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1. Maximal antipodal sets and two-numbers

The notion of maximal antipodal sets of Riemannian manifolds was introduced in [27]. The primeval
concept of maximal antipodal sets is the notion of antipodal points on a circle. For a circle S1 in the
Euclidean plane E2, the antipodal point q of a point p ∈ S1 is the point on S1 which is diametrically
opposite to p.

In Riemannian geometry, a geodesic in a Riemannian manifold M is a curve which yields locally the
shortest distance between any two nearby points. Since a closed geodesic in a Riemannian manifold M is
isometric to a planar circle, antipodal points can be defined for every closed geodesic in M , i.e., a point
q in a closed geodesic is called an antipodal point of another point p on the closed geodesic if the distance
d(p, q) between p and q on the two arcs connecting p and q are equal. For simplicity, a closed geodesic in
a Riemannian manifold is also called a circle in this article.

A subset S of a Riemannian manifold M is said to be an antipodal set if any two points in S are
antipodal on some circle of M . An antipodal set in a connected Riemannian manifold M is called a
maximal antipodal set if it doesn’t lie in any antipodal set as a proper subset. The supremum of the
cardinality of all maximal antipodal set of M is called the two-number of M , denote by #2M . If an
antipodal set S of M satisfies #S = #2M , then S is called a great antipodal set or a 2-set.

If a Riemannian manifold M contains no closed geodesics, we put #2M = 0. On the other hand, for
any compact Riemannian manifold M we have

#2M ≥ 2,(1.1)

since every compact connected Riemannian manifold contains at least one close geodesic (see [59]).
Clearly, inequality (1.1) is sharp, because #2S

n = 2 for every standard n-sphere Sn. A clear proof
of the finiteness of the 2-number for compact connect Riemannian manifolds was given by M. S. Tanaka
and H. Tasaki [93].
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2. (M+,M−)-theory for compact symmetric spaces

2.1. E. Cartan’s classification of irreducible compact symmetric spaces. In 1926, Èlie Cartan
achieved his classification of symmetric spaces by reducing the problem to the classification of simple Lie
algebras over real field R, a problem which Cartan himself solved earlier in 1914.

È. Cartan proved that simply-connected irreducible symmetric spaces of compact type consist of the
following four families:

(1) Classical simple Lie groups SO(n), SU(n), Sp(n).

(2) Exceptional simple Lie groups E6, E7, E8, F4, G2.

(3) Eight classes of classical symmetric spaces AI(n), AII(n), AIII(p, q), BDI(p, q), BDII(n),
DIII(n), CI(p), CII(p, q) corresponding to the classical groups SO(n), SU(n), Sp(n).

(4) Twelve exceptional symmetric spaces EI,EII,EIII, EIV,EV,EV I,EV II,EV III, EIX,
FI, FII and GI corresponding to the exceptional simple groups E6, E7, E8, F4, G2.

Since the discovery by É Cartan, symmetric spaces, a distinguished class of Riemannian manifolds,
attracted the attention of numerous mathematicians from various fields such as differential geometry,
algebraic topology, representation theory and harmonic analysis.

2.2. (M+,M−)-theory. A geometric new approach to compact symmetric spaces, the (M+,M−)-theory,
was developed by the author and T. Nagano during the 1970–1980s (see [19, 24, 25, 26, 27, 28]). This
theory was also known today as the Chen–Nagano theory in some literatures (see, e.g., [90, 91]).

The fundamental principle of this theory is that a pair of a polar and the corresponding meridian
determines a compact Riemannian symmetric space. One of advantages of this theory is that it is useful
for inductive arguments on polars or meridians.

Assume that o is a point of a compact symmetric space, say M = G/K. A connected component of
the fixed point set F (so,M)∖ {o} of the symmetry so at o is called a polar of o. We denote it by M+ or
M+(p) if M+ contains a point p.

The following propositions from [26] is quite useful (also [19, page 15]).

Proposition 2.1. Let M = G/K be a compact symmetric space. Then, for each antipodal point p of
o ∈M , the isotropy subgroup K at o acts transitively on the polarM+(p). Further, we have K(p) =M+(p)
and K(p) is connected. Hence, M+(p) = K/Kp, where Kp = {k ∈ K : k(p) = p}.

If a polar consists of a single point, then it is called a pole.

Proposition 2.2. Under the hypothesis of Proposition 2.1, the normal space to M+(p) at p ∈ M is the
tangent space of a connected complete totally geodesic submanifold M−(p). Thus we have

dimM+(p) + dimM−(p) = dimM.(2.1)

We call theM−(p) the meridian of o at p. For meridians, we have

Proposition 2.3. For each antipodal point p of o in a compact symmetric space M , we have

(1) rk(M−(p)) = rk(M) and
(2) M−(p) is a connected component of the fixed point set F (sp ◦ so,M) of sp ◦ so through p.

For a compact symmetric space M , polars and meridians of M are totally geodesic submanifolds; in
fact, they are compact symmetric spaces as well. Polars and meridians have been determined for every
compact connected irreducible Riemannian symmetric space (see [19, 28, 63, 64]).

One of the most important properties of polars and meridians is that M is determined globally by any
pair of (M+(p),M−(p)).

Besides polars and meridians of symmetric spaces of compact type, there exist another important
totally geodesic submanifolds called centrosomes which are defined as follows.
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Definition 2.4. Let o be a point of a compact connected Riemannian symmetric space M . If p is a pole
of o ∈ M , then the centrosome C(o, p) of {o, p} is the set consisting of the midpoints of all geodesics in
M joining o and p. A connected component of a centrosome is called a centriole.

Remark 2.5. P. Quast described in [68] all centrioles in irreducible simply-connected compact symmetric
spaces of compact type in terms of the root system of the ambient space. He also investigated geometric
properties of centrioles in [68].

A connected component of the centrosome C(o, p) is a totally geodesic submanifold ofM . Centrosomes
play some important roles in topology as well. For example, centrosomes were used by J. M. Burns to
compute homotopy of compact symmetric spaces in [17].

The following result from [28] characterizes poles in compact symmetric spaces (see also [20]).

Proposition 2.6. The following six conditions are equivalent to each other for two distinct points o, p
of a connected compact symmetric space M = GM/KG.

