
Reducing Time-To-Fix For Fuzzer Bugs
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Abstract—At Google, fuzzing C and C++ libraries has dis-
covered tens of thousands of security and robustness bugs.
However, these bugs are often reported much after they were
first introduced. In many cases, developers are provided only
with fault-inducing test inputs and replication instructions that
highlight a crash, but additional debugging information may be
needed to localize the cause of the bug. Hence, developers need
to spend substantial time debugging the code and identifying
commits that introduced the bug. In this paper, we discuss
our experience with automating a fuzzing-enabled bisection that
pinpoints the commit in which the crash first manifests itself.
This ultimately reduces the time critical bugs stay open in our
code base. We report on our experience over the past 12 months,
which shows that developers fix bugs on average 2.23 times faster
when aided by this automated analysis.

I. INTRODUCTION

Fuzzing has emerged as one of the most effective testing
techniques for discovering security vulnerabilities and relia-
bility issues in software. The idea behind fuzzing is simple:
the fuzzer executes programs with randomly generated inputs,
and monitors them for invalid behavior, such as crashes,
memory corruption, and internal assertion violations. Recent
advancements in fuzzing technologies such as coverage-guided
fuzzing [1], [2], combined with compiler instrumentation such
as LLVM [3] sanitizers [4], have enabled fuzzing to reach deep
program paths and uncover significantly more bugs.

The success of fuzzing has led to its widespread adoption in
the industry, most notably through the emergence of services
that provide continuous fuzzing for open-source and commer-
cial software. For example, Google has developed continuous
fuzzing infrastructures both for its internal software and for
external open-source projects. As of April 2021, Google’s
ClusterFuzz project [5], through its OSS-Fuzz instance [6],
has alone filed nearly 30,000 bugs to developers by fuzzing
over 340 open-source projects [7]. Recently, in addition to
fuzzing C/C++, OSS-Fuzz has also expanded to continuously
test programs written in Go, Python, Rust, and Java.

The continuous fuzzing infrastructure at Google is inte-
grated in the software engineering development workflow.
Software engineers utilize semi-automated frameworks such
as FUDGE [8] to own fuzz targets that are checked into
Google’s monolithic repository [9]. Fuzzing infrastructures
have converged to a minimal interface between fuzzers and
fuzz drivers, which was introduced by libFuzzer [1].

When a new bug is found, the fuzzing infrastructure creates
a bug report for the relevant team that owns the fuzz target.
The bug report contains details such as the test input that
causes the bug, which compilation mode was used to find the

bug, and one-click reproduction instructions for developers to
investigate the issue.

Despite the information provided in the report, investigating
the issue and localizing the cause of the bug may still be
difficult and time consuming. The bug is often reported days,
months, and in extreme cases even years after being introduced
into the code base. During this time, Google’s monolithic
repository goes through a large number of changes. Even
though not all changes are relevant to the bug, the cause
may be hidden in a transitive dependency with which the fuzz
target’s owner has little experience.

To aid the debugging, we have developed an automated
fuzzing-enabled bisection service that pinpoints code changes
likely to be relevant to the bug. In this paper we report on
our experience with the service over the last 12 months. In
particular, we observe that providing the code-change bisection
information speeds up fixing fuzzer-reported bugs in Google’s
proprietary code on average by a factor of 2.23.

II. CONTINUOUS FUZZING AT GOOGLE

Fuzzing is often used in the context of discovering security
issues, such as memory-unsafety bugs. Recently, there has also
been interest in using fuzzing to test for other properties as
well, such as reliability, performance or functional require-
ments. As an example, there are fuzz targets that aim to test
multiple implementations or versions against each other to find
discrepancies using differential testing [10].

Coverage-guided Fuzzing. Fuzzing infrastructures, such as
OSS-Fuzz [6], generally utilize multiple so-called coverage-
guided fuzzing engines, such as AFL [2], libFuzzer [1], Hong-
gfuzz [11], and AFL++ [12]. These fuzzing engines collect
coverage feedback from an instrumented version of the source
code under test. For each input, the collected coverage is
compared to the combined coverage profile obtained during
fuzzing so far. New test inputs that induce an increase in
coverage are then added to the current corpus of coverage-
increasing tests. Such test inputs are then favored as seeds
during the next test input mutation stage.

