Descriptions (Continued)

Fields

Description
Read/Wri

te Reset StateName Bits

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

Encoding Meaning

0 Use the general exception vector
(16#180)

1 Use the special interrupt vector
(16#200)

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 101

IP7..IP2 15..10 Indicates an interrupt is pending:

If EIC interrupt mode is not enabled, timer interrupts are
combined in a system-dependent way with any hard-
ware interrupt. If EIC interrupt mode is enabled, these
bits take on a different meaning and are interpreted as
the RIPL field, described below.
See 4.3 “Interrupts” on page 57 for a general descrip-
tion of interrupt processing.

R Undefined

RIPL 15..10 Requested Interrupt Priority Level.
If EIC interrupt mode is enabled, this field is the
encoded (0..63) value of the requested interrupt. A value
of zero indicates that no interrupt is requested.
If EIC interrupt mode is not enabled, these bits take on a
different meaning and are interpreted as the IP7..IP2
bits, described above.

R Undefined

IP1..IP0 9..8 Controls the request for software interrupts:

These bits are exported to an external interrupt control-
ler for prioritization in EIC interrupt mode with other
interrupt sources. The state of these bits is available on
the external core interface as the SI_SWInt[1:0] bus.

R/W Undefined

ExcCode 6..2 Exception code - see Table 5.13 R Undefined

0 25..24,
21..16, 7,

1..0

Must be written as zero; returns zero on read. 0 0

Table 5.13 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 16#00 Int Interrupt

1-3 16#00-16#03 - Reserved

4 16#04 AdEL Address error exception (load or instruction fetch)

Table 5.12 Cause Register Field Descriptions (Continued)

Fields

Description
Read/Wri

te Reset StateName Bits

Bit Name Meaning

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0

Bit Name Meaning

9 IP1 Request software interrupt 1

8 IP0 Request software interrupt 0

 CP0 Registers of the M4K™ Core

102 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

5.2.10 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing
resumes after an exception has been serviced. All bits of the EPC register are significant and must be writable.

For synchronous (precise) exceptions, the EPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction is in a branch delay slot and the Branch Delay bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit in the Status register is set,
however, the register can still be written via the MTC0 instruction.

In processors that implement the MIPS16e ASE, a read of the EPC register (via MFC0) returns the following value
in the destination GPR:

GPR[rt] ← ExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field and written to the
GPR.

Similarly, a write to the EPC register (via MTC0) takes the value from the GPR and distributes that value to the
exception PC and the ISAMode field, as follows

ExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

5 16#05 AdES Address error exception (store)

6 16#06 IBE Bus error exception (instruction fetch)

7 16#07 DBE Bus error exception (data reference: load or store)

8 16#08 Sys Syscall exception

9 16#09 Bp Breakpoint exception

10 16#0a RI Reserved instruction exception

11 16#0b CpU Coprocessor Unusable exception

12 16#0c Ov Arithmetic Overflow exception

13 16#0d Tr Trap exception

14-15 16#0e-16#0f - Reserved

16 16#10 IS1 Implementation-Specific Exception 1 (COP2)

17 16#11 CEU CorExtend Unusable

18 16#12 C2E Coprocessor 2 exceptions

19-31 16#13-16#1f - Reserved

Table 5.13 Cause Register ExcCode Field (Continued)

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 103

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower bit of the
exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower bit
of the GPR.

Figure 5.10 EPC Register Format

5.2.11 Processor Identification (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Figure 5.11 PRId Register Format

31 0

EPC

Table 5.14 EPC Register Field Description

Fields

Description
Read/Wri

te Reset StateName Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined

31 24 23 16 15 8 7 5 4 2 1 0

R Company ID Processor ID Revision

Table 5.15 PRId Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

R 31:24 Reserved. Must be ignored on write and read as zero R 0

Company ID 23:16 Identifies the company that designed or manufactured the
processor. In the M4K this field contains a value of 1 to
indicate MIPS Technologies, Inc.

R 1

Processor ID 15:8 Identifies the type of processor. This field allows software
to distinguish between the various types of MIPS Technol-
ogies processors.

R 0x87

Revision 7:0 Specifies the revision number of the processor. This field
allows software to distinguish between one revision and
another of the same processor type.
This field is broken up into the following three subfields

R Preset

Major Revi-
sion

7:5 This number is increased on major revisions of the proces-
sor core

R Preset

Minor Revi-
sion

4:2 This number is increased on each incremental revision of
the processor and reset on each new major revision

R Preset

Patch Level 1:0 If a patch is made to modify an older revision of the pro-
cessor, this field will be incremented

R Preset

 CP0 Registers of the M4K™ Core

104 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

5.2.12 EBase Register (CP0 Register 15, Select 1)

The EBase register is a read/write register containing the base address of the exception vectors used when StatusBEV

equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31..12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when StatusBEV is 0. The exception vector base address comes from the fixed defaults (see 4.5 “Exception
Vector Locations” on page 67) when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits 31..12
of the EBase register initialize the exception base register to 16#8000.0000, providing backward compatibility
with Release 1 implementations.

Bits 31..30 of the EBase Register are fixed with the value 2#10 to force the exception base address to be in the
kseg0 or kseg1 unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation
of the processor is UNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Combining bits 31..20 with the Exception Base field allows the base address of the exception vectors to be placed at
any 4KByte page boundary. If vectored interrupts are used, a vector offset greater than 4KBytes can be generated. In
this case, bit 12 of the Exception Base field must be zero. The operation of the processor is UNDEFINED if soft-
ware writes bit 12 of the Exception Base field with a 1 and enables the use of a vectored interrupt whose offset is
greater than 4KBytes from the exception base address.

Figure 5.12 shows the format of the EBase Register; Table 5.16 describes the EBase register fields.

Figure 5.12 EBase Register Format
31 30 29 12 11 10 9 0

1 0 Exception Base 0 0 CPUNum

Table 5.16 EBase Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

1 31 This bit is ignored on write and returns one on read. R 1

0 30 This bit is ignored on write and returns zero on read. R 0

Exception
Base

29..12 In conjunction with bits 31..30, this field specifies the
base address of the exception vectors when Status-

BEV is zero.

R/W 0

0 11..10 Must be written as zero; returns zero on read. 0 0

CPUNum 9..0 This field specifies the number of the CPU in a
multi-processor system and can be used by software
to distinguish a particular processor from the others.
The value in this field is set by the SI_CPUNum[9:0]
static input pins to the core. In a single processor sys-
tem, this value should be set to zero.

R Externally Set

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 105

5.2.13 Config Register (CP0 Register 16, Select 0)

The Config register specifies various configuration and capabilities information. Most of the fields in the Config reg-
ister are initialized by hardware during the Reset exception process, or are constant.

Figure 5.13 Config Register Format — Select 0
31 30 28 27 25 24 23 22 21 20 19 17 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU 0 UDI SB MDU 0 DS BE AT AR MT 0 K0

Figure 5.14 Config Register Field Descriptions

Fields

Description
Read/Writ

e Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config1 register.

R 1

K23 30:28 This field controls the cacheability of the kseg2 and kseg3
address segments in FM implementations.
Refer to Table 5.17 for the field encoding.

FM: R/W FM: 010

KU 27:25 This field controls the cacheability of the kuseg and useg
address segments in FM implementations.
Refer to Table 5.17 for the field encoding.

FM: R/W FM: 010

0 24:23 Must be written as 0. Returns zero on reads. 0 0

UDI 22 This bit indicates that CorExtend User Defined Instructions
have been implemented.
0 = No User Defined Instructions are implemented
1 = User Defined Instructions are implemented

R Preset

SB 21 Indicates whether SimpleBE bus mode is enabled. Set via
SI_SimpleBE[0] input pin.
0 = No reserved byte enables on SRAM interface
1 = Only simple byte enables allowed on SRAM interface

R Externally Set

MDU 20 This bit indicates the type of Multiply/Divide Unit present.
0 = Fast, high-performance MDU
1 = Iterative, area-efficient MDU

R Preset

0 19:17 Must be written as 0. Returns zero on reads. 0 0

DS 16 Dual SRAM interface.
0: Unified instruction/data SRAM interface
1: Dual instruction/data SRAM interfaces

R Preset

BE 15 Indicates the endian mode in which the processor is run-
ning. Set via SI_Endian input pin.
0: Little endian
1: Big endian

R Externally Set

AT 14:13 Architecture type implemented by the processor. This field
is always 00 to indicate the MIPS32 architecture.

R 00

AR 12:10 Architecture revision level. This field is always 001 to indi-
cate MIPS32 Release 2.
0: Release 1
1: Release 2
2-7: Reserved

R 001

 CP0 Registers of the M4K™ Core

106 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

5.2.14 Config1 Register (CP0 Register 16, Select 1)

The Config1 register is an adjunct to the Config register and encodes additional information about capabilities
present on the core. All fields in the Config1 register are read-only.

Figure 5.15 Config1 Register Format — Select 1

MT 9:7 MMU Type:
3: Fixed Mapping
0-2, 4-7: Reserved

R 3

0 6:3 Must be written as zeros; returns zeros on reads. 0 0

K0 2:0 Kseg0 coherency algorithm. Refer to Table 5.17 for the
field encoding.

R/W 010

Table 5.17 Cache Coherency Attributes

C(2:0) Value Cache Coherency Attribute

2 Uncached.

3 Cached (Core treats as uncached, but passes attribute to the system for use with any external
caching mechanisms)

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 5.18 Config1 Register Field Descriptions — Select 1

Fields

Description
Read/Wri

te Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config2 register.

R 1

MMU Size 30:25 This field contains the number of entries in the TLB minus
one. The field is read as 0 decimal in the M4K cores, since
no TLB is present.

R 0

IS 24:22 This field contains the number of instruction cache sets per
way. Since the M4K core does not include caches, this field
is always read as 0.

R 0

IL 21:19 This field contains the instruction cache line size. Since the
M4K core does not include caches, this field is always read
as 0.

R 0

IA 18:16 This field contains the level of instruction cache associativ-
ity. Since the M4K core does not include caches, this field is
always read as 0.

R 0

Figure 5.14 Config Register Field Descriptions (Continued)

Fields

Description
Read/Writ

e Reset StateName Bit(s)

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 107

5.2.15 Config2 Register (CP0 Register 16, Select 2)

The Config2 register is an adjunct to the Config register and is reserved to encode additional capabilities informa-
tion. Config2 is allocated for showing the configuration of level 2/3 caches. These fields are reset to 0 because L2/L3
caches are not supported by the M4K core. All fields in the Config2 register are read-only.

Figure 5.16 Config2 Register Format — Select 2

DS 15:13 This field contains the number of data cache sets per way.
Since the M4K core does not include caches, this field is
always read as 0.

R 0

DL 12:10 This field contains the data cache line size. Since the M4K
core does not include caches, this field is always read as 0.

R 0

DA 9:7 This field contains the type of set associativity for the data
cache. Since the M4K core does not include caches, this
field is always read as 0.

R 0

C2 6 Coprocessor 2 present.
0: No coprocessor is attached to the COP2 interface
1: A coprocessor is attached to the COP2 interface
If the Cop2 interface logic is not implemented, this bit will
read 0.

R Preset

MD 5 MDMX implemented. This bit always reads as 0 because
MDMX is not supported.

R 0

PC 4 Performance Counter registers implemented. Always a 0
since the M4K core does not contain Performance Counters.

R 0

WR 3 Watch registers implemented.
0: No Watch registers are present
1: One or more Watch registers are present
This bit is always read as 0 since the M4K core does not
contain Watch registers.

R 0

CA 2 Code compression (MIPS16e) implemented.
0: No MIPS16e present
1: MIPS16e is implemented

R Preset

EP 1 EJTAG present: This bit is always set to indicate that the
core implements EJTAG.

R 1

FP 0 FPU implemented. This bit is always zero since the core
does not contain a floating point unit.

R 0

31 30 0

M 0

Table 5.18 Config1 Register Field Descriptions — Select 1 (Continued)

Fields

Description
Read/Wri

te Reset StateName Bit(s)

 CP0 Registers of the M4K™ Core

108 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

5.2.16 Config3 Register (CP0 Register 16, Select 3)

The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.

Figure 5.17 shows the format of the Config3 register; Table 5.20 describes the Config3 register fields.

Table 5.19 Config1 Register Field Descriptions — Select 1

Fields

Description
Read/Wri

te Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config3 register.

R 1

0 30:0 These bits are reserved. R 0

Figure 5.17 Config3 Register Format
31 30 9 8 7 6 5 4 3 2 1 0

M
0

000 0000 0000 0000 0000 0000 0
ITL 0 VEIC VInt SP 0 SM TL

Table 5.20 Config3 Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bits

M 31 This bit is reserved to indicate that a Config4 register is
present. With the current architectural definition, this bit
should always read as a 0.

R 0

0 30:9,7,3:2 Must be written as zeros; returns zeros on read 0 0

ITL 8 Indicates that IFlowTrace hardware is present R Preset

VEIC 6 Support for an external interrupt controller is imple-
mented.

The value of this bit is set by the static input,
SI_EICPresent. This allows external logic to communi-
cate whether an external interrupt controller is attached
to the processor or not.

R Externally Set

VInt 5 Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.

On the M4K core, this bit is always a 1 since vectored
interrupts are implemented.

R 1

Encoding Meaning

0 Support for EIC interrupt mode is not
implemented

1 Support for EIC interrupt mode is
implemented

Encoding Meaning

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 109

5.2.17 Debug Register (CP0 Register 23, Select 0)

The Debug register is used to control the debug exception and provide information about the cause of the debug
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The read
only information bits are updated every time the debug exception is taken or when a normal exception is taken when
already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the values of all other bits and
fields are UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is written from
non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:

• DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, DDBSImpr are updated on both debug excep-
tions and on exceptions in debug modes

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode

• DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.
EJTAGver and DM.

SP 4 Small (1KByte) page support is implemented, and the
PageGrain register exists. This bit will always read as 0
on the M4K core, since no TLB is present.

R 0

SM 1 SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE is implemented. Since
SmartMIPS is not present on the M4K core, this bit will
always be 0.

R 0

TL 0 Trace Logic implemented. This bit indicates whether PC
or data trace is implemented..

R Preset

Table 5.20 Config3 Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bits

Encoding Meaning

0 Small page support is not implemented

1 Small page support is implemented

Encoding Meaning

0 SmartMIPS ASE is not implemented

1 SmartMIPS ASE is implemented

Encoding Meaning

0 Trace logic is not implemented

1 Trace logic is implemented

 CP0 Registers of the M4K™ Core

110 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Figure 5.18 Debug Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19

DBD DM
NoDC

R
LSNM Doze Halt

CountD
M

IBusEP
MChec

kP
CacheE

P
DBusE

P
IEXI

DDB-
SImpr

18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDB
LImpr

Ver DExcCode
NoS
St

SSt R
DIBI
mpr

DIN
T

DIB
DD
BS

DD
BL

DBp DSS

Table 5.21 Debug Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

DBD 31 Indicates whether the last debug exception or exception
in debug mode, occurred in a branch delay slot:
0: Not in delay slot
1: In delay slot

R Undefined

DM 30 Indicates that the processor is operating in debug mode:
0: Processor is operating in non-debug mode
1: Processor is operating in debug mode

R 0

NoDCR 29 Indicates whether the dseg memory segment is present
and the Debug Control Register is accessible:
0: dseg is present
1: No dseg present

R 0

LSNM 28 Controls access of load/store between dseg and main
memory:
0: Load/stores in dseg address range goes to dseg.
1: Load/stores in dseg address range goes to main mem-
ory.

R/W 0

Doze 27 Indicates that the processor was in any kind of low
power mode when a debug exception occurred:
0: Processor not in low power mode when debug excep-
tion occurred
1: Processor in low power mode when debug exception
occurred

R Undefined

Halt 26 Indicates that the internal system bus clock was stopped
when the debug exception occurred:
0: Internal system bus clock stopped
1: Internal system bus clock running

R Undefined

CountDM 25 Indicates the Count register behavior in debug mode.
0: Count register stopped in debug mode
1: Count register is running in debug mode

R/W 1

IBusEP 24 Instruction fetch Bus Error exception Pending. Set when
an instruction fetch bus error event occurs or if a 1 is
written to the bit by software. Cleared when a Bus Error
exception on instruction fetch is taken by the processor,
and by reset. If IBusEP is set when IEXI is cleared, a
Bus Error exception on instruction fetch is taken by the
processor, and IBusEP is cleared.

R/W1 0

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 111

MCheckP 23 Indicates that an imprecise Machine Check exception is
pending. All Machine Check exceptions are precise on
the M4K processor so this bit will always read as 0.

R 0

CacheEP 22 Indicates that an imprecise Cache Error is pending.
Cache Errors cannot be taken by the M4K core so this
bit will always read as 0

R 0

DBusEP 21 Data access Bus Error exception Pending. Covers
imprecise bus errors on data access, similar to behavior
of IBusEP for imprecise bus errors on an instruction
fetch.

R/W1 0

IEXI 20 Imprecise Error eXception Inhibit controls exceptions
taken due to imprecise error indications. Set when the
processor takes a debug exception or exception in debug
mode. Cleared by execution of the DERET instruction;
otherwise modifiable by debug mode software. When
IEXI is set, the imprecise error exception from a bus
error on an instruction fetch or data access, cache error,
or machine check is inhibited and deferred until the bit
is cleared.

R/W 0

DDBSImpr 19 Indicates that an imprecise Debug Data Break Store
exception was taken. Imprecise data breaks only occur
on complex breakpoints.

R Undefined

DDBLImpr 18 Indicates that an imprecise Debug Data Break Load
exception was taken. Imprecise data breaks only occur
on complex breakpoints.

R Undefined

Ver 17:15 EJTAG version. R 010

DExcCode 14:10 Indicates the cause of the latest exception in debug
mode. The field is encoded as the ExcCode field in the
Cause register for those normal exceptions that may
occur in debug mode.
Value is undefined after a debug exception.

R Undefined

NoSST 9 Indicates whether the single-step feature controllable by
the SSt bit is available in this implementation:
0: Single-step feature available
1: No single-step feature available

R 0

SSt 8 Controls if debug single step exception is enabled:
0: No debug single-step exception enabled
1: Debug single step exception enabled

R/W 0

R 7 Reserved. Must be written as zeros; returns zeros on
reads.

R 0

DIBImpr 6 Indicates that an Imprecise debug instruction break
exception occurred (due to a complex breakpoint).
Cleared on exception in debug mode.

R Undefined

DINT 5 Indicates that a debug interrupt exception occurred.
Cleared on exception in debug mode.
0: No debug interrupt exception
1: Debug interrupt exception

R Undefined

Table 5.21 Debug Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

 CP0 Registers of the M4K™ Core

112 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

5.2.18 Trace Control Register (CP0 Register 23, Select 1)

The TraceControl register configuration is shown below. Note the special behavior of the ASID_M, ASID, and G
fields for the M4K processor.

This register is only implemented if the EJTAG Trace capability is present.

Figure 5.19 TraceControl Register Format

DIB 4 Indicates that a debug instruction break exception
occurred. Cleared on exception in debug mode.
0: No debug instruction exception
1: Debug instruction exception

R Undefined

DDBS 3 Indicates that a debug data break exception occurred on
a store. Cleared on exception in debug mode.
0: No debug data exception on a store
1: Debug instruction exception on a store

R Undefined

DDBL 2 Indicates that a debug data break exception occurred on
a load. Cleared on exception in debug mode.
0: No debug data exception on a load
1: Debug instruction exception on a load

R Undefined

DBp 1 Indicates that a debug software breakpoint exception
occurred. Cleared on exception in debug mode.
0: No debug software breakpoint exception
1: Debug software breakpoint exception

R Undefined

DSS 0 Indicates that a debug single-step exception occurred.
Cleared on exception in debug mode.
0: No debug single-step exception
1: Debug single-step exception

R Undefined

31 30 29 28 27 26 25 24 23 22 21 20 13 12 5 4 3 1 0

TS
U
T

0
T
B

IO D E K S U ASID_M ASID G Mode
O
n

Table 5.22 TraceControl Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

TS 31 The trace select bit is used to select between the hard-
ware and the software trace control bits. A value of
zero selects the external hardware trace block signals,
and a value of one selects the trace control bits in this
software control register.

R/W 0

Table 5.21 Debug Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 113

UT 30 This bit is used to indicate the type of user-triggered
trace record. A value of zero implies a user type 1 and
a value of one implies a user type 2.
The actual triggering of a user trace record happens on
a write to the UserTraceData register.

R/W Undefined

0 29:28 Reserved for future use; Must be written as zero;
returns zero on read.

0 0

TB 27 Trace All Branch. When set to one, this tells the pro-
cessor to trace the PC value for all taken branches, not
just the ones whose branch target address is statically
unpredictable.

R/W Undefined

IO 26 Inhibit Overflow. This signal is used to indicate to the
core trace logic that slow but complete tracing is
desired. When set to one, the core tracing logic does
not allow a FIFO overflow or discard trace data. This is
achieved by stalling the pipeline when the FIFO is
nearly full, so that no trace records are ever lost.

R/W Undefined

D 25 When set to one, this enables tracing in Debug Mode
(see 8.9.1 “Processor Modes” on page 175). For trace
to be enabled in Debug mode, the On bit must be one.
When set to zero, trace is disabled in Debug Mode,
irrespective of other bits.

R/W Undefined

E 24 When set to one, this enables tracing in Exception
Mode (see 8.9.1 “Processor Modes” on page 175).
For trace to be enabled in Exception mode, the On bit
must be one.
When set to zero, trace is disabled in Exception Mode,
irrespective of other bits.

R/W Undefined

K 23 When set to one, this enables tracing in Kernel Mode
(see 8.9.1 “Processor Modes” on page 175). For trace
to be enabled in Kernel mode, the On bit must be one.
When set to zero, trace is disabled in Kernel Mode,
irrespective of other bits.

R/W Undefined

0 22 This bit is reserved. Must be written as zero; returns
zero on read.

0 0

U 21 When set to one, this enables tracing in User Mode
(see 8.9.1 “Processor Modes” on page 175). For trace
to be enabled in User mode, the On bit must be one.
When set to zero, trace is disabled in User Mode, irre-
spective of other bits.

R/W Undefined

ASID_M 20:13
In the M4K core where ASID is not supported, this
field is ignored on write and returns zero on read.

R 0

Table 5.22 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

 CP0 Registers of the M4K™ Core

114 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

5.2.19 Trace Control2 Register (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some fields in the
TraceControl2 register are read-only, but have a reset state of “Undefined”. This is because these values are loaded
from the Trace Control Block (TCB) (see 8.11 “Trace Control Block (TCB) Registers (Hardware Control)” on
page 180). As such, these fields in the TraceControl2 register will not have valid values until the TCB asserts these
values.

This register is only implemented if the EJTAG Trace capability is present.

Figure 5.20 TraceControl2 Register Format

ASID 12:5
In the M4K core where ASID is not supported, this
field is ignored on write and returns zero on read.

R 0

G 4
In the M4K core where ASID is not supported, this
field is ignored on write and returns 1 on read. This
causes all match equations to work correctly in the
absence of an ASID.

R 1

Mode 3:1 These three bits control the trace mode function.

The TraceControl2ValidModes field determines which

of these encodings are supported by the processor. The
operation of the processor is UNPREDICTABLE if
this field is set to a value which is not supported by the
processor.

R/W Undefined

On 0 This is the master trace enable switch in software con-
trol. When zero, tracing is always disabled. When set
to one, tracing is enabled whenever the other enabling
functions are also true.

R/W 0

31 7 6 5 4 3 2 0

0
Valid-
Modes

TBI
TB
U

SyP

Table 5.22 TraceControl Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

Mode Trace Mode

000 Trace PC

001 Trace PC and load address

010 Trace PC and store address

011 Trace PC and both load/store addresses

100 Trace PC and load data

101 Trace PC and load address and data

110 Trace PC and store address and data

111 Trace PC and both load/store address and
data

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 115

Table 5.23 TraceControl2 Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:5 Reserved for future use; Must be written as zero;
returns zero on read.

0 0

ValidModes 6:5 This field specifies the type of tracing that is supported
by the processor, as follows:

R 10

TBI 4 This bit indicates how many trace buffers are imple-
mented by the TCB, as follows:

R Per imple-
mentation

TBU 3 This bit denotes to which trace buffer the trace is cur-
rently being written and is used to select the appropri-
ate interpretation of the TraceControl2SyP field.

R Undefined

Encoding Meaning

00 PC tracing only

01 PC and load and store address tracing
only

10 PC, load and store address, and load and
store data

11 Reserved

Encoding Meaning

0 Only one trace buffer is implemented,
and the TBU bit of this register indicates
which trace buffer is implemented

1 Both on-chip and off-chip trace buffers
are implemented by the TCB and the
TBU bit of this register indicates to
which trace buffer the trace is currently
written.

