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ABSTRACT
Decompilers are fundamental tools to perform security assessments

of third-party software. The quality of decompiled code can be a

game changer in order to reduce the time and effort required for

analysis. This paper proposes a novel approach to restructure the

control flow graph recovered from binary programs in a semantics-

preserving fashion. The algorithm is designed from the ground up

with the goal of producing C code that is both goto-free and dras-

tically reducing the mental load required for an analyst to under-

stand it. As a result, the code generated with this technique is well-

structured, idiomatic, readable, easy to understand and fully exploits

the expressiveness of C language. The algorithm has been imple-

mented on top of the rev.ng [12] static binary analysis framework.

The resulting decompiler, revng-c, is compared on real-world bi-

naries with state-of-the-art commercial and open source tools. The

results show that our decompilation process introduces between

40% and 50% less extra cyclomatic complexity.

CCS CONCEPTS
• Security andprivacy→ Software security engineering; Soft-
ware reverse engineering; Security requirements.
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1 INTRODUCTION
In the last decades, software has steadily become increasingly ubiq-

uitous, and programmable electronic devices are nowadays part of

every aspect of everyone’s life. Most often, users have little control

on the software that runs on these devices and on the life cycle of
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release upgrades to fix outstanding bugs. Companies tend to be very

secretive about their implementations and rarely provide access to

the source code of their applications, either to protect patents and

trade secrets, or in the hope to provide security by obscurity. In

some fields, it is also common to find legacy code that runs parts

of critical infrastructures, for which gaining access to the source

is not even an option, since the company that originally provided

it ran out of business.

In all these scenarios, it is challenging for external analysts to

conduct independent security assessments of the implementations,

let alone to provide fixes for bugs and vulnerabilities.

In this context, performing an in-depth analysis of a piece of

software without access to its source code is significantly more dif-

ficult. To this end, decompilers are powerful tools that, starting from
a binary executable program, can reconstruct a representation of

its behavior using a high-level programming language, typically C.

These tools save the analyst from the need of looking directly the as-

sembly code, leading to a dramatic reduction of the effort necessary

to perform a security assessment, making it viable in new scenarios.

The compilation process is not perfectly reversible, which compli-

cates the task of evaluating the quality of the results of a decompiler.

Due to aggressive compiler optimizations and hand-written assem-

bly, it is often impossible to recover the exact original source from

which a binary executable was produced. A decompiler could even

be used to recover C code from a Fortran program. In principle the

process should work, but the recovered C code would not be the

original source nor very idiomatic C.

Therefore, in practice, the goal of a decompiler is not really to

produce the exact same source code that originated the program,

which might be plainly unfeasible, but to produce some high-level

representation easy for analysts to reason about. For this reason, it

is of very important for a decompiler to produce high-quality code.

The quality of decompiled code can be measured in different

ways. Informally, it can be described as the readability of the code,

i.e., the ease with which a snippet of decompiled code can be un-

derstood by an analyst. This qualitative measure is strongly related

to the mental load necessary to understand the behavior of the

code, which in turns depends on the amount of information that

the analyst has to track during the analysis. This information can

be ascribed mainly to the complexity of the control flow and de-

pends on all the possible entangled execution paths that can lead

to a certain portion of the code. All these factors contribute to the

mental load of an analyst.

To minimize such load, and to produce high-quality output code,

decompilers adopt various techniques to restructure the control

flow of decompiled programs, to make them easier to read and to
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reduce the burden of understanding their functioning. As an exam-

ple, control flow restructuring can be used to reduce the number of

goto statements [23], cutting the number of unstructured jumps

across the program, hence reducing the mental load necessary to

track all the possible paths. As another example, control flow re-

structuring can be used to produce if-then-else or loops that

naturally match high-level programming constructs, or to collapse

multiple ifs in a single one if they check the same condition. All

these modifications on the control flow contribute to make the code

easier to understand.

In summary, this paper makes the following contributions:

• we present a novel algorithm for control flow restructuring that

1) produces well-structured programs that can always be emit-

ted in C, without resorting to goto statements, 2) significantly

reduces the cyclomatic complexity [19] of the generated C code

compared to the state of the art, a measure of the complexity of

the control flow strictly related to the mental load required to

understand the observed code, 3) fully exploits the expressive-

ness of the C language (such as short-circuit of if conditions

and switch statements);

• we implement the proposed approach employing the rev.ng
binary analysis framework as a basis;

• we compare the resulting decompiler, revng-c, with state-of-

the-art commercial and academic decompilers, on a set of real

world programs, measuring the size of the decompiled code and

its cyclomatic complexity.

The remainder of this work is structured as follows. Section 2 in-

troduces the fundamental concepts necessary to understand the

rest of the work. Section 3 discusses related works while Section 4

presents the design of the control flow restructuring algorithm.

Section 5 shows the experimental results obtained on a set of real-

world programs, the GNU coreutils, comparing the approach pro-

posed in this work with other commercial, open-source and aca-

demic decompilers: the Hex-Rays Decompiler[1, 14], Ghidra[3], and

DREAM[22, 23]. Finally, Appendix B discusses more idiomatic case

studies and corner cases before the concluding remarks in Section 6.

2 BACKGROUND
This section briefly outlines the main concepts that are necessary

for the understanding of the paper.

Graph basics. In this paper we give for granted a number of fun-

damental concepts revolving around Directed Graphs. For the in-

terested reader, these concepts are discussed in more detail in Ap-

pendix A, and a more distinguished reference can be found in [15].

Most of this concepts should be familiar, since they are widely

used in program analysis for representing the control flow of a

program by means of Control Flow Graphs (CFG). In particular, we

will make wide use of the following concepts.

• control flow graph representation of a program.

• directed acyclic graphs (DAG).
• search and visits over CFGs. In particular, we will make ex-

tensive use of the Depth First Search algorithm, and of the

orderings it induces on a CFG, as the preorder, postorder and
reverse postorder.

• dominance and post-dominance, and the data structures they

induce, the dominator- and post-dominator-tree.

Short-circuit evaluation. In this paper, short-circuit evaluation
refers to the semantics of boolean expressions in C.

If a boolean expression has more than one argument, each argu-

ment is evaluated only if the evaluation of the previous arguments

is not sufficient to establish the value of the expression containing

the boolean operator. This is particularly important when the eval-

uation of some operand of the boolean expression have side-effects,

because only the side-effects of the arguments that are actually

evaluated will be triggered.

CyclomaticComplexityThe cyclomatic complexity is awell-known
software metric used to capture the complexity of a program. It

was originally conceived by T. J. McCabe in 1976 [19].

It represents a quantitative measure of the number of linearly

independent paths in a program source code. The cyclomatic com-

plexity is computed on the control flow graph of a program.

In general, the formula to compute the cyclomatic complexity

of a program is given by 𝑀 = 𝐸 −𝑁 + 2𝑃 , where 𝑀 is the cyclo-

matic complexity itself, 𝐸 is the number of edges in the CFG, 𝑁 is

the number of nodes in the CFG and 𝑃 represents the number of

connected components in the graph.

In the case of a single subroutine 𝑃 is always 1 hence the formula

can be simplified to𝑀 =𝐸−𝑁 +2. If we consider a program as the

union of all the CFGs of its subroutines the cyclomatic complexity

of the program can be computed as the sum of all the cyclomatic

complexities of the single subroutines.

3 RELATEDWORK
This section describes the related work in two main fields: recovery

of Control Flow Graphs, and decompilation.

CFG Recovery. In this work we focus on control flow restructur-

ing, and we use as a starting point the Control Flow Graph of the

function we want to analyze and decompile.

The problem of correctly recovering such graphs from binary

code is well-known and lot of research work has been done in

this field. The CMU Binary Analysis Platform (BAP) [5] is a bi-

nary analysis framework which disassembles and lifts binary code

into a RISC like intermediate language, called BAP Intermediate

Language (BIL). BAP also integrates all the techniques developed

previously for BitBlaze [20]. The rev.ng [9, 10] project, which is

an architecture independent binary analysis framework based on

qemu [4] and llvm [17], is able to lift a binary into an equivalent

llvm ir representation. Other research groups have also dedicated

efforts to tackle the problem of disassembling obfuscated code [16].

The approach presented in this paper does not rely on any spe-

cific technique for extracting CFGs from binary code, hence it is

general enough to be used with any of these approaches.

Decompilation. The academic foundational work in the field of

decompilers is probably Cifuentes’ PhD thesis [8]. The techniques

presented there have been implemented in the dcc decompiler,

which is a C decompiler for Intel 80286.

