How Developers Develop Features

In Proceedings of European Conference on Software Maintenance and Reengineering (CSMR 2007)

Orla Greevy!, Tudor Girba' and Stéphane Ducasse?

1 Software Composition Group - University of Berne, Switzerland
2 LISTIC - University of Savoie, France

Abstract

Software systems are typically developed by teams of
developers, with responsibilities for different parts of the
code. Knowledge of how the developers collaborate, and
how their responsibilities are distributed over the software
artifacts is a valuable source of information when reverse
engineering a system. Determining which developers are
responsible for which software artifacts (e.g., packages or
classes) is just one perspective. In this paper we comple-
ment the static perspective with the dynamic perspective of
a system in terms of its features. We want to extract infor-
mation about which developers are responsible for which
features. To achieve these two perspectives, we correlate
developer responsibilities both with a structural view of the
system and with a feature view. We identify which devel-
opers are responsible for which features, and whether the
responsibilities correspond with structural source code ar-
tifacts or with features. We apply our technique to two soft-
ware projects developed by two teams of students as part of
their course work, and to one large open source project.

Keywords: reverse engineering, software comprehen-
sion, features, dynamic analysis, development strategies.

1 Introduction

Many reverse engineering techniques consider source
code as the most reliable source of information about a sys-
tem. Few researchers in the field of reverse engineering
have devoted much attention to the way developers inter-
act with the system and the roles they play [17]. However,
understanding how the developers build a software system
represents a rich source of information for the reverse engi-
neer. For example, it is useful to know who is responsible
for which part of the system, or who developed which fea-
tures [6].

Typically, software systems are built by teams of devel-
opers. It is a well known phenomena that the human factors

such as collaborations and communication paths are often
reflected in the structure of the code. According to Con-
way’s law “organizations which design systems are con-
strained to produce designs which are copies of the com-
munication structures of these organizations” [5].

The structure of a development team and the division of
responsibilities has a major impact on how software sys-
tem is structured and implemented. The problem is how to
efficiently exploit and access knowledge about which de-
veloper developed which parts of the code, and how they
collaborated during the implementation.

Often a discrepancy exists in the way developers and do-
main analysts see a system. Typically the mental model
of the developer reflects the structural source code artifacts
such as packages and classes. Domain analysts and users
on the other hand, see the system in terms of features (i.e.,
the capabilities of the system). Thus, understanding which
developers are responsible for which software artifacts, and
which developers are responsible for which features is the
key to maintaining a traceability between the external per-
spective of a system and its internal structure.

In this paper, we focus on a features perspective of a sys-
tem. We address the following questions:

o Which developers or groups of developers are respon-
sible for which features? We seek to extract informa-
tion that would not only lead to the relevant part of
the code for a feature, but also to reveal the devel-
opers responsible for its implementation and mainte-
nance. From a static perspective, developers who own
the most classes in the system represent key develop-
ers. From a dynamic perspective, we assume that de-
velopers that are responsible for multiple features have
a wider domain knowledge of the system than develop-
ers who contribute only to specific parts. Bug reports
and change requests are expressed in a language that
reflect the features of a system [18]. Thus, knowledge
of which developer is responsible for which feature is
useful especially when faced with the problem of as-
signing bug reports and change requests to the devel-

cellphione
EEEEEEER

[|
dialoy states Ui addressbook tools calendar ekl logo ringtone events resource Sms
[] | EEEEEEN EEEEEEE EN | u EEE | [| [| EEE EEEEEEE B EEE
EEEEN EEEEEEEN EEEEENR [] | EEEE EEEEEENR
[| | EEEN
EEEEEN

externalOptions fant

renderer phoneDisplayFanels phoneComponents

EEEEN EEEEEEN EEEE
text ek
EEEEEEN EEEEEER
EEE

Figure 1. Package Owner View of the PhoneSimulator-1 case study showing classes arranged in

packages and colored by owner

opers of large open source projects [2, 3].

2 Extracting Developer Data from Work Ar-
tifacts

e Do developers develop features or do they develop

functional blocks?

or on a feature boundary.

To address these questions, we analyze the correlation
between developer behavior in a system in the contexts of
its packages and of dynamic groups that reflect its features.
To obtain the relationship between developers and classes
we extract data from the source code repository of a project
and use this to determine the ownership of a class (i.e., the
responsible developer) [11]. We then build on a feature
analysis technique of our previous work [13] to establish
the relationships between features and classes, and finally

we link developers to features.

