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Abstract

The need to obtain objective values of the quality of distorted images with

respect to the original is fundamental in multimedia and image processing

applications. It is generally required that this value correlates well with the

human vision system (HVS). In spite of the properties and the general use

of the Mean Square Error (MSE) measurement, this has a poor correlation

with HSV, which has led to the development of methods such as Structural

Similarity (SSIM). This metric improves the correlation with respect to the

classic MSE and PSNR (Peal Signal to Noise Ratio). However, its behavior

depends on the values assigned to constants and in the windows size selected.

These values are usually assigned arbitrarily and there have been no studies

on how they affect the SSIM. In this work, we have analyzed empirically

the most appropriate values for the different constants used in the SSIM

equations. We have also analyzed the importance of window size in the

calculation of MSSIM, and propose a method for determining the window size

based on image complexity. Using the values selected and the window size

defined, the correlation between SSIM and DMOS is significantly improved
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by around 17% with respect to the values commonly used.

Keywords: Image quality assesment, structural similarity

1. Introduction and related work

The significant growth in the development and use of multimedia tech-

nology in a wide range of fields has led to a rapid expansion in its use. In

many of the applications their behavior depends on the quality of the input

images. Degradation in quality has a negative effect on user perception or on

the image processing algorithm that makes use of this to take measurements

and draw conclusions (see Fig. 1).This means that it is necessary to develop

methods that allow efficient evaluation of this quality.

Evaluating the signal received at the application destination (g) with re-

spect to the original signal (f ) can be carried out without knowing f (NR: no

reference. [1]), knowing some properties of the original signal (RR: reduced

reference. [2][3][4]), or knowing f completely (FR: Full reference.[5]).

In the last case, subjective evaluation and the corresponding Difference

Mean Opinion Score (DMOS) is the most accurate method to get close to the

HVS (Human Visual System), although it does have certain disadvantages;

mainly that it is slow, costly and cannot be used in real time. Objective eval-

uation, that is to say, the development of formulas which allow us to predict

the quality perceived by HVS, or its influence on the image processing algo-

rithms, are a widely sought solution. For many years, MSE has been used

as a measurement, in spite of the drawbacks associated with it [6], especially

its poor correlation with HVS. In the image processing for industrial and

robotics area, this connection has also been researched, and the drawbacks
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with classic metrics have been demonstrated in practical cases [7][8]. Re-

cently, measurements have been developed that are not based on measuring

the error, but instead evaluate structural similarity [9][10] (SSIM) and these

have shown a stronger correlation with HVS, and are currently used in a wide

range of multimedia applications. However, this method still has certain lim-

itations, which have led to the development of new measurements based on

the same method. In [11], an SSIM is presented in which the original param-

eter for evaluation of the structure (s) in the SSIM equation is substituted

by an s’ dependent on the edges. In [12] the authors analyze how perceived

quality depends on local characteristics such as edges, texture and flat ar-

eas. A metric is proposed which consists of evaluating the similarity between

edges and contrast. In [13] there is an analysis of the SSIM measurement’s

performance, comparing this with traditional approaches with realistic dis-

tortions, highlighting the need for a Perceptual weighting for distortions that

are critically dependent on viewing distance. In [14] an analysis to simplify

the calculation is performed. In [15] the authors propose a method based

on SSIM, where different areas (textures, edges and smoothed regions) are

extracted and the weight that each should have in the final measurements is

analyzed In [16] SSIM is improved by weighting the quality measurements

with visual importance. Other proposals analyze their use for range images

[17], or the improvement obtained through image definition [18].

In this paper, we analyze the influence of the constants on the calculation

of the SSIM and whether a better selection of these constants can offer some

improvements to SSIM. Another parameter that has not been studied in

sufficient detail is window size. In this paper, we study this parameter,
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Figure 1: General multimedia application diagram

showing how it can significantly alter the SSIM values. We later propose an

objective method that will allow us to define a concrete window size for each

image, thus eliminating the subjectivity with which this value is generally

selected.

The remainder of this paper is organized as follows. In section 2, there is

an introduction to SSIM, including an analysis of the incidence of constants

and windows size. In section 3, we present a method for determining win-

dow size (B) for MSSIM calculation. In section 4, an empirical analysis of

the constant values is performed, and we describe and compare the correla-

tion between the MSSIM values obtained through the determination method

proposed in B and the use of constants values, and finally, we draw our

conclusions at the end of the final section.