Fuzz Targets. Fuzzing infrastructures have converged to
use the so-called LLVMFuzzerTestOneInput interface. This
interface and the notion of library-based fuzz targets was
initially introduced by libFuzzer [1]. Fuzz targets receive
an input buffer generated by a fuzzing engine through a
sized buffer argument and use it to invoke some relevant
functionality of the targeted code. For example, in Listing 1,
the input buffer data consisting of size number of bytes is
fed it into the OpenCV datatype (cv::Mat).



Listing 1 A fuzz target for OpenCV [13].
int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size){

std::vector<uint8_t> arr = {data, data + size};
cv::Mat row = cv::Mat(1, arr.size(), CV_8UC1, arr.data());
try {
cv::Mat m = cv::imdecode(row, CV_LOAD_IMAGE_UNCHANGED);

} catch (cv::Exception e) { }
return 0;

}
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Fig. 1. Continuous fuzzing developer workflow

Fuzzing Workflow. Figure 1 highlights the life cycle of
a fuzz target. Fuzzing, due to its nondeterministic nature,
does not guarantee that it can find regressions quickly. Thus,
a dedicated infrastructure is advantageous: It rebuilds every
fuzz target in multiple configurations and for multiple fuzzing
engines once per day. The generated drivers are then used
until the next rebuild on dedicated sandboxed distributed
infrastructure to look for coverage-increasing tests and new
bugs.

Corpus Handling. The fuzzing infrastructure chooses ran-
domly among the generated fuzzing executables. At the end
of each invocation of a fuzzing executable, it collects the
generated corpus of discovered test inputs and potential ar-
tifacts. Artifacts are those test inputs that caused the fuzzing
executable to report any suspicious behavior, such as inducing
a crash, assertion violation, triggering a memory leak, etc.

The corpus that was collected from a single invocation is
then added via a minimization step to the global corpus for
that fuzz target. That is, for each target a globally coverage-
increasing corpus is maintained by the fuzzing infrastructure.
Newly discovered test inputs that increase this global coverage
are added to the global corpus.

Crash Deduplication. The goal of fuzzing is not just to find
bugs, but rather to have the reported bugs fixed. In order to
do so, it is of utmost importance to make sure that developers
are notified when necessary but not unduly inconvenienced by
these notifications. Thus, to make the fuzzing output useful and
actionable, we try to group as many found crashes as possible
together as related bugs and only report the most security-
sensitive version of a group to the user as a new bug. To form
groups of crashes, we compute a representative by choosing
relevant portions of the stack trace of a failing execution.

Automated Bug Monitoring. Since bugs reported by the
fuzzing infrastructure are reproducible, the infrastructure can
monitor the status of previously filed bugs. Thus, as daily
rebuilds of fuzz targets are completed, a crash reproduction
analysis is performed. Test inputs that fail to induce a crash by
the fuzz target are marked as resolved (regardless of whether
a developer already marked the bug as fixed). Similarly, if a

developer closed a bug that the fuzzing infrastructure continues
to reproduce as a crash, the bug will be reopened for the
developers to investigate again.

Fuzzing Coverage. As previously mentioned, the fuzzers
are running in a distributed fashion, and collaboratively build
up a corpus for a given fuzz target. Developers are often
interested to monitor the combined fuzzing coverage. Thus,
we provide multiple ways of inspecting the obtained coverage,
e.g. overlayed within our codesearch browsing tool [14].

Shift-left on Fuzzing. Developers are generally likelier to
fix code issues if they are highlighted during code review than
after submission [15]. However, fuzzing is expensive and may
take a long time to find certain bugs. Thus, we developed a
presubmit fuzzing or CI fuzzing [16] framework that executes
shallow and fast fuzzing runs for targets potentially impacted
by code changes under review. If a target crashes with the
proposed code changes, but it does not crash without them,
the finding is reported to developers during code review.

III. APPROACH TO AUTOMATED BISECTION

The fuzzing infrastructure automatically deduplicates
crashes, files bugs for newly discovered issues in an issue
tracker and monitors these issues until the crash is shown
to be fixed. This automation helps developers to focus on
the important, remaining open issues that need to be fixed.
However, so far, developers were asked to own all aspects of
the debugging process. In this section, we describe a simple
yet effective automation capability that helps developers fix
issues faster by pointing out relevant code changes that have
an impact on the found crashing inputs.

