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Abstract. This paper considers and solves the problem of estimating camera

pose given a pair of point-tangent correspondences between the 3D scene and the

projected image. The problem arises when considering curve geometry as the ba-

sis of forming correspondences, computation of structure and calibration, which

in its simplest form is a point augmented with the curve tangent. We show that

while the standard resectioning problem is solved with a minimum of three points

given the intrinsic parameters, when points are augmented with tangent informa-

tion only two points are required, leading to substantial computational savings,

e.g., when used as a minimal engine within RANSAC. In addition, computational

algorithms are developed to find a practical and efficient solution shown to effec-

tively recover camera pose using both synthetic and realistic datasets. The reso-

lution of this problem is intended as a basic building block of future curve-based

structure from motion systems, allowing new views to be incrementally registered

to a core set of views for which relative pose has already been computed.

Keywords: Pose Estimation, Camera Resectioning, Differential Geometry.

1 Introduction

A key problem in the reconstruction of structure from multiple views is the determina-

tion of relative pose among cameras as well as the intrinsic parameters for each camera.

The classical method is to rely on a set of corresponding points across views to deter-

mine each camera’s intrinsic parameter matrix Kim as well as the relative pose between

pairs of cameras [11]. The set of corresponding points can be determined using a cali-

bration jig, but, more generally, using isolated keypoints such as Harris corners [10] or

SIFT/HOG [17] features which remain somewhat stable over view and other variations.

As long as there is a sufficient number of keypoints between two views, a random se-

lection of a few feature correspondences using RANSAC [7,11] can be verified by mea-

suring the number of inlier features. This class of isolated feature point-based methods

are currently in popular and successful use through packages such as the Bundler and

used in applications such as Phototourism [1].
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Fig. 1. (a) Views with wide baseline separation may not have enough interest points in common,

but they often do share common curve structure. (b) There may not always be sufficient interest

points matching across views of homogeneous objects, such as for the sculpture, but there is

sufficient curve structure. (c) Each moving object requires its own set of features, which may not

be sufficient without a richly textured surface. (d) Non-rigid structures face the same issue.

Two major drawbacks limit the applicability of interest points. First, it is well-known

that in practice the correlation of interest points works for views with a limited baseline,

according to some estimates no greater than 30◦ [18], Figure 1(a). In contrast, certain

image curve fragments, e.g., those corresponding to sharp ridges, reflectance curves,

etc, persist stably over a much larger range of views. Second, the success of interest

point-based methods is based on the presence of an abundance of features so that a suf-

ficient number of them survive the various variations between views. While this is true

in many scenes, as evidenced by the popularity of this approach, in a non-trivial number

of scenes this is not the case, such as (i) Homogeneous regions, e.g., from man-made

objects, corridors, etc., Figure 1(b); (ii) Multiple moving objects require their own set of

features which may not be sufficiently abundant without sufficient texture, Figure 1(c);

(iii) Non-rigid objects require a rich set of features per roughly non-deforming patch,

Figure 1(d). In all these cases, however, there is often sufficient image curve structure,

motivating augmenting the use of interest points by developing a parallel technology for

the use of image curve structure.
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(a)

Fig. 2. Real challenges in using curve fragments in multiview geometry: (a) instabilities with

slight changes in viewpoint, shown for two views in (b) and zoomed in (c-h), such as a curve in

one view broken into two in another, a curve linked onto background, a curve detected in one view

but absent in another, a curve fragmented into several pieces at junctions in one view but fully

linked in another, different parts of a curve occluded in different views, and a curve undergoing

deformation from one view to the other. (i) Point correspondence ambiguity along the curve.

The use of image curves in determining camera pose has generally been based on

epipolar tangencies, but these techniques assume that curves are closed or can be de-

scribed as conics or other algebraic curves [14, 15, 19, 21]. The use of image curve

fragments as the basic structure for auto-calibration under general conditions is faced

with two significant challenges. First, current edge linking procedures do not generally

produce curve segments which persist stably across images. Rather, an image curve

fragment in one view may be present in broken form and/or or grouped with other curve

fragments. Thus, while the underlying curve geometry correlates well across views, the

individual curve fragments do not, Figure 2(a-h). Second, even when the image curve

fragments correspond exactly, there is an intra-curve correspondence ambiguity, Fig-

ure 2(i). This ambiguity prevents the use of corresponding curve points to solve for the

unknown pose and intrinsic parameters. Both these challenges motivate the use of small

curve fragments.

The paradigm explored in this paper is that small curve fragments, or equivalently

points augmented with differential-geometric attributes1, can be used as the basic image

structure to correlate across views. The intent is to use curve geometry as a complemen-

tary approach to the use of interest points in cases where these fail or are not available.

The value of curve geometry is in correlating structure across three frames or more

1 Previous work in exploring local geometric groupings [22] has shown that tangent and curva-

ture as well as the sign of curvature derivative can be reliably estimated.
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Fig. 3. The problem of determining camera pose R, T given space curves in a world coordinate

system and their projections in an image coordinate system (left), and an approach to that consist-

ing of (right) determining camera pose R, T given 3D point-tangents (i.e., local curve models)

in a world coordinate system and their projections in an image coordinate system.

since the correspondence geometry in two views is unconstrained. The differential ge-

ometry at two corresponding points in two views reconstruct the differential geometry

of the space curve they arise from [4] and this constrains the differential geometry of

corresponding curves in a third view.

The fundamental questions underlying the use of points augmented with differential-

geometric attributes are: how many such points are needed, what order of differential

geometry is required, etc. This paper explores the use of first-order differential geome-

try, namely points with tangent attributes, for determining the pose of a single camera

with respect to the coordinates of observed 3D point-tangents. It poses and solves the

following:

Problem: For a camera with known intrinsic parameters, how many corresponding

pairs of point-tangents in space specified in world coordinates, and point-tangents in

2D specified in image coordinates, are required to establish the pose of the camera with

respect to the world coordinates, Figure 3.

The solution to the above problem is useful under several scenarios. First, when many

views of the scene are available and there is a reconstruction available from two views,

e.g., as in [5]. In this case a pair of point-tangents in the reconstruction can be matched

under a RANSAC strategy to a pair of point-tangents in the image to determine pose. The

advantage as compared to using three points from unorganized point reconstruction and

resectioning is that (i) there are fewer edges than surface points and (ii) the method uses

two rather than three points in RANSAC, requiring about half the number of runs for the

same level of robustness, e.g., 32 runs instead of 70 to achieve 99.99% probability of

not hitting an outlier in at least one run, assuming 50% outliers (in practical systems

it is often necessary to do as many runs as possible, to maximize robustness). Second,

the 3D model of the object may be available from CAD or other sources, e.g., civilian

or military vehicles. In this case a strategy similar to the first scenario can be used.