2. Structural Similarity (SSIM)

2.1. How structural similarity can be calculated

Structural similarity can be obtained by comparing local patterns of pixel

intensities that have been normalized for luminance and contrast. This mea-

surement is based on the fact that the structures of the objects in the scene

are independent of illumination, so the influence of illumination must be

isolated. Luminance (l), contrast (c) and structure (s) are independently
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measured in this method. The mean intensity of the distorted image (µg)

and the reference image (µf ) have to be calculated for a comparison of lu-

minance. Thus, if M and N are the width and height of image, the mean of

each one (replace i with f or g) can be measured as:

µi =
1

NM

M∑
x=1

N∑
y=1

i(x, y) (1)

The standard deviation of distorted image (σg) and reference image (σf )

is used as a measurement of the contrast of the signal. Thus, for each image

it can be calculated as:

σi =

√√√√ 1

NM − 1

M∑
x=1

N∑
y=1

i(x, y)− µi (2)

The measurements of the structure are based on the normalized signals

(e.g. i(x, y)−µi/σi) in such a way that both have a standard deviation of 1.

In this way we obtain:

l(f,g) =
2µfµg + C1

µ2
f + µ2

g + C1

: c(f,g) =
2σfσg + C2

σ2
f + σ2

y + C2

(3)

s(f,g) =
σfg + C3

σfσg + C3

(4)

If σfg is the covariance between the signals f and g, and Ci is included to

avoid instability in the measurements, SSIM can be calculated as follows:

SSIM(f, g) = (l(f, g))α(c(x, y))β(s(f, g))γ (5)

When the constants defined in [10] are used, as well as α = β = γ = 1,

then the following aproximation is used:
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SSIM(f, g) =
(2µfµg + C1)(2σfg + C2)

(µ2
f + µ2

g + C1)(σ2
f + σ2

g + C2)
(6)

The results from using this method are more useful if they are applied

locally instead of globally [10], so the preceding formulas, instead of being

applied over the complete image, are applied over windows of size BxB pixels

which are displaced pixel by pixel in the image (SSIMB). Thus, if T =(M

- 1)(N - 1), the value of MSSIM is calculated as the average of the values

obtained in each window:

MSSIMB(f, g) =
1

T

T∑
i=1

SSIMB
i (7)

2.2. SSIM variability

Although SSIM has proven to perform quite well, has good correlation

with HVS, and is quite widely used, there are some drawbacks with this

measurement. The most relevant of these is that the values obtained are very

dependent on certain of their parameters. Figure 2 shows three images that

are commonly used for image quality evaluation: lena, goldhill and couple.

In [9] (the original images and the distorted versions can be obtained in

http://www.cns.nyu.edu/s̃wang/ files/research/ quality index/ demo.html)

the following distortions are applied: 1) Impulsive Salt-Pepper Noise, 2)

Additive Gaussian Noise, 3) Multiplicative Speckle Noise, 4) Mean Shif,t 5)

Contrast Stretching, 6) Blurring and 7) JPEG Compression, to produce a

distorted image with MSE of 255, 125 and 81 over lena, goldhill and couple

respectively. We then show how distorted images with the same MSE have

different SSIM values, and how these values have a better correlation with

HVS.
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The constants C1, C2 and L are calculated as [10]:

C1 = K1L
2; C2 = K2L

2 : C3 = C2/2 (8)

generally using the values of K1=0,01, K2=0,03 and L=255 [10][16]. Table

1 shows the combination values used in this paper, while S5 is the set of

values normally used. The choice of these constants, introduced to avoid

instability when the denominators were too small, could have a considerable

effect on the performance of the system. Figure 3 shows the influence this

value has on MSSIM7, that is to say, using a window B=7, and with the

constants shown in Table 1. Thus for the most distorted image, and for the

distortions with greater visual incidence (D6 and D7), there are differences of

0.5 MSSIM points between using one set of constants or another (Fig. 3.a),

while these differences are of 0.3 and 0.2 in images with lesser distortions

(Fig. 3.b and 3.c). With the exception of the distortions with low incidence

on the SSIM value (D4 and D5), in the rest the effect of this parameter is

clearly appreciable.

