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Fig. 1: D3Fields Representation and Application to Various Manipulation Tasks. D3Fields take in multi-view RGBD images and
encode semantic features and instance masks using foundational models. The gray and colored points in the bottom left visualize background
and semantic features mapped to RGB space using Principal Component Analysis (PCA), demonstrating consistency across instances.
We use our representation for diverse tasks in a zero-shot manner. These tasks are defined by 2D goal images with diverse instances and
styles. We address pick-and-place tasks such as shoe organization and tasks requiring dynamic modeling like collecting debris. We also
demonstrate in the office table organization that our framework can accomplish 3D manipulation and compositional task specification.

Abstract— Scene representation has been a crucial design
choice in robotic manipulation systems. An ideal representation
should be 3D, dynamic, and semantic to meet the demands of
diverse manipulation tasks. However, previous works often lack
all three properties simultaneously. In this work, we introduce
D3Fields — dynamic 3D descriptor fields. These fields capture
the dynamics of the underlying 3D environment and encode
both semantic features and instance masks. Specifically, we
project arbitrary 3D points in the workspace onto multi-view
2D visual observations and interpolate features derived from
foundational models. The resulting fused descriptor fields allow
for flexible goal specifications using 2D images with varied
contexts, styles, and instances. To evaluate the effectiveness of
these descriptor fields, we apply our representation to a wide
range of robotic manipulation tasks in a zero-shot manner.
Through extensive evaluation in both real-world scenarios and
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simulations, we demonstrate that D3Fields are both generaliz-
able and effective for zero-shot robotic manipulation tasks. In
quantitative comparisons with state-of-the-art dense descrip-
tors, such as Dense Object Nets and DINO, D3Fields exhibit
significantly better generalization abilities and manipulation
accuracy. Project Page: https://robopil.github.io/d3fields/

I. INTRODUCTION

The choice of scene representation is critical in robotic
systems. An ideal representation should be simultaneously
3D, dynamic, and semantic to meet the needs of various
robotic manipulation tasks in our daily lives. However,
previous research into scene representations in robotics often
does not encompass all three properties. Some representa-
tions exist in 3D space [1–4], yet they overlook semantic
information. Others focus on dynamic modeling [5–8], but
only consider 2D data. Some other works are limited by only
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considering semantic information such as object instance and
category [9–13].

In this work, we aim to satisfy all three criteria by
introducing D3Fields, unified descriptor fields that are 3D,
dynamic, and semantic. D3Fields take in arbitrary points in
the 3D world coordinate frame and output both geometric
and semantic information related to these points. This in-
cludes the instance mask, dense semantic features, and the
signed distance to the object surface. Notably, deriving these
descriptor fields requires no training and is conducted in
a zero-shot manner using large foundational vision models
and vision-language models (VLMs). Specifically, we first
use Grounding-DINO [14], Segment Anything (SAM) [15],
XMem [16], and DINOv2 [17] to extract information from
multi-view 2D RGB images. We then project the 3D points
back to each camera, interpolate to compute representations
from each view, and fuse these data to derive the descriptors
for the associated 3D points, as shown in Fig. 1 (left). By
leveraging the dense semantic feature and instance mask
of our representation, we can robustly track 3D points of
the target object instance and train dynamics models. These
learned dynamics models can then be incorporated into
a Model-Predictive Control (MPC) framework to plan for
manipulation tasks.

Notably, the derived representations allow for goal specifi-
cation using 2D images sourced from the Internet, phones, or
those generated by AI models. Such goal images have been
challenging to manage with previous methods, because they
contain varied styles, contexts, and object instances different
from the robot’s workspace. Our proposed D3Fields can es-
tablish dense correspondences between the robot workspace
and the target configurations. These correspondences give us
the task objective, enabling us to plan the robot’s actions with
the learned dynamics model within the MPC framework.
This task execution process does not require any further
training, offering a flexible and convenient interface for
humans to instruct robots.

We evaluate our method across a wide range of household
robotic manipulation tasks in a zero-shot manner. These tasks
include organizing shoes, collecting debris, and organizing
office desks, as shown in Fig. 1 (right). Furthermore, we
offer detailed quantitative comparisons between our method
and other state-of-the-art dense descriptor techniques. Our
results indicate that our approach significantly outperforms
in terms of generalizability and manipulation accuracy.