Encoding Meaning

0 Trace data is being sent to an on-chip
trace buffer

1 Trace Data is being sent to an off-chip
trace buffer

 CP0 Registers of the M4K™ Core

116 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

5.2.20 User Trace Data Register (CP0 Register 23, Select 3)

A software write to any bits in the UserTraceData register will trigger a trace record to be written indicating a type
1 or type 2 user format. The type is based on the UT bit in the TraceControl register. This register cannot be written
in consecutive cycles. The trace output data is UNPREDICTABLE if this register is written in consecutive cycles.

This register is only implemented if the EJTAG Trace capability is present.

Figure 5.21 User Trace Data Register Format \

SyP 2:0 Used to indicate the synchronization period.
The period (in cycles) between which the periodic syn-
chronization information is to be sent is defined as
shown below, for both when the trace buffer is on-chip
and off-chip.

The “On-chip” column value is used when the trace
data is being written to an on-chip trace buffer (e.g,
TraceControl2TBU = 0). Conversely, the “Off-chip”

column is used when the trace data is being written to
an off-chip trace buffer (e.g, TraceControl2TBU = 1).

R Undefined

31 0

Data

Table 5.24 UserTraceData Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

Data 31:0 Software readable/writable data. When written, this
triggers a user format trace record out of the PDtrace
interface that transmits the Data field to trace memory.

R/W 0

Table 5.23 TraceControl2 Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bits

SyP On-chip Off-chip

000 22 27

001 23 28

010 24 29

011 25 210

100 26 211

101 27 212

110 28 213

111 29 214

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 117

5.2.21 TraceBPC Register (CP0 Register 23, Select 4)

This register is used to control start and stop of tracing using an EJTAG Hardware breakpoint. The Hardware break-
point would then be set as a trigger source and optionally also as a Debug exception breakpoint.

This register is only implemented if both Hardware breakpoints and the EJTAG Trace capability are present.

Figure 5.22 Trace BPC Register Format
31 30 18 17 16 15 14 6 5 0

DE 0 DBPOn IE 0 IBPOn

Table 5.25 TraceBPC Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

DE 31 Used to specify whether the trigger signal from
EJTAG data breakpoint should trigger tracing func-
tions or not:
0: disables trigger signals from data breakpoints
1: enables trigger signals from data breakpoints

R/W 0

0 30:18 Reserved 0 0

DBPOn 17:16 Each of the 2 bits corresponds to the 2 possible EJTAG
hardware data breakpoints that may be implemented.
For example, bit 16 corresponds to the first data break-
point. If 2 data breakpoints are present in the EJTAG
implementation, then they correspond to bits 16 and
17. The rest are always ignored by the tracing logic
since they will never be triggered.
A value of one for each bit implies that a trigger from
the corresponding data breakpoint should start tracing.
And a value of zero implies that tracing should be
turned off with the trigger signal.

R/W 0

IE 15 Used to specify whether the trigger signal from
EJTAG instruction breakpoint should trigger tracing
functions or not:
0: disables trigger signals from instruction breakpoints
1: enables trigger signals from instruction breakpoints

R/W 0

0 14:6 Reserved 0 0

IBPOn 5:0 Each of the 6 bits corresponds to the 6 possible EJTAG
hardware instruction breakpoints that may be imple-
mented. Bit 0 corresponds to the first instruction
breakpoint, and so on. If only 2 instruction breakpoints
are present in the EJTAG implementation, then only
bits 0 and 1 are used. The rest are always ignored by
the tracing logic since they will never be triggered.
A value of one for each bit implies that a trigger from
the corresponding instruction breakpoint should start
tracing. And a value of zero implies that tracing should
be turned off with the trigger signal.

R/W 0

 CP0 Registers of the M4K™ Core

118 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

5.2.22 Debug2 Register (CP0 Register 23, Select 6)

This register holds additional information about Complex Breakpoint exceptions.

This register is only implemented if complex hardware breakpoints are present.

Figure 5.23 Debug2 Register Format

5.2.23 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the debug exception causing
instruction is in a branch delay slot, and the Debug Branch Delay (DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt, complex break), the DEPC contains the virtual address of the
instruction where execution should resume after the debug handler code is executed.

In processors that implement the MIPS16e ASE, a read of the DEPC register (via MFC0) returns the following value
in the destination GPR:

GPR[rt] ← DebugExceptionPC31..1 || ISAMode0

31 4 3 2 1 0

0 Prm DQ Tup PaCo

Table 5.26 Debug2 Register Field Descriptions

Fields

Description
Read/
Write Reset StateName Bits

0 31:4 Reserved 0 0

Prm 3 Primed - indicates whether a complex breakpoint with
an active priming condition was seen on the last debug
exception.

R Undefined

DQ 2 Data Qualified - indicates whether a complex break-
point with an active data qualfier was seen on the last
debug exception.

R Undefined

Tup 1 Tuple - indicates whether a tuple breakpoint was seen
on the last debug exception.

R Undefined

PaCo 0 Pass Counter - indicates whether a complex breakpoint
with an active pass counter was seen on the last debug
exception

R Undefined

5.2 CP0 Register Descriptions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 119

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the ISAMode field and writ-
ten to the GPR.

Similarly, a write to the DEPC register (via MTC0) takes the value from the GPR and distributes that value to the
debug exception PC and the ISAMode field, as follows

DebugExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bit of
the debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
lower bit of the GPR.

Figure 5.24 DEPC Register Format

5.2.24 ErrorEPC (CP0 Register 30, Select 0)

The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and nonmaskable interrupt (NMI) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an
error. This address can be:

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump instruction when the error causing instruction is
in a branch delay slot

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.

In processors that implement the MIPS16e ASE, a read of the ErrorEPC register (via MFC0) returns the following
value in the destination GPR:

GPR[rt] ← ErrorExceptionPC31..1 || ISAMode0

31 0

DEPC

Table 5.27 DEPC Register Formats

Fields

Description
Read/Wr

ite ResetName Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual address of
the instruction that caused the debug exception. If the
instruction is in the branch delay slot, then the virtual
address of the immediately preceding branch or jump
instruction is placed in this register.
Execution of the DERET instruction causes a jump to the
address in the DEPC.

 R/W Undefined

 CP0 Registers of the M4K™ Core

120 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Similarly, a write to the ErrorEPC register (via MTC0) takes the value from the GPR and distributes that value to the
error exception PC and the ISAMode field, as follows

ErrprExceptionPC ← GPR[rt]31..1 || 0
ISAMode ← 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit of the
error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
lower bit of the GPR.

Figure 5.25 ErrorEPC Register Format

5.2.25 DeSave Register (CP0 Register 31, Select 0)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory location.
This register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of the
context to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of
exception handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

Figure 5.26 DeSave Register Format

31 0

ErrorEPC

Table 5.28 ErrorEPC Register Field Description

Fields

Description
Read/Wri

te Reset StateName Bit(s)

ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined

31 0

DESAVE

Table 5.29 DeSave Register Field Description

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

DESAVE 31:0 Debug exception save contents. R/W Undefined

Chapter 6

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 121

Hardware and Software Initialization of the M4K™ Core

A M4K processor core contains only a minimal amount of hardware initialization and relies on software to fully ini-
tialize the device.

This chapter contains the following sections:

• Section 6.1 “Hardware-Initialized Processor State”

• Section 6.2 “Software Initialized Processor State”

6.1 Hardware-Initialized Processor State

A M4K processor core, like most other MIPS processors, is not fully initialized by hardware reset. Only a minimal
subset of the processor state is cleared. This is enough to bring the core up while running in unmapped and uncached
code space. All other processor state can then be initialized by software. SI_ColdReset is asserted after power-up to
bring the device into a known state. Soft reset can be forced by asserting the SI_Reset pin. This distinction is made
for compatibility with other MIPS processors. In practice, both resets are handled identically with the exception of
the setting of StatusSR.

6.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor 0.

• StatusBEV - cleared to 1 on Reset/SoftReset

• StatusTS - cleared to 0 on Reset/SoftReset

• StatusSR - cleared to 0 on Reset, set to 1 on SoftReset

• StatusNMI - cleared to 0 on Reset/SoftReset

• StatusERL - set to 1 on Reset/SoftReset

• StatusRP - cleared to 0 on Reset/SoftReset

• Config fields related to static inputs - set to input value by Reset/SoftReset

• ConfigK0 - set to 010 (uncached) on Reset/SoftReset

• ConfigKU - set to 010 (uncached) on Reset/SoftReset

• ConfigK23 - set to 010 (uncached) on Reset/SoftReset

 Hardware and Software Initialization of the M4K™ Core

122 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

• DebugDM - cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot into DebugMode, see
Chapter 8, “EJTAG Debug Support in the M4K™ Core” on page 127 for details)

• DebugLSNM - cleared to 0 on Reset/SoftReset

• DebugIBusEP - cleared to 0 on Reset/SoftReset

• DebugDBusEP - cleared to 0 on Reset/SoftReset

• DebugIEXI - cleared to 0 on Reset/SoftReset

• DebugSSt - cleared to 0 on Reset/SoftReset

6.1.2 Bus State Machines

All pending bus transactions are aborted and the state machines in the SRAM interface unit are reset when a Reset or
SoftReset exception is taken.

6.1.3 Static Configuration Inputs

All static configuration inputs should only be changed during Reset.

6.1.4 Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA
0x1FC00000). This address is in KSeg1,which is unmapped and uncached.

6.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

6.2.1 Register File

The register file powers up in an unknown state with the exception of r0 which is always 0. Initializing the rest of the
register file is not required for proper operation in hardware. However, when simulating the operation of the core,
unknown values can cause problems. Thus, initializing the register file in the boot code may avoid simulation prob-
lems.

6.2.2 Coprocessor 0 State

Miscellaneous COP0 states need to be initialized prior to leaving the boot code. There are various exceptions which
are blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking spurious
exceptions when leaving the boot code.

• Cause: WP (Watch Pending), SW0/1 (Software Interrupts) should be cleared.

• Config: Typically, the K0, KU and K23 fields should be set to the desired Cache Coherency Algorithm (CCA)
value prior to accessing the corresponding memory regions. But in the M4K core, all CCA values are treated
identically, so the hardware reset value of these fields need not be modified.

6.2 Software Initialized Processor State

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 123

• Count: Should be set to a known value if Timer Interrupts are used.

• Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will also clear any
pending Timer Interrupts (Thus, Count should be set before Compare to avoid any unexpected interrupts).

• Status: Desired state of the device should be set.

• Other COP0 state: Other registers should be written before they are read. Some registers are not explicitly write-
able, and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should
be masked off after reading these registers.

 Hardware and Software Initialization of the M4K™ Core

124 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Chapter 7

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 125

Power Management of the M4K™ Core

A M4K processor coreoffers a number of power management features, including low-power design, active power
management and power-down modes of operation. The core is a static design that supports a WAIT instruction
designed to signal the rest of the device that execution and clocking should be halted, reducing system power con-
sumption during idle periods.

The core provides two mechanisms for system level low-power support discussed in the following sections.

• Section 7.1 “Register-Controlled Power Management”

• Section 7.2 “Instruction-Controlled Power Management”

7.1 Register-Controlled Power Management

The RP bit in the CP0 Status register enables a standard software mechanism for placing the system into a low power
state. The state of the RP bit is available externally via the SI_RP output signal. Three additional pins, SI_EXL,
SI_ERL, and EJ_DebugM support the power management function by allowing the user to change the power state if
an exception or error occurs while the core is in a low power state.

Setting the RP bit of the CP0 Status register causes the core to assert the SI_RP signal. The external agent can then
decide whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending on
the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The setting
of the EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external agent that an
interrupt has occurred. At this time the external agent can choose to either speed up the clocks and service the inter-
rupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the external
agent that an error has occurred. At this time the external agent can choose to either speed up the clocks and service
the error or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when the
processor takes a debug exception. If fast handling of this is desired, the external agent can speed up the clocks.

The core provides four power down signals that are part of the system interface. Three of the pins change state as the
corresponding bits in the CP0 Status register are set or cleared. The fourth pin indicates that the processor is in debug
mode:

• The SI_RP signal represents the state of the RP bit (27) in the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1) in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

 Power Management of the M4K™ Core

126 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

• The EJ_DebugM signal indicates that the processor has entered debug mode.

7.2 Instruction-Controlled Power Management

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If the bus is
idle at the time the WAIT instruction reaches the M stage of the pipeline the internal clocks are suspended and the
pipeline is frozen. However, the internal timer and some of the input pins (SI_Int[5:0], SI_NMI, SI_Reset,
SI_ColdReset, and EJ_DINT) continue to run. If the bus is not idle at the time the WAIT instruction reaches the M
stage, the pipeline stalls until the bus becomes idle, at which time the clocks are stopped. Once the CPU is in instruc-
tion controlled power management mode, any enabled interrupt, NMI, debug interrupt, or reset condition causes the
CPU to exit this mode and resume normal operation. While the part is in this low-power mode, the SI_SLEEP signal
is asserted to indicate to external agents what the state of the chip is.

Chapter 8

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 127

EJTAG Debug Support in the M4K™ Core

The EJTAG debug logic in the M4K processor core provides three optional modules:

1. Hardware breakpoints

2. Test Access Port (TAP) for a dedicated connection to a debug host

3. Tracing of program counter/data address/data value trace to On-chip memory or to a Trace probe

These features are covered in the following sections:

• Section 8.1 “Debug Control Register”

• Section 8.2 “Hardware Breakpoints”

• Section 8.3 “Complex Breakpoint Usage”

• Section 8.4 “Test Access Port (TAP)”

• Section 8.5 “EJTAG TAP Registers”

• Section 8.6 “TAP Processor Accesses”

• Section 8.7 “Trace Mechanisms”

• Section 8.8 “iFlowtrace™ Mechanism”

• Section 8.9 “EJTAG Trace”

• Section 8.10 “PDtrace™ Registers (Software Control)”

• Section 8.11 “Trace Control Block (TCB) Registers (Hardware Control)”

• Section 8.12 “EJTAG Trace Enabling”

• Section 8.13 “TCB Trigger logic”

• Section 8.14 “EJTAG Trace Cycle-by-Cycle Behavior”

• Section 8.15 “TCB On-Chip Trace Memory”

 EJTAG Debug Support in the M4K™ Core

128 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.1 Debug Control Register

The Debug Control Register (DCR) register controls and provides information about debug issues, and is always pro-
vided with the CPU core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug soft-
ware is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to
the other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit,
and a pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of none, some or all sources for soft reset. The soft reset
masking may only be applied to a soft reset source if that source can be efficiently masked in the system, thus result-
ing in no reset at all. If that is not possible, then that soft reset source should not be masked, since a partial soft reset
may cause the system to fail or hang. There is no automatic indication of whether the SRE is effective, so the user
must consult system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control register (ECR), whereby the probe can indicate to the
debug software running on the CPU if the probe expects to service dmseg accesses. The reset value in the table below
takes effect on both hard and soft resets.

Debug Control Register
31 30 29 28 18 17 16 15 14 13 11 10 9 8 6 5 4 3 2 1 0

Res ENM Res DB IB IVM DVM Res CBrk PCS PCR PCSe INTE NMIE NMIP SRE PE

Table 8.1 Debug Control Register Field Descriptions

Fields

Description
Read/Wri

te Reset StateName Bit(s)

Res 31:30 Reserved R 0

ENM 29 Endianess in Kernel and Debug mode.
0: Little Endian
1: Big Endian

R Preset

Res 28:18 Reserved R 0

DB 17 Data Break Implemented.
0: No Data Break feature implemented
1: Data Break feature is implemented

R Preset

IB 16 Instruction Break Implemented.
0: No Instruction Break feature implemented
1: Instruction Break feature is implemented

R Preset

IVM 15 Inverted Value Match. Indicates that the data hardware
breakpoints (if implemented) support an inverted value
match.

R 1

DVM 14 Data Value Match Register. Indicates that a DRSEG
mapped register is present that will capture the load data
value on precise data value breakpoints.

R 1

Res 13:11 Reserved R 0

CBrk 10 Indicates that Complex Breakpoint logic is implemented R Preset

8.2 Hardware Breakpoints

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 129

8.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store transac-
tions. It is possible to set instruction breakpoints on addresses even in ROM area. Data breakpoints can be set to cause
a debug exception on a specific data transaction. Instruction and data hardware breakpoints are alike for many
aspects, and are thus described in parallel in the following. The term hardware is not generally added to breakpoint,
unless required to distinguish it from a software breakpoint.

There are two types of simple hardware breakpoints implemented in the M4K core; Instruction breakpoints and Data
breakpoints. The M4K core may also contain a complex breakpoint unit.

A core may be configured with the following breakpoint options:

• No data or instruction breakpoints, without complex break support

• Two instruction and one data breakpoint, without complex break support

PCS 9 Program Counter Sampling implemented.
Not supported on M4K core so this bit will read as 0

 R 0

PCR 8:6 PC Sampling Rate. Controls how often the program counter
is sampled if PC Sampling is implemented

R 0

PCE 5 PC Sampling Enable. Enables sampling of PC if imple-
mented

R 0

INTE 4 Interrupt Enable in Normal Mode. This bit provides the
hardware and software interrupt enable for non-debug
mode, in addition to other masking mechanisms:
0: Interrupts disabled.
1: Interrupts enabled (depending on other enabling mecha-
nisms).

R/W 1

NMIE 3 Non-Maskable Interrupt Enable for non-debug mode
0: NMI disabled.
1: NMI enabled.

R/W 1

NMIP 2 NMI Pending Indication.
0: No NMI pending.
1: NMI pending.

R 0

SRE 1 Soft Reset Enable
This bit allows the system to mask soft resets. The core
does not internally mask soft resets. Rather the state of this
bit appears on the EJ_SRstE external output signal, allow-
ing the system to mask soft resets if desired.

R/W 1

PE 0 Probe Enable
This bit reflects the ProbEn bit in the EJTAG Control regis-
ter.
0: No accesses to dmseg allowed
1: EJTAG probe services accesses to dmseg

R Same value as
ProbEn in ECR
(see Table 9-4)

Table 8.1 Debug Control Register Field Descriptions (Continued)

Fields

Description
Read/Wri

te Reset StateName Bit(s)

 EJTAG Debug Support in the M4K™ Core

130 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

• Four instruction and two data breakpoints, without complex break support

• Six instruction and two data breakpoints, with support for complex breaks

8.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address on the bus between
the CPU and the instruction cache. Finally, a mask can be applied to the virtual address to set breakpoints on a range
of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) with the registers for each
instruction breakpoint including masking of address. When an instruction breakpoint matches, a debug exception
and/or a trigger is generated. An internal bit in the instruction breakpoint registers is set to indicate that the match
occurred.

8.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address values, similar to the Instruc-
tion breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set based on the
value of the load/store operation. Finally, masks can be applied to both the virtual address and the load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transac-
tion (ADDR), accessed bytes (BYTELANE) and data value (DATA), with the registers for each data breakpoint
including masking or qualification on the transaction properties. When a data breakpoint matches, a debug exception
and/or a trigger is generated, and an internal bit in the data breakpoint registers is set to indicate that the match
occurred. The match is precise in that the debug exception or trigger occurs on the instruction that caused the break-
point to match.

8.2.3 Features of Complex Breakpoints

The complex breakpoint unit utilizes the instruction and data breakpoint hardware and looks for more specific match-
ing conditions. There are several different types of enabling that allow more exact breakpoint specification. Tuples
add an additional condition to data breakpoints of requiring an instruction breakpoint on the same instructions. Pass
counters are counters that decrement each time a matching breakpoint condition is taken. Once the counter reaches 0,
the break or trigger effect of the breakpoint is enabled. Priming allows a breakpoint to only be enabled once another
trigger condition has been detected. Data qualification allows instruction breakpoints to only be enabled once a corre-
sponding load data triggerpoint has matched both address and data. Data qualified breakpoints are also disabled if a
load is executed that matches on the address portion of the triggerpoint, but has a mismatching data value. The com-
plex breakpoint features can be combined to create very complex sequences to match on.

In addition to the breakpoint logic, the complex break unit also includes a Stopwatch Timer block. This counter can
be used to measure time spent in various sections. It can either be free-running, or it can be set up to start and stop
counting based on a trigger from instruction breakpoints.

8.2.4 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data trans-
action, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/or TE
bits in the IBCn or DBCn registers are used to enable the breakpoints.

8.2 Hardware Breakpoints

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 131

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the imple-
mentation.

8.2.4.1 Conditions for Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch.
The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at bit level.
The registers for each instruction breakpoint have the values and mask used in the compare, and the equation that
determines the match is shown below in C-like notation.

IB_match =
(<all 1’s> == (IBMnIBM | ~ (PC ^ IBAnIBA))

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the
IB_match to be true.

8.2.4.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruc-
tion executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error on
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or
destination address.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the data
value of a transaction. The registers for each data breakpoint have the values and mask used in the compare, and the
equation that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match =
(((TYPE == load) && ! DBCnNoLB) ||
((TYPE == store) && ! DBCnNoSB)) &&

DB_addr_match && (DB_no_value_compare || DB_value_match)

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR) and the
accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bus is accessed, and
BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr_match is shown below.

DB_addr_match =
(<all 1’s> == (DBMnDBM | ~ (ADDR ^ DBAnDBA))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size of DBCnBAI and BYTELANE is 4 bits.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELANE
as described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_compare
is shown below.

DB_no_value_compare =

 EJTAG Debug Support in the M4K™ Core

132 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

(<all 1’s> == (DBCnBLM | DBCnBAI | ~ BYTELANE))

The size of DBCnBLM, DBCnBAI and BYTELANE is 4 bits.

In case a data value compare is required, DB_no_value_compare is false, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The DBCIVM bit inverts the sense of the
match - if set, the value match term will be high if the data value is not the same as the data in the DBVn register. The
endianess is not considered in these match equations for value, as the compare uses the data bus value directly, thus
debug software is responsible for setup of the breakpoint corresponding with endianess.

DB_value_match =
DBCnIVM ^
(((DATA[7:0] == DBVnDBV[7:0]) || ! BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&
 ((DATA[15:8] == DBVnDBV[15:8]) || ! BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&
 ((DATA[23:16] == DBVnDBV[23:16]) || ! BYTELANE[2] || DBCnBLM[2] || DBCnBAI[2]) &&
 ((DATA[31:24] == DBVnDBV[31:24]) || ! BYTELANE[3] || DBCnBLM[3] || DBCnBAI[3]))

The match for a data breakpoint is always precise, since the match expression is fully evaluated at the time the
load/store instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the
DB_match to be true.

8.2.5 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as
described below.

8.2.5.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in the IBCn register, then a debug instruction break exception occurs if the
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the
debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug register
point to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load
or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions receiv-
ing a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

8.2.5.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match con-
dition is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug excep-
tion.

A debug data break exception occurs when a data breakpoint indicates a match. In this case the DEPC register and
DBD bit in the Debug register points to the instruction that caused the DB_match equation to be true.

8.2 Hardware Breakpoints

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 133

The instruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match, is not
allowed to complete the load.

• A load transaction for a breakpoint with data value compare must occur from the memory system, since the value
is required in order to evaluate the breakpoint.

The result of this is that the load or store instruction causing the debug data break exception appears as not executed,
with the exception that a load from the memory system does occur for a breakpoint with data value compare, but the
register file is not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the following rules apply with respect to updating the BS[n] bits.

• On both a load and store the BS[n] bits are required to be set for all matching breakpoints without a data value
compare.

• On a store the BS[n] bits are allowed but not required to be set for all matching breakpoints with a data value
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

• On a load then none of the BS[n] bits for breakpoints with data value compare are allowed to be set, since the
load is not allowed to occur due to the debug exception from a breakpoint without a data value compare, and a
valid data value is therefore not returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug
software.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction
is re-executed. This re-execution may result in a repeated load from system memory, since the load may have
occurred previously in order to evaluate the breakpoint as described above. I/O devices with side effects on loads may
not be reaccessible without changing the system behavior. The Load Data Value register was introduced to capture the
value that was read and allow debug software to synthesize the load instruction without reaccessing memory. Debug
software is responsible for disabling breakpoints when returning to the instruction, otherwise the debug data break
exception will reoccur.

8.2.6 Breakpoint Used as TriggerPoint

Both instruction and data hardware breakpoints can be setup by software so a matching breakpoint does not generate
a debug exception, but only an indication through the BS[n] bit. The TE bit in the IBCn or DBCn register controls if
an instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints, only com-
pared for instructions executed in non-debug mode.

The BS[n] bit in the IBS or DBS register is set when the respective IB_match or DB_match bit is true.

The triggerpoint feature can be used to start and stop tracing. See 8.12 “EJTAG Trace Enabling” for details.

 EJTAG Debug Support in the M4K™ Core

134 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.2.7 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and
are used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown in Table 8.2.

An example of some of the registers; IBA0 is at offset 0x1100 and IBC2 is at offset 0x1318.