(i) p is a pole of o ∈M ;

(ii) sp = so;

(iii) {p} is a polar of o ∈M ;

(iv) there is a double covering totally geodesic immersion π = π{o,p} :M →M ′′ with π(p) = π(o);

(v) p is a point in the orbit F (σ,GM )(o) of the group F (σ,GM ) through o, where σ = ad(so);

(vi) the isotropy subgroup of SGM at p is that, SKG (of SGM at o), where SGM is the group
generated by GM and the symmetries; SGM/GM is a group of order ≤ 2.

For compact symmetric spaces, the author and T. Nagano proved the following result.

Proposition 2.7. [28] For any compact symmetric space M , the two-number #2M is equal to the
maximal possible cardinality #(A2M) of a subset A2M of M such that the point symmetry sx fixes
every point of A2M for every x ∈ A2M .

Proposition 2.7 can be regarded as an alternative definition of 2-number for symmetric spaces of
compact type.

Remark 2.8. T. Nagano and M. Sumi [65] proved that the root system R(M−) of a meridian M− ̸=M
is obtained from the Dynkin diagram of the root system R(M) of the compact symmetric space M .
Furthermore, they have determined in [65] all maximal totally geodesic spheres in SU(n) by means of
the (M+,M−)-theory.

3. Descriptions of great antipodal sets

In 1988, maximal antipodal sets of compact symmetric spaces were determined and used by the author
and T. Nagano in [28] for determining 2-numbers of irreducible compact symmetries and also for simple
Lie groups. In addition, they explicitly described antipodal sets in many compact Riemannian symmetric
spaces, but did not mention maximal antipodal sets for oriented real Grassmannian manifolds in [28].

On the other hand, there are quite many works done in recent years related to great antipodal sets. In
particular, many authors have provided detailed descriptions of great antipodal sets for many symmetric
spaces of compact type. In this section, we will present some of their works in this respect.

3.1. Great antipodal sets of classical Lie groups. In [96], M. S. Tanaka and H. Tasaki provided an
explicit classification of maximal antipodal subgroups of compact classical Lie groups and of their factors
by cyclic central subgroups. Their constructions of these subgroups are based on D[4], i.e., the dihedral
group of order 8 or the automorphism group of a square in the plane. Also, maximum cardinalities of
arbitrary antipodal sets in these compact Lie groups and factors are also calculated by them.

In [98], M. S. Takano, H. Tasaki and O. Yasukura provided the classification of maximal antipodal
subgroups of compact exceptional Lie group G2 and compact symmetric space GI = G2/SO(4) an
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explicit description of them by regarding as the automorphism group of the octonions O. They also
presented in [98] the classification of maximal antipodal sets of GI. Furthermore, they pointed out a

relation between maximal antipodal sets of and those of the oriented Grassmannian manifold G̃3(R7) by
using the identification of with the set of associative 3-dimensional subspaces in Im(O), which is a totally

geodesic submanifold of G̃3(R7).

3.2. Great antipodal sets of exceptional Lie groups and exceptional symmetric spaces. M.
S. Tanaka, H. Tasaki and O. Yasukura [99] explicitly described maximal antipodal sets of compact
symmetric spaces related to G2 by realizing it as the automorphism group of the octonions O. Applying
their explicit descriptions, they provided a close relation between maximal antipodal sets of the associative
Grassmannian of the octonions and the Fano plane.

In [81], Y. Sasaki provided an explicit classification of congruent classes of maximal antipodal sets
of F4 by using Jordan algebra H3(O). Moreover, he explicitly classified congruent classes of maximal
antipodal sets of FI.

Y. Sasaki classified in [81] congruent classes of maximal antipodal sets of the exceptional Lie groupE6

and compact symmetric spaces of type EI,EII,EIII, EIV related to E6 . Moreover, he gave realizations
of these compact symmetric spaces by using some subalgebras of the complex exceptional Jordan algebra.
In this realization, he explicitly described congruent classes of maximal antipodal sets of these compact
symmetric spaces.

3.3. Great antipodal sets of symmetric spaces of compact type. In [89], H. Tasaki described

antipodal sets in oriented real Grassmannian manifolds, G̃k(Rn). For a set X, the sets

Pk(X) = {α ⊂ X : #α = k}

are defined. The sets Pk(n) = Pk(1, . . . , n) were used to classify maximal antipodal sets of G̃k(Rn) for
each k ≤ 4. Furthermore, some arguments using for k ≤ 4 are generalized to construct some maximal
antipodal subsets for higher k. In another article [91], H. Tasaki shown that great antipodal sets of

G̃5(Rn) are unique up to isometries of G̃5(Rn) for n ≥ 87.
In [97], M. S. Tanaka and H. Tasaki classified and explicitly described maximal antipodal sets of

some compact classical symmetric spaces and those of their quotient spaces by making use of suitable
embeddings of these symmetric spaces into certain compact classical Lie groups. They also provided
the cardinalities of maximal antipodal sets and they determined the maximum of the cardinalities and
maximal antipodal sets whose cardinalities attain the maximum.

Very recently, J. Yu provided in [106] explicit classification of maximal antipodal sets in any irreducible
compact symmetric space except for spin and half spin groups, and some quotient symmetric spaces
associated to them.

3.4. Expansion of antipodal sets and homogeneous antipodal sets. Y. Sasaki [78] introduced the
notion of connectedness of antipodal sets. Using connectedness, he defined a subgroup GW of the isometry
group of a compact symmetric space M . He also constructed a method to build a bigger antipodal set
from a given antipodal set via the subgroup GW .

An antipodal set A ⊂M is called homogeneous if there exists a subgroup of the isometry group of M
acting on A transitively. In [78], Y. Sasaki proved that the connectedness is a sufficient condition that a
maximal antipodal set is homogeneous.

Remark 3.1. For further results on maximal antipodal sets of compact symmetric spaces, we refer to
[12, 56, 78, 79, 102, 104].

4. Links between two-numbers and topology

Two-numbers link closely with topology. In this section, we provide several results in this respect.
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4.1. Two-numbers and Euler numbers. In [28], the author and T. Nagano proved the following very
simple link between 2-number and Euler number.

Theorem 4.1. For any compact symmetric space M , we have

#2M ≥ χ(M),(4.1)

where χ(M) denotes the Euler number of M .

The proof of this theorem was based on the (M+,M−)-theory in conjunction with a result of H. Hopf
on fixed point sets and a result of Hopf and H. Samelson in [42].