Third, in stereo video sequences obtained from precisely calibrated binocular cameras,

the reconstruction from one frame of the video can be used to determine the camera

pose in subsequent frames.
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2 Related Work

Previous work has generally relied on matching epipolar tangencies on closed curves.

Two corresponding points γ1 in image 1 and γ2 in image 2 are related by γ2⊤Eγ1 = 0,

where E is the essential matrix [16]. This can be extended to the differential geometry

of two curves, γ1(s) in the first view and a curve γ2(s) in a second view, i.e.,

γ1⊤(s)Eγ2(s) = 0. (2.1)

The tangents t1(s) and t2(s) are related by differentiation

g1(s)t1
⊤
(s)Eγ2(s) + γ1⊤(s)Eg2(s)t2(s) = 0, (2.2)

where g1(s) and g2(s) are the respective speeds of parametrization of the curves γ1(s)
and γ2(s). It is clear that when one of the tangents t1(s) is along the epipolar plane,

i.e., t1
⊤
(s)Eγ2(s) = 0 at a point s, then γ1⊤(s)Et2(s) = 0. Thus, epipolar tangency

in image 1 implies tangency in image 2 at the corresponding point, Figure 4.

Fig. 4. Correspondence of epipolar tangencies in curve-based camera calibration. An epipolar line

on the left must correspond to the epipolar line on the right having tangency on the corresponding

curve, marked with the same color. This works for both static curves and occluding contours.

The epipolar tangency constraint was first proposed in [19] who use linked edges and

a coarse initial estimate E to find a sparse set of epipolar tangencies, including those

at corners, in each view. They are matched from one view to another manually. This is

then used to refine the estimate E, see Figure 5, by minimizing γ1⊤(s)Eγ2(s) over all

matches in an iterative two-step scheme: the corresponding points are kept fixed and E
is optimized in the first step and then E is kept fixed and the points are updated in a

Fig. 5. The differential update of epipolar tangencies through curvature information
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second step using a closed form solution based on an approximation of the curve as the

osculating circle. This assumes that closed curves are available.

Kahl and Heyden [14] consider the special case when four corresponding conics are

available in two views with unknown intrinsic parameters. In this approach, each pair of

corresponding conics provides a pair of tangencies and therefore two constraints. Four

pairs of conics are needed. If the intrinsic parameters are available, then the absolute

conic is known giving two constraints on the epipolar geometry, so that only 3 conic

correspondences are required. This approach is only applied to synthetic data which

shows the scheme to be extremely sensitive even when a large number of conics (50) is

used. Kaminski and Shashua [15] extended this work to general algebraic curves viewed

in multiple uncalibrated views. Specifically, they extend Kruppa’s equations to describe

the epipolar constraint of two projections of a general algebraic curve. The drawback

of this approach is that algebraic curves are restrictive.

Sinha et. al. [21] consider a special configuration where multiple static cameras view

a moving object. Since the epipolar geometry between any pair of cameras is fixed,

each hypothesized pair of epipoles representing a point in 4D is then probed for a pair

of epipolar tangencies across video frames. Specifically, two pairs of tangencies in one

frame in time and a single pair of tangencies in another frame provide a constraint in

that they must all intersect in the same point. This allows for an estimation of epipolar

geometry for each pair of cameras, which are put together for refinement using bundle

adjustment, providing intrinsic parameters and relative pose. This approach, however,

is restrictive in assuming well-segmentable silhouettes.

We should briefly mention the classic results that three 2D-3D point correspondences

are required to determine camera pose [7], in a procedure known as camera resectioning

in the photogrammetry literature (and by Hartley and Zisserman [11]), also known as

camera calibration when this is used with the purpose of obtaining the intrinsic param-

eter matrix Kim, where the camera pose relative to the calibration jig is not of interest.

This is also related to the perspective n-point problem (PnP) originally introduced in [7]

which can be stated as the recovery of the camera pose from n corresponding 3D-2D

point pairs [12] or alternatively of depths [9].

Notation: Consider a sequence of n 3D points (Γw
1 ,Γ

w
2 , . . . ,Γ

w
n ), described

in the world coordinate system and their corresponding projected image points

(γ1,γ2, . . . ,γn) described as points in the 3D camera coordinate system. Let the rota-

tion R and translation T relate the camera and world coordinate systems through

Γ = RΓw + T , (2.3)

where Γ and Γw are the coordinates of a point in the camera and world coordinate

systems, respectively. Let (ρ1, ρ2, . . . , ρn) be the depth defined by

Γ i = ρiγi, i = 1, . . . , n. (2.4)

In general we assume that each point γi is a sample from an image curve γi(si) which

is the projection of a space curve Γ i(Si), where si and Si are arclengths along the

image and space curves, resp.
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The direct solution to P3P, also known as the triangle pose problem, given in 1841 [8],

equates the sides of the triangle formed by the three points with those of the vectors in

the camera domain, i.e.,

⎧

⎪

⎨

⎪

⎩

‖ρ1γ1
− ρ2γ2

‖2 = ‖Γw
1
− Γw

2
‖2

‖ρ2γ2
− ρ3γ3

‖2 = ‖Γw
2
− Γw

3
‖2

‖ρ3γ3 − ρ1γ1‖
2 = ‖Γw

3
− Γw

1
‖2

(2.5)

This gives a system of three quadratics (conics) in unknowns ρ1, ρ2, and ρ3. Following

traditional methods going back to the German mathematician Grunert in 1841 [8] and

later Finsterwalder in 1937 [6], by factoring out one depth, say ρ1, this can be reduced

to a system of two quadratics in two unknowns – depth ratios
ρ2

ρ1
and

ρ3

ρ1
. Grunert fur-

ther reduced this to a single quartic equation and Finsterwalder proposed an analytic

solution.

Table 1. The number of 3D–2D point correspondences needed to solve for camera pose and

intrinsic parameters

Case Unknowns Min. # of Point Corresp. Min. # of Pt-Tgt Corresp.

Calibrated (Kim known) Camera pose R,T 3 2 (this paper)

Focal length unknown Pose R, T and f 4 3 (conjecture)

Uncalibrated (Kim unknown) Camera model Kim, R, T 6 4 (conjecture)

In general, the camera resectioning problem can be solved using three 3D ↔ 2D

point correspondences when the intrinsic parameters are known, and six points when

the intrinsic parameters are not known. It can be solved using four point correspon-

dences when only the focal length is unknown, but all the other intrinsic parameters are

known [3], Table 1. We now show that when intrinsic parameters are known, only a

pair of point-tangent correspondences are required to estimate camera pose. We

conjecture that future work will show that 3 and 4 points, respectively, are required for

the other two cases, Table 1. This would represent a significant reduction for a RANSAC-

based computation.