Structure of the Paper. In Section 2 we introduce the
key elements of our analysis technique. In Section 3 we de-
scribe our structural and feature views and briefly explain
how we apply our feature analysis technique in the con-
text of developers. In Section 4 and Section 5 we report
on three case studies conducted using our approach. Sub-
sequently, in Section 6 we discuss our results and outline
the constraints and limitations of our approach, and pro-
pose possible variation points. We summarize related work

in Section 7, and we conclude in Section 8.

We aim to determine if the di-
vision of development responsibilities corresponded
with structural source code artifacts or with feature
concerns. We seek to reverse engineer which devel-
opers best understand parts of the system and whether
the developers develop on static architectural boundary

Recent research in the field of reverse engineering and
system comprehension reveals a growing awareness in the
role of the software developer in the software development
process [17]. Lethbridge et al. define a taxonomy of tech-
niques for collecting data about the developers involved in
a software project. For our experimentation, we adopt what
they refer to as a third degree approach. In other words
we analyze work artifacts in an attempt to uncover infor-
mation about the responsibilities of software developers of
a system. The inputs of our analysis are: (1) source code
repository log information (2) source code and (3) execu-
tion traces of features. Our approach makes use of the distri-
bution map-like visualization [7] to represent the structural
and feature perspectives of developer responsibilities.

In a previous work we describe a technique to define
code ownership based on the data extracted from the CVS
log of a project [11]. The technique is based on the as-
sumption that the developer of a line of code is the most
knowledgeable in that line of code. Based on this assump-
tion, we determine the owner of a piece of code as being the
developer that owns the most lines of that piece of code.

As CVS is a file-based repository, strictly speaking our
ownership is calculated for files. However, for our experi-
mentation we assume a one-to-one mapping between files
and classes. We exploit the fact that the package structure
in Java reflects the physical file structure and use this to de-
termine which class maps to which file.

cellphone

states
| |

ringtone resource
[|] [|
phoneComponents

Figure 2. The Package Owner View of PhoneSimulator-1 showing classes organized in packages,
where only the classes participating in the Play Ringtone feature are colored by owner.

We visualize who owns what parts by representing each
owner with a unique color [7, 11]. Figure 1 shows the pack-
age hierarchy extracted from one of our case studies: the
large boxes represent packages and are arranged in a tree,
while the small boxes represent classes and are colored by
the owner. This view reveals a developers perspective of the
system structure. We detect packages, where there is only
one responsible developer, or one main responsible devel-
oper (i.e., a developer owns most of the classes in the pack-
age). We refer to these packages as developer-focused pack-
ages. In contrast, there are packages with classes owned by
many developers.

With respect to the extraction of developer strategies within
a project, our first hypothesis is:

A high-proportion of developer-focused packages indi-
cates that the developers adopted a strategy that reflected a
structural division of responsibilities (on a package bound-
ary) while developing the system.

3 Feature Owner Analysis Technique

The main contribution of this paper is that we extend the
focus of ownership analysis beyond ownership of code to
consider the roles of developers with respect to features. We
want to discover if the division of developer responsibilities
in a team was influenced directly by feature requirements,
hence we need to establish the relationships between fea-
tures and developers. To achieve this, we apply a feature lo-
cation technique from our previous work [12, 13]. Feature
location is a recognized technique for revealing which parts
of the code relate to a feature [1, 9, 20]. Typically feature
location techniques define features to be user-triggerable ac-

tions of a system [9]. Essentially, we instrument the system
and exercise a set of features and we characterize the classes
based on their level of participation in the features traced.
We define a feature view as a group of classes that partici-
pate in execution of the feature.

We differentiate between classes that implement feature-
specific functionality (we named these single-feature and
low-group-feature), and classes that provide functionality
to a more than one of the features (we named these high-
group-feature and infrastructural) [14]. For more details of
how we detect the feature characterization of classes, we
refer the reader to our previous works [12, 13].

3.1 Owners of Features

We establish developer responsibilities with respect to
features by identifying the developers that own the feature-
specific classes. For example, in Figure 2, we highlight the
classes that participate in a feature by the owner of the class.
All the classes that are not specific to the feature colored
gray.

Our second hypothesis is:

A high-proportion of developer-focused feature views
indicates that the developers adopted a developer strategy
that reflected a feature perspective of responsibilities (on a
feature boundary) while developing the system.

