
Neural Inductive Logic Programming
● Architecture allows us to induce rules of predefined structure
● We can, for instance, incorporate the inductive bias of a

transitivity relationship in the knowledge base
θ₁(X,Y) :- θ₂(X,Z), θ₃(Z,Y).

● θi are vector representations for unknown predicates
● They can be learned like all other vector representations
● They can be decoded at test time by finding the closest

known relation using the RBF kernel
● Rule confidence is minimum RBF similarity over all decodings
● Confidence is an upper bound on the proof success that can

be achieved when applying the induced rule

Recursion
● Iterate through all rules in the knowledge base and unify goal with rule heads

● Recursively prove subgoals in rule body

Training Objective

● Loss: L(rs(ei,ej), y) = -y*log(NTP(rs(ei,ej)) -(1-y)log(1-NTP(rs(ei,ej)))
● NTPλ variant: SotA neural link prediction model (ComplEx) as auxiliary task

Limitations and Future Work
● Scale to larger knowledge bases (beyond 10k facts)

○ Hierarchical attention for unification with facts
○ Reinforcement learning for pruning proof tree

● Train jointly with RNNs that encode natural language
statements which can then be used in proofs

● Learn to prove mathematical theorems
● Incorporate commonsense knowledge for Visual Q&A

Results

Induced Rules

Motivation
Logic-based Expert Systems
● No training data
● Interpretable
● No generalization beyond what is manually defined in rules

Representation Learning
● Behavior is learned from input-output examples
● Achieves strong generalization
● Needs a lot of training data
● Generally not interpretable

Can we get the best of both worlds?

End-to-End Differentiable Proving
Tim Rocktäschel¹ and Sebastian Riedel²,³

¹University of Oxford, ²University College London, ³Bloomsbury AI

Differentiable Backward Chaining
● Neural network for proving queries to a knowledge base
● Proof success is differentiable with respect to vector

representations of symbols
● Learn vector representations of symbols using SGD
● Make use of provided rules in soft proofs
● Induce interpretable first-order logic rules using SGD

Proof States and Modules

● Proof state S = (φ,ρ) is a tuple consisting of
○ Sφ: Substitution set (variable bindings)
○ Sρ: Neural network calculating real-valued proof success

● Modules map upstream proof state to a list of new proof states
○ Extending the substitution set (adding variable bindings)
○ Extending the neural network (adding nodes to comp. graph)

 Email: tim.rocktaschel@cs.ox.ac.uk s.riedel@cs.ucl.ac.uk Twitter: @_rockt @riedelcastro

Example

Unification
● Update substitution set Sφ by creating new variable bindings
● Compare vector representations of non-variable symbols

using a Radial Basis Function kernel (extending neural net Sρ)