Since fuzzer reported bugs are easily reproducible, we added
the capability to automatically perform a bisection on code
changes to discover the likely fault-inducing change. This
capability was earlier advertised to users in the created issues.
The main feature is that the fuzzing infrastructure performs
this analysis automatically for newly opened bugs and reports
its findings on the opened issues. Even so, we observed that
this feature significantly decreased the time it takes to fix
bugs—simply due to the automation.

Automated Bisection. The bisection algorithm is rela-
tively straightforward. Due to the size of Google’s mono-
repository [9], the bisection first tries to find a code change
within the project of interest. That is, we limit the bisection
search based on the fuzz target that is being investigated. This
might seem like an optimization only, but allows the search
to focus on relevant code changes and not potential unrelated
failures outside the horizon of interest for the team that will
try to fix the issue in question. If that analysis fails to identify
a possible fault-inducing code change, the analysis falls back
to do a complete bisection over a predefined time period.

Issue Tracker Notification. Once a bisected code change
has been identified, the tool appends a message to the relevant
issue in the issue tracker, including the following information:

• The tool reports that the bisected code change was found
relevant to the issue.



• The tool displays the failing (i.e. crashing) reproduction
run at the bisected code change. It also shows the
successful (i.e. non-crashing) reproduction run with the
same input at the previous code change.

• The tool adds the author of the bisected code change as
CC to the issue. Crucially, it does not assign the issue
to the author. This is partly due to the fact that Google’s
mono-repository allows widespread code sharing. Thus,
the author of the bisected code change may not have the
requisite knowledge about the fuzz target of another team
relying on some library that they provide.

• If the bisected code change relates to changes in our so-
called //third_party open-source repository [17], the
tool highlights this information in the update message as
well. Changes in //third_party are often large-scale
updates from public repositories.

• If the bisected code change includes changes to the
fuzzer itself, this is highlighted in the update message.
Changes to the fuzzing harness are often intended to
cover previously uncovered code behaviors and may as
such intentionally cause new bugs to be found.

• The update to the issue also contains instructions how
to provide feedback in case developers disagree with the
classification. This has helped us resolve some issues as
well as tailor the issue update messages. For example,
highlighting that a change was made in //third_party

as well as being cognizant of changes to the fuzz harness
itself were due to earlier developer feedback.

Avoiding Fuzzing Efficacy-related Properties. Fuzzing
engines and fuzzing infrastructures often also report fuzzing
efficacy issues to developers. For example, if an input causes
a target to run too slowly (using a fixed threshold such as 20
seconds), a time-out issue is filed. Similarly, if an input causes
a target to allocate too much memory, an out-of-memory issue
is filed. These issues may showcase performance issues in the
code under test. For example, we have seen instances where
fixes involved improving the runtime complexity of nested
loops. These issues also impede the fuzzers from making
efficient progress, and as such it is useful for the fuzzing
infrastructure to report this feedback to developers.

However, trying to perform a bisection analysis at the level
of code changes is hard for such scenarios for a number of
reasons: First, execution runtimes and allocation behavior can
vary between different invocations due to a variety of unrelated
factors. Further, while it may be possible to find a code change
that triggers the increased runtime to cross our predefined
threshold, it is not evident that such a code change is useful
to consider as the cause of a performance concern. Imagine
a scenario where a prior code change increased the runtime
to within 95% of the timeout threshold, while a final code
change added the remaining 5%. Identifying the second code
change as the bisection output due to the fact that it caused the
threshold to be reached seems appropriate from the bisection
analysis point of view, but developers may not see the minor
performance increase as a valid concern. Thus, we stopped

reporting bisection results for issues related to time-outs and
out-of-memory bugs due to developer feedback.

IV. USAGE EXPERIENCE

In this section, we present evaluation results of the au-
tomated bisection capability for the past 12 months. The
bisection tool runs as a best-effort analysis that only analyzes
new bugs as they are reported by the fuzzing infrastructure.
As of September 2020 [18], the fuzzing infrastructure fuzzes
several thousand fuzz targets on 30,000 VMs. Fuzzing at
Google has reported tens of thousands of bugs across various
ecosystems.

Furthermore, we restrict reported findings to go back to code
changes that are at most six months old from the bug-filing
date. We do not report bisected code changes that are purely
due to changes to the fuzz target such as adding a new fuzz
target, for example. While it would be technically correct to
report such a code change as the bisected code change, it does
not actually point developers to the potential underlying root
cause of a reported bug.

