
MIPS32® M4K® Processor Core Datasheet March 4, 2008

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 MD00247

The MIPS32® M4K® core from MIPS® Technologies is a member of the MIPS32 M4K® processor core family. It is a high-
performance, low-power, 32-bit MIPS RISC core designed for custom system-on-silicon applications. The core is designed for
semiconductor manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom
logic and peripherals with a high-performance RISC processor. It is highly portable across processes, and can be easily
integrated into full system-on-silicon designs, allowing developers to focus their attention on end-user products. The M4K core
is ideally positioned to support new products for emerging segments of the routing, network access, network storage, residential
gateway, and smart mobile device markets. It is especially well-suited for microcontroller and hardware accelerator
applications, as well as systems requiring multiple cores, when high performance density is critical.

The synthesizable M4K core implements the MIPS32 Release 2 Architecture with the MIPS16e™ ASE.The Memory
Management Unit (MMU) consists of a simple, Fixed Mapping Translation (FMT) mechanism for applications that do not
require the full capabilities of a Translation Lookaside Buffer (TLB) based MMU. The core includes two different Multiply/
Divide Unit (MDU) implementations, selectable at build-time, allowing the implementor to trade off performance and area. The
high-performance MDU option that implements single cycle 32x16-bit MAC instructions or two cycle 32x32-bit, which enable
DSP algorithms to be performed efficiently. The area-efficient MDU option handles multiplies with a one-bit-per-clock iterative
algorithm.

The M4K core is cacheless; in lieu of caches, it includes a simple interface to SRAM-style devices. This interface may be
configured for independent instruction and data devices or combined into a unified interface.The SRAM interface allows
deterministic response, while still maintaining high performance.

An optional Enhanced JTAG (EJTAG) block allows for single-stepping of the processor as well as instruction and data virtual
address/value breakpoints. Additionally, real-time tracing of instruction program counter, data address, and data values can be
supported.

Figure 1 shows a block diagram of the M4K core. The core is divided into required and optional blocks as shown.

Figure 1 MIPS32® M4K® Core Block Diagram

System
Coprocessor

MDU

FMT

MMU

TAP

EJTAG

 Power
Mgmt

 Off-Chip
Debug I/F

Fixed/Required Optional

 Execution
Core

(RF/ALU/Shift)

O
n-

ch
ip

S
R

A
M

Trace

Off/On-Chip
Trace I/F

SRAM
Interface Dual or

Unified
SRAM I/F

CP2User-defined
Cop 2 block

UDI
User-defined
CorExtend

block

2 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

Features

• 5-stage pipeline

• 32-bit Address and Data Paths

• MIPS32-Compatible Instruction Set

• Multiply-Accumulate and Multiply-Subtract
Instructions (MADD, MADDU, MSUB, MSUBU)

• Targeted Multiply Instruction (MUL)

• Zero/One Detect Instructions (CLZ, CLO)

• Wait Instruction (WAIT)

• Conditional Move Instructions (MOVZ, MOVN)

• MIPS32 Enhanced Architecture (Release 2) Features

• Vectored interrupts and support for external inter-
rupt controller

• Programmable exception vector base

• Atomic interrupt enable/disable

• GPR shadow registers (one, three or seven addi-
tional shadows can be optionally added to minimize
latency for interrupt handlers)

• Bit field manipulation instructions

• MIPS16e™ Code Compression

• 16 bit encodings of 32 bit instructions to improve
code density

• Special PC-relative instructions for efficient load-
ing of addresses and constants

• SAVE & RESTORE macro instructions for setting
up and tearing down stack frames within subrou-
tines

• Improved support for handling 8 and 16 bit
datatypes

• Memory Management Unit

• Simple Fixed Mapping Translation (FMT) mecha-
nism

• Simple SRAM-Style Interface

• Cacheless operation enables deterministic response
and reduces size

• 32-bit address and data; input byte enables enable
simple connection to narrower devices

• Single or multi-cycle latencies

• Configuration option for dual or unified instruction/
data interfaces

• Redirection mechanism on dual I/D interfaces per-
mits D-side references to be handled by I-side

• Transactions can be aborted

• CorExtend® User Defined Instruction Set Extensions
(available in Pro Series™ core)

• Allows user to define and add instructions to the
core at build time

• Maintains full MIPS32 compatibility

• Supported by industry standard development tools

• Single or multi-cycle instructions

• Separately licensed; a core with this feature is
known as the M4K® Pro™ core

• Multi-Core Support

• External lock indication enables multi-processor
semaphores based on LL/SC instructions

• External sync indication allows memory ordering

• Reference design provided for cross-core debug
triggers

• Multiply/Divide Unit (high-performance configuration)

• Maximum issue rate of one 32x16 multiply per
clock

• Maximum issue rate of one 32x32 multiply every
other clock

• Early-in iterative divide. Minimum 11 and maxi-
mum 34 clock latency (dividend (rs) sign exten-
sion-dependent)

• Multiply/Divide Unit (area-efficient configuration)

• 32 clock latency on multiply

• 34 clock latency on multiply-accumulate

• 33-35 clock latency on divide (sign-dependent)

• Coprocessor 2 interface

• 32 bit interface to an external coprocessor

• Power Control

• Minimum frequency: 0 MHz

• Power-down mode (triggered by WAIT instruction)

• Support for software-controlled clock divider

• Support for extensive use of local gated clocks

• EJTAG Debug and MIPS Trace

• Support for single stepping

• Virtual instruction and data address/value break-
points

• Complex breakpoint unit allows more detailed
specification of break conditions

• PC and/or data tracing w/ trace compression

• TAP controller is chainable for multi-CPU debug

• Cross-CPU breakpoint support

• Testability

• Full scan design achieves test coverage in excess of
99% (dependent on library and configuration
options)

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 3

Architecture Overview

The M4K core contains both required and optional blocks.
Required blocks are the lightly shaded areas of the block
diagram in Figure 1 and must be implemented to remain
MIPS-compliant. Optional blocks can be added to the M4K
core based on the needs of the implementation.

The required blocks are as follows:

• Execution Unit

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Fixed Mapping Translation (FMT)

• SRAM Interface

• Power Management

Optional or configurable blocks include:

• Coprocessor 2 interface

• CorExtend® User Defined Instruction (UDI) interface

• MIPS16e support

• Enhanced JTAG (EJTAG) Controller

The section entitled "MIPS32® M4K® Core Required Logic
Blocks" on page 4 discusses the required blocks. The section
entitled "MIPS32® M4K® Core Optional or Configurable
Logic Blocks" on page 12 discusses the optional blocks.

Pipeline Flow

The M4K core implements a 5-stage pipeline with
performance similar to the R3000® pipeline. The pipeline
allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and power
consumption.

The M4K core pipeline consists of five stages:

• Instruction (I Stage)

• Execution (E Stage)

• Memory (M Stage)

• Align (A Stage)

• Writeback (W stage)

The M4K core implements a bypass mechanism that allows
the result of an operation to be forwarded directly to the
instruction that needs it without having to write the result to
the register and then read it back.

Figure 2 shows a timing diagram of the M4K core pipeline
(shown with the high performance MDU).

Figure 2 MIPS32® M4K® Core Pipeline

I Stage: Instruction Fetch

During the Instruction fetch stage:

• An instruction is fetched from instruction SRAM.

• MIPS16e instructions are expanded into MIPS32-like
instructions

E Stage: Execution

During the Execution stage:

• Operands are fetched from register file.

• The arithmetic logic unit (ALU) begins the arithmetic or
logical operation for register-to-register instructions.

• The ALU calculates the data virtual address for load and
store instructions, and the MMU performs the fixed
virtual-to-physical address translation.

• The ALU determines whether the branch condition is
true and calculates the virtual branch target address for
branch instructions.

• Instruction logic selects an instruction address.

• All multiply and divide operations begin in this stage.

M Stage: Memory Fetch

During the Memory fetch stage:

• The arithmetic ALU operation completes.

• The data SRAM access is performed for load and store
instructions.

• A 16x16 or 32x16 multiply calculation completes (high-
performance MDU option).

I E M A W

I-A1

RegRd

I Dec

ALU Op

Align RegWD-AC

Bypass
Bypass

Mul-16x16, 32x16 RegW

Bypass

Acc

Mul-32x32 RegWAcc

I-A2

Bypass

Div RegWAcc

I-SRAM
D-SRAM

4 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

• A 32x32 multiply operation stalls the MDU pipeline for
one clock in the M stage (high-performance MDU
option).

• A multiply operation stalls the MDU pipeline for 31
clocks in the M stage (area-efficient MDU option).

• A multiply-accumulate operation stalls the MDU pipeline
for 33 clocks in the M stage (area-efficient MDU option).

• A divide operation stalls the MDU pipeline for a
maximum of 34 clocks in the M stage. Early-in sign
extension detection on the dividend will skip 7, 15, or 23
stall clocks (only the divider in the fast MDU option
supports early-in detection).

A Stage: Align

During the Align stage:

• Load data is aligned to its word boundary.

• A 16x16 or 32x16 multiply operation performs the carry-
propagate-add. The actual register writeback is
performed in the W stage.

• A MUL operation makes the result available for
writeback. The actual register writeback is performed in
the W stage.

• EJTAG complex break conditions are evaluated

W Stage: Writeback

During the Writeback stage:

• For register-to-register or load instructions, the
instruction result is written back to the register file.

MIPS32® M4K® Core Required
Logic Blocks

The M4K core consists of the following required logic
blocks, shown in Figure 1. These logic blocks are defined in
the following subsections:

• Execution Unit

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• Fixed Mapping Translation (FMT)

• SRAM Interface

• Power Management

Execution Unit

The M4K core execution unit implements a load/store
architecture with single-cycle ALU operations (logical, shift,
add, subtract) and an autonomous multiply/divide unit. The
M4K core contains thirty-two 32-bit general-purpose
registers used for integer operations and address calculation.
Optionally, one, three, or seven additional register file
shadow sets (each containing thirty-two registers) can be
added to minimize context switching overhead during
interrupt/exception processing. The register file consists of
two read ports and one write port and is fully bypassed to
minimize operation latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Address unit for calculating the next instruction address

• Logic for branch determination and branch target address
calculation

• Load aligner

• Bypass multiplexers used to avoid stalls when executing
instructions streams where data producing instructions
are followed closely by consumers of their results

• Leading Zero/One detect unit for implementing the CLZ
and CLO instructions

• Arithmetic Logic Unit (ALU) for performing bitwise
logical operations

• Shifter & Store Aligner

Multiply/Divide Unit (MDU)

The M4K core includes a multiply/divide unit (MDU) that
contains a separate pipeline for multiply and divide
operations. This pipeline operates in parallel with the integer
unit (IU) pipeline and does not stall when the IU pipeline
stalls. This allows the long-running MDU operations to be
partially masked by system stalls and/or other integer unit
instructions.

Two configuration options exist for the MDU: an area
efficient, iterative block and a higher performance 32x16
array. The selection of the MDU style allows the
implementor to determine the appropriate trade-off for his/
her application.

Area-Efficient MDU Option

With the area-efficient option, multiply and divide operations
are implemented with a simple 1 bit per clock iterative
algorithm. Any attempt to issue a subsequent MDU
instruction while a multiply/divide is still active causes an
MDU pipeline stall until the operation is completed.

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 5

Table 1 lists the latency (number of cycles until a result is
available) for the M4K core multiply and divide instructions.
The latencies are listed in terms of pipeline clocks.

The MIPS architecture defines that the results of a multiply or
divide operation be placed in the HI and LO registers. Using
the move-from-HI (MFHI) and move-from-LO (MFLO)
instructions, these values can be transferred to the general-
purpose register file.

In addition to the HI/LO targeted operations, the MIPS32
architecture also defines a multiply instruction, MUL, which
places the least significant results in the primary register file
instead of the HI/LO register pair.

Two other instructions, multiply-add (MADD) and multiply-
subtract (MSUB), are used to perform the multiply-
accumulate and multiply-subtract operations, respectively.
The MADD instruction multiplies two numbers and then
adds the product to the current contents of the HI and LO
registers. Similarly, the MSUB instruction multiplies two
operands and then subtracts the product from the HI and LO
registers. The MADD and MSUB operations are commonly
used in DSP algorithms.

High-Performance MDU

The M4K core includes a multiply/divide unit (MDU) that
contains a separate pipeline for multiply and divide
operations. This pipeline operates in parallel with the integer
unit (IU) pipeline and does not stall when the IU pipeline
stalls. This setup allows long-running MDU operations, such
as a divide, to be partially masked by system stalls and/or
other integer unit instructions.

The high-performance MDU consists of a 32x16 booth
recoded multiplier, result/accumulation registers (HI and LO),

a divide state machine, and the necessary multiplexers and
control logic. The first number shown (‘32’ of 32x16)
represents the rs operand. The second number (‘16’ of 32x16)
represents the rt operand. The M4K core only checks the
value of the latter (rt) operand to determine how many times
the operation must pass through the multiplier. The 16x16
and 32x16 operations pass through the multiplier once. A
32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16
multiply operation every clock cycle; 32x32 multiply
operations can be issued every other clock cycle. Appropriate
interlocks are implemented to stall the issuance of back-to-
back 32x32 multiply operations. The multiply operand size is
automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per
clock iterative algorithm. An early-in detection checks the
sign extension of the dividend (rs) operand. If rs is 8 bits
wide, 23 iterations are skipped. For a 16-bit-wide rs, 15
iterations are skipped, and for a 24-bit-wide rs, 7 iterations
are skipped. Any attempt to issue a subsequent MDU
instruction while a divide is still active causes an IU pipeline
stall until the divide operation is completed.

Table 2 lists the repeat rate (peak issue rate of cycles until the
operation can be reissued) and latency (number of cycles until
a result is available) for the M4K core multiply and divide
instructions. The approximate latency and repeat rates are
listed in terms of pipeline clocks. For a more detailed
discussion of latencies and repeat rates, refer to Chapter 2 of
the MIPS32 M4K® Processor Core Family Software User’s
Manual.

Table 1 Area-Efficient Integer Multiply/Divide Unit
Operation Latencies

Opcode
Operand

Sign Latency

MUL, MULT, MULTU any 32

MADD, MADDU,
MSUB, MSUBU

any 34

DIVU any 33

DIV pos/pos 33

any/neg 34

neg/pos 35

Table 2 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

16 bits 1 1

32 bits 2 2

MUL 16 bits 2 1

32 bits 3 2

DIV/DIVU 8 bits 12 11

16 bits 19 18

24 bits 26 25

32 bits 33 32

6 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

The MIPS architecture defines that the result of a multiply or
divide operation be placed in the HI and LO registers. Using
the Move-From-HI (MFHI) and Move-From-LO (MFLO)
instructions, these values can be transferred to the general-
purpose register file.