In the field of commercial decompilers, Hex-Rays[1] is the de-

facto leader, and its decompiler is provided as a plug-in for the

Interactive Disassembler Pro (IDA) [14] tool. No specific informa-

tion on the internal structure of the decompiler is publicly available,

apart from the fact that it uses some kind of structural analysis [13].



Phoenix [6], a decompiler tool built on top of the CMU Bi-

nary Analysis Platform (BAP) [5], uses iterative refinement and

semantics-preserving transformations. The iterative part is imple-

mented through the emission of a goto instruction when the de-

compilation algorithm cannot make progress.

A very recent entry in the field of decompilers is Ghidra, which

is included in the Ghidra reverse engineering tool [3], initially de-

veloped by US National Security Agency (NSA) for internal use.

The tool has been open sourced very recently (April 2019) but, as of

today, no extensive documentation on the design of the components

has been released.

The decompiled code generated from Ghidra bears some sim-

ilarities with the Hex-Rays Decompiler, and this suggests that it

also uses an approach based on structural analysis. In particular,

both tools, the Hex-Rays Decompiler and Ghidra, emit C code with

many goto statements, which is not idiomatic and results in very

convoluted control flow. This fact makes it hard to keep track of all

the entangled overlapping control flow paths in the code, making

it hard to understand. This characteristic is also somehow shared

by the Phoenix decompiler, which emits goto statements when it

cannot make further progress.

The DREAM [23] decompiler takes a drastically different direc-

tion. The authors present various semantic-preserving transforma-

tions for the CFG, and a decompilation technique that emits no goto
statements by design. However, to avoid gotos, DREAM handles

“pathological” loops by means of what can be seen as predicated

execution. If a CFG has a loop and a branch that jumps straight

in the middle of the loop from a point outside the loop, DREAM

wraps parts of the body of the loop inside a conditional statement

guarded by a state variable. This design choice prevents gotos but
generates code where multiple execution paths are entangled and

partially overlap. An example can be seen in an open dataset of

code snippets released by the authors [21], in Section 1.5, page 7, at

lines 12–16 of code generated by DREAM. In larger functions, this

can significantly increase the mental load of an analyst, especially if

a loop contains more than one of these conditional blocks, possibly

nested or with multiple conditions.

4 CONTROL FLOW COMBING
In this paper we make a novel choice for the generation of decom-

piled code that is free from goto statements: we accept to duplicate

code in order to emit more idiomatic C code that reduces the mental

load of an analyst, being more readable and easier to understand.

This section focuses on the details of this technique, called Control
Flow Combing.

The algorithm is composed of 3 stages: a Preprocessing, which
prepares the input CFG to the manipulation, transforming it into

a hierarchy of nested Directed Acyclic Graphs (DAG); the actual

Combing stage, which disentangles complex portions of the control

flow by duplicating code portions or introducing dummy nodes; a

final Matching stage, which matches idiomatic C constructs, while

trying to reduce unnecessary duplication.

Informally, the idea is to “comb” the Control Flow Graph, dupli-

cating code to disentangle convoluted overlapping paths, so that the

properties necessary to emit idiomatic C code naturally emerge. We

pay this potential duplication as a cost necessary to handle generic

binary programs. To gracefully handle common cases, theMatching
step is performed as post-processing to reduce duplication when

possible, leaving freedom and generality to the Combing without

sacrificing the capability to emit high-quality code.

The remainder of this section is structured as follows. Section 4.1

provides an overview the high-level design goals. Section 4.2 intro-

duces the CFG properties that are later enforced by the Preprocess-
ing and Combing stages. Section 4.3 provides a general overview

before digging into the details of the three stages: Preprocessing
(Section 4.4), Combing (Section 4.5), and Matching (Section 4.6).

4.1 Design Goals
The fundamental goal of the algorithm presented here is to increase

the quality of the produced decompiled code. As mentioned in Sec-

tion 1, this means reducing the informative load on the shoulders

of analysts. To achieve this, the algorithm is designed with some

fundamental goals.

Generality. It must be able to work on any CFG, independently

of its complexity. This is important since, in decompilation, input

CFGs might be originate from hand-written or compiler-optimized

machine code. To build a decompiler that consistently generates

high-quality output very few assumptions can be made on the

input CFGs.

Structured. It needs to transform any CFG so that it can be ex-

pressed in terms of C constructs, excluding gotos. gotos, and
unstructured programming in general, can considerably increase

the complexity of the control flow[11].
Expressive. Starting from such structured CFGs, it must be able

to emit a wide range of idiomatic C constructs, such as while and

do-while loops, switch statements, and if statements with or

without else and short-circuited conditions.

4.2 CFG Properties
The Preprocessing and the Combing stages of the algorithm enforce

some properties on the input CFGs. Such properties are inspired to

fundamental characteristics of structured C programs and designed

to mimic them. The fundamental idea of the algorithm is to enforce

each of these properties one at a time. Once a property has been

enforced it becomes an invariant, so that it is preserved from all

the subsequent steps. In this way, the final result of applying the

transformations on the original CFG will feature all the properties.

Being these properties tailored to describe structured C programs,

the resulting CFG at the end of the algorithm is straightforward to

translate in C without gotos.
In the following we list the properties we aim to enforce.

Two Successors. The first important property of structured C pro-

grams is that each basic block has at most two successors. The

only case that does not respect this condition is the switch state-
ment, but every switch can always be transformed in a sequence

of if-else statements and vice versa. The Preprocessing phase will

always enforce this property on CFGs, deferring to the Matching
stage the decision of whether to emit ifs or switches.

Two Predecessors. This property holds whenever a basic block in

CFG has at most two predecessors.
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Figure 1: A CFG without Diamond Shape property. Node 3 is
reachable from 2 but does not dominate it. To emit this code in C,
a goto statement would be required (either ⟨1,3⟩ or ⟨2,3⟩).

Loop Properties. In a well-structured C program each loop has

the following three characteristics.

Single Entry. In C, the only way to enter a loop, without passing

from the entry node, is using the goto statement.

Single Successor. In C, the only way to abandon a loop without

gotos is using the break statement, and all the break statements

in a loop jump to the same point in the program: the single suc-

cessor of the loop. The case of a natural exit from the loop is just

an implicit break
Single Retreating Target. In C, all the retreating edges in a struc-

tured loop jump to the same target since, given that we have no

gotos, they must be continue statements. Just like breaks, all
continues in a loop jump to the same point: the single retreating

target, which is also the entry node.

The fact that break and continue statements always target a single

node is only true under two assumptions. The first is that there are

no switch statements. The second assumption is that there are no

nested loops since, e.g., break statements of a nested loop do not

jump at the same target as breaks of its parent loop. These two
assumptions might sound strong, but the Preprocessing phase is

designed to ensure that these properties are enforced in strict order,

so that when the Loop Properties are enforced all their prerequisite

are guaranteed to hold. All the loop properties described above will

be enforced on the input CFG from the Preprocessing stage.

Diamond Shape Property. The Diamond Shape property holds

for a DAG whenever each node with two successors dominates all

the nodes between itself and its immediate post-dominator. This

property is enforced by the Combing stage, on the DAGs generated

by the Preprocessing stage.

This mimics the fact that in well structured C programs all the

scopes are either nested or non-overlapping. In other words, enforc-

ing this property means forcing a DAG in the form of a diamond
where each node with more than a single successor induces a region

of nodes with a single entry and a single exit.
To grasp the implications of this property, it might be useful to

think about a scenario where this property does not hold. An ex-

ample is portrayed in Figure 1. In this setting, it exists a conditional

node, node 2 in Figure 1, and another node, node 3, reachable from

the conditional node, which is not dominated by the conditional

node. There exist another node, node 1, from which it is possible

to reach node 3 without passing from node 2. But node 2 is a con-

ditional node (an if statement in C), and since node 3 is reachable

from node 2, if the program is well-structured node 3 should be

either in the then or in the else, or after the if-else altogether.
At the same time, there is a path from node 1 to node 3 that does not

pass from node 2. The main problem with this scenario, is that such

a graph cannot be emitted in well-structured C programs without

using gotos. Hence the Combing stage enforces this property.

4.3 Overview of the Algorithm
As previously anticipated, the Control Flow Combing algorithm is

designed in three incremental stages: Preprocessing, Combing, and
Matching.

Preprocessing. The goal of this stage is to massage the input CFG

in a shape that can be digested by the Combing. To do this, the

Preprocessing incrementally enforces all the properties described

in Section 4.2, except for the Diamond Shape property. It does so
by working on a tree-like hierarchy of nested Regions of the CFG,
called Region Tree. At the end of Preprocessing all the Regions in the

tree are transformed into DAGs.