In the following, we present data for the following questions
of interest based on 12 months of running the automated
bisection for fuzzer-reported bugs in production:

• Does providing the bisected code change along with the
reported test input improve the speed of fixing the bugs?

• Do bugs with bisected code changes get fixed more often
than other bugs for various time intervals of interest?

• Does the fix rate improvement for fuzzer-reported
bugs depend on whether the fuzz targets are in
Google’s proprietary code compared to targets covering
//third_party?

Time-to-fix Improvements. We have monitored the time
it takes to fix fuzzer-reported bugs since introducing the
automated bisection over the past 12 months. Bugs filed
against fuzz targets in our proprietary code have been fixed on
average 2.23 times faster over the past year. One unexpected
side-benefit of the automated bisection is that we observe an
even more pronounced improvement in declaring duplicate
bugs: Bisected bugs filed in the past five months have been
marked as duplicates 4 times faster than non-bisected bugs.

Fix Rate Improvements. The previous analysis investigated
the speed-up of fixing known fuzzer-reported bugs. While
fixing bugs faster is important to address newly discovered
issues, it is not evident whether this also improves how many
bugs get fixed when looking at longer time-periods. That is,
does the analysis only improve the speed of fixing these bugs
or does it also increase the fixed bug count?

To answer this question, we investigate bugs reported by
the fuzzing service over the past 12 months. Figures 2 and 3
show the fix rate improvement for filed bugs with bisection
results compared to bugs without such additional reports. Bugs
filed in the past 12 months are bucketed by the month in
which they were reported in the issue tracker. We then observe
the bug fix rate with and without bisection reports for each
month. Obviously, for older bugs, developers had more time
to prioritize fixing such reported bugs.



Fig. 2. Fix rate improvement for Google’s proprietary targets.

In Figure 2, we first consider only those bugs filed on
fuzz targets in non-//third_party code—that is in Google’s
proprietary code. As can be seen, the improvement in the fix
rate ranges from 4% to 37% for every month in the past 12
year. For bugs reported in the past four months, we can see a
significantly larger improvement in the fix rate. Over time,
as bugs age, the effect of the previously discussed shorter
time to fix bugs decreases somewhat. However, evidently, the
bisection reports have an impact on overall bug fixing rates
even beyond that initial time-period. This can be seen from the
fact that for every single month, bugs with bisection reports
continue to have a positive fix rate improvement—even as this
improvement reduces somewhat for older bugs.

Proprietary and //third_party Code. Figure 3 shows
the bug fix rate improvement for all fuzzer-reported bugs,
including ones in //third_party projects. The figure high-
lights the difference between the improvement for more recent
bugs compared to older bugs. Overall, the monthly bug fix
improvement rate varies from −4% to 62%.

An important distinction between //third_party targets
and proprietary targets is the familiarity of developers with the
source code. Fixes in //third_party are often accomplished
through re-imports of an open-source package. The fact that
we continue to see a significant improvement in recently
reported bugs is due to time-to-fix improvements. At the
same time, we also highlight a few months with very small
improvements, and even one month with a deterioration. This
is likely due to predetermined scheduled updates of some large
open-source projects. Since our analysis avoids reporting the
same code change too frequently, as described in Section III,
many bugs not considered as bisected may get fixed by a future
combined import.

V. LESSONS LEARNED

This section describes a number of lessons that we learned
during the development and usage of our automated bisection
notification system for fuzzer-reported bugs.

Lesson 1: Importance of allowing developers to com-
municate back to infrastructure providers. Continuous
fuzzing runs on thousands of fuzz targets across hundreds of
projects in a variety of ecosystems, such as OSS-Fuzz [6].
For infrastructure providers, it is not possible to be intimately
familiar with all the various use cases that are being supported.

Fig. 3. Fix rate improvement across all fuzz targets

Thus, it is important to educate the developers to guarantee
that the infrastructure is utilized well. At the same time, it is
important to provide avenues for developers to ask questions,
raise issues, and provide feedback. We have found multiple
bugs in the tooling due to developer feedback.

As discussed in Section III, we also used this feedback
channel to improve our communication around bisected code
changes. An example of this was how the tooling handled
reports with respect to //third_party code changes. An-
other feature improvement driven by user feedback was to
understand the difference in bisection results to a property such
as a buffer overflow when compared to a runtime performance
property such as a target timing out. The former properties
lend themselves much easier to a bisection tooling, whereas
fuzzing-efficacy related properties require a much deeper in-
vestigation to be generally useful.