3 Determining Camera Pose from a Pair of 3D–2D Point-Tangent

Correspondences

Theorem 1. Given a pair of 3D point-tangents {(Γw
1
,Tw

1
), (Γw

2
,Tw

2
)} described in a

world coordinate system and their corresponding perspective projections, the 2D point-

tangents (γ1, t1), (γ2, t2), the pose of the camera R, T relative to the world coordi-

nate system defined by Γ = RΓw+T can be solved up to a finite number of solutions2,

by solving the system

{

γ⊤

1
γ
1
ρ2
1
− 2γ⊤

1
γ
2
ρ1ρ2 + γ⊤

2
γ
2
ρ2
2
= ‖Γw

1
− Γw

2
‖2,

Q(ρ1, ρ2) = 0,
(3.1)

2 assuming that the intrinsic parameters Kim are known
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where RΓw
1
+ T = Γ 1 = ρ1γ1

and RΓw
2
+ T = Γ 2 = ρ2γ2

, and Q(ρ1, ρ2) is an

eight degree polynomial. This then solves for R and T as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

R =
[

(Γw
1 − Γ

w
2 ) T

w
1 T

w
2

]−1
·

[

ρ1γ1
− ρ2γ2

ρ1
g1
G1

t1 +
ρ′
1

G1
γ
1
ρ2

g2
G2

t2 +
ρ′
2

G2
γ
2

]

T = ρ1γ1 −RΓw
1
,

where expressions for four auxiliary variables g1
G1

and g2
G2

, the ratio of speeds in the

image and along the tangents, and ρ1 and ρ2 are available.

Proof. We take the 2D-3D point-tangents as samples along 2D-3D curves, respec-

tively, where the speed of parametrization along the image curves are g1 and g2 and

along the space curves G1 and G2. The proof proceeds by (i) writing the projec-

tion equations for each point and its derivatives in the simplest form involving R,

T , depths ρ1 and ρ2, depth derivatives ρ′
1

and ρ′
2
, and speed of parametrizations G1

and G2, respectively; (ii) eliminating the translation T by subtracting point equations;

(iii) eliminating R using dot products among equations. This gives six equations in

six unknowns: (ρ1, ρ2, ρ1
g1
G1

, ρ2
g2
G2

,
ρ′
1

G1
,
ρ′
2

G2
); (iv) eliminating the unknowns ρ′

1
and ρ′

2

gives four quadratic equations in four unknowns: (ρ1, ρ2, ρ1
g1
G1

, ρ2
g2
G2

). Three of these

quadratics can be written in the form:

⎧

⎪

⎨

⎪

⎩

Ax2

1
+Bx1 + C = 0

Ex2

2 + Fx2 +G = 0

H + Jx1 +Kx2 + Lx1x2 = 0,

(3.2)

(3.3)

(3.4)

where x1 = ρ1
g1
G1

and x2 = ρ2
g2
G2

and where A through L are only functions of the

two unknowns ρ1 and ρ2. Now, Eq. 3.4 represents a rectangular hyperbola, Fig. 6, while

Eqs. 3.2 and 3.3 vertical and horizontal lines in the (x1, x2) space. Fig. 6 illustrates that

only one solution is possible which is then analytically written in terms of variables

A–L (not shown here). This allows expressing ρ1
g1
G1

and ρ2
g2
G2

in terms of ρ1 and ρ2 –

a degree 16 polynomial – but this is in fact divisible by ρ41ρ
4
2, leaving a polynomial Q

of degree 8. Furthermore, we find that Q(−ρ1,−ρ2) = Q(ρ1, ρ2), using the symmetry

of the original equations. This, together with the unused equation (the remaining one of

four) gives the system 3.1. The detailed proof is given in the supplementary material.

Proposition 1. The algebraic solutions to the system (3.1) of Theorem 1 are also re-
quired to satisfy the following inequalities arising from imaging and other requirements
enforced by

ρ1 > 0, ρ2 > 0 (3.5)

g1

G1

> 0,
g2

G2

> 0 (3.6)

det[ρ1γ1
− ρ2γ2

ρ1
g1
G1

t1 +
ρ′1
G1

γ
1
ρ2

g2
G2

t2 +
ρ′2
G2

γ
2
]

det
[

Γw
1 − Γw

2 Tw
1 Tw

2

] > 0. (3.7)
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Fig. 6. Diagram of the mutual intersection of Equations 3.2–3.4 in the x1–x2 plane

Proof. There are multiple solutions for ρ1 and ρ2 in Eq. 3.1. Observe that if ρ1, ρ2, R, T
are a solution, then so are −ρ1, −ρ2, −R, and −T . Only one of these two solutions are

valid, as the camera geometry enforces positive depth, ρ1 > 0 and ρ2 > 0; solutions are

sought only in the top right quadrant of the ρ1–ρ2 space. In fact, the imaging geometry

further restricts the points to lie in front of the camera.
Second, observe that the matrix R can only be a rotation matrix if it has determinant

+1 and is a reflection if it has determinant −1. Using (3.2), det(R) can be written as

detR =
det

[

ρ1γ1
− ρ2γ2

ρ1
g1
G1

t1 +
ρ′1
G1

γ
1
ρ2

g2
G2

t2 +
ρ′2
G2

γ
2

]

det
[

Γw
1 − Γw

2 Tw
1 Tw

2

] .

Finally, the space curve tangent T and the image curve tangent t must point in the same

direction: T · t > 0, or, as in the supplementary material,
g1
G1

> 0 and
g2
G2

> 0.

4 A Practical Approach to Computing a Solution

Equations 3.1 can be viewed as the intersection of two curves in the ρ1−ρ2 space. Since

one of the curves to be intersected is shown to be an ellipse, it is possible to parametrize

it by a bracketed parameter and then look for intersections with the second curve which

is of degree 8. This gives a higher-order polynomial in a single unknown which can be

solved more readily than simultaneously solving the two equations of degree 2 and 8.

Proposition 2. Solutions ρ1 and ρ2 to the quadratic equation in (3.1) can be

parametrized as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ρ1(t) =
2αt cos θ + β(1− t2) sin θ

1 + t2

ρ2(t) =
−2αt sin θ + β(1 − t2) cos θ

1 + t2
,

−1 ≤ t ≤ 1

where

tan(2θ) =
2(1 + γ⊤

1
γ2)

γ⊤

1
γ1 − γ⊤

2
γ2

, 0 ≤ 2θ ≤ π,
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and

α =

√
2‖Γw

1 − Γw
2 ‖

√

(γ⊤
1

γ1 + γ⊤
2

γ2) + (γ⊤
1

γ1 − γ⊤
2

γ2) cos(2θ) + 2γ⊤
1

γ2 sin(2θ)
, α > 0,

β =

√
2‖Γw

1 − Γw
2 ‖

√

(γ⊤
1

γ1 + γ⊤
2

γ2) − (γ⊤
1

γ1 − γ⊤
2

γ2) cos(2θ) − 2γ⊤
1

γ2 sin(2θ)
, β > 0.

