
Manopt.jl
Optimization on Riemannian Manifolds

Ronny Bergmann
@ronnybergmann_

Norwegian University of Science and Technology, Trondheim, Norway.

Extended Lightning Talk
JuliaCon 2022, online and everywhere July, 2022

N
or

we
gi

an
Un

iv
er

sit
y

of
Sc

ien
ce

an
d

Te
ch

no
lo

gy

Optimization
(Constrained) Optimization aims to find for a function f : Rm → R a point

argmin
x∈Rm

f(x)

Challenges:
▶ constrained to some C ⊂ Rm, e. g. unit vectors
▶ symmetries / invariances

Geometric Optimization aims to find

argmin
p∈M

F(p)

where F is defined on a Riemannian manifold M, e. g. the sphere Sd ⊂ Rd+1.
⇒ the problem is unconstrained (again).

2

A Riemannian manifold M

A d-dimensional Riemannian manifold can be informally defined as a set M covered
with a ‘suitable’ collection of charts, that identify subsets of M with open subsets of
Rd and a continuously varying inner product on the tangent spaces.[Absil, Mahony, and Sepulchre 2008]

3

A d-dimensional Riemannian manifold M

Notation.
▶ Geodesic γ(·; p , q)
▶ Tangent space TpM
▶ inner product (· , ·)p
▶ Logarithmic map logp q = γ̇(0; p, q)
▶ Exponential map expp X = γp,X(1)

where γp,X(0) = p and γ̇p,X(0) = X
▶ Parallel transport Pq←pY “move”

tangent vectors from TpM to TqM

γ(·; p , q)p q

expp
logp

X
logp p

TpM

M

Y
Pq←pY

4

Example I: The Sphere Sd ⊂ Rd+1

The set of unit vectors or the Sphere

Sd :=
{

p ∈ Rd+1∣∣∥p|2 = 1
}

is a Riemannian manifold. A tangent space if of the form

TpSd :=
{

X ∈ Rd+1∣∣⟨X, p⟩ = 0
}

The exponential map is given by “following great arcs” from p in direction X we get

expp X = cos(∥X∥p)p + sin(∥X∥p)
X

∥X∥p
,

But the inverse logp q is only locally defined, for example if p = −q are opposite
points, there are infinitely many tangent vectors such that expp X = q.

5

Example II: Stiefel & Grassmann
The Stiefel manifold consists of all orthonormal bases (ONB) for k-dimensional
subspaces of Rn

St(n, k) :=
{

p ∈ Rn×k ∣∣ pTp = Ik
}
,

For one k-dimensional subspace, there are several ONBs.
Construction: Rotate one ONB such that no vector leaves the subspace
If we are only interested in the subspace, we obtain the Grassmann manifold

Gr(n, k) :=
{
span(p)

∣∣ p ∈ Rn×k, pTp = Ik},

⇒ All ONBs p ∈ St(n, k) of one subspace are the same point q ∈ Gr(n, k).
Formally we obtain sets of equivalence classes or a quotient structure

Gr(n, k) = St(n, k)/O(k),

6

Implementing a Riemannian manifold

ManifoldsBase.jl introduces a manifold type with its field F ∈ {R,C,H} as parameter
to provide an interface for implementing functions like
▶ inner(M, p, X, Y) for the Riemannian metric (X , Y)p
▶ exp(M, p, X) and log(M, p, q),
▶ more general: retract(M, p, X, m), where m is a retraction method
▶ similarly: parallel_transport(M, p, X, q) and vector_transport_to(M, p, X, q, m)

for your manifold, which is a subtype of Manifold{F}.
mutating version exp!(M, q, p, X) works in place in q

basis for generic algorithms working on any Manifold and generic functions like
norm(M,p,X), geodesic(M, p, X) and shortest_geodesic(M, p, q)

juliamanifolds.github.io/ManifoldsBase.jl/

7

https://juliamanifolds.github.io/ManifoldsBase.jl/

Manifolds.jl: A Library of manifolds in Julia
[Axen, Baran, RB, and Rzecki 2021]Manifolds.jl is based on the ManifoldsBase.jl interface.

Features.
▶ different metrics
▶ Lie groups
▶ Build manifolds using

▶ Product manifold M1 ×M2
▶ Power manifold Mn×m

▶ Tangent bundle
▶ Embedded manifolds
▶ perform statistics
▶ well-documented, including

formulae and references
▶ well-tested, >98 % code cov.