Lesson 2: Being annoying is not helpful. Bugs in widely
used libraries such as protocol buffers [19] can induce failures
in many fuzz targets. The fuzzing infrastructure does not de-
duplicate crashes across targets, however. This is due to the
fact that a bug in a low-level library indeed induces a new
bug in the client code. Not reporting this as a bug to these
teams would be misleading, since they may otherwise decide
to deploy their code to production with a bug known to the
infrastructure.

In general, we report bisection results by CC-ing code
authors to fuzzer-reported issues, even if the fuzz target is
not owned by the code author’s team. At the same time, it
would likely not be useful to notify the code author about
every instance across the whole mono-repository. There could
be hundreds of such bugs across fuzz targets. Thus, we limit
the number of times we report the same code change. This
allows us to highlight the issue to the code author without
unnecessarily notifying them too frequently.

Lesson 3: Not all bisected code changes are considered
useful by developers. We have used the developers’ feedback
to improve the bisection results over time, such as for code
changes adding or changing fuzz targets. However, there are
also some instances where the bisection is in the code under
test, but the benefit of highlighting this code change to users
is unclear.

As an example of such a scenario, consider a renaming of a
key in a key-value pair in the input to an API such as shown



Listing 2 An API where a renaming might result in bisected
code changes that some developers may find irrelevant.
#include <map>
#include <string>

int GetSpecialValue(const std::map<std::string, int>& map) {
const char* special_key = "old_key_name";
const std::map<std::string, int>::const_iterator it =

map.find(special_key);
if (it == map.end()) {
return -1;

}
const int return_value = it->second;
if (return_value < 0) {
__builtin_trap(); // An error that we want to catch.

}
return return_value;

}

in Listing 2. Consider a fuzz target that takes the input buffer
and creates an appropriate map to fuzz the GetSpecialValue
API. Imagine that a developer changes the code to update the
variable special_key to be renamed from old_key_name to
new_key_name. This is likely going to cause those previously
reported bugs that used old_key_name in the generated test
input to be considered as fixed. At the same time, new bugs
would eventually be found with a new input, which would
now contain the key name new_key_name.

Once the new bug is found and reported to users, the
bisection run will consider the renaming of special_key as
the relevant code change. While this finding is correct from
the bisection point of view, it still does not provide much value
to developers in terms of debugging.

This type of inadequate finding is rare enough that we have
not yet decided to address the concern. However, it does
highlight the potential for additional future improvements.
For example, one might want to find a prior code change
that modulo the refactoring would have been an interesting
code change to point out. A similar situation occurs when
the bisected code change ends up being a change to or the
addition of a fuzz targets. For example, it may be possible to
back-propagate the introduction of a fuzz target to find a code
change that would have been caught with the given input had
the fuzz target existed at that point. These are areas of future
improvements for our bisection tooling.

Lesson 4: Automating even simple steps and notifying
relevant developers can improve outcomes. As described in
Section IV, developers fix more bugs and fix them faster if the
automation helps in localizing the issue. As we had mentioned
previously, developers were always able to manually run a sim-
ilar bisection analysis themselves for a given bug. However,
the fact that the automated solution provided this feedback
to developers proactively caused them to look into the bugs.
This is in contrast to the previous state of the continuous
fuzzing infrastructure, which filed bugs against project teams
(not individuals).

Lesson 5: Developers that are owners of projects are
instrumental in fixing security bugs. Section IV highlighted
the difference in bug fix rate improvement between Google’s
proprietary and //third_party code. Developers working

with //third_party code do not always have enough back-
ground to fix complex bugs. That is, open-source developers
and code-owners are in the best position to fix any bugs in their
open-source projects. Thus, we are very excited to continue to
support fuzzing of open-source projects in OSS-Fuzz [6].

VI. CONCLUSIONS

This paper described our experience with adding the capa-
bility to automatically bisect fuzzer-reported bugs as part of the
fuzzing infrastructure. We report that due to this automation,
bugs were fixed on average 2.23 times faster. Finally, we would
like to note that the recent OSV database [20] started providing
similar capabilities for fuzzer-reported bugs in OSS-Fuzz [6].
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