To summarize our contributions: (1) We introduce a novel
representation, D3Fields, that is 3D, dynamic, and semantic.
(2) We present a novel and flexible goal specification method
using 2D images that incorporate a range of styles, con-
texts, and instances. (3) Our proposed robotic manipulation
framework supports zero-shot generalizable manipulation
applicable to a broad spectrum of household tasks.

II. RELATED WORKS

A. Foundation Models for Robotics

Foundation models generally refer to those trained on
broad data, often using self-supervision at scale, which

can then be adapted (e.g., fine-tuned) to various down-
stream tasks. Large Language Models (LLMs) have show-
cased promising reasoning abilities for language. Robotics
researchers have recently released a series of works that
leverage LLMs, including SayCan [18] and Inner Mono-
logue [19], to directly generate robot plans. Some later works
have used LLMs as a code generator: Code as Policies [20]
uses 2D object detectors as the perception API, whereas
VoxPoser [21] creates a 3D value map. Yet, their perception
modules fall short in modeling the precise geometry and
dynamics of objects. Our D3Fields aim to address this by
focusing on detailed 3D geometry and dynamics.

Meanwhile, foundational vision models, such as SAM [15]
and DINOv2 [17], have demonstrated impressive zero-shot
generalization capabilities across various vision tasks. How-
ever, their focus is primarily on 2D vision tasks. Grounding
these models in a dynamic 3D environment remains a
challenge. The recent GROOT project showcases how to
construct 3D object-centric representations using founda-
tional models and exhibits notable few-shot generalization
capabilities [22]. Still, GROOT does not emphasize learning
about object dynamics or achieving zero-shot generalizable
robotic manipulation.

B. Representation for Visual Robotic Manipulation

Scene representation has been a pivotal component in
robotic manipulation systems. Some early work relies on
2D representations, such as bounding boxes [23, 24]. Many
recent methods construct particle representations of the en-
vironment and employ learned dynamics to capture the sys-
tem’s underlying structure [3, 7, 8, 25–29]. They demonstrate
impressive results in unstructured environments and with
non-rigid objects. However, they are not semantic, which can
hinder their ability to generalize to new tasks and scenarios.
Some research opts for a fixed-dimension latent vector de-
rived from high-dimensional sensory inputs as the represen-
tation [2, 5, 6, 30–36], but such a representation does not
scale well to complex manipulation tasks that require high
precision and explicit scene structures. Other approaches use
6 DoF object poses as their representation [9, 10, 37, 38],
though focusing primarily on grasping tasks instead of more
dynamic ones. In this work, we aim to address these issues by
introducing D3Fields, a representation that models dynamic
3D environments at varying semantic levels.

C. Neural Fields for Robotic Manipulation

Researchers have presented a variety of works using neural
fields as a representation for robotic manipulation [39–41,
41–52]. Among them, Neural Descriptor Fields are the most
relevant to ours [42]. They build neural feature fields that
generalize to different instances with several demonstrations;
but they focus on learning geometric, not semantic features,
which hinders cross-category generalization.

Recently, a series of works distilled neural feature fields
using foundation models such as CLIP and DINO for super-
vision [53, 54]. LeRF distills neural feature fields to han-
dle open-vocabulary 3D queries and develops task-oriented
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Fig. 2: Overview of the proposed framework. (a) The fusion process fuses RGBD observations from multiple views. Each view is
processed by foundation models to obtain the feature volume W . Arbitrary 3D points are processed through projection and interpolation.
(b) After fusing information from multiple views, we obtain an implicit distance function to reconstruct the mesh form. We also have
instance masks and semantic features for evaluated 3D points, as shown by the mask field and descriptor field in the top right subfigure.
(c) Given a 2D goal image, we use foundation models to extract the descriptor map. Then we correspond 3D features to 2D features and
define the planning cost based on the correspondence.

grasping based on it [55, 56]. Shen et al. [57] use a similar
distilled feature field for the grasping task. Both methods re-
quire dense camera views to train the neural field. GNFactor
addresses this by introducing a voxel encoder [58]. However,
distilling foundation models to create neural feature fields has
drawbacks: (1) They often require dense camera views for
a quality field. (2) Distilled neural fields need retraining for
new scenes, limiting their generalization and making them
ineffective for dynamic scenes. In contrast, our D3Fields do
not need extra training for new scenes and can work with
sparse views and dynamic settings.