3.2 Modeling Developer Collaborations as Fea-
ture Teams

Features are can be built by one or more developers. To
understand how developers collaborate to develop features,

we extract and explicitly model teams of developers and the
relationships between teams. We define a feature team to
be the set of owners of the classes of a feature view. A
feature team models the collaborations between developers
that exist during the development of a feature.

Typically developers or teams of developers are respon-
sible for one or more features in the system. Once we have
extracted which developers are responsible for features as
teams, we can represent the relationship between the devel-
oper teams in a graph. Each node of the graph represents
a team (one or more developers) and contains one or more
feature views. A team of developers may represent a subset
of another team. We model the is a subset of relationship
between the teams as edges of the graph and perform tran-
sitive reduction to remove unnecessary edges.

For example Figure 3 shows a Team Collaboration View
from one of our case studies. Each large rectangle repre-
sents a team formed by one or more developers. The graph
shows the responsibilities of a developer and possible col-
laborations between developers with respect to a set of fea-
tures we traced. Inside the developer collaboration rect-
angle, we represent each feature as a grouping of feature-
specific classes. As with the package view, the classes are
colored according to the owners. For example, the top box
represents the team that includes the red, blue, cyan and
green developers and the one on the bottom is a team formed
by the red and blue developers. The bottom team represents
two developers who collaborated to develop two of the fea-
tures: viewHelp and viewAbout.

3.3 Developer-focused Features

As with our structural perspective, we define a feature F'
to be developer-focused if a high proportion of the classes
are owned by one developer (i.e., more than half of the
classes). Thus, the existence of developer-focused fea-
tures indicates that a feature-based development strategy
was adopted during the development of the system. For
this analysis we define a developer-focused feature to be
one where more than 50% of the classes are owned by one
developer.

4 Case Study 1: Student Team Projects

To validate our technique, we applied it on five student
team projects (each of approximately 200 classes). Each
team consisted of four students working over a time span
of four months period as part of their course work. The
applications were developed in Java and CVS was used as
a source code repository. The goal of these projects was to
implement a cell phone simulator.

In this section we report on our findings for two of these
projects. We refer to the projects as PhoneSimulator-1 and

PhoneSimulator-2. The requirements for the project were
defined in terms of user stories.

Our motivation for choosing these projects were: (1) we
have access to the CVS repository to obtain the information
we need to calculate the ownership of files, (2) the resulting
systems are the result of team effort, and (3) our approach is
a heuristic-based approach and we require developer knowl-
edge to validate our results.

4.1 Context Definition

We outline our approach to analyzing the team projects:

e For each system, we extract a static model from the
source code and model it in the Moose reengineering
environment [8].

e We identify the features of these systems by associat-
ing them with the user-triggerable actions accessible
via their user interfaces. For each system, we instru-
ment the application using the JIP profiler [16] and
the capture traces when triggering the features. We
resolve the traces and establish relationships between
the method and class references within the trace with
our static model using DynaMoose (a dynamic analy-
sis and trace modeling tool integrated in Moose).

e We process the CVS log information for each applica-
tion to determine the file ownership. We map files to
classes, and we generate (1) a Package Owner View for
the entire system and also just highlighting the feature-
specific classes, and (2) a Team Collaboration View
showing how developers collaborated to develop fea-
tures (as in Figure 3).

e We drive our analysis by addressing the questions we
identified in the introduction. We validate our findings
with the development team members

4.2 PhoneSimulator-1

This system consists of 251 classes and 20 packages and
was developed by 4 developers. We traced 14 features and
obtained a 70% coverage of classes.

Figure 1 shows the package owner view of the system.
We see from this view that there are packages with one re-
sponsible developer, packages with two responsible devel-
opers, and packages with multiple developers. (Note that
the white classes of the visualization denote an unknown
developer due to the initial import).

Our visualization reveals that the red developer is solely
responsible for the packages gui.PhoneDisplayPanels.text,
gui.PhoneDisplayPanels.menu,dialog, and gui.renderer.
The blue developer is the unique responsible for the pack-
ages events, resource and sms.

We see 5 packages where the same three developers (red,
cyan and blue) own classes. This pattern indicates a collab-
oration between these developers on a structural boundary.

The green developer owns only 8 classes in the system,
distributed over three packages. Five of these classes are
located in the gui::phoneComponents package.