Although there is no information available to analyze the correlation be-

tween these values and the DMOS, it is evident that this variability affects

the order of worst to best. For example, according to Fig. 3.a, for S1 we

would obtain (D7,D6,D2,D3,D1,D5,D4), while for S6 the order would be

(D2,D3,D6,D7,D1,D5,D4).

With respect to the window value B, if this information is provided, which

size of window (B) is used and why? In [9] and [11] B=8 is used, whereas

B=7 in [13] and they also define a range between 7 and 15 for 512x512

images as the correct choice. In [17][15] B=11 is used, and also in [9][16]
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Table 1: Constant Set S

K1 K2 C1 C2

S1 0,00004 0,00012 0,0001040 0,0009364

S2 0,0025 0,0075 0,406406 3,6576

S3 0,0050 0,015 1,625 14,630

S4 0,0075 0,022 3,657 32,918

S5 0,01 0,03 6,50 58,52

S6 0.02 0.06 26,01 234,09

although combined with a circular-symmetric Gaussian weighting function

for a better SSIM map visualization. The significance of B in the MSSIM

values obtained can be seen in Fig. 4, where constants are S1. For the

most relevant distortions for HVS, we can obtain differences of around 0.5

in the MSSIM for slightly distorted images (Fig. 4.c), and up to 0.7 for

more distorted images (Fig. 4.a) in the MSSIM obtained with different Bs.

Limiting the range of B to the most commonly used values, between 7 and 15,

significant variations are also produced (up to 0.2 points above the MSSIM

value obtained). This variability could modify the order that this metric

provides with respect to the distortions depending on the window size used.

Thus, in Fig. 4.a for B=3 we would obtain (D7,D6,D2,D3,D1,D5,D4), while

for B=31, this order would be (D7,D1,D2,D3,D6,D5,D4).

The variability in the MSSIM value obtained according to the S and

B values used could be unacceptable for some applications. Therefore an

analysis is necessary to determine which values are most appropriate, and

methods must be developed to determine the value of B with the aim of
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reducing the variability in the measurements and improving the correlation

with HVS.

3. B size definition

The choice of the most appropriate set of constants is done experimentally

analyzing the correlation obtained between the MSSIM values obtained and

the DMOS values from a collection of known data. Concerning the choice of

B value, analyzing different images and the results obtained through MSSIM

using different B values, one can intuitively appreciate a relationship between

the most appropriate B size and the complexity of the image. Therefore, if

Ψ is the complexity of the image, the objective would be to find the function

z, so that:

B = z(Ψ)/MSSIMB(f, g) ⇒ DMOS(f, g) (9)

Although there are more advanced methodologies in existence to determine

Ψ (see [19]), the entropy of the gray level histogram [20] is widely used. If n

is the number of gray levels and pi the frequency of gray level i in an image

f , this can be calculated as:

H(f) = −
n∑

i=0

pilog2pi (10)

However, this measurement does not take into account the spatial distribu-

tion of pixels, which intuitively is quite relevant for image complexity. It is

well know that a part of the complexity of an image comes from the collection

of edges that the image contains. Thus, instead of applying the entropy cal-

culation to the original image f , it is applied to the image after application

of a Sobel filter, and we thus obtain H ′(sobel(f)).
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In Fig. 5 we can see the H and H ′ values obtained for the set of 29 images

used in the next section. Although there is an apparent relationship between

H and H ′, H ′ clearly identifies more accurately the differences between im-

ages with a different complexity. This can be clearly seen in Fig. 6.a, which

shows the original images of carnival dolls and cemetery together with the

same images, converted to greyscale and after application of a Sobel filter

(we show inverted Sobel for better visualization). These images have a very

different level of complexity (there is a great deal of uniform background in

the first image), but they give a similar value of H, and so H’ is more ap-

propriate to highlight the difference. On the other hand, other images with

similar complexity (for example parrots and aeroplane in Fig. 6.b) produces

quite different H values, which are only correctly reflected using H ′.

z has been obtained empirically through the analysis of the relation be-

tween DMOS and SSIM for different B values, resulting in:

B = −22.77log(H ′) + 45.47 (11)

which is rounded to the higher natural number.