Combing. This stage works on the Region Tree generated by Pre-
processing, which is now constituted only by DAGs. The Combing
enforces the Diamond Shape property on all the DAGs in the tree.

After this transformation the tree is ready to be transformed into

an C Abstract Syntax Tree.

Matching. This stage uses the combed Region Tree to generate a C

AST representation. The AST is subsequently manipulated with a

set of rules to match idiomatic C constructs. The rules presented in

this paper cover short-circuited ifs, switch statements, and loops

in the form do {...} while(...) and while(...) {...}, but others
can be added. After matching idiomatic C constructs, the final C

code is emitted in textual form.

4.4 Preprocessing
This section describes the Preprocessing stage in detail.

The first part of the Preprocessing, described in Section 4.4.1, is

designed to divide the CFG on a hierarchy of nested Regions, each
roughly representing a loop. The goal is to superimpose on the CFG

a Region Tree, that represents the hierarchy of loops in the CFG

itself. Each Region in the tree is then handled independently of the

others by the next steps of Preprocessing and Combing, reducing
the complexity of algorithm.

The second part of the Preprocessing, described in Section 4.4.2,

works on the Region Tree, transforming each Region into a DAG, so

that it can subsequently be handled by the Combing stage.

4.4.1 Building the Region Tree. This process is composed by three

steps. The first adds a sink node as a successor of all the exit nodes,

which is necessary to compute post-dominance. The second starts

to enforce some of the properties discusses in Section 4.2. The third
identifies nested Regions and builds the Region Tree.

Adding the sink Node. In general, CFGs obtained from binary

programs do not have a single exit, which is a requirement to com-

pute the post-dominator tree, which in turn is a requirement to

reason about the Diamond Shape property that is enforced later.

Hence, every CFG needs to be brought into a shape with a single

exit. This is done by adding an artificial sink node, and attaching

an artificial edge from each original exit basic block to the sink.
This makes the sink the single exit node, allowing to compute the

post-dominator tree.

This operation does not alter the semantic of the program, and

is preserved by all the following steps.
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Figure 2: Merging partially-overlapping SCS. There are two SCS
(⟨1,2,3⟩ and ⟨2,3,4⟩) induced by the retreating edges 3→ 1 and 4→ 2

(dashed). They overlap but they have no inclusion relationship,
therefore they are merged into a new SCS ⟨1,2,3,4⟩.

Enforcing Two Predecessors and Two Successors. First, the
Two Successors property is enforced by transforming all the switch
statements into cascaded conditional branches, with two targets

each. Similarly, the Two Predecessors property is enforced by taking

each basic block with more than one predecessor and transforming

it into a tree of empty basic blocks (dummies) that only jump to

their single successor.

These operations do not alter in any way the semantic of the

program. Moreover, the Two Predecessors and Two Successors are
preserved in all the following steps.

Identifying NestedRegions. The core idea of this step is to merge

sets of the partially overlapping loops in the CFG into an individual

Region that we can then reason about as a single loop.

To define these Regions, the algorithm starts from all the Strongly
Connected Subgraphs (SCS), i.e., subgraphs of the original CFG

whose nodes are all reachable from each other. There might be

several overlapping and non-overlapping SCS in a graph. Note that

a SCS is a difference concept from a Strongly Connected Component
(SCC), typically used in loop analysis. In fact, SCCs are always non-

overlapping by definition, and their union represent the entire CFG.

In particular, we are interested in SCSs induced by retreating edges.
Given a retreating edge 𝑒 = ⟨𝑠,𝑡⟩ the SCS induced by 𝑒 is constituted
by all the nodes that are on at least one path starting from 𝑡 and

ending in 𝑠 that does not crosses 𝑡 nor 𝑠 .

First, the algorithm identifies all the SCS induced by all the

retreating edges in the CFG, simply applying the definition above.

Note that at this stage the resulting SCSs can still overlap, whereas

to build a hierarchy between SCS it is necessary for the set of SCSs to

form a partially ordered set with the strict subset relation (⊂). Hence,
for each pair of SCS𝐴 and 𝐵, if𝐴∩𝐵≠∅,𝐴⊄𝐵, and 𝐵⊄𝐴, then𝐴∪𝐵
is added to the set of SCS, removing 𝐴 and 𝐵 from the set of SCSs.

When this happens, the algorithm restarts from the beginning, until

a fixed point is reached. Notice that the union of two SCS is always

an SCS, hence the process can proceed. An example of partially

overlapping SCS that trigger this condition is shown in Figure 2.

This process converges since the ∪ operator is monotonic and

the CFG has a finite number of nodes. At the end only a set of SCS

that is partially ordered with the ⊂ relationship is left. Each of this

remaining SCS is a Region roughly representing a loop, or a set of

loops tightly entangled together. Considering the whole CFG as a

Region itself, the ⊂ relationship naturally induces a tree on all the

regions. The whole CFG is the root of the tree, and moving towards

leaves we encounter more and more deeply nested loops. This tree

structure is called the Region Tree.
Notice that the grouping of nodes in Regions does not alter the

CFG, hence it does not alter the program semantic. The same holds

if a node is moved inside or outside of an existing Region. From this

0 1 2

Figure 3: Electing a Region’s head. The retreating edges are dashed.
Node 1 has one incoming retreating edge, while node 0 has 2. For
this reason, node 0 is elected head of the Region.

point, all the steps of the algorithm only work on Regions and the

Region Tree.

4.4.2 Turning Regions into DAGs. The goal of this phase is to turn
each Region into a DAG that can be then be reasoned about in

simpler terms. This process is composed of various incremental

steps. The combination of all these steps enforces on the Regions
all the remaining properties introduced in Section 4.2 except for

the Diamond Shape property, i.e., the Two Successors property, and
the Loop Properties. Where noted, some of steps are optional and

dedicated to gracefully handle common cases.

The following steps work on a single Region at a time, moving

from the leaves to the root of the Region Tree. At the beginning of
this process all Regions but the root are still SCS. At the end of this

process the Regions are transformed in DAGs, so that they can be

treated by the next phase, Combing.

Electing Regions’ Heads. The Loop Properties require every Re-
gion to have a Single Entry and a Single Retreating Target. However,
at this stage, each of them may contain multiple retreating edges,

possibly targeting different nodes. This step elects the entry node:

the node that is target of the highest number of retreating edges.

This node, the head node, represents the beginning of the loop body,
and will be the target of all the retreating edges in the loop.

Retreating Edges Normalization. After the election of the head,
all the retreating edges that do not point to it are considered abnor-
mal, since they do not respect the Single Retreating Target property
and, therefore, need to be handled.

Consider the graph in Figure 3: the head is node 0 and there is

a single abnormal edge from node 2 to 1. In C parlance, this edge is

not a continue, since it jumps to the middle of a loop. Informally,

to handle this situation, we can introduce a state variable in the pro-

gram so that the abnormal edge can be represented with a continue.
In practice, this edge will target a virtual head node that will check

the value of the state variable and dispatch execution at the correct

location (Node 1). To discriminate between retreating edges, the
state variable is set before every retreating edge and checked at the

beginning of the loop with a dedicated construct.

This is exactly what the normalization step does for abnormal
edges. For each Region, a state variable 𝑣 is created. Then, a distinct
identifier is assigned to each node with incoming abnormal edges,
as well as to the head elected at the previous step. Then, a new set

of nodes is created before the head, containing only conditional

jumps that check the state variable to dispatch the execution at the

correct target (either a target of an abnormal edge or the head). This
set of nodes is called the head dispatcher, and its first node is called

ℎ. Finally, each abnormal edge 𝑒 = ⟨𝑠,𝑡⟩ is replaced with a new pair

of edges. The former edge of this pair is 𝑒ℎ = ⟨𝑠,ℎ⟩. This edge points
to the entry point of the head dispatcher, and sets the state variable

to the value associated to 𝑡 , say 𝑣𝑡 . The latter edge is added from the

node in the head dispatcher that checks for the condition 𝑣 ==𝑣𝑡 to
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𝑣 :=0
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Figure 4: Normalizing retreating edges on the CFG from Figure 3. All
the retreating edges (dashed) now point to the new head dispatcher
and set the state variable (values are reported on the edge labels).
The head dispatcher then jumps to the original target node.

𝑡 . Finally, the single entry point of the head dispatcher is promoted

to new head of the Region.
Figure 4 shows the result for the normalization of abnormal edges

applied to the CFG originally depicted in Figure 3.

