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ABSTRACT

This paper introduces a generic and scalable framework for
automated anomaly detection on large scale time-series data.
Early detection of anomalies plays a key role in maintain-
ing consistency of person’s data and protects corporations
against malicious attackers. Current state of the art anomaly
detection approaches suffer from scalability, use-case restric-
tions, difficulty of use and a large number of false positives.
Our system at Yahoo, EGADS; uses a collection of anomaly
detection and forecasting models with an anomaly filtering
layer for accurate and scalable anomaly detection on time-
series. We compare our approach against other anomaly
detection systems on real and synthetic data with varying
time-series characteristics. We found that our framework
allows for 50-60% improvement in precision and recall for a
variety of use-cases. Both the data and the framework are
being open-sourced. The open-sourcing of the data, in par-
ticular, represents the first of its kind effort to establish the
standard benchmark for anomaly detection.

1. INTRODUCTION

While rapid advances in computing hardware and software
have led to powerful applications, still hundreds of software
bugs and hardware failures continue to happen in a large
cluster compromising user experience and subsequently rev-
enue. Non-stop systems have a strict uptime requirement
and continuous monitoring of these systems is critical. From
the data analysis point of view, this means non-stop moni-
toring of large volume of time-series data in order to detect
potential faults or anomalies. Due to the large scale of the
problem, human monitoring of this data is practically infea-
sible which leads us to automated anomaly detection using
Machine Learning and Data Mining techniques.

An anomaly, or an outlier, is a data point which is signif-
icantly different from the rest of the data. Generally, the
data in most applications is created by one or more gen-
erating processes that reflect the functionality of a system.

When the underlying generating process behaves in an un-
usual way, it creates outliers. Fast and efficient identification
of these outliers is useful for many applications including: in-
trusion detection, credit card fraud, sensor events, medical
diagnoses, law enforcement and others [1].

Current approaches in automated anomaly detection suffer
from a large number of false positives which prohibit the use-
fulness of these systems in practice. Use-case, or category
specific, anomaly detection models [4] may enjoy a low false
positive rate for a specific application, but when the charac-
teristics of the time-series change, these techniques perform
poorly without proper retraining. Section 6.3 demonstrates
the shortcoming of ‘one size fits all’ principle in practice.

Our system at Yahoo is called EGADS (Extensible Generic
Anomaly Detection System) and it enables the accurate and
scalable detection of time-series anomalies. EGADS sepa-
rates forecasting, anomaly detection and alerting into three
separate components which allows the person to add her
own models into any of the components. Note that this
paper focuses on the latter two components.

EGADS uses a set of default models that are tuned to re-
duce the number of false positives, which by itself suffices
for the average user. More advanced use-cases, however,
will require the system to capture some types of anomalies
while ignoring others. The anomalies of interest may vary
in magnitude, severity or other parameters which are un-
known apriori and depend on the use-case. For this reason
the alerting component of EGADS uses machine learning to
select the most relevant anomalies for the consumer.

To the best of our knowledge EGADS is the first compre-
hensive system for anomaly detection that is flexible, accu-
rate, scalable and extendible. EGADS is being open-sourced
along with the anomaly detection benchmarking data. The
open-sourcing of the data and the system will provide the
first of its kind benchmarking data and the framework to
help the academics and the industry collaborate and develop
novel anomaly detection models. At Yahoo, EGADS is used
on millions of time-series by many teams daily.

In Section 2 we describe the EGADS architecture. The al-
gorithms and the alerting module are described in Sections
3 and 4 respectively. Previous work is described in Section
5 followed by the real-world use-cases and conclusion in Sec-
tions 6 and 7 respectively.



2. ARCHITECTURE

The EGADS framework consists of three main components:
the time-series modeling module (TMM), the anomaly de-
tection module (ADM) and the alerting module (AM). Given
a time-series the TMM component models the time-series
producing an expected value later consumed by the ADM
and AM components that, respectively, compute the error
and filter uninteresting anomalies. These components are
described in detail in Sections 3 and 4.