III. METHOD

In this section, we introduce the problem formulation
in Section III-A and define camera transformation and
projection notations in Section III-B. The construction of
D3Fields is detailed in Section III-C. Section III-D discusses
tracking keypoints and learning dynamics, while Section
IV-C showcases how our representation enables zero-shot
generalizable manipulation skills.

A. Problem Formulation

Given a 2D goal image I, we denote the corresponding
scene representation as sgoal. Our goal is to find the action
sequence {at} to minimize the task objective:

min
{at}

c(sT , sgoal),

s.t. st = g(ot), st+1 = f(st, at),
(1)

where c(·, ·) is the cost function measuring the distance
between the terminal representation sT and the goal repre-
sentation sgoal. Representation extraction function g(·) takes
in the current multi-view RGBD observations ot and outputs
the current representation st. f(·, ·) is the dynamics function
that predicts the future representation st+1, conditioned on
the current representation st and action at. The optimization
aims to find the action sequence {at} that minimizes the cost
function c(sT , sgoal).

B. Notation: Camera Transformation and Projection

We assume all cameras’ intrinsic parameters K and ex-
trinsic parameters T are known. The camera i extrinsic
parameters are defined as follows.

Ti =

[
Ri ti
0T 1

]
∈ SE(3), (2)

where Euclidean group SE(3) := {R, t | R ∈ SO3, t ∈
R3}. For a 3D point x in the world frame, we could obtain
projected pixel ui and distance to camera ri as follows:

ui = π (Ki (Rix+ ti)) , ri = [0, 0, 1]T (Rix+ ti) , (3)

where π performs perspective projection, mapping a 3D
vector p = [x, y, z]T to a 2D vector q = [x/z, y/z]T .

C. D3Fields Representation

We fuse observation ot from multiple views to build the
implicit 3D descriptor fields F t(·). For simplicity, we will
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Fig. 3: Representation and Tracking Visualizations. (a) To verify that the representation is both 3D and semantic, we visualize the
representation across different object categories. Mask fields color 3D points based on their instance masks, which clearly differentiates
between instances. Descriptor fields color 3D points by mapping features to RGB space using PCA. They display a consistent color pattern
within a category, such as mug handles being colorized as green for different mug instances. (b) To demonstrate that our representation is
dynamic, we apply it to tracking tasks and showcase two tracking examples, both of which involve 3D motions and partial observations
in single views. The robust 3D tracking results confirm that our representation is 3D, dynamic, and semantic.

represent ot as o, and F t(·) as F(·) in this subsection. The
implicit 3D descriptor field F(·) is defined as

(d, f ,p) = F(x), (4)

where x is an arbitrary 3D point in the world frame,
and (d, f ,p) is the corresponding geometric and semantic
descriptor. d ∈ R is the signed distance from x to the surface.
f ∈ RN represents the semantic information of N dimension.
p ∈ RM denotes the instance probability distribution of M
instances. M could be different across scenarios.

More specifically, we denote a single view RGBD obser-
vation from camera i as oi = (Ii,Ri), where RGB image
Ii ∈ RH×W×3, and depth image Ri ∈ RH×W . For an
arbitrary 3D point x, we project it to image space using Eq. 3
and use bilinear interpolation to obtain the corresponding
depth r′i = Ri[ui]. Then the descriptors from camera i are

di = max(min(r′i − r, µ),−µ),

fi = Wf
i [ui], pi = Wp

i [ui],
(5)

where DINOv2 [17] extracts the semantic feature volume
Wf

i ∈ RH×W×N from RGB observation Ii. Wp
i ∈

RH×W×M is the instance mask volume using Grounded-
SAM [14, 15]. µ is the truncation threshold for TSDF.

We fuse descriptors from all K views as follows:

vi = H(di + µ), wi = exp

(
min (µ− |di|, 0)

µ

)
, (6)

and then

d =

∑K
i=1 vidi

δ +
∑K

i=1 vi
, f =

∑K
i=1 viwifi

δ +
∑K

i=1 vi
,m =

∑K
i=1 viwimi

δ +
∑K

i=1 vi
,

(7)
where H is the unit step function and δ is a small value to
avoid numeric errors. vi = 0 when x is not observable in

camera i, because if x is occluded in camera i, it should not
contribute to the descriptor of x. In addition, we could only
have a confident estimation when x is close to the surface.
Therefore, wi will decay as |di| increases. For x that is far
away, f and m will degrade to 0T .