For any compact Hermitian symmetric space of semisimple type, the author and Nagano proved the
following.

Theorem 4.2. [28] For any compact hermitian symmetric space M of semi-simple type, we have

#2M = χ(M) = 1 +
∑

#2M+.(4.2)

The proof of this theorem based heavily on the (M+,M−)-theory as well as the Lefschetz fixed point
theorem in the version of M. F. Atiyah and I. M. Singer [6].

The following result is an immediate consequence of Theorem 4.2.

Corollary 4.3. For every complete totally geodesic hermitian subspace B of a semi-simple hermitian
symmetric space M , we have χ(M) ≥ χ(B).

4.2. Two-numbers and covering maps. The author and T. Nagano discovered in [28] the following
links between 2-numbers and covering maps for compact symmetric spaces.

For double coverings we have

Theorem 4.4. If M is a double covering of M ′′, then #2M ≤ 2#2(M
′′).

Remark 4.5. The inequality in Theorem 4.4 is sharp, because the equality case holds for the group
manifold M = SO(2m) with m > 2.

For k-fold coverings with odd k, we have

Theorem 4.6. Let ϕ : M̃ → M is a k-fold covering between two compact symmetric spaces. Then

#2M̃ = #2(M) whenever k is odd.

4.3. A link between two-number and projective rank in algebraic geometry. A. Fauntleroy [35]
defined projective rank, denoted by Pr(M), of a compact Hermitian symmetric space M as the maximal
complex dimension of totally geodesic complex projective spaces of M .

C. U. Sánchez and A. Guinta [77] proved the following link between the two-number and the projective
rank for irreducible Hermitian symmetric spaces of compact type.

Theorem 4.7. Pr(M) ·rk(M) ≤ #2(M) for any irreducible Hermitian symmetric space of compact type.

4.4. Holomorphic two-number of compact hermitian symmetric space. C. U. Sánchez defined
in [76] the notion of holomorphic two-number, #H

2 (M), for a compact connected Hermitian manifold M
as the maximal possible cardinality of a subset A2 such that for every pair of points x and y of A2, there
exists a totally geodesic complex curve of genus 0 in M on which x and y are antipodal to each other.

C. U. Sánchez proved the following.

Theorem 4.8. [76] #H
2 M = #2(M) for every compact hermitian symmetric space.

By combining Theorem 4.8 with our equality #2M = χ(M) from Theorem 7.2, one obtains the
following.

Corollary 4.9. [76] #H
2 (M) = χ(M) for every compact hermitian symmetric space of semi-simple type.
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4.5. Symmetric R-spaces. A R-space (or a real flag manifold) is an orbit of the isotropy representation
of a symmetric space G/K of compact type, where G is a connected semisimple Lie group. The notion
of a symmetric R-spaces was introduced independent by T. Nagano [62] and M. Takeuchi [85] in 1965.
By definition symmetric R-spaces are compact symmetric spaces which are at the same time R-spaces.
In fact, symmetric R-spaces admit a transitive action of a centre-free non-compact semisimple Lie group
and the corresponding stabilizer of a point is a certain maximal parabolic subgroup.

A symmetric space Mof compact type is said to have a cubic lattice if a maximal torus is isometric to
the quotient of Er by a lattice of Er generated by an orthogonal basis of the same length. O. Loos [57]
gave another intrinsic characterization of symmetric R-spaces among all compact symmetric spaces with
the property that the unit lattice of the maximal torus of the compact symmetric space (with respect to a
canonical metric) is a cubic lattice. Loos’ proof was based on the correspondence between the symmetric
R-spaces and compact Jordan triple systems.

S. Kobayashi and T. Nagano classified symmetric R-spaces in [48]. The class of symmetric R-spaces
consists of the following seven families:

(a) All hermitian symmetric spaces of compact type

(b) Grassmann manifolds O(p+ q)/O(p)×O(q), Sp(p+ q)/Sp(p)× Sp(q)

(c) The classical groups SO(m), U(m), Sp(m),

(d) U(2m)/Sp(m), U(m)/O(m),

(e) (SO(p+ 1)× SO(q + 1))/S(O(p)×O(q)), where S(O(p)×O(q)) is the subgroup of
SO(p+ 1)× SO(q + 1) consisting of matrices of the form:

ϵ 0
0 A

ϵ 0
0 B

 , ϵ = ±1, A ∈ O(p), B ∈ O(q),

(f) Cayley projective plane FII = OP 2, and

(g) The three exceptional spaces EIII = E6/Spin(10)× SO(2), EV II = E7/E6 × SO(2),
and EIV = E6/F4.

R. Bott [15] used symmetric R-spaces to prove his famous periodicity theorem for the stable homotopy
of classical Lie groups.

Bott’s original results may be succinctly summarized as

Theorem 4.10. [16] The homotopy groups of the classical groups are periodic:

πi(U) = πi+2(U), πi(O) = πi+4(Sp), πi(Sp) = πi+4(O)

for i = 0, 1, · · · , where U is the direct limit defined by U = ∪∞
k=1U(k) and similarly for O and Sp.

Remark 4.11. The second and third of these isomorphisms given in Theorem 4.8 imply the following
8-fold periodicity: πi(O) = πi+8(O), πi(Sp) = πi+8(Sp), i = 0, 1, · · · .

Also, M. S. Tanaka and H. Tasaki proved in 2013 the following

Theorem 4.12. [93] Let M be a symmetric R-space. Then

(A) Every antipodal set is contained in a great antipodal set.
(B) Any two great antipodal sets are congruent, where two subsets are congruent if they are

transformed to each other by an element of the identity component of the isometry group.

Remark 4.13. Tanaka and Tasaki [93] also proved that there exists an antipodal set of the adjoint group
of SU(4) which does not satisfy condition (A) of Theorem 4.12. Notice that the adjoint group of SU(4)
is a compact symmetric space, but not one of symmetric R-spaces.
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4.6. Intrinsically and extrinsically reflective submanifolds. A connected componentN of the fixed
point set of an involutive isometry σ of a Riemannian manifold M is called a reflective submanifold. This
isometry σ is called the reflection of M through N . Both polars and meridians of a compact symmetric
spaces are reflective submanifolds.