EGADS was built as a framework to be easily integrated into
an existing monitoring infrastructure. At Yahoo, our inter-
nal Yahoo Monitoring Service (YMS) processes millions of
data-points every second. Therefore, having a scalable, ac-
curate and automated anomaly detection for YMS is critical.
We describe the integration details into YMS next.

2.1 System Integration

EGADS operates as a stand-alone platform that can be used
as a library in larger systems. Therefore, designing an in-
terface between EGADS and an internal Yahoo monitoring
service (YMS) is critical. A key constraint of YMS is scale;
the platform needs to evaluate millions of data points per
second. As a result, many of the integration architecture de-
cisions are focused on optimizing real-time processing. The
integration with YMS is shown in Figure 1.
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Figure 1: EGADS-YMS Architecture

Several support components are required to drive action
based on detected anomalies. First of all, all anomaly detec-
tion models are generated in batch and applied in real time.
The batch flow is comprised of three steps:

1. Telemetry (i.e. the monitored time-series) data are
stored in bulk on a Hadoop cluster.

2. A batch model generator runs against these data and
builds models for targeted time-series.

3. The models are stored in a model database.

The online flow then utilizes the stored models.

1. Data flows into a Storm [22] stream-processing topol-
ogy.

2. One of the bolts (modules) in the topology calls the
EGADS ADM to evaluate incoming data points based
on models stored in the model database.

3. If an anomaly is present, this is fed to a secondary
rule flow, consisting of combinatorial rules and other
use-cases specific logic (see Section 4).

4. Based on the rules, if the anomaly is an alert event,
the event is generated, stored in a status database, and
forwarded to an alert routing system.

5. The alert routing system applies routing configuration
rules to send the alert to the appropriate support staff.

2.2 Scalability

The monitoring use case for EGADS requires the evaluation
of millions of data-points per second, across over one hun-
dred million time-series. This has scalability implications in
terms of CPU load, I/O, and memory footprint. The eval-
uation of a datapoint needs to be as efficient as possible.
This means that as much of the model as possible should be
precomputed. It is not practical to read a model from disk
each time a datapoint arrives because of the rate of inbound
traffic. This suggests that the models should be stored in
memory. In order to contain costs, the models should be as
small as possible.

One optimization is to share models across multiple similar
time-series. This is practical in the context of a large web
serving environment, since applications are broken into hor-
izontal tiers of similar servers. This optimization will reduce
the memory footprint, the batch workload, and I/O against
the model database.

Another possible optimization is to investigate self-tuning
models; models that update themselves based on a stream
of inbound data via online learning rather than requiring
periodic batch generation. Models of this type may need
to be initialized in batch, but overall they will reduce the
batch workload. Depending on implementation, however,
they may increase writes against the model database since
they are being constantly refined.

Yet another optimization involves a trade-off between model
size, training speed and accuracy. Depending on the charac-
teristics of the time-series a light and fast forecasting model
can provide similar accuracy as a more sophisticated one.
We evaluate some of these optimization approaches in Sec-
tion 6.2.2.

3. ANOMALY DETECTION ALGORITHMS

In this section, we give a big picture overview of the anomaly
detection algorithms supported by EGADS. Currently, EGADS
is capable of detecting three classes of anomalies:

(a) Outliers: given an input time-series z, an outlier is a
timestamp-value pair (¢, x¢) where the observed value



x; is significantly different from the expected value of
the time-series at that time, i.e. E(x¢).

(b) Change points: given an input time-series z, a change
point is a timestamp ¢ such that the behavior of the
time-series is significantly different before and after t.

(¢) Anomalous time-series: given a set of time-series
X = {2V}, an anomalous time-series z¥) € X is
a time-series whose behavior is significantly different
from the majority of the time-series in X.