In addition to the HI/LO targeted operations, the MIPS32
architecture also defines a multiply instruction, MUL, which
places the least significant results in the primary register file
instead of the HI/LO register pair. By avoiding the explicit
MFLO instruction, required when using the LO register, and
by supporting multiple destination registers, the throughput
of multiply-intensive operations is increased.

Two other instructions, multiply-add (MADD) and multiply-
subtract (MSUB), are used to perform the multiply-
accumulate and multiply-subtract operations. The MADD
instruction multiplies two numbers and then adds the product
to the current contents of the HI and LO registers. Similarly,
the MSUB instruction multiplies two operands and then
subtracts the product from the HI and LO registers. The
MADD and MSUB operations are commonly used in DSP
algorithms.

System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-
to-physical address translation, the exception control system,
the processor’s diagnostics capability, the operating modes
(kernel, user, and debug), and whether interrupts are enabled
or disabled. Configuration information, such as presence of
build-time options like MIPS16e or coprocessor 2 interface,
is also available by accessing the CP0 registers, listed in Table
3.

Table 3 Coprocessor 0 Registers in Numerical
Order

Register
Number

Register
Name Function

0-6 Reserved Reserved in the M4K core.

7 HWREna Enables access via the RDHWR
instruction to selected hardware reg-
isters.

8 BadVAddr1 Reports the address for the most
recent address-related exception.

9 Count1 Processor cycle count.

10 Reserved Reserved in the M4K core.

11 Compare1 Timer interrupt control.

12 Status1 Processor status and control.

12 IntCtl1 Interrupt system status and control.

12 SRSCtl1 Shadow register set status and con-
trol.

12 SRSMap1 Provides mapping from vectored
interrupt to a shadow set.

13 Cause1 Cause of last general exception.

14 EPC1 Program counter at last exception.

15 PRId Processor identification and revi-
sion.

15 EBASE Exception vector base register.

16 Config Configuration register.

16 Config1 Configuration register 1.

16 Config2 Configuration register 2.

16 Config3 Configuration register 3.

17- Reserved Reserved in the M4K core.

23 Debug2 Debug control and exception status.

23 Debug22 Complex breakpoint status

23 Trace

Control2
PC/Data trace control register.

23 Trace

Control22
Additional PC/Data trace control.

23 User Trace

Data2
User Trace control register.

23 TraceBPC2 Trace breakpoint control.

24 DEPC2 Program counter at last debug
exception.

25-29 Reserved Reserved in the M4K core.

30 ErrorEPC1 Program counter at last error.

31 DESAVE2 Debug handler scratchpad register.

1. Registers used in exception processing.
2. Registers used during debug.

Table 3 Coprocessor 0 Registers in Numerical
Order (Continued)

Register
Number

Register
Name Function

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 7

Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a variety
of sources, including boundary cases in data, external events,
or program errors. Table 4 shows the exception types in order
of priority.

Interrupt Handling

The M4K core includes support for six hardware interrupt
pins, two software interrupts, and a timer interrupt. These
interrupts can be used in any of three interrupt modes, as
defined by Release 2 of the MIPS32 Architecture:

• Interrupt compatibility mode, which acts identically to
that in an implementation of Release 1 of the
Architecture.

• Vectored Interrupt (VI) mode, which adds the ability to
prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use
during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. This mode
is architecturally optional; but it is always present on the
M4K core, so the VInt bit will always read as a 1 for the
M4K core.

• External Interrupt Controller (EIC) mode, which
redefines the way in which interrupts are handled to
provide full support for an external interrupt controller
handling prioritization and vectoring of interrupts. This
presence of this mode denoted by the VEIC bit in the
Config3 register. Again, this mode is architecturally
optional. On the M4K core, the VEIC bit is set externally
by the static input, SI_EICPresent, to allow system logic
to indicate the presence of an external interrupt
controller.

The reset state of the processor is to interrupt compatibility
mode such that a processor supporting Release 2 of the
Architecture, like the M4K core, is fully compatible with
implementations of Release 1 of the Architecture.

VI or EIC interrupt modes can be combined with the optional
shadow registers to specify which shadow set should be used
upon entry to a particular vector. The shadow registers further
improve interrupt latency by avoiding the need to save
context when invoking an interrupt handler.

GPR Shadow Registers

Release 2 of the MIPS32 Architecture optionally removes the
need to save and restore GPRs on entry to high priority
interrupts or exceptions, and to provide specified processor
modes with the same capability. This is done by introducing

Table 4 Exception Types

Exception Description

Reset Assertion of SI_ColdReset or
SI_Reset signals.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the
assertion of the external EJ_DINT input,
or by setting the EjtagBrk bit in the ECR
register.

NMI Assertion of SI_NMI signal.

Interrupt Assertion of unmasked hardware or soft-
ware interrupt signal.

DIB EJTAG debug hardware instruction
break matched.

AdEL Fetch address alignment error.
Fetch reference to protected address.

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of
SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

RI Execution of a Reserved Instruction.

CpU Execution of a coprocessor instruction
for a coprocessor that is not enabled.

CEU Execution of a CorExtend instruction
when CorExtend is not enabled.

Ov Execution of an arithmetic instruction
that overflowed.

Tr Execution of a trap (when trap condition
is true).

DDBL / DDBS EJTAG Data Address Break (address
only) or EJTAG Data Value Break on
Store (address+value).

AdEL Load address alignment error.
Load reference to protected address.

AdES Store address alignment error.
Store to protected address.

DBE Load or store bus error.

DDBL EJTAG data hardware breakpoint
matched in load data compare.

Table 4 Exception Types (Continued)

Exception Description

8 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

multiple copies of the GPRs, called shadow sets, and
allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The
normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets may be a build-time option
on some MIPS core. Although Release 2 of the Architecture
defines a maximum of 16 shadow sets, the M4K core allows
one (the normal GPRs), two, four, or eight shadow sets. The
highest number actually implemented is indicated by the
SRSCtlHSS field. If this field is zero, only the normal GPRs are
implemented.

Shadow sets are new copies of the GPRs that can be
substituted for the normal GPRs on entry to kernel mode via
an interrupt or exception. Once a shadow set is bound to a
kernel mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that
are dedicated to that condition. Privileged software may need
to reference all GPRs in the register file, even specific
shadow registers that are not visible in the current mode. The
RDPGPR and WRPGPR instructions are used for this
purpose. The CSS field of the SRSCtl register provides the
number of the current shadow register set, and the PSS field
of the SRSCtl register provides the number of the previous
shadow register set (that which was current before the last
exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of
a vectored interrupt to a shadow set is done by writing to the
SRSMap register. If the processor is operating in EIC interrupt
mode, the binding of the interrupt to a specific shadow set is
provided by the external interrupt controller, and is
configured in an implementation-dependent way. Binding of
an exception or non-vectored interrupt to a shadow set is done
by writing to the ESS field of the SRSCtl register. When an
exception or interrupt occurs, the value of SRSCtlCSS is copied
to SRSCtlPSS, and SRSCtlCSS is set to the value taken from the
appropriate source. On an ERET, the value of SRSCtlPSS is
copied back into SRSCtlCSS to restore the shadow set of the
mode to which control returns.

Modes of Operation

The M4K core supports three modes of operation: user mode,
kernel mode, and debug mode. User mode is most often used
for applications programs. Kernel mode is typically used for
handling exceptions and operating system kernel functions,
including CP0 management and I/O device accesses. An
additional Debug mode is used during system bring-up and

software development. Refer to the EJTAG section for more
information on debug mode.

Figure 3 M4K Core Virtual Address Map

Memory Management Unit (MMU)

The M4K core contains an MMU that interfaces between the
execution unit and the SRAM controller. The M4K core
provides a simple Fixed Mapping Translation (FMT)
mechanism that is smaller and simpler than a full Translation
Lookaside Buffer (TLB) found in other MIPS cores, like the
MIPS32 4KEc™ core. Like a TLB, the FMT performs
virtual-to-physical address translation and provides attributes
for the different segments. Those segments that are
unmapped in a TLB implementation (kseg0 and kseg1) are
translated identically by the FMT.

Figure 4 shows how the FMT is implemented in the M4K
core.

kuseg

kseg0

kseg1

kseg2

kseg3

0x00000000

0x7FFFFFFF
0x80000000

0x9FFFFFFF
0xA0000000

0xBFFFFFFF
0xC0000000

0xDFFFFFFF

0xE0000000

0xF1FFFFFF

Kernel virtual address space

Unmapped, 512 MB

Kernel virtual address space

Uncached

Unmapped, 512 MB

Kernel virtual address space

User virtual address space

1. This space is mapped to memory in user or kernel mode,
and by the EJTAG module in debug mode.

0xFF200000
0xFF3FFFFF
0xFF400000

0xFFFFFFFF

Memory/EJTAG1

Mapped, 2048 MB

Mapped, 512 MB

 Mapped

 Mapped

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 11

choose to use this information to enforce memory ordering
between various elements in the system.

External Call Indication

The instruction fetch interface contains signals that indicate
that the core is fetching the target of a subroutine call-type
instruction such as JAL or BAL. At some point after a call,
there will typically be a return to the original code sequence.
If a system prefetches instructions, it can make use of this
information to save instructions that were prefetched and are
likely to be executed after the return.

SimpleBE Mode

To aid in attaching the M4K core to structures which cannot
easily handle arbitrary byte enable patterns, there is a mode
that generates only “simple” byte enables. Only byte enables
representing naturally aligned byte, half, and word
transactions will be generated. Legal byte enable patterns are
shown in Table 7.

The only case where a read can generate “non-simple” byte
enables is on a tri-byte load (LWL/LWR). Since external
logic can easily convert a tri-byte read into a full word read if
desired, no conversion is done by the core for this case in
SimpleBE mode.

Writes with non-simple byte enable patterns can arise from
tri-byte stores (SWL/SWR). In SimpleBE mode, these stores
will be broken into two separate write transactions, one with
a valid halfword and a second with a single valid byte.

Hardware Reset

For historical reasons within the MIPS architecture, the M4K
core has two types of reset input signals: SI_Reset and
SI_ColdReset.

Functionally, these two signals are ORed together within the
core and then used to initialize critical hardware state. Both
reset signals can be asserted either synchronously or
asynchronously to the core clock, SI_ClkIn, and will trigger a
Reset exception. The reset signals are active high, and must
be asserted for a minimum of 5 SI_ClkIn cycles. The falling
edge triggers the Reset exception. The primary difference
between the two reset signals is that SI_Reset sets a bit in the
Status register; this bit could be used by software to
distinguish between the two reset signals, if desired. The reset
behavior is summarized in Table 8.

One (or both) of the reset signals must be asserted at power-
on or whenever hardware initialization of the core is desired.
A power-on reset typically occurs when the machine is first
turned on. A hard reset usually occurs when the machine is
already on and the system is rebooted.

In debug mode, EJTAG can request that a soft reset (via the
SI_Reset pin) be masked. It is system dependent whether this
functionality is supported. In normal mode, the SI_Reset pin
cannot be masked. The SI_ColdReset pin is never masked.

Power Management

The M4K core offers a number of power management
features, including low-power design, active power
management, and power-down modes of operation. The core
is a static design that supports slowing or halting the clocks,
which reduces system power consumption during idle
periods.

The M4K core provides two mechanisms for system-level
low power support:

• Register-controlled power management

• Instruction-controlled power management

Register-Controlled Power Management

The RP bit in the CP0 Status register provides a software
mechanism for placing the system into a low power state. The
state of the RP bit is available externally via the SI_RP signal.
The external agent then decides whether to place the device

Table 7 Valid SimpleBE Byte Enable Patterns

EB_BE[3:0]

0001

0010

0100

1000

0011

1100

1111

Table 8 Reset Types

SI_Reset SI_ColdReset Action

0 0 Normal Operation, no reset.

1 0 Reset exception; sets
StatusSR bit.

X 1 Reset exception.

12 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

in a low power mode, such as reducing the system clock
frequency.

Three additional bits, StatusEXL, StatusERL, and DebugDM
support the power management function by allowing the user
to change the power state if an exception or error occurs while
the M4K core is in a low power state. Depending on what type
of exception is taken, one of these three bits will be asserted
and reflected on the SI_EXL, SI_ERL, or EJ_DebugM outputs.
The external agent can look at these signals and determine
whether to leave the low power state to service the exception.

The following 4 power-down signals are part of the system
interface and change state as the corresponding bits in the
CP0 registers are set or cleared:

• The SI_RP signal represents the state of the RP bit (27) in
the CP0 Status register.

• The SI_EXL signal represents the state of the EXL bit (1)
in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2)
in the CP0 Status register.

• The EJ_DebugM signal represents the state of the DM bit
(30) in the CP0 Debug register.

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is
through execution of the WAIT instruction. When the WAIT
instruction is executed, the internal clock is suspended;
however, the internal timer and some of the input pins
(SI_Int[5:0], SI_NMI, SI_Reset, and SI_ColdReset) continue
to run. Once the CPU is in instruction-controlled power
management mode, any interrupt, NMI, or reset condition
causes the CPU to exit this mode and resume normal
operation.

The M4K core asserts the SI_Sleep signal, which is part of
the system interface bus, whenever the WAIT instruction is
executed. The assertion of SI_Sleep indicates that the clock
has stopped and the M4K core is waiting for an interrupt.

Local clock gating

The majority of the power consumed by the M4K core is in
the clock tree and clocking registers. The core has support for
extensive use of local gated-clocks. Power conscious
implementors can use these gated clocks to significantly
reduce power consumption within the core.

MIPS32® M4K® Core Optional or
Configurable Logic Blocks

The M4K core contains several optional or configurable logic
blocks shown in the block diagram in Figure 1.

MIPS16e™ Application Specific Extension

The M4K core has optional support for the MIPS16e ASE.
This ASE improves code density through the use of 16-bit
encodings of MIPS32 instructions plus some MIPS16e-
specific instructions. PC relative loads allow quick access to
constants. Save/Restore macro instructions provide for single
instruction stack frame setup/teardown for efficient
subroutine entry/exit. Sign- and zero-extend instructions
improve handling of 8-bit and 16-bit datatypes.

Coprocessor 2 Interface

The M4K core can be configured to have an interface for an
on-chip coprocessor. This coprocessor can be tightly coupled
to the processor core, allowing high performance solutions
integrating a graphics accelerator or DSP, for example.

The coprocessor interface is extensible and standardized on
MIPS cores, allowing for design reuse. The M4K core
supports a subset of the full coprocessor interface standard:
32b data transfer, no Coprocessor 1 support, single issue, in-
order data transfer to coprocessor, one out-of-order data
transfer from coprocessor.