Which developers or groups of developers are responsi-
ble for which features? Figure 2 shows an example of a
feature perspectives of the system. Here we see the feature-
specific classes of the playRingtone feature in the context
of the package hierarchy. The blue developer is the main
developer of this feature as he owns 60% of the feature-
specific classes.

AN
] [1]
(LI T T I T
EEEEOEEEEEEE
15 o o o o]|
ENEEEEEEEEE
(0

‘createMew Phong’

[[[]] EEET NEEEE EEEEEN ([[]]
[[[1] HENEE EEEE DENEEE EEEE
(] EE[] L[] OfmEEE EEEE
‘hang Up Call' "check Inkbox' L L ||

‘wreate Calenclar Event’

EEEEEEN { []] EOOE EEEEC

‘selectMewlLogo’ ‘selectDateAndTime’

HREEREE | EEEE [[(eEN
([] L[L] EEEEE
===.E.. ‘gwitchOnFhone' "play Ringtone' ';ah:lugr'
‘compose Mew Ringtone'

EEEE NEEEEEE

INEN EEE

EEEE =R

EEE] EN |

‘addContact’ "sendMessage’

“igwabout!
“wignw Help'

Figure 3. Team Collaboration View from
PhoneSimulator-1: the small squares repre-
sent classes, the medium rectangles features
and the large rectangle teams of developers

In Figure 3 we show a Team Collaboration View based
on the features we traced. The view establishes the relation-
ships between the features and their responsible developers.
Our visualization reveals that the red developer is the main
responsible for the classes of three features, namely select-
DateAndTime, checkinbox and selectNewLogo. The blue
developer is the main responsible for the classes of the fea-
tures switchOnPhone, dialUser and hangUpCall.

Figure 3 also reveals that both the red and blue develop-
ers are active in all of the features. Thus our analysis sug-
gests that from a domain knowledge perspective, the blue
and red developers have a wider knowledge of the features
than the cyan and green developers.

Do developers developer features or functional blocks?
Our analysis of PhoneSimulator-1 indicates that the devel-
opment strategy corresponds more closely with the struc-
tural divisions in the system, namely the package bound-
aries rather than the feature perspective. We checked our
findings with the developers of PhoneSimulator-1. They
confirmed that initially they adopted a development strat-
egy based on the model-view-controller pattern. The red
developer was responsible for the view classes and the cyan
and blue developers were responsible for the model and
controller classes. The green developer was responsible
for the creation of images used by the application and the
classes that manipulated these images. Thus the green de-
veloper fouches only two packages of the system. Once the
first iteration of the system was completed, the developers
adopted a user-story or feature development strategy. In
other words, the responsibility for developing new features
(e.g., playRingTone) was typically assigned to one or two
developers. They confirmed our finding that the blue de-
veloper was responsible for developing the playRingTone
feature (Figure 2).

4.3 PhoneSimulator-2

This system consists of 196 classes and 25 packages and
was developed by 4 developers. We traced 10 features and
obtained a 68% coverage of classes.

cellphone

view model midicomposer resaurce. packettypes

sereen| dattbase menw Stafes keyboard applieations settings
CE T 1T T T A—T T T

packets ams mens s parser time

Figure 4. Package Owner View of

PhoneSimulator-2

Figure 4 shows the package owner view of the system for
PhoneSimulator-2. From this view we detect 5 packages
where only the cyan developer is active. However, these
packages contain only very few classes. Although the team
consisted of 4 developers, the visualization reveals that ac-
cording to our ownership analysis, only three of the devel-
opers actually own classes.

Our visualizations reveal that the cyan developer and the
red developer are the key developers of this system. The
blue developer is exclusively responsible for the package
model::database::addressbook.

‘callPhone’
‘andd Contact!

‘new Cellphone’

ANEEE EEEEEE EEEEEE.

HANEEE EEEEEE EEEEEEN

ONEEE NENESSE NEEEESEEE

[5[5] EEEEE | o

‘play Ringtone' ‘setlock Screen’ EREEEE
‘selectMessaging'

{ [L] L[] []] L1 []]
oo EEEHEE HEEEER
switch OnPhaone DonE om

‘composednd Send SMS' ‘setDateTime'

[[1]}
EOEEE
EEE

‘checklnkios"

Figure 5. Team Collaboration View of
PhoneSimulator-2

Which developers or groups of developers are responsi-
ble for which features? Figure 5 shows the team feature
view of the system. We see that the cyan and red develop-
ers are responsible for all of the features that we traced. We
also see that the blue user shares responsibility for the add-
Contact and newCellphone features. This feature is related
to the addressbook subsystem of the application, for which
the blue developer is solely responsible.