8.2.7.1 Instruction Breakpoint Status (IBS) Register (0x1000)

Compliance Level: Implemented only if instruction breakpoints are implemented.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints.

IBS Register Format

Table 8.2 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + n * 0x100 IBAn Instruction Breakpoint Address n

0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n

0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n

0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

0x1120 + n * 0x100 IBCCn Instruction Breakpoint Complex Control n

0x1128 + n * 0x100 IBPCn Instruction Breakpoint Pass Counter n

n is breakpoint number in range 0 to 5 (or 3 or 1, depending on the implemented hardware)

31 30 29 28 27 24 23 6 5 0

Res ASIDsup Res BCN Res BS

Table 8.3 IBS Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASIDsup 30 Indicates that ASID compare is supported in instruction
breakpoints.
0: No ASID compare.
1: ASID compare (IBASIDn register implemented).

R 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of instruction breakpoints implemented. R 2, 4, or 6a

Res 23:6 Must be written as zero; returns zero on read. R 0

8.2 Hardware Breakpoints

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 135

8.2.7.2 Instruction Breakpoint Address n (IBAn) Register (0x1100 + n * 0x100)

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint
n

IBAn Register Format

8.2.7.3 Instruction Breakpoint Address Mask n (IBMn) Register (0x1108 + n*0x100)

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n. A 1 indicates that the corresponding address bit will not be considered in the match.
A mask value of all 0’s would require an exact address match, while a mask value of all 1’s would match on any
address.

IBMn Register Format

BS 5:0 Break status for breakpoint n is at BS[n], with n from 0

to 5b. The bit is set to 1 when the condition for the corre-
sponding breakpoint has matched and IBCnTE or

IBCnBE are set

R/W Undefined

[a] Based on actual hardware implemented.
[b] In case of fewer than 6 Instruction breakpoints the upper bits become reserved.

31 0

IBA

Table 8.4 IBAn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

IBA 31:0 Instruction breakpoint address for condition. R/W Undefined

31 0

IBM

Table 8.5 IBMn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

IBM 31:0 Instruction breakpoint address mask for condition:
0: Corresponding address bit not masked.
1: Corresponding address bit masked.

R/W Undefined

Table 8.3 IBS Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

 EJTAG Debug Support in the M4K™ Core

136 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.2.7.4 Instruction Breakpoint ASID n (IBASIDn) Register (0x1110 + n*0x100)

Compliance Level: Implemented only for implemented instruction breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. On the M4K processor, this register is reserved and reads as 0.

IBASIDn Register Format

8.2.7.5 Instruction Breakpoint Control n (IBCn) Register (0x1118 + n*0x100)

Compliance Level: Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n.
IBCn Register Format

31 8 7 0

Res ASID

Table 8.6 IBASIDn Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Instruction breakpoint ASID value for a compare. R 0

31 24 23 22 3 2 1 0

Res ASIDuse Res TE Res BE

Table 8.7 IBCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on read. R 0

ASIDuse 23 Use ASID value in compare for instruction breakpoint n:
0: Don’t use ASID value in compare
1: Use ASID value in compare

R 0

Res 22:3 Must be written as zero; returns zero on read. R 0

TE 2 Use instruction breakpoint n as triggerpoint:
0: Don’t use it as triggerpoint
1: Use it as triggerpoint

R/W 0

Res 1 Must be written as zero; returns zero on read. R 0

BE 0 Use instruction breakpoint n as breakpoint:
0: Don’t use it as breakpoint
1: Use it as breakpoint

R/W 0

8.2 Hardware Breakpoints

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 137

8.2.7.6 Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n*0x100)

Compliance Level: Implemented only if complex breakpoints are implemented and only for implemented instruction
breakpoints.

The Instruction Breakpoint Complex Control n (IBCCn) register controls the complex break conditions for instruc-
tion breakpoint n.

IBCCn Register Format

8.2.7.7 Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)

Compliance Level: Implemented only if complex breakpoints are implemented and only for implemented instruction
breakpoints.

The Instruction Breakpoint Pass Counter n (IBPCn) register controls the pass counter associated with instruction
breakpoint n.

If complex breakpoints are implemented, there will be an 8b pass counter for each of the instruction breakpoints on
the M4K core.

IBPCn Register Format

31 14 13 10 9 8 5 4 3 2 1 0

Res PrCnd CBE DBrkNum Q Res

Table 8.8 IBCCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:14, 9,
3:0

Must be written as zero; returns zero on read. R 0

PrCnd 13:12 Upper bits of priming condition for I breakpoint n. M4K
only supports 4 priming conditions so the upper 2 bits are
read only as 0

R 0

PrCnd 11:10 Priming condition for I Breakpoint n.
00 - Bypass, no priming needed
Other - vary depending on the break number, refer to
Table 8.10 for mapping

R/W 0

CBE 9 Complex Break Enable - enables this breakpoint for use
in a complex sequence - as a priming condition for
another breakpoint, to start or stop the stopwatch timer, or
as part of a tuple breakpoint.

R/W 0

DBrkNum 8:5 Indicates which data breakpoint channel is used to qual-
ify this instruction breakpoint

R IBCC0..2 - 0
IBCC3..6 - 1

Q 4 Qualify this breakpoint based on the data breakpoint indi-
cated in DBrkNum.
0 - Not dependent on qualification
1 - Breakpoint must be qualified to be taken

R/W 0

31 8 7 0

0 PassCnt

 EJTAG Debug Support in the M4K™ Core

138 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.2.8 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 8.10.

An example of some of the registers; DBM0 is at offset 0x2108 and DBV1 is at offset 0x2220.

Table 8.9 IBPCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:8 Ignored on write, returns zero on read. R 0

PassCnt 7:0 Prevents a break/trigger action until the matching condi-
tions on breakpoint n have been seen this number of
times.
Each time the matching condition is seen, this value will
be decremented by 1. Once the value reaches 0, subse-
quent matches will cause a break or trigger as requested
and the counter will stay at 0.
The break or trigger action is imprecise if the PassCnt
register was last written to a non-zero value. It will
remain imprecise until this register is written to 0 by soft-
ware.
The instruction pass counter should not be set on instruc-
tion breakpoints that are being used as part of a tuple
breakpoint.

R/W 0

Table 8.10 Addresses for Data Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n

0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n

0x2ff0 DVM Data Value Match Register

n is breakpoint number as 0 or 1 (or just 0, depending on the implemented hardware)

8.2 Hardware Breakpoints

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 139

8.2.8.1 Data Breakpoint Status (DBS) Register (0x2000)

Compliance Level: Implemented if data breakpoints are implemented.

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.
DBS Register Format

8.2.8.2 Data Breakpoint Address n (DBAn) Register (0x2100 + 0x100 * n)

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n.
DBAn Register Format

8.2.8.3 Data Breakpoint Address Mask n (DBMn) Register (0x2108 + 0x100 * n)

Compliance Level: Implemented only for implemented data breakpoints.

31 30 29 28 27 24 23 2 1 0

Res ASIDsup Res BCN Res BS

Table 8.11 DBS Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASID 30 Indicates that ASID compares are supported in data
breakpoints.
0: Not supported
1: Supported

R 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of data breakpoints implemented. R 2 or 1a

Res 23:2 Must be written as zero; returns zero on read. R 0

BS 1:0 Break status for breakpoint n is at BS[n], with n from 0

to 1b. The bit is set to 1 when the condition for the corre-
sponding breakpoint has matched.

R/W0 Undefined

[a] Based on actual hardware implemented.
[b] In case of only 1 data breakpoint bit 1 become reserved.

31 0

DBA

Table 8.12 DBAn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

DBA 31:0 Data breakpoint address for condition. R/W Undefined

 EJTAG Debug Support in the M4K™ Core

140 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition
for data breakpoint n. A 1 indicates that the corresponding address bit will not be considered in the match. A mask
value of all 0’s would require an exact address match, while a mask value of all 1’s would match on any address.

DBMn Register Format

8.2.8.4 Data Breakpoint ASID n (DBASIDn) Register (0x2110 + 0x100 * n)

Compliance Level: Implemented only for implemented data breakpoints.

For processors with a TLB based MMU, this register is used to define an ASID value to be used in the match expres-
sion. On the M4K processor, this register is reserved and reads as 0.

DBASIDn Register Format

8.2.8.5 Data Breakpoint Control n (DBCn) Register (0x2118 + 0x100 * n)

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n.
DBCn Register Format

31 0

DBM

Table 8.13 DBMn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

DBM 31:0 Data breakpoint address mask for condition:
0: Corresponding address bit not masked
1: Corresponding address bit masked

R/W Undefined

31 8 7 0

Res ASID

Table 8.14 DBASIDn Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Data breakpoint ASID value for compares. R 0

31 24 23 22 18 17 14 13 12 11 8 7 4 3 2 1 0

Re ASIDuse Res BAI NoSB NoLB Res BLM Res TE IVM BE

8.2 Hardware Breakpoints

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 141

8.2.8.6 Data Breakpoint Value n (DBVn) Register (0x2120 + 0x100 * n)

Compliance Level: Implemented only for implemented data breakpoints.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

Table 8.15 DBCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on reads. R 0

ASIDuse 23 Use ASID value in compare for data breakpoint n:
0: Don’t use ASID value in compare
1: Use ASID value in compare

R 0

Res 22:18 Must be written as zero; returns zero on reads. R 0

BAI 17:14 Byte access ignore controls ignore of access to a specific
byte. BAI[0] ignores access to byte at bits [7:0] of the
data bus, BAI[1] ignores access to byte at bits [15:8],
etc.
0: Condition depends on access to corresponding byte
1: Access for corresponding byte is ignored

R/W Undefined

NoSB 13 Controls if condition for data breakpoint is not fulfilled
on a store transaction:
0: Condition may be fulfilled on store transaction
1: Condition is never fulfilled on store transaction

R/W Undefined

NoLB 12 Controls if condition for data breakpoint is not fulfilled
on a load transaction:
0: Condition may be fulfilled on load transaction
1: Condition is never fulfilled on load transaction

R/W Undefined

Res 11:8 Must be written as zero; returns zero on reads. R 0

BLM 7:4 Byte lane mask for value compare on data breakpoint.
BLM[0] masks byte at bits [7:0] of the data bus,
BLM[1] masks byte at bits [15:8], etc.:
0: Compare corresponding byte lane
1: Mask corresponding byte lane

R/W Undefined

Res 3 Must be written as zero; returns zero on reads. R 0

TE 2 Use data breakpoint n as triggerpoint:
0: Don’t use it as triggerpoint
1: Use it as triggerpoint

R/W 0

IVM 1 Invert Value Match: When set, the data value compare
will be inverted - a break or trigger will be taken if the
value does not match the specified value

R/W 0

BE 0 Use data breakpoint n as breakpoint:
0: Don’t use it as breakpoint
1: Use it as breakpoint

R/W 0

 EJTAG Debug Support in the M4K™ Core

142 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

DBVn Register Format

8.2.8.7 Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n*0x100)

Compliance Level: Implemented only if complex breakpoints are implemented and only for implemented data
breakpoints.

The Data Breakpoint Complex Control n (DBCCn) register controls the complex break conditions for data break-
point n.

DBCCn Register Format

31 0

DBV

Table 8.16 DBVn Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

DBV 31:0 Data breakpoint value for condition. R/W Undefined

31 20 19 16 15 14 13 10 9 8 5 4 3 2 1 0

Res TIBrkNum TUP R PrCnd CBE DBrkNum Q Res

Table 8.17 DBCCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:14, 9,
3:0

Must be written as zero; returns zero on read. R 0

TIBrkNum 19:16 Tuple Instruction Break Number - Indicates which
instruction breakpoint will be paired with this data break-
point to form a tuple breakpoint

R DBCC0 - 0
DBCC1 - 3

TUP 15 Tuple Enable - qualify this data breakpoint with a match
on the TIBrkNum instruction breakpoint on the same
instruction.

R/W 0

PrCnd 13:12 Upper bits of priming condition for D breakpoint n. M4K
only supports 4 priming conditions so the upper 2 bits are
read only as 0

R 0

PrCnd 11:10 Priming condition for D Breakpoint n.
00 - Bypass, no priming needed
Other - vary depending on the break number, refer to
Table 8.20 for mapping

R/W 0

CBE 9 Complex Break Enable - enables this breakpoint for use
as a priming or qualifying condition for another break-
point.

R/W 0

8.2 Hardware Breakpoints

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 143

8.2.8.8 Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)

Compliance Level: Implemented only if complex breakpoints are implemented and only for implemented data
breakpoints.

The Data Breakpoint Pass Counter n (DBPCn) register controls the pass counter associated with data breakpoint n.

If complex breakpoints are implemented, there will be an 16b pass counter for each of the data breakpoints on the
M4K core.

DBPCn Register Format

8.2.8.9 Data Value Match (DVM) Register (0x2ffo)

Compliance Level: Implemented only if data breakpoints are implemented.

DQBrkNum 8:5 Indicates which data breakpoint channel is used to qual-
ify this data breakpoint
Data qualification of data breakpoints is not supported on
a M4K core and this field will read as 0 and cannot be
written.

R 0

DQ 4 Qualify this breakpoint based on the data breakpoint indi-
cated in DBrkNum.
Data qualification of data breakpoints is not supported on
a M4K core and this field will read as 0 and cannot be
written.

R 0

31 16 15 0

0 PassCnt

Table 8.18 DBPCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:16 Ignored on write, returns zero on read. R 0

PassCnt 15:0 Prevents a break/trigger action until the matching condi-
tions on data breakpoint n have been seen this number of
times.
Each time the matching condition is seen, this value will
be decremented by 1. Once the value reaches 0, subse-
quent matches will cause a break or trigger as requested
and the counter will stay at 0.
The break or trigger action is imprecise if the PassCnt
register was last written to a non-zero value. It will
remain imprecise until this register is written to 0 by soft-
ware.

R/W 0

Table 8.17 DBCCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

 EJTAG Debug Support in the M4K™ Core

144 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

The Data Value Match (DVM) register captures the data value of a load that takes a precise data value breakpoint.
This allows debug software to synthesize the load instruction without reexecuting it in case it is to a system register
that has destructive reads.

DVM Register Format

8.2.9 Complex Breakpoint Registers

The registers for complex breakpoints are described below. These registers have implementation information and are
used the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 8.20.

8.2.9.1 Complex Break and Trigger Control (CBTC) Register (0x8000)

Compliance Level: Implemented only if complex breakpoints are implemented.

31 0

LDV

Table 8.19 DVM Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

LDV 31:0 Load data value for the last precise load data value
breakpoint taken

R Undefined

Table 8.20 Addresses for Complex Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x1120 + 0x100 * n IBCCn Instruction Breakpoint Complex Control n - described above
with instruction breakpoint registers

0x1128 + 0x100 * n IBPCn Instruction Breakpoint Pass Counter n - described above with
instruction breakpoint registers

0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n - described above with
data breakpoint registers

0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n - described above with data
breakpoint registers

0x8000 CBTControl Complex Break and Triggerpoint Control - indicates which
of the complex breakpoint features are implemented

0x8300 + 0x20 * n PrCndAIn Prime Condition Register A for Instruction breakpoint n

0x84e0 + 0x20 * n PrCndADn Prime Condition Register A for Data breakpoint n

0x8900 STCtl Stopwatch Timer Control

0x8908 STCnt Stopwatch Timer Count

n is breakpoint number from 0 to 5 (range dependent on implemented hardware)

8.2 Hardware Breakpoints

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 145

The CBTC register contains configuration bits that indicate which features of complex break are implemented as well
as a control bit for the stopwatch timer. On a M4K core, if complex break is implemented, all of the separate features
will be present.

CBTC Register Format

8.2.9.2 Priming Condition A (PrCndAI/Dn) Registers

Compliance Level: Implemented if complex breakpoints are implemented.

The Prime Condition registers hold implementation specific information about which triggerpoints are used for the
priming conditions for each breakpoint register. On a M4K core, these connections are predetermined and these regis-
ters are read-only.

The architecture allows for up to 16 priming conditions to be specified and there can be up to 4 priming condition reg-
isters per breakpoint (A/B/C/D). A M4K core only allows for 4 priming conditions and thus only implements the
PrCndA registers. The general description is shown in Table 8.22. The actual priming conditions for each of the
breakpoints are shown in Table 8.23.

PrCndA Register Format

31 9 8 7 5 4 3 2 1 0

Res STMode Res STP PP DQP TP PCP

Table 8.21 CBTC Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:9, 7:5 Reserved R 0

STMode 8 Stopwatch Timer Mode: controls whether the stopwatch
timer is free-running or controlled by triggerpoints
0 - free-running
1 - started and stopped by instruction triggers

R/W 1

STP 4 Stopwatch Timer Present - indicates whether stopwatch
timer is implemented.

R 1

PP 3 Priming Present - indicates whether primed breakpoints
are supported

R 1

DQP 2 Data Qualifiy Present - indicates whether data qualified
breakpoints are supported.

R 1

TP 1 Tuple Present - indicates whether any tuple breakpoints
are implemented

R 1

PCP 0 Pass Counters Present - indicates whether any break-
points have pass counters associated with them

R 1

31 24 23 16 15 8 7 0

Cond3 Cond2 Cond1 Cond0

 EJTAG Debug Support in the M4K™ Core

146 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.2.9.3 Stopwatch Timer Control (STCtl) Register (0x8900)

Compliance Level: Implemented if stopwatch timer is implemented.

The Stopwatch Timer Control (STCtl) register gives configuration information about how the stopwatch timer regis-
ter is controlled. On a M4K core, the break channels that control the stopwatch timer are fixed and this register is
read-only.

Table 8.22 PrCndA Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

CondN 31:24
23:16
15:8
7:0

Specifies which triggerpoint is connected to priming

condition 3, 2, 1, or 0a for the current breakpoint.

R Preset

31:30
23:22
15:14
7:6

Reserved R 0

29:28
21:20
13:12
5:4

Trigger type
00 - Special/Bypass
01 - Instruction
10 - Data
11 - Reserved

R Preset

27:24
19:16
11:8
3:0

Break Number, 0-14 R Preset

[a] Condition 0 is always Bypass and will read as 8’b0

Table 8.23 Priming Conditions and Register Values

Break Cond0 Cond1 Cond2 Cond3 PrCndA Value
drseg
offset

Inst0 Bypass Data0 Inst1 Inst2 0x1211_2000 0x8300

Inst1 Bypass Data0 Inst0 Inst2 0x1210_2000 0x8320

Inst2 Bypass Data0 Inst0 Inst1 0x1110_2000 0x8340

Inst3 Bypass Data1 Inst4 Inst5 0x1514_2100 0x8360

Inst4 Bypass Data1 Inst3 Inst5 0x1513_2100 0x8380

Inst5 Bypass Data1 Inst3 Inst4 0x1413_2100 0x83a0

Data0 Bypass Inst0 Inst1 Inst2 0x1211_1000 0x84e0

Data1 Bypass Inst3 Inst4 Inst5 0x1514_1300 0x8500

8.2 Hardware Breakpoints

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 147

STCtl Register Format

8.2.9.4 Stopwatch Timer Count (STCnt) Register (0x8908)

Compliance Level: Implemented if stopwatch timer is implemented.

The Stopwatch Timer Count (STCnt) register is the count value for the stopwatch timer.

31 18 17 14 13 10 9 8 5 4 1 0

Res StopChan1 StartChan1 En1 StopChan0 StartChan0 En0

Table 8.24 STCtl Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31:18 Must be written as zero; returns zero on read. R 0

StopChan1 17:14 Indicates the instruction breakpoint channel that will
stop the counter if the timer is under pair1 breakpoint
control

R 0

StartChan1 13:10 Indicates the instruction breakpoint channel that will
start the counter if the timer is under pair1 breakpoint
control

R 0

En1 9 Enables the second pair (pair1) of breakpoint registers to
control the timer when under breakpoint control. If the
stopwatch timer is configured to be under breakpoint
control (by setting CBTControlSTM)and this bit is set,

the breakpoints indicated in the StartChan1 and
StopChan1 fields will control the timer.

The M4K core only supports 1 pair of stopwatch control
breakpoints so this field is not writeable and will read as
0

R 0

StopChan0 8:5 Indicates the instruction breakpoint channel that will
stop the counter if the timer is under pair0 breakpoint
control

R 0x4

StartChan0 4:1 Indicates the instruction breakpoint channel that will
start the counter if the timer is under pair0 breakpoint
control

R 0x1

En0 0 Enables the first pair (pair0) of breakpoint registers to
control the timer when under breakpoint control. If the
stopwatch timer is configured to be under breakpoint
control (by setting CBTControlSTM)and this bit is set,

the breakpoints indicated in the StartChan0 and
StopChan0 fields will control the timer.

The M4K core only supports 1 pair of stopwatch control
breakpoints so this field is not writeable and will read as
1

R 1

 EJTAG Debug Support in the M4K™ Core

148 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

STCnt Register Format

8.3 Complex Breakpoint Usage

8.3.1 Checking for Presence of Complex Break Support

Software should verify that the complex breakpoint hardware is implemented prior to attempting to use it. The full
sequence of steps is shown below for general use. Spots where the a M4K core has restricted behavior are noted.

1. Read the Config1EP bit to check for the presence of EJTAG logic. EJTAG logic is always present on a M4K
core.

2. Read the DebugNoDCR bit to check for the presence of the Debug Control Register(DCR). The DCR will always
be implemented on a M4K core.

3. Read the DCRCBT bit to check for the presence of any complex break and trigger features

4. Read the CBTControl register to check for the presence of each individual feature. If a M4K core implements
any complex break and trigger features, it will implement all of them

5. If Pass Counters are implemented, they may not be implemented for all break channels and may have different
counter sizes. To determine the size and presence of each pass counter, software can write -1 to each of the
IBPCn and DBPCn registers and read it back. If a M4K core implements pass counters, it will implement an 8b
counter for each instruction breakpoint and a 16b counter for each data breakpoint.

6. If tuples are implemented, they may only be supported on a subset of the data breakpoint channels. This can be
checked by seeing if the DBBCnTUP bit can be set to 1. Additionally, some cores may support dynamically
changing which instruction breakpoint is associated with a given data breakpoint. This can be checked by
attempting to write the DBCCnTIBrkNum field. If a M4K core implements tuple support, it will support it for all
data breakpoint channels and the instruction breakpoint association will be fixed.

7. If Priming Conditions are supported, a core may only support a subset of the possible priming condition values.
This can be checked by 4’hf to the xBCCnPrCnd field. If only 1 or 2 bits can be written, the available priming
conditions will be described in the PrCndA registers. If 3 bits are writeable, PrCndA and PrCndB will describe
the conditions, and if all 4 bits are writeable, the PrCndA,PrCndB,PrCndC, and PrCndD registers will all
exist. Some cores may also support changing the priming conditions and this can be checked by attempting to
write to the PrCnd registers. If a M4K core supports priming conditions, it will support 4 statically mapped
priming conditions per breakpoint which will be described in the PrCndA registers.

31 0

Count

Table 8.25 STCtl Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Count 31:0 Current counter value R/W 0

8.3 Complex Breakpoint Usage

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 149

8. If support for qualified breakpoints is indicated, it may only be supported for some of the breakpoints. Addition-
ally, the data breakpoint used for the qualification may be configurable. Software can check this by writing to the
xBCCnDQ and xBCCnDQBrkNum fields. If a M4K core support qualified breakpoints, it will only support it on
instruction breakpoints and the data break used for qualification will be fixed for each instruction breakpoint.

9. If the stopwatch timer is implemented, either one or two pairs of instruction breakpoints may be available for
controlling it and it may be possible to dynamically select which instruction breakpoints are used. This can be
tested by writing to the STCtl register.

8.3.2 General Complex Break Behavior

There is some general complex break behavior that is common to all of the features. This behavior is described
below:

• Resets to a disabled state - when the core is reset, the complex break functionality will be disabled and debug
software that is not aware of complex break should continue to function normally.

• Complex break state is not updated on exceptional instructions

• Complex breakpoints are evaluated at the end of the pipeline and complex breakpoint exceptions are taken
imprecisely on the following instruction.

• There is no hazard between enabling and enabled events. When an instruction causes an enabling event, the fol-
lowing instruction sees the enabled state and reacts accordingly.

8.3.3 Usage of Pass Counters

Pass counters specify that the breakpoint conditions must match N times before the breakpoint action will be enabled.

• Controlled by writing to the per-breakpoint pass counter register

• Resets to 0

• Writing to a non-zero value enables the pass counter. When enabled, each time the breakpoint conditions match,
the counter will be decremented by 1. After the counter value reaches 0, the breakpoint action (breakpoint excep-
tion, trigger, or complex break enable) will occur on any subsequent matches and the counter will not decrement
further. The action does not occur on the match that causes the 1->0 counter decrement.