In the following sections, we give the general sketch of the
methods that are currently used in EGADS for detecting
the aforementioned anomaly types.

3.1 Outlier Detection

Detecting outliers is the most important functionality in
many monitoring applications. For this reason the main
focus of this paper is on outlier detection and unless it is
explicitly specified, by anomalies, we refer to outliers by de-
fault.

EGADS offers two classes of algorithms for detecting out-
liers, which are described in this section.

3.1.1 Plug-in methods

The first class of methods for time-series outlier detection in
EGADS are called plug-in methods. These methods explic-
itly model the normal behavior of the time-series such that
a significant deviation from this model is considered an out-
lier. To model the normal behavior of the input time-series
we can plug-in a wide range of time-series modeling and fore-
casting models (e.g. ARIMA [26], Exponential Smoothing
[11], Kalman Filter [9], State Space Models [6], etc.) de-
pending on the application and the nature of time-series.
That is why we refer to this general strategy as the plug-
in methods. It should be noted that all these models are
used in EGADS for time-series forecasting which is another
feature of our framework; however, since the focus of this
paper is on anomaly detection, we do not give more details
on modeling and forecasting features of EGADS.

Our proposed Plug-in framework consists of two main com-
ponents: the time-series modeling module (TMM) and the
anomaly detection module (ADM). Given a time-series X =
{z+ € R : Vt > 0}, the TMM provides the predicted value
of x; at time ¢, denoted by u:. We also refer to this quan-
tity as the expected value of z; (not to be confused with
the mathematical notion of expectation). The TMM can
be a machine learned model which makes predictions based
on some training data or a rule-based system which encodes
expert’s knowledge about how z; behaves at time ¢. In this
paper, we do not make any assumption regarding the TMM;
that is, the TMM is just a black box module in our pro-
posed method that generates predictions u;. In this sense,
our proposed framework is generic and does not depend on
any specific time-series modeling framework.

Given the predicted value u: and the actual observed value
¢, the ADM computes some notion of deviation which we
refer to as the deviation metric (DM). The simplest measure

of deviation is the prediction error, PE; = xy — us. If the
error falls outside some fixed thresholds, an alert is issued.
This simple method may work in some cases, but it will not
be a good strategy for most because it does not capture the
relative error. The relative error, RE; is defined as a factor
of us:

REt:u:ﬂ (1)

Ut Ut

By thresholding the relative error, one can detect anomalies
while normalizing out the dependence on the magnitude of
the expected value. The values of these thresholds, indeed,
determine how sensitive the anomaly detection module is.
Various thresholding techniques are described in Section 4.
Despite its common usage and effectiveness, however, there
is no reason to believe the relative error is always the op-
timal metric for anomaly detection on a given time-series.
In fact, the choice of the optimal metric for a given time-
series highly depends on the nature of the time-series as well
as the TMM performance. For instance, if we are dealing
with a very regular time-series for which we have an accu-
rate model, using the prediction error for anomaly detection
might be sufficient as it is expected to be Normally dis-
tributed. In other cases, the optimal metric might be some-
thing between the prediction error and the relative error.
For this reason, EGADS tracks a set of deviation metrics
by default and the person using the system can create her
own error metrics. These error metrics, together with other
features, such as the time series characteristics, are used in
the alerting module (AM), described in Section 4, to learn
consumer’s preferences and filter unimportant anomalies.

3.1.2  Decomposition-based methods

The second class of outlier detection methods in EGADS is
based on the idea of time-series decomposition. In partic-
ular, in the time-series analysis literature, it is a common
practice to decompose a time-series into three components:
trend, seasonality and moise. By monitoring the noise com-
ponent, one can capture the outliers. More precisely, if the
absolute value of the noise component of point z; is greater
than a certain threshold, one can announce z; as an outlier.