The idea is to enforce the Single Retreating Target property, edit-
ing the control flow without altering the semantics of the original

program, except for the introduction of the state variable 𝑣 . This pro-
cess also preserves the Two Successors property. All these properties
are from now on invariant and preserved in the next steps.

Notice that redirecting the abnormal edges to the entry dispatcher
maymomentarily break the Two Predecessors property. But this does
not represent a problem since the normalized abnormal edges are
later removed and substituted with continue statements.

Loop Successors Absorption. This is an optional step that starts

moving in the direction of the Single Successor loop property. It is

designed to handle gracefully a scenario observed frequently in

real-world example, depicted on the left in Figure 5. The Region
⟨0,1,2⟩ in the figure has two successors, 3 and 4. Informally it is easy

to see that the Region, along with node 3, is substantially a loop

that executes the code in node 3 on break. Given that one of the

goals is to emit idiomatic C, this would be better represented with

a loop, containing an if statement that executes the code in 3 and

breaks. In order to reach this form, the node 3 must be absorbed

into the Region, as shown in Figure 5.b.

More formally, this step starts with the creation of new empty

dummy frontier nodes on each edge whose source is in the Region
and whose target is not (see the empty dashed node in Figure 5.b).

Then, it computes the dominator tree of the entire CFG (not only the

current Region) and adds to the Region all the nodes that are dom-

inated both by the head of the Region and by at least one dummy
frontier node.

This embodies the idea that given a node, if it is only reachable

passing through the head of Region and from a dummy frontier it is
in fact part of the Region itself, and it must be handled accordingly

by the remaining steps.

This step does not alter the semantic of the program as it only

adds empty dummy frontiers, and it also does not break any of the

previously enforced invariants.

First Iteration Outlining. This step enforces the Single Entry
property on Regions, removing potential multiple entry points that

at this stage are still possible by means of abnormal entries. An
abnormal entry is an edge 𝑒 = ⟨𝑠,𝑡⟩ such that 𝑠 is not in the Region,
𝑡 is in the Region, and 𝑡 is not the head.
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4

Figure 5: Absorbing Successors. Left – The Region with the nodes
with dashed border has two successors: 3 and 4. Right – Node 3 has
been absorbed in the Region, which now has a single successor.

0 1 2

before outlining

0 1 2

1 2

after outlining

Figure 6: First iteration outlining. Dashed nodes are the outlined.

Abnormal entries are removed based on the observation that

each of them generates a set of paths that: enter the Region, execute
some parts of the loop and at some point reach the proper head of

the loop and proceed with regular iterations.

Thanks to this observation, the nodes and edges that compose

the first iteration can be duplicated and moved out of the Region,
since once they are outlined they have no retreating edges and bear

no signs of being loops.

Note that it would be possible to leave the first iteration inside the

loop, but it requires guarding each statement with conditional con-

structs, an approach adopted by previous works [22, 23]. However,

we deem that choice to be suboptimal since it generates decompiled

code where paths are entangled together and artificially guarded

by conditional constructs. Moving the first iteration outside the

Region makes it easier to reason about, since it can be analyzed in

isolation, while also leading to more idiomatic C code.

Exit Dispatcher Creation. Symmetrically to the creation of entry

dispatchers, this step normalizes the Regions to completely enforce

the Single Successor loop property. The successors absorption step

was an optional step to get the low-hanging fruit in this direction,

while gracefully handling common cases, but not all scenarios.

If the Single Successor loop property does not hold after the suc-
cessors absorption step, this step injects an exit dispatcher, that is
built and acts similarly to the entry dispatcher, changing the control
flow without altering the semantic of the program thanks to a state
variable. Again, each of the edges 𝑒 = ⟨𝑠,𝑡⟩ with 𝑠 in the Region
and 𝑡 outside is substituted with two edges. The first starts from 𝑠 ,

sets the state variable, and jumps to the exit dispatcher. The second
starts from the exit dispatcher and goes to the 𝑡 . In this way, the

first node of the exit dispatcher becomes the single successor of the

Region. Notice that this means that the exit dispatcher itself is not
part of the Region but is part of its parent Region in the Region Tree.

Figure 7 shows a case where the creation of the exit dispatcher
is necessary.
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Figure 7: Creating exit dispatcher. Left – The Region composed by
nodes 0 and 1 has two successors (2 and 3). Right – Creation of the
exit dispatcher, making it the target of the outgoing edges. The
edges also carry the values assigned to the state variable, later used
dispatch the execution to the real successors.
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before after

Figure 8: Creation of break and continue nodes.

Note that this step does not alter the program semantics and does

not break any of the previously enforced invariants, since the exit
dispatcher is built of conditional statements. The Single Successor
loop property is enforced for all Regions and will be preserved by

all the following transformations.

Again, this does not alter the program semantics and does not

break any of the previously enforced invariants, since the exit dis-
patcher is built of conditional statements. The Single Successor loop
property is enforced for all Regions and will be preserved by all

following transformations.

break and continue Emission. This step transforms each Region
in a DAG that is then ready to be fed into the Combing stage.

After the previous steps, the execution of a program in a given

Region can either take an exit edge and jump to the single successor,

or take a retreating edge and jump to the head to execute another

iteration. At this point, all the properties introduced in Section 4.2

have been enforced, with two exceptions: Diamond Shape, that will
be enforced later by Combing and Two Predecessors, that was en-
forced at the beginning of Section 4.4.1, but that might have been

broken during Retreating Edges Normalization, to enforce the Single
Retreating Target and Single Exit. As a matter of fact, if all the re-
treating edges in a Region point to the head, head might have more

than two predecessors. This step re-enforces the Two Predecessors
while transforming the Region in a DAG.

It starts by removing all the retreating edges, and substituting

them with jumps to a newly created continue node. This naturally
conveys the same semantic, that a retreating edge jumps to the

head to start another iteration of the loop.

Then, all the edges jumping out of the region to the single suc-

cessor are substituted them with jumps to a newly created break
node. This also conveys the same semantic, that an exit edge jumps

straight out of the loop to its single successor.

Figure 8 shows an example of these transformations.

Collapsing Regions. At this point, a Region that has been trans-

formed by all the previous steps of Preprocessing is finally a DAG.

As mentioned at the beginning of Section 4.4.2, only one Region
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breakcontinue

Figure 9: Collapsing nested DAG Region. The Region with red
nodes on the left (composed of 1,2,3,4,break, and continue) can be
collapsed in a virtual node from the point of view of its parent.
at a time is turned into a DAG, working on the Region Tree from
the leaves to the root. After a Region has been transformed into a

DAG, this step collapses it into a single virtual node in its parent’s

representation.

This is possible since each DAG Region has a Single Entry (part

of the DAG) and a Single Successor (not part of the DAG). Retreat-
ing edges have been removed from the DAG, and substituted by

continue nodes, that represent jumps to the Single Entry. Paths
that exit from the DAG have been substituted with break nodes

jumping to the Single Successor.
Hence in the parent’s representation, a DAG Region is collapsed

into a single virtual node𝑉 as follows. Given a Region 𝑃 and a nested

DAG Region 𝐶 with Single Entry 𝐸 ∈𝐶 and Single Successor 𝑆 ∈𝑃 \𝐶 .
First, all the nodes in 𝐶 are moved into the virtual node 𝑉𝐶 .

Then, each edge 𝑒 = ⟨𝑋,𝐸⟩ jumping from 𝑃 \𝐶 to 𝐸 is substituted

with an edge 𝑒𝑉𝐶 = ⟨𝑋,𝑉𝐶 ⟩. These represent all the entry paths

to 𝑉𝐶 (hence to the collapsed Region 𝑅), since the Diamond Shape
property guarantees that there are no edges in the form ⟨𝑋,𝑌 ⟩ with
𝑋 ∈𝑃 \𝐶 , 𝑌 ∈𝐶 and 𝑌 ≠𝐸. From a semantic standpoint, every new

edge 𝑒𝑣 jumps from 𝑋 to the head of the Region𝐶 collapsed into𝑉𝐶 .

Finally, a new edge 𝑒𝑆 = ⟨𝑉𝐶 ,𝑆⟩ is added to represent the fact that
break nodes inside Region 𝐶 collapsed into 𝑉𝐶 can jump straight

to the successor 𝑆 .

This step concludes the collapsing of a single Region. An example

can be seen in Figure 9.

Once all the children of a Region have been collapsed, the Region
can be processed, until all the Regions in the tree become DAGs.

These DAGs contain, among others, virtual nodes that represent

nested collapsed DAG Regions. The Region Tree is now ready to be

processed by the Combing stage.