• If the breakpoint also has priming conditions and/or data qualified specified, the pass counter will only decre-
ment when the priming and/or qualified conditions have been met

• If a data breakpoint is configured to be a tuple breakpoint, the data pass counter will only decrement on instruc-
tions where both the instruction and data break conditions match. The pass counter for the instruction break
involved in a tuple should not be enabled if the tuple is enabled.

• Once a pass counter has been enabled, it will be treated as enabled until the pass counter is explicitly written to 0.
Namely, breakpoint exceptions will continue to be taken imprecisely until the pass counter is disabled by writing
to 0.

• The counter register will be updated as matches are detected. The current count value can be read from the regis-
ter while operating in debug mode. Note that this behavior is architecturally recommended, but not required.

 EJTAG Debug Support in the M4K™ Core

150 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.3.4 Usage of Tuple Breakpoints

A tuple breakpoint is the logical AND of a data breakpoint and an instruction breakpoint. Tuple breakpoints are spec-
ified as a condition on a data breakpoint. If the DBCCnTUP bit is set, the data breakpoint will not match unless there
the corresponding instruction breakpoint conditions are also met.

• Uses the data breakpoint resources to specify the break action, break status, pass counters, and priming condi-
tions.

• The instruction breakpoint involved in the tuple should be configured as follows:

• IBCCnCBE = 1

• IBCCnPrCnd = IBCCnDQ = IBCnTE = IBCnBE = IBPCn = 0

8.3.5 Usage of Priming Conditions

Priming conditions provide a way to have one breakpoint enabled by another one. Prior to the priming condition
being satisfied, any breakpoint matches are ignored.

• Priming condition resets to bypass which specifies that no priming is required

• 3 other priming conditions are available for each breakpoint. These condition vary from breakpoint to breakpoint
(since it makes no sense for a breakpoint to prime itself). The conditions for each of the breakpoints are listed in
Table 8.23.

• The priming breakpoint must have xBCnTE or xBCCnCBE set.

• Once the priming condition has been seen, the primed breakpoint will remain primed until its xBCCn register is
written

• The primed state is stored with the breakpoint being primed and not with the breakpoint that is doing the prim-
ing.

• Each Prime condition is the comparator output after it has been qualified by its own Prime condition, data quali-
fication, and pass counter. Using this, several stages of priming are possible (e.g. data cycle D followed by
instruction A followed by instruction B N times followed by instruction C).

8.3.6 Usage of Data Qualified Breakpoints

Each of the instruction breakpoints can be set to be data qualified. In qualified mode, a breakpoint will recognize its
conditions only after the specified data breakpoint matches both address and data. If the data breakpoint matches
address, but has a mismatch on the data value, the instruction breakpoint will be unqualified and will not match until
a subsequent qualifying match.

This feature can be used similarly to the ASID qualification that is available on cores with TLBs. If an RTOS loads a
process ID for the current process, that load can be used as the qualifying breakpoint. When a matching process ID is
loaded (entering the desired RTOS process), qualified instruction breakpoints will be enabled. When a different pro-
cess ID is loaded (leaving the desired RTOS process), the qualified instruction breakpoints are disabled. Alternatively,
with the InvertValueMatch feature of the data breakpoint, the instruction breakpoints could be enabled on any process
ID other than the specified one.

8.4 Test Access Port (TAP)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 151

• The qualifying data break must have DBCnTE or DBCCnCBE set.

• The qualifying data break should have data comparison enabled (via settings of DBCnBLM and DBCnBAI)

• The qualifying data break should not have pass counters, priming conditions, or tuples enabled.

• The qualifying data access can be either a load or store, depending on the settings of DBCnNoSB and DBCnNoLB

• The Qualified/Unqualified state is stored with the instruction breakpoint that is being qualified. Writing it’s
IBCCn register will unqualify that breakpoint.

• Qualified instruction breakpoint can also have priming conditions and/or pass counters enabled. The pass counter
will only decrement when the priming and qualifying conditions have been met. The instruction breakpoint
action (break, trigger, or complex enable) will only occur when all priming, qualifying, and pass counter condi-
tions have been met.

• Qualified instruction breakpoint can be used to prime another breakpoint

8.3.7 Usage of Stopwatch Timers

The stopwatch timer is a drseg memory mapped count register. It can be configured to be free running or controlled
by instruction breakpoints. This could be used to measure the amount of time that is spent in a particular function by
starting the counter upon function entry and stopping it upon exit.

• Count value is reset to 0

• Reset state has counter stopped and under breakpoint control so that the counter is not running when the core is
not being debugged.

• Bit in CBTControl register controls whether the counter is free-running or breakpoint controlled.

• Counter does not count in debug mode

• When breakpoint controlled, the involved instruction breakpoints must have IBCnTE or IBCCnCBE set in order
to start or stop the timer.

8.4 Test Access Port (TAP)

The following main features are supported by the TAP module:

• 5-pin industry standard JTAG Test Access Port (TCK, TMS, TDI, TDO, TRST_N) interface which is compati-
ble with IEEE Std. 1149.1.

• Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

• The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is
achieved through Processor Access (PA), and is used to eliminate the use of the system memory for debug rou-
tines.

• Support for both ROM based debugger and debugging both through TAP.

 EJTAG Debug Support in the M4K™ Core

152 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.4.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG module consists of the 5 signals defined by the IEEE standard.

8.4.2 Test Access Port Operation

The TAP controller is controlled by the Test Clock (TCK) and Test Mode Select (TMS) inputs. These two inputs
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small
controller, driven by the TCK input, which responds to the TMS input as shown in the state diagram in Figure 8.1.
The TAP uses both clock edges of TCK. TMS and TDI are sampled on the rising edge of TCK, while TDO changes
on the falling edge of TCK.

At power-up the TAP is forced into the Test-Logic-Reset by low value on TRST_N. The TAP instruction register is
thereby reset to IDCODE. No other parts of the EJTAG hardware are reset through the Test-Logic-Reset state.

When test access is required, a protocol is applied via the TMS and TCK inputs, causing the TAP to exit the
Test-Logic-Reset state and move through the appropriate states. From the Run-Test/Idle state, an Instruction register
scan or a data register scan can be issued to transition the TAP through the appropriate states shown in Figure 8.1.

Table 8.26 EJTAG Interface Pins

Pin Type Description

TCK I Test Clock Input
Input clock used to shift data into or out of the Instruction or data regis-
ters. The TCK clock is independent of the processor clock, so the EJTAG
probe can drive TCK independently of the processor clock frequency.
The core signal for this is called EJ_TCK

TMS I Test Mode Select Input
The TMS input signal is decoded by the TAP controller to control test
operation. TMS is sampled on the rising edge of TCK.
The core signal for this is called EJ_TMS

TDI I Test Data Input
Serial input data (TDI) is shifted into the Instruction register or data regis-
ters on the rising edge of the TCK clock, depending on the TAP controller
state.
The core signal for this is called EJ_TDI

TDO O Test Data Output
Serial output data is shifted from the Instruction or data register to the
TDO pin on the falling edge of the TCK clock. When no data is shifted
out, the TDO is 3-stated.
The core signal for this is called EJ_TDO with output enable controlled
by EJ_TDOzstate.

TRST_N I Test Reset Input (Optional pin)
The TRST_N pin is an active-low signal for asynchronous reset of the
TAP controller and instruction in the TAP module, independent of the pro-
cessor logic. The processor is not reset by the assertion of TRST_N.
The core signal for this is called EJ_TRST_N
This signal is optional, but power-on reset must apply a low pulse on this
signal at power-on and then leave it high, in case the signal is not available
as a pin on the chip. If available on the chip, then it must be low on the
board when the EJTAG debug features are unused by the probe.

8.4 Test Access Port (TAP)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 153

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the
protocol sequences. The first action that occurs when either block is entered is a capture operation. For the data regis-
ters, the Capture-DR state is used to capture (or parallel load) the data into the selected serial data path. In the Instruc-
tion register, the Capture-IR state is used to capture status information into the Instruction register.

From the Capture states, the TAP transitions to either the Shift or Exit1 states. Normally the Shift state follows the
Capture state so that test data or status information can be shifted out for inspection and new data shifted in. Follow-
ing the Shift state, the TAP either returns to the Run-Test/Idle state via the Exit1 and Update states or enters the Pause
state via Exit1. The reason for entering the Pause state is to temporarily suspend the shifting of data through either the
Data or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From
the Pause state shifting can resume by re-entering the Shift state via the Exit2 state or terminate by entering the
Run-Test/Idle state via the Exit2 and Update states.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not
output through the shadow latch until the TAP enters the Update-DR or Update-IR state. The Update state causes the
shadow latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

Figure 8.1 TAP Controller State Diagram

8.4.2.1 Test-Logic-Reset State

In the Test-Logic-Reset state the boundary scan test logic is disabled. The test logic enters the Test-Logic-Reset state
when the TMS input is held HIGH for at least five rising edges of TCK. The BYPASS instruction is forced into the
instruction register output latches during this state. The controller remains in the Test-Logic-Reset state as long as
TMS is HIGH.

Shift_IR

Select_IR_Scan

Capture_IR

Exit1_IR

Pause_IR

Exit2_IR

Update_IR

1

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Shift_DR

Select_DR_Scan

Capture_DR

Exit1_DR

Pause_DR

Exit2_DR

Update_DR

0

0

0

0

0

0

1

1

1

1

1

1

1

0

Test-Logic-Reset

Run-Test/Idle

0

1

0

 EJTAG Debug Support in the M4K™ Core

154 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.4.2.2 Run-Test/Idle State

The controller enters the Run-Test/Idle state between scan operations. The controller remains in this state as long as
TMS is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot
change when the TAP controller is in this state.

When TMS is sampled HIGH on the rising edge of TCK, the controller transitions to the Select_DR state.

8.4.2.3 Select_DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, then the controller transitions to the Capture_DR state.
A HIGH on TMS causes the controller to transition to the Select_IR state. The instruction cannot change while the
TAP controller is in this state.

8.4.2.4 Select_IR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW on the rising edge of TCK, the controller transitions to the Capture_IR state. A
HIGH on TMS causes the controller to transition to the Test-Reset-Logic state. The instruction cannot change while
the TAP controller is in this state.

8.4.2.5 Capture_DR State

In this state the boundary scan register captures the value of the register addressed by the Instruction register, and the
value is then shifted out in the Shift_DR. If TMS is sampled LOW at the rising edge of TCK, the controller transitions
to the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The instruction can-
not change while the TAP controller is in this state.

8.4.2.6 Shift_DR State

In this state the test data register connected between TDI and TDO as a result of the current instruction shifts data one
stage toward its serial output on the rising edge of TCK. If TMS is sampled LOW on the rising edge of TCK, the con-
troller remains in the Shift_DR state. A HIGH on TMS causes the controller to transition to the Exit1_DR state. The
instruction cannot change while the TAP controller is in this state.

8.4.2.7 Exit1_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Pause_DR state. A
HIGH on TMS causes the controller to transition to the Update_DR state which terminates the scanning process. The
instruction cannot change while the TAP controller is in this state.

8.4.2.8 Pause_DR State

The Pause_DR state allows the controller to temporarily halt the shifting of data through the test data register in the
serial path between TDI and TDO. All test data registers selected by the current instruction retain their previous state.
If TMS is sampled LOW on the rising edge of TCK, the controller remains in the Pause_DR state. A HIGH on TMS
causes the controller to transition to the Exit2_DR state. The instruction cannot change while the TAP controller is in
this state.

8.4 Test Access Port (TAP)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 155

8.4.2.9 Exit2_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previ-
ous state. If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_DR state to allow
another serial shift of data. A HIGH on TMS causes the controller to transition to the Update_DR state which termi-
nates the scanning process. The instruction cannot change while the TAP controller is in this state.

8.4.2.10 Update_DR State

When the TAP controller is in this state the value shifted in during the Shift_DR state takes effect on the rising edge of
the TCK for the register indicated by the Instruction register.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state. The instruction cannot change while the TAP
controller is in this state and all shift register stages in the test data registers selected by the current instruction retain
their previous state.

8.4.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed pattern (000012) on the rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Shift_IR state. A HIGH on TMS
causes the controller to transition to the Exit1_IR state. The instruction cannot change while the TAP controller is in
this state.

8.4.2.12 Shift_IR State

In this state the instruction register is connected between TDI and TDO and shifts data one stage toward its serial out-
put on the rising edge of TCK. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Shift_IR state. A HIGH on TMS causes the controller to transition to the Exit1_IR state.

8.4.2.13 Exit1_IR State

This is a temporary controller state in which all registers retain their previous state. If TMS is sampled LOW at the
rising edge of TCK, the controller transitions to the Pause_IR state. A HIGH on TMS causes the controller to transi-
tion to the Update_IR state which terminates the scanning process. The instruction cannot change while the TAP con-
troller is in this state and the instruction register retains its previous state.

8.4.2.14 Pause_IR State

The Pause_IR state allows the controller to temporarily halt the shifting of data through the instruction register in the
serial path between TDI and TDO. If TMS is sampled LOW at the rising edge of TCK, the controller remains in the
Pause_IR state. A HIGH on TMS causes the controller to transition to the Exit2_IR state. The instruction cannot
change while the TAP controller is in this state.

8.4.2.15 Exit2_IR State

This is a temporary controller state in which the instruction register retains its previous state. If TMS is sampled
LOW at the rising edge of TCK, then the controller transitions to the Shift_IR state to allow another serial shift of
data. A HIGH on TMS causes the controller to transition to the Update_IR state which terminates the scanning pro-
cess. The instruction cannot change while the TAP controller is in this state.

 EJTAG Debug Support in the M4K™ Core

156 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.4.2.16 Update_IR State

The instruction shifted into the instruction register takes effect on the rising edge of TCK.

If TMS is sampled LOW at the rising edge of TCK, the controller transitions to the Run-Test/Idle state. A HIGH on
TMS causes the controller to transition to the Select_DR_Scan state.

8.4.3 Test Access Port (TAP) Instructions

The TAP Instruction register allows instructions to be serially input into the device when TAP controller is in the
Shift-IR state. Instructions are decoded and define the serial test data register path that is used to shift data between
TDI and TDO during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions default to the BYPASS instruction.

8.4.3.1 BYPASS Instruction

The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass register
to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the pro-
cessor from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by
the IEEE 1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

8.4.3.2 IDCODE Instruction

The IDCODE instruction allows the processor to remain in its functional mode and selects the Device Identification
(ID) register to be connected between TDI and TDO. The Device ID register is a 32-bit shift register containing infor-
mation regarding the IC manufacturer, device type, and version code. Accessing the Identification Register does not
interfere with the operation of the processor. Also, access to the Identification Register is immediately available, via a
TAP data scan operation, after power-up when the TAP has been reset with on-chip power-on or through the optional
TRST_N pin.

Table 8.27 Implemented EJTAG Instructions

Value Instruction Function

0x01 IDCODE Select Chip Identification data register

0x03 IMPCODE Select Implementation register

0x08 ADDRESS Select Address register

0x09 DATA Select Data register

0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value

0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to 0 as reset value

0x0E FASTDATA Selects the Data and Fastdata registers

0x10 TCBCONTROLA Selects the TCBTCONTROLA register in the Trace Control Block

0x11 TCBCONTROLB Selects the TCBTCONTROLB register in the Trace Control Block

0x12 TCBDATA Selects the TCBDATA register in the Trace Control Block

0x1F BYPASS Bypass mode

8.4 Test Access Port (TAP)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 157

8.4.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

8.4.3.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected between TDI and TDO. The EJTAG Probe
shifts 32 bits through the TDI pin into the Address register and shifts out the captured address via the TDO pin.

8.4.3.5 DATA Instruction

This instruction is used to select the Data register to be connected between TDI and TDO. The EJTAG Probe shifts 32
bits of TDI data into the Data register and shifts out the captured data via the TDO pin.

8.4.3.6 CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected between TDI and TDO. The EJTAG
Probe shifts 32 bits of TDI data into the EJTAG Control register and shifts out the EJTAG Control register bits via
TDO.

8.4.3.7 ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control register
between TDI and TDO. It can be used in particular if switching instructions in the instruction register takes too many
TCK cycles. The first bit shifted out is bit 0.

Figure 8.2 Concatenation of the EJTAG Address, Data and Control Registers

8.4.3.8 EJTAGBOOT Instruction

When the EJTAGBOOT instruction is given and the Update-IR state is left, then the reset values of the ProbTrap,
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 1 after a hard or soft reset.

This EJTAGBOOT indication is effective until a NORMALBOOT instruction is given, TRST_N is asserted or a ris-
ing edge of TCK occurs when the TAP controller is in Test-Logic-Reset state.

It is possible to make the CPU go into debug mode just after a hard or soft reset, without fetching or executing any
instructions from the normal memory area. This can be used for download of code to a system which have no code in
ROM.

The Bypass register is selected when the EJTAGBOOT instruction is given.

8.4.3.9 NORMALBOOT Instruction

When the NORMALBOOT instruction is given and the Update-IR state is left, then the reset value of the ProbTrap,
ProbEn and EjtagBrk bits in the EJTAG Control register are set to 0 after hard or soft reset.

Address 0

Data 0

EJTAG Control 0 TDO

TDI

 EJTAG Debug Support in the M4K™ Core

158 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

The Bypass register is selected when the NORMALBOOT instruction is given.

8.4.3.10 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown in Figure 8.3.

Figure 8.3 TDI to TDO Path When in Shift-DR State and FASTDATA Instruction is Selected

8.4.3.11 TCBCONTROLA Instruction

This instruction is used to select the TCBCONTROLA register to be connected between TDI and TDO. This register
is only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

8.4.3.12 TCBCONTROLB Instruction

This instruction is used to select the TCBCONTROLB register to be connected between TDI and TDO. This register
is only implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the
Bypass register.

8.4.3.13 TCBDATA Instruction

This instruction is used to select the TCBDATA register to be connected between TDI and TDO. This register is only
implemented if the Trace Control Block is present. If no TCB is present, then this instruction will select the Bypass
register. It should be noted that the TCBDATA register is only an access register to other TCB registers. The width of
the TCBDATA register is dependent on the specific TCB register.

8.5 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

8.5.1 Instruction Register

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruction
register scan operation the TAP controller selects the output of the Instruction register to drive the TDO pin. The shift
register consists of a series of bits arranged to form a single scan path between TDI and TDO. During an Instruction
register scan operations, the TAP controls the register to capture status information and shift data from TDI to TDO.
Both the capture and shift operations occur on the rising edge of TCK. However, the data shifted out from the TDO
occurs on the falling edge of TCK. In the Test-Logic-Reset and Capture-IR state, the instruction shift register is set to
000012, as for the IDCODE instruction. This forces the device into the functional mode and selects the Device ID
register. The Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register
scan operation. A list of the implemented instructions are listed in Table 8.27.

8.5.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the primary TDI input to the primary TDO
output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During a data register scan operation, the addressed scan register receives TAP control signals
to capture the register and shift data from TDI to TDO. During a data register scan operation, the TAP selects the out-

TDI Data TDOFastdata0

8.5 EJTAG TAP Registers

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 159

put of the data register to drive the TDO pin. The register is updated in the Update-DR state with respect to the write
bits.

This description applies in general to the following data registers:

• Bypass Register

• Device Identification Register

• Implementation Register

• EJTAG Control Register (ECR)

• Processor Access Address Register

• Processor Access Data Register

• FastData Register

8.5.2.1 Bypass Register

The Bypass register consists of a single scan register bit. When selected, the Bypass register provides a single bit
scan path between TDI and TDO. The Bypass register allows abbreviating the scan path through devices that are not
involved in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to
satisfy the IEEE 1149.1 Bypass instruction requirement.

8.5.2.2 Device Identification (ID) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number,
revision, and other device-specific information. Table 8.28 shows the bit assignments defined for the read-only
Device Identification Register, and inputs to the core determine the value of these bits. These bits can be scanned out
of the ID register after being selected. The register is selected when the Instruction register is loaded with the
IDCODE instruction.

Device Identification Register Format
31 28 27 12 11 1 0

Version PartNumber ManufID R

Table 8.28 Device Identification Register

Fields

Description
Read/
Write Reset StateName Bit(s)

Version 31:28 Version (4 bits)
This field identifies the version number of the proces-
sor derivative.

 R EJ_Version[3:0]

PartNumber 27:12 Part Number (16 bits)
This field identifies the part number of the processor
derivative.

 R EJ_PartNumber[15:0]

ManufID 11:1 Manufacturer Identity (11 bits)
Accordingly to IEEE 1149.1-1990, the manufacturer
identity code shall be a compressed form of the
JEDEC Publications 106-A.

 R EJ_ManufID[10:0]

 EJTAG Debug Support in the M4K™ Core

160 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.5.2.3 Implementation Register

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset values
are set by inputs to the core. The register is selected when the Instruction register is loaded with the IMPCODE
instruction.

Implementation Register Format

8.5.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by
shifting out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in the Update-DR state unless the Reset occurred (Rocc) bit 31, is either 0
or written to 0. This is in order to ensure prober handling of processor accesses.

R 0 reserved R 1

31 29 28 25 24 23 21 20 17 16 15 14 13 0

EJTAGver reserved
DINT-

sup
ASIDsize reserved MIPS16 0 NoDMA reserved

Table 8.29 Implementation Register Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

EJTAGver 31:29 EJTAG Version.
2: Version 2.6

R 2

reserved 28:25 reserved R 0

DINTsup 24 DINT Signal Supported from Probe
This bit indicates if the DINT signal from the probe is supported:
0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.

R EJ_DINTsup

ASIDsize 23:21 Size of ASID field in implementation:
0: No ASID in implementation
1: 6-bit ASID
2: 8-bit ASID
3: Reserved

R 0

reserved 20:17 reserved R 0

MIPS16 16 Indicates whether MIPS16 is implemented
0: No MIPS16 support
1: MIPS16 implemented

R

reserved 15 reserved R 0

NoDMA 14 No EJTAG DMA Support R 1

reserved 13:0 reserved R 0

Table 8.28 Device Identification Register

Fields

Description
Read/
Write Reset StateName Bit(s)

8.5 EJTAG TAP Registers

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 161

The value used for reset indicated in the table below takes effect on both hard and soft CPU resets, but not on TAP
controller resets by e.g. TRST_N. TCK clock is not required when the hard or soft CPU reset occurs, but the bits are
still updated to the reset value when the TCK applies. The first 5 TCK clocks after hard or soft CPU resets may result
in reset of the bits, due to synchronization between clock domains.

EJTAG Control Register Format
31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

Rocc Psz Res
Doz

e
Hal

t
PerRst PRnW PrAcc Res PrRst ProbEn ProbTrap Res

Ejtag-
Brk

Res DM
Re
s

Table 8.30 EJTAG Control Register Descriptions

Fields

Description
Read/
Write Reset StateName Bit(s)

Rocc 31 Reset Occurred
The bit indicates if a hard or soft reset has occurred:
0: No reset occurred since bit last cleared.
1: Reset occurred since bit last cleared.
The Rocc bit will keep the 1 value as long as a hard or
soft reset is applied.
This bit must be cleared by the probe, to acknowledge
that the incident was detected.
The EJTAG Control register is not updated in the
Update-DR state unless Rocc is 0, or written to 0. This is
in order to ensure proper handling of processor access.

R/W 1

 EJTAG Debug Support in the M4K™ Core

162 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Psz[1:0] 30:29 Processor Access Transfer Size
These bits are used in combination with the lower two
address bits of the Address register to determine the size
of a processor access transaction. The bits are only valid
when processor access is pending.

Note: LE=little endian, BE=big endian, the byte# refers
to the byte number in a 32-bit register, where byte 3 = bits
31:24; byte 2 = bits 23:16; byte 1 = bits 15:8; byte 0=bits
7:0, independently of the endianess.

R Undefined

Res 28:23 reserved R 0

Doze 22 Doze state
The Doze bit indicates any kind of low power mode. The
value is sampled in the Capture-DR state of the TAP con-
troller:
0: CPU not in low power mode.
1: CPU is in low power mode
Doze includes the Reduced Power (RP) and WAIT
power-reduction modes.

R 0

Halt 21 Halt state
The Halt bit indicates if the internal system bus clock is
running or stopped. The value is sampled in the Cap-
ture-DR state of the TAP controller:
0: Internal system clock is running
1: Internal system clock is stopped

R 0

Table 8.30 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)

PAA[1:0] Psz[1:0] Transfer Size

00 00 Byte (LE, byte 0; BE, byte
3)

01 00 Byte (LE, byte 1; BE, byte
2)

10 00 Byte (LE, byte 2; BE, byte
1)

11 00 Byte (LE, byte 3; BE, byte
0)

00 01 Halfword (LE, bytes 1:0;
BE, bytes 3:2)

10 01 Halfword (LE, bytes 3:2;
BE, bytes 1:0)

00 10 Word (LE, BE; bytes 3, 2, 1,
0)

00 11 Triple (LE, bytes 2, 1, 0; BE,
bytes 3, 2,1)

01 11 Triple (LE, bytes 3, 2, 1; BE,
bytes 2, 1, 0)

All others Reserved

8.5 EJTAG TAP Registers

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 163

PerRst 20 Peripheral Reset
When the bit is set to 1, it is only guaranteed that the
peripheral reset has occurred in the system when the read
value of this bit is also 1. This is to ensure that the setting
from the TCK clock domain gets effect in the CPU clock
domain, and in peripherals.
When the bit is written to 0, then the bit must also be read
as 0 before it is guaranteed that the indication is cleared in
the CPU clock domain also.
This bit controls the EJ_PerRst signal on the core.