Proof. An ellipse centered at the origin with semi-axes of lengths α > 0 and β > 0 and

parallel to the coordinates x and y can be parametrized as

x =
2t

1 + t2
α, y =

(1− t2)

1 + t2
β, t ∈ (−∞,∞), (4.1)

with ellipse vertices identified at t = −1, 0, 1 and ∞, as shown in Figure 7. For a gen-

eral ellipse centered at the origin, the coordinates must be multiplied with the rotation

matrix for angle θ, obtaining

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ρ1 =
2αt cos θ + β(1− t2) sin θ

1 + t2

ρ2 =
−2αt sin θ + β(1− t2) cos θ

1 + t2
.

−1 ≤ t ≤ 1

Figure 7 illustrates this parametrization. Notice that the range of values of t we need

to consider certainly lies in [−1, 1] and in fact in a smaller interval where ρ1 > 0 and

ρ2 > 0. Note that t and − 1

t
correspond to opposite points on the ellipse.

The parameters α, β, and θ for the ellipse in (3.1) can then be found by substitution

of ρ1 and ρ2, details of which are found in the supplementary material.

Both equations in (3.1) are symmetric with respect to the origin in the (ρ1, ρ2)-plane

and the curves will intersect in at most 2 × 8 = 16 real points, at most 8 of which will

be in the positive quadrant, as we in fact require ρ1 > 0 and ρ2 > 0.

The parametrization of the ellipse given in Proposition 2 allows us to reduce the two

Equations 3.1 to a single polynomial equation in t. Substituting for ρ1, ρ2 in terms of t

Fig. 7. Diagram illustrating a parametrization of the ellipse by a parameter t
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into Q = 0 gives an equation in t for which, in fact, all the denominators are (1+ t2)12,

so that these can be cleared leaving a polynomial in Q̃(t) of degree 16. The symmetry

with respect to the origin in the (ρ1, ρ2)-plane becomes, in terms of t, a symmetry with

respect to the substitution t → −1/t, which gives diametrically opposite points of the

ellipse. This implies that Q̃ has the special form

Q̃(t) = q0 + q1t+ q2t
2 + · · ·+ q16t

16, (4.2)

where qi = −q16−i for i odd. At most 8 solutions will lie in the range −1 < t ≤ 1, and

indeed we are only interested in solutions which make ρ1 > 0 and ρ2 > 0.

5 Experiments

We use two sets of experiments to probe camera pose recovery using 2D-3D point-

tangent correspondences. First, we use a set of synthetically generated 3D curves con-

sisting of a variety of curves (helices, parabolas, ellipses, straight lines, and saddle

curves), as shown in Figure 8. Second, we use realistic data.

Fig. 8. Sample views of the synthetic dataset. Real datasets have also been used in our experi-

ments, reported in further detail in the supplemental material.

The synthetic 3D curves of Figure 8 are densely sampled and projected to a single

500 × 400 view, and their location and tangent orientation are perturbed to simulate

measurement noise in the range of 0 − 2 pixels in location and 0 − 10◦ in orientation.

Our expectation in practice using the publically available edge detector [22] is that the

edges can be found with subpixel accuracy and edge orientations are accurate to less

than 5◦.

In order to simulate the intended application, pairs of 2D-3D point-tangent corre-

spondences are selected in a RANSAC procedure from among 1000 veridical ones, to

which 50% random spurious correspondences were added. The practical method dis-

cussed in Section 4 is used to determine the pose of the camera (R, T ) inside the

RANSAC loop. Each step takes 90ms in Matlab on a standard 2GHz dual-core laptop.

What is most significant, however, is that only 17 runs are sufficient to get 99% proba-

bility of hitting an outlier-free correspondence pair, or 32 runs for 99.99% probability.

In practice more runs can easily be used depending on computational requirements. To

assess the output of the algorithm, we could have measured the error of the estimated



242 R. Fabbri, B.B. Kimia, and P.J. Giblin

pose compared to the ground truth pose. However, what is more meaningful is the im-

pact of the measured pose on the measured reprojection error, as commonly used in the

field to validate the output of RANSAC-based estimation. Since this is a controlled exper-

iment, we measure final reprojection error not just to the inlier set, but to the entire pool

of 1000 true correspondences. In practice, a bundle-adjustment would be run to refine

the pose estimate using all inliers, but we chose to report the raw errors without nonlin-

ear least-squares refinement. The distribution of reprojection error is plotted for various

levels of measurement noise, Figure 9. These plots show that the relative camera pose

can be effectively determined for a viable range of measurement errors, specially since

these results are typically optimized in practice through bundle adjustment. Additional

information can be found in the supplemental material.
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Fig. 9. Distributions of reprojection error for synthetic data without bundle adjustment, for in-

creasing levels of positional and tangential perturbation in the measurements. Additional results

are reported in the supplemental material.

Second, we use data from a real sequence, the “Capitol sequence”, which is a set

of 256 frames covering a 90◦ helicopter fly-by from the Rhode Island State Capitol,

Figure 2, using a High-Definition camera (1280× 720). Intrinsic parameters were ini-

tialized using the Matlab Calibration toolbox from J. Bouguet (future extension of this

work would allow for an estimation of intrinsic parameters as well). The camera param-

eters were obtained by running Bundler [1] essentially out-of-the-box, with calibration

accuracy of 1.3px. In this setup, a pair of fully calibrated views are used to reconstruct

a 3D cloud of 30 edges from manual correspondences. Pairs of matches from 3D edges

to observed edges in novel views are used with RANSAC to compute the camera pose

with respect to the frame of the 3D points, and measure reprojection error. One can then

either use multiple pairs or use bundle adjustment to improve the reprojection error re-

sulting from our initial computation of relative pose. Figure 10 shows the reprojection

error distribution of our method for a single point-tangent pair after RANSAC, before

and after running bundle-adjustment, versus the dataset camera from bundler (which is
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Fig. 10. The reprojection error distribution for real data (Capitol sequence) using only two point-

tangents, before and after bundle adjustment. Additional results are reported in the supple-

mental material.

bundle-adjusted), for the Capitol sequence. The proposed approach achieved an average

error of 1.1px and 0.76px before and after a metric bundle adjustment, respectively, as

compared to 1.3px from Bundler. Additional information and results can be found in

the supplemental material.

6 Future Directions

The paper can be extended to consider the case when intrinsic parameters are unknown.