A totally geodesic submanifoldM ⊂ M̃ of a submanifold M̃ ⊂ Em of a Euclidean m-space Em is called

extrinsically reflective, if M is a connected component of the intersection of M̃ with the fixed set of an

involutive isometry of Em that leaves M̃ invariant.
A connected submanifold P ⊂ Em of Em is called an extrinsically symmetric space if for all x ∈ P

the submanifold P is invariant under the reflections ρx ∈ Isom(Em) through the affine normal space of
x+ T⊥

x (P ) of P at the point x, where T⊥
x (P ) denotes the normal space of M in Em at x.

In [34], J.-H. Eschenburg, P. Quast and M. S. Tanaka proved the following.

Proposition 4.14. Every extrinsically reflective submanifold M ⊂ P of an extrinsically symmetric space
P ⊂ Em is extrinsically symmetric in Em.

Proposition 4.15. Any meridian P− of a compact extrinsically symmetric space P ⊂ Em is itself
extrinsically symmetric in Em.

Proposition 4.16. Every reflective submanifold of a compact extrinsically symmetric space is actually
extrinsically reflective, and thus extrinsically symmetric. In other words, any reflective submanifold of a
symmetric R-space is a symmetric R-space.

A connected submanifold S of Riemannian manifold M is called (geodetically) convex if any shortest
geodesic segment in S is still shortest in M .

In 2012, P. Quast and M. S. Tanaka proved the following.

Theorem 4.17. [69] Every reflective submanifold of a symmetric R-space is convex.

4.7. Links between two-numbers and homology. Analogous to Theorem 4.2, M. Takeuchi proved
in [87] the following.

Theorem 4.18. [87] For any compact hermitian symmetric space M of semi-simple type, we have

#2M = χ(M) = 1 +
∑

#2M+.(4.3)

The i-th Betti number of a manifold M with coefficients in Z2 is the rank of the i-th homology group
Hi(M,Z2). For any symmetric R-space, M. Takeuchi also proved the following.

Theorem 4.19. [87] For any symmetric R-space M , we have

#2M =
∑
i≥0

bi(M,Z2),(4.4)

where bi(M,Z2) is the i-th Betti number of M with coefficients in Z2.

M. Takeuchi proved this theorem by applying Theorem 4.18 and a result of Chen–Nagano from [28]
in conjunction with an earlier result of Takeuchi in [85].

5. Antipodal sets and Borsuk-Ulam’s theorem

The following result in algebraic topology is well-known.

The Borsuk–Ulam Antipodal Theorem. [14] Every continuous function from an n-sphere Sn into
the Euclidean k-space Ek with k ≤ n maps some pair of antipodal points to the same point.

Obviously, Borsuk-Ulam’s theorem fails for k > n, because Sn can be embedded in En+1. It is well-
known that Borsuk-Ulam’s theorem has numerous applications. For instance, H. Steinlein provided in
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[83] a list of 457 publications involving various generalizations and/or applications of the Borsuk-Ulam
theorem.

A continuous function f : M → R of a compact symmetric space M = G/K is called isotropic if it is
invariant under the action of the isotropic subgroup K.

In [22], the author proved some Borsuk-Ulam’s type theorems involving maximal antipodal sets of
compact symmetric spaces as follows.

Theorem 5.1. Let f : M → R be an isotropic continuous function from a compact symmetric space.
Then f maps a great antipodal set of M to the same point in R, whenever M is one of the following
spaces: Spheres; the projective spaces FPn (F = R,C,H); the Cayley plane FII; the exceptional spaces
EIV ;EIV ∗;GI; and the exceptional Lie group G2. Hence, f : M → R maps a great antipodal set with
#2M elements to the same point in R.

The following example illustrates that the isotropic condition on f in Theorem 5.1 is necessary.

Example 5.2. Let RP 2 denote the real projective plane of curvature one. Then there exists a canonical
double covering map π : S2(1) → RP 2. Assume that S2(1) is the unit sphere in E3 centered at the origin

of E3. For each continuous function f : RP 2 → R, the lift f̂ : S2(1) → R of f is an even function via the

double covering π, so that f̂(−x) = f̂(x) for any x = (x, y, z) ∈ S2(1).
Conversely, for any continuous even function h : S2(1) → R of S2(1), h induces a continuous function

ȟ : RP 2 → R of RP 2. Let h = (x − y)2. Then h induces a function ȟ : RP 2 → R which does not map
any maximal antipodal set of RP 2 to the same point in R.

Every compact symmetric spacesM in the list of Theorem 5.1 admits only a polar for o ∈M . Now, let
us assume that M is a compact symmetric space with multiple polars, said M1

+,M
2
+, . . . ,M

i
+ for o ∈M .

In this case, let M̂+ denote a polar of o ∈ M which has the maximal 2-number among all polars of o.
For such compact symmetric spaces, we have the following result.

Theorem 5.3. [22] Let f : M → R be an isotropic continuous function of a compact symmetric space

M . If M admits more than one polar, then f maps an antipodal set of M consisting of 1+#2M̂+ points
of M to the same point in R.

In particular, we have the following.

Theorem 5.4. [22] If f : E8 → R is an isotropic continuous function, then f maps an antipodal set of
E8 with 392 elements to the same point in R.

Theorem 5.5. [22] If f : FI → R is an isotropic continuous function of FI, then f maps an antipodal
set of FI with 24 elements to the same point in R.

6. Two-rank of Borel and Serre

The 2-rank of a compact Lie group G was introduced by A. Borel and J.-P. Serre [13]. The 2-rank of
G, denoted by r2G, is the maximal possible rank of the elementary 2-subgroup of G.

Borel and Serre [13] proved the following:

(a) rk(G) ≤ r2(G) ≤ 2rk(G) and

(b) G has 2-torsion if rk(G) < r2(G),

where rk(G) denotes the ordinary rank of G.

In [13], Borel and Serre were able to determine the 2-rank of simply-connected simple Lie groups
SO(n), Sp(n), U(n), G2 and F4. In addition, they proved that the exceptional Lie groups G2, F4 and E8

have 2-torsion. On the other hand, they pointed out in [13, page 139] that they were unable to determine
the 2-rank for the exceptional simple Lie groups E6 and E7.
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After A. Borel and J.-P. Serre’s paper, 2-ranks have been investigated by many mathematicians. For
instance, it was shown that the 2-ranks have some links with commutative algebra. Here, we provide two
of such links.