The coprocessor interface is designed to ease integration with
customer IP. The interface allows high-performance
communication between the core and coprocessor. There are
no late or critical signals on the interface.

CorExtend User Defined Instruction
Extensions

An optional CorExtend User Defined Instruction (UDI) block
enables the implementation of a small number of application-
specific instructions that are tightly coupled to the core’s
execution unit. The interface to the UDI block is external to
the M4K Pro core.

Such instructions may operate on a general-purpose register,
immediate data specified by the instruction word, or local
state stored within the UDI block. The destination may be a
general-purpose register or local UDI state. The operation
may complete in one cycle or multiple cycles, if desired.

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 13

EJTAG Debug Support

The M4K core provides for an optional Enhanced JTAG
(EJTAG) interface for use in the software debug of
application and kernel code. In addition to standard user
mode and kernel modes of operation, the M4K core provides
a Debug mode that is entered after a debug exception (derived
from a hardware breakpoint, single-step exception, etc.) is
taken and continues until a debug exception return (DERET)
instruction is executed. During this time, the processor
executes the debug exception handler routine.

Refer to the section called "External Interface Signals" on
page 21 for a list of EJTAG interface signals.

The EJTAG interface operates through the Test Access Port
(TAP), a serial communication port used for transferring test
data in and out of the M4K core. In addition to the standard
JTAG instructions, special instructions defined in the EJTAG
specification define what registers are selected and how they
are used.

Debug Registers

Three debug registers (DEBUG, DEBUG2, DEPC, and
DESAVE) have been added to the MIPS Coprocessor 0
(CP0) register set. The DEBUG and DEBUG2 registers show
the cause of the debug exception and is used for setting up
single-step operations. The DEPC, or Debug Exception
Program Counter, register holds the address on which the
debug exception was taken. This is used to resume program
execution after the debug operation finishes. Finally, the
DESAVE, or Debug Exception Save, register enables the
saving of general-purpose registers used during execution of
the debug exception handler.

To exit debug mode, a Debug Exception Return (DERET)
instruction is executed. When this instruction is executed, the
system exits debug mode, allowing normal execution of
application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the EJTAG specification. These stop the normal
operation of the CPU and force the system into debug mode.
There are two types of simple hardware breakpoints
implemented in the M4K core: Instruction breakpoints and
Data breakpoints. Additionally, complex hardware
breakpoints can be included which allow detection of more
intricate sequences of events.

The M4K core can be configured with the following
breakpoint options:

• No data, instruction, or complex breakpoints

• One data and two instruction breakpoints without
complex breakpoints

• Two data and four instruction breakpoints without
complex breakpoints

• Two data and six instruction breakpoints with complex
breakpoints.

Instruction breaks occur on instruction fetch operations, and
the break is set on the virtual address. A mask can be applied
to the virtual address to set breakpoints on a range of
instructions.

Data breakpoints occur on load/store transactions.
Breakpoints are set on virtual address values, similar to the
Instruction breakpoint. Data breakpoints can be set on a load,
a store, or both. Data breakpoints can also be set based on the
value of the load/store operation. Finally, masks can be
applied to both the virtual address and the load/store value.

Complex breakpoints utilize the simple instruction and data
breakpoints and break when combinations of events are seen.
Complex break features include

• Pass Counters - Each time a matching condition is seen, a
counter is decremented. The break or trigger will only be
enabled once the counter has counted down to 0

• Tuples - A tuple is the pairing of an instruction and a
data breakpoint. The tuple will be taken if both the
instruction and data break conditions are met on the same
instruction.

• Priming - This allows a breakpoint to be enabled only
after other break conditions have been met.

• Qualified - This feature uses a data breakpoint to qualify
when an instruction breakpoint can be taken. Once a load
matches the data address and the data value, the
instruction break will be enabled. If a load matches the
address, but has mis-matching data, the instruction break
will be disabled.

MIPS Trace

The M4K core includes optional MIPS Trace support for real-
time tracing of instruction addresses, data addresses and data
values. The trace information is collected in an on-chip or off-
chip memory, for post-capture processing by trace
regeneration software.

On-chip trace memory may be configured in size from 0 to
8 MB; it is accessed through the existing EJTAG TAP
interface and requires no additional chip pins. Off-chip trace
memory is accessed through a special trace probe and can be
configured to use 4, 8, or 16 data pins plus a clock.

14 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

iFlowtrace™ mechanism

The M4K core also has an option for a simpler trace scheme
called the iFlowtrace mechanism. This scheme only traces
instruction addresses and not data addresses or values. This
simplification allows the trace block to be smaller and the
trace compression to be more efficient.

Testability

Testability for production testing of the core is supported
through the use of internal scan and memory BIST.

Internal Scan

Full mux-based scan for maximum test coverage is
supported, with a configurable number of scan chains. ATPG
test coverage can exceed 99%, depending on standard cell
libraries and configuration options.

Memory BIST

Memory BIST for the on-chip trace memory is optional.

Memory BIST can be inserted with a CAD tool or other user-
specified method. Wrapper modules and signal buses of
configurable width are provided within the core to facilitate
this approach.

Build-Time Configuration Options

The M4K core allows a number of features to be customized
based on the intended application. Table 9 summarizes the
key configuration options that can be selected when the core
is synthesized and implemented.

For a core that has already been built, software can determine
the value of many of these options by querying an appropriate
register field. Refer to the MIPS32® M4K® Processor Core
Family Software User’s Manual for a more complete
description of these fields. The value of some options that do
not have a functional effect on the core are not visible to
software.

Table 9 Build-time Configuration Options

Option Choices Software Visibility

Integer register file sets 1, 2, 4, or 8 SRSCtlHSS

Integer register file implementation style Flops or generator N/A

MIPS16e support Present or not Config1CA

Multiply/divide implementation style High performance or min area ConfigMDU

EJTAG TAP controller Present or not N/A

Instruction/data hardware breakpoints 0/0, 2/1, 4/2, or 6/2 DCRIB, IBSBCN DCRDB,

DBSBCN

Complex breakpoints Present or not DCRCBT

iFlowtrace hardware Present or not Config3ITL

MIPS Trace support Present or not Config3TL

MIPS Trace memory location On-core or off-chip TCBCONFIGOnT, TCB-

CONFIGOfT

MIPS Trace on-chip memory size 256B - 8MB TCBCONFIGSZ

MIPS Trace triggers 0 - 8 TCBCONFIGTRIG

CorExtend interface (Pro only) Present or not ConfigUDI*

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 15

Instruction Set

The M4K core instruction set complies with the MIPS32
instruction set architecture. Table 10 provides a summary of
instructions implemented by the M4K core.

Coprocessor2 interface Present or not Config1C2*

SRAM interface style Separate instruction/data or unified ConfigDS

Interrupt synchronizers Present or not N/A

Clock gating Top-level, integer register file array, fine-grain, or none N/A

Table 9 Build-time Configuration Options (Continued)

Option Choices Software Visibility

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

Table 10 Core Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDIUPC Unsigned Integer Add Immediate to PC
(MIPS16 only)

Rt = PC +u Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)

PC += (int)offset

BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BC2F Branch On COP2 Condition False if COP2Condition(cc) == 0
PC += (int)offset

BC2FL Branch On COP2 Condition False Likely if COP2Condition(cc) == 0
PC += (int)offset

else
Ignore Next Instruction

BC2T Branch On COP2 Condition True if COP2Condition(cc) == 1
PC += (int)offset

BC2TL Branch On COP2 Condition True Likely if COP2Condition(cc) == 1
PC += (int)offset

else
Ignore Next Instruction

BEQ Branch On Equal if Rs == Rt
PC += (int)offset

16 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

BEQL Branch On Equal Likely if Rs == Rt
PC += (int)offset

else
Ignore Next Instruction

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]
PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And
Link

GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And
Link Likely

GPR[31] = PC + 8
if !Rs[31]

PC += (int)offset
else

Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero
Likely

if !Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
PC += (int)offset

else
Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
PC += (int)offset

else
Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]

PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]

PC += (int)offset
else

Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
PC += (int)offset

else
Ignore Next Instruction

BNE Branch on Not Equal if Rs != Rt
PC += (int)offset

BNEL Branch on Not Equal Likely if Rs != Rt
PC += (int)offset

else
Ignore Next Instruction

Table 10 Core Instruction Set (Continued)

Instruction Description Function

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 17

BREAK Breakpoint Break Exception

CFC2 Move Control Word From Coprocessor 2 Rt = CCR[2, n]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP0 Coprocessor 0 Operation See Software User’s Manual

COP2 Coprocessor 2 Operation See Coprocessor 2 Description

CTC2 Move Control Word To Coprocessor 2 CCR[2, n] = Rt

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DI Atomically Disable Interrupts Rt = Status; StatusIE = 0

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

EHB Execution Hazard Barrier Stop instruction execution until
execution hazards are cleared

EI Atomically Enable Interrupts Rt = Status; StatusIE = 1

ERET Return from Exception if SR[2]
PC = ErrorEPC

else
PC = EPC
SR[1] = 0

SR[2] = 0
LL = 0

EXT Extract Bit Field Rt = ExtractField(Rs, pos, size)

INS Insert Bit Field Rt = InsertField(Rs, Rt, pos, size)

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JALR.HB Jump and Link Register with Hazard Barrier Like JALR, but also clears execution
and instruction hazards

JALRC Jump and Link Register Compact - do not exe-
cute instruction in jump delay slot(MIPS16
only)

Rd = PC + 2
PC = Rs

JR Jump Register PC = Rs

JR.HB Jump Register with Hazard Barrier Like JR, but also clears execution
and instruction hazards

Table 10 Core Instruction Set (Continued)

Instruction Description Function

18 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

JRC Jump Register Compact - do not execute
instruction in jump delay slot (MIPS16 only)

PC = Rs

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWC2 Load Word To Coprocessor 2 CPR[2,n,0] = Mem[Rs+offset]

LWPC Load Word, PC relative Rt = Mem[PC+offset]

LWL Load Word Left See Architecture Reference Manual

LWR Load Word Right See Architecture Reference Manual

MADD Multiply-Add HI | LO += (int)Rs * (int)Rt

MADDU Multiply-Add Unsigned HI | LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, Rd, sel]

MFC2 Move From Coprocessor 2 Rt = CPR[2, Rd, sel]

MFHC2 Move From High Half of Coprocessor 2 Rt = CPR[2, Rd, sel]63..32

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN Move Conditional on Not Zero if Rt ≠ 0 then
Rd = Rs

MOVZ Move Conditional on Zero if Rt = 0 then
Rd = Rs

MSUB Multiply-Subtract HI | LO -= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI | LO -= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n, Sel] = Rt

MTC2 Move To Coprocessor 2 CPR[2, n, sel] = Rt

MTHC2 Move To High Half of Coprocessor 2 CPR[2, Rd, sel] = Rt || CPR[2, Rd,
sel]31..0

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

Table 10 Core Instruction Set (Continued)

Instruction Description Function

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 19

MUL Multiply with register write HI | LO =Unpredictable
Rd = ((int)Rs * (int)Rt)31..0

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

RDHWR Read Hardware Register Allows unprivileged access to regis-
ters enabled by HWREna register

RDPGPR Read GPR from Previous Shadow Set Rt = SGPR[SRSCtlPSS, Rd]

RESTORE Restore registers and deallocate stack frame
(MIPS16 only)

See Architecture Reference Manual

ROTR Rotate Word Right Rd = Rtsa-1..0 || Rt31..sa

ROTRV Rotate Word Right Variable Rd = RtRs-1..0 || Rt31..Rs

SAVE Save registers and allocate stack frame (MIPS16
only)

See Architecture Reference Manual

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word if LL = 1
 mem[Rs+offset] = Rt
Rt = LL

SDBBP Software Debug Break Point Trap to SW Debug Handler

SEB Sign Extend Byte Rd = (byte)Rs

SEH Sign Extend Half Rd = (half)Rs

SH Store Half (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

Table 10 Core Instruction Set (Continued)

Instruction Description Function

20 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Rt
Rd = 1

else
Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation NOP

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

SWC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2,n,0]

SWL Store Word Left See Architecture Reference Manual

SWR Store Word Right See Architecture Reference Manual

SYNC Synchronize See Software User’s Manual

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
 TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
 TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
 TrapException

TGEIU Trap if Greater Than or Equal Immediate
Unsigned

if (uns)Rs >= (uns)Immed
 TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
 TrapException

TLT Trap if Less Than if (int)Rs < (int)Rt
 TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
 TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
 TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
 TrapException

TNE Trap if Not Equal if Rs != Rt
 TrapException

Table 10 Core Instruction Set (Continued)

Instruction Description Function

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 21

External Interface Signals

This section describes the signal interface of the M4K
microprocessor core.

The pin direction key for the signal descriptions is shown in
Table 11 below.

The M4K core signals are listed in Table 12 below. Note that
the signals are grouped by logical function, not by expected
physical location. All signals, with the exception of
EJ_TRST_N, are active-high signals. EJ_DINT and SI_NMI
go through edge-detection logic so that only one exception is
taken each time they are asserted.

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
 TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS, Rd] = Rt

WSBH Word Swap Bytes Within HalfWords Rd = Rt23..16 || Rt31..24 || Rt7..0 ||

Rt15..8

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

ZEB Zero extend byte (MIPS16 only) Rt = (ubyte) Rs

ZEH Zero extend half (MIPS16 only) Rt = (uhalf) Rs

Table 10 Core Instruction Set (Continued)

Instruction Description Function

Table 11 Core Signal Direction Key

Dir Description

I Input to the M4K core sampled on the rising edge of the appropriate CLK signal.

O Output of the M4K core, unless otherwise noted, driven at the rising edge of the appropriate CLK signal.

A Asynchronous inputs that are synchronized by the core.

S Static input to the M4K core. These signals are normally tied to either power or ground and should not
change state while SI_ColdReset is deasserted.

Table 12 Signal Descriptions

Signal Name Type Description

System Interface

Clock Signals:

SI_ClkIn I Clock Input. All inputs and outputs, except a few of the EJTAG signals, are sampled and/or
asserted relative to the rising edge of this signal.

SI_ClkOut O Reference Clock for the External Bus Interface. This clock signal provides a reference for
deskewing any clock insertion delay created by the internal clock buffering in the core.

Reset Signals:

SI_ColdReset A Hard/Cold Reset Signal. Causes a Reset Exception in the core.

22 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

SI_NMI A Non-Maskable Interrupt. An edge detect is used on this signal. When this signal is sampled
asserted (high) one clock after being sampled deasserted, an NMI is posted to the core.