Table 1 conjectures that four pairs of corresponding 3D-2D point-tangents are suffi-

cient to solve this problem. Also, we have been working on the problem of determining

trinocular relative pose from corresponding point-tangents across 3 views. We conjec-

ture that three triplets of correspondences among the views are sufficient to establish

relative pose. This would allow for a complete curve-based structure from motion sys-

tem starting from a set of images without any initial calibration.
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gen in der geodäsie. Archiv der für Mathematik and Physik 1, 238–248 (1841)

9. Haralick, R.M., Lee, C.-N., Ottenberg, K., Nölle, M.: Review and analysis of solutions of the

three point perspective pose estimation problem. IJCV 13(3), 331–356 (1994)

10. Harris, C., Stephens, M.: A combined edge and corner detector. In: Alvey Vision Conference

(1988)

11. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Uni-

versity Press (2000)

12. Horaud, R., Conio, B., Leboulleux, O., Lacolle, B.: An analytic solution for the p4p problem.

CVGIP 47(1), 33–44 (1989)

13. Hu, Z.Y., Wu, F.C.: A note on the number of solutions of the noncoplanar p4p problem.

PAMI 24(4), 550–555 (2002)

14. Kahl, F., Heyden, A.: Using conic correspondence in two images to estimate the epipolar

geometry. In: ICCV 1998 (1998)

15. Kaminski, J.Y., Shashua, A.: Multiple view geometry of general algebraic curves.

IJCV 56(3), 195–219 (2004)

16. Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projec-

tions. Nature 293, 133–135 (1981)

17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110

(2004)

18. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3D objects.

IJCV 73(3), 263–284 (2007)

19. Porrill, J., Pollard, S.: Curve matching and stereo calibration. IVC 9(1), 45–50 (1991)

20. Robert, L., Faugeras, O.D.: Curve-based stereo: figural continuity and curvature. In: CVPR

1991 (1991)

21. Sinha, S.N., Pollefeys, M., McMillan, L.: Camera network calibration from dynamic silhou-

ettes. In: CVPR 2004 (2004)

22. Tamrakar, A., Kimia, B.B.: No grouping left behind: From edges to curve fragments. In:

ICCV 2007 (2007)



Supplementary Material to Camera Pose Estimation Using

First-Order Curve Differential Geometry, ECCV 2012

Complement to Submission 1034

1 Overview of this document

In Section 2 we present additional results for (i) our synthetic experiments, first clarifying the plot shown in the paper,

Figure 1, and then using bundle adjustment, Figures 2–3, together with (ii) results for the standard Dino sequence

from the Middlebury multiview stereo dataset [1], Figure 4. In the remaining sections of this document we supply

additional details in the proofs of theorems and propositions from the paper. All references to equations and figures

are to objects in the present document unless otherwise stated.

2 Additional Results

2.1 Synthetic experiments

Figure 1 clarifies Figure 9 of the paper, by splitting it into two plots, one for fixed tangential perturbation (top), and

another for fixed positional perturbation. We also ran bundle adjustment on top of our RANSAC results, which is

standard practice in applications, and recorded the distribution of reprojection errors, shown in Figures 2–3.

2.2 Dino sequence

Results: We also tested the proposed method on the standard Dino sequence from the Middlebury multiview stereo

dataset [1], Figure 4. The Cameras sample 363 views at 640 × 480 on a hemisphere around the object. The data is

low resolution compared to our Capitol dataset. The calibration accuracy in this case is hard to determine objectively,

but it is “on the order of a pixel” or about 1-2px according to the authors (see a description of the calibration process

below). We note that even though this is a carefully constructed dataset, the average reprojection error using our

method are 1.03px and 0.66px before and after bundle adjustment, respectively, while the average error using the

dataset camera is 0.88px. This was obtained as follows. As for the Capitol sequence, we picked a set of manual edge

correspondences (in this case 10) across 3 views, and reconstructed a 3D cloud of edges from the first two views using

the dataset cameras. This gives a set of 3D-2D correspondences with which we seek to determine the pose of the third

view and compare to the dataset pose. The third view plays the role of novel views to be iteratively integrated and

registered/calibrated by a structure from motion system. We added 50% outliers to the set of manual correspondences,

in order to be realistic, and ran RANSAC to select two point-tangents giving the pose which is most consistent with the

data. Bundle adjustment can then be optionally run to refine this pose. The distributions of reprojection error before

and after bundle adjustment, as compared to that of the dataset camera, are shown in Figure 1.

Details of the dataset calibration process: We note that the dataset calibration of the Dino sequence was performed

as follows [1]: the images were captured using the Stanford Spherical Gantry which enables moving a camera on a

sphere. To calibrate the cameras, they took images of a planar grid from 68 viewpoints and used a combination of

Jean-Yves Bouguet’s Matlab toolbox and their own software to find grid points and estimate camera intrinsics and

extrinsics. From these parameters, they computed the gantry radius and camera orientation, hence enabling a map of

any gantry position to camera parameters. The authors then scanned the object from several orientations using a laser

scanner and merged the results. The cameras were then aligned with the resulting mesh.
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Figure 1: Distributions of reprojection error for synthetic data results without bundle adjustment, for (top) increasing

levels of positional perturbation while keeping tangential orientation perturbation fixed; and (bottom) increasing levels

of tangential orientation perturbation while keeping positional perturbation fixed. This is the same as in the paper, but

split into two different plots for clarity.
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Figure 2: Distributions of reprojection error for synthetic data results with bundle adjustment, for (top) increasing

levels of positional perturbation while keeping tangential orientation perturbation fixed; and (bottom) increasing levels

of tangential orientation perturbation while keeping positional perturbation fixed.
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Figure 3: Full set of distributions of reprojection error for synthetic data results with bundle adjustment, for in-

creasing levels of positional perturbation and tangential orientation perturbation. This is the same experiment as in

Figure 2.

4



0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

fr
eq

ue
nc

y

reprojection error

 

 
proposed method (w/o bundle adj.)
dataset pose
proposed method (w/ bundle adj.)

Figure 4: The reprojection error distributions for the standard Dino sequence from the Middlebury multiview stereo

database [1], with a sample image shown at the top, using only two point-tangents selected within a RANSAC frame-

work from 10 manual correspondences plus 50% outliers, before and after bundle adjustment. The average reprojec-

tion error for the proposed method are 1.03px and 0.66px before and after bundle adjustment, respectively, while the

average error using the dataset camera is 0.88px.
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3 Detailed proof of Theorem 3.1

In the course of proving Theorem 3.1, we will also show that

Q(ρ1, ρ2) = A3(EH2 − FHK +GK2)2 +AC2(EJ2 − FJL+GL2)2

− 2A2C(EH2 − FHK +GK2)(EJ2 − FJL+GL2) + [−AB(EH2 − FHK +GK2)

+BC(EJ2 − FJL+GL2)] [A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)]