(i) Assume that F is either a field or the rational integer ring Z. Let A =
∑

i≥0Ai be a graded

commutative F -algebra in sense of J. Milnor and J. Moore [61]. If A is connected, then it admits a
unique augmentation ε : A→ F .

Put Ā = Ker ε. The Ā is called the augmentation ideal of A. A sequence of elements {x1, . . . , xn ∈ Ā}
is said to be a simple system of generators if {xϵ11 · · ·xϵnn : ϵi = 0 or 1} is a module base of A. For a
compact connected Lie group G, let us denote by s(G) the number of generators of a simple system of
the Z2-cohomology H∗(G,Z2) of G.

In [49], A. Kono proved the following.

Theorem 6.1. [49] If G is a connected compact Lie group, then the following three conditions are
equivalent:

(1) s(G) ≤ r2G;

(2) s(G) = r2G;

(3) H∗(G,Z2) is generated by universally transgressive elements.

To prove Theorem 6.1, A. Kono applied P. May’s spectral sequence [60], S. Eilenberg and J. C. Moore’s
spectral sequence [33] and also D. Quillen’s result from [72].

In [49], Kano also described some properties of compact Lie groups satisfying condition (3) in Theorem
6.1 and provided some applications.

(ii) The Krull dimension of a ring R is the supremum of the number of strict inclusions in a chain of
prime ideals, i.e., we say that a strict chain of inclusions of prime ideals of the form:

p0 ⊊ p1 ⊊ · · · ⊊ pn

is of length n; i.e., it is counting the number of strict inclusions. Given a prime ideal p ⊂ R, the height
of p is defined to be the supremum of the set

{n ∈ N : p is the supremum of a strict chain of length n},

and the Krull dimension is the supremum of the heights of all of its primes.

Let G be a compact Lie group. We put H∗
G = H∗(BG;Z2), where BG denotes the classifying space

for G. Let N∗
G ⊂ H∗

G be the ideal of nilpotent elements. Then H∗
G/N

∗
G = H#

G is a finitely generated
commutative algebra.

In [72], D. Quillen investigated the relationship between the finitely generated commutative algebra

H#
G and the structure of the Lie group G. He proved that the Krull dimension ofH#

G is equal to the 2-rank
of G (under some suitable assumptions). Quillen proved the result by calculating the mod 2 cohomology
ring of extra special 2-groups. Quillen’s result gave rise to an affirmative answer to a conjecture of M. F.
Atiyah posed in [3], and a conjecture of R. G. Swan given in [84].

7. Applications of maximal antipodal sets to Borel-Serre’s problem

If G is a connected compact Lie group, then by assigning sx(y) = xy−1x to every point x ∈ G, we
have s2x = idG to each point x. Thus, G is a compact symmetric space with respect to a bi-invariant
Riemannian metric.
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7.1. Links between two-numbers and 2-ranks. The author and Nagano proved the following link
between the 2-rank and the two-number of a connected compact Lie group.

Theorem 7.1. [27] Let G be a connected compact Lie group. Then we have

(7.1) #2G = 2r2G.

For products of two compact Lie groups, we have the following result from [28, Lemma 1.7].

Theorem 7.2. [27] Let G1 and G2 be connected compact Lie groups. Then

(7.2) #2(G1 ×G2) = 2r2G1+r2G2 .

7.2. 2-ranks of classical groups. Applying Theorems 7.1, Theorem 7.2 and (M+,M−)-theory, the
author and Nagano were able to determine the 2-ranks of all compact connected simple Lie groups in
[28]. Therefore, we have settled the problem of Borel-Serre for the determination of 2-ranks of all compact
connected simple Lie groups.

For classical groups we have:

Theorem 7.3. Let U(n)/Zµ be the quotient group of the unitary group U(n) by the cyclic normal
subgroup Zµ of order µ. Then we have

(7.3) r2(U(n)/Zµ) =

{
n+ 1 if µ is even and n = 2 or 4;

n otherwise.

Theorem 7.4. For SU(n)/Zµ, we have

(7.4) r2(SU(n)/Zµ) =


n+ 1 for (n, µ) = (4, 2);

n for (n, µ) = (2, 2) or (4, 4);

n− 1 for the other cases.

Theorem 7.5. One has r2(SO(n)) = n− 1 and, for SO(n)∗, we have

(7.5) r2(SO(n)∗) =

{
4 for n = 4;

n− 2 for n even > 4.

Theorem 7.6. Let O(n)∗ = O(n)/{±1}. We have
(a) r2(O(n)) = n;
(b) r2(O(n)∗) is n if n is 2 or 4, while it is n− 1 otherwise.

Theorem 7.7. One has r2(Sp(n)) = n, and, for Sp(n)∗, we have

(7.6) r2(Sp(n)
∗) =

{
n+ 2 for n = 2 or 4

n+ 1 otherwise.

Thus we also have

(7.7) r2(Sp(n)
∗) = r2(U(n)/Z2) + 1

for every n.

7.3. 2-ranks of spinors, semi-spinors and Pin(n). For Spin(n) we have the following two results.

Theorem 7.8. We have

r2(Spin(n)) =

{
r + 1 if n ≡ −1, 0 or 1 (mod 8)

r otherwise,

where r is the rank of Spin(n), r = [n2 ].
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Theorem 7.9. (PERIODICITY) For n ≥ 0, One has

r2(Spin(n+ 8)) = r2(Spin(n)) + 4

Pin(n) was discovered by M. F. Atiyah, R. Bott and A. Shapiro while they studied Clifford modules
in [5]. For the group Pin(n) we have

Theorem 7.10. For Pin(n) with n ≥ 0, one has

r2(Pin(n)) = r2(Spin(n+ 1)).

For the semi-spinor group SO(4m)# = Spin(4m)/{1, e((4m))}, we have:

Theorem 7.11. We have

r2(SO(4m)#) =


3 if m = 1

6 if m = 2,

r + 1 if m is even > 2,

r if m is odd > 1,

where r = 2m is the rank of SO(4m)#.

Remark 7.12. The 2-rank of Spin(16) and of SO(16)# were obtained in [1] independently by J. F.
Adams. His method of proof was completely different from ours given in [28].

7.4. 2-ranks of exceptional groups. For exceptional Lie groups we have the following.

Theorem 7.13. One has r2E
∗
6 = 6.