SI_Reset A Soft/Warm Reset Signal. Causes a Reset Exception in the core. Sets StatusSR bit (if

SI_ColdReset is not asserted), but is otherwise ORed with SI_ColdReset before it is used
internally.

Power Management and Processor State Signals:

SI_ERL O This signal represents the state of the ERL bit (2) in the CP0 Status register and indicates the
error level. The core asserts SI_ERL whenever a Reset, Soft Reset, or NMI exception is
taken.

SI_EXL O This signal represents the state of the EXL bit (1) in the CP0 Status register and indicates the
exception level. The core asserts SI_EXL whenever any exception other than a Reset, Soft
Reset, NMI, or Debug exception is taken.

SI_RP O This signal represents the state of the RP bit (27) in the CP0 Status register. Software can
write this bit to indicate that a reduced power mode may be entered.

SI_Sleep O This signal is asserted by the core whenever the WAIT instruction is executed. The assertion
of this signal indicates that the clock has stopped and that the core is waiting for an interrupt.

SI_Ibs[5:0] Out Reflects state of breakpoint status (BS) field in the Instruction Breakpoint Status (IBS) regis-
ter. These bits are set when the corresponding break condition has matched, for breaks
enabled as either a breakpoints or triggerpoints. If fewer than 6 instruction breakpoints exist,
the unimplemented bits are tied to 0.

SI_Dbs[1:0] Out Reflects state of breakpoint status (BS) field in the Data Breakpoint Status (DBS) register.
These bits are set when the corresponding break condition has matched, for breaks enabled
as either a breakpoints or triggerpoints. If fewer than 2 data breakpoints exist, the unimple-
mented bits are tied to 0.

Interrupt Signals:

SI_EICPresent S Indicates whether an external interrupt controller is present. Value is visible to software in
the Config3VEIC register field.

SI_EICVector[5:0] In Provides the vector number for an interrupt request in External Interrupt Controller (EIC)
mode. (Note: This input decouples the interrupt priority from the vector offset. For compati-
bility with earlier Release 2 cores in EIC mode, connect SI_Int[5:0] and SI_EICVector[5:0]
together.)

SI_EISS[3:0] I General purpose register shadow set number to be used when servicing an interrupt in EIC
interrupt mode.

SI_IAck O Interrupt acknowledge indication for use in external interrupt controller mode. This signal is
active for a single SI_ClkIn cycle when an interrupt is taken. When the processor initiates
the interrupt exception, it loads the value of the SI_Int[5:0] pins into the CauseRIPL field

(overlaid with CauseIP7..IP2), and signals the external interrupt controller to notify it that the

current interrupt request is being serviced. This allows the controller to advance to another
pending higher-priority interrupt, if desired.

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 23

SI_Int[5:0] I/A Active high Interrupt pins. These signals are driven by external logic and when asserted indi-
cate an interrupt exception to the core. The interpretation of these signals depends on the
interrupt mode in which the core is operating; the interrupt mode is selected by software.
The SI_Int signals go through synchronization logic and can be asserted asynchronously to
SI_ClkIn. In External Interrupt Controller (EIC) mode, however, the interrupt pins are inter-
preted as an encoded value, so they must be asserted synchronously to SI_ClkIn to guarantee
that all bits are received by the core in a particular cycle.
The interrupt pins are level sensitive and should remain asserted until the interrupt has been
serviced.
In Release 1 Interrupt Compatibility mode:
All 6 interrupt pins have the same priority as far as the hardware is concerned.
Interrupts are non-vectored.
In Vectored Interrupt (VI) mode:
The SI_Int pins are interpreted as individual hardware interrupt requests.
Internally, the core prioritizes the hardware interrupts and chooses an interrupt vector.
In External Interrupt Controller (EIC) mode:
An external block prioritizes its various interrupt requests and produces a vector number of
the highest priority interrupt to be serviced.
The vector number is driven on the SI_Int pins, and is treated as a 6-bit encoded value in the
range of 0..63.
When the core starts the interrupt exception, signaled by the assertion of SI_IAck, it loads
the value of the SI_Int[5:0] pins into the CauseRIPL field (overlaid with CauseIP7..IP2). The

interrupt controller can then signal another interrupt.

SI_IPL[5:0] O Current interrupt priority level from the CauseIPL register field, provided for use by an exter-

nal interrupt controller. This value is updated whenever SI_IAck is asserted.

SI_IPTI[2:0] S Timer interrupts can be muxed or ORed into one of the interrupts, as desired in a particular
system. This input indicates which SI_Int hardware interrupt pin the timer interrupt pin
(SI_TimerInt) is combined with external to the core. The value of this bus is visible to soft-
ware in the IntCtlIPTI register field.

SI_SWInt[1:0] O Software interrupt request. These signals represent the value in the IP[1:0] field of the Cause
register. They are provided for use by an external interrupt controller.

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

SI_IPTI Combined w/ SI_Int

0-1 None

2 SI_Int[0]

3 SI_Int[1]

4 SI_Int[2]

5 SI_Int[3]

6 SI_Int[4]

7 SI_int[5]

24 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

SI_TimerInt O Timer interrupt indication. This signal is asserted whenever the Count and Compare registers
match and is deasserted when the Compare register is written. This hardware pin represents
the value of the CauseTI register field.

For Release 1 Interrupt Compatibility mode or Vectored Interrupt mode:
In order to generate a timer interrupt, the SI_TimerInt signal needs to be brought back into
the M4K core on one of the six SI_Int interrupt pins in a system-dependent manner. Tradi-
tionally, this has been accomplished by muxing SI_TimerInt with SI_Int[5]. Exposing
SI_TimerInt as an output allows more flexibility for the system designer. Timer interrupts
can be muxed or ORed into one of the interrupts, as desired in a particular system. The
SI_Int hardware interrupt pin with which the SI_TimerInt signal is merged is indicated via
the SI_IPTI static input pins.
For External Interrupt Controller (EIC) mode:
The SI_TimerInt signal is provided to the external interrupt controller, which then priori-
tizes the timer interrupt with all other interrupt sources, as desired. The controller then
encodes the desired interrupt value on the SI_Int pins. Since SI_Int is usually encoded, the
SI_IPTI pins are not meaningful in EIC mode.

Configuration Inputs:

SI_CPUNum[9:0] S Unique identifier to specify an individual core in a multi-processor system. The hardware
value specified on these pins is available in the CPUNum field of the EBase register, so it can
be used by software to distinguish a particular processor. In a single processor system, this
value should be set to zero.

SI_Endian S Indicates the base endianness of the core.

SI_SimpleBE[1:0] S The state of these signals can constrain the core to only generate certain byte enables on
SRAM-style interface writes. This eases connection to some existing bus standards.

SI_SRSDisable[2:0] S Disable the use of some shadow register sets:
000 - Use all register sets
100 - Only use 4 register sets
110 - Only use 2 register sets
111 - Only use 1 register set

SRAM-style Interface

The SRAM-style interface allows simple connection to fast, tightly-coupled memory devices. It can be configured with independent
interfaces for Instruction and Data, or a Unified interface. Signals related to the I-side interface are prefixed with “IS_”; signals
related to the D-side interface are prefixed with “DS_”. When the Unified interface is used, then most D-side signals are obsoleted,
since they have an I-side equivalent; only the write data, DS_WData, continues to be used from the D-side.

IS_Read O Read strobe.

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

EB_Endian Base Endian Mode

0 Little Endian

1 Big Endian

SI_SimpleBE[1:0] Byte Enable Mode

002 All BEs allowed

012 Naturally aligned bytes, half-words,
and words only

102 Reserved

112 Reserved

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 25

IS_Write O Write strobe. Only asserted due to a redirected data write.

IS_Sync O Sync strobe.

IS_WbCtl O Write buffer control.
This signal is asserted when the M4K core can guarantee that no I-side read transaction will
be started in the current clock cycle. For the purpose of generating this signal, if there is a
pending transaction, the M4K core assumes that it will end in this cycle, in order to deter-
mine whether a new read transaction might be started or not.
Unlike IS_Read, there is no asynchronous path from IS_Stall or any other input signal to
IS_WbCtl. Also, it is an earlier signal than IS_Read.
It is intended to be used by an external agent to control flushing of a write buffer (if a write
buffer is present).

IS_Instr O Indicates instruction fetch when high, or redirected data read/write when low.

IS_Addr[31:2] O Address of transaction. When IS_Sync is asserted high, IS_Addr[10:6] holds the “sync
type” (the “stype” field of SYNC instruction).

IS_BE[3:0] O Byte enable signals for transaction.
IS_BE[3] enables byte lane corresponding to bits 31:24.
IS_BE[2] enables byte lane corresponding to bits 23:16.
IS_BE[1] enables byte lane corresponding to bits 15:8.
IS_BE[0] enables byte lane corresponding to bits 7:0.

IS_Abort O Request for transaction to be aborted, if possible. It is optional whether the external logic
uses this signal or not, although using it may reduce interrupt latency. Completion of any
transaction (aborted or not) is always communicated through IS_Stall. Whether the transac-
tion was in fact aborted is signalled using IS_AbortAck.
IS_Abort is asserted through (and including) the cycle where IS_Stall is deasserted.

IS_EjtBreakEn O One or more EJTAG instruction breakpoints are enabled. This signal is also asserted for the
Unified Interface when one or more data breakpoints are enabled.

IS_EjtBreak O Asserted when an instruction break is detected. Also asserted for the Unified Interface when
a data break is detected. May be used by external logic to cancel the current transaction.
External logic may determine whether this is an instruction break or a data break based on
IS_Instr.
This signal is asserted one cycle after the transaction start, so when precise breaks are
required, the external logic must stall transactions by one cycle if IS_EjtBreakEn indicates
that a break may occur.
IS_EjtBreak is asserted through (and including) the cycle where IS_Stall is deasserted.

IS_Lock O Asserted when a read transaction is due to a redirected LL (load linked) instruction,

IS_Unlock O Asserted when a write transaction is due to a redirected SC (store conditional) instruction.

IS_UnlockAll O Asserted for one clock cycle when an ERET instruction is executed.

IS_WasCall Out Indicates that a recent fetch was for a control transfer instruction that saves a return address
in a GPR (JAL, JALR, JALX, BGEZAL, BGEZALL, BLTZAL, BLTZALL). This indica-
tion and a corresponding offset may enable external logic to maintain a buffer of instructions
at the return address.

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

26 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

IS_LinkOffset Out Offset used to determine the link return fetch address relative to the previous fetch address.
This signal is only valid when IS_WasCall is asserted in the same cycle. The link return
address is relative to the fetch immediately prior to the one in which IS_WasCall is asserted.
When IS_LinkOffset is 0, the return address will be within the same word as the prior fetch.
When IS_LinkOffset is 1, the return address will be within the next sequential word from
the prior fetch.

IS_CCA[2:0] Out Provides the cache coherence attribute (CCA) for the current fetch request. The core will
limit this value to either 2 (uncacheable) or 3 (cacheable)

IS_Stall I Indicates that the transaction is not ready to be completed.

IS_Error I Valid in the cycle terminating the transaction (IS_Stall deasserted). Asserted high if transac-
tion caused an error. Causes bus error exception to be taken by the core.

IS_AbortAck I Valid in the cycle terminating the transaction (IS_Stall deasserted). Asserted high if transac-
tion was aborted.
If no abort was requested (IS_Abort is low), and IS_AbortAck is asserted high in the cycle
terminating the transaction, a bus error exception is taken.

IS_UnlockAck I Valid in the cycle terminating the transaction (IS_Stall deasserted). Result of IS_Unlock
operation. Should be asserted high if system holds a lock on the address used for the redi-
rected write transaction (SC).

IS_RData[31:0] I Read data.

IS_RBE[3:0] I Byte enable signals for IS_RData[31:0].
IS_RBE[3] enables byte lane corresponding to IS_RData[31:24].
IS_RBE[2] enables byte lane corresponding to IS_RData[23:16].
IS_RBE[1] enables byte lane corresponding to IS_RData[15:8].
IS_RBE[0] enables byte lane corresponding to IS_RData[7:0].

DS_Read O Read strobe.

DS_Write O Write strobe.

DS_Sync O Sync strobe.

DS_WbCtl O Write buffer control.
This signal is asserted when the M4K core can guarantee that no D-side read transaction will
be started in the current clock cycle. For the purpose of generating this signal, if there is a
pending transaction, the M4K core assumes that it will end in this cycle, in order to deter-
mine whether a new read transaction might be started or not.
Unlike DS_Read, there is no asynchronous path from DS_Stall or any other input signal to
DS_WbCtl. Also, it is an earlier signal than DS_Read.
It is intended to be used by an external agent to control flushing of a write buffer (if a write
buffer is present).

DS_Addr[31:2] O Address of transaction. When DS_Sync is asserted high, DS_Addr[10:6] holds the “sync
type” (the “stype” field of the SYNC instruction).

DS_BE[3:0] O Byte enable signals for transaction.
DS_BE[3] enables byte lane corresponding to bits 31:24.
DS_BE[2] enables byte lane corresponding to bits 23:16.
DS_BE[1] enables byte lane corresponding to bits 15:8.
DS_BE[0] enables byte lane corresponding to bits 7:0.

DS_CCA[2:0] Out Provides the cache coherence attribute (CCA) for the current data request. The core will limit
this value to either 2 (uncacheable) or 3 (cacheable)

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 27

DS_WData[31:0] O Write data as defined by DS_BE[3:0]/IS_BE[3:0]. Used for both D-side and I-side transac-
tions.

DS_Abort O Request for transaction (read, write or sync) to be aborted, if possible. It is optional whether
the external logic uses this signal or not, although using it may reduce interrupt latency.
Completion of any transaction (aborted or not) is always communicated through DS_Stall.
Whether the transaction was in fact aborted is signalled using DS_AbortAck.
DS_Abort is asserted through (and including) the cycle where DS_Stall is deasserted.

DS_EjtBreakEn O One or more EJTAG data breakpoints are enabled.

DS_EjtBreak O Asserted when an EJTAG data break is detected. May be used by external logic to cancel the
current transaction. This signal is asserted one cycle after the transaction start, so when pre-
cise breaks are required, the external logic must stall transactions by one cycle if
DS_EjtBreakEn indicates that a break may occur.
DS_EjtBreak is asserted through (and including) the cycle where DS_Stall is deasserted.

DS_Lock O Asserted when a read transaction is due to an LL (load linked) instruction.

DS_Unlock O Asserted when a write transaction is due to an SC (store conditional) instruction.

DS_Stall I Indicates that the transaction is not ready to be completed.

DS_Error I Valid in the cycle terminating the transaction (DS_Stall deasserted). Asserted high if trans-
action caused an error. Causes bus error exception to be taken by the core.