The decomposition of time-series can be done both in the
time-domain via smoothing or in the frequency-domain via
spectral decomposition. STL (Seasonal-Trend Decomposi-
tion based on Loess) [5] is a famous technique that uses
Loess smoothing for decomposition. The frequency-domain
methods can be further divided into parameteric and non-
parametric methods. For the parametric methods, the ba-
sis used for spectral decomposition has a known parametric
form (such as Fourier transform [2] or wavelet transform
[19]) whereas, for non-parametric methods, the basis is data-
driven [18].

3.2 Change Point Detection

Change points are those points in time where the behavior
of the time-series starts to deviate from what is expected.
The big difference between change points and outliers is
that change points correspond to more sustained, long-term
changes compared to volatile outliers. A common strategy



for detecting change points in the literature is to move two
side-by-side windows on the time-series and compute the dif-
ference between the behavior of the time-series in the two
windows as a measure of the deviation metric [12, 27, 17,
20]. The behavior of the time-series in each window is typi-
cally modeled by the distribution of the values, motifs, fre-
quencies, etc. that are present in the time-series. We refer
to these techniques as the absolute techniques because they
do not make explicit assumptions regarding the expected
behavior of the time-series.

In EGADS, currently we have taken a different approach
which we refer to as the relative or model-based methods. In
these methods, the expected behavior of the time-series is
explicitly modeled through one of the modeling techniques
mentioned in Section 3.1.1. In particular, we incorporate the
plug-in approach described in Section 3.1.1 to compute the
sequence of residuals (or deviations from the model expec-
tation) for an input time-series. Then we apply the absolute
change point detection methods on the series of residuals to
detect a change in the distribution of the residuals. We have
used Kernel Density Estimation [7] to non-parametrically
estimate the distribution of the residuals and the Kullback-
Leibler divergence [16] to measure the change in the distri-
bution.

We believe the model-based change point detection methods
are more useful than the absolute methods in the practical
applications. This is because the change points are mean-
ingful as much as our models cannot explain the behavior
of the time-series after a certain time point. However, if the
model can explain the time-series behavior even after an ab-
solute change point, from the practical point of view, there
is no reason for us to consider that time point as a change
point. In other words, the change points are relative to the
underlying model used to explain the behavior of the time-
series, which in turn gives rise to the relative change-point
detection techniques.

3.3 Detecting Anomalous Time-series

Another class of anomaly detection techniques supported
by EGADS involves detecting anomalous time-series. An
anomalous time-series 1" is defined as a time-series whose
average deviation from the other time-series is significant.
Assuming all time-series are homogeneous and come from
the same source (i.e. are part of the same cluster) one
can simply compute the average deviation for time-series
(¢) relative to other time-series. In EGADS our current
approach involves clustering the time-series into a set of
clusters C' based on various time-series features including
trend & seasonality, spectral entropy, autocorrelation, av-
erage Euclidean distance etc. After clustering we perform
intra or inter-cluster time-series anomaly detection by mea-
suring the deviation within or among the cluster centroids
and the time-series (7). A common use-case for this EGADS
anomaly detection type involves triaging. For example if a
network engineer wants to find an anomalous server amongst
millions of time-series, it can be impractical with the pre-
vious approaches because the modeling is done on the per
time-series basis without taking into account the behavior
of other metrics. Another application of this anomaly detec-
tion type is in finding similar anomalies, which is the inverse
of the previous use-case.

4. ALERTING

The end-goal of anomaly detection is to produce accurate
and timely alerts. EGADS achieves this via a two stage
process by first generating a set of candidate anomalies by
threshold selection and then filtering the irrelevant anoma-
lies for a given use-case.

4.1 Threshold Selection

The job of threshold selection is to select appropriate thresh-
olds on the deviation metrics produced by the anomaly de-
tection module (ADM). Currently EGADS implements two
algorithms for threshold selection based on (a) Ko deviation
and (b) density distribution.