Theorem 7.14. One has

r2G2 = 3, r2F4 = 5, r2E6 = 6, r2E7 = 7, r2E8 = 9

for simply-connected exceptional simple Lie groups G2, F4, E6, E7 and E8.

Remark 7.15. r2G2 = 3 and r2F4 = 5 were proved by Borel and Serre in [13].

8. Antipodal sets and real forms

Let ψ be an involutive anti-holomorphic isometry of a Hermitian symmetric space M of compact type
so that we have ψ∗J = −Jψ∗, where J is the almost complex structure of M . Then the fixed point set

F (ψ,M) = {p ∈M : ψ(p) = p}
is called a real form of M which is a connected totally geodesic Lagrangian submanifold M . The classi-
fication of real forms of an irreducible Hermitian symmetric space of compact type have been obtained
by D. S. P Leung [55] and M. Takeuchi [86].

M. S. Tanaka and H. Tasaki proved in [94] that a real form of a Hermitian symmetric space M of
compact type is a product of real forms of irreducible factors of M and diagonal real forms determined
from irreducible factors of M .

The following result implies that any two real forms in any Hermitian symmetric space of compact
type have a non-empty intersection.

Proposition 8.1. [29, 100]. LetM be a compact Kähler manifold whose holomorphic sectional curvatures
are positive. If L1 and L2 are totally geodesic compact Lagrangian submanifolds of M , then L1 ∩L2 ̸= ∅.

The following theorem of M. Takeuchi characterized real forms as symmetric R-spaces.

Theorem 8.2. [86] Every real form of a Hermitian symmetric space of compact type is a symmetric
R-space. Conversely, every symmetric R-space is realized as a real form of a Hermitian symmetric space
of compact type. The correspondence is one-to-one.
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M. S. Tanaka and H. Tasaki [92] studied the intersection of two real forms in a Hermitian symmetric
space of compact type. They proved the following four results.

Theorem 8.3. [92] Let M be a Hermitian symmetric space of compact type. If two real forms L1 and
L2 of M intersect transversally, then L1 ∩ L2 is an antipodal set of L1 and L2.

Theorem 8.4. [92] Let M be a Hermitian symmetric space of compact type and let L1, L2, L
′
1, L

′
2 be real

forms of M such that L1, L
′
1 are congruent and L2, L

′
2 are congruent. If L1, L2 intersect transversally

and if L′
1, L

′
2 intersect transversally, then #(L1 ∩ L2) = #(L′

1 ∩ L′
2).

Theorem 8.5. [92] Let L1, L2 be real forms of a Hermitian symmetric space of compact type whose
intersection is discrete. Then L1 ∩ L2 is an antipodal set in L1 and L2. Moreover, if L1 and L2 are
congruent, then L1 ∩ L2 is a great antipodal set. Thus #(L1 ∩ L2) = #2L1 = #2L2.

Theorem 8.6. [92] Let M be an irreducible Hermitian symmetric space of compact type and let L1, L2

be real forms of M with #2L1 ≤ #2L2 and we assume that L1 ∩ L2 is discrete. Then

(a) If M = G2m(C4m) (m ≥ 2), L1 is congruent to Gm(H2m), L2 is congruent to U(2m), and

#(L1 ∩ L2) = 2m <

(
2m

m

)
= #2L1 < 22m = #2L2.

(b) Otherwise, #(L1 ∩ L2) = #2L1(≤ #2L2).

Y.-G. Oh defined in [66] the notion of global tightness of Lagrangian submanifolds in a Hermitian
symmetric space; namely, a Lagrangian submanifold L of a Hermitian symmetric space M is called
globally tight if L satisfies

#(L ∩ g · L) = dimH∗(L,Z2)

for any isometry g of M such that L intersects g · L transversally.

H. Tasaki proved the following.

Theorem 8.7. [100] In the complex hyperquadric, the intersection of two real forms is an antipodal set
whose cardinality attains the smaller 2-number of the two real forms. In particular, every real form in
the complex hyperquadric is a globally tight Lagrangian submanifold.

8.1. Fixed point sets and holomorphic isometries. In [44], O. Ikawa, M. S. Tanaka and H. Tasaki
discovered a necessary and sufficient condition for the fixed point set of a holomorphic isometry of a
Hermitian symmetric space of compact type to be discrete. They also shown that the discrete fixed point
set is an antipodal set. Further, they derived a necessary and sufficient condition that the intersection
of two real forms in a Hermitian symmetric space of compact type is discrete. Moreover, they discussed
some relations between the intersection of two real forms and the fixed point set of a certain holomorphic
isometry by the use of the symmetric triads.

Remark 8.8. For further results on real forms, we refer to [43, 89, 90].

9. Application to Lagrangian Floer homology

Suppose that (M,ω) is a symplectic manifold, i.e., M is a manifold equipped with a closed nondegen-
erate 2-form ω. Let L be a Lagrangian submanifold in M . For a pair of closed Lagrangian submanifolds
(L0, L1) of M , one can define Lagrangian Floer homology HF (L0, L1 : Z2) with coefficient Z2 under
some appropriate topological conditions.

A. Floer [37] defined in 1988 the homology when π2(M,Li) = 0, i = 0, 1. He proved that it is
isomorphic to the singular homology group H∗(L0,Z2) of L0 in the case where L0 is Hamiltonian isotopic
to L1. As a result, Floer solved affirmatively the so called Arnold conjecture for Lagrangian intersections
in that case (see [2, 37]). Symplectic Floer homology is invariant under Hamiltonian isotropy of the
symplectomorphism. Denote by Hamilt(M,ω) the set of all Hamiltonian diffeomorphisms of M .
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In 1989, A. Givental [38] proposed the following conjecture that generalized the results of Floer and
himself.

Arnold-Givental Conjecture. Let (M,ω) be a symplectic manifold and ψ : M → M be an anti-
symplectic involution of M . Suppose that the fixed point set L = F (M,ψ) is compact and nonempty.
Then, for any ϕ ∈ Hamilt(M,ω) such that the Lagrangian submanifold L and its image ϕ(L) intersect
transversally, the inequality

#(L ∩ ϕ(L)) ≥ b(L,Z2)(9.1)

holds, where b(L,Z2) =
∑

i≥0 bi(L,Z2) is the total Betti number of L with Z2 coefficient.