R/W 0

PRnW 19 Processor Access Read and Write
This bit indicates if the pending processor access is for a
read or write transaction, and the bit is only valid while
PrAcc is set:
0: Read transaction
1: Write transaction

R Undefined

PrAcc 18 Processor Access (PA)
Read value of this bit indicates if a Processor Access (PA)
to the EJTAG memory is pending:
0: No pending processor access
1: Pending processor access
The probe’s software must clear this bit to 0 to indicate
the end of the PA. Write of 1 is ignored.
A pending Processor Access is cleared when Rocc is set,
but another PA may occur just after the reset if a debug
exception occurs.
Finishing a Processor Access is not accepted while the
Rocc bit is set. This is to avoid that a Processor Access
occurring after the reset is finished due to indication of a
Processor Access that occurred before the reset.
The FASTDATA access can clear this bit.

R/W0 0

Res 17 reserved R 0

PrRst 16 Processor Reset (Implementation dependent behavior)
When the bit is set to 1, then it is only guaranteed that this
setting has taken effect in the system when the read value
of this bit is also 1. This is to ensure that the setting from
the TCK clock domain gets effect in the CPU clock
domain, and in peripherals.
When the bit is written to 0, then the bit must also be read
as 0 before it is guaranteed that the indication is cleared in
the CPU clock domain also.
This bit controls the EJ_PrRst signal. If the signal is
used in the system, then it must be ensured that both the
processor and all devices required for a reset are properly
reset. Otherwise the system may fail or hang. The bit
resets itself, since the EJTAG Control register is reset by
hard or soft reset.

R/W 0

Table 8.30 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)

 EJTAG Debug Support in the M4K™ Core

164 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

ProbEn 15 Probe Enable
This bit indicates to the CPU if the EJTAG memory is
handled by the probe so processor accesses are answered:
0: The probe does not handle EJTAG memory transac-
tions
1: The probe does handle EJTAG memory transactions
It is an error by the software controlling the probe if it sets
the ProbTrap bit to 1, but resets the ProbEn to 0. The
operation of the processor is UNDEFINED in this case.
The ProbEn bit is reflected as a read-only bit in the
ProbEn bit, bit 0, in the Debug Control Register (DCR).
The read value indicates the effective value in the DCR,
due to synchronization issues between TCK and CPU
clock domains; however, it is ensured that change of the
ProbEn prior to setting the EjtagBrk bit will have effect
for the debug handler executed due to the debug excep-
tion.
The reset value of the bit depends on whether the EJTAG-
BOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W 0 or 1
from

EJTAGBOOT

ProbTrap 14 Probe Trap
This bit controls the location of the debug exception vec-
tor:
0: In normal memory 0xBFC0.0480
1: In EJTAG memory at 0xFF20.0200 in dmseg
Valid setting of the ProbTrap bit depends on the setting of
the ProbEn bit, see comment under ProbEn bit.
The ProbTrap should not be set to 1, for debug exception
vector in EJTAG memory, unless the ProbEn bit is also
set to 1 to indicate that the EJTAG memory may be
accessed.
The read value indicates the effective value to the CPU,
due to synchronization issues between TCK and CPU
clock domains; however, it is ensured that change of the
ProbTrap bit prior to setting the EjtagBrk bit will have
effect for the EjtagBrk.
The reset value of the bit depends on whether the EJTAG-
BOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W 0 or 1
from

EJTAGBOOT

Res 13 reserved R 0

Table 8.30 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)

8.5 EJTAG TAP Registers

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 165

8.5.3 Processor Access Address Register

The Processor Access Address (PAA) register is used to provide the address of the processor access in the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this
register is selected by shifting in the ADDRESS instruction.

8.5.3.1 Processor Access Data Register

The Processor Access Data (PAD) register is used to provide data value to and from a processor access. The length of
the Data register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from
this register is only valid when a processor access write is pending. The register is used to provide the data value fora
processor access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new
value when a processor access write is pending.

The PAD register is 32 bits wide. Data alignment is not used for this register, so the value in the PAD register matches
data on the internal bus. The undefined bytes for a PA write are undefined, and for a PAD read then 0 (zero) must be
shifted in for the unused bytes.

The organization of bytes in the PAD register depends on the endianess of the core, as shown in Figure 8.4. The
endian mode for debug/kernel mode is determined by the state of the SI_Endian input at power-up.

EjtagBrk 12 EJTAG Break
Setting this bit to 1 causes a debug exception to the pro-
cessor, unless the CPU was in debug mode or another
debug exception occurred.
When the debug exception occurs, the processor core
clock is restarted if the CPU was in low power mode. This
bit is cleared by hardware when the debug exception is
taken.

The reset value of the bit depends on whether the EJTAG-
BOOT indication is given or not:
No EJTAGBOOT indication given: 0
EJTAGBOOT indication given: 1

R/W1 0 or 1
from

EJTAGBOOT

Res 11:4 reserved R 0

DM 3 Debug Mode
This bit indicates the debug or non-debug mode:
0: Processor is in non-debug mode
1: Processor is in debug mode
The bit is sampled in the Capture-DR state of the TAP
controller.

R 0

Res 2:0 reserved R 0

Table 8.30 EJTAG Control Register Descriptions (Continued)

Fields

Description
Read/
Write Reset StateName Bit(s)

 EJTAG Debug Support in the M4K™ Core

166 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Figure 8.4 Endian Formats for the PAD Register

The size of the transaction and thus the number of bytes available/required for the PAD register is determined by the
Psz field in the ECR.

8.5.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bit
is shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether
the Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata
access was successful or not (if completion was requested).

Fastdata Register Format

0

SPrAcc

Table 8.31 Fastdata Register Field Description

Fields

Description
Read/
Write

Power-up
StateName Bits

SPrAcc 0 Shifting in a zero value requests completion of the Fast-
data access. The PrAcc bit in the EJTAG Control register
is overwritten with zero when the access succeeds. (The
access succeeds if PrAcc is one and the operation address
is in the legal dmseg Fastdata area.) When successful, a
one is shifted out. Shifting out a zero indicates a Fastdata
access failure.
Shifting in a one does not complete the Fastdata access
and the PrAcc bit is unchanged. Shifting out a one indi-
cates that the access would have been successful if
allowed to complete and a zero indicates the access would
not have successfully completed.

R/W Undefined

A[n:0]=7 6 5 4

012A[n:0]=3

A[n:0]=4 5 6 7

321A[n:0]=0

0781516232431

0781516232431

LSB
bit

MSB

LSB
bit

MSB

A[n:2]=1

A[n:2]=0

A[n:2]=1

A[n:2]=0

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

BIG-ENDIAN

LITTLE-ENDIAN

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

8.6 TAP Processor Accesses

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 167

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” specifies
the legal range of dmseg addresses (0xFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The
Data + Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata
area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download
accesses are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to
see if the attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used).
Downloads will also shift in the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will
shift out the data being stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

• PrAcc must be 1, i.e., there must be a pending processor access.

• The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to 0xFF20.000F).

Table 8.32 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access. .

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between
the download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

8.6 TAP Processor Accesses

The TAP modules support handling of fetches, loads and stores from the CPU through the dmseg segment, whereby
the TAP module can operate like a slave unit connected to the on-chip bus. The core can then execute code taken from
the EJTAG Probe and it can access data (via a load or store) which is located on the EJTAG Probe. This occurs in a

Table 8.32 Operation of the FASTDATA access

Probe
Operation

Address
Match
check

PrAcc in
the

Control
Register

LSB
(SPrAcc)
shifted in

Action in the
Data Register

PrAcc
changes

to

LSB
shifted

out
Data shifted

out

Download
using
FASTDATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data

0 x none unchanged 0 invalid

Upload
using
FASTDATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid

 EJTAG Debug Support in the M4K™ Core

168 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

serial way through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without
occupying the memory.

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range
from 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition
the LSNM bit in the CP0 Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from
address 0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by a soft or hard reset.

8.6.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg

1. The internal hardware latches the requested address into the PA Address register (in case of the Debug exception:
0xFF20.0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

4. The EJTAG Probe checks the PRnW bit to determine the required access.

5. The EJTAG Probe selects the PA Address register and shifts out the requested address.

6. The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

7. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the instruction is available.

8. The instruction becomes available in the instruction register and the processor starts executing.

9. The processor increments the program counter and outputs an instruction read request for the next instruction.
This starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory. For
this to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the appro-
priate range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The
store address must be in the range: 0xFF20.0000 to 0xFF2F.FFFF, the ProbEn bit must be set and the processor has to
be in debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the PA Address register

2. The internal hardware latches the data to be written into the PA Data register.

8.7 Trace Mechanisms

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 169

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.

6. The EJTAG Probe selects the PA Address register and shifts out the requested address.

7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

Note: probe accesses and external bus accesses are serialized by the core. A probe access will not begin until all exter-
nal bus requests have completed. Similarly, a new probe or external bus access will not begin until a pending probe
access has completed.

8.7 Trace Mechanisms

There are two optional trace mechanisms that are available to extract additional information about program execution.
EJTAG Trace is a powerful mechanism that allows for the tracing of the program flow as well as load and store
addresses and data values. EJTAG Trace can be configured to only trace in specific modes and can produce cycle
accurate trace information. Tracing can be controlled by either a hardware (probe) or software interface. In contrast,
the iFlowtrace™ mechanism is much lighter weight. It only can only be controlled by debug software executing on
the core and it only provides the ability to trace the program flow. The reduced capabilities also reduce the silicon
area required to implement it and reduces the costs associated with tracing, while still providing valuable information
for software debugging.

These two trace mechanisms are described in further detail in the rest of the chapter.

8.8 iFlowtrace™ Mechanism

The iFlowtrace mechanism provides a means to reconstruct a simple instruction trace from an execution stream. This
light-weight instruction-only tracing scheme is sufficient to reconstruct the execution flow in an M4K core under con-
ditions that are classified as appropriate.

The presence of the iFlowtrace mechanism is indicated by the CP0 Config3ITL register bit.

 EJTAG Debug Support in the M4K™ Core

170 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.8.1 A Simple Instruction-Only Tracing Scheme

A trace methodology can often be mostly defined by its inputs and outputs. Hence this basic scheme is described by
the inputs to the core tracing logic and by the trace output format from the core. We assume here that the execution
flow of the program is traced at the end of the execution path in the core similar to PDtrace.

8.8.1.1 Trace Inputs

1. In_TraceOn: when on, legal trace words are coming from the core and at the point when it is turned on, that is for
the first traced instruction, a full PC value is output. When off, it cannot be assumed that legal trace words are
available at the core interface.

2. In_Stall: This says, stall the processor to avoid buffer overflow that can lose trace information. When off, a buffer
overflow will simply throw away trace data and start over again. When on, the processor is signalled from the
tracing logic to stall until the buffer is sufficiently drained and then the pipeline is restarted.

8.8.1.2 Trace Outputs

1. Stall cycles in the pipe are ignored by the tracing logic and are not traced. This is indicated by a valid signal
Out_Valid that is turned off when no valid instruction is being traced. When the valid signal is on, instructions
are traced out as described in the rest of this section. The traced instruction PC is a virtual address.

2. In the output format, every sequentially executed instruction is traced as bit 0.

3. Every instruction that is not sequential to the previous one is traced as either a 10 or an 11. This implies that the
target instruction of a branch or jump is traced this way, not the actual branch or jump instruction (this is similar
to PDtrace):

4. A 10 instruction implies a taken branch for a conditional branch instruction whose condition is unpredictable
statically, but whose branch target can be computed statically and hence the new PC does not need to be traced
out. Note that if this branch was not taken, it would have been indicated by a 0 bit, that is sequential flow.

5. A 11 instruction implies a taken branch for an indirect jump-like instruction whose branch target could not be
computed statically and hence the taken branch address is now given in the trace. This includes, for example,
instructions like jr, jalr, and interrupts:

• 11 00 - followed by 8 bits of 1-bit shifted offset from the last PC. The bit assignments of this format on the
bus between the core tracing logic and the ITCB is:
[3:0] = 4’b0011
[11:4] = PCdelta[8:1]
[35:12] = 24’b0

• 11 01 - followed by 16 bits of 1-bit shifted offset from the last PC. The bit assignments of this format on the
bus between the core tracing logic and the ITCB is:
[3:0] = 4’b1011
[19:4] = PCdelta[16:1]
[35:20] - 16’b0

• 11 10 - followed by 31 of the most significant bits of the PC value, followed by a bit (NCC) that indicates no
code compression. Note that for a MIPS32 or MIPS64 instruction, NCC=1, and for MIPS16e instruction
NCC=0. This trace record will appear at all transition points between MIPS32/MIPS64 and MIPS16e
instruction execution.
This form is also a special case of the 11 format and it is used when the instruction is not a branch or jump,

8.8 iFlowtrace™ Mechanism

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 171

but nevertheless the full PC value needs to be reconstructed. This is used for synchronization purposes, sim-
ilar to the Sync in PDtrace. A preset sync period of 256 instructions is counted down and when an internal
counter runs through all the values, this format is used. The bit assignments of this format on the bus
between the core tracing logic and the ITCB is:
[3:0] = 4’b0111
[34:4] = PC[31:1]
[35] = NCC

• 11 11 - Used to indicate trace resumption after a discontinuity occurred. The next format is a 1110 that sends
a full PC value. A discontinuity might happen due to various reasons, for example, an internal buffer over-
flow, and at trace-on/trace-off trigger action.

8.8.2 ITCB Overview

The IFlowTrace Control Block (ITCB) is responsible for accepting trace signals from the CPU core, formatting them,
and storing them into an on-chip FIFO. The figure also shows the Probe Interface Block (PIB) which reads the FIFO
and outputs the memory contents through a narrow off-chip trace port.

Figure 8.5 Trace Logic Overview

8.8.3 ITCB IFlowTrace Interface

The IFlowTrace interface consists of 36 data signals plus a valid signal. The 36 data signals encode information about
what the CPU is doing in each clock cycle. Valid indicates that the CPU is executing an instruction in this cycle and

Out_Valid

IFlowTrace

In_TraceOn

In_Stall

Logic
Pipeline

ITCB

write
port

FIFO

FIFO
Control

read
port

PIB
Off-chip

trace
port

drseg r/w

Trigger
trace-on/off

 EJTAG Debug Support in the M4K™ Core

172 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

therefore the 36 data signals carry valid execution information. The IFlowTrace data bus is encoded as shown in
Table 8.33. Note that all the non-defined upper bits of the bus are zeroes.

Table 8.33 Data Bus Encoding

The ITCB controls trace using the In_TraceOn signal. When 0, all data appearing on the IFlowTrace outputs is con-
sidered invalid. To turn on trace, the ITCB switches In_TraceOn from 0 to 1. A 1011 record represents the first
instruction executed thereafter with a full PC indicating the current execution point.

8.8.4 ITCB IFlowTrace Storage Representation

Records from IFlowTrace are inserted into a memory stream exactly as they appear on the IFlowTrace data output.
Records are concatenated into a continuous stream starting at the LSB. When a trace word is filled, it is written to
memory along with some tag bits. Each record consists of a 64-bit word, which comprises 58 message bits and 6 tag
bits or header bits that clarify information about the message in that word.

The ITCB includes a 58-bit shift register to accumulate trace messages. Once 58 or more bits are accumulated, the 58
bits and 6 tag bits are sent to the memory write interface. Messages may span a trace word boundary. In this case, the
6 tag bits indicate the bit number of the first full trace message in the 58-bit data field.

The tag bits are not strictly binary because they serve a secondary purpose of indicating to off-chip trace hardware
when a valid trace word transmission begins. At least one of the 4 LSB’s of the tag is always a 1. The longest trace
message is 36 bits, so the starting position indicated by the tag bits is always between 0 and 35.

When trace stops (ON set to zero), any partially filled trace words are written to memory. Any unused space above the
final message is filled with 1’s. The decoder distinguishes 1111 patterns used for fill in this position from an 1111
overflow message by recognizing that it is the last trace word.

These trace formats are written to a trace memory that is off-chip. No particular size of SRAM is specified; the size is
user selectable based on the application needs and area trade-offs. Each trace word can typically store about 20 to 30
instructions, so a 1 KWord trace memory could store the history of 20K to 30K executed instructions.

8.8.5 ITCB IFlowTrace Interface

The ITCB includes a drseg memory interface to allow the MIPS CPU to set up tracing and read current status. There
are two drseg register locations in the ITCB as shown in Table 8.34.

Valid Data (LSBs) Description

0 X No instructions executed in this cycle

1 0 Sequential instruction executed

1 01 Branch executed, destination predictable from code

1 <8>0011 Discontinuous instruction executed, PC offset is 8 bit signed offset

1 <16>1011 Discontinuous instruction executed, PC offset is 16 bit signed offset

1 <NCC><31>0111 Discontinuous instruction or synchronization record, No Code Com-
pression (NCC) bit included as well as 31 MSBs of the PC value

1 1111 Internal overflow

8.8 iFlowtrace™ Mechanism

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 173

Table 8.34 Registers in the ITCB

8.8.6 ITCB IFlowTrace Off-Chip Interface

The off-chip interface consists of a 4-bit data port (TR_DATA) and a trace clock (TR_CLK). TR_CLK can be a DDR
clock, that is, both edges are significant. TR_DATA and TR_CLK follow the same timing and have the same output
structure as the PDtrace TCB described in MIPS specifications. The trace clock is the same as the system clock or
related to the system clock as either divided or multiplied. The OfClk bit in the Control/Status register is of the form
X:Y, where X is the trace clock and Y is the core clock. The Trace clock is always 1/2 of the trace port data rate,
hence the “full speed” ITCB outputs data at the CPU core clock rate but the trace clock is half that, hence the 1:2
OfClk value is the full speed, and the 1:4 OfClk ratio is half-speed.

When a 64-bit trace word is ready to transmit, the PIB reads it from the FIFO and begins sending it out on TR_DATA.
It is sent in 4-bit increments starting at the LSB’s. In a valid trace word, the 4 LSB’s are never all zero, so a probe lis-
tening on the TR_DATA port can easily determine when the transmission begins and then count 15 additional cycles
to collect the whole 64-bit word. Between valid transmissions, TR_DATA Is held at zero and TR_CLK continues to
run.

TR_CLK runs continuously whenever a probe is connected. An optional signal TR_PROBE_N may be pulled high
when a probe is not connected and could be used to disable the off-chip trace port. If not present, this signal must be
tied low at the PIB input.

drseg Location
Offset Register

Defined
Bits Code Description

0x3FC0 Control/Status 0 ON Software control of trace collection. 0 disables all collection and
flushes out any partially filled trace words.

1 EN Trace enable. This bit may be set by software or by
Trace-on/Trace-off action bits caused by EJTAG hardware breaks.

Software writes EN with the desired initial state of tracing when the
ITCB is first turned on and EN is controlled by hardware thereafter.

EN turning on and off does not flush partly filled trace words.

2 IO Inhibit overflow. If set, the CPU is stalled whenever the trace memory
is full. Ignored unless OfC is also set.

3 OfC Offchip. 1 enables the PIB (if present) to unload the trace memory. 0
disables the PIB and would be used when on-chip storage is desired

or if a PIB is not present.
The M4K core only supports off-chip storage so this bit will be a

read-only 1.

4 OfClk Controls the Off-chip clock ratio. When the bit is set, this implies 1:2,
that is the trace clock is running at 1/2 the core clock, and when the
bit is clear, implies 1:4 ratio, that is the trace clock is at 1/4 the core

clock

0x3FC8 Trace write address
pointer

N:0 WAddr This register is used only if the SRAM is supported in on-chip mode.
The current write pointer for trace memory. Each completed trace

word is written to memory, then WAddr increments. When trace con-
cludes, WAddr contains the first address in trace memory not yet writ-

ten.

31 Wrap Trace wrapped. This bit indicates that the entire trace depth has been
written at least once. After trace concludes, this bit along with WAddr
is used by software to determine the oldest and youngest words in the

buffer.

 EJTAG Debug Support in the M4K™ Core

174 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

The following encoding is used for the 6 tag bits to tell the PIB receiver that a valid transmission is starting:

// if (srcount == 0), EncodedSrCount = 111000 = 56
// else if (srcount == 16) EncodedSrCount = 111001 = 57
// else if (srcount == 32) EncodedSrCount = 111010 = 58
// else EncodedSrCount = srcount

8.8.7 Breakpoint-Based Enabling of Tracing

Each hardware breakpoint in the EJTAG block has a control bit associated with it that enables a trigger signal to be
generated on a break match condition. This trigger signal can be used to turn trace on or off, thus allowing a user to
control the trace on/off functionality using breakpoints. For the simple hardware breakpoints, there are already
defined registers TraceIBPC, TraceDBPC, etc in PDtrace that are used to control tracing functionality. Similar regis-
ters need to be defined to control the start and stop of IFlowTrace. And in addition, the new complex Tuple break-
points need to be added to the list of breakpoints that can trigger trace. The details on the actual register names and
drseg addresses are shown in Table 8.35.

The bits in each register are defined as follows:

• Bit 28 (IE/DE) : Used to specify whether the trigger signal from EJTAG simple or complex instruction or data
break should trigger iFlowtrace tracing functions or not. Value of 0 disables trigger signals from EJTAG instruc-
tion breaks, and 1 enables triggers for the same.

• Bits 14..0 (IBrk/DBrk): Used to explicitly specify which instruction or data breaks enable or disable iFlowtrace.
A value of 0 implies that trace is turned off (unconditional trace stop) and a value of 1 specifies that the trigger
enables trace (unconditional trace start). If both trace on and trace off events happen on the same instruction,
tracing will be enabled.

8.9 EJTAG Trace

EJTAG Trace enables the ability to trace program flow, load/store addresses and load/store data. Several run-time
options exist for the level of information which is traced, including tracing only when in specific processor modes
(i.e. UserMode or KernelMode). EJTAG Trace is an optional block in the M4K core. If EJTAG Trace is not imple-
mented, the rest of this chapter is irrelevant. If EJTAG Trace is implemented, the CP0 Config3TL bit is set.

The pipeline specific part of EJTAG Trace is architecturally specified in the PDtrace™ Interface Specification. The
PDtrace module extracts the trace information from the processor pipeline, and presents it to a pipeline-independent
module called the Trace Control Block (TCB). The TCB is specified in the EJTAG Trace Control Block Specification.
The collective implementation of the two is called EJTAG Trace.

When EJTAG Trace is implemented, the M4K core includes both the PDtrace and the Trace Control Block (TCB)
modules. The two modules “talk” to each other on the generic pin-interface called the PDtrace™ Interface. This inter-
face is embedded inside the M4K core, and will not be discussed in detail here (read the PDtrace™ Interface Specifi-

Table 8.35 Registers that Enable/Disable Trace from Complex Triggers and their drseg Addresses

Register Name drseg Address Reset value Description

ITrigiFlowTrcEn 0x3FD0 0 Instruction break Trigger iFlowtrace
Enable register

DTrigiFlowTrcEn 0x3FD8 0 Data break Trigger iFlowtrace Enable reg-
ister

 EJTAG Debug Support in the M4K™ Core

176 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

• Only instructions which complete at the end of the pipeline are traced, and indicated with a completion-flag. The
PC is implicitly pointing to the next instruction.

• Load instructions are indicated with a load-flag.

• Store instructions are indicated with a store-flag1.

• Taken branches are indicated with a branch-taken-flag on the target instruction.

• New PC information for a branch is only traced if the branch target is unpredictable from the static program
image.

• When branch targets are unpredictable, only the delta value from current PC is traced, if it is dynamically deter-
mined to reduce the number of bits necessary to indicate the new PC. Otherwise the full PC value is traced.

• When a completing instruction is executed in a different processor mode from the previous one, the new proces-
sor mode is traced.

• The first instruction is always traced as a branch target, with processor mode and full PC.

• Periodic synchronization instructions are identified with a sync-flag, and traced with the processor mode and full
PC.

All the instruction flags above are combined into one 3-bit value, to minimize the bit information to trace. The possi-
ble processor modes are explained in 8.9.1 “Processor Modes” on page 175.