4.5 Combing
This is the core of the Control Flow Combing algorithm. It enforces

the Diamond Shape property, on all the DAGs in the Region Tree.
Enforcing this property reshapes the DAG so that it is only com-

posed by nested diamond-shaped regions. These regions have only

a single entry and a single exit node. They have no branches that

jump directly in the middle of the region or jumping out from the

middle of the region. All the paths incoming into a diamond-shaped

region pass by the entry, and all the paths outgoing from the region

pass by the exit. A simple example is visible in Figure 10.a.Diamond-
shaped regions are easily convertible to C if-else constructs, with
then and else branches, and with a single common successor that

is the code emitted in C after both then and else.



(a)

true false

1

2

3 4

5

(b)

𝐴

𝐴

𝐵

𝐵

1

2

3 4 4

D

5

(c)

𝐴

𝐴

𝐵 𝐵

Figure 10: (a) A diamond shaped region. (b) A region which is not
diamond-shaped. The arc between 1 and 4 breaks the assumption
of not having edges incoming from outside the region. (c) The same
region after the Combing has two nested diamond-shaped regions.
D is a dummy node, i.e., an empty node useful only to highlight
the diamond-shape.

Informally, the key idea of the Combing step, is to take all the

regions that are not diamond-shaped (as the one in Figure 10.b) and

restructure them to be diamond-shaped (as the one in Figure 10.c).

In order to achieve this goal, it is necessary to duplicate some nodes

in the graph. Node duplication can increase the size of the final

generated C code. However, we deem that this increases clarity

since it disentangles complex overlapping paths in the control flow,

linearizing them and making them easier to reason about for an

analyst, that can consider them one at a time. Moreover, in most

cases the duplicated nodes introduced by the Combing can be dedu-

plicated by the Matching stage, that uses them to emit idiomatic C

code such as short-circuited ifs as explained in Section 4.6.2.

The Combing Algorithm. As all previous steps, Combing is done
on a single Region at a time. Thanks to the previous steps, Regions
at this point are DAGs. These two properties greatly reduce the

complexity, thanks to the shift of the problem from a global to a

local perspective, and since DAGs are acyclic.

For each Region DAG the comb works as follows. First, it collects
all the conditional nodes on the DAG. The Diamond Shape property
states that every conditional node must dominate all the nodes

between itself and its immediate post-dominator. Hence, for each

of these nodes, it identifies the immediate post-dominator. This is

always possible since the DAG has a single exit, thanks to the sink
node injected at the beginning of Preprocessing. In this way, for

each conditional node 𝐶 , the algorithm identifies as set of nodes

D(𝐶) between 𝐶 and its immediate post-dominator.

Second, for each node 𝑁 inD(𝐶) that is not dominated by𝐶 there

is some incoming edge 𝑒 = ⟨𝑋,𝑁 ⟩ such that source node 𝑋 is not

dominated by𝐶 . To enforce the Diamond Shape property, 𝑁 should

be dominated by𝐶 . Hence the node 𝑁 is duplicated, creating a basic

block node 𝑁 ′
that contains the same instructions as 𝑁 . Initially

𝑁 ′
has no incoming nor outgoing edges. Then, for every outgoing

edge 𝑒𝑆 = ⟨𝑁,𝑆⟩ from 𝑁 , an outgoing edge 𝑒 ′
𝑆
= ⟨𝑁 ′,𝑆⟩ is created

from 𝑁 ′
. This ensures that 𝑁 ′

jumps in the same places where 𝑁

jumped, preserving the semantic of the program after 𝑁 . Then,

each incoming edge 𝑒𝑃 = ⟨𝑃,𝑁 ⟩ into 𝑁 such that 𝐶 dominates 𝑃 is

substituted with an edge 𝑒 ′
𝑃
= ⟨𝑃,𝑁 ′⟩ incoming into 𝑁 ′

. This means

that after this transformation the node 𝑁 ′
is dominated by 𝐶 , and

the node 𝑁 is not reachable from 𝐶 anymore. See Figure 10.b and

Figure 10.c for an example of this transformation.

Basically, the underlying idea is to group the incoming edges

in node 𝑁 in two sets: one composed by the edges dominated by

conditional node 𝐶 , that will be moved to node 𝑁 ′
, and the other

one composed by the edges not dominated by 𝐶 , that will remain

attached to node 𝑁 .

This is sufficient to enforce the Diamond Shape property for 𝐶

and 𝑁 , but there might be other nodes in D(𝐶). Repeating this on
each 𝑁 ∈D(𝐶) fully enforces the Diamond Shape property for the

conditional node 𝐶 . In turn, repeating the process in post-order on

all conditional nodes in the DAG enforces the property on the whole

Region. Notice that the process either never touches a node 𝑁 (since

it already fulfills the Diamond Shape property for all the conditional
nodes from which it is reachable) or it splits the incoming edges

of 𝑁 into two sets.

At the end of the procedure, the Region DAG fulfills the Diamond
Shape property and is said to be combed.

Note that, as shown in Figure 10, the Combing can insert dummy

nodes (i.e., empty nodes) to reinstate the two predecessor property,
and highlight the diamond-shape.

ImprovedCombingAlgorithm:UntanglingReturnPaths.The
Combing Algorithm as described above still has a drawback in some

common cases: it duplicates code very aggressively which can lead

to a big increase in code size if not controlled.

Consider Figure 11. The source code in the figure is very sim-

ple, and represents a pretty common case where some checks are

performed on the arguments (A and B), a complex computation

composes the body of the function (C), and some final error check

is performed going on.

As we can see in Figure 11(a), one of the typical optimizations

performed by compilers even at lower optimization levels is to

coalesce all the returns in a single node (R). This is intended to

reduce code size in the binaries, but from an analysis standpoint it

“entangles” different execution paths that were originally separate

(the two return statements at lines 4 and 10).

If the vanilla Combing Algorithm is applied on the graph in Fig-

ure 11(a), both nodes C and R would be duplicated, like shown in

Figure 11(b). This would be very detrimental, because it would end

up duplicating the whole bulk of the computation (C), unnecessarily
inflating the size of the decompiled source code.

In order to cope with this cases we devised an improved combing

algorithm: the Untangling Algorithm. The improved version of the

algorithm, the Untangling is focused on handling these cases, and

is performed just before the vanilla Combing Algorithm. After the

Untangling, the Combing is executed on the untangled graphs, so

that it can iron out all the situations left behind from the Untangling
because they were not beneficial to untangle.

The Untangling is applied on each conditional node in a Region
DAG, and only if beneficial. Its benefits are evaluated with an heuris-

tic that determines, for each conditional node, if the duplication

induced by untangling the return path is significantly lower than

the duplication that the Combing pass would introduce if the Un-
tangling is not performed. To do this, the heuristic assigns a weight

to each node in the graph, to evaluate the consequences of applying

the Untangling compared to the vanilla Combing. The weight of
each node is proportional to the number of instructions each node



1 if (arg0) { // A

2 fun_call (); // B

3 if (arg1) // B

4 return; // R

5 }

6 // complex // C

7 // code // C

8 // here // C

9 if (err()) // C

10 return; // R
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Figure 11: Situation in which the baseline Combing would be very
costly in terms of duplicated code size. The graph in (a) is the CFG
of the snippet of code on the left. The red dashed node (C) represent
a big and messy portion of the CFG that would greatly increase
code size if duplicated. With the baseline Combing both C and R
would be duplicated, like shown in (b). With the Untangling, only
R is duplicated instead, like shown in (c).

contains, and for collapsed Regions this number if computed cumu-

latively on all the nodes they contain. If, according to these weights,

Untangling would duplicate more code than vanilla Combing, the
graph is not untangled and only combed.

Whenever triggered on a conditional node 𝑁 (B in Figure 11),

the Untangling duplicates all the blocks from the post-dominator

of 𝑁 to the exit of the graph (only R in Figure 11, but potentially

any other node after R). This transformation allows the Combing
step to keep duplication under control.

Going back to Figure 11, we can see in Figure 11(c) how the

Untangling would transform the graph. Only R is duplicated, saving
a huge amount of unnecessary duplication if C is big. This is also an
example where, after the Untangling, the plain Combing Algorithm
does not have anything to do, because all nodes in Figure 11(c) are

dominated by all the conditional nodes from which they are reach-

able. This means that the Diamond Shape property already holds

after Untangling, saving the work that would have been necessary

to comb the graph.

Finally, notice how the graph in Figure 11(c) is much more struc-

turally close to the original source code than what plain Combing
would obtain, i.e. Figure 11(b).