Manifolds. For example
▶ (unit) Sphere
▶ Circle & Torus
▶ Fixed Rank Matrices
▶ (Generalized) Stiefel & Grassmann
▶ Hyperbolic space
▶ Rotations & SO(n)
▶ Symmetric positive definite matrices
▶ Symplectic & Symplectic Stiefel
▶ ...

juliamanifolds.github.io/Manifolds.jl/
JuliaCon 2020 youtu.be/md-FnDGCh9M

8

https://juliamanifolds.github.io/Manifolds.jl/
https://youtu.be/md-FnDGCh9M

Manopt.jl – Internal Structure
Manopt.jl is implemented depending only on ManifoldsBase.jl.

A solver for an optimization problem consists of three ingredients
▶ a Problem P that specifies static properties

▶ the manifold M
▶ a cost function F : M → R
▶ (maybe) a gradient gradF : M → TM
▶ (maybe) a Hessian HessF
▶ ...

▶ some Options O containing dynamic data
▶ the current iterate pi
▶ a StoppingCriterion
▶ any parameter required during an iteration

▶ implementation of
1. initialize_solver!(P, O) to initialise a solver run
2. step_solver!(P, O, i) to perform the ith step

9

Running a solver & high level Interfaces
Running a solver consists of

1. generating a Problem P

2. generating some Options O

3. calling solve(P,O)

These steps are usually provided by a high level interface like
Example. For a gradient descent algorithm on a Riemannian manifold one can use
gradient_descent(M, F, gradF, p0)

which performs
1. create

▶ PG = GradientProblem(M, F, gradF)
▶ OG = GradientOptions(p0, gradF(M, po))

2. runs the algorithm by calling solve(PG,OG)

3. returns the resulting last iterate (calling get_solver_result(OG))

10

Stopping Criteria
The Options usually include a StoppingCriterion sc. This is accessed via
stop_solver!(P,O,i) at every iteration i
A StoppingCriterion sc should
▶ be a functor sc(P,O,i) returning true/false
▶ implement get_reason(sc) returning a string with the reason when true was

returned
Combine stopping criteria using sc1 | sc2 or sc1 & sc2

Examples.
▶ StopAfterIteration(N) - stop after N iterations.
▶ StopAfterIteration(N) | StopWhenGradientLess(1e-8)

... or when the gradient is small

11

Within a step: Stepsize & Linesearch
In many algorithms, after determining a direction “to walk into”, e. g.

X = − gradF(p)

there is a Stepsize s left to determine, which is modelled (again) as a functor
sk = s(p,o,i). It can be e. g.
▶ a ConstantStepsize(c)

▶ an ArmijoLinesearch(M)

▶ a NonmonotoneLinesearch(M)

usually the Options O then also have a AbstractRetractionMethod for example as
O.retraction_method to perform the actual (gradient) step as
retract!(P.N, O.x, O.x, sk * X, O.retraction_method)

and the curve t -> retract(P.M, o.x, t*X) is also used for line search methods.
12

Printing debug output
Approach. D = DebugOptions(O,dA) where dA is a DebugAction.
⇒ These options “act like” the original Options O But
▶ in the beginning (overwriting initialize_step!(P, D))
▶ after each step (overwriting solver_step!(P, D))
▶ in the end (when the StoppingCriterion returns true)

High level interface. Every solver has a debug= keyword using DebugActions, Strings
and Symbols, e. g.
debug=[:Iteration , DebugCost(), (:Change, "change: %1.9f\n"), :Stop]

prints
▶ the iteration number and the cost F(pk) (in default format, also :Cost),
▶ the change dM(pk−1, pk) in a specific format
▶ a line break (after each iteration)
▶ the reason the algorithm stopped at the end

13

Recording values
Approach. Analogously R = RecordOptions(O,rA) where rA is a RecordAction.
⇒ These options (also) “act like” the original Options O but records
▶ in the beginning (overwriting initialize_step!(P, R))
▶ after each step (overwriting solver_step!(P, R))
▶ in the end (when the StoppingCriterion returns true)

High level interface. use the keyword record= for example
record=[:Iteration , :Cost, :Iterate]

and set return_options=true ⇒ final state (options finO) are returned.
▶ get_record(finO) yields a vector of (i, cost, point) tuples
▶ long form: get_record(finO, :Iteration, [:Iteration, :Cost, :Iterate])

▶ get_record(finO, :Iteration, :Cost) yields the vector of recorded :Costs

14

Manopt.jl – Available Solvers
Currently the following solvers are available
▶ Gradient Descent

CG, Stochastic, Momentum, Alternating,
Average, Nesterov, ...