DS_AbortAck I Valid in the cycle terminating the transaction (DS_Stall deasserted). Asserted high if trans-
action was aborted.
If no abort was requested (DS_Abort is low), and DS_AbortAck is asserted high in the
cycle terminating the transaction, a bus error exception is taken.

DS_Redir I Valid in the cycle terminating the transaction (DS_Stall deasserted). Asserted high if trans-
action must be redirected to I-side.

DS_UnlockAck I Valid in the cycle terminating the transaction (DS_Stall deasserted). Result of DS_Unlock
operation. Should be asserted high if system holds a lock on the address used for the write
transaction (SC).

DS_RData[31:0] I Read data.

DS_RBE[3:0] I Byte enable signals for DS_RData[31:0].
DS_RBE[3] enables byte lane corresponding to DS_RData[31:24].
DS_RBE[2] enables byte lane corresponding to DS_RData[23:16].
DS_RBE[1] enables byte lane corresponding to DS_RData[15:8].
DS_RBE[0] enables byte lane corresponding to DS_RData[7:0].

CorExtend® User-Defined Instruction Interface

On the M4K Pro core, an interface to user-defined instruction block is possible. See MIPS32® Pro Series® CorExtend® Instruction
Integrator’s Guide for a description of this interface.

Coprocessor Interface

Instruction dispatch: These signals are used to transfer an instruction from the M4K core to the COP2 coprocessor.

CP2_ir_0[31:0] O Coprocessor Arithmetic and To/From Instruction Word.
Valid in the cycle before CP2_as_0, CP2_ts_0 or CP2_fs_0 is asserted.

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

28 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

CP2_irenable_0 O Enable Instruction Registering. When deasserted, no instruction strobes will be asserted in
the following cycle. When asserted, there may be an instruction strobe asserted in the follow-
ing cycle. Instruction strobes include CP2_as_0, CP2_ts_0, CP2_fs_0.
Note: This is the only late signal in the interface. The intended function is to use this signal
as a clock gate condition on the capture latches in the coprocessor for CP2_ir_0[31:0].

CP2_as_0 O Coprocessor2 Arithmetic Instruction Strobe. Asserted in the cycle after an arithmetic
coprocessor2 instruction is available on CP2_ir_0[31:0]. If CP2_abusy_0 was asserted in
the previous cycle, this signal will not be asserted. This signal will never be asserted in the
same cycle that CP2_ts_0 or CP2_fs_0 is asserted.

CP2_abusy_0 I Coprocessor2 Arithmetic Busy. When asserted, a coprocessor2 arithmetic instruction will
not be dispatched. CP2_as_0 will not be asserted in the cycle after this signal is asserted.

CP2_ts_0 O Coprocessor2 To Strobe. Asserted in the cycle after a To COP2 Op instruction is available
on CP2_ir_0[31:0]. If CP2_tbusy was asserted in the previous cycle, this signal will not be
asserted. This signal will never be asserted in the same cycle that CP2_as_0 or CP2_fs_0
is asserted.

CP2_tbusy_0 I To Coprocessor2 Busy. When asserted, a To COP2 Op will not be dispatched. CP2_ts_0
will not be asserted in the cycle after this signal is asserted.

CP2_fs_0 O Coprocessor2 From Strobe. Asserted in the cycle after a From COP2 Op instruction is avail-
able on CP2_ir_0[31:0]. If CP2_fbusy_0 was asserted in the previous cycle, this signal
will not be asserted. This signal will never be asserted in the same cycle that CP2_as_0 or
CP2_ts_0 is asserted.

CP2_fbusy_0 I From Coprocessor2 Busy. When asserted, a From COP2 Op will not be dispatched.
CP2_fs_0 will not be asserted in the cycle after this signal is asserted.

CP2_endian_0 O Big Endian Byte Ordering. When asserted, the processor is using big endian byte ordering
for the dispatched instruction. When deasserted, the processor is using little-endian byte
ordering. Valid the cycle before CP2_as_0, CP2_fs_0 or CP2_ts_0 is asserted.

CP2_inst32_0 O MIPS32 Compatibility Mode - Instructions. When asserted, the dispatched instruction is
restricted to the MIPS32 subset of instructions. Please refer to the MIPS64 architecture spec-
ification for a complete description of MIPS32 compatibility mode. Valid the cycle before
CP2_as_0, CP2_fs_0 or CP2_ts_0 is asserted.
Note: The M4K core is a MIPS32 core, and will only issue MIPS32 instructions. Thus
CP2_inst32_0 is tied high.

CP2_kd_mode_0 O Kernel/Debug Mode. When asserted, the processor is running in kernel or debug mode. Can
be used to enable “privileged” coprocessor instructions. Valid the cycle before CP2_as_0,
CP2_fs_0 or CP2_ts_0 is asserted.

To Coprocessor Data: These signals are used when data is sent from the M4K core to the COP2 coprocessor, as part of completing a
To Coprocessor instruction.

CP2_tds_0 O Coprocessor To Data Strobe. Asserted when To COP Op data is available on
CP2_tdata_0[31:0].

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 29

CP2_torder_0[2:0] O Coprocessor To Order. Specifies which outstanding To COP Op the data is for. Valid only
when CP2_tds_0 is asserted.

Note: The M4K core will never send Data Out-of-Order, thus CP2_torder_0[2:0] is tied to
0002.

CP2_tordlim_0[2:0] S To Coprocessor Data Out-of-Order Limit. This signal forces the integer processor core to
limit how much it can reorder To COP Data. The value on this signal corresponds to the
maximum allowed value to be used on CP2_torder_0[2:0].
Note: The M4K core will never send Data Out-of-Order, thus CP2_tordlim_0[2:0] is
ignored.

CP2_tdata_0[31:0] O To Coprocessor Data. Data to be transferred to the coprocessor. Valid when CP2_tds_0 is
asserted.

From Coprocessor Data: These signals are used when data is sent to the M4K core from the COP2 coprocessor, as part of completing
a From Coprocessor instruction.

CP2_fds_0 I Coprocessor From Data Strobe. Asserted when From COP Op data is available on
CP2_fdata_0[31:0].

CP2_forder_0[2:0] I Coprocessor From Order. Specifies which outstanding From COP Op the data is for. Valid
only when CP2_fds_0 is asserted.

Note: Only values 0002 and 0012 are allowed see CP2_fordlim_0[2:0] below

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

CP2_torder_0[2:0] Order

0002 Oldest outstanding To COP Op data transfer

0012 2nd oldest To COP Op data transfer.

0102 3rd oldest To COP Op data transfer.

0112 4th oldest To COP Op data transfer.

1002 5th oldest To COP Op data transfer.

1012 6th oldest To COP Op data transfer.

1102 7th oldest To COP Op data transfer.

1112 8th oldest To COP Op data transfer.

CP2_forder_0[2:0] Order

0002 Oldest outstanding From COP Op data transfer

0012 2nd oldest From COP Op data transfer.

0102 3rd oldest From COP Op data transfer.

0112 4th oldest From COP Op data transfer.

1002 5th oldest From COP Op data transfer.

1012 6th oldest From COP Op data transfer.

1102 7th oldest From COP Op data transfer.

1112 8th oldest From COP Op data transfer.

30 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

CP2_fordlim_0[2:0] O From Coprocessor Data Out-of-Order Limit. This signal sets the limit on how much the
coprocessor can reorder From COP Data. The value on this signal corresponds to the maxi-
mum allowed value to be used on CP2_forder_0[2:0].
Note: The M4K core can handle one Out-of-Order From Data transfer. CP2_fordlim_0[2:0]
is therefore tied to 0012. The core will also never have more than two outstanding From COP

instructions issued, which also automatically limits CP2_forder_0[2:0] to 0012.

CP2_fdata_0[31:0] I From Coprocessor Data. Data to be transferred from coprocessor. Valid when CP2_fds_0 is
asserted.

Coprocessor Condition Code Check: These signals are used to report the result of a condition code check to the M4K core from the
COP2 coprocessor. This is only used for BC2 instructions.

CP2_cccs_0 I Coprocessor Condition Code Check Strobe. Asserted when coprocessor condition code
check bits are available on CP2_ccc_0.

CP2_ccc_0 I Coprocessor Conditions Code Check. Valid when CP2_cccs_0 is asserted. When asserted,
the branch instruction checking the condition code should take the branch. When deasserted,
the branch instruction should not branch.

Coprocessor Exceptions: These signals are used by the COP2 coprocessor to report exception for each instruction.

CP2_excs_0 I Coprocessor Exception Strobe. Asserted when coprocessor exception signalling is available
on CP2_exc_0 and CP2_exccode_0.

CP2_exc_0 I Coprocessor Exception. When asserted, a Coprocessor exception is signaled on
CP2_exccode_0[4:0]. Valid when CP2_excs_0 is asserted.

CP2_exccode_0[4:0] I Coprocessor Exception Code. Valid when both CP2_excs_0 and CP2_exc_0 are asserted.

Instruction Nullification: These signals are used by the M4K core to signal nullification of each instruction to the COP2 coprocessor.

CP2_nulls_0 O Coprocessor Null Strobe. Asserted when a nullification signal is available on CP2_null_0.

CP2_null_0 O Nullify Coprocessor Instruction. When deasserted, the M4K core is signalling that the
instruction is not nullified. When asserted, the M4K core is signalling that the instruction is
nullified, and no further transactions will take place for this instruction. Valid when
CP2_nulls_0 is asserted.

Instruction Killing: These signals are used by the M4K core to signal killing of each instruction to the COP2 coprocessor.

CP2_kills_0 O Coprocessor Kill Strobe. Asserted when kill signalling is available on CP2_kill_0[1:0].

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

CP2_exccode[4:0] Exception

010102 (RI) Reserved Instruction Exception

100002 (IS1) Available for Coprocessor specific Exception

100012 (IS1) Available for Coprocessor specific Exception

100102 C2E Exception

All others Reserved

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 31

CP2_kill_0[1:0] O Kill Coprocessor Instruction. Valid when CP2_kills_0 is asserted.

If an instruction is killed, no further transactions will take place on the interface for this
instruction.

Miscellaneous COP2 signals:

CP2_reset O Coprocessor Reset. Asserted when a hard or soft reset is performed by the integer unit.

CP2_present S COP2 Present. Must be asserted when COP2 hardware is connected to the Coprocessor 2
Interface.

CP2_idle I Coprocessor Idle. Asserted when the coprocessor logic is idle. Enables the processor to go
into sleep mode and shut down the clock. Valid only if CP2_present is asserted.

EJTAG Interface

TAP interface. These signals comprise the EJTAG Test Access Port. These signals will not be connected if the core does not imple-
ment the TAP controller.

EJ_TRST_N I Active-low Test Reset Input (TRST*) for the EJTAG TAP. At power-up, the assertion of
EJ_TRST_N causes the TAP controller to be reset.

EJ_TCK I Test Clock Input (TCK) for the EJTAG TAP.

EJ_TMS I Test Mode Select Input (TMS) for the EJTAG TAP.

EJ_TDI I Test Data Input (TDI) for the EJTAG TAP.

EJ_TDO O Test Data Output (TDO) for the EJTAG TAP.

EJ_TDOzstate O Drive indication for the output of TDO for the EJTAG TAP at chip level:
1: The TDO output at chip level must be in Z-state
0: The TDO output at chip level must be driven to the value of EJ_TDO
IEEE Standard 1149.1-1990 defines TDO as a 3-stated signal. To avoid having a 3-state core
output, the M4K core outputs this signal to drive an external 3-state buffer.

Debug Interrupt:

EJ_DINTsup S Value of DINTsup for the Implementation register. When high, this signal indicates that the
EJTAG probe can use the DINT signal to interrupt the processor.

EJ_DINT I Debug exception request when this signal is asserted in a CPU clock period after being deas-
serted in the previous CPU clock period. The request is cleared when debug mode is entered.
Requests when in debug mode are ignored.

Debug Mode Indication:

EJ_DebugM O Asserted when the core is in Debug Mode. This can be used to bring the core out of a low
power mode. In systems with multiple processor cores, this signal can be used to synchronize
the cores when debugging.

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

CP2_kill_0[1:0] Type of Kill

002 Instruction is not killed and results can be
committed.012

102 Instruction is killed.
(not due to CP2_exc_0)

112 Instruction is killed.
(due to CP2_exc_0)

32 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

Device ID bits:

These inputs provide an identifying number visible to the EJTAG probe. If the EJTAG TAP controller is not implemented, these
inputs are not connected. These inputs are always available for soft core customers. On hard cores, the core “hardener” can set these
inputs to their own values.

EJ_ManufID[10:0] S Value of the ManufID[10:0] field in the Device ID register. As per IEEE 1149.1-1990 sec-
tion 11.2, the manufacturer identity code shall be a compressed form of JEDEC standard
manufacturer’s identification code in the JEDEC Publications 106, which can be found at:
http://www.jedec.org/

ManufID[6:0] bits are derived from the last byte of the JEDEC code by discarding the parity
bit. ManufID[10:7] bits provide a binary count of the number of bytes in the JEDEC code
that contain the continuation character (0x7F). Where the number of continuations characters
exceeds 15, these 4 bits contain the modulo-16 count of the number of continuation charac-
ters.

EJ_PartNumber[15:0] S Value of the PartNumber[15:0] field in the Device ID register.

EJ_Version[3:0] S Value of the Version[3:0] field in the Device ID register.

System Implementation Dependent Outputs:

These signals come from EJTAG control registers. They have no effect on the core, but can be used to give EJTAG debugging soft-
ware additional control over the system.

EJ_SRstE O Soft Reset Enable. EJTAG can deassert this signal if it wants to mask soft resets. If this sig-
nal is deasserted, none, some, or all soft reset sources are masked.

EJ_PerRst O Peripheral Reset. EJTAG can assert this signal to request the reset of some or all of the
peripheral devices in the system.

EJ_PrRst O Processor Reset. EJTAG can assert this signal to request that the core be reset. This can be
fed into the SI_Reset signal.

TCtrace Interface

This interface behaves differently depending on which trace mechanism is present. The MIPS Trace interface will be described first
and the iFlowtrace interface is described in the next section
These signals enable an interface to optional off-chip trace memory. The TCtrace interface connects to the Probe Interface Block
(PIB) which in turn connects to the physical off-chip trace pins.
Note that if MIPS Trace with on-chip trace memory is used, access occurs via the EJTAG TAP interface, and this interface is not
required.

TC_ClockRatio[2:0] O Clock ratio. This is the clock ratio set by software in TCBCONTROLB.CR. The value will be
within the boundaries defined by TC_CRMax and TC_CRMin. The table below shows the
encoded values for clock ratio.