4.6 Matching C Constructs
This phase builds the initial Abstract Syntax Tree (AST) represen-

tation of each of the combed Regions, and then manipulates it to

emit idiomatic C code.

4.6.1 Building the AST. Thanks to the Preprocessing and Combing
stages and all the enforced properties, building an AST is straight-

forward. The Two Successors rule ensures that each conditional node
can be emitted as an if, and since all the DAGs are diamond-shaped

regions, the DAG naturally represents a program with perfectly

nested scopes (each diamond-shaped part represents a scope). More-

over, all retreating edges have already been removed and converted

to break and continue nodes.
All these properties imply that the dominator tree of each DAG

Region is a tree where each node can have at most three children.

Exploiting this property, the algorithm works on the dominator tree

(from root to leaves) to emit the AST. If a node 𝐴 in the dominator

tree has only a single child 𝐵, 𝐴 and 𝐵 are emitted as subsequent

statements in a single scope in C. If a node 𝐴 in the dominator tree

has two or three children, then 𝐴 is an if statement. Depending

on how 𝐴 is connected to its children, they can represent the then
branch of 𝐴, the else branch of 𝐴, and the code that is emitted in

the AST after both the then and the else. This allows to represent
all the conditional nodes as well-structured if constructs.

A special treatment is reserved to nodes in a DAG Region that

represent another nested DAG Region, that was collapsed by the

Collapsing Regions step. Whenever one of such nodes is encoun-

tered, it is emitted in the AST as a while(1) {...} construct. The
AST representing the body of the loop is then generated iteratively

from the DAG of the collapsed Region. In general, this representa-

tion is not optimal for any loop, but it’s only preliminary AST form

that will be made more idiomatic as described in the next section.

4.6.2 Matching Idiomatic C Constructs. The preliminary AST is

now post-processed to match idiomatic C constructs, striving to

emit even more readable code, while, at the same time, reducing the

duplication introduced by Combing, when this is possible without

sacrificing readability.

This post-processing is modular and extensible. We only report

some basic matching steps leading to significant improvements

with a reduced effort. Additional matching criteria can be devised

and added to the pipeline, to emit even better code.

Each matching criterion listed in the following is basically struc-

tured as a top-down visit’ on the AST, which recognizes certain

patterns and transforms the AST to more idiomatic, but semanti-

cally equivalent, C constructs.

Short-Circuit Reduction. This criterion recognizes and recon-

structs short-circuited if statements in C. In fact, the Combing step
breaks these constructs as shown in Figure 10.c. This matching

criterion reverts that choice when possible, allowing the Combing
to handle general situations, while also emitting idiomatic short-

circuited ifs whenever possible.
Figure 10.c shows two nested if statements that have the same

duplicated node in their else branches. This criterion matches that

pattern. Whenever two nested if nodes on the AST have the same

code on one of their branches, they are transformed into a sin-

gle if node, short-circuiting their conditions with the appropriate

combination of &&, ||, and ! operators.

Note that the previous works [23] did not perform short-circuited

if matching, often leading to suboptimal results.

SwitchReconstruction.This criterion recognizes and builds switch
statements. As mentioned in Section 4.4.1, to enforce the Two Suc-
cessors property, switches are decomposed in nested ifs in the

preprocessing phase of the Restructuring.
This criterion looks in the AST for nested ifs whose conditions

compare a variable for equality with different constants. Matched

sequences of ifs are transformed into switches.

Loop Promotion. Similarly to what is done in Yakdan et al.[23],
this criterion manipulates loops, initially emitted as while(1) {...},
to transform them into more idiomatic loops, with complex exit

conditions and various shapes such as while(...) {...} and do {...}
while(...).

To match while loops, the AST is scanned looking for loops

whose body starts with a statement in the form of if(𝑋) break;.
Any such cycle can be converted into a while(!𝑋) {...}, leaving
the rest of the loop body untouched. To match do-while loops,



instead, the AST is scanned looking for loops whose body’s final

statement is in the form if(𝑋) continue; else break;. These
loops are transformed into do {...} while(𝑋). The same is done

for loops where the continue and break statements are inverted,

simply negating the condition.

5 EXPERIMENTAL RESULTS
This section evaluates the proposed approach. Section 5.1 describes

the experimental setup, while Section 5.2 compares our implementa-

tion with state-of-the-art commercial and open-source decompilers.

5.1 Experimental Setup
To evaluate the performance of the Control FlowCombing described

in the previous section, the algorithm has been implemented on top

of the rev.ng static binary analysis framework [9, 10], based on

qemu [4] and llvm [17]. rev.ng is capable of generating CFGs from
binary programs for various CPU architectures. The Preprocessing
and Combing stages of the algorithm has been implemented on top

of the LLVM IR. After these phases, the Matching stage has been

implemented on a simple custom AST for C, that is then translated

into the AST employed by clang (LLVM’s C/C++ compiler) and

finally serialized to C in textual form.

The resulting decompiler is called revng-c. The quality of the

code generated by revng-c is comparedwith two other well-known

decompilers: IDA Pro’s Hex-Rays Decompiler, the leading commer-

cial decompiler developed by Hex-Rays [14], and Ghidra, developed

by the National Security Agency (NSA) of the USA for internal use

and recently open-sourced [3].

For a more thorough comparison, we tried to reach the authors

of two other recent academic contributions in the control flow re-

structuring research area, namely [7] and [23]. Unfortunately, the

authors of Brumley et al. [7] were not able to retrieve the artifacts

to reproduce the results, while the main authors of DREAM [23]

have left academia to focus on different topics, and therefore were

not able to answer our inquiry. Given that DREAM [23] is the only

other approach to generate goto-free C code, it would have been

the perfect candidate to compare our approach with. This compar-

ison would have enabled an evaluation of the main novelty of our

approach: allowing duplication of code in order to reduce the cy-

clomatic complexity of the decompiled code, which is a measure of

the mental load required to an analyst to understand the program.

DREAM tries not to resort to duplication, while we accept small to

moderate duplication because it reduces the cyclomatic complexity

of the generated code. Lacking reproducible results to compare

directly with DREAM, we decided to focus on a restricted num-

ber of case-studies, that show how the code generated by revng-c
compares with their results. Given the limited reach this manual

comparison with DREAM, we have left it in Appendix B.

The remainder of this section provides comparisons between

revng-c, Ghidra, and Hex-Rays Decompiler. For these decompil-

ers, the quality of the decompiled code was evaluated on the GNU

Coreutils. These are the basic file, shell and text manipulation com-

mand line utilities of the GNU operating system. These benchmarks

have been used in the past in related works on control flow restruc-

turing [7, 23], since they implement a large set of utilities, hence

producing a wide range of real-world different CFGs that do not

emerge in toy examples. For the benchmarks, the GNU Coreutils

9.29 have been compiled with GCC 4.9.3 targeting the x86-64 archi-

tecture, without debug symbols and dynamic linking. We evaluated

the performances of 4 optimizations levels, O0, O1, O2 and O3.
At this point, all the generated binaries have been decompiled

with all the decompilers, to generate C code. It is worth nothing that,

on the basis of the data collected during our evaluation, revng-c
is the only decompiler that produces valid C code as output. The

decompiled code generated by Hex-rays Decompiler and Ghidra

cannot be parsed as-is by a standard-conforming C parser. In order

to do this, whichwas a requirement to collect our evaluationmetrics

on the decompiled code, we had to perform ad-hoc changes on the

decompiled sources, such as declaring missing variables and types,

correcting the number of parameters in function calls, and others.

To ensure a fair comparison, with the help of IDAPython for

the Hex-Rays Decompiler and Java scripts for Ghidra, we extracted

some information on the decompiled functions, such as their entry

point and their size. We then proceeded to compare only the func-

tions for which the three tools gave identical information about

entry point and size. Later, in Table 1, we report the percentage of

functions which matched in dimension, and that we used in our

evaluation.

There is another aspect to keep in mind about using Coreutils as

benchmarks. All these programs share a core library, called gnulib,
whose code is statically linked with all binaries. This means that the

functions in gnulib are duplicated many times. This problem has

already been pointed out in the past, by the authors of DREAM [23],

who also designed a strategy to overcome it. The idea is simple:

all the decompiled functions across all Coreutils need to be dedu-

plicated before the final comparison, to avoid overrepresenting

duplicated functions. We adopted the same strategy for the com-

parison of our results.

5.2 Evaluation of the Results
The quality of the generated code has been measured according to

the two following metrics.

gotos. The number of the emitted goto statements. goto state-

ments are very detrimental to the readability of the decompiled

code since they can arbitrarily divert the control flow, and keeping

track of the execution becomes significantly more difficult [11].

