

UNIVERSITY OF OXFORD

Motivation

Logic-based Expert Systems

- No training data
- Interpretable
- No generalization beyond what is manually defined in rules

Representation Learning

- Behavior is learned from input-output examples
- Achieves strong generalization
- Needs a lot of training data
- Generally not interpretable

Can we get the best of both worlds?

Differentiable Backward Chaining

- Neural network for proving queries to a knowledge base
- Proof success is differentiable with respect to vector
- representations of symbols • Learn vector representations of symbols using SGD
- Make use of provided rules in soft proofs
- Induce interpretable first-order logic rules using SGD

Proof States and Modules

- Proof state S = (ϕ, ρ) is a tuple consisting of \circ S_a: Substitution set (variable bindings)
 - S_: Neural network calculating real-valued proof success
- Modules map upstream proof state to a list of new proof states
 - Extending the substitution set (adding variable bindings)
 - Extending the neural network (adding nodes to comp. graph)

Unification

- Update substitution set S_a by creating new variable bindings • Compare vector representations of non-variable symbols using a Radial Basis Function kernel (extending neural net S₂)
- 1. $unify_{\theta}([], [], S) = S$
- 2. unify_{θ}([],_,_) = FAIL
- 3. $\operatorname{unify}_{\boldsymbol{\theta}}(_,[],_) = FAIL$
- 4. $\operatorname{unify}_{\boldsymbol{\theta}}(h: \mathbf{H}, g: \mathbf{G}, S) = \operatorname{unify}_{\boldsymbol{\theta}}(\mathbf{H}, \mathbf{G}, S') = (S'_{\psi}, S'_{\rho})$ where

$$= \left\{ \begin{array}{cc} S_{\psi} \cup \{h/g\} & \text{if } h \in \mathcal{V} \\ S_{\psi} \cup \{g/h\} & \text{if } g \in \mathcal{V}, h \notin \mathcal{V} \\ S_{\psi} & \text{otherwise} \end{array} \right\}, \quad S'_{\rho} = \min\left(S_{\rho}, \left\{ \begin{array}{c} \exp\left(\frac{-\|\boldsymbol{\theta}_{h:} - \boldsymbol{\theta}_{g:}\|_{2}}{2\mu^{2}}\right) \\ 1 \end{array} \right) \right\}$$

Email: tim.rocktaschel@cs.ox.ac.uk s.riedel@cs.ucl.ac.uk

otherwise

End-to-End Differentiable Proving

Tim Rocktäschel¹ and Sebastian Riedel^{2,3} ¹University of Oxford, ²University College London, ³Bloomsbury Al

Neural Inductive Logic Programming

-					
Knowledge Base		Metric	Model		
			ComplEx	NTP	ΝΤΡλ
Countries	S1	AUC-PR	99.37 ± 0.4	90.83 ± 15.4	100.00 ± 0.0
	S2	AUC-PR	87.95 ± 2.8	87.40 ± 11.7	93.04 ± 0.4
	S 3	AUC-PR	48.44 ± 6.3	56.68 ± 17.6	$\textbf{77.26} \pm 17.0$
Kinchin		MRR	0.81	0.60	0.80
		HITS@1	0.70	0.48	0.76
Nations		MRR	0.75	0.75	0.74
Nations		HITS@1	0.62	0.62	0.59
		MRR	0.89	0.88	0.93
		HITS@1	0.82	0.82	0.87

Knowledge Base		Examples of induced rules and their confidence			
Countries	S1 S2 S3	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Nations		$\begin{array}{llllllllllllllllllllllllllllllllllll$			
UMLS		$\begin{array}{llllllllllllllllllllllllllllllllllll$			

Limitations and Future Work

Twitter: @ rockt @riedelcastro

• Architecture allows us to induce rules of predefined structure • We can, for instance, incorporate the inductive bias of a transitivity relationship in the knowledge base $\boldsymbol{\theta}_1(X,Y) := \boldsymbol{\theta}_2(X,Z), \ \boldsymbol{\theta}_3(Z,Y).$

• $\boldsymbol{\theta}_{i}$ are vector representations for unknown predicates • They can be learned like all other vector representations • They can be decoded at test time by finding the closest known relation using the RBF kernel

• Rule confidence is minimum RBF similarity over all decodings • Confidence is an upper bound on the proof success that can be achieved when applying the induced rule

Results

Induced Rules

• Scale to larger knowledge bases (beyond 10k facts) • Hierarchical attention for unification with facts • Reinforcement learning for pruning proof tree • Train jointly with RNNs that encode natural language statements which can then be used in proofs Learn to prove mathematical theorems Incorporate commonsense knowledge for Visual Q&A

CIENCEPOSTERS