The target address is statically predictable for all branch and all jump-immediate instructions. If the branch is taken,
then the branch-taken-flag will indicate this. All jump-register instructions and ERET/DERET are instructions which
have an unpredictable target address. These will have full/delta PC values included in the trace information. Also
treated as unpredictable are PC changes which occur due to exceptions, such as an interrupt, reset, etc.

Trace regeneration software is required to know the static program image in memory, in order to reproduce the
dynamic flow with the above information. But this is usually not a problem. Only the virtual value of the PC is used.
Physical memory location will typically differ.

It is possible to turn on PC delta/full information for all branches, but this should not normally be necessary. As a
safety check for trace regeneration software, a periodic synchronization with a full PC is sent. The period of this syn-
chronization is cycle based and programmable.

8.9.4 Load/Store Address and Data Trace Information

In addition to PC flow, it is possible to get information on the load/store addresses, as well as the data read/written.
When enabled, the following information is optionally added to the trace.

• When load-address tracing is on, the full load address of the first load instruction is traced (indicated by the
load-flag). For subsequent loads, a dynamically-determined delta to the previous load address is traced to com-
press the information which must be sent.

• When store-address tracing is on, the full store address of the first store instruction is traced (indicated by the
store-flag). For subsequent stores, a dynamically-determined delta to the previous store address is traced.

1 A SC (Store Conditional) instruction is not flagged as a store instruction if the load-locked bit prevented the actual store.

8.9 EJTAG Trace

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 177

• When load-data tracing is on, the full load data read by each load instruction is traced (indicated by the
load-flag). Only actual read bytes are traced.

• When store-data tracing is on, the full store data written by each store instruction is traced (indicated by the
store-flag). Only written bytes are traced.

After each synchronization instruction, the first load address and the first store address following this are both traced
with the full address if load/store address tracing is enabled.

8.9.5 Programmable Processor Trace Mode Options

To enable tracing, a global Trace On signal must be set. When trace is on, it is possible to enable tracing in any com-
bination of the processor modes described in 8.9.1 “Processor Modes” on page 175. .

Additionally, an EJTAG Simple Break trigger point can override the processor mode and turn them all on. Another
trigger point can disable this override again.

8.9.6 Programmable Trace Information Options

The processor mode changes are always traced:

• On the first instruction.

• On any synchronization instruction.

• When the mode changes and either the previous or the current processor mode is selected for trace.

The amount of extra information traced is programmable to include:

• PC information only.

• PC and load address.

• PC and store address.

• PC and load and store address.

• PC and load address and load data.

• PC and store address and store data.

• PC and load and store address and load and store data.

• PC and load data only.

The last option is helpful when used together with instruction accurate simulators. If the full internal state of the pro-
cessor is known prior to trace start, PC and load data are the only information needed to recreate all register values on
an instruction by instruction basis.

 EJTAG Debug Support in the M4K™ Core

178 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.9.6.1 User Data Trace

In addition to the above, a special CP0 register, UserTraceData, can generate a data trace. When this register is writ-
ten, and the global Trace On is set, then the 32-bit data written is put in the trace as special User Data information.

Remark: The User Data is sent even if the processor is operating in an un-traced processor mode.

8.9.7 Enable Trace to Probe/On-Chip Memory

When trace is On, based on the options listed in 8.9.5 “Programmable Processor Trace Mode Options”, the trace
information is continuously sent on the PDtrace™ interface to the TCB. The TCB must, however, be enabled to trans-
mit the trace information to the Trace probe or to on-chip trace memory, by having the TCBCONTROLBEN bit set. It
is possible to enable and disable the TCB in two ways:

• Set/clear the TCBCONTROLBEN bit via an EJTAG TAP operation.

• Initialize a TCB trigger to set/clear the TCBCONTROLBEN bit.

8.9.8 TCB Trigger

The TCB can optionally include 0 to 8 triggers. A TCB trigger can be programmed to fire from any combination of:

• Probe Trigger Input to the TCB.

• Chip-level Trigger Input to the TCB.

• Processor entry into DebugMode.

When a trigger fires it can be programmed to have any combination of actions:

• Create Probe Trigger Output from TCB.

• Create Chip-level Trigger Output from TCB.

• Set, clear, or start countdown to clear the TCBCONTROLBEN bit (start/end/about trigger).

• Put an information byte into the trace stream.

Trace triggers may prove useful for various types of system debug. If the system has a reasonable capability to pro-
gram the external triggers, a wide variety of system information can be included in the trace:

• Insert system events into a trace.

• Using a timer event as a trigger that inserted a trace record would allow for performance analysis (at a
coarser granularity than cycle accurate mode, but with better compression)

• The trace could be annotated with interesting system events like each time a packet is received or transmitted

• Trigger traces

• Stop tracing when a bus error is detected so that the trace buffer contains the code sequence leading up to the
error

8.10 PDtrace™ Registers (Software Control)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 179

Note that trace triggers are independent from EJTAG triggerpoints and the presence or absence of trace triggers does
not impact the ability to start or stop trace with triggerpoints.

8.9.9 Cycle by Cycle Information

All of the trace information listed in 8.9.3 “Trace Information” and 8.9.4 “Load/Store Address and Data Trace
Information”, will be collected from the PDtrace™ interface by the TCB. The trace will then be compressed and
aligned to fit in 64 bit trace words, with no loss of information. It is possible to exclude/include the exact
cycle-by-cycle relationship between each instruction. If excluded, the number of bits required in the trace information
from the TCB is reduced, and each trace word will only contain information from completing instructions.

8.9.10 Trace Message Format

The TCB collects trace information every cycle from the PDtrace™ interface. This information is collected into six
different Trace Formats (TF1 to TF6). One important feature is that all Trace Formats have at least one non-zero bit.

8.9.11 Trace Word Format

After the PDtrace™ data has been turned into Trace Formats, the trace information must be streamed to either
on-chip trace memory or to the trace probe. Each of the major Trace Formats are of different size. This complicates
how to store this information into an on-chip memory of fixed width without too much wasted space. It also compli-
cates how to transmit data through a fixed-width trace probe interface to off-chip memory. To minimize memory
overhead and or bandwidth-loss, the Trace Formats are collected into Trace Words of fixed width.

A Trace Word (TW) is defined to be 64 bits wide. An empty/invalid TW is built of all zeros. A TW which contains
one or more valid TF’s is guaranteed to have a non-zero value on one of the four least significant bits [3:0]. During
operation of the TCB, each TW is built from the TF’s generated each clock cycle. When all 64 bits are used, the TW
is full and can be sent to either on-chip trace memory or to the trace probe.

8.10 PDtrace™ Registers (Software Control)

The CP0 registers associated with PDtrace are listed in Table 8.36 and described in Chapter 5, “CP0 Registers of the
M4K™ Core” on page 85

Table 8.36 A List of Coprocessor 0 Trace Registers

Register
Number

Se
l

Register
Name Reference

23 1 TraceControl 5.2.18 “Trace Control Register (CP0 Register 23, Select 1)” on page 112

23 2 TraceControl2 5.2.19 “Trace Control2 Register (CP0 Register 23, Select 2)” on page 114

23 3 UserTraceData 5.2.20 “User Trace Data Register (CP0 Register 23, Select 3)”

23 4 TraceBPC 5.2.21 “TraceBPC Register (CP0 Register 23, Select 4)”

 EJTAG Debug Support in the M4K™ Core

180 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.11 Trace Control Block (TCB) Registers (Hardware Control)

The TCB registers used to control its operation are listed in Table 8.37 and Table 8.38. These registers are accessed
via the EJTAG TAP interface.

8.11.1 TCBCONTROLA Register

The TCB is responsible for asserting or de-asserting the trace input control signals on the PDtrace interface to the
core’s tracing logic. Most of the control is done using the TCBCONTROLA register.

The TCBCONTROLA register is written by an EJTAG TAP controller instruction, TCBCONTROLA (0x10).

The format of the TCBCONTROLA register is shown below, and the fields are described in Table 8.39.
TCBCONTROLA Register Format

Table 8.37 TCB EJTAG registers

EJTAG
Register Name Reference Implemented

0x10 TCBCONTROLA 8.11.1 “TCBCONTROLA Register” on page 180 Yes

0x11 TCBCONTROLB 8.11.2 “TCBCONTROLB Register” on page 183 Yes

0x12 TCBDATA 8.11.3 “TCBDATA Register” on page 187 Yes

Table 8.38 Registers selected by TCBCONTROLB

TCBCONTROLBRE

G field Name Reference Implemented

0 TCBCONFIG 8.11.4 “TCBCONFIG Register (Reg 0)” on page 188 Yes

4 TCBTW 8.11.5 “TCBTW Register (Reg 4)” on page 189 Yes
if on-chip memory

exists.
Otherwise No

5 TCBRDP 8.11.6 “TCBRDP Register (Reg 5)” on page 190

6 TCBWRP 8.11.7 “TCBWRP Register (Reg 6)” on page 190

7 TCBSTP 8.11.8 “TCBSTP Register (Reg 7)” on page 190

16-23 TCBTRIGx 8.11.9 “TCBTRIGx Register (Reg 16-23)” on page 191 Only the number
indicated by

TCBCONFIGTRIG

are implemented.

31 26 25 24 23 22 20 19 18 17 16 15 14 13 12 5 4 3 1 0

0 VModes ADW SyP TB IO D E 0 K U ASID G Mode On

Table 8.39 TCBCONTROLA Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bits

0 31:26 Reserved. Must be written as zero; returns zero on read. R 0

8.11 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 181

VModes 25:24 This field specifies the type of tracing that is supported by the
processor, as follows:

This field is preset to the value of PDO_ValidModes.

R 10

ADW 23 PDO_AD bus width.
0: The PDO_AD bus is 16 bits wide.
1: The PDO_AD bus is 32 bits wide.

R 0

SyP 22:20 Used to indicate the synchronization period.
The period (in cycles) between which the periodic synchroni-
zation information is to be sent is defined as shown in the table
below, when the trace buffer is either on-chip or off-chip (as
determined by the TCBCONTROLBOfC bit).

This field defines the value on the PDI_SyncPeriod signal.

R/W 100

TB 19 Trace All Branches. When set to one, this field indicates that
the core must trace either full or incremental PC values for all
branches. When set to zero, only the unpredictable branches
are traced.
This field defines the value on the PDI_TraceAllBranch sig-
nal.

R/W Undefined

IO 18 Inhibit Overflow. This bit is used to indicate to the core trace
logic that slow but complete tracing is desired. Hence, the core
tracing logic must not allow a FIFO overflow and discard trace
data. This is achieved by stalling the pipeline when the FIFO is
nearly full so that no trace records are ever lost.
This field defines the value on the PDI_InhibitOverflow sig-
nal.

R/W Undefined

Table 8.39 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bits

Encodin
g Meaning

00 PC tracing only

01 PC and Load and store address tracing only

10 PC, load and store address, and load and
store data.

11 Reserved

SyP On-chip Off-chip

000 22 27

001 23 28

010 24 29

011 25 210

100 26 211

101 27 212

110 28 213

111 29 214

 EJTAG Debug Support in the M4K™ Core

182 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

D 17 When set to one, this enables tracing in Debug mode, i.e.,
when the DM bit is one in the Debug register. For trace to be
enabled in Debug mode, the On bit must be one.
When set to zero, trace is disabled in Debug mode, irrespective
of other bits.
This field defines the value on the PDI_DM signal.

R/W Undefined

E 16 This controls when tracing is enabled. When set, tracing is
enabled when either of the EXL or ERL bits in the Status reg-
ister is one, provided that the On bit (bit 0) is also se.
This field defines the value on the PDI_E signal.

R/W Undefined

0 15 Reserved. Must be written as zero; returns zero on read. R 0

K 14 When set, this enables tracing when the On bit is set and the
core is in Kernel mode. Unlike the usual definition of Kernel
Mode, this bit enables tracing only when the ERL and EXL
bits in the Status register are zero. This is provided the On bit
(bit 0) is also set.
This field defines the value on the PDI_K signal.

R/W Undefined

U 13 When set, this enables tracing when the core is in User mode
as defined in the MIPS32 or MIPS64 architecture specifica-
tion. This is provided the On bit (bit 0) is also set.
This field defines the value on the PDI_U signal.

R/W Undefined

ASID 12:5 The ASID field to match when the G bit is zero. When the G
bit is one, this field is ignored.
This field is ignored on the M4K core because there is no
ASID.
This field defines the value on the PDI_ASID signal.

R/W Undefined

G 4 When set, this implies that tracing is to be enabled for all pro-
cesses, provided that other enabling functions (like U, S, etc.,)
are also true.
This field is ignored on the M4K core because there is no
ASID.
This field defines the value on the PDI_G signal.

R/W Undefined

Table 8.39 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bits

8.11 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 183

8.11.2 TCBCONTROLB Register

The TCB includes a second control register, TCBCONTROLB (0x11). This register generally controls what to do
with the trace information received.

The format of the TCBCONTROLB register is shown below, and the fields are described in Table 8.40.
TCBCONTROLB Register Format

Mode 3:1 When tracing is turned on, this signal specifies what informa-
tion is to be traced by the core.

The VModes field determines which of these encodings are
supported by the processor. The operation of the processor is
UNPREDICTABLE if Mode is set to a value which is not
supported by the processor
This field defines the value on the PDI_TraceMode signal.

R/W Undefined

On 0 This is the global trace enable switch to the core. When zero,
tracing from the core is always disabled, unless enabled by
core internal software override of the PDI_* input pins.
When set to one, tracing is enabled whenever the other
enabling functions are also true.
This field defines the value on the PDI_TraceOn signal.

R/W 0

31 30 26 25 21 20 19 17 16 15 14 13 12 11 10 8 7 6 3 2 1 0

WE 0 REG WR 0 RM TR BF TM 0 CR Cal 0 CA OfC EN

Table 8.40 TCBCONTROLB Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bits

WE 31 Write Enable.
Only when set to 1 will the other bits be written in
TCBCONTROLB.
This bit will always read 0.

R 0

0 30:26 Reserved. Must be written as zero; returns zero on read. R 0

Table 8.39 TCBCONTROLA Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bits

Mode Trace Mode

000 Trace PC

001 Trace PC and load address

010 Trace PC and store address

011 Trace PC and both load/store addresses

100 Trace PC and load data

101 Trace PC and load address and data

110 Trace PC and store address and data

111 Trace PC and both load/store address and
data

 EJTAG Debug Support in the M4K™ Core

184 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

REG 25:21 Register select: This field select the registers accessible through
the TCBDATA register. Legal values are shown in Table 8.38.

R/W 0

WR 20 Write Registers: When set, the register selected by REG field is
read and written when TCBDATA is accessed. Otherwise the
selected register is only read.

R/W 0

0 19:17 Reserved. Must be written as zero; returns zero on read. R 0

RM 16 Read on-chip trace memory.
When written to 1, the read address-pointer of the on-chip
memory is set to point to the oldest memory location written
since the last reset of pointers.
Subsequent access to the TCBTW register (through the
TCBDATA register), will automatically increment the read
pointer (TCBRDP register) after each read. [Note: The read
pointer does not auto-increment if the WR field is one.]
When the write pointer is reached, this bit is automatically reset
to 0, and the TCBTW register will read all zeros.
Once set to 1, writing 1 again will have no effect. The bit is
reset by setting the TR bit or by reading the last Trace word in
TCBTW.
This bit is reserved if on-chip memory is not implemented.

R/W1 0

TR 15 Trace memory reset.
When written to one, the address pointers for the on-chip trace
memory are reset to zero. Also the RM bit is reset to 0.
This bit is automatically de-asserted back to 0, when the reset is
completed.
This bit is reserved if on-chip memory is not implemented.

R/W1 0

BF 14 Buffer Full indicator that the TCB uses to communicate to
external software in the situation that the on-chip trace memory
is being deployed in the trace-from and trace-to mode. (See
8.15 “TCB On-Chip Trace Memory”)
This bit is cleared when writing 1 to the TR bit
This bit is reserved if on-chip memory is not implemented.

R 0

Table 8.40 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bits

8.11 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 185

TM 13:12 Trace Mode. This field determines how the trace memory is
filled when using the simple-break control in the PDtrace™
interface to start or stop trace.

In Trace-To mode, the on-chip trace memory is filled, continu-
ously wrapping around and overwriting older Trace Words, as
long as there is trace data coming from the core.
In Trace-From mode, the on-chip trace memory is filled from
the point that PDO_IamTracing is asserted, and until the
on-chip trace memory is full.
In both cases, de-asserting the EN bit in this register will also
stop fill to the trace memory.
If a TCBTRIGx trigger control register is used to start/stop
tracing, then this field should be set to Trace-To mode.
This bit is reserved if on-chip memory is not implemented.

R/W 0

0 11 Reserved. Must be written as zero; returns zero on read. R 0

CR 10:8 Off-chip Clock Ratio. Writing this field, sets the ratio of the
core clock to the off-chip trace memory interface clock. The
clock-ratio encoding is shown in Table 8.41.
Remark: As the Probe interface works in double data rate
(DDR) mode, a 1:2 ratio indicates one data packet sent per core
clock rising edge.
This bit is reserved if off-chip trace option is not implemented.

R/W 100

Table 8.40 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bits

TM Trace Mode

00 Trace-To

01 Trace-From

10 Reserved

11 Reserved

 EJTAG Debug Support in the M4K™ Core

186 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Cal 7 Calibrate off-chip trace interface.
If set to one, the off-chip trace pins will produce the following
pattern in consecutive trace clock cycles. If more than 4 data
pins exist, the pattern is replicated for each set of 4 pins. The
pattern repeats from top to bottom until the Cal bit is
de-asserted.

Note: The clock source of the TCB and PIB must be running.
This bit is reserved if off-chip trace option is not implemented.

R/W 0

0 6:3 Reserved. Must be written as zero; returns zero on read. R 0

CA 2 Cycle accurate trace.
When set to 1, the trace will include stall information.
When set to 0, the trace will exclude stall information, and
remove bit zero from all transmitted TF’s.
The stall information included/excluded is:
• TF6 formats with TCBcode 0001 and 0101.
• All TF1 formats.

R/W 0

OfC 1 If set to 1, trace is sent to off-chip memory using TR_DATA
pins.
If set to 0, trace info is sent to on-chip memory.
This bit is read only if a single memory option exists (either
off-chip or on-chip only).

R/W Preset

Table 8.40 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bits

Calibrations pattern

3 2 1 0

T
h

is
 p

at
te

rn
 is

 r
ep

lic
at

ed
 fo

r
ev

er
y

4
b

it
s

o
f

T
R

_D
A

TA
 p

in
s.

0 0 0 0

1 1 1 1

0 0 0 0

0 1 0 1

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

8.11 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 187

8.11.3 TCBDATA Register

The TCBDATA register (0x12) is used to access the registers defined by the TCBCONTROLBREG field; see Table
8.38. Regardless of which register or data entry is accessed through TCBDATA, the register is only written if the
TCBCONTROLBWR bit is set. For read-only registers, the TCBCONTROLBWR is a don’t care.

The format of the TCBDATA register is shown below, and the field is described in Table 8.42. The width of
TCBDATA is 64 bits when on-chip trace words (TWs) are accessed (TCBTW access).

TCBDATA Register Format

EN 0 Enable trace.
This is the master enable for trace to be generated from the
TCB. This bit can be set or cleared, either by writing this regis-
ter or from a start/stop/about trigger.
When set to 1, trace information is sampled on the PDO_*
pins. Trace Words are generated and sent to either on-chip
memory or to the Trace Probe. The target of the trace is
selected by the OfC bit.
When set to 0, trace information on the PDO_* pins is ignored.
A potential TF6-stop (from a stop trigger) is generated as the
last information, the TCB pipe-line is flushed, and trace output
is stopped.

R/W 0

Table 8.41 Clock Ratio encoding of the CR field

CR/CRMin/CRMax Clock Ratio

000 8:1 (Trace clock is eight times that of core clock)

001 4:1 (Trace clock is four times that of core clock)

010 2:1 (Trace clock is double that of core clock)

011 1:1 (Trace clock is same as core clock)

100 1:2 (Trace clock is one half of core clock)

101 1:4 (Trace clock is one fourth of core clock)

110 1:6 (Trace clock is one sixth of core clock)

111 1:8 (Trace clock is one eighth of core clock)

31(63) 0

Data

Table 8.40 TCBCONTROLB Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bits

 EJTAG Debug Support in the M4K™ Core

188 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.11.4 TCBCONFIG Register (Reg 0)

The TCBCONFIG register holds information about the hardware configuration of the TCB. The format of the
TCBCONFIG register is shown below, and the field is described in Table 8.43.

TCBCONFIG Register Format

Table 8.42 TCBDATA Register Field Descriptions

Fields

Description Read/Write
Reset
StateNames Bits

Data 31:0
63:0

Register fields or data as defined by the
TCBCONTROLBREG field

Only writable if
TCBCONTROLBWR

is set

0

31 30 25 24 21 20 17 16 14 13 11 10 9 8 6 5 4 3 0

CF1 0 TRIG SZ CRMax CRMin PW PiN OnT OfT REV

Table 8.43 TCBCONFIG Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bits

CF1 31 This bit is set if a TCBCONFIG1 register exists. In this revi-
sion, TCBCONFIG1 does not exist and this bit always reads
zero.

R 0

0 30:25 Reserved. Must be written as zero; returns zero on read. R 0

TRIG 24:21 Number of triggers implemented. This also indicates the num-
ber of TCBTRIGx registers that exist.

R Preset
Legal values

are 0 - 8

SZ 20:17 On-chip trace memory size. This field holds the encoded size of
the on-chip trace memory.

The size in bytes is given by 2(SZ+8), implying that the mini-
mum size is 256 bytes and the largest is 8Mb.
This bit is reserved if on-chip memory is not implemented.

R Preset

CRMax 16:14 Off-chip Maximum Clock Ratio.
This field indicates the maximum ratio of the core clock to the
off-chip trace memory interface clock. The clock-ratio encod-
ing is shown in Table 8.41.
This bit is reserved if off-chip trace option is not implemented.

R Preset

CRMin 13:11 Off-chip Minimum Clock Ratio.
This field indicates the minimum ratio of the core clock to the
off-chip trace memory interface clock.The clock-ratio encoding
is shown in Table 8.41.
This bit is reserved if off-chip trace option is not implemented.

R Preset

8.11 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 189

8.11.5 TCBTW Register (Reg 4)

The TCBTW register is used to read Trace Words from the on-chip trace memory. The TW read is the one pointed to
by the TCBRDP register. A side effect of reading the TCBTW register is that the TCBRDP register increments to
the next TW in the on-chip trace memory. If TCBRDP is at the max size of the on-chip trace memory, the increment
wraps back to address zero.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBTW register is shown below, and the field is described in Table 8.44.
TCBTW Register Format

PW 10:9 Probe Width: Number of bits available on the off-chip trace
interface TR_DATA pins. The number of TR_DATA pins is
encoded, as shown in the table.

This field is preset based on input signals to the TCB and the
actual capability of the TCB.
This bit is reserved if off-chip trace option is not implemented.

R Preset

PiN 8:6 Pipe number.
Indicates the number of execution pipelines.

R 0

OnT 5 When set, this bit indicates that on-chip trace memory is
present. This bit is preset based on the selected option when the
TCB is implemented.

R Preset

OfT 4 When set, this bit indicates that off-chip trace interface is
present. This bit is preset based on the selected option when the
TCB is implemented, and on the existence of a PIB module
(TC_PibPresent asserted).

R Preset

REV 3:0 Revision of TCB. An implementation that conforms to the
described architecture in this document must have revision 0.

R 0

63 0

Data

Table 8.44 TCBTW Register Field Descriptions

Fields

Description
Read/W

rite
Reset
StateNames Bits

Data 63:0 Trace Word R/W 0

Table 8.43 TCBCONFIG Register Field Descriptions (Continued)

Fields

Description
Read/Wr

ite Reset StateName Bits

PW Number of bits used on TR_DATA

00 4 bits

01 8 bits

10 16 bits

11 reserved

 EJTAG Debug Support in the M4K™ Core

190 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.11.6 TCBRDP Register (Reg 5)

The TCBRDP register is the address pointer to on-chip trace memory. It points to the TW read when reading the
TCBTW register. When writing the TCBCONTROLBRM bit to 1, this pointer is reset to the current value of
TCBSTP.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBRDP register is shown below, and the field is described in Table 8.45. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

TCBRDP Register Format

8.11.7 TCBWRP Register (Reg 6)

The TCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new
TW for on-chip trace will be written.

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBWRP register is shown below, and the fields are described in Table 8.46. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, the lower three bits are always
zero.

TCBWRP Register Format

8.11.8 TCBSTP Register (Reg 7)

The TCBSTP register is the start pointer register. This register points to the on-chip trace memory address at which
the oldest TW is located. This pointer is reset to zero when the TCBCONTROLBTR bit is written to 1. If a continu-
ous trace to on-chip memory wraps around the on-chip memory, TSBSTP will have the same value as TCBWRP.