The first approach is parametric and assumes that the data
is normally distributed with a well-defined mean and stan-
dard deviation. Relying on the Gaussian distribution we can
apply a well known statistical tool called the ‘three-sigma
rule’ which states that 99.73% of all samples lie within three
standard deviations of the mean. Therefore, depending on
the value of K in Ko, one can be confident as to the prob-
ability of observing a sample at time ¢. Depending on the
desired level of sensitivity, one can measure if a given sam-
ple lies within the 95.45% or 68.27% of all the samples for
K = 2 or 1 respectively. Note that the assumption here was
that our deviation metrics are normally distributed.

The second approach is non-parametric and is useful for the
cases when the deviation metric is not normally distributed.
The basic idea is to to find low density regions of the devi-
ation metric distribution. One approach is to use an algo-
rithm such as Local Outlier Factor (LOF) [3] which is based
on a concept of a local density, where locality is given by
nearest neighbors, whose distance is used to estimate the
density. By comparing the local density of an object to the
local densities of its neighbors, one can identify regions of
similar density, and points that have a substantially lower
density than their neighbors. These are considered to be
outliers.

4.2 Filtering
Filtering performs the last stage post-processing on the anoma-
lies which are then delivered to the consumer. While the
candidate anomalies, which are the input to the filtering
stage, are statistically significant, not all of them will be rel-
evant for a particular use-case. For example some consumers
are interested in spikes in the time-series, while others are
interested in dips, yet others are interested in change points.
EGADS provides a simple and intuitive interface which al-
lows users to mark the regions of the time-series that are
anomalous. This feedback is then used by EGADS together
with time-series and model features to train a classifier that
predicts if an anomaly a; is relevant to user u;. The time-
series features tracked by EGADS are shown in Table 1 and
are described in more detail in [25]. Section 6.4 explores
the performance of a filtering module for a specific use-case.
Like other components of EGADS, the filtering component
is extensible in terms of models and features.



Time-series feature

Description

Periodicity (frequency)

Periodicity is very important for de-
termining the seasonality.

Trend Exists if there is a long-term change
in the mean level
Seasonality Exists when a time series is influ-

enced by seasonal factors, such as
month of the year or day of the week

Auto-correlation

Represents long-range dependence.

Non-linearity

A non-linear time-series contains
complex dynamics that are usually
not represented by linear models.

time series.

Skewness Measures symmetry, or more pre-
cisely, the lack of symmetry.

Kurtosis Measures if the data are peaked or
flat, relative to a normal distribu-
tion.

Hurst A measure of long-term memory of

Lyapunov Exponent

of nearby trajectories.

A measure of the rate of divergence

Table 1: Time-series features used by EGADS

Figure 2 shows the feature profile of a sample time-series.
Note that the metrics beginning with dc are obtained on
the adjusted time-series (i.e. after removing trend and sea-
sonality). In Section 6.2 we look at how these time-series
characteristics impact the model performance.

S. RELATED WORK

There are a number of anomaly detection techniques in the
literature. The techniques range from point anomaly detec-
tion algorithms to change-point detection algorithms. In [21]
authors propose an outlier detection technique based on hy-
pothesis testing, which is very accurate at detecting extreme
outliers. In fact Twitter, [23], uses [21] in conjunction with
piecewise approximation of the underlying long-term trends
to remove many of the false positives. Twitter’s approach is
fast and enjoys an impressive precision and recall, however
it is specific to the use-case of Twitter. There are also a
number of open-source point anomaly detection techniques
available including [24, 15].

Authors in [13] provide an anomaly detection technique that
finds ‘Change Points’ or ‘Level Shifts’. Change Points (CP)
are different form point anomalies or point outliers in that
CP reflect a change in underlying statistic of the time-series
(e.g., Mean shift). CP typically occurs in a time-series with
a launch of a new product feature or a new platform. There
are a number of open-source change point detection algo-
rithms available including [14].