In [45], H. Iriyeh, T. Sakai and H. Tasaki computed Lagrangian Floer homology HF (L0, L1;Z2) for
a pair of real forms (L0, L1) in a monotone Hermitian symmetric space M of compact type in the case
where L0 is not necessarily congruent to L1. In particular, they established a generalization of the
Arnold-Givental inequality (9.1) in the case where M is irreducible. As an application, H. Iriyeh, T.
Sakai and H. Tasaki established the following result.

Theorem 9.1. [45] Every totally geodesic Lagrangian sphere in the complex hyperquadric is globally
volume minimizing under Hamiltonian deformations.

10. Application to theories of designs and codes

The theory of designs is the part of combinatorial mathematics that deals with the existence, construc-
tion and properties of systems of finite sets whose arrangements satisfy generalized concepts of balance
and/or symmetry.

10.1. Codes and designs. Codes and designs on association schemes are important research themes in
combinatorics. In 1973, P. Delsarte [30] gave linear programming bounds for cardinalities of codes and
designs on commutative association schemes in terms of eigen-matrices.

After Delsarte’s work, the theory of designs on spheres was introduced in 1977 by P. Delsarte, J. M.
Goethals and J. J. Seide in [31] as an analogy of Delsarte theory. The main tool in their works is the
addition formula for polynomials; polynomials associated with metric or cometric association schemes,
or the Gegenbauer polynomials with spheres. As a result, Delsarte’s bounds were established in terms of
spherical Fourier transforms. For a survey on the studies of codes and designs on spheres, we refer to [9].

Compact symmetric spaces of rank one are natural and significant examples of the Delsarte spaces
or the polynomial spaces for continuous metric spaces. The theory of designs on rank one compact
symmetric spaces was also investigated by S. G. Hoggar [41] in details. E. Bannai and S. G. Hoggar also
studied on rank one compact symmetric spaces in [10].

For other compact symmetric spaces, codes, designs and Delsarte’s bounds have been studied by many
researchers. For examples, studied by C. Bachoc, R. Coulangeon and G. Nebe [8] and C. Bachoc, E.
Bannai and R. Coulangeon [7] on real Grassmannian manifolds; by A. Roy [73] on complex Grassmannian
manifolds; and by A. Roy and A. J. Scott [74] on unitary groups.

In [53], H. Kurihara and T. Okuda provided a definition of codes and designs on general compact
symmetric spaces. They also established in [53] a general formulation of Delsare’s bounds on compact
symmetric spaces.

10.2. Great antipodal sets and designs on complex Grassmannian manifolds. For compact
symmetric spaces of higher rank, H. Kurihara and T. Okuda [52] obtained a characterization of maximal
antipodal sets of complex Grassmannians in term of certain designs (more precisely, E ∪F-designs) with
the smallest cardinalities. In particular, Kurihara and Okuda’s main result in [52] implies the following.

Theorem 10.1. [52] A great antipodal set of a complex Grassmannian manifold is an E-design with the
smallest cardinality.
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10.3. Cubature formulas for great antipodal sets on complex Grassmannian manifolds. In
[67], H. Kurihara and T. Okuda established a formulation of Delsarte theory for finite subsets of compact
symmetric spaces. As its application, they proved that great antipodal subsets of complex Grassmannian
manifolds give rise to cubature formulas for certain functional spaces.

10.4. Great antipodal sets and designs on unitary groups. Put [n] = {1, 2, ..., n} and let 2[n]

denote the power set of [n]. Let Q be the n-ary Cartesian product of the two elements set {1,−1}. Then
the Hamming cube graph Qn of degree n is the graph with the vertex set Q and two vertices are adjacent
whenever they differ in precisely one coordinate.

In [51] H. Kurihara investigated a relation between great antipodal sets on unitary group U(n) and
design theory on U(n). In [51], he also established a beautiful relationship between a great antipodal set
on U(n) and a Hamming cube graph Qn.

10.5. Application to coding theory. Coding theory studies properties of codes and their respective
fitness for specific applications. The main purpose of codes is to be able to recover the original content
of a transmitted message by correcting errors that have entered the message during transmission. This
capability is useful in maintaining the integrity of computer networks, communication systems, compact
disk recording, etc.

A p-group H is called extra special if its center Z is cyclic of order p, and the quotient H/Z is a non-
trivial elementary abelian p-group. In 1989, J. A. Wood [105] investigated the equivalence between the
diagonal extra-special 2-group of spinor Spin(n) and the self-orthogonal linear binary codes of algebraic
coding theory. In Wood’s article [105], Theorem 7.8 and Theorem 7.9 were mentioned and used.

11. k-symmetric spaces, Γ-symmetric spaces, k-number and flag manifolds

11.1. k-symmetric spaces and Γ-symmetric spaces. Since the 1960s, generalizations of symmetric
spaces have been proposed in various directions. In 1967, A. J. Ledger [54] initiated the study of s-
manifolds. These are Riemannian manifolds M which admit at each point x ∈M a symmetry sx with x
as an isolated fixed point. A k-symmetric structure is called regular [50] if it satisfies

θx ◦ θy = θz ◦ θz, z = θx(y).(11.1)

If sx is of finite order k, a regular s-manifold is called a k-symmetric space (see [49]).

As a further generalization of Riemannian symmetric spaces, P. Lutz [58] introduced in 1981 Γ-
symmetric space, where Γ is a finite abelian group. These are manifolds M which admit the following
structure: To each point x ∈ M one assigns in a suitable way a group Γx isomorphic to Γ which acts
effectively on M with x as an isolated fixed point. If Γ is isomorphic to Z2, then a Γ-symmetric space is
just a Riemannian symmetric space.

Every complex flag manifold can be regarded as an R-space. Let U be a compact connected semisimple
centerless Lie group and let u be the Lie algebra of U . Then the complex flag manifold of U is the orbit
of the adjoint action of U on u. Take M = Ad(U)Y for Y ̸= 0 in U and let g = uC = u+ iu. Then there
exists a Cartan decomposition of the realization gR of g and one may consider M as the orbit of iY in iu
by the adjoint action of U .

11.2. Maximal antipodal sets and Γ-symmetric R-spaces. In 2020, P. Quast and T. Sakai [70]
extended the definition of antipodal sets of compact symmetric spaces naturally extends to Γ-symmetric
spaces as follows (see also [71]).