+ C[A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)]2 = 0

(1)

where the parameters A through L are defined as


























































































A = 1− 2γ⊤
1 t1B1 + γ⊤

1 γ1B
2
1

B = [2(γ⊤
1 t1)− 2γ⊤

1 γ1B1]A1

C = (γ⊤
1 γ1)A

2
1 − 1

E = 1− 2γ⊤
2 t2B2 + γ⊤

2 γ2B
2
2

F = [2(γ⊤
2 t2)− 2γ⊤

2 γ2B2]A2

G = (γ⊤
2 γ2)A

2
2 − 1

H = γ⊤
1 γ2A1A2 − (Tw

1 )
⊤Tw

2

J = [γ⊤
2 t1 − γ⊤

1 γ2B1]A2

K = [γ⊤
1 t2 − γ⊤

1 γ2B2]A1

L = t⊤1 t2 − γ⊤
2 t1B2 − γ⊤

1 t2B1 + γ⊤
1 γ2B1B2,

(2)

where


















A1 =
(Γw

1 − Γ
w
2 )

⊤Tw
1

(ρ1γ1 − ρ2γ2)
⊤γ1

A2 =
(Γw

1 − Γ
w
2 )

⊤Tw
2

(ρ1γ1 − ρ2γ2)
⊤γ2



















B1 =
(ρ1γ1 − ρ2γ2)

⊤t1

(ρ1γ1 − ρ2γ2)
⊤γ1

B2 =
(ρ1γ1 − ρ2γ2)

⊤t2

(ρ1γ1 − ρ2γ2)
⊤γ2

,

(3)

and where














ρ1
g1

G1
= −

A(EH2 − FHK +GK2)− C(EJ2 − FJL+GL2)

A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)
.

ρ2
g2

G2
= −

E(AH2 −BHJ + CJ2)−G(AK2 −BKL+ CL2)

E(2AHK −BHL−BKJ + 2CJL)− F (AK2 −BKL+ CL2)
,

(4)

and














ρ′1
G1

= A1 −B1ρ1
g1

G1

ρ′2
G2

= A2 −B2ρ2
g2

G2
.

(5)

Proof. (Of Theorem 3.1 and the above statements) An image point γ is related to the underlying space point Γ through

Γ = ργ, where ρ is depth. A space point Γ in local coordinates is related to Γ
w in the world coordinates by a rotation

matrix R and translation T through Γ = RΓ
w + T . Equating these at each of the two points gives
{

ρ1γ1 = RΓ
w
1 + T

ρ2γ2 = RΓ
w
2 + T ,

(6)

where ρ1 and ρ2 are the depth at image points γ1 and γ2, respectively. By differentiating with respect to the parameters

of γ1 and γ2 we have:
{

ρ1g1t1 + ρ′1γ1 = RG1T
w
1

ρ2g2t2 + ρ′2γ2 = RG2T
w
2 ,

(7)
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where ρ1 and ρ2 are depth derivatives with respect to the curve parameter, g1 and g2 are speeds of parametrization of

γ1 and γ2, respectively, and G1 and G2 are the speeds of parametrization of the space curves Γ1 and Γ2, respectively.

The vector Equations 6 and 7 represent 3 scalar equations for each point, so that there are 12 equations in all. The

parametrization speeds g1 and g2 are arbitrary and can be set to 1 uniformly, but we keep them in general form. The

given quantities are γ, t, and Γ
w, Tw at each point. The unknowns are R, T (6 unknowns), ρ, ρ′ (4 unknowns), and

the two speeds of the curve Γ at the two points, 12 unknowns in all. Therefore, in principle, two points should provide

enough constraints to solve the problem.

First, T is eliminated by subtracting the two Equations (6)

ρ1γ1 − ρ2γ2 = R(Γw
1 − Γ

w
2 ), (8)

which together with Equation 7 gives a system of equations



























ρ1γ1 − ρ2γ2 = R(Γw
1 − Γ

w
2 )

ρ1
g1

G1
t1 +

ρ′1
G1

γ1 = RTw
1

ρ2
g2

G2
t2 +

ρ′2
G2

γ2 = RTw
2 .

(9)

(10)

(11)

At this stage, the unknowns are ρ1, ρ2,
ρ′

1

G1

,
ρ′

2

G2

, ρ1
g1
G1

, ρ2
g2
G2

, and R, nine numbers in all, which can potentially be

solved through the three vector equations (nine scalar equations) in (9)–(11). The number of unknowns can be reduced

by eliminating R in a second step. The matrix R rotates three known vectors, (Γw
1 − Γ

w
2 ), T

w
1 , and Tw

2 to the three

unknown vectors on the left side of these equations, requiring a preservation of vector lengths and mutual angles. The

length and relative angles are obtained from the known dot products, which do not involve R at all. This provides six

equations for the six unknowns {ρ1, ρ2,
g1
G1

, g2
G2

,
ρ′

1

G1

,
ρ′

2

G2

}. Alternatively, we write these three equations in matrix form

composed from the three vector equations (9)–(11), i.e.,

[

ρ1γ1 − ρ2γ2 ρ g1
G1

t1 +
ρ′

1

G1

γ1 ρ2
g2
G2

t2 +
ρ′

2

G2

γ2

]

= R
[

(Γw
1 − Γ

w
2 ) Tw

1 Tw
2

]

(12)

This is a system of six equations. Note that a clear geometric condition for the problem to have a solution is that the

vectors {(Γw
1 − Γ

w
2 ), T

w
1 , T

w
2 } be non-coplanar. Using product of the left hand matrix with its transpose, and using

R⊤R = I , gives

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
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





























































(ρ1γ1 − ρ2γ2)
⊤(ρ1γ1 − ρ2γ2) = (Γw

1 − Γ
w
2 )

⊤(Γw
1 − Γ

w
2 )

(ρ1γ1 − ρ2γ2)
⊤(ρ1

g1

G1
t1 +

ρ′1
G1

γ1) = (Γw
1 − Γ

w
2 )

⊤Tw
1

(ρ1γ1 − ρ2γ2)
⊤(ρ2

g2

G2
t2 +

ρ′2
G2

γ1) = (Γw
2 − Γ

w
2 )

⊤Tw
2

(ρ1
g1

G1
t1 +

ρ′1
G1

γ1)
⊤(ρ1

g1

G1
t1 +

ρ′1
G1

γ1) = 1

(ρ2
g2

G2
t2 +

ρ′2
G2

γ2)
⊤(ρ2

g2

G2
t2 +

ρ′2
G2

γ2) = 1

(ρ1
g1

G1
t1 +

ρ′1
G1

γ1)
⊤(ρ2

g2

G2
t2 +

ρ′2
G2

γ2) = (Tw
1 )

⊤Tw
2 .