Cyclomatic Complexity. The increment in cyclomatic complex-

ity [19] of the decompiled code, using the one of the original code

as baseline. This measures the mental effort required to understand

the decompiled code.

We evaluate the code generated by the three decompilers from bi-

naries with different optimization levels according to these metrics.

The evaluation is limited to the functions that all the decompilers

were able to correctly identify. The results are reported in Table 1.

By construction, revng-c zeros out the gotos metric, generating

0 gotos, over the entire GNU Coreutils suite. We can also see how

revng-c generates decompiled code with a reduced cyclomatic

complexity with respect to the Hex-Ray Decompiler and Ghidra.

Note that the cyclomatic complexity of decompiled code of the

tools is expressed with respect to this baseline. In fact, we assume

that this complexity is intrinsic in the code, and the objective of

the decompilation is to introduce as little additional complexity as



-O0 -O1 -O2 -O3

revng-c IDA Ghidra revng-c IDA Ghidra revng-c IDA Ghidra revng-c IDA Ghidra

Cyclomatic Complexity +11% +12% +16% +13% +17% +20% +36% +60% +72% +78% +86% +94%

Gotos 0 1010 1370 0 2370 2622 0 2082 2062 0 2119 2282

Matched functions 93% 91% 89% 81%

Table 1: Comparison between revng-c, IDA, and Ghidra. Results are aggregated for the optimization level that was used to obtain the binaries
that were then decompiled (-O0, -O1, -O2, -O3). For each optimization level, the first row shows percentage of functions that were matched
by all the decompilers (percentage of the binary code size). The second and third row show respectively the number of gotos produced by
each decompiler, and the additional cyclomatic complexity introduce by the decompilation process with respect to the baseline cyclomatic
complexity of the original source code.

possible. If we observe the -O2 optimization level, the one typically

adopted in release builds, we can notice that revng-c is able to

reduce the additional cyclomatic complexity by 40% with respect

to IDA, and by almost 50% with respect to Ghidra.

For what concerns the metrics for the Hex-Rays Decompiler and

Ghidra, we can see that Ghidra performs slightly better in terms

of goto statements emitted, emitting less gotos when compared to

the Hex-Rays Decompiler. Overall, as previously stated, we think

that these metrics shows that the two decompilers adopt a similar

approach to decompilation.

In Table 2 we provide an overview of the increase in terms of

size of the decompiled code due to the duplication introduce by our

approach. In Figure 12 we also show an estimate of the probability

distribution function (using the KDE method) of the increase in size

for all the optimizations levels. This metric, has not been computed

for the other tools, since they do not introduce duplication.

Note also that the effects of duplication could be significantly mit-

igated by performing regular optimizations on the generated code,

such as dead code elimination. In fact, the optimizer might be able

to prove that, for instance, part of the code duplicated outside of a

loop due to the outlining of the first iteration will never be executed

and can therefore be dropped. However, due to timing constraints,

we have not been able to assess the impact of such optimizations.

We also produced a pair of heat maps Figure 13 that helps visu-

alizing how the relationship between duplication and decrement

in cyclomatic complexity evolves. We plotted the values for the

-O2 optimization level, comparing with both Hex-Rays and Ghidra.

In particular, apart from the bright spots in correspondence of a

low duplication level which are positive, we can see some reddish

clouds towards the center of the heat maps, which represents a

class of functions for which the duplication is significant, but for

which the cyclomatic complexity is reduced with respect to IDA

and Ghidra. This represent the fact that even when a cost in terms

of duplication is payed, we have a gain in terms of reduction of

cyclomatic complexity.

6 CONCLUSION
In this work we presented a novel approach to control flow restruc-

turing and to decompilation, by introducing new techniques for

transforming any given CFG into a DAG form, which we called Pre-
processing, to which we later apply our Combing algorithm. Thanks

to Combing, we are able to build a C AST from the input code,

which is then transformed by theMatching phase to emit idiomatic

C. We implemented our solution on top of the rev.ng framework,

-O0 -O1 -O2 -O3

Goto 1.07× 1.10× 1.15× 1.32×

No-Goto 1.04× 1.08× 1.12× 1.25×
Table 2: Size increment metrics (over the original size) for the
functions over different optimization levels. For each optimization
level, we also provide the duplication factor metric computed
only on functions which do not have goto statements in the
original source code. While our algorithm is able to completely
eliminate gotos in the decompiled code, we can see that in case we
approach decompilation of code with gotos our duplication factor
is penalized. Indeed, our algorithm makes the assumption that we
are trying to decompile well-structured code, therefore gotos in
the original source code make this assumption to fail.
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Figure 12: Plot showing the Probability distribution functions of
the duplication introduced by revng-c. On the x axis, we have the
amount of duplication introduced (measured in terms of code size
increase over the original value).We can notice that as the optimiza-
tion level increases, revng-c introduces a little bit more duplication
in order to be able to be able to emit goto-free decompiled code.

building a decompiler tool called revng-c. In the evaluation, we

performed compared our results against both academic and com-

mercial state-of-the-art decompilers.

The experimental results show that our solution is able to avoid

the emission of goto statements, which is an improvement over

the Hex-Rays Decompiler and Ghidra, but at the same time does

not resorts to predicated execution, which on the other hand af-

fects DREAM. In future work, we will to improve the quality of the

decompiled code by focusing on the recovery of more idiomatic

C constructs. This type of work will be greatly simplified by the

already modular nature of the Matching phase of our algorithm.
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(a) Cyclomatic complexity improvement w.r.t. IDA
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(b) Cyclomatic complexity improvement w.r.t. Ghidra

Figure 13: Cyclomatic Complexity improvements of revng-c at O2. This heat maps helps us visualizing where the cyclomatic complexity
improvement gain obtained by revng-c is introduced. The cyclomatic improvement is represented on the x axis, while the duplication
factor introduced by revng-c is represented on the y axis (higher means less duplication). To color of a cell of the heat map is computed by
performing a sum of bivariate distributions for each data point in our dataset (every function). This means that a cell will assume a brighter
color as more data points showing values of duplication and decrease in cyclomatic complexity in its surrounding are present.

More in general, in the future we aim to further improve the qual-

ity of the decompiled code in other areas, such as arguments and

return values detection and advanced type recognition techniques.

In addition, we are also considering the possibility for our de-

compiler to support the emission of some goto statements in a very

limited and controlled setting, i.e., where they may be considered

idiomatic and legitimate, e.g., in the goto cleanup pattern. The goal of
this would be to trade the introduction of a goto in order to further

reduce the duplication introduced by our combing algorithm.

We also want to address the verification of the semantics preser-

vation of the control flow restructuring transformation we intro-

duce. We deem this goal achievable thanks to the very nature of the

rev.ng framework. The idea is to enforce back the modifications

done by the control flow restructuring algorithm at the level of the

LLVM IR lifted by rev.ng, and to use the recompilation features

of the framework to prove the behavioural equivalence between

the original binary and the one generated after the restructuring.
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A GRAPHS BASICS
This section introduces the fundamental concepts to understand

the design of the Control Flow Combing algorithm, described in

Section 4.

Graphs. A directed graph is a pair 𝐺 = ⟨𝑉 ,𝐸⟩, where 𝑉 is a set, and

𝐸 ⊂𝑉 ×𝑉 is a set of pairs of element of𝑉 . Each 𝑣 ∈𝑉 is called a node,
and each 𝑒 = ⟨𝑣1,𝑣2⟩ is called an edge. Given 𝑒 as defined above, 𝑣1
is said to be a predecessor of 𝑣2, while 𝑣2 is said to be a successor of
𝑣1. 𝑒 is said to be outgoing from 𝑣1 and 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 in 𝑣2. 𝑣1 is called

the source of 𝑒 and 𝑣2 is called the target of 𝑣1. A sequence of edges

𝑒1 = ⟨𝑣1,1,𝑣1,2⟩, ...,𝑒𝑛 = ⟨𝑣𝑛,1,𝑣𝑛,2⟩, is called a path if ∀𝑘 = 1, ...,𝑛−1

holds 𝑣𝑘,2=𝑣𝑘+1,1.

Control Flow Graphs. A directed graph used to represent the

control flow of a function in a program.

Each node of a CFG is called a basic block and represents a se-

quence of instructions in the program that are executed sequentially,

without any branch with the exception of the last instruction in

the basic block.