31 n+1 n 0

Address

Table 8.45 TCBRDP Register Field Descriptions

Fields

Description
Read/W

rite
Reset
StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 n+1 n 0

Address

Table 8.46 TCBWRP Register Field Descriptions

Fields

Description
Read/W

rite
Reset
StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

8.11 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 191

This register is reserved if on-chip trace memory is not implemented.

The format of the TCBSTP register is shown below, and the fields are described in Table 8.47. The value of n
depends on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always
zero.

TCBSTP Register Format

8.11.9 TCBTRIGx Register (Reg 16-23)

Up to eight Trigger Control registers are possible. Each register is named TCBTRIGx, where x is a single digit num-
ber from 0 to 7 (TCBTRIG0 is Reg 16). The actual number of trigger registers implemented is defined in the
TCBCONFIGTRIG field. An unimplemented register will read all zeros and writes are ignored.

Each Trigger Control register controls when an associated trigger is fired, and the action to be taken when the trigger
occurs. Please also read Chapter 8, “TCB Trigger logic” on page 197, for detailed description of trigger logic issues.

The format of the TCBTRIGx register is shown below, and the fields are described in Table 8.48.
TCBTRIGx Register Format

31 n+1 n 0

Address

Table 8.47 TCBSTP Register Field Descriptions

Fields

Description
Read/W

rite
Reset
StateNames Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0

Address n:0 Byte address of on-chip trace memory word. R/W 0

31 24 23 22 16 15 14 13 7 6 5 4 3 2 1 0

TCBinfo Trace 0 CHTro PDTro 0
D
M

CHTr
i

PDTr
i

Type FO TR

Table 8.48 TCBTRIGx Register Field Descriptions

Fields

Description
Read/W

rite
Reset
StateNames Bits

TCBinfo 31:24 TCBinfo to be used in a possible TF6 trace format when this trigger
fires.

R/W 0

Trace 23 When set, generate TF6 trace information when this trigger fires.
Use TCBinfo field for the TCBinfo of TF6 and use Type field for
the two MSB of the TCBtype of TF6. The two LSB of TCBtype are
00.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the
TF6 format was ever suppressed by a simultaneous trigger. If so,
the read value will be 0. If the write value was 0, the read value is
always 0. This special read value is valid until the TCBTRIGx reg-
ister is written.

R/W 0

0 22:16 Reserved. Must be written as zero; returns zero on read. R 0

 EJTAG Debug Support in the M4K™ Core

192 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

CHTro 15 When set, generate a single cycle strobe on TC_ChipTrigOut when
this trigger fires.

R/W 0

PDTro 14 When set, generate a single cycle strobe on TC_ProbeTrigOut
when this trigger fires.

R/W 0

0 13:7 Reserved. Must be written as zero; returns zero on read. R 0

DM 6 When set, this Trigger will fire when a rising edge on the Debug
mode indication from the core is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

CHTri 5 When set, this Trigger will fire when a rising edge on
TC_ChipTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

PDTri 4 When set, this Trigger will fire when a rising edge on
TC_ProbeTrigIn is detected.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if this
source was ever the cause of a trigger action (even if the action was
suppressed). If so the read value will be 1. If the write value was 0
the read value is always 0. This special read value is valid until the
TCBTRIGx register is written.

R/W 0

Table 8.48 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
StateNames Bits

8.11 Trace Control Block (TCB) Registers (Hardware Control)

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 193

8.11.10 Register Reset State

Reset state for all register fields is entered when either of the following occur:

Type 3:2 Trigger Type: The Type indicates the action to take when this trig-
ger fires. The table below show the Type values and the Trigger
action.

The actual action is to set or clear the TCBCONTROLBEN bit. A

Start trigger will set TCBCONTROLBEN, a End trigger will clear

TCBCONTROLBEN. The About trigger will clear

TCBCONTROLBEN half way through the trace memory, from the

trigger. The size determined by the TCBCONFIGSZ field for

on-chip memory. Or from the TCBCONTROLASyP field for

off-chip trace.
If Trace is set, then a TF6 format is added to the trace words. For
Start and Info triggers this is done before any other TF’s in that
same cycle. For End and About triggers, the TF6 format is added
after any other TF’s in that same cycle.
If the TCBCONTROLBTM field is implemented it must be set to

Trace-To mode (00), for the Type field to control on-chip trace fill.
The write value of this bit always controls the behavior of this trig-
ger.
When this trigger fires, the read value will change to indicate if the
trigger action was ever suppressed. If so the read value will be 11.
If the write value was 11 the read value is always 11. This special
read value is valid until the TCBTRIGx register is written.

R/W 0

FO 1 Fire Once. When set, this trigger will not re-fire until the TR bit is
de-asserted. When de-asserted this trigger will fire each time one of
the trigger sources indicates trigger.

R/W 0

TR 0 Trigger happened. When set, this trigger fired since the TR bit was
last written 0.
This bit is used to inspect whether the trigger fired since this bit
was last written zero.
When set, all the trigger source bits (bit 4 to 13) will change their
read value to indicate if the particular bit was the source to fire this
trigger. Only enabled trigger sources can set the read value, but
more than one is possible.
Also when set the Type field and the Trace field will have read val-
ues which indicate if the trigger action was ever suppressed by a
higher priority trigger.

R/W0 0

Table 8.48 TCBTRIGx Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
StateNames Bits

Type Trigger action

00 Trigger Start: Trigger start-point of trace.

01 Trigger End: Trigger end-point of trace.

10 Trigger About: Trigger center-point of trace.

11 Trigger Info: No action trigger, only for trace
info.

 EJTAG Debug Support in the M4K™ Core

194 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

1. TAP controller enters/is in Test-Logic-Reset state.

2. EJ_TRST_N input is asserted low.

8.12 EJTAG Trace Enabling

As there are several ways to enable tracing, it can be quite confusing to figure out how to turn tracing on and off. This
section should help clarify the enabling of trace.

8.12.1 Trace Trigger from EJTAG Hardware Instruction/Data Breakpoints

If hardware instruction/data simple breakpoints are implemented in the M4K core, then these breakpoint can be used
as triggers to start/stop trace. When used for this, the breakpoints need not also generate a debug exception, but are
capable of only generating an internal trigger to the trace logic. This is done by only setting the TE bit and not the BE
bit in the Breakpoint Control register. Please see 8.2.7.5 “Instruction Breakpoint Control n (IBCn) Register (0x1118
+ n*0x100)” on page 136 and 8.2.8.5 “Data Breakpoint Control n (DBCn) Register (0x2118 + 0x100 * n)” on
page 140, for details on breakpoint control.

In connection with the breakpoints, the Trace BreakPoint Control (TraceBPC) register is used to define the trace
action when a trigger happens. When a breakpoint is enabled as a trigger (TE = 1), it can be selected to be either a
start or a stop trigger to the trace logic. Please see 5.2.21 “TraceBPC Register (CP0 Register 23, Select 4)” on
page 117 for detail in how to define a start/stop trigger.

8.12.2 Turning On PDtrace™ Trace

Trace enabling and disabling from software is similar to the hardware method, with the exception that the bits in the
control register are used instead of the input enable signals from the TCB. The TraceControlTS bit controls whether
hardware (via the TCB), or software (via the TraceControl register) controls tracing functionality.

Trace is turned on when the following expression evaluates true:

(
(

(TraceControlTS and TraceControlOn) or
((not TraceControlTS) and TCBCONTROLAOn)

)
and
(MatchEnable or TriggerEnable)

)

where,

MatchEnable ←
(

TraceControlTS
and
(

(TraceControlU and UserMode) or
(TraceControlK and KernelMode) or
(TraceControlE and ExceptionMode) or
(TraceControlD and DebugMode)

)
)

8.12 EJTAG Trace Enabling

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 195

or
(

(not TraceControlTS)
and
(

(TCBCONTROLAU and UserMode) or
(TCBCONTROLAK and KernelMode) or
(TCBCONTROLAE and ExceptionMode) or
(TCBCONTROLADM and DebugMode)

)
)

and where,

TriggerEnable ←
(

DBCiTE and
DBSBS[i] and
TraceBPCDE and
(TraceBPCDBPOn[i] = 1)

)
or
(

IBCiTE and
IBSBS[i] and
TraceBPCIE and
(TraceBPCIBPOn[i] = 1)

)

As seen in the expression above, trace can be turned on only if the master switch TraceControlOn or
TCBCONTROLAOn is first asserted.

Once this is asserted, there are two ways to turn on tracing. The first way, the MatchEnable expression, uses the input
enable signals from the TCB or the bits in the TraceControl register. This tracing is done over general program areas.
For example, all of the user-level code , and so on.

The second way to turn on tracing, the TriggerEnable expression, is from the processor side using the EJTAG hard-
ware breakpoint triggers. If EJTAG is implemented, and hardware breakpoints can be set, then using this method
enables finer grain tracing control. It is possible to send a trigger signal that turns on tracing at a particular instruction.
For example, it would be possible to trace a single procedure in a program by triggering on trace at the first instruc-
tion, and triggering off trace at the last instruction.

The easiest way to unconditionally turn on trace is to assert either hardware or software tracing and the corresponding
trace on signal with other enables. For example, with TraceControlTS=0, i.e., hardware controlled tracing, assert
TCBCONTROLAOn and all the other signals in the second part of expression MatchEnable. When using the EJTAG
hardware triggers to turn trace on and off, it is best if TCBCONTROLAOn is asserted and all the other processor
mode selection bits in TCBCONTROLA are turned off. This would be the least confusing way to control tracing with
the trigger signals. Tracing can be controlled via software with the TraceControl register in a similar manner.

8.12.3 Turning Off PDtrace™ Trace

Trace is turned off when the following expression evaluates true:

(

 EJTAG Debug Support in the M4K™ Core

196 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

(TraceControlTS and (not TraceControlOn))) or
((not TraceControlTS) and (not TCBCONTROLAOn))

)
or
(

(not MatchEnable) and
(not TriggerEnable) and
TriggerDisable

)

where,

TriggerDisable ←
(

DBCiTE and
DBSBS[i] and
TraceBPCDE and
(TraceBPCDBPOn[i] = 0)

)
or
(

IBCiTE and
IBSBS[i] and
TraceBPCIE and
(TraceBPCIBPOn[i] = 0)

)

Tracing can be unconditionally turned off by de-asserting the TraceControlOn bit or the TCBCONTROLAOn signal.
When either of these are asserted, tracing can be turned off if all of the enables are de-asserted. EJTAG hardware
breakpoints can be used to trigger trace off as well. Note that if simultaneous triggers are generated, and even one of
them turns on tracing, then even if all of the others attempt to trigger trace off, then tracing will still be turned on. This
condition is reflected in presence of the “(not TriggerEnable)” term in the expression above.

8.12.4 TCB Trace Enabling

The TCB must be enabled in order to produce a trace on the probe or to on-chip memory, when trace information is
sent on the PDtrace™ interface. The main switch for this is the TCBCONTROLBEN bit. When set, the TCB will
send trace information to either on-chip trace memory or to the Trace Probe, controlled by the setting of the
TCBCONTROLBOfC bit.

The TCB can optionally include trigger logic, which can control the TCBCONTROLBEN bit. Please see 8.13 “TCB
Trigger logic” for details.

8.12.5 Tracing a Reset Exception

Tracing a reset exception is possible. However, the TraceControlTS bit is reset to 0 at core reset, so all the trace con-
trol must be from the TCB (using TCBCONTROLA and TCBCONTROLB). The PDtrace fifo and the entire TCB
are reset based on an EJTAG reset. It is thus possible to set up the trace modes, etc., using the TAP controller, and
then reset the processor core.

 EJTAG Debug Support in the M4K™ Core

198 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.13.2 Trigger Source Unit

The TCB has three trigger sources:

1. Chip-level trigger input (TC_ChipTrigIn).

2. Probe trigger input (TR_TRIGIN).

3. Debug Mode (DM) entry indication from the processor core.

The input triggers are all rising-edge triggers, and the Trigger Source Units convert the edge into a single cycle strobe
to the Trigger Control Units.

8.13.3 Trigger Control Units

Up to eight Trigger Control Units are possible. Each of them has its own Trigger Control Register (TCBTRIGx,
x={0..7}). Each of these registers controls the trigger fire mechanism for the unit. Each unit has all of the Trigger
Sources as possible trigger event and they can fire one or more of the Trigger Actions. This is all defined in the Trig-
ger Control register TCBTRIGx (see 8.11.9 “TCBTRIGx Register (Reg 16-23)” on page 191).

8.13.4 Trigger Action Unit

The TCB has four possible trigger actions:

1. Chip-level trigger output (TC_ChipTrigOut).

2. Probe trigger output (TR_TRIGOUT).

3. Trace information. Put a programmable byte into the trace stream from the TCB.

4. Start, End or About (delayed end) control of the TCBCONTROLBEN bit.

The basic function of the trigger actions is explained in 8.11.9 “TCBTRIGx Register (Reg 16-23)” on page 191.
Please also read the next 8.13.5 “Simultaneous Triggers”.

8.13.5 Simultaneous Triggers

Two or more triggers can fire simultaneously. The resulting behavior depends on trigger action set for each of them,
and whether they should produce a TF6 trace information output or not. There are two groups of trigger actions: Pri-
oritized and OR’ed.

8.13.5.1 Prioritized Trigger Actions

For prioritized simultaneous trigger actions, the trigger control unit which has the lowest number takes precedence
over the higher numbered units. The x in TCBTRIGx registers defines the number. The oldest trigger takes prece-
dence over everything.

The following trigger actions are prioritized when two or more units fire simultaneously:

• Trigger Start, End and About type triggers (TCBTRIGxType field set to 00, 01 or 10), which will assert/de-assert
the TCBCONTROLBEN bit. The About trigger is delayed and will always change TCBCONTROLBEN because

8.14 EJTAG Trace Cycle-by-Cycle Behavior

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 199

it is the oldest trigger when it de-asserts TCBCONTROLBEN. An About trigger will not start the countdown if
an even older About trigger is using the Trace Word counter.

• Triggers which produce TF6 trace information in the trace flow (Trace bit is set).

Regardless of priority, the TCBTRIGxTR bit is set when the trigger fires. This is so even if a trigger action is sup-
pressed by a higher priority trigger action. If the trigger is set to only fire once (the TCBTRIGxFO bit is set), then the
suppressed trigger action will not happen until after TCBTRIGxTR is written 0.

If a Trigger action is suppressed by a higher priority trigger, then the read value, when the TCBTRIGxTR bit is set, for
the TCBTRIGxTrace field will be 0 for suppressed TF6 trace information actions. The read value in the
TCBTRIGxType field for suppressed Start/End/About triggers will be 11. This indication of a suppressed action is
sticky. If any of the two actions (Trace and Type) are ever suppressed for a multi-fire trigger (the TCBTRIGxFO bit is
zero), then the read values in Trace and/or Type are set to indicate any suppressed action.

About Trigger

The About triggers delayed de-assertion of the TCBCONTROLBEN bit is always executed, regardless of priority
from another Start trigger at the time of the TCBCONTROLBEN change. This means that if a simultaneous About
trigger action on the TCBCONTROLBEN bit (n/2 Trace Words after the trigger) and a Start trigger hit the same
cycle, then the About trigger wins, regardless of which trigger number it is. The oldest trigger takes precedence.

However, if an About trigger has started the count down from n/2, but not yet reached zero, then a new About trigger,
will NOT be executed. Only one About trigger can have the cycle counter. This second About trigger will store 11 in
the TCBTRIGxType field. But, if the TCBTRIGxTrace bit is set, a TF6 trace information will still go in the trace.

8.13.5.2 OR’ed Trigger Actions

The simple trigger actions CHTro and PDTro from each trigger unit, are effectively OR’ed together to produce the
final trigger. One or more expected trigger strobes on i.e. TC_ChipTrigOut can thus disappear. External logic should
not rely on counting of strobes, to predict a specific event, unless simultaneous triggers are known not to occur.

8.14 EJTAG Trace Cycle-by-Cycle Behavior

A key reason for using trace, and not single stepping to debug a software problem, is often to get a picture of the
real-time behavior. However the trace logic itself can, when enabled, affect the exact cycle-by-cycle behavior,

8.14.1 Fifo Logic in PDtrace and TCB Modules

Both the PDtrace module and the TCB module contain a fifo. This might seem like extra overhead, but there are good
reasons for this. The vast majority of the information compression happens in the PDtrace module. Any data informa-
tion, like PC and load/store address values (delta or full), load/store data and processor mode changes, are all sent on
the same 16 data bus to the TCB on the PDtrace™ interface. When an instruction requires more than 16 bits of infor-
mation to be traced properly, the PDtrace fifo will buffer the information, and send it on subsequent clock cycles.

In the TCB, the on-chip trace memory is defined as a 64-bit wide synchronous memory running at core-clock speed.
In this case the fifo is not needed. For off-chip trace through the Trace Probe, the fifo comes into play, because only a
limited number of pins (4, 8 or 16) exist. Also the speed of the Trace Probe interface can be different (either faster or
slower) from that of the M4K core. So for off-chip tracing, a specific TCB TW fifo is needed.

 EJTAG Debug Support in the M4K™ Core

200 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.14.2 Handling of Fifo Overflow in the PDtrace Module

Depending on the amount of trace information selected for trace, and the frequency with which the 16-bit data inter-
face is needed, it is possible for the PDtrace fifo overflow from time to time. There are two ways to handle this case:

1. Allow the overflow to happen, and thereby lose some information from the trace data.

2. Prevent the overflow by back-stalling the core, until the fifo has enough empty slots to accept new trace data.

The PDtrace fifo option is controlled by either the TraceControlIO or the TCBCONTROLAIO bit, depending on the
setting of TraceControlTS bit.

The first option is free of any cycle-by-cycle change whether trace is turned on or not. This is achieved at the cost of
potentially losing trace information. After an overflow, the fifo is completely emptied, and the next instruction is
traced as if it was the start of the trace (processor mode and full PC are traced). This guarantees that only the
un-traced fifo information is lost.

The second option guarantees that all the trace information is traced to the TCB. In some cases this is then achieved
by back-stalling the core pipeline, giving the PDtrace fifo time to empty enough room in the fifo to accept new trace
information from a new instruction. This option can obviously change the real-time behavior of the core when tracing
is turned on.

If PC trace information is the only thing enabled (in TraceControlMODE or TCBCONTROLAMODE, depending on
the setting of TraceControlTS), and Trace of all branches is turned off (via TraceControlTB or TCBCONTROLATB,
depending on the setting of TraceControlTS), then the fifo is unlikely to overflow very often, if at all. This is of
course very dependent on the code executed, and the frequency of exception handler jumps, but with this setting there
is very little information overhead.

8.14.3 Handling of Fifo Overflow in the TCB

The TCB also holds a fifo, used to buffer the TW’s which are sent off-chip through the Trace Probe. The data width of
the probe can be either 4, 8 or 16 pins, and the speed of these data pins can be from 16 times the core-clock to 1/4 of
the core clock (the trace probe clock always runs at a double data rate multiple to the core-clock). See
8.14.3.1 “Probe Width and Clock-Ratio Settings” for a description of probe width and clock-ratio options. The com-
bination between the probe width (4, 8 or 16) and the data speed, allows for data rates through the trace probe from
256 bits per core-clock cycle down to only 1 bit per core-clock cycle. The high extreme is not likely to be supported
in any implementation, but the low one might be.

The data rate is an important figure when the likelihood of a TCB fifo overflow is considered. The TCB will at maxi-
mum produce one full 64-bit TW per core-clock cycle. This is true for any selection of trace mode in
TraceControlMODE or TCBCONTROLAMODE. The PDtrace module will guarantee the limited amount of data. If
the TCB data rate cannot be matched by the off-chip probe width and data speed, then the TCB fifo can possibly over-
flow. There is only one way to handle this:

1. Prevent the overflow by asserting a stall-signal back to the core (PDI_StallSending). This will in turn stall the
core pipeline.

There is no way to guarantee that this back-stall from the TCB is never asserted, unless the effective data rate of the
Trace Probe interface is at least 64-bits per core-clock cycle.

8.15 TCB On-Chip Trace Memory

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 201

As a practical matter, the amount of data to the TCB can be minimized by only tracing PC information and excluding
any cycle accurate information. This is explained in 8.14.2 “Handling of Fifo Overflow in the PDtrace Module” and
below in 8.14.4 “Adding Cycle Accurate Information to the Trace”. With this setting, a data rate of 8-bits per
core-clock cycle is usually sufficient. No guarantees can be given here, however, as heavy interrupt activity can
increase the number of unpredictable jumps considerably.

8.14.3.1 Probe Width and Clock-Ratio Settings

The actual number of data pins (4, 8 or 16) is defined by the TCBCONFIGPW field. Furthermore, the frequency of
the Trace Probe can be different from the core-clock frequency. The trace clock (TR_CLK) is a double data rate
clock. This means that the data pins (TR_DATA) change their value on both edges of the trace clock. When the trace
clock is running at clock ratio of 1:2 (one half) of core clock, the data output registers are running a core-clock fre-
quency. The clock ratio is set in the TCBCONTROLBCR field. The legal range for the clock ratio is defined in
TCBCONFIGCRMax and TCBCONFIGCRMin (both values inclusive). If TCBCONTROLBCR is set to an unsup-
ported value, the result is UNPREDICABLE. The maximum possible value for TCBCONFIGCRMax is 8:1 (TR_CLK
is running 8 times faster than core-clock). The minimum possible value for TCBCONFIGCRMin is 1:8 (TR_CLK is
running at one eighth of the core-clock). See Table 8.41 for a description of the encoding of the clock ratio fields.

8.14.4 Adding Cycle Accurate Information to the Trace

Depending on the trace regeneration software, it is possible to obtain the exact cycle time relationship between each
instruction in the trace. This information is added to the trace, when the TCBCONTROLBCA bit is set. The overhead
on the trace information is a little more than one extra bit per core-clock cycle.

This setting only affects the TCB module and not the PDtrace module. The extra bit therefore only affects the likeli-
hood of the TCB fifo overflowing.

8.15 TCB On-Chip Trace Memory

When on-chip trace memory is available (TCBCONFIGOnT is set) the memory is typically of smaller size than if it
were external in a trace probe. The assumption is that it is of some value to trace a smaller piece of the program.

With on-chip trace memory, the TCB can work in three possible modes:

1. Trace-From mode.

2. Trace-To mode.

3. Under Trigger unit control.

Software can select this mode using the TCBCONTROLBTM field. If one or more trigger control registers
(TCBTRIGx) are implemented, and they are using Start, End or About triggers, then the trace mode in
TCBCONTROLBTM should be set to Trace-To mode.

8.15.1 On-Chip Trace Memory Size

The supported On-chip trace memory size can range from 256 byte to 8Mbytes, in powers of 2. The actual size is
shown in the TCBCONFIGSZ field.

 EJTAG Debug Support in the M4K™ Core

202 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

8.15.2 Trace-From Mode

In the Trace-From mode, tracing begins when the processor enters into a processor mode which is defined to be traced
or when an EJTAG hardware breakpoint trace trigger turns on tracing. Trace collection is stopped when the buffer is
full. The TCB then signals buffer full using TCBCONTROLBBF. When external software polling this register finds
the TCBCONTROLBBF bit set, it can then read out the internal trace memory. Saving the trace into the internal
buffer will re-commence again only when the TCBCONTROLBBF bit is reset and if the core is sending valid trace
data (i.e., PDO_IamTracing not equal 0).

8.15.3 Trace-To Mode

In the Trace-To mode, the TCB keeps writing into the internal trace memory, wrapping over and overwriting the old-
est information, until the processor is reaches an end of trace condition. End of trace is reached by leaving the proces-
sor mode which is traced, or when an EJTAG hardware breakpoint trace trigger turns tracing off. At this point, the
on-chip trace buffer is then dumped out in a manner similar to that described above in 8.15.2 “Trace-From Mode”.

Chapter 9

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 203

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Immedi-
ate, Jump, and Register. Refer to Chapter 10, “M4K™ Processor Core Instructions” on page 207 for a complete list-
ing and description of instructions.

This chapter discusses the following topics

• Section 9.1 “CPU Instruction Formats”

• Section 9.2 “Load and Store Instructions”

• Section 9.3 “Computational Instructions”

• Section 9.4 “Jump and Branch Instructions”

• Section 9.5 “Control Instructions”

• Section 9.6 “Coprocessor Instructions”

9.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction for-
mats immediate (I-type), jump (J-type), and register (R-type)—as shown in Figure 9.1. The use of a small number of
instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated (and less
frequently used) operations and addressing modes from these three formats as needed.

9.3 Computational Instructions

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 205

The access type, together with the three low-order bits of the address, define the bytes accessed within the addressed
word as shown in Table 9.1. Only the combinations shown in Table 9.1 are permissible; other combinations cause
address error exceptions.