▶ Quasi-Newton
(L-)BFGS, DFP, Broyden, SR1, ...

▶ Nelder-Mead, Particle Swarm
▶ Subgradient Method
▶ Trust Regions
▶ Chambolle-Pock (PDHG)
▶ Douglas-Rachford
▶ Cyclic Proximal Point

The Manopt Family.
manoptjl.org [RB 2022]

manopt.org
[Boumal, Mishra, Absil, and Sepulchre 2014]

pymanopt.org
[Townsend, Koep, and Weichwald 2016]

15

https://www.manoptjl.org
https://www.manopt.org
https://pymanopt.org

Example Problem: The Riemannian center of mass
The mean of N data points x1, . . . , xN ∈ Rn is

x∗ = 1
N

N∑
i=1

xi ⇔ x∗ = argmin
x∈Rm

1
2N

N∑
i=1

∥x − xi∥2
2

⇒ the minimizer of sum of squared distances
For p1, . . . , pN ∈ M: Riemannian center(s) of mass are [Karcher 1977]

argmin
p∈M

1
2N

N∑
i=1

d2
M(p, pi),

▶ (in general) neither closed form nor unique
▶ For F(p) = 1

2d2
M(p, pi) the gradient is given by gradF(p) = − logp pi

⇒ use gradient descent

16

Example Codes: The Riemannian center of mass
using Manopt, Manifolds , LinearAlgebra
M = Sphere(2)
N = 100

generate N unit vectors
pts = [normalize(randn(3)) for _ in 1:N]

define cost and gradient
F(M, p) = sum(pi -> distance(M, pi, p)^2 / 2N, pts)
grad_F(M, p) = sum(pi -> grad_distance(M, pi, p)/N, pts)

compute a center of mass in place of m
m = copy(M, pts[1])
gradient_descent!(M, F, grad_F, m)

Alternatively: Use a set of proximal maps and cyclic proximal point
proxes = Function[(M,λ,q) -> prox_distance(M,λ/N,p,q,1) for p in pts]
cyclic_proximal_point(M, F, proxes, pts[1])

17

Summary
Manopt.jl is a Julia package that provides
▶ a framework for optimization algorithms on manifolds
▶ a library of optimization algorithms within this framework

and includes generic step size / line search functions, debug & record.

Also included. cost functions, gradients, differentials and proximal maps.

...as well as several tutorials at manoptjl.org

Soon. Constrained optimisation algorithms on manifolds,
▶ Augmented Lagrangian Method
▶ Exact Penalty Method
▶ Frank-Wolfe

18

https://manoptjl.org/

References

Absil, P.-A., R. Mahony, and R. Sepulchre (2008). Optimization Algorithms on Matrix Manifolds. Princeton
University Press. doi: 10.1515/9781400830244.
Axen, S. D., M. Baran, RB, and K. Rzecki (2021). Manifolds.jl: An Extensible Julia Framework for Data
Analysis on Manifolds. arXiv: 2106.08777.
RB (2022). “Manopt.jl: Optimization on Manifolds in Julia”. In: Journal of Open Source Software 7.70,
p. 3866. doi: 10.21105/joss.03866.
Boumal, N., B. Mishra, P.-A. Absil, and R. Sepulchre (2014). “Manopt, a Matlab toolbox for optimization
on manifolds”. In: The Journal of Machine Learning Research 15, pp. 1455–1459. url:
https://www.jmlr.org/papers/v15/boumal14a.html.
Karcher, H. (1977). “Riemannian center of mass and mollifier smoothing”. In: Communications on Pure
and Applied Mathematics 30.5, pp. 509–541. doi: 10.1002/cpa.3160300502.
Townsend, J., N. Koep, and S. Weichwald (2016). “Pymanopt: A Python Toolbox for Optimization on
Manifolds using Automatic Differentiation”. In: Journal of Machine Learning Research 17.137, pp. 1–5.
url: http://jmlr.org/papers/v17/16-177.html.

ronnybergmann.net/talks/2022-JuliaCon-Manoptjl-extended.pdf

19

https://doi.org/10.1515/9781400830244
https://arxiv.org/abs/2106.08777
https://doi.org/10.21105/joss.03866
https://www.jmlr.org/papers/v15/boumal14a.html
https://doi.org/10.1002/cpa.3160300502
http://jmlr.org/papers/v17/16-177.html
http://ronnybergmann.net/talks/2022-JuliaCon-Manoptjl.pdf