In our experience, a particular anomaly detection algorithm
is usually applicable to only a specific use-case. As au-
thors in [1] mention the anomalies will have typically a high
anomaly score, but the high score alone is not a distin-
guishing factor for an anomaly. Rather, it is the analyst,
who regulates the distinction between noise and anomaly.
Similarly, authors in [4] provide a concise overview of the
anomaly detection technique per category, citing the fact
that only a set of anomaly models are most appropriate for

a given anomaly category of interest. Therefore, based on
the observation that ‘One Size Fits All’ is a myth in the
anomaly detection world, EGADS uses a strategy where a
collection of well trained anomaly detection models with a
post-processing use-case-specific anomaly filtering stage is
used.

6. EXPERIMENTAL STUDY

We present the experiments for the modeling, anomaly de-
tection and alerting components of EGADS next.

6.1 Data

The dataset used for the experiments is comprised of a mix-
ture (50/50) of synthetic and real data. We have created
a synthetic time-series generation tool that is being open-
sourced along with the framework and the benchmarking
data. Using the tool, each synthetic time-series is generated
by specifying the length, magnitude, number of anomalies,
anomaly type, anomaly magnitude, noise level, trend and
seasonality. These parameters are picked from a fixed distri-
bution. The real dataset is comprised of Yahoo Membership
Login (YML) data. The YML data tracks the aggregate sta-
tus of user logins to the Yahoo network. Both the synthetic
and real time-series contain 3000 data-points each, which
for the YML data represent 3 months worth of data-points.
Unless otherwise stated, all experiments were run on 1000
randomly picked time-series and the results were averaged.
Also note that both the synthetic and real-time data have
anomaly labels, that are either synthetically or editorially
generated, allowing us to measure precision and recall.

6.2 Modeling Experiments

Time-series modeling (captured by the TMM component in
EGADS) is a fundamental part of anomaly detection. It
is often the case that the anomaly detection is as good as
the underlying time-series model. Due to a large number
of candidate models, model-selection becomes critical and
depends upon time-series characteristics and available re-
sources. In the experiments that follow, we demonstrate
the impact of time-series features on the model performance
and show the trade-off between accuracy, memory usage and
training time. The models and the error metrics used in the
experiments are described in Tables 2 and 3 respectively.
More details about the models and the metrics can be found
in [10] and [25].

6.2.1 Time-series Characteristics and

Model Performance

To demonstrate the impact of time-series features on model
performance we compare the error metrics of different mod-
els when fitting time-series with different features (see Sec-
tion 4.2). Figure 3 shows that time-series characteristics
play an important role in model behavior. For example
the Olympic Model, which is a seasonal model, performs
poorly on a dataset with no seasonality and a strong trend.
EGADS keeps track of the historic time-series characteris-
tics and model performance. Using this historical informa-
tion, EGADS selects the best model (given the time-series
features) judged by the error metrics described in Table 3.
In practice, performing model selection based on the data
features is much faster than performing cross-validation for
every model.
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Figure 2: An example of the time-series and its characteristics extracted by EGADS. These characteristics are used by EGADS
for filtering and model selection.

mation.