Do developers develop features or functional blocks?
We detect that there are structural divisions of responsibil-
ities (e.g., the addressbook package). However, the devel-
opers seem to be working in pairs to develop the individual
packages. The main developer (cyan) is clearly the devel-
oper with most responsibility from a static and features per-
spective of the system.

The developers of the Phonesimulator-2 confirmed that
our findings corresponded to the division of responsibilities
within the project.

S Case Study 2: ArgoUML Case Study

To test the scalability of our technique we applied it to
ArgoUML, an open source UML modeling application im-
plemented in Java. We chose ArgoUML because: (1) we
have access to developer knowledge of the documentation
of ArgoUML to validate our results, (2) it is an open source
and we have access to the cvs repository to obtain the in-
formation we need to calculate the ownership measurement
of files, and (3) it has been used by other researchers as a
reverse engineering case study.

We focus on the core of the application (i.e., we exclude
library classes and plugin features). We parsed the source
code and obtained a model consisting of 2075 classes. To
narrow the scope of our investigation we filtered out the
classes in the library org.tigris that provide GUI classes and
java library classes. This resulted in 1501 classes.

We exercised 11 features by interacting with the user in-
terface and traced each feature individually. We achieved a
coverage of 58% of the classes.

Figure 6 shows the package owner view of the system.
There are 83 packages in total. 13 packages are owned
solely by the red developer. And four packages where the
cyan developer is the sole owner. The remaining 66 pack-
ages are owned predominantly by the red developer. Thus
our analysis reveals a that the system is predominantly de-
veloped by one developer. There is structural division of
responsibilities between the red and cyan developers on a
package boundary.

5] o
HHI_ILH_II_II_H_II_II_ILI

[

{50 |]
0 o o o
L LI 1L s
I I

‘startug’

=]
L [11 Il)
ooooo

0
‘saveproject

mEEnE | | Qoo
| 10
‘orcerbynanme’ ‘tlassrentricvew’

“exportimi

‘loacproiect’

i
i}

“Browsecritoue’

Figure 7. Team Collaboration View of Ar-
goUML showing relationships between teams
of developers.

Which developers or groups of developers are respon-
sible for which features? We extracted 11 teams of col-
laborating developers, shown in Figure 7. Each team is re-
sponsible for one or two features. There is only one feature
browsecritique where only one developer (cyan) is respon-
sible for all the classes of the feature. For all other features

argoumi

umi modueloader swingext cognitive notation kernel

generator notation
Ty m—

Ui events
mmn mEmEEEEEE

disgram cogritive reveng util critics checklist ui
ann mm annn anmmmmn | mmmm

ui uml
) nm

java hehavior model_management foundation use_case lapout
- .

sequence
EREEEE W u

activity_graphs use_cases com)
um e

hines collaborations cor
wam u

persistence. ocl
anmm

helpers
ammin

activity
.

extension_mecharisms vi u ui ui u u
-

application uti language 18n pattern ui
Y anmmnn .

targstmanager explorer

configuration securlty. modules
ann - N

Ui java ramespace Ui

static_structure checklist critics
u " EEEEEEEEE EEEE

Ui win32 cognitive generator crifics rules
am mEmmamnEs man
R

layout ui

critics
(e u

Figure 6. Package Owner View of argoUML

Figure 8. Package Owner View of ArgoUML
highlighting Generate Code for Class feature

Figure 9. Package Owner View of ArgoUML
highlighting the Srarrup Feature

we see that three or more developers are responsible for the
classes that participate in the feature.

From Figure 7 we see that the red developer is predom-
inantly responsible (i.e., owns 80% of the classes) for the
generateCodeforClass feature. Figure 8 shows this feature
in the context of the package hierarchy of the system. The
feature-specific classes crosscut 9 of the packages of Ar-
goUML.

Figure 7 also reveals that the red developer is also pre-
dominantly responsible (i.e., owns 65% of the classes) for
the startup feature. Figure 9 shows this feature in the con-
text of the package hierarchy of the system. The feature-
specific classes crosscut 37 of the packages of ArgoUML.
The startup feature is responsible for initializing the appli-
cation.