Each edge in a CFG is called a branch. A branch𝑏= ⟨𝐵𝐵1,𝐵𝐵2⟩ in a
CFG, represents the notion that the execution of the program at the

end of𝐵𝐵1might jump to the beginning of𝐵𝐵2. Branches can be con-
ditional or unconditional. A branch 𝑏 is unconditional if it is always
taken, independently of the specific values of conditions in the pro-

gram at runtime. The source 𝑠 of an unconditional branch 𝑏 has no

other outgoing edges. Conversely, a branch 𝑏 is called conditional if

it might be taken by the execution at runtime, depending on the run-

time value of specific conditions in the program. The source of a con-

ditional branch always has multiple outgoing edges and the condi-

tions associated to each outgoing edge are always strictly exclusive.

Finally, a CFG representing a function has a special basic block,

called entry node, entry basic block, or simply entry, that represents
the point in the CFG where the execution of the function starts.

In the remainder of this work, where not specified otherwise,

we will refer to CFGs.

Depth First Search. The concept of Depth First Search (DFS) [15]

is very important for the rest of this work. Briefly, DFS is a search

algorithm over a graph, which starts from a root node, and explores

as far as possible following a branch (going deep in the graph, hence

the name), before backtracking and following the other branches.

When the algorithm explores a new node it is pushed on a stack,

and, when the visit of the subtree starting in that node is completed,

it is popped from the exploration stack. Such traversal can be used

both for inducing an ordering on the nodes of a graph, and to cal-

culate the set of retreating edges (informally, edges that jump back

in the control flow). Directed graphs without retreating edges are

called Directed Acyclic Graphs (DAG). A Depth First Search induces

the following orderings of the nodes of a graph:

Preorder. Ordering of the nodes according to when they were first

visited by the DFS and, therefore, pushed on the exploration stack.

Postorder. Ordering of the nodes according to when their sub-

tree has been visited completely and, therefore, popped from the

exploration stack.

Reverse Postorder. The reverse of postorder.

Dominance and Post-Dominance. Other two fundamental con-

cepts in program analysis are dominance and post-dominance.

1

6

2

3 4

5

1

6

2

3 4

5

1

6

2

3 4

5

Figure 14: Left – An example graph. Node 1 is the entry and 5 is the
exit. Middle – Dominator tree of the graph on the left. Edges in this
tree go from immediate dominator to the dominated node. Right –
Post-dominator tree of the graph on the left. Edges in this tree go
from immediate post-dominator to post-dominated node.

Informally, dominance describes, given a node, which nodes have
to be traversed on all paths from the entry, which must be present

and unique, to that node. Given a graph and two nodes 𝐴 and 𝐵, 𝐴

dominates 𝐵 iff every path from the entry to 𝐵 contains𝐴.𝐴 properly
dominates 𝐵 if 𝐴 dominates 𝐵 and 𝐴≠𝐵. 𝐴 immediately dominates
𝐵 if 𝐴 properly dominates 𝐵 and 𝐴≠𝐵 and it does not exist a node

𝐶 such that 𝐴 properly dominates 𝐶 and 𝐶 properly dominates 𝐵.

Conversely, post-dominance is related to which nodes must be

traversed on paths from a given node to the exit, if this is present
and unique. In cases where there is not a single exit node post-

dominance is not defined. The node𝐴 post-dominates 𝐵 if every path

from 𝐵 to the exit contains 𝐴. 𝐴 properly post-dominates 𝐵 if 𝐴 post-

dominates 𝐵 and 𝐴≠𝐵. 𝐴 immediately post-dominates 𝐵 if 𝐴 prop-

erly post-dominates 𝐵 and𝐴≠𝐵 and it does not exist a node𝐶 such

that𝐴 properly post-dominates𝐶 and𝐶 properly post-dominates 𝐵.

Dominator and Post-Dominator Tree. The dominator tree (and
the post-dominator tree) are a compact representation of the dom-

inance (and post-dominance) relationship withing a graph. The

dominator tree (DT) contains a node for each node of the input

graph, and an edge from node 𝐴 to node 𝐵 iff 𝐴 is the immediate

dominator of 𝐵. The resulting graph is guaranteed to be a tree since

each node except the entry node has a unique immediate dominator.

As a consequence, the entry node is the root of the dominator tree.

Whenever the exit of a graph is unique, it is possible to build an anal-
ogous data structure for the post-dominance relationship, called

post-dominator tree (PDT). A well known and widely used algorithm

for calculating a dominator tree is the Lengauer-Tarjan’s algorithm,

that has the peculiarity of having an almost linear complexity [18].

Examples of dominator and post-dominator tree for a CFG are

represented in Figure 14.



void sub43E100(void *a1, int a2) {

...

v4 = *( result + 0xc);

if(a2 >= v4)

v5 = *( result + 8) + v4;

if(a2 < v5 && a2 >= v4)

break;

i++;

result += 0x28;

...

}

Figure 15: Snippets which shows the reuse of the condition a2 >= 4
on the same execution path

B CASE STUDIES
This section is devoted to a comparison of our solutionwithDREAM.

We need a special section for this since the only artifacts of decom-

pilation available from DREAM are the ones included in a whitepa-

per [21] cited in [23]. In this document, for every sample of code

decompile by DREAM is present the corresponding code decom-

piled by Hex-Rays. Unfortunately, we were not able to recover the

original functions (in terms of binary code) used for the evaluation

of DREAM. This is due to the fact that the presented snippets be-

longs to malware samples for which a lot of different variants are

available.

We observe that the provided Hex-Rays Decompiler decompiled

source resembles very closely the original assembly representation

(e.g., due to the abundance of goto statements). Therefore, in order

to be able to compare our results with DREAM’s, we decided to use

the Hex-Rays Decompiler decompiled sources as a starting point

for obtaining the CFG of the functions. Then, in turn, apply our

algorithm, and obtain the revng-c decompiled sources.

To assess on a large scale how revng-c performed compared to

DREAM, we collected the mentioned metrics on both the DREAM

decompiled sources provided in the whitepaper, and on the sources

produced by revng-c.
Table 3 presents the results we obtained. The higher cyclomatic

complexity in code produced by DREAM is due to the predicated

execution-like code. In fact, in this cases, the same condition will be

employed multiple times as a state variable that enables or disables

certain portions of the code. This approach forces the analyst to

keep track of the state of the variables, increasing its mental load

in a non-negligible way. As we can see, both DREAM and revng-c
provide decompiled sources without goto statements, but DREAM

presents reuse of the conditions as expected and informally ex-

plained throughout the paper. As a concrete example of conditional

reuse, consider the snippet in Figure 15 (lines from 11 to 17 extracted

from the snippet 1.5 in DREAM whitepaper [21]), we can see how

the condition a2 >= v4 is reused twice on the same execution path.

As an additional example, Figure 16 compares how a situation

that DREAM (on the left of the listing) handles through predicated

execution is handled with duplication in revng-c (on the right of

the listing). The revng-c listing has been manually modified to re-

flect the same variable names used by DREAM. Also some optimiza-

tions in terms of code readability have been performed, but these

changes do not concern the control flow, but are simple aesthetic

DREAM revng-c

Cridex4 9 5

ZeusP2P 9 5

SpyEye 19 15

OverlappingLoop 4 3

Table 3: This table presents the cyclomatic complexity of the code
produced by DREAM and revng-c. As we can see, DREAM consis-
tently presents higher figures compared to revng-c due to the high
number situations in which conditions are reused multiple times.

improvements. We can see that, while DREAM uses a predicated

execution approach, guarding the statement at line 11 with a compli-

cated condition. On the other hand, revng-c duplicates some code,

in this case the assignment, directly where the conditions to eval-

uate if the assignment needs to be performed are available, specifi-

cally at line 5. The idea is to inline the portion of code, paying a cost

in terms of duplication, instead of deferring it, but paying a cost

in terms of mental load necessary to understand when this assign-

ment is actually executed. In the example, the cost is visible in the

DREAM snippet as the convoluted condition of the if statement at

lines 9 and 10. In this case, duplication also highlights immediately

what value is assigned to v2, that is the return value of the function.

In this section we illustrated why we think that predicated ex-

ecution is suboptimal in terms of mental load for the analyst that

reads the decompiled code. The point is that in presence of pred-

icated execution, different parts of the code in different conditional

constructs are executed on the basis of the state of the conditional

variable. This causes a mix of control flow and information on the

state of the conditional variable, which causes the heavy mental

load. Of course this is something that can be present in C code in

principle, but the predicated execution introduced by DREAM push

this to the limit where it becomes an impediment for the analyst.

We have done this by highlighting in a couple of examples where

this happens and howwe approach instead the decompilation of the

same