4. Experiments and Results

A classic study is to apply different types of distortions and then eval-

uate which measurements have a better correlation with the HVS. For the

evaluation of the MSSIMB results obtained for B connected with image

complexity and the empirical analysis of S the Live Image Quality Assess

Database Release 2 is used [21] (http://live.ece.utexas.edu/ research/ qual-

ity). This is the large collection of distorted images with subjective visual
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quality ratings available, used in the most recent studies on image quality

[14][16][15]. From the 29 images studied, different levels and types of distor-

tion are generated, giving 227 JP2k images, 233 JPEG, 174 with white noise

(WN) and 174 gaussian blur (GB) above the known values of DMOS, giving

a total of 982 images. The tools developed for this paper can be obtained at

http://muro1.alc.upv.es/ sp/ bsizedet.html). The correctness of the imple-

mentation is validated through the SSIM values (B = 8 and S0) obtained for

the distortions and images [9] presented in section 2.2.

The MSSIMB values were calculated for various values of B and S,

being B = z the value of B depending on entropy and on equation 11. We

analyzed the linear Pearson correlation coefficient (CC) that exists between

the MSSIMB values obtained [21] and the DMOS. The closer this is to -1,

the stronger the correlation between the values obtained, such as MSSIM

and the corresponding values of DMOS, and therefore, the MSSIM values

correspond better with the HVS (in the graphics, CC is inverted for better

visualization, and 1 is the value that represents the best visualization). The

CC values obtained for the conventional methods are presented in Table 2.

Fig. 7 shows the scatter plots of DMOS and SSIMB for four B values

and two Si values, using S1 for the left column and S5 for the right, and

changing B from up to down in z, 7, 15 and 30. We can see how for S1 as

well as for S5, on increasing the size of B the points move to the right, that

is to say toward higher MSSIMB values, reducing the correlation between

this value and the DMOS. In this figure, we can also see how for the same

value of B, a similar effect is produced as the value of Si increases, reducing

the correlation as the constant values increase.
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Table 2: Correlation Coefficient for classical metrics

JPEG GB JP2K WN ALL

MSE 0.691 0.705 0.704 0.835 0.405

PSNR -0.840 -0.774 -0.875 -0.979 -0,78

An analysis that is specific to each type of distortion is shown in Fig.

8, where the CC values for each type of distortion are shown according to

the window size analyzed, from 3 to 30, and for different values of Si. Table

3 shows some of these values, including in column B=z the CC obtained

using a variable window size according to equation 11, and the maximum

CC value is marked in bold. We can see that for the JPEG and JP2K

distortions, smaller window sizes give better correlation in general, and this

size is lower when when the constants used are lower. Thus, for JPEG and

S1 the best B is 3, but for S2 and S3 B=5 is better and for S5 and S6 B=7 is

the best while for JP2K B=5 is the best size for all Si except for S6, where

it is improved with B=7. For the Gaussian Blur distortion, the optimum B

values are between 7 for the collection of smallest constants, and 11 for the

largest. For white noise, the correlation increases alongside an increase in

the size of B, and this difference diminishes as we increase the value of the

constants used, until we reach S6 at which point the trend is reversed.

Concerning the optimum value of Si, for the GB distortion, CC improves

as the constants are lowered, and S2 is the point at which we obtain the best

CC values CC. For the JPEG and JP2K distortions, there was no clear trend

independent of the value of B, and the the highest values were obtained with
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S3 in the case of JP2k and S1 for JPEG. For WN, the higher the constants,

the better the values of CC obtained.

Therefore, there is not a constant B and Si that allows us to obtain the

best correlation with all the different types of distortion. The use of small

constants Si and of a size of B dependent on image complexity gives the

best global CC, as can be seen in table 3 and in Fig. 9, and the correlation

improves with respect to PSNR for all distortions (10.8% in JPEG, 23.5% in

GB and 7% in JP2K) except for WN (where it worsens by 5%). Comparing

the proposed method (using S1 and B depending on image complexity) with

the most common S5 and B=11, we obtain a global improvement of 17.3%.

Table 4 shows the values obtained for the EMSSIM according to [11]. As can

be seen, the correlation with this metric is also improved by adapting the

window size depending on the function z proposed, and using the smallest

constant values, in particular those of S1.