Our analysis reveals that the cyan developer is also pre-
dominantly responsible for the importXMI (i.e., owns 50%
of the classes). We obtained a similar result for the feature
exportXMI. In both cases the feature-specific classes cross-
cut the same 5 of the packages of ArgoUML.

Do developers develop features or functional blocks?
In ArgoUML we detect both structural and feature divisions
of responsibilities. Of the 10 distinct developers our vi-
sual analysis reveals that there are two main developers (red
and cyan), We verified that these two developers correspond
with the main developers of ArgoUML. We detect that the
red developer is responsible for most of the classes in the
system and predominantly owns most of the packages and
predominately responsible for most (80%) of the features
we traced. The cyan developer responsibilities correspond
to both package and feature boundaries. Our results show
that in the case of ArgoUML it is difficult to deduce if the

developer strategy aligns with a structural or a features per-
spective as the responsibility for the classes of the applica-
tion is dominated by two main developers. Despite this, our
results reveal the existence of both development strategies.

6 Discussion

Limitations of the Ownership Measurement. We chose
to use the ownership measurement calculated by analyzing
the CVS log data. This solution is therefore coupled with
the CVS tool and will not work for other repositories such
as Subversion or Clearcase. However, we have encapsulated
the repository dependent code, thus minimizing the required
effort to adapt our solution to another repository if required.
Our validation revealed a flaw in our ownership
measurement. In discussion with the developers of
PhoneSumulator-1 project, we discovered that the red de-
veloper appears to own a large proportion of the classes.
This is an incorrect representation as the red developer re-
structured a large proportion of the classes as a result of
applying an automatic style checker that flagged long meth-
ods. As a result of this editing, our ownership calculation
incorrectly assigns him as owner of these classes.

Feature definition and Feature Characterization. We
define features as user-triggerable actions. However, not
all features of a system satisfy this definition. System in-
ternal housekeeping tasks, for example, are not triggered
directly by user interaction. Moreover, we assume a one-to-
one mapping between feature-traces and features. This is a
simplification of reality, as the execution path of a feature
varies depending on the combination of user inputs when
it is triggered. Exhaustive execution of a feature is costly.
We see from our experiments that one path of execution is
useful enough to reveal a mapping that directs the software
developer to the relevant classes for a feature.

Our feature characterization measurements currently de-
fine a threshold value of 50% to distinguish between
feature-specific and infrastructural classes. Varying this
value will affect the results. One variation of our approach
would be to allow the reverse engineer to define this value,
depending on the type of application to be analyzed. We
plan to experiment with variable threshold values in the fu-
ture.

Team definition. For this analysis we extracted the def-
inition of a team from the ownership information of the
feature-specific classes of features. There are alternative
ways to define a team based on structural collaborations.
We plan to investigate the definition of teams based on ex-
tracting the developer collaborations in more detail in the
future. Our visualization of the package hierarchy of a sys-
tem reveals that developers tend to develop the system from

a package perspective. The feature teams reveal how the
developers collaborate when implementing code that is spe-
cific to one feature. In our case studies we see that typically
one or two developers were responsible for the implemen-
tation of a feature.

The Roles of Software Developers. Our technique fo-
cuses exclusively on the software development of the soft-
ware engineer. It excludes activities such as configuration
management, creation of resources (e.g., image files), build
and release management. These are all relevant activities
with a development project. Thus the picture obtained of
the developer is incomplete in the general sense. We are
interested in obtaining developer information in the context
of structural views and feaure views of the system.

System Coverage. For the purpose of feature location,
complete coverage is not necessary [19]. Wilde and Scully’s
Software Reconnaissance technique, and other approaches
based on this technique [9], do not locate all the code as-
sociated with a feature, but provide good starting points for
the software maintainer to understand the implementation
of a feature [19].

7 Related Work

Researchers in the field of reverse engineering and sys-
tem comprehension are becoming aware of the importance
of analyzing the developer and exploiting new sources of
data such as source code repositories to understand software
systems [11, 15, 17, 21].

Lethbridge et al. define a taxonomy of data collection
techniques to obtain information about the roles of software
engineers during the development of a project. Their work
highlights the growing awareness of this source of informa-
tion in the field of reverse engineering and system compre-
hension.

Herbsleb and Mockus used data generated from a change
management system to better understand how communica-
tion occurs in a globally distributed software development.
They used several modeling techniques to understand the
relationship between the modification request interval and
other variables including the number of people involved, the
size of the change, and the distributed nature of the group,
working on the change.