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

TC_ClockRatio Clock Ratio

000 8:1 (Trace clock is eight times the core clock)

001 4:1 (Trace clock is four times the core clock)

010 2:1 (Trace clock is double the core clock)

011 1:1 (Trace clock is same as the core clock)

100 1:2 (Trace clock is one half the core clock)

101 1:4 (Trace clock is one fourth the core clock)

110 1:6 (Trace clock is one sixth the core clock)

111 1:8 (Trace clock is one eight the core clock)

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 33

TC_CRMax[2:0] S Maximum clock ratio supported. This static input sets the CRMax field of the TCBCONFIG
register. It defines the capabilities of the Probe Interface Block (PIB) module.This field
determines the minimum value of TC_ClockRatio.

TC_CRMin[2:0] S Minimum clock ratio supported. This input sets the CRMin field of the TCBCONFIG regis-
ter. It defines the capabilities of the PIB module. This field determines the maximum value
of TC_ClockRatio.

TC_ProbeWidth[1:0] S This static input will set the PW field of the TCBCONFIG register.
If this interface is not driving a PIB module, but some chip-level TCB-like module, then this
field should be set to 2’b11 (reserved value for PW).

TC_PibPresent S Must be asserted when a PIB is attached to the TC Interface. When de-asserted (low) all the
other inputs are disregarded.

TC_TrEnable O Trace Enable, when asserted the PIB must start running its output clock and can expect valid
data on all other outputs.

TC_Calibrate O This signal is asserted when the Cal bit in the TCBCONTROLB register is set.
For a simple PIB which only serves one TCB, this pin can be ignored. For a multi-core capa-
ble PIB which also uses TC_Valid and TC_Stall, the PIB must start producing the calibra-
tion pattern when this signal is asserted.

TC_DataBits[2:0] I This input identifies the number of bits picked up by the probe interface module in each
“cycle”.
If TC_ClockRatio indicates a clock-ratio higher than 1:2, then clock multiplication in the
Probe logic is used. The “cycle” is equal to each core clock cycle.
If TC_ClockRatio indicates a clock-ratio lower than or equal to 1:2, then “cycle” is (clock-
ratio * 2) of the core clock cycle. For example, with a clock ratio of 1:2, a “cycle” is equal to
core clock cycle; with a clock ratio of 1:4, a “cycle” is equal to one half of core clock cycle.
This input controls the down-shifting amount and frequency of the trace word on
TC_Data[63:0]. The bit width and the corresponding TC_DataBits value is shown in the
table below.

This input might change as the value on TC_ClockRatio[2:0] changes.

TC_Valid O Asserted when a valid new trace word is started on the TC_Data[63:0] signals.
TC_Valid is only asserted when TC_DataBits is 100.

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

TC_ProbeWidth Number physical data pin on PIB

00 4 bits

01 8 bits

10 16 bits

11 Not directly to PIB

TC_DataBits[2:0]
Probe uses following bits from

TC_Data each cycle

000 TC_Data[3:0]

001 TC_Data[7:0]

010 TC_Data[15:0]

011 TC_Data[31:0]

100 TC_Data[63:0]

Others Unused

34 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

TC_Stall I When asserted, a new TC_Valid in the following cycle is stalled. TC_Valid is still asserted,
but the TC_Data value and TC_Valid are held static, until the cycle after TC_Stall is sam-
pled low.
TC_Stall is only sampled in the cycle before a new TC_Valid cycle, and only when
TC_DataBits is 100, indicating a full word of TC_Data.

TC_Data[63:0] O Trace word data. The value on this 64-bit interface is shifted down as indicated in
TC_DataBits[2:0]. In the first cycle where a new trace word is valid on all the bits and
TC_DataBits[2:0] is 100, TC_Valid is also asserted.
The Probe Interface Block (PIB) will only be connected to [(N-1):0] bits of this output bus.
N is the number of bits picked up by the PIB in each core clock cycle. For clock ratios 1:2
and lower, N is equal to the number of physical trace pins (legal values of N are 4, 8, or 16).
For higher clock ratios, N is larger than the number of physical trace pins.

TC_ProbeTrigIn A Rising edge trigger input. The source should be the Probe Trigger input. The input is consid-
ered asynchronous; i.e., it is double registered in the core.

TC_ProbeTrigOut O Single cycle (relative to the “cycle” defined the description of TC_DataBits) high strobe,
trigger output. The target of this trigger is intended to be the external probe’s trigger output.

TC_ChipTrigIn A Rising edge trigger input. The source should be on-chip. The input is considered asynchro-
nous; i.e., it is double registered in the core.

TC_ChipTrigOut O Single cycle (relative to core clock) high strobe, trigger output. The target of this trigger is
intended to be an on-chip unit.

With the iFlowtrace mechanism, only a subset of the TCtrace interface is used. The following signals are active. Other inputs can be
tied off to a fixed value.

TC_ClockRatio[2:0] O Clock ratio.This is the clock ratio set by software in ITCBCtl.OfClk. The table below shows
the encoded values for clock ratio.

TC_Valid O Asserted when a valid new trace word is started on the TC_Data[63:0] signals.

TC_Stall I When asserted, a new TC_Valid in the following cycle is stalled. TC_Valid is still asserted,
but the TC_Data value and TC_Valid are held static, until the cycle after TC_Stall is sam-
pled low.

TC_Data[63:0] O Trace word data. Unlike with MIPS Trace, the PIB is responsible for extracting the appropri-
ate data bits from the bus

Scan Test Interface

These signals provide an interface for testing the core. The use and configuration of these pins are implementation-dependent.

gscanenable I This signal should be asserted while scanning vectors into or out of the core. The
gscanenable signal must be deasserted during normal operation and during capture clocks
in test mode.

gscanmode I This signal should be asserted during all scan testing both while scanning and during capture
clocks. The gscanmode signal must be deasserted during normal operation.

gscanin_X I These signal(s) are the inputs to the scan chain(s).

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

TC_ClockRatio Clock Ratio

100 1:2 (Trace clock is one half the core clock)

101 1:4 (Trace clock is one fourth the core clock)

Others Reserved

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 35

SRAM-style Interface Transactions

Waveforms illustrating various transactions are shown in the
following subsections. The type of transaction is always
indicated through assertion of one of the three mutually-
exclusive strobe signals:

• DS_Read, DS_Write, or DS_Sync on the D-side

• IS_Read, IS_Write, or IS_Sync on the I-side

Most figures assume that a dual I/D interface is present, and
show D-side transactions (in some cases redirected to I-side).
However, I-side (and thus Unified Interface) transactions
work the same way, except there is no I- to D-side redirection
mechanism.

Unless stated otherwise, I-side waveforms assume that 32 bit
MIPS32 instruction fetches are being continuously
performed.

Simple Reads and Writes

This section describes several basic read and write
transactions.

Single Read

Figure 7 illustrates the fastest read, a single cycle D-side read
operation. The transaction is initiated by the core in cycle 1,
as it asserts the read strobe (DS_Read), as well as the desired
word address (DS_Addr[31:2]) and output byte enables
(DS_BE[3:0]). The byte enables represent the lower two bits
of the address, as well as the requested data size, and identify
which of the four byte lanes on DS_RData in which the core
expects the read data to be returned.

The external agent is able to process the read immediately, so
it deasserts stall while returning the appropriate read data
(DS_RData[31:0]) and the input byte enables (DS_RBE[3:0])
in the following clock, cycle 2, and the transaction completes
successfully. The input byte enables control sampling of the
corresponding byte lanes for DS_RData, and must be asserted
appropriately. There is no explicit hardware check that the
input byte enables actually corresponded to the requested
output byte enables. If some of the necessary input byte

enables are not asserted, the core will (probably erroneously)
just use the last read data held in the input registers for those
byte lanes.

The interface protocol does not include an explicit “read
acknowledge” strobe; for simplicity, the transaction is
identified to be complete solely by the first cycle following a
read strobe in which stall (DS_Stall) is deasserted. Other
signals (DS_Error, DS_Redir, DS_AbortAck, DS_UnlockAck)
indicate the status of a transaction, but the completion itself is
identified only through the deassertion of DS_Stall; the status
signals are ignored by the core when DS_Stall is asserted.

In a typical system, the read data is returned from an SRAM
device that is accessed synchronously on the rising edge of
cycle 2, with the address and strobe information provided by
the core in cycle 1. The read data can be returned by any
device that meets the protocol timing, such as ROM, flash, or
memory-mapped registers.

Figure 7 Single Cycle Read

gscanout_X O These signal(s) are the outputs from the scan chain(s).

BistIn[n:0] I Input to user-specified BIST controller.

BistOut[n:0] O Output from user-specified BIST controller.

Table 12 Signal Descriptions (Continued)

Signal Name Type Description

clk

DS_Read

O
ut

pu
ts

DS_Write

DS_Sync

DS_Addr[31:2]

DS_BE[3:0]

DS_WData[31:0]

DS_Lock

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_Stall

DS_Error

DS_AbortAck

DS_Redir

DS_UnlockAck

DS_RData[31:0]

DS_RBE[3:0]

In
pu

ts

addr

be

X

X

X

X

X

X Xdata

X Xbe

Cycle # 1 2 3 4 5 6 7

XX

XX

XX

X

XX

36 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

Single Write

Figure 8 illustrates the fastest write, a single cycle D-side
write operation. The transaction is initiated by the core in
cycle 1, as it asserts the write strobe (DS_Write), as well as the
desired word address (DS_Addr[31:2]), write data
(DS_WData[31:0]), and output byte enables (DS_BE[3:0]).
The byte enables identify which of the four byte lanes in
DS_WData hold valid write data.

The external agent is able to successfully acknowledge the
write immediately, so it deasserts stall (DS_Stall) in the
following clock, cycle 2, to complete the write. Note that the
interface protocol does not include an explicit “write
acknowledge” strobe; the transaction is identified to be
complete simply by the deassertion of stall.

Figure 8 Single Cycle Write

Read with Waitstate

Figure 9 illustrates a D-side read operation with a single
waitstate. This transaction is similar to the single-cycle read
in Figure 7, only now a stall (DS_Stall) is asserted for one
cycle and the read data is returned a cycle later.

The transaction is initiated by the core in cycle 1, as it asserts
the read strobe (DS_Read), as well as the desired word
address (DS_Addr[31:2]) and output byte enables
(DS_BE[3:0]).

The external agent is not ready to complete the read
immediately, so it asserts DS_Stall in cycle 2. Note that
during a stall, the core holds the read strobe, address and
output byte enables valid, and ignores values driven on the
input status signals (DS_Error, DS_Redir, DS_AbortAck).

In cycle 3, the read data becomes available, so the external
agent deasserts DS_Stall and returns the appropriate read data
(DS_RData[31:0]) and the input byte enables (DS_RBE[3:0]).
In this example, no error or redirection is signaled, so the
transaction completes successfully in cycle 3.

Figure 9 Read with One Waitstate

Write with Waitstate

Figure 10 illustrates a D-side write operation with a single
waitstate. This transaction is similar to the single-cycle write
in Figure 8, only now a stall (DS_Stall) is asserted for one
cycle and the write is completed a cycle later.

The transaction is initiated by the core in cycle 1, as it asserts
the write strobe (DS_Write), as well as the desired word
address (DS_Addr[31:2]), write data (DS_WData[31:0]), and
output byte enables (DS_BE[3:0]).

The external agent cannot acknowledge the write
immediately for some reason, so it asserts DS_Stall in cycle
2. The core outputs are held valid through the stall. Finally in
cycle 3, the write can be accepted, so DS_Stall deasserts, and

clk

DS_Read

O
ut

pu
ts

DS_Write

DS_Sync

DS_Addr[31:2]

DS_BE[3:0]

DS_WData[31:0]

DS_Lock

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_Stall

DS_Error

DS_AbortAck

DS_Redir

DS_UnlockAck

DS_RData[31:0]

DS_RBE[3:0]

In
pu

ts

X

X

addr XX

be XX

data XX

Cycle # 1 2 3 4 5 6 7

XX

XX

XX

XX

X

clk

DS_Read

O
ut

pu
ts

DS_Write

DS_Sync

DS_Addr[31:2]

DS_BE[3:0]

DS_WData[31:0]

DS_Lock

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_Stall

DS_Error

DS_AbortAck

DS_Redir

DS_UnlockAck

DS_RData[31:0]

DS_RBE[3:0]

In
pu

ts

addr XX

X

be XX

data

be

X

X

X

XX

Cycle # 1 2 3 4 5 6 7

XX

X

XX

XX

X X

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 37

the error and redirection signals also deassert to indicate a
normal completion.

Figure 10 Write with One Waitstate

Read Followed by Write

Figure 11 illustrates a single cycle D-side read operation
followed immediately by a single cycle D-side write
operation. This example represents the back-to-back
concatenation of the single-cycle read shown in Figure 7 with
the single cycle write from Figure 8.

The read is initiated in cycle 1, with the core’s assertion of the
read strobe, read address, and read output byte enables. The
external agent is able to fulfill the read request in cycle 2, so
it deasserts stall and drives the read data and input byte
enables in cycle 2.

Since there is no stall from the read in cycle 2, the core is
immediately able to initiate another transaction in the same
cycle (if it has one pending), this time a write. Note that the
SRAM-style interface logic contains a combinational path
from DS_Stall to the start of a new transaction, for maximum
performance. The external agent can accept the write, so no
stall is asserted in cycle 3 and the write finishes.

Figure 11 Read Followed by Write (Single Cycle)

Read Followed by Write, with Waitstates

Figure 12 illustrates a one waitstate D-side read operation
followed immediately by a one waitstate D-side write
operation. This example is similar to the back-to-back read/
write case in Figure 11, only now each of the two transactions
includes one waitstate.

The read is initiated in cycle 1, with the core’s assertion of the
read strobe, read address, and read output byte enables. The
external agent cannot complete the read immediately, so it
asserts stall in cycle 2. This forces the core to hold its read-
related outputs for another cycle, and precludes the core from
starting a new transaction. In cycle 3, stall deasserts and the
read data and input byte enables are driven valid, completing
the read.