9.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in imme-
diate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

• Arithmetic

• Logical

• Shift

• Multiply

• Divide

These operations fit in the following four categories of computational instructions:

• ALU Immediate instructions

• Three-operand Register-type Instructions

• Shift Instructions

• Multiply And Divide Instructions

Table 9.1 Byte Access Within a Word

Bytes Accessed

Low Order
Address Bits

Big Endian
(31---------------------0)

Little Endian
(31---------------------0)

Access Type 2 1 0 Byte Byte

Word 0 0 0 0 1 2 3 3 2 1 0

Triplebyte 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

Halfword 0 0 0 0 1 1 0

0 1 0 2 3 3 2

Byte 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

 Instruction Set Overview

206 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

9.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue
through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply
instruction is followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product
does become available. Refer to Chapter 2, “Pipeline of the M4K™ Core” on page 23 for more information on
instruction latency and repeat rates.

9.4 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of one instruction: that is, the instruction immediately following the jump or branch (this is known as the
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

9.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the general
purpose registers.

For more information about jump instructions, refer to the individual instructions in 10.3 “MIPS32® Instruction Set
for the M4K™ core” on page 210.

9.4.2 Overview of Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-bit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

9.5 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

9.6 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. Refer to Chapter 10, “M4K™ Processor Core Instructions”
on page 207 for a listing of CP0 instructions.

Chapter 10

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 207

M4K™ Processor Core Instructions

This chapter supplements the MIPS32 Architecture Reference Manual by describing instruction behavior that is spe-
cific to a MIPS32 M4K processor core. The chapter is divided into the following sections:

• Section 10.1 “Understanding the Instruction Descriptions”

• Section 10.2 “M4K™ Opcode Map”

• Section 10.3 “MIPS32® Instruction Set for the M4K™ core”

The M4K processor core also supports the MIPS16 ASE to the MIPS32 architecture. The MIPS16 ASE instruction
set is described in Chapter 11, “MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set” on
page 229.

10.1 Understanding the Instruction Descriptions

Refer to Volume II of the MIPS32 Architecture Reference Manual for more information about the instruction descrip-
tions. There is a description of the instruction fields, definition of terms, and a description function notation available
in that document.

10.2 M4K™ Opcode Map

Key

• CAPITALIZED text indicates an opcode mnemonic

• Italicized text indicates to look at the specified opcode submap for further instruction bit decode

• Entries containing the α symbol indicate that a reserved instruction fault occurs if the core executes this instruc-
tion.

• Entries containing the β symbol indicate that a coprocessor unusable exception occurs if the core executes this
instruction

 M4K™ Processor Core Instructions

208 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Table 10.1 Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 Special RegImm J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 β COP2 β BEQL BNEL BLEZL BGTZL

3 011 α α α α Special2 ϑΑΛΞ α Σπεχιαλ3
4 100 LB LH LWL LW LBU LHU LWR α
5 101 SB SH SWL SW α α SWR CACHE

6 110 LL β LWC2 PREF α β α α
7 111 SC β SWC2 α α β α α

Table 10.2 Special Opcode encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL β SRL/
ROTR

SRA SLLV α SRLV/
ROTRV

SRAV

1 001 JR JALR MOVZ MOVN SYSCALL BREAK α SYNC

2 010 MFHI MTHI MFLO MTLO α α α α
3 011 MULT MULTU DIV DIVU α α α α
4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 α α SLT SLTU α α α α
6 110 TGE TGEU TLT TLTU TEQ α TNE α
7 111 α α α α α α α α

Table 10.3 Special2 Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL α MSUB MSUBU α α
1 001 α α α α α α α
2 010 UDI1 or α

1. CorExtend instructions are a build-time option of the M4K Pro core, if not implemented this instructions space will
cause a reserved instruction exception. If assembler support exists, the mnemonics for CorExtend instructions are
most likely UDI0, UDI1, .., UDI15.

3 011

4 100 CLZ CLO α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α α α α α SDBBP

10.2 M4K™ Opcode Map

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 209

Table 10.4 Special3 Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 EXT α α α INS α α α
1 001 α α α α α α α α
2 010 α α α α α α α α
3 011 α α α α α α α α
4 100 BSHFL α α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α Ρ∆ΗΩΡ α α α α

Table 10.5 RegImm Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL BGEZL α α α α
1 01 TGEI TGEIU TLTI TLTIU TEQI α TNEI α
2 10 BLTZAL BGEZAL BLTZALL BGEZALL α α α α
3 11 α α α α α α α ΣΨΝΧΙ

Table 10.6 COP2 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC2 α CFC2 ΜΦΗΧ2 MTC2 α CTC2 ΜΤΗΧ2
1 01 BC2 BC21

1. The core will treat the entire row as a BC2 instruction. However compiler and assembler support only exists for the
first one. Some compiler and assembler products may allow the user to add new instructions.

2 10 CO

3 11

Table 10.7 COP2 Encoding of rt Field When rs=BC2

rt bits 16

bits 17 0 1

0 BC2F BC2T

1 BC2FL BC2TL

 M4K™ Processor Core Instructions

210 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

10.3 MIPS32® Instruction Set for the M4K™ core

This section describes the MIPS32 instructions for the M4K cores. Table 10.10 lists the instructions in alphabetical
order. Instructions that have implementation dependent behavior are described afterwards. The descriptions for other
instructions exist in the architecture reference manual and are not duplicated here.

Table 10.8 COP0 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 α α α MTC0 α α α
1 01 α α Ρ∆ΠΓΠΡ ΜΦΜΧ0 α α ΩΡΠΓΠΡ α
2 10 CO

3 11

Table 10.9 COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 α α α α α α α α
1 001 α α α α α α α α
2 010 α α α α α α α α
3 011 ERET ΙΑΧΚ α α α α α DERET

4 100 WAIT α α α α α α α
5 101 α α α α α α α α
6 110 α α α α α α α α
7 111 α α α α α α α α

Table 10.10 Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)

PC += (int)offset

BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BC2F Branch On COP2 Condition False if COP2Condition(cc) == 0
PC += (int)offset

10.3 MIPS32® Instruction Set for the M4K™ core

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 211

BC2FL Branch On COP2 Condition False Likely if COP2Condition(cc) == 0
PC += (int)offset

else
Ignore Next Instruction

BC2T Branch On COP2 Condition True if COP2Condition(cc) == 1
PC += (int)offset

BC2TL Branch On COP2 Condition True Likely if COP2Condition(cc) == 1
PC += (int)offset

else
Ignore Next Instruction

BEQ Branch On Equal if Rs == Rt
PC += (int)offset

BEQL Branch On Equal Likely if Rs == Rt
PC += (int)offset

else
Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And
Link

GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31] = PC + 8
if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero
Likely

if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
PC += (int)offset

else
 Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
PC += (int)offset

else
Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]
PC += (int)offset

Table 10.10 Instruction Set (Continued)

Instruction Description Function

 M4K™ Processor Core Instructions

212 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset

BNEL Branch on Not Equal Likely if Rs != Rt
PC += (int)offset

else
Ignore Next Instruction

BREAK Breakpoint Break Exception

CACHE Cache Operation See Cache Description

CFC2 Move Control Word From Coprocessor 2 Rt = CCR[2, n]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP0 Coprocessor 0 Operation See Coprocessor Description

COP2 Coprocessor 2 Operation See Coprocessor 2 Description

CTC2 Move Control Word To Coprocessor 2 CCR[2, n] = Rt

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DI Disable Interrupts Rt=Status
StatusIE=0

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

EHB Execution Hazard Barrier Stall until execution hazards are
cleared

EI Enable Interrupts Rt=Status
StatusIE=1

ERET Return from Exception if SR[2]
PC = ErrorEPC

else
PC = EPC

SR[1] = 0
SR[2] = 0
LL = 0

EXT Extract Bit Field Rt=ExtractField(Rs,msbd,lsb)

INS Insert Bit Field Rt=InsertField(Rt,Rs,msb,lsb)

Table 10.10 Instruction Set (Continued)

Instruction Description Function

10.3 MIPS32® Instruction Set for the M4K™ core

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 213

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JALR.HB Jump and Link Register with Hazard Barrier Rd = PC + 8
PC = Rs
Stall until all execution and instruc-
tion hazards are cleared

JR Jump Register PC = Rs

JR.HB Jump Register with Hazard Barrier PC = Rs
Stall until all execution and instruc-
tion hazards are cleared

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWC2 Load Word To Coprocessor 2 CPR[2, n, 0] = Mem[Rs+offset]

LWL Load Word Left See LWL instruction.

LWR Load Word Right See LWR instruction.

MADD Multiply-Add HI, LO += (int)Rs * (int)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, n, sel]

MFC2 Move From Coprocessor 2 Rt = CPR[2, n, sel31 0]

MFHC2 Move From High Word Coprocessor2 Rt= CPR[2,n,sel]63 32

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN Move Conditional on Not Zero if GPR[rt] ≠ 0 then
GPR[rd] = GPR[rs]

MOVZ Move Conditional on Zero if GPR[rt] = 0 then
GPR[rd] = GPR[rs]

MSUB Multiply-Subtract HI, LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI, LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, sel] = Rt

MTC2 Move To Coprocessor 2 CPR[2, n, sel]31 0 = Rt

MTHC2 Move To High Word Coprocessor 2 CPR[2, n, sel]63 32 = Rt

Table 10.10 Instruction Set (Continued)

Instruction Description Function

 M4K™ Processor Core Instructions

214 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI | LO =Unpredictable
Rd = LO

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Nop

RDHWR Read HardWare Register Rt=HWR[Rd]

RDPGPR Read GPR from Previous Shadow Set Rd=SGPR[SRSCtlPSS, Rt]

ROTR Rotate Word Right Rd = Rtsa-1 0 || Rt31 sa

ROTRV Rotate Word Right Variable Rd = RtRs-1 0 || Rt31 Rs

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word if LL =1
mem[Rxoffs] = Rt

Rt = LL

SDBBP Software Debug Breakpoint Trap to SW Debug Handler

SEB Sign Extend Byte Rd=SignExtend(Rt7 0)

SEH Sign Extend Half Rd=SignExtend(Rt15 0)

SH Store Halfword (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd = 1

else
Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

Table 10.10 Instruction Set (Continued)

Instruction Description Function

10.3 MIPS32® Instruction Set for the M4K™ core

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 215

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation Nop

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

SWC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2, n, 0]

SWL Store Word Left See SWL instruction description.

SWR Store Word Right See SWR instruction description.

SYNC Synchronize See SYNC instruction below.

SYNCI Synchronize Caches to Make Instruction Writes
Effective

Nop

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
TrapException

TGEIU Trap if Greater Than or Equal Immediate
Unsigned

if (uns)Rs >= (uns)Immed
TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException

TLT Trap if Less Than if (int)Rs < (int)Rt
TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException

TNE Trap if Not Equal if Rs != Rt
TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS,Rd]=Rt

WSBH Word Swap Bytes within Halfwords Rd=SwapBytesWithinHalfs(Rt)

Table 10.10 Instruction Set (Continued)

Instruction Description Function

 M4K™ Processor Core Instructions

216 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

Table 10.10 Instruction Set (Continued)

Instruction Description Function

Perform Cache Operation CACHE

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 217

Format: CACHE op, offset(base) MIPS32

Purpose: Perform Cache Operation

To perform the cache operation specified by op.

Description:

CACHE is always treated as a NOP on the M4K core (as long as access to Coprocessor 0 is enabled), since it does not
contain caches.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Figure 10.1 Usage of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is

31 26 25 21 20 16 15 0

CACHE
101111

base op offset

6 5 5 16

Table 10.1 Usage of Effective Address

Operation
Requires an

Type of
Cache Usage of Effective Address

Index N/A
Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit + Ceiling(Log2(A))
Way ← AddrWayBit-1..IndexBit
Index ← AddrIndexBit-1..OffsetBit

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index

Perform Cache Operation CACHE

218 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Bits [20:18] of the instruction specify the operation to perform.

Table 10.2 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

0b00 I Primary Instruction

0b01 D Primary Data

0b10 T

0b11 S

Table 10.3 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation ?

0b000 I Index Invalidate Index Set the state of the cache block at the specified
index to invalid.
This encoding may be used by software to inval-
idate the entire instruction cache by stepping
through all valid indices.

D Index
This encoding may be used by software to inval-
idate the entire data cache by stepping through
all valid indices. Note that Index Store Tag
should be used to initialize the cache at pow-
erup.

S, T Index

0b001 Index Load Tag Index

0b010 Index Store Tag Index This encoding may be used by software to ini-
tialize the entire instruction or data caches by
stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.

0b011 All Unspecified

0b100 I, D Hit Invalidate Address If the cache block contains the specified address,
set the state of the cache block to invalid.
This encoding may be used by software to inval-
idate a range of addresses from the instruction
cache by stepping through the address range by
the line size of the cache.

S, T Address

Perform Cache Operation CACHE

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 219

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

li a1, 0x80000000 /* Base of kseg0 segment */
or a0, a0, a1 /* Convert index to kseg0 address */
cache DCIndexStTag, 0(a1) /* Perform the index store tag operation */

0b101 I Fill Address Fill the cache from the specified address.

D Address This encoding may be used by software to inval-
idate a range of addresses from the data cache
by stepping through the address range by the
line size of the cache.

S, T Address

0b110 D Address

S, T Address

Table 10.3 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation ?

Load Linked Word LL

220 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Format: LL rt, offset(base) MIPS32

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] ← memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition. The addressed location may be uncached
for the M4K core.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is
non-zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

31 26 25 21 20 16 15 0

LL
110000

base rt offset

6 5 5 16

Load Linked Word LL

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 221

Prefetch PREF

222 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Format: PREF hint,offset(base) MIPS32

Purpose: Prefetch

To move data between memory and cache.

Description: prefetch_memory(GPR[base] + offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., kseg1), the programmed coherency
attribute of a segment (e.g., the use of the K0, KU, or K23 fields in the Config register), or the per-page coherency
attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and coherency attribute used for the operation are
determined by the memory access type and coherency attribute of the effective address, just as it would be if the
memory operation had been caused by a load or store to the effective address.

31 26 25 21 20 16 15 0

PREF
110011

base hint offset

6 5 5 16

Table 10.1 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

2-3 Reserved

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

Prefetch PREF

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 223

Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have
high-reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

8-24 Reserved

25 writeback_invalidate (also
known as “nudge”)

26-29

30

31

Table 10.1 Values of hint Field for PREF Instruction

Store Conditional Word SC

224 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Format: SC rt, offset(base) MIPS32

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] ← GPR[rt], GPR[rt] ← 1
else GPR[rt] ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The 32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt. On the M4K core, the SRAM
interface supports a lock protocol and the success or failure can be indicated by external hardware.

If the following event occurs between the execution of LL and SC, the SC fails:

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

31 26 25 21 20 16 15 0

SC
111000

base rt offset

6 5 5 16

Store Conditional Word SC

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 225

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 031 || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

Synchronize Shared Memory SYNC

226 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Format: SYNC (stype = 0 implied) MIPS32

Purpose: Synchronize Shared Memory

To order loads and stores.

Description:

Simple Description:

• SYNC affects only uncached and cached coherent loads and stores. The loads and stores that occur before the
SYNC must be completed before the loads and stores after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is visi-
ble to every other processor in the system.

• SYNC is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture) or EHB (in Release
2 of the Architecture), to guarantee that memory reference results are visible across operating mode changes. For
example, a SYNC is required on entry to and exit from Debug Mode to guarantee that memory affects are han-
dled correctly.

Detailed Description:

• SYNC does not guarantee the order in which instruction fetches are performed. The stype values 1-31 are
reserved for future extensions to the architecture. A value of zero will always be defined such that it performs all
defined synchronization operations. Non-zero values may be defined to remove some synchronization opera-
tions. As such, software should never use a non-zero value of the stype field, as this may inadvertently cause
future failures if non-zero values remove synchronization operations.

• The SYNC instruction is externalized on the SRAM interface of the M4K core. External logic can use this infor-
mation in a system-dependent manner to enforce memory ordering between various memory elements in the sys-
tem.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation(stype)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000 0000 0

stype
SYNC
001111

6 15 5 6

Enter Standby Mode WAIT

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 227

Format: WAIT MIPS32

Purpose: Enter Standby Mode

Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external requests are
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset or
SI_ColdReset) is signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the M4K
core does not use the code field in this instruction.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0
010000

CO
1

Implementation-Dependent Code
WAIT

100000

6 1 19 6

Enter Standby Mode WAIT

228 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Chapter 11

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 229

MIPS16e™ Application-Specific Extension to the MIPS32®
Instruction Set

This chapter describes the MIPS16e ™ ASE as implemented in the M4K core. Refer to Volume IV-a of the MIPS32
Architecture Reference Manual for a general description of the MIPS16e ASE as well as instruction descriptions.

 This chapter covers the following topics:

• Section 11.1 “Instruction Bit Encoding”

• Section 11.2 “Instruction Listing”

11.1 Instruction Bit Encoding

Table 11.2 through Table 11.9 describe the encoding used for the MIPS16e ASE. Table 11.1 describes the meaning
of the symbols used in the tables.

Table 11.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction cause a Reserved Instruction Exception.

θ Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, the partner must notify MIPS Technologies, Inc. when
one of these encodings is used. If no instruction is encoded with this value, executing such an
instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

σ Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding is imple-
mented, it must match the instruction encoding as shown in the table.

ε Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

230 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Table 11.2 MIPS16e Encoding of the Opcode Field

opcode bits 13..11

0 1 2 3 4 5 6 7

bits 15..14 000 001 010 011 100 101 110 111

0 00 ADDIUSP1

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction

ADDIUPC2

2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction

B JAL(X) δ BEQZ BNEZ SHIFT δ β

1 01 RRI-A δ ADDIU83

3. The ADDIU8 opcode is used by the ADDIU rx, immediate instruction

SLTI SLTIU I8 δ LI CMPI β

2 10 LB LH LWSP4

4. The LWSP opcode is used by the LW rx, offset(sp) instruction

LW LBU LHU LWPC5

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

β

3 11 SB SH SWSP6

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

SW RRR δ RR δ EXTEND δ β

Table 11.3 MIPS16e JAL(X) Encoding of the x Field

x bit 26

0 1

JAL JALX

Table 11.4 MIPS16e SHIFT Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

SLL β SRL SRA

Table 11.5 MIPS16e RRI-A Encoding of the f Field

f bit 4

0 1

ADDIU1

1. The ADDIU function is used by
the ADDIU ry, rx, immediate
instruction

β

Table 11.6 MIPS16e I8 Encoding of the funct Field

funct bits 10..8

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

BTEQZ BTNEZ SWRASP1

1. The SWRASP function is used by the SW ra, offset(sp) instruction

ADJSP2 SVRS δ MOV32R3 * MOVR324

11.1 Instruction Bit Encoding

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 231

2. The ADJSP function is used by the ADDIU sp, immediate instruction
3. The MOV32R function is used by the MOVE r32, rz instruction
4. The MOVR32 function is used by the MOVE ry, r32 instruction

Table 11.7 MIPS16e RRR Encoding of the f Field

f bits 1..0

0 1 2 3

00 01 10 11

β ADDU β SUBU

Table 11.8 MIPS16e RR Encoding of the Funct Field

funct bits 2..0

0 1 2 3 4 5 6 7

bits 4..3 000 001 010 011 100 101 110 111

0 00 J(AL)R(C) δ SDBBP SLT SLTU SLLV BREAK SRLV SRAV

1 01 β * CMP NEG AND OR XOR NOT

2 10 MFHI CNVT δ MFLO β β * β β
3 11 MULT MULTU DIV DIVU β β β β

Table 11.9 MIPS16e I8 Encoding of the s Field when funct=SVRS

s bit 7

0 1

RESTORE SAVE

Table 11.10 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

JR rx JR ra JALR * JRC rx JRC ra JALRC *

Table 11.11 MIPS16e RR Encoding of the ry Field when funct=CNVT

ry bits 7..5

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

ZEB ZEH β * SEB SEH β *

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

232 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

11.2 Instruction Listing

Table 11.12 through 11.19 list the MIPS16e instruction set.

Table 11.12 MIPS16e Load and Store Instructions

Mnemonic Instruction
Extensible
Instruction

LB Load Byte Yes

LBU Load Byte Unsigned Yes

LH Load Halfword Yes

LHU Load Halfword Unsigned Yes

LW Load Word Yes

SB Store Byte Yes

SH Store Halfword Yes

SW Store Word Yes

Table 11.13 MIPS16e Save and Restore Instructions

Mnemonic Instruction
Extensible
Instruction

RESTORE Restore Registers and Deallocate Stack Frame Yes

SAVE Save Registers and Setup Stack Frame Yes

Table 11.14 MIPS16e ALU Immediate Instructions

Mnemonic Instruction
Extensible
Instruction

ADDIU Add Immediate Unsigned Yes

CMPI Compare Immediate Yes

LI Load Immediate Yes

SLTI Set on Less Than Immediate Yes

SLTIU Set on Less Than Immediate Unsigned Yes

Table 11.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible
Instruction

ADDU Add Unsigned No

AND AND No

CMP Compare No

11.2 Instruction Listing

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 233

MOVE Move No

NEG Negate No

NOT Not No

OR OR No

SEB Sign-Extend Byte No

SEH Sign-Extend Halfword No

SLT Set on Less Than No

SLTU Set on Less Than Unsigned No

SUBU Subtract Unsigned No

XOR Exclusive OR No

ZEB Zero-Extend Byte No

ZEH Zero-Extend Halfword No

Table 11.16 MIPS16e Special Instructions

Mnemonic Instruction
Extensible
Instruction

BREAK Breakpoint No

SDBBP Software Debug Breakpoint No

EXTEND Extend No

Table 11.17 MIPS16e Multiply and Divide Instructions

Mnemonic Instruction
Extensible
Instruction

DIV Divide No

DIVU Divide Unsigned No

MFHI Move From HI No

MFLO Move From LO No

MULT Multiply No

MULTU Multiply Unsigned No

Table 11.15 MIPS16e Arithmetic Two or Three Operand Register Instructions

Mnemonic Instruction
Extensible
Instruction

 MIPS16e™ Application-Specific Extension to the MIPS32® Instruction Set

234 MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03

Table 11.18 MIPS16e Jump and Branch Instructions

Mnemonic Instruction
Extensible
Instruction

B Branch Unconditional Yes

BEQZ Branch on Equal to Zero Yes

BNEZ Branch on Not Equal to Zero Yes

BTEQZ Branch on T Equal to Zero Yes

BTNEZ Branch on T Not Equal to Zero Yes

JAL Jump and Link No

JALR Jump and Link Register No

JALRC Jump and Link Register Compact No

JALX Jump and Link Exchange No

JR Jump Register No

JRC Jump Register Compact No

Table 11.19 MIPS16e Shift Instructions

Mnemonic Instruction
Extensible
Instruction

SRA Shift Right Arithmetic Yes

SRAV Shift Right Arithmetic Variable No

SLL Shift Left Logical Yes

SLLV Shift Left Logical Variable No

SRL Shift Right Logical Yes

SRLV Shift Right Logical Variable No

Appendix A

MIPS32® M4K™ Processor Core Software User’s Manual, Revision 02.03 235

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last
release. Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture
document

Revision Date Description

00.90 June 27, 2002 Preliminary release

01.00 August 28, 2002 • Initial commercial release.
• Removed TLB-related instruction descriptions from Chapter 10,

“M4K™ Processor Core Instructions” on page 207 The associ-
ated opcodes are shown as reserved in Table 10.9.

• Updated HSS field in SRSCtl register to show possible values.
• Added description of MT field in Config register that was previ-

ously missing.
• Changed K0, KU, and K23 fields in Config register to be

read-only, with a static value of 2.

01.01 August 29, 2002 • Removed EIC field from IntCtl register, per change in MIPS32
Release 2 Architecture. External interrupt controller mode is
specified by Config3VEIC.

01.02 December 15, 2003 • CP0 Config1 register: Added CA field description, corrected
typo in IS, IL, IA, DS, DL, DA field description.

• Trademark updates
• Replaced reference to obsolete MD00232 with MD00086
• Updated crossrefs in Status register description

01.03 October 29, 2004 • Added CorExtend Unusable exception
• Added note that EJTAG accesses and external memory accesses

are serialized by the core

02.00 June 22, 2006 • Corrected minor errors related to EJTAG trace.
• Clarified read-only nature of several CP0 register fields and

removed several references to ASID since the M4K core does not
contain a TLB.

• Clarified description of mapped and unmapped segments with
FM-based memory management unit.

• Added description on possible uses for trace triggers.

02.01 September 28, 2006 • Minor changes for addition of M4K Lite core to the M4K family.

02.02 March 21, 2008 • Fixed select number for Debug2 register

02.03 August 29, 2008 • Fixed address for Data Value Match Register

Copyright © Wave Computing, Inc. All rights reserved.

www.wavecomp.ai