5. Conclusions

The use of MSSIM offers significant advantages with respect to MSE.

However, the SSIM values obtained are extremely dependent on the values

of B and S used, and can give significant differences depending on the value

chosen. Normally, a value of B around 8 is selected, or a constant in the

range [7,16], and S5 is selected as a constant set. We have also shown how

this can produce differences in the SSIM obtained of up to 20%, which is

not really acceptable as a precise measure of quality. In this paper, we have

empirically selected a set of constants with a better correlation with HVS.

We also propose a variable B value which is a function of image complexity
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Ψ, as well as the function z itself to obtain this value of B, which improves

the correlation between SSIM and DMOS with respect to the best case using

a constant B. Moreover, the method improves other metrics based on SSIM,

like EMSSIM, which lead us to conclude that this can be applied to other

proposals being carried out. Future work will be to improve Ψ and z, and

also to analyze the use of this choice of B in other measurement proposals

based on structural similarity.
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a) Lena

b) Goldhill

c) Couple

Figure 2: Classic images used for quality evaluation
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a) Lena. MSE=255

b) Goldhill. MSE=125

c) Couple. MSE=81

Figure 3: SSIM indeces variation depending on Si with B=7
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a) Lena. MSE=255

b) Goldhill. MSE=125

c) Couple. MSE=81

Figure 4: SSIM indeces variation depending on B with S1
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Figure 5: H and H’ values obtained

a)carnival dolls and cemetery

b) Parrot and aeroplane

Figure 6: f and f(sobel)
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Figure 7: Scatter plot of DMOS and MSSIM
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a) JPEG

b) WN

c) GB

d) JP2K

Figure 8: CC indeces variation depending on B for different S
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Figure 9: Global CC indeces variation
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Table 3: CC MSSIM and DMOS

JPG B=z B=3 B=5 B=7 B=11 B=30

S1 0.931 0.953 0.931 0.913 0.883 0.801

S2 0.936 0.932 0.937 0.930 0.911 0.850

S3 0.926 0.936 0.943 0.935 0.916 0.856

S5 0.903 0.916 0.924 0.917 0.902 0.856

S6 0.868 0.870 0.881 0.879 0.872 0.853

GB B=z B=3 B=5 B=7 B=11 B=30

S1 0.956 0.924 0.955 0.960 0.955 0.916

S2 0.936 0.927 0.961 0.968 0.964 0.924

S3 0.912 0.895 0.942 0.954 0.953 0.916

S5 0.880 0.837 0.898 0.919 0.928 0.903

S6 0.841 0.765 0.834 0.864 0.885 0.879

JP2K B=z B=3 B=5 B=7 B=11 B=30

S1 0.940 0.897 0.909 0.907 0.896 0.841

S2 0.952 0.946 0.956 0.954 0.941 0.890

S3 0.943 0.949 0.960 0.958 0.946 0.896

S5 0.921 0.925 0.938 0.938 0.930 0.892

S6 0.881 0.872 0.887 0.890 0.889 0.871

WN B=z B=3 B=5 B=7 B=11 B=30

S1 0.931 0.875 0.897 0.907 0.910 0.932

S2 0.947 0.910 0.927 0.935 0.928 0.954

S3 0.961 0.938 0.948 0.954 0.946 0.962

S5 0.974 0.965 0.969 0.971 0.964 0.969

S6 0.979 0.978 0.973 0.973 0.973 0.967

ALL B=z B=3 B=5 B=7 B=11 B=30

S1 0.905 0.881 0.887 0.879 0.854 0.753

S2 0.881 0.875 0.880 0.871 0.845 0.749

S3 0.847 0.838 0.848 0.842 0.819 0.734

S5 0.788 0.768 0.787 0.786 0.771 0.705

S6 0.702 0.674 0.697 0.701 0.696 0.655
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Table 4: CC EMSSIM and DMOS

ALL B=z B=3 B=5 B=7 B=11 B=30

S1 0.885 0.840 0.869 0.880 0.878 0.826

S2 0.875 0.831 0.863 0.875 0.874 0.826

S3 0.867 0.823 0.856 0.869 0.870 0.825

S5 0.858 0.815 0.847 0.862 0.864 0.823

S6 0.848 0.807 0.838 0.854 0.857 0.820
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