
High Availability in the
Internal Google Key

Management System (KMS)

Real World Crypto 2018, Zurich, 2018-Jan-10

Anand Kanagala, Bodo Möller, Darrell Kindred, Glenn Durfee,
Hannes Eder, Maya Kaczorowski, Tim Dierks, Umesh Shankar

Google LLC

Not the Google Cloud KMS

https://cloud.google.com/kms/

Google’s key hierarchy
Storage Systems (Millions)
Data encrypted with DEKs, DEKs are encrypted with KEKs

KMS (Tens of Thousands)
KEKs are stored in KMS

Root KMS (Hundreds)
KMS is protected with a KMS master key in Root KMS

Root KMS master key distributor (Hundreds)
Root KMS master key is distributed in memory

Physical safes (a few)
Root KMS master key is backed up on hardware devices

Why use a KMS?
Core motivation: code needs secrets!

Where:
● In code repository?
● On production hard drives?

Alternative:
● Use a KMS!

Centralized Key Management
Solves key problems for everybody:

● Access control: who <humans or services?>, what <is the
build verifiable?>

● Auditing of cryptographic operations

● Key-handling code management

● Separation of trust

What could go wrong?

The Great
Gmail
Outage of
2014

https://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html

https://googleblog.blogspot.com/2014/01/todays-outage-for-several-google.html

Each team
maintains their
own KMS
configurations

Each team
maintains their
own KMS
configurations,
all stored in
Google’s
monolithic repo

Source
Repository
(holds
encrypted
configs)

Individual
Team
Config
Changes

Config
merge
cron
job

Single
Merged
Config

Update
Data
Pusher

KMS
KMS
KMS
KMS
KMS
KMS

Many KMS
Servers

Each
Local
Config

Client

KMS
Server

Local
Config

Client

Normal Operation

Which get automatically merged
into a combined config file
Which is distributed to all
KMS shards for serving

Sees
incorrect
image of
source repo

ʽ

Merging
Problem

ƅ
Truncated
Config

☠ Client

ʯ
A bad config pushed globally
means a global outage

All Local
Configs

☠

Lessons Learned

The KMS had become
● a single point of failure
● a startup dependency for services
● often a runtime dependency

==> KMS Must Not Fail Globally

● Eliminated the global control plane
● Controlled rollout of binaries and configuration
● Minimize dependencies
● Regional failure isolation
● … for the KMS and all dependencies

KMS Must Not Fail Globally

Category Requirement

Availability > 99.9995% of requests are served

Latency 99% of requests are served < 10 ms

Scalability All of Google’s Key Management needs

Security Effortless & foolproof Key Rotation

Efficiency Requests/Core: As high as possible

Google KMS - (some) Requirements

Design Choices

● Granularity of Encryption
● Rate of Change
● Position in the trust/key hierarchy

Insight: At the KMS layer, key material is not mutable state.

Immutable Key material + Key Wrapping
==> Stateless Server ==> Trivial Scaling

Keys in RAM ==> Low Latency Serving

Stateless Serving

Google KMS - What we ended up with

● Infrastructure for managing secrets
● Wraps/unwraps data-encryption-keys(DEK) using keys

that never leave the service (KEK)
● Not a traditional database/storage system
● Not a data-encryption service

Category Requirement Actual

Availability > 99.9995% of requests are served No downtime since the Gmail outage in
2014 January
>> 99.9999%

Latency 99% of requests are served < 10 ms 99.9% of requests are served < 200 μs

Scalability All of Google’s Key Management
needs

~107 requests/sec
~104 processes & cores

Efficiency Requests/Core: As high as possible 4-12K requests/sec/core

Google KMS - Requirements Met

Why rotate keys?
● Key Compromise

○ Also requires access to cipher text
● Broken Ciphers

○ Access to cipher text is enough
● Rotating keys limits the window of vulnerability
● But Rotating Keys is error prone => data loss

Goals

1. KMS clients design with rotation in mind
2. Using multiple key versions is no harder than using a

single key
3. Very hard to lose data

Robust Key Rotation at Scale - 0

Robust Key Rotation at Scale - 1
● Clients choose

○ Frequency of rotation: e.g. every 30 days
○ TTL of cipher text: e.g. 30,90,180 days, 2 years, etc.

● KMS guarantees ‘Safety Condition’
○ All ciphertext produced within the TTL can be deciphered using a

keyset in the KMS.

● Tightly integrated with Google's standard cryptographic library
○ Supports multiple key versions
○ Each of which can be a different cipher

● KMS
○ Derives the number of key versions to retain
○ Adds/Promotes/Demotes/Deletes Key Versions over time
○ Generation/Deletion of key versions completely separate from serving system
○ Rolled out slowly

Time ⇢

Robust Key Rotation at Scale - 2

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

K1 A P P A A A SFR

K2 A P P A A A SFR

K3 A P P A A A SFR

K4 A P P A A

A - Active
P - Primary
SFR - Scheduled for Revocation

○ Crypto provides leverage and can amplify errors -
■ A single undetected bit error in a wrapping of a DEK can render

large chunks of data unusable.
○ Causes of bit errors

■ NICs twiddle bits, Broken CPUs, Cosmic rays flip bits in DRAM.
○ Software Mitigations

■ Verify correctness of crypto ops at process start
■ After wrapping DEKs and before responding, we Unwrap
■ Storage services

● Read back plain text after writing encrypted data blocks
● Replicate/parity protect at a higher layer

Mitigating Hardware Faults

Google KMS - Summary
Implementing encryption at scale required highly available key management.

At Google’s scale this meant 6.5 9s of availability.

To achieve HA and security requirements, we used several strategies:

● Best practices for change management and staged rollouts
● Minimized dependencies and aggressively defend against their unavailability
● Isolated by region & client type
● Combined immutable keys + wrapping to achieve scale
● A declarative API for key rotation
● Defend against hardware issues

Thank You!
Merci! Danke! Grazie!

■ Google Cloud Encryption at Rest whitepaper:
https://cloud.google.com/security/encryption-at-rest/default-encryption/

■ Google Application Layer Transport Security:
https://cloud.google.com/security/encryption-in-transit/application-layer-transp
ort-security/

■ CrunchyCrypt cryptography and key versioning library:
https://github.com/google/crunchy

■ Site Reliability Engineering (SRE) handbook:
https://landing.google.com/sre/book.html

Further Reading

https://cloud.google.com/security/encryption-at-rest/default-encryption/
https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/
https://cloud.google.com/security/encryption-in-transit/application-layer-transport-security/
https://github.com/google/crunchy
https://landing.google.com/sre/book.html

The End