Definition 11.1. [71] Let Γ be a finite abelian group, and let µ = {µγ}γ∈Γ be a Γ-symmetric structure
on a manifold M . A subset A of the Γ-symmetric space (M,µ) is called antipodal if γx(y) = y for all
x, y ∈ A and for all γ ∈ Γ. An antipodal set A of (M,µ) is called maximal if A is not a proper subset of
another antipodal set of M . The supremum of the cardinalities of antipodal sets of (M,µ) is called the
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antipodal number denoted by #ΓM . An antipodal set A of (M,µ) is called great if the cardinality of A
is equal to #ΓM .

In [70], P. Quast and T. Sakai defined the induced natural Γ-symmetric structure on R-spaces. Further,
they determined the maximal antipodal sets of R-spaces with respect to the induced natural Γ-symmetric
structures. In particular, they shown that any two maximal antipodal sets of a R-space with respect to
an induced natural Γ-symmetric structures are conjugate.

11.3. A link between real flag manifolds and complex flag manifolds. In 1997, C. U. Sánchez
proved the following.

Proposition 11.2. [76] If M is a real flag manifold, then there exists a complex flag manifold MC
such that M is isometrically imbedded in MC. If M is a symmetric R-space, then MC is a hermitian
symmetric space and the isometric imbedding is totally geodesic. If M is already a complex flag manifold,
then MC =M .

Remark 11.3. H. Iriyeh, T. Sakai and H. Tasaki [46, 47] proved that the intersection of real flag manifolds
in the complex flag manifold consisting of sequences of complex subspaces in a complex vector space is
an antipodal set, which is a generalization of that in a Hermitian symmetric space of compact type.

11.4. k-number, index number and complex flag manifold. For a complex flag manifoldMC, there
exists a positive integer k0 = ko(MC) ≥ 2 such that, for each integer k ≥ k0, there exists a k-symmetric
structure [50] on MC, i.e., for each point x ∈MC there exists an isometry θx such that θkx = id with x as
an isolated fixed point.

Analogous to Proposition 2.7 for 2-number of compact symmetric spaces, C. U. Sánchez defined k-
number, denoted by #k(MC), of a complex flag manifold MC as the maximal possible cardinality of the
k-sets Ak ⊂ MC which satisfies the property that for each point x ∈ Ak the corresponding k-symmetry
at x fixes every point in Ak.

As an extension of Theorem 4.19 of Takeuchi, C. U. Sánchez proved the following.

Theorem 11.4. [75] For each complex flag manifold MC, we have #k(MC) = dimH∗(MC,Z2),

Applying Proposition 11.2, Sánchez [76] defined in 1997 the index number of a real flag manifold M ,
denoted by #IM , as the maximal possible cardinality of the p-sets ApM with p a prime number, in terms
of fixed points of symmetries of the complex flag manifolds restricted to the real one.

For index number of a real flag manifold, C. U. Sánchez obtained the following result in 1997.

Theorem 11.5. [76] Let M be a real flag manifold. Then #IM = b(M,Z2).

11.5. k-number and generalized flag manifolds. Let G be a compact connected semisimple Lie
group. Then the homogeneous spaces one obtains as orbits of G under the adjoint representation on
the Lie algebra of G are also called generalized flag manifolds. It is known that every generalized flag
manifold admits k-symmetric structure.

In a similar way, Sánchez [76] also proved the following.

Theorem 11.6. If M is a generalized flag manifold, then #k(M) = χ(M) for any k-symmetric structure
on M .

11.6. k-number and generalized flag manifolds. Let G be a compact connected semisimple Lie
group. Then the homogeneous spaces one obtains as orbits of G under the adjoint representation on
the Lie algebra of G are also called generalized flag manifolds. It is known that every generalized flag
manifold admits k-symmetric structure.

In a similar way, C. U. Sánchez also proved the following.
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Theorem 11.7. If M is a generalized flag manifold, then any of its k-symmetric structure on M satisfies
#k(M) = χ(M).

11.7. k-number and k-symmetric submanifolds. Let M ⊂ Em be submanifold of Em. If M satisfies

(a) For each x ∈ M , there is an isometry σx : Em → Em such that σk
x = idM , σx(x) = x, and

σx|T⊥
x M = identity on T⊥

x M ;

(b) σx(M) ⊂M ; and

(c) Let θx = σx|M . The collection {θx, x ∈ M} defines on M a Riemannian regular s-structure of
order k,

then M is called an extrinsic k-symmetric submanifold (see [36]).
C. U. Sánchez [75] proved the following result.

Theorem 11.8. If M ⊂ Em is an extrinsic k-symmetric submanifold, then #k(M) = b(M,Zp) for any
prime number p ≥ 2 which divides k.

11.8. Morse functions and great antipodal sets on G2/SO(4). In [82], Y. Sasaki constructed Z2-
perfect Morse functions of GI = G2/SO(4) whose set of all critical points is a great antipodal set of
GI. Consequently, he provided a reason why the 2-number #2(GI) matches the Betti-number of the
Z2-coefficient homology group of GI.

12. 2-number, index number and CW complex structure

The following conjecture was posed first time in author’s 1987 report [19].

Conjecture 1. For any a compact symmetric space M , #2M is equal to the smallest number of cells
that are needed for a CW complex structure on M .

Related to this conjecture, J. Berndt, S. Console and A. Fino proved the following.

Theorem 12.1. [11] The index number #IM is equal to the smallest number of cells that are needed for
a CW complex structure for each real flag manifold M .

In the proof of this theorem, the authors have applied the convexity theorems of M. F. Atiyah [4], V.
Guillemin and S. Sternberg’s result in [39] for symplectic manifolds with a hamiltonian torus action as well
as a generalization of J. J. Duistermaat’s result in [32] for fixed point set of antisymplectic involutions.

The next result was also proved by Berndt, Console and Fino in [11].

Theorem 12.2. The index number #IM of a real flag manifold M satisfies #IM = χ(M) (mod 2).

In [28], the author and T. Nagano made the following:

Conjecture 2. #2M = χ(M) (mod 2) holds for every irreducible compact symmetric space M .

It was known that the total Betti numbers of a simply-connected compact symmetric spaceM satisfies
b(M ;R) ≤ #2M (see [19, page 54]). Professor T. Nagano asked the following open problem.

Problem. b(M ;R) < #2M =⇒ M has 2-torsion?

As far as I know, this problem remains open till now.
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