We convert the implicit field function F(·) to a set of
keypoints s. First, we create voxels x ∈ RW×L×H×3 in the
workspace and evaluate (d, f ,p) = F(x). We filter out xi ∈
x where di is large or pi has a low probability to avoid empty
space and the background. After obtaining filtered points x′,
we use farthest point sampling to find surface points s ∈
R3×ns of an instance.

D. Keypoints Tracking and Dynamics Training

This section will present how to use the dynamic implicit
3D descriptor field F(·) to track keypoints and train dynam-
ics. Without losing generalization, consider the tracking of
a single instance st ∈ R3×ns . For clarity, we denote f and
d from F(·) as Ff (·) and Fd(·). We formulate the tracking
problem as an optimization problem:

min
st+1

||Ff (s
t+1)−Ff (s0)||2. (8)

Since F(·) is differentiable, we could use a gradient-based
optimizer. This method could be naturally extended to
multiple-instance scenarios. We found that relying solely on
features for tracking is unstable. We added rigid constraints
and distance regularization for a more stable tracking.

Keypoint tracking enables dynamics model training on
real data. We instantiate the dynamics model f(·, ·) as graph
neural networks (GNNs). We follow [59] to predict object
dynamics. Please refer to [25, 59] for more details on how to
train the GNN-based dynamics model. The trained dynamics
will be used for trajectory optimization in Section III-E.
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Fig. 4: Qualitative results. We qualitatively evaluate our proposed framework on household manipulation tasks, both in the real world and
in simulation, encompassing tasks such as organizing utensils, fruits, shoes, food, and mugs. The figure highlights that our representation
can generalize across varied instances, styles, and contexts. For instance, in the organizing fruits example, the goal image, unlike the
workspace, is styled as a sketch drawing. Because our representation can map bananas with varied styles and appearances to similar
features, the banana in the workspace can correspond to the banana in the sketch. This allows the task to be successfully completed. This
wide range of tasks showcases the generalization capabilities and manipulation precision of our framework.

E. Zero-Shot Generalizable Robotic Manipulation

As described in Section III-C, we denote initial tracked
points and features as s0 and f0. We estimate sgoal ∈ R2×ns

of goal image Igoal as follows:

αij = exp
(
||Wf

goal[ui]− f0j ||2
)
,

wij =
exp (sαij)∑H×W

i=1 exp (sαij)
,

(9)

then we have sgoal,j =
∑H×W

i=1 wijui, where Wf
goal is the

feature volume extracted from Igoal using DINOv2. s is the
hyperparameter to determine whether the heatmap wij is
more smooth or concentrating. Although Eq. 9 only shows
a single instance case, it could be naturally extended to
multiple instances by using instance mask information.

However, sgoal is in the image space, while st is in the 3D
space. We bridge this gap by introducing a reference camera
with approximate intrinsic and extrinsic parameters K′ and
T′. Instead of rendering images in the reference view, we
focus on projecting 3D keypoints into 2D images and define
the task cost function in image space as follows:

c(st, sgoal) = ||π
(
K′ (R′st + t′

))
− sgoal||22. (10)

IV. EXPERIMENTS

In this section, we evaluate our representation across
various manipulation tasks with varying goal image styles,
instances, and contexts. We visualize D3Fields and showcase
tracking results in Section IV-B. Then, we highlight our

framework’s zero-shot generalizability in both real-world
and simulated tasks in Section IV-C. Finally, a quantitative
comparison with baselines in Section IV-D underscores our
framework’s generalization and manipulation precision.

A. Experiment Setup

In the real world, we employ four OAK-PRO D cameras
to gather RGBD observations and use the Kinova® Gen3
for action execution. In simulation, we utilize OmniGibson
and deploy Fetch for mobile manipulation tasks [60]. Our
evaluations span a variety of tasks, including organizing
shoes, collecting debris, tidying the office table, arranging
utensils, and more.

We implement the baseline methods using Dense Object
Nets (DON) and DINO for feature extraction [54, 61]. We
quantitatively evaluate these methods on five object classes
for single-instance manipulation tasks in the real world. The
results and analysis are presented in Section IV-D.