The stall deassertion in cycle 3 allows the core to start its next
pending transaction, this time a write. The external agent is
not ready to accept the write, so it asserts stall again in cycle
4. Finally in cycle 5, the write can complete, so stall deasserts
and the write finishes.

clk

DS_Read

O
ut

pu
ts

DS_Write

DS_Sync

DS_Addr[31:2]

DS_BE[3:0]

DS_WData[31:0]

DS_Lock

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_Stall

DS_Error

DS_AbortAck

DS_Redir

DS_UnlockAck

DS_RData[31:0]

DS_RBE[3:0]

In
pu

ts

addr XX

be XX

data XX

X

X

Cycle # 1 2 3 4 5 6 7

XX

XX

XX

X

X X

clk

DS_Read

O
ut

pu
ts

DS_Write

DS_Sync

DS_Addr[31:2]

DS_BE[3:0]

DS_WData[31:0]

DS_Lock

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_Stall

DS_Error

DS_AbortAck

DS_Redir

DS_UnlockAck

DS_RData[31:0]

DS_RBE[3:0]

In
pu

ts

addr0 XX addr1

be0 XX be1

data XX

X Xdata

X Xbe

Cycle # 1 2 3 4 5 6 7

XX

XX

XX

XX

X

38 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

Figure 12 Read Followed by Write (One Waitstate)

MIPS16e™ Instruction Fetches

Most instruction fetches are performed as a full word read (32
bits) on the I-side interface, so all bits of IS_BE[3:0] are
usually asserted. Even in MIPS16e mode, where 16-bit
instructions are executed, most fetches are still performed as
full word fetches in order to optimize the I-side bandwidth.
The core holds the full word in an internal buffer, and
therefore usually only needs to perform a fetch when
executing every other MIPS16e instruction. When a jump or
branch occurs to the middle of a word in MIPS16e mode,
however, the core will perform a halfword (16-bit) fetch.

Figure 13 illustrates instruction fetches when executing in
MIPS16e mode, assuming no waitstates.

A word-aligned fetch at addr0 is requested in cycle 1. This
causes a 32 bit word (for example, containing two non-
extended MIPS16e instructions, “instr0” and “instr1”) to be
fetched (the current as well as the following instruction).

This example assumes that the code is executed sequentially
up to this point, so no read is necessary for the next
instruction (i.e. no read request in cycle 2). The example
assumes that “instr1” is a jump to a non word aligned address
(addr5).

In cycle 3, a word-aligned fetch from addr2 is requested.
Again, a full instruction word is fetched, but in this case it is
assumed that only one 16 bit instruction is used (“instr2”,
which is the jump delay slot of “instr1”).

In cycle 4, a fetch occurs for the instruction at the jump target
address (addr5). The figure illustrates the case where addr5 is
not word aligned, so only 16 bits (“instr5”) are read.
Endianness is assumed to be little, so IS_BE[3:0] = “1100”. In
the big endian case, IS_BE[3:0] would have been “0011”.

In cycle 5, a full word fetch occurs for the following 2
instructions after the jump target, stored at addr6.

Figure 13 MIPS16e™ Instruction Fetches (Single
Cycle, Little Endian Mode)

Redirection

When dual I and D interfaces are present, it is possible to
redirect a D-side operation to the I-side for completion. This
mechanism might be useful if the system wants to read data
that is stored in an I-side device, or to initialize an I-side
SRAM with data store instructions that would normally be
presented to the D-side. There is no mechanism to redirect I-
side references to the D-side. Also, the PC-relative load
instructions present in the MIPS16e ASE use an internal
method within the core to present loads to the I-side, and
therefore do not use the explicit external redirection
mechanism.

When a D-side transaction has been redirected to the I-side,
the core will never initiate a new D-side transaction until the
redirected one has completed on the I-side.

clk

DS_Read

O
ut

pu
ts

DS_Write

DS_Sync

DS_Addr[31:2]

DS_BE[3:0]

DS_WData[31:0]

DS_Lock

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_Stall

DS_Error

DS_AbortAck

DS_Redir

DS_UnlockAck

DS_RData[31:0]

DS_RBE[3:0]

In
pu

ts

addr0 XX addr1

be0 XX be1

XdataX

data XX

beX XX

Cycle # 1 2 3 4 5 6 7

X X

X XX

X XX

X XX

X

clk

O
ut

pu
ts

IS_Read

In
pu

ts

IS_Write

addr0

Cycle # 1 2 3 4 5 6 7

X addr2 addr5 addr6 X

’1111’ X ’1111’ ’1100’ ’1111’ XX

X

X X X

IS_Sync

IS_Instr

IS_Addr[31:2]

IS_BE[3:0]

IS_Stall

IS_Error

IS_AbortAck

IS_RData[31:16] instr1 X instr3 instr5 instr7 XX

IS_RData[15:0]

IS_RBE[3:2]

IS_RBE[1:0]

’11’ X ’11’ XX

’11’ X ’11’ X XX

X X X

X X X

instr0 X instr2 X instr6 XX

’11’

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 39

Several examples of D-side operations redirected to I-side are
illustrated. The examples assume that the redirected D-side
transaction immediately gets access to the I-side external
interface. This is the typical case since redirected D-side
accesses have priority over I-side instruction fetches.

Redirected Read, Single-Cycle

Figure 14 illustrates a single-cycle D-side read operation
where DS_Redir is used for requesting the operation to be
redirected to the I-side. In this example, the I-side read
operation is also single cycle.

The data read begins in cycle 1, like the simple read
introduced in Figure 7. The external agent decides that the
read must be handled by the I-side array, so it deasserts
DS_Stall while asserting DS_Redir in cycle 2. The D-side
transaction is thus terminated, but with the status that it must
be redirected to the I-side for completion. The I-side is able
to start the request immediately, so the read strobe (IS_Read),
address (IS_Addr[31:2]) and byte enables (IS_BE[3:0]) from
the original data read request are driven in cycle 3. Note that
IS_Instr is deasserted in cycle 3. The external agent returns
the requested read data (IS_RData[31:0]) and input byte
enables (IS_RBE[3:0]) in cycle 4, and the redirected
transaction completes since there is no stall.

Figure 14 Redirected Read (Single Cycle)

Redirected Read with Waitstate

Figure 15 illustrates a one waitstate D-side read operation
where DS_Redir is used for requesting the operation to be

redirected to the I-side. In this example, the I-side read
operation also has one waitstate.

The data read again begins in cycle 1. The external agent
decides to stall the core for one cycle starting in cycle 2, by
asserting DS_Stall. Then in cycle 3, the agent decides to
redirect the data read request to the I-side. In cycle 4, the core
drives the original data read signals on the I-side interface.
The I-side is not available for some reason, so the external
agent asserts IS_Stall in cycle 5, causing the core to hold its
strobe, address, and byte enables valid for another cycle.
Finally in cycle 6, the agent deasserts stall, returns the
requested read data, and the transaction completes.

Figure 15 Redirected Read (One Waitstate)

Redirected Write, Single-Cycle

Figure 16 illustrates a single cycle D-side write operation
where DS_Redir is used for requesting the operation to be
redirected to I-side. In this example, the I-side write operation
is also single cycle. Writes redirected to the I-side might be
used as a method for initializing the instruction code space, as
writes to instruction memory are not otherwise possible from
the core.

The D-side write initiated in cycle 1 is requested for
redirection in cycle 2. In cycle 3, the core drives the I-side
write strobe, address, byte enables, and data. A redirected
write is the only way that the IS_Write strobe is asserted.
There is no write data bus on the I-side, so the write data
continues to be held on the DS_WData[31:0] bus. The
external agent can accept the data immediately, so the
transaction completes in cycle 4 since there is no stall.

clk

DS_Read

O
ut

pu
ts

DS_BE[3:0]

IS_Read

IS_Instr

IS_Addr[31:2]

IS_BE[3:0]

In
pu

ts

addr

be

X

X

X

X

DS_Addr[31:2]

addr

’1111’ be ’1111’

DS_Stall

DS_Redir

DS_RData[31:0]

DS_RBE[3:0]

IS_Stall

IS_RData[31:0]

IS_RBE[3:0]

X

X X’0000’

data

’1111’ be ’1111’

Cycle # 1 2 3 4 5 6 7

XX

X X

clk

DS_Read

O
ut

pu
ts

DS_BE[3:0]

IS_Read

IS_Instr

IS_Addr[31:2]

IS_BE[3:0]

In
pu

ts

DS_Addr[31:2]

DS_Stall

DS_Redir

DS_RData[31:0]

DS_RBE[3:0]

IS_Stall

IS_RData[31:0]

IS_RBE[3:0]

X

addr XX

be XX

addr

be’1111’ ’1111’

X X’0000’

data

be’1111’’1111’’1111’ ’0000’’0000’’0000’ ’0000’

X

Cycle # 1 2 3 4 5 6 7

X X

X X

40 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

Figure 16 Redirected Write (Single Cycle)

Redirected Write with Waitstate

Figure 17 illustrates a one waitstate D-side write operation
where DS_Redir is used for requesting the operation to be
redirected to I-side. In this example, the I-side write operation
also has one waitstate.

The sequence shown in Figure 17 is similar to the single cycle
write redirection in Figure 16, only this time one waitstate is
asserted on the D-side before the redirection is signaled, and
then another waitstate is signaled on the I-side before the
write is accepted.

Figure 17 Redirected Write (One Waitstate)

Data Gathering

The SRAM interface includes a “data gathering” capability
that uses input byte enable signals, DS_RBE[3:0], to control
input data registers and allow the read data to be registered
within the core as it becomes available. The same mechanism
is available for the I-side, using IS_RBE[3:0].

As the core contains 32-bit interfaces for read data, the
gathering capability enables the connection to narrower
memories with minimal logic external to the core. Read data
must be aligned to the appropriate byte lane by external logic,
but the input byte enables remove the need for external flops
to hold partial read data while it is collected.

The gathering capability is illustrated in Figure 18. The data
read is initiated by the core in cycle 1, as normal. In this
example, the requested read data is 32 bits wide, but it will be
returned one byte at a time. The external agent asserts
DS_Stall for 3 clocks, starting in cycle 2. In cycles 2-4, a
single byte of read data is returned each clock, as indicated by
the input byte enables (DS_RBE[3:0]), while stall remains
asserted. Finally in cycle 5, stall is deasserted and the final
byte is returned, completing the read transaction.

The input byte enables, DS_RBE[3:0], simply act as enables
on the conditional flops that capture the read data bus,
DS_RData[31:0]. The core does not perform any explicit
checking to ensure that the requested bytes, as indicated by
DS_BE[3:0], were actually returned, as indicated by
DS_RBE[3:0]. It is up to the external agent to ensure that the
appropriate read data is actually returned. If the necessary
input byte enables were not asserted before the transaction
completes, the core will use the last data held by the byte-
wide input flops, which will probably not be the desired
behavior.

While stall is asserted, minimal system power will usually be
achieved when the valid data byte is strobed only once via the
appropriate DS_RBE signal. However, the core input flops
will be overwritten each cycle that a DS_RBE bit is asserted,
while the transaction is still active.

clk

DS_Write

O
ut

pu
ts

DS_BE[3:0]

DS_WData[31:0]

IS_Read

IS_Write

IS_Instr

In
pu

ts

addr

be

X

X

X

X

DS_Addr[31:2]

addr

’1111’ be ’1111’

DS_Stall

DS_Redir

IS_Addr[31:2]

IS_Stall

IS_BE[3:0]

data XX

Cycle # 1 2 3 4 5 6 7

XX

X X

clk

DS_Write

O
ut

pu
ts

DS_BE[3:0]

DS_WData[31:0]

IS_Read

IS_Write

IS_Instr

In
pu

ts

DS_Addr[31:2]

DS_Stall

DS_Redir

IS_Addr[31:2]

IS_Stall

IS_BE[3:0]

data XX

addr XX

be XX

addr

be’1111’ ’1111’

Cycle # 1 2 3 4 5 6 7

X X

X X

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 41

Figure 18 Word Read, Data Arriving Bytewise

Sync

This section illustrates several examples of the protocol
associated with the execution of a SYNC instruction. An
external indication of SYNC execution is provided to allow
external agents to order memory operations, if desired.

Sync with Waitstate

Figure 19 illustrates D-side sync signaling for flushing
external write buffers. One waitstate is assumed in this
example.

The sync signaling is initiated in cycle 1, as indicated by the
sync strobe, DS_Sync. The 5-bit “stype” field encoded within
the SYNC instruction is provided on the address bus,
DS_Addr[10:6]. The location of the stype field on the address
bus matches its field position within the SYNC instruction
word. A sync transaction is terminated just like a normal read,
in the first non-stall cycle after the sync strobe. If an external
agent wants to flush external write buffers, or allow other
pending memory traffic to propagate through the system, it
can stall acknowledgment of the sync by asserting the normal
stall signal, DS_Stall. In this example, one such stall cycle is
shown, starting in cycle 2. Then in cycle 3, stall deasserts and
the sync transaction is terminated. In a sync transaction, no
read data is returned, so the values on the DS_RData and
DS_RBE signals are ignored by the core.

Figure 19 Sync (One Waitstate)

Redirected Sync

Figure 20 illustrates sync signaling where the sync operation
is requested to be redirected to I-side in order to flush I-side
external write buffers. One waitstate for both D- and I-side is
assumed in this example.

Usually, memory ordering around D-side transactions is
desired, so the sync would only take effect on the D-side. But
the sync transaction, much like a read, can also be redirected
to the I-side, if desired.

In this example, the sync is initiated on the D-side in cycle 1.
The external agent responds with a stall in cycle 2, then a
redirection request to the I-side in cycle 3. In cycle 4, the core
drives the I-side strobe (IS_Sync) and stype information on
the address bus (IS_Addr[10:6]). Note that IS_Instr also
deasserts in cycle 4, to indicate that the I-side transaction is
not due to an instruction fetch. The external agent cannot
acknowledge the sync immediately, so it asserts stall in cycle
5. Finally in cycle 6, the stall deasserts and the redirected sync
transaction is completed.

clk

DS_Read

O
ut

pu
tsDS_Write

DS_BE[3:0]

DS_Stall

In
pu

ts

addr XXDS_Addr[31:2]

DS_RData[31:24]

DS_RData[23:16]

DS_RData[15:8]

DS_RData[7:0]

DS_RBE[3]

DS_RBE[2]

DS_RBE[1]

DS_RBE[0]

be XX

X Xdata

X Xdata

X Xdata

X Xdata

Cycle # 1 2 3 4 5 6 7

X X

X

X

X

X

X

X

X

X

clk

DS_Read

O
ut

pu
ts

DS_Write

DS_Sync

DS_Addr[10:6]

DS_BE[3:0]

DS_WData[31:0]

DS_Lock

DS_Unlock

DS_Abort

DS_EjtBreakEn

DS_EjtBreak

DS_Stall

DS_Error

DS_AbortAck

DS_Redir

DS_UnlockAck

DS_RData[31:0]

DS_RBE[3:0]

In
pu

ts

stype XX

X

X

X

X

Cycle # 1 2 3 4 5 6 7

XX

XX

XX

X

X X

42 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

Figure 20 Redirected Sync (One Waitstate)

Bus Error

Examples of the error protocol are shown in this section. An
error is indicated through the DS_Error or IS_Error pins, and
ultimately results in a precise data or instruction bus error
exception within the core. The assertion of DS_Error will
always result in a data bus error exception. The assertion of
IS_Error will result in an instruction bus error exception if the
transaction is a fetch, or a data bus error exception if the
transaction is a data request (redirected or unified interface).