(13)

The first equation is a quadratic in ρ1 and ρ2

γ⊤
1 γ1 ρ

2
1 − 2γ⊤

1 γ2 ρ1ρ2 + γ⊤
2 γ2 ρ

2
2 = (Γw

1 − Γ
w
2 )

⊤(Γw
1 − Γ

w
2 ), (14)

which as a conic in the ρ1–ρ2 plane with negative discriminant

(γ1 · γ2)
2 − (γ1 · γ1)(γ2 · γ2) = −‖γ1 × γ2‖

2 < 0 (15)
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is an ellipse. The ellipse is centered at the origin so we can check that it has real points by solving for ρ1 when ρ2 = 0,

giving ρ21‖γ1‖
2 = ‖Γw

1 − Γ
w
2 ‖

2, or real roots ρ1 = ±
‖Γw

1
−Γ

w

2
‖

‖γ
1
‖ .

The remaining five equations involve the additional unknowns {ρ1
g1
G1

, ρ2
g2
G2

,
ρ′

1

G1

,
ρ′

2

G2

}. The latter appear in a

linear form in the second and third equations, and in quadratic form in the last three equations. Thus, the terms
ρ′

1

G1

and
ρ′

2

G2

can be isolated from the second and third equations and then used in the last three equations















[(ρ1γ1 − ρ2γ2)
⊤γ1]

ρ′1
G1

= (Γw
1 − Γ

w
2 )

⊤Tw
1 − [(ρ1γ1 − ρ2γ2)

⊤t1]ρ1
g1

G1

[(ρ1γ1 − ρ2γ2)
⊤γ2]

ρ′2
G2

= (Γw
1 − Γ

w
2 )

⊤Tw
2 − [(ρ1γ1 − ρ2γ2)

⊤t2]ρ2
g2

G2
,

(16)

or


















ρ′1
G1

=
(Γw

1 − Γ
w
2 )

⊤Tw
1

(ρ1γ1 − ρ2γ2)
⊤γ1

−

[

(ρ1γ1 − ρ2γ2)
⊤t1

(ρ1γ1 − ρ2γ2)
⊤γ1

]

ρ1
g1

G1
= A1 −B1ρ1

g1

G1

ρ′2
G2

=
(Γw

1 − Γ
w
2 )

⊤Tw
2

(ρ1γ1 − ρ2γ2)
⊤γ2

−

[

(ρ1γ1 − ρ2γ2)
⊤t2

(ρ1γ1 − ρ2γ2)
⊤γ2

]

ρ2
g2

G2
= A2 −B2ρ2

g2

G2
,

(17)

noting that A1, A2, B1, and B2 depend on only two of the unknowns ρ1 and ρ2. The last three equations in (13) can

be expanded as























































(

ρ1
g1

G1

)2

+ 2(γ⊤
1 t1)

(

ρ1
g1

G1

)(

ρ′1
G1

)

+ (γ⊤
1 γ1)

(

ρ′1
G1

)2

= 1

(

ρ2
g2

G2

)2

+ 2(γ⊤
2 t2)

(

ρ2
g2

G2

)(

ρ′2
G2

)

+ (γ⊤
2 γ2)

(

ρ′2
G2

)2

= 1

(t⊤1 t2)

(

ρ1
g1

G1

)(

ρ2
g2

G2

)

+(γ⊤
2 t1)

(

ρ1
g1

G1

)(

ρ′2
G2

)

+ (γ⊤
1 t2)

(

ρ2
g2

G2

)(

ρ′1
G1

)

+

(γ⊤
1 γ2)

(

ρ′1
G1

)(

ρ′2
G2

)

= (Tw
1 )

⊤Tw
2 .

Substituting
ρ′

1

G1

and
ρ′

2

G2

from Equations 17 gives



































































(

ρ1
g1

G1

)2

+ 2(γ⊤
1 t1)

(

ρ1
g1

G1

)(

A1 −B1

(

ρ1
g1

G1

))

+ (γ⊤
1 γ1)

(

A1 −B1

(

ρ1
g1

G1

))2

= 1

(

ρ2
g2

G2

)2

+ 2(γ⊤
2 t2)

(

ρ2
g2

G2

)(

A2 −B2

(

ρ2
g2

G2

))

+ (γ⊤
2 γ2)

(

A2 −B2

(

ρ2
g2

G2

))2

= 1

(t⊤1 t2)

(

ρ1
g1

G1

)(

ρ2
g2

G2

)

+ (γ⊤
2 t1)

(

ρ1
g1

G1

)(

A2 −B2

(

ρ2
g2

G2

))

+

(γ⊤
1 t2)

(

ρ2
g2

G2

)(

A1 −B1

(

ρ1
g1

G1

))

+ (γ⊤
1 γ2)

(

A1 −B1

(

ρ1
g1

G1

))(

A2 −B2

(

ρ2
g2

G2

))

= (Tw
1 )

⊤Tw
2 .

These three equations can be written in summary form using x1 = ρ1
g1
G1

and x2 = ρ2
g2
G2

,











Ax2
1 +Bx1 + C = 0

Ex2
2 + Fx2 +G = 0

H + Jx1 +Kx2 + Lx1x2 = 0,

(18)

(19)

(20)

and where A through L are only functions of the two unknowns ρ1 and ρ2. Thus, the three Equations 18–20 after

solving for x1 and x2 express a relationship between ρ1 and ρ2, which together with Equation 14 can lead to a solution

for ρ1 and ρ2.
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Equation 20, with given values for ρ1 and ρ2, represents a rectangular hyperbola in the x1–x2 plane, as illustrated

in the paper, and each of the Equations 18 and 19 represents a pair of (real) lines in the same plane, parallel respectively

to the x2 and x1 axes. In general there will not be more than one intersection between the aforementioned curves.

Specifically, the variables x1 and x2 can be solved by rewriting Equation 20 as

(H + Jx1) + (K + Lx1)x2 = 0, (21)

giving

x2 = −
H + Jx1

K + Lx1
. (22)

Using this expression in Equation 19 gives

E
(H + Jx1)

2

(K + Lx1)2
− F

H + Jx1

K + Lx1
+G = 0, (23)

or

E(H + Jx1)
2 − F (H + Jx1)(K + Lx1) +G(K + Lx1)

2 = 0. (24)

Reorganizing as a quadratic in x1, this solves for x1 which together with Equation 18 gives a constraint on the param-

eters depending on ρ1 and ρ2,















(EJ2 − FJL+GL2)x2
1 + (2EHJ − FHL− FJK + 2GKL)x1

+(EH2 − FHK +GK2) = 0

Ax2
1 +Bx1 + C = 0.