Xiaomin Wu et al. describe a tool to visualize [21] the
change log information to provide an overview of the active
places in the system as well as of the author activities. They
display measurements like the number of times an author
changed a file, or the date of the last commitment.

Chuah and Eick proposed a three visualizations for com-
paring and correlating different evolution information like

the number of lines added, the errors recorded between ver-
sions, number of people working etc. [4].

Zimmerman et al. aimed to provide mechanism to warn
developers about the correlation of changes between func-
tions. The authors placed their analysis at the level of en-
tities in the meta-model (e.g., methods) [23]. The same
authors defined a measurement of coupling based on co-
changes [22].

Hassan ef al. analyzed the types of data that are good
predictors of change propagation, and came to the conclu-
sion that historical co-change is a better mechanism than
structural dependencies like call-graph [15].

Gall et al. [10] aimed to detect logical couplings be-
tween part of the system by identifying which parts of the
system change together. They used this information to de-
fine coupling measurements. The more times modules were
changed together, the more tightly coupled they are. This
approach is based on files and folders of a system and does
not consider the semantical units of a system such as classes
and methods.

Anvik et al. [2] describe a semi-automatic technique to
assign bug reports to developers. They base their analysis
on data extracted from the bug repository of a software de-
velopment project and use a machine learning algorithm to
support the assignment of bugs to the appropriate developer.
For two of the case studies they analyze the achieved a high
precision (between 57% and 64%). One major contribution
of their work is that they identify the problem of tracing the
correct developer address a given bug report.

Canfora et al. [3] also consider the problem of assigning
change requests to developers of open source projects. They
design an approach to assign change requests to developers
based on analyzing the previous assignment history of the
change requests.

Our main focus in this paper was to define a reverse en-
gineering approach that exploits developer information of a
systems features. The work of Anvik et al. and Canfora et
al. identifies a motivation for our technique of associating
developers with features.

8 Conclusions and Future Work

In this paper, our goal was to analyze the roles of de-
velopers from both a structural and a features perspective
or a system. Based on this analysis, we sought to extract
development strategies based on the distribution of owners
over the packages of the system and over the features of the
system. In particular we addressed the questions:

o Which groups of developers are responsible for which
Sfeatures? We exploited our features perspective to ex-
tract teams of developers who are responsible for the
features. We define a team collaboration based on a

partial ordering of teams, and we reveal which de-
velopers and teams of developers are responsible for
which features. Thus we assume that these develop-
ers are familiar with domain aspects (i.e., the user-
triggerable functionality of the system).

e Do developers develop features or do they develop
functional blocks? Our visualizations of the pack-
age hierarchy showing the owners of classes shows
which developers are responsible for which classes in
the system. This view shows the structural group-
ings of classes as packages. Our analysis of the stu-
dent projects revealed that the developers typically dis-
tribute responsibility on a package boundary. Different
developers implement specialized functionalities such
as xml handling or database interaction. The bound-
aries of model-view-controller are also split between
different developers. We also discovered, that for some
features, a developer strategy that reflects the feature
boundaries has also been adopted in the case of new
features that were added after the main functionality
of the system was implemented.

The main contributions of our approach are:

e We identify a novel way of analyzing the roles of de-
velopers with respect to the features of a system.

e We describe a technique to extract and visualize static
and dynamic views of the relationships between devel-
opers and structural packages and feature views.

e We extract and model the collaborations between de-
velopers and teams of developers based on their own-
erships of classes of features.

In this paper we have presented an exploratory analysis
that considers two complementary perspectives of the roles
of developers in a system. Before we can make conclusive
statements about our approach, we need to perform more
case studies and refine the technique to define metrics to
quantify more precisely the relationships between develop-
ers and features. We recognize the iterative nature of our
approach. We need to experiment with variations of feature
definition and threshold definition of feature-specific func-
tionalities to achieve optimal results. We would like to ap-
ply our approach in an industrial setting with larger systems
and teams.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science Foundation
for the project “Analyzing, capturing and taming software
change” (SNF Project No. 200020-113342, Oct. 2006 -
Sept. 2008) and the Cook ANR project “COOK (JCOS5
42872): Réarchitecturisation des applications industrielles
objets”.