Bus Error on Single Cycle Read

Figure 21 illustrates a single-cycle D-side read operation
causing a bus error, signalled via DS_Error.

The read is initiated in cycle 1, as normal. This time, the
external agent has identified an error condition for some
reason, so it responds by deasserting DS_Stall while asserting
DS_Error in cycle 2. This terminates the read transaction on
the bus with an error status. Any values returned on the
DS_RData and DS_RBE buses will be captured by the input
data registers, but are otherwise ignored by the core. The
termination of a read transaction with DS_Error will result in
a data bus error exception within the core.

Figure 21 Read with Error Indication (Single
Cycle)

Bus Error on Read with Waitstate

Figure 22 illustrates a one waitstate D-side read operation
causing a bus error.

Again, the read transaction begins normally in cycle 1. A stall
is asserted in cycle 2. Finally in cycle 3, the external agent has
identified an error condition so it deasserts stall and
terminates the read transaction with error status, via the
assertion of DS_Error. The value of DS_Error, as well as any
other core input for that matter, is ignored by the core
whenever DS_Stall is asserted.

Figure 22 Read with Error Indication (One
Waitstate)

Abort

Due to the nature of the core pipeline, it may sometimes be
desirable to abort a transaction on the SRAM-style interface
before it completes.

clk

DS_Read

O
ut

pu
ts

In
pu

ts

stype XX

DS_Write

DS_Sync

DS_Addr[10:6]

DS_BE[3:0]

IS_Read

IS_Write

IS_Sync

IS_Instr

IS_Addr[10:6]

X

DS_Stall

IS_RBE[3:0]

IS_RData[31:0]

IS_Stall

DS_RBE[3:0]

DS_RData[31:0]

DS_Redir

IS_BE[3:0]

stype

X

X

X

X

Cycle # 1 2 3 4 5 6 7

X X

X X

X’1111’ ’1111’

clk

DS_Read

O
ut

pu
ts

DS_Stall

In
pu

ts

addr

be

X

X

X

X

X Xdata

X Xbe

DS_Addr[31:2]

DS_BE[3:0]

DS_Error

DS_Redir

DS_AbortAck

DS_RData[31:0]

DS_RBE[3:0]

Cycle # 1 2 3 4 5 6 7

XX

X X

XX

XX

clk

DS_Read

O
ut

pu
ts

DS_Stall

In
pu

ts

DS_Addr[31:2]

DS_BE[3:0]

DS_Error

DS_Redir

DS_AbortAck

DS_RData[31:0]

DS_RBE[3:0]
dataX X

beX XX

Cycle # 1 2 3 4 5 6 7

addr XX

be XX

X X

XX

X X

XX

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 43

Normally, interrupts are taken on the E-M boundary of the
pipeline. Since a D-side interface transaction occurs during
the M-stage, a pending interrupt must wait for the outstanding
transaction to complete. If this transaction has multiple
waitstates, interrupt latency will be degraded. To improve
interrupt latency, a mechanism exists on the SRAM interface
that allows an outstanding transaction to be aborted.
Generally, a transaction must have at least one waitstate or it
doesn’t make sense to abort it.

Use of the abort mechanism is optional. If a load/store/sync
transaction is successfully aborted following an interrupt,
then the interrupt will be taken on the load/store/sync
instruction that initiated the transaction. In this case, care
must be taken to ensure that the aborted transaction can be
replayed with no ill effects in the system. If the transaction is
not aborted, then the interrupt is simply taken on the
instruction following the load/store/sync.

Examples of aborted transactions are discussed in the
following subsections.

Aborted Read

Figure 23 illustrates a one waitstate D-side read operation
with an abort request. In this example, external logic was able
to abort the operation, and signals the acknowledgment
through assertion of DS_AbortAck.

The read begins normally in cycle 1, due to a load instruction.
An interrupt is pending, so the core signals an abort request,
by asserting DS_Abort in cycle 2. Whether the external agent
responds to the abort request is completely optional. Also in
cycle 2, the external agent is not ready to complete the read,
so it asserts stall. In cycle 3, the external agent decides to
abort the pending read transaction, so it deasserts stall while
asserting DS_AbortAck and the transaction is aborted. The
interrupt will be taken on the load instruction. Depending on
the interrupt handler, instruction flow will likely return to this
load after processing the interrupt, and the aborted read
transaction will be replayed.

Figure 23 Aborted Read (One Waitstate)

Unsuccessful Abort for Single-Cycle Write

Figure 24 illustrates a single-cycle D-side write operation
with an abort request. In this example, the external logic
ignores the request and does not abort the operation.

The write is initiated in cycle 1. Due to a pending interrupt,
the core signals an abort request in cycle 2. The external agent
chooses not to abort the write, so it does not assert
DS_AbortAck. The transaction completes normally in cycle 2,
since no stall was asserted and the error, redirection and abort
acknowledge status signals were deasserted.

Figure 24 Unsuccessful Abort Attempt for Write
(Single Cycle)

Aborted Multi-Cycle Write

Figure 25 illustrates another case of a successfully aborted
operation. This example demonstrates that the abort request
can be signaled several cycles after the transaction has
started.

This time, a write request is initiated in cycle 1. The external
agent is not ready to complete the write, so it asserts stall in
cycles 2 and 3. In cycle 4, an interrupt causes the core to
signal an abort request. This causes the external agent to
terminate the access in cycle 5 (deasserting DS_Stall), while
asserting DS_AbortAck to indicate that the write was aborted.

clk

DS_Read

O
ut

pu
ts

DS_Abort

DS_Stall

In
pu

ts

addr XX

be XX

DS_Addr[31:2]

DS_BE[3:0]

DS_Error

DS_AbortAck

DS_Redir

Cycle # 1 2 3 4 5 6 7

X X

X X

XX

XX

clk

DS_Write

O
ut

pu
ts

DS_WData[31:0]

DS_Abort

In
pu

ts

DS_Addr[31:2]

DS_BE[3:0]

DS_Stall

DS_Error

DS_AbortAck

DS_Redir

addr XX

be XX

data XX

Cycle # 1 2 3 4 5 6 7

XX

XX

XX

XX

44 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

Figure 25 Aborted Write (Multi Cycle)

EJTAG Hardware Breakpoints

EJTAG hardware breakpoints present another twist on the
SRAM-style interface. Hardware breakpoints are one method
to achieve entry into EJTAG debug mode. When a breakpoint
occurs, a debug exception must be taken on the instruction
fetch, data load, or data store instruction itself, but the
exception is not known until the transaction has already
started on the interface. Hence, the breakpointed transaction
may have accessed memory, but will be replayed after
returning from the debug exception. If this transaction is not
replay-able, it should not be allowed to access or modify
memory until it is certain that no breakpoint will occur. At
least one waitstate is necessary to identify a transaction that
may potentially take an EJTAG breakpoint exception.

Note that no acknowledge is signalled as response to EJTAG
break indications (DS_EjtBreak or IS_EjtBreak). The
exception is always taken on the instruction fetch, data load,
or data store instruction causing the break.

Also note that for a data read operation, a data break may
depend on the data value read and so may be triggered after
the read has finished. In case the read is followed by a new
transaction, the new transaction may already have been
initiated when the break is detected. In this case, the EJTAG
break is signalled in the cycle following the cycle in which
the read was terminated and the new access was initiated.

EJTAG Break on Data Write

Figure 26 illustrates a one-waitstate D-side write operation
causing an EJTAG data break. The EJTAG data break is
signalled using DS_EjtBreak.

The write begins in cycle 1, as usual. DS_EjtBreakEn has
been asserted for a while, indicating that EJTAG data
breakpoints are enabled. The external agent can elect to use
this signal to conditionally add waitstates, if replays cannot

be tolerated when a breakpoint event ultimately occurs. In
cycle 2, the core asserts DS_EjtBreak to indicate that a
hardware breakpoint has been detected. Also in cycle 2, the
external agent asserts a stall. Finally in cycle 3, the agent
terminates the write transaction by deasserting DS_Stall. The
core pipeline will take a debug exception on the store
instruction that caused the write transaction, go into debug
mode, and eventually upon exit from the debug handler will
restart the store that caused the EJTAG break.

If the system cannot tolerate replay of the breakpointed
transaction, then it should not allow the transaction to access
memory. However, it must indicate a completion of the
breakpointed transaction by deasserting stall; otherwise, the
core will be stalled indefinitely.

Figure 26 EJTAG Data Write Break (One Waitstate)

EJTAG Break for Data Write, Unified Interface

Figure 27 illustrates a data write operation on the Unified
Interface. The data write causes an EJTAG data break, which
is signalled using IS_EjtBreak.

The data write begins in cycle 1. Note that the IS_Write strobe
is asserted, while IS_Read and IS_Instr are deasserted, to
indicate that a data write is occurring on the Unified Interface.
IS_EjtBreakEn signal is asserted, since data breakpoints and/
or instruction breakpoints, have been enabled. In cycle 2, the
core detects a data breakpoint, and indicates it by asserting
IS_EjtBreak. The external agent also stalls the write by
asserting IS_Stall in cycle 2. Finally in cycle 3, the external
agent terminates the transaction by deasserting IS_Stall. The
external agent must signal the completion of the transaction
in the normal manner (by deasserting stall). Again, the system
is free to decide whether it actually allows the breakpointed
write to update unified memory, according to its tolerance for
replay.

clk

DS_Write

O
ut

pu
ts

DS_WData[31:0]

DS_Abort

In
pu

ts

DS_Addr[31:2]

DS_BE[3:0]

DS_Stall

DS_Error

DS_AbortAck

DS_Redir

addr XX

Cycle # 1 2 3 4 5 6 7

X X

XX

X X

XX

be XX

data XX

clk

DS_Write

O
ut

pu
tsDS_WData[31:0]

DS_Abort

In
pu

ts

addr XX

be XX

DS_Addr[31:2]

DS_BE[3:0]

DS_EjtBreakEn

DS_Stall

DS_Error

DS_AbortAck

DS_Redir

DS_EjtBreak

data XX

Cycle # 1 2 3 4 5 6 7

X X

XX

XX

XX

MIPS32® M4K® Processor Core Datasheet, Revision 02.01 45

Figure 27 EJTAG Data Write Break for Unified
Interface (One Waitstate)

Lock

Figure 28 illustrates the locking mechanism available to
handle semaphores on the interface. This mechanism is used
during the execution of D-side “load linked” / “store
conditional” (LL/SC) operations.

The data read resulting from an LL instruction is initiated in
cycle 1. The LL is indicated by the core’s high-active
assertion of the DS_Lock signal in cycle 1. External logic can
use this information to attempt to set a lock on the requested
address, and prevent other devices from accessing the address
if the lock is obtained. The read completes in a single clock,
in cycle 2. Then in cycle 4, the core starts a write resulting
from an SC instruction, as indicated by its assertion of the
DS_Unlock signal. The external agent can signal whether it
was able to maintain the desired lock, by returning the status
on DS_UnlockAck. The value returned on DS_UnlockAck is
written by the core into the destination register specified by
the SC instruction.

In this example, the read address from the LL (addr0) and the
write address from the SC (addr1) are different. It is
completely up to the external logic as to whether locks it
maintains are address-specific or not.

While this example has assumed a data operation occuring on
a the D-side of a Dual Interface, I-side signaling is used for
redirected (or Unified Interface) LL/SC operations. I-side
lock signaling works the same way as the D-side.

An additional signal, IS_UnlockAll, is related to the locking
mechanism but not shown in Figure 28. IS_UnlockAll is
asserted for one cycle whenever an ERET instruction is
performed. This signal is only present on the I-side (and
therefore the Unified Interface), and has no equivalent on the
D-side. Whenever an ERET instruction is executed,
IS_UnlockAll is asserted for one cycle. When this occurs,
external logic can unlock all addresses locked by that CPU.
An ERET is typically issued for each task-switch performed
by the operating system.

Figure 28 Locking (Single Cycle)

Revision History

Change bars (vertical lines) in the margins of this
document indicate significant changes in the docu-
ment since its last release. Change bars are removed
for changes that are more than one revision old.

This document may refer to Architecture specifications (for
example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate
changes since the previous version of the relevant Architec-
ture document.

clk

O
ut

pu
ts

IS_Read

In
pu

tsIS_Stall

IS_Write

IS_Instr

IS_Addr[31:2]

IS_BE[3:0]

DS_WData[31:0]

IS_Abort

IS_EjtBreakEn

IS_EjtBreak

IS_Error

IS_AbortAck

addr

be’1111’ ’1111’

dataX X

Cycle # 1 2 3 4 5 6 7

XX X X

XX X X

clk

DS_Read

O
ut

pu
ts

DS_Write

DS_Addr[31:2]

DS_BE[3:0]

DS_WData[31:0]

DS_Lock

DS_Stall

In
pu

ts

addr0 XX addr1

XdataX

DS_Unlock

X

be0 XX be1X

DS_RData[31:0]

DS_RBE[3:0]

DS_UnlockAck

XdataX

XbeX

Cycle # 1 2 3 4 5 6 7

XX X

X X

Revision Date Description

00.20 May 8, 2002 • Preliminary release.

46 MIPS32® M4K® Processor Core Datasheet, Revision 02.01

00.90 June 27, 2002
• Added more details about interrupt modes.
• Added external signals related to an optional external interrupt controller.
• Improved description of GPR shadow sets.

01.00 August 28, 2002

• Commercial release.
• Added this revision history table.
• Changed K0, KU, and K23 fields in Config register to be read-only, with static value of

2.
• Modified abort description on SRAM interface, as abort requests are not only caused by

interrupts.
• Updated description of write buffer control signals on SRAM interface.

01.01 January 8, 2003 • Changed case of signal name SI_IAck. Added assembler idioms such as b, bal.

01.02 September 1, 2004

• Externalized CorExtend interface.
• Added CEU (CorExtend Unusable) exception type.

• Exception table referred to EB_NMI instead of SI_NMI.
• Added table summarizing key build time configuration options.

02.00 June 5, 2006

• Added complex breakpoints
• Added iFlowtrace interface
• Updated configuration options supported
• Added external call indication
• Enabled setting of cacheability

02.01 March 4, 2008 • Update template
• Fixed SLTU description

Revision Date Description

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

aLt{онϯ aпYϯ tǊƻŎŜǎǎƻǊ /ƻǊŜ 5ŀǘŀǎƘŜŜǘΣ wŜǾƛǎƛƻƴ лнΦлм a5ллнпт

Copyright © Wave Computing, Inc. All rights reserved.

www.wavecomp.ai