B. Descriptor Fields Visualization and Keypoints Tracking

D3Fields provide a good 3D semantic representation, as
shown in Fig. 3(a). We first visualize the mask fields by
coloring 3D points according to their most likely instance,
and our visualization shows a clear 3D instance segmenta-
tion. Additionally, we map the semantic features to RGB
space using PCA, as with DINOv2 [17]. Visualization of the
descriptor fields reveals that D3Fields retain a dense semantic
understanding of objects. In the provided shoe example, even
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Fig. 5: Quantitative Evaluation. We perform real-world quantitative evaluations by measuring final goal-achieving performance and
keypoints correspondence accuracy. (a) We use IoU to measure goal-achieving performance. Results indicate that our method aligns with
the goal configurations much better than DON and DINO across various object categories and scenarios. (b) We measure the keypoints
correspondence accuracy according to the fraction of points with accurate matches, with correct matches determined by a distance threshold.
Our method is consistently better at aligning with the goal image, regardless of the chosen threshold.

though various shoes have distinct appearances and poses,
they exhibit similar color patterns: shoe heels are represented
in green, and shoe toes in red. We observed similar patterns
when evaluating the model on mugs and forks.

As discussed before, D3Fields can also capture scene
dynamics. We evaluate it by tracking the object keypoints.
We show two examples of 3D keypoint tracking in Fig. 3(b).
In the first example, a shoe is pushed and then flipped.
Although only a portion of the shoe is visible from the view,
our framework tracks it reliably. In another example, a shoe
is lifted and then set down. Despite parts of the shoe being
out of the camera’s view, we can robustly track it in 3D.

C. Zero-Shot Generalizable Manipulation

We conduct a qualitative evaluation of D3Fields in com-
mon household robotic manipulation tasks in a zero-shot
manner, with partial results displayed in Fig. 1 and Fig. 4.
The following capabilities of our framework are observed:

Generalization to AI-Generated Goal Images. In Fig. 1,
the goal image, rendered in a Van Gogh style, depicts
shoes distinct from those in the workspace. Since D3Fields
encode semantic information, capturing shoes with varied
appearances under similar descriptors, our framework can
manipulate shoes based on AI-generated goal images.

Compositional Goal Images and 3D Manipulation.
Using the office desk organization example in Fig. 1, the
robot first arranges the mouse and pen according to the goal
image. It then repositions the mug from the box to the mug
pad, referencing a goal image of the upright mug.

Generalization across Instances and Materials. Granu-
lar objects, unlike rigid ones, have more complex dynamics.
Our framework effectively handles these materials, as shown
in the debris collection in Fig. 1. Fig. 4 further showcases
our framework’s instance-level generalization, where the goal
image displays instances different from the workspace.

Generalization across Simulation and Real World. We
evaluated our framework on household tasks in the simulator,
as shown in the utensil organization and mug organization
examples in Fig. 4. Given goal images taken from the real

world, our framework can also manipulate objects to the goal
configurations. Our framework demonstrates generalization
capabilities between simulation and the real world.

D. Quantitative Comparisons with Baselines

In Fig. 5(a), we measure performance using the IoU
between the goal image mask and the final state mask after
manipulation, with higher values indicating better alignment.
Evaluating across five object classes, our method consistently
outperforms the baselines, underscoring its generalization
and manipulation accuracy. While DINO struggles with dis-
tinguishing object components, leading to imprecise results,
it still works better than DON. Although DON performs
well on familiar object classes and configurations, it lacks
generalization in novel scenarios.

In Fig. 5(b), we present the correspondence results. We
manually label corresponding keypoints on both the goal
image and the final manipulation result to evaluate the
correspondence accuracy. We calculate the fraction of ac-
curately matched points based on a distance threshold. Our
method consistently outperforms the baselines, regardless of
the threshold. DINO ranks second, while DON lags behind.
Consistent with Fig. 5(a), our method excels in generalization
and accuracy, DINO is broadly applicable but less precise,
and DON struggles with generalization.

V. CONCLUSION

In this work, we introduce D3Fields, which implicitly
encode 3D semantic features and 3D instance masks, and
model the underlying dynamics. Our emphasis is on zero-
shot generalizable robotic manipulation tasks specified by 2D
goal images of varying styles, contexts, and instances. Our
framework excels in executing a diverse array of household
manipulation tasks in both simulated and real-world scenar-
ios. Its performance greatly surpasses baseline methods such
as Dense Object Nets and DINO in terms of generalization
capabilities and manipulation accuracy.
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