Table 2: Models Used for Modeling Experiments

Model Description Model Description
Olympic The naive seasonal model where the pre- Bias The arithmetic mean of the errors.
Model (Sea- | diction for next point is a smoothed aver- MAD The mean absolute deviation. Also known
sonal Naive) age over previous n periods. as MAE.
Exponential A popular model used to produce MAPE The mean absolute percentage error.
Smoothing smoothed time-series. Double and Triple MSE The mean square of the errors.
Model exponential smoothing variants add trend SAE The Sum of Absolute Errors.
and seasonality into the model. the ETS ME Mean Error.
model used for the experiments auto- MASE Mean absolute scaled error.
matically picks the best ‘fit’ exponential MPE Mean percentage error.
smoothing model.
Moving Table 3: Metrics Used for Modeling Experiments
Average In this mode, the forecast is based on an
Model artificially constructed time series in which
the value for a given time period is replaced
by the mean of that value and the values 6.2.2  Time-series Model Scalability
for some number of Precedif{g and succefsd- As discussed in Section 2 it is often prohibitive to build mod-
ing time periods. The Weighted Moving els for every time-series and optimization techniques are re-
Avelﬁage and Naive F or(?castlng Model are quired to support real-time performance over massive (e.g.,
special cases of the moving average model. millions of points every second) data-streams. A fundamen-
Regression Models the relationship between z & y us- tal optimization performs a trade-off between model size,
Models ing one or more variable. training time and accuracy. Such a trade-off is shown in
ARIMA Autoregressive integrated moving average. Figures 4(a) and 4(b). From the figure, for example, it is
(T)BATS (Trigonometric) Exponential smoothing clear that the Seasonal Naive model is quick to train but has
Family state space model with Box-Cox transfor- a relatively large memory requirement and a high average

error. At Yahoo, a target in terms of resources and training
time is first set and then the models are picked accordingly.
In other words, the objective is to minimize the errors in
Table 3 subject to the resource and model building time
constrains. Other optimization techniques including time-
series sampling and model sharing are being investigated.



US Treasury (No seasonality, but high trend)

2! M sias
- o
MAPE
o use
o s

5 III ||I| |I| Jd “‘| |I| |I| -IlI |II IIII

7
N N N N N N N N N
e e e
AT 2P 2T T ¥ 20T 80T T e e
o o o o oo ‘
A o (@ ses A @ A
e e < 2 o e

o = <o G oY e

(a) Model performance on TimeSeries with trend.

Electricity Time-Series (Strong Trend and Seasonality)

210 W Bias
B mAaD
MAFPE
M vsC
140 M SN\E
70
o
-70
S \W@G\W@M’z\ X p‘\\x“‘\&m@ “gso"(@m"é o
o5 e ot e o ot e e
o0 (B o e O @8 @o¥? o & o
N et @ {p@\a ¥ 07 ot
» e
)@‘“E* W A em"e€+<\\¢“v we?

(b) Model performance on TimeSeries with seasonality.

Figure 3: Model performance on time-series with varying characteristics.
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Figure 4: Model trade-offs

6.3 Anomaly Detection Experiments

In this section we compare open source system against EGADS.

The open source systems considered are shown in Table 4.
The results on the data described in Section 6.1 are shown
in Figure 5. The results are compared in terms of the stan-
dard Fy-Score = 2 x %ﬁm. The results indicate
that there is no best anomaly detection model for all use-
cases. In particular different algorithms are best at detec-
tion different types of anomalies. For example Twitter [13]
performs best on dataset TS-2 while ExtremeLowDensity
model is best on 7'S-3. These datasets contain a mixture of
anomaly types (e.g., outliers, change-points), and one might
argue that comparing an algorithm that is only meant for
change-point detection is not fair. Recall, however, that the
motivation for EGADS was that the user should be agnostic
to the type of time-series and the type of anomalies that
are in the data. The system must be able to gracefully and
robustly deal with a wide variety of anomalies present in
the data. For this reason, EGADS is built as a library that
combines a set of anomaly detection models into a single
framework. The anomalies from these models are forwarded
to the filtering component for accurate anomaly detection.

6.4 Anomaly Filtering Experiments

The importance of an anomaly often depends on the use-
case. Specifically, some users may be interested in the time-
series behavior that exhibits a malicious attack, while oth-
ers may be interested in revenue drops. Yahoo Membership
(YM) use-case refers to the former set of users. Specifically
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Figure 5: Anomaly model performance on different datasets.
Observe that there is no single model that is best on all
datasets.

for the YM use-case, editors supplied feedback to EGADS



Model

Description

EGADS EGADS density-based anomaly detection.