References

(1]

2

—

3

—

(4]

(5]

[6

—_

(7]

(8]

[9

—

(10]

[11]

[12]

[13]

(14]

[15]

G. Antoniol and Y.-G. Guéhéneuc. Feature identification:
a novel approach and a case study. In Proceedings IEEE
International Conference on Software Maintenance (ICSM
2005), pages 357-366, Los Alamitos CA, Sept. 2005. IEEE
Computer Society Press.

J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proceedings of the 2006 ACM Conference on Soft-
ware Engineering, 2006.

G. Canfora and L. Cerulo. Supporting change request as-
signment in open source development. In Proceedings of
2006 ACM Symposium on Applied Computing, pages 1767—
1772. ACM, ACM Society Press, 2006.

M. C. Chuah and S. G. Eick. Information rich glyphs for
software management data. /[EEE Computer Graphics and
Applications, 18(4):24-29, July 1998.

M. E. Conway. How do committees invent? Datamation,
14(4):28-31, Apr. 1968.

S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

S. Ducasse, T. Girba, and A. Kuhn. Distribution map. In
Proceedings International Conference on Software Main-
tainance (ICSM 2006), pages 203-212, Los Alamitos CA,
2006. IEEE Computer Society.

S. Ducasse, T. Girba, M. Lanza, and S. Demeyer. Moose:
a collaborative and extensible reengineering environment.
In Tools for Software Maintenance and Reengineering,
RCOST / Software Technology Series, pages 55-71. Franco
Angeli, Milano, 2005.

T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code. IEEE Computer, 29(3):210-224, Mar. 2003.
H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In Proceedings
International Conference on Software Maintenance (ICSM
'98), pages 190-198, Los Alamitos CA, 1998. IEEE Com-
puter Society Press.

T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How de-
velopers drive software evolution. In Proceedings of Inter-
national Workshop on Principles of Software Evolution (IW-
PSE 2005), pages 113-122. IEEE Computer Society Press,
2005.

O. Greevy and S. Ducasse. Characterizing the functional
roles of classes and methods by analyzing feature traces. In
Proceedings of WOOR 2005 (6th International Workshop on
Object-Oriented Reengineering), July 2005.

O. Greevy and S. Ducasse. Correlating features and code
using a compact two-sided trace analysis approach. In Pro-
ceedings IEEE European Conference on Software Mainte-
nance and Reengineering (CSMR 2005), pages 314-323,
Los Alamitos CA, 2005. IEEE Computer Society Press.

O. Greevy, S. Ducasse, and T. Girba. Analyzing software
evolution through feature views. Journal of Software Main-
tenance and Evolution: Research and Practice, 18(6):425—
456, 2006.

A. Hassan and R. Holt. Predicting change propagation
in software systems. In Proceedings 20th IEEE Inter-
national Conference on Software Maintenance (ICSM’04),

10

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

pages 284-293, Los Alamitos CA, Sept. 2004. IEEE Com-
puter Society Press.

Java interactive
http://sourceforge.net/projects/jiprof.
T. C. Lethbridge, S. E. Sim, and J. Singer. Studying soft-
ware engineers: Data collection techniques for software
field studies. Empirical Software Engineering, Springer Sci-
ence and Business Media, Inc., The Netherlands, 10(3):311-
341, July 2005.

A. Mehta and G. Heineman. Evolving legacy systems fea-
tures using regression test cases and components. In Pro-
ceedings ACM International Workshop on Principles of Soft-
ware Evolution, pages 190-193, New York NY, 2002. ACM
Press.

N. Wilde and M. Scully. Software reconnaisance: Mapping
program features to code. Software Maintenance: Research
and Practice, 7(1):49-62, 1995.

E. Wong, S. Gokhale, and J. Horgan. Quantifying the close-
ness between program components and features. Journal of
Systems and Software, 54(2):87-98, 2000.

X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse
engineering approach to support software maintenance: Ver-
sion control knowledge extraction. In Proceedings of 11th
Working Conference on Reverse Engineering (WCRE 2004),
pages 90-99, Los Alamitos CA, Nov. 2004. IEEE Computer
Society Press.

T. Zimmermann, S. Diehl, and A. Zeller. How history justi-
fies system architecture (or not). In 6th International Work-
shop on Principles of Software Evolution (IWPSE 2003),
pages 73-83, Los Alamitos CA, 2003. IEEE Computer So-
ciety Press.

T. Zimmermann, P. Weilgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In 26th
International Conference on Software Engineering (ICSE
2004), pages 563-572, Los Alamitos CA, 2004. IEEE Com-
puter Society Press.

profiler.