(25)

(26)

The quadratic term is eliminated by multiplying the first equation by A and the second equation by (EJ2 − FJL +
GL2) and subtracting, giving

[A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)]x1+

[A(EH2 − FHK +GK2)− C(EJ2 − FJL+GL2)] = 0,
(27)

so that

x1 = −
A(EH2 − FHK +GK2)− C(EJ2 − FJL+GL2)

A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)
. (28)

Substituting back into Equation 26 gives

A

[

A(EH2 − FHK +GK2)− C(EJ2 − FJL+GL2)

A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)

]2

+

−B
A(EH2 − FHK +GK2)− C(EJ2 − FJL+GL2)

A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)
+ C = 0,

(29)

or
A3(EH2 − FHK +GK2)2 +AC2(EJ2 − FJL+GL2)2

− 2A2C(EH2 − FHK +GK2)(EJ2 − FJL+GL2) + [−AB(EH2 − FHK +GK2)

+BC(EJ2 − FJL+GL2)] [A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)]

+ C[A(2EHJ − FHL− FJK + 2GKL)−B(EJ2 − FJL+GL2)]2 = 0

(30)

The equation, after expressions for A, B, . . . , L are substituted in, can be divided by ρ41ρ
4
2, giving an 8th order

polynomial equation in ρ1 and ρ2, i.e., Q(ρ1, ρ2) = 0. This equation together with Equation 14 represents a system of

two equations in two unknowns

{

γ⊤
1 γ1 ρ

2
1 − 2γ⊤

1 γ2 ρ1ρ2 + γ⊤
2 γ2 ρ

2
2 = (Γw

1 − Γ
w
2 )

⊤(Γw
1 − Γ

w
2 ),

Q(ρ1, ρ2) = 0,
(31)
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and gives a number of solutions for ρ1, and ρ2 which in turn solve for the unknowns ρ1
g1
G1

, ρ2
g2
G2

,
ρ′

1

G1

, and ρ2

G2

. Once

these unknowns are solved for, the rotation R can be obtained from the matrix equation (12). The translation T is then

solved from Equations 6 as

T = ρ1γ1 −RΓ
w
1 . (32)

4 Details in the Proof of Proposition 3.2

The parametrization we have assumed in the space curve projects T to the same half plane as t in each view so that T

and t need to point in the same direction, i.e., T · t > 0, or from Equations 10 and 11, g1
G1

> 0 and g2
G2

> 0.

5 Details in the Proof of Proposition 4.1

The parameters α, β, and θ for the ellipse in Equation 14 can be found by substitution of ρ1 and ρ2 in the parametric

form (given in the paper) into Equation 14. Specifically, writing

γ⊤
1 γ1

(1 + t2)2
[4α2t2 cos2 θ + β2(1− t2)2 sin2 θ + 4αβt(1− t2) sin θ cos θ]+

−
2γ⊤

1 γ2

(1 + t2)2
[−4α2t2 sin θ cos θ + 2αβt(1− t2) cos2 θ − 2αβt(1− t2) sin2 θ] + β2(1− t2)2 sin θ cos θ

−2γ⊤
2 γ2

(1 + t2)2
[4α2t2 sin2 θ + β2(1− t2)2 cos2 θ − 4αβt(1− t2) sin θ cos θ] = ‖Γw

1 − Γ
w
2 ‖

2.

(33)

Simplifying the equation as

[(γ⊤
1 γ1)4α

2t2 − (γ⊤
1 γ2)4αβt(1− t2) + (γ⊤

2 γ2)β
2(1− t2)2] cos2 θ+

[(γ⊤
1 γ1)β

2(1− t2)2 + (γ⊤
1 γ2)4αβt(1− t2)(γ⊤

2 γ2)4α
2t2] sin2 θ+

[(γ⊤
1 γ1)4αβt(1− t2) + (γ⊤

1 γ28α
2t2 − (γ⊤

1 γ2)2β
2(1− t2)2 − (γ⊤

2 γ2)4αβt(1− t2)] sin θ cos θ

= (1 + t2)2‖Γw
1 − Γ

w
2 ‖

2

(34)

and using simple trigonometric identities cos2 θ = 1+cos(2θ)
2 and sin2 θ = 1−sin(2θ)

2 , cos2 θ − sin2 θ = cos(2θ) and

sin(2θ) = 2 sin θ cos θ, this equation can be better simplified to

[(γ⊤
1 γ1)4α

2t2 − (γ⊤
1 γ2)4αβt(1− t2) + (γ⊤

2 γ2)β
2(1− t2)2](1 + cos(2θ))+

[(γ⊤
1 γ1)β

2(1− t2)2 + (γ⊤
1 γ2)4αβt(1− t2) + (γ⊤

2 γ2)4α
2t2](1− cos(2θ))+

[(γ⊤
1 γ1)4αβt(1− t2) + (γ⊤

1 γ2)8α
2t2 − (γ⊤

1 γ2)2β
2(1− t2)2 − (γ⊤

2 γ2)4αβt(1− t2)] sin(2θ)

= 2(1 + t2)2‖Γw
1 − Γ

w
2 ‖

2.

(35)

which is an equation only involving the unknown θ,

(γ⊤
1 γ1 + γ⊤

2 γ2)[4α
2t2 + β2(1− t2)]+

[(γ⊤
1 γ1 − γ⊤

2 γ2)[4α
2t2 − β2(1− t2)2]− (γ⊤

1 γ2)8αβt(1− t2)] cos(2θ)

[(γ⊤
1 γ1 − γ⊤

2 γ2)4αβt(1− t2) + 2γ⊤
1 γ2[4α

2t2 − β2(1− t2)2]] sin(2θ)

= 2(1 + t2)2‖Γw
1 − Γ

w
2 ‖

2.

(36)

This equation holds for all values of t. For t = 0,

(γ⊤
1 γ1 + γ⊤

2 γ2)β
2 − (γ⊤

1 γ2 − γ⊤
2 γ2)β

2 cos(2θ)− 2γ⊤
1 γ2β

2 sin(2θ) = 2‖Γw
1 − Γ

w
2 ‖, (37)
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giving

β2 =
2‖Γw

1 − Γ
w
2 ‖

2

(γ⊤
1 γ1 + γ⊤

2 γ2)− (γ⊤
1 γ1 − γ⊤

2 γ2) cos(2θ)− 2γ⊤
1 γ2 sin(2θ)

. (38)

Similarly, at t = 1,

(γ⊤
1 γ1 + γ⊤

2 γ2)4α
2 + (γ⊤

1 γ1 − γ⊤
2 γ2)4α

2 cos(2θ) + 2γ⊤
1 γ24α

2 sin(2θ) = 8‖Γw
1 − Γ

w
2 ‖

2, (39)

giving

α2 =
2‖Γw

1 − Γ
w
2 ‖

2

(γ⊤
1 γ1 + γ⊤

2 γ2) + (γ⊤
1 γ1 − γ⊤

2 γ2) cos(2θ) + 2γ⊤
1 γ2 sin(2θ)

. (40)

6 Additional Remarks

We plan to provide the Matlab source code for our pose estimation approach to the public once this paper gets accepted.
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