ExtremeLow-

DensityModel

Outlier

EGADS CP EGADS kernel-based change-point detec-
tion.

EGADS EGADS re-implementation of the classic k-

KSig- sigma model.

maModel

Outlier

Twitter Out-
lier

The Open-Source Twitter-R anomaly de-
tection library based on the Generalized
ESD method.

Extremel & 11

Open source univariate outlier detection

R Outlier that threshold the absolute value and the
residual to detect anomalies.

BreakOut A package from Twitter that uses an ESD

Twitter CP statistics test to detect change points.

ChangePtl R
CPp

An R library that implements various
mainstream and specialized change-point

methods for finding single and multiple
change-points within data. Method I uses
a change in variance.

ChangePt2 &
3R CP

Detects a change in the mean and the vari-
ance.

Table 4: Open Source systems used for evaluation

of instances that exhibited abnormal spikes and level shifts.
Abnormal in the case of YM meant seasonal followed by
non-seasonal behavior which characterizes most of the at-
tacks. Also the YM editors did not care about traffic-shift
behavior, where a large drop in traffic was observed in a
time-series due to router table being updated.

To address this requirement the filtering stage scanned all
anomalies a; from all models and using a model classified if
a; was a true positive. The model used in the filtering stage
for the YM use-case is a boosted tree model based on Ad-
aBoost [8]. The features used in the model are described in
Table 1. The core principle of AdaBoost is to fit a sequence
of weak learners (e.g., small decision trees) on repeatedly
modified version of the data. The final result is then pro-
duced via a combined weighted majority vote. On each it-
eration, the examples that are difficult to predict receive a
higher importance in the next iteration and therefore each
subsequent weak learner focuses on the examples that are
missed by the previous learners in the sequence. Besides the
time-series features described in Table 1 we use the model
features described in Section 6.2. The experiments in Fig-
ure 6 indicate an impressive precision/recall even with just
the time-series features compared to just using the model
alone without the filtering stage. This experiment under-
lines an important principle and a critical component of any
anomaly detection framework: an anomaly is use-case spe-
cific and must be learned automatically for a fully scalable
and automated solution.

7. CONCLUSION

Anomaly detection is a critical component at the heart of
many real-time monitoring systems with applications in fault

Anomaly Filtering Model and Features
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Figure 6: Accuracy of the filtering stage using different types
of features.

detection, fraud detection, network intrusion detection and
many others. Despite its crucial importance, implementing
a fully-automatic anomaly detection system in practice is
a challenging task due to the large problem scale and the
diverse use-cases residing in the real-world setting. These
challenges typically result in solutions that are either not
scalable or highly specialized, which would in turn result in
a high rate of false positives when applied to other use-cases.

In this paper, we introduced EGADS, the generic anomaly
detection system implemented at Yahoo to automatically
monitor and alert on millions of time-series on different Ya-
hoo properties for different use-cases ranging from fault de-
tection to intrusion detection. As we described in the paper,
the parallel architecture of EGADS on Hadoop as well as its
stream processing mechanism through Storm enable it to
perform real-time anomaly detection on millions of time-
series at Yahoo. Furthermore, EGADS employs different
time-series modeling, and anomaly detection algorithms to
handle different monitoring use-cases. By incorporating this
array of algorithms combined with a machine-learned mech-
anism in the alerting module, EGADS automatically adapts
itself to the anomaly detection use-case that is important
to the user. All of these features effectively create a power-
ful anomaly detection framework which is both generic and
scalable. Our showcase experiments on real and synthetic
datasets have shown the superior applicability of our frame-
work compared to its rival solutions.

Last but not least, EGADS by its very nature is extendable,
providing an easy mechanism to plugin new models and al-
gorithms into the system. This feature specifically creates
an oppurtunity for the community to contribute to EGADS.
Finally, to further engage with the anomaly detection and
monitoring community, our framework together with all its
datasets are contributed to the open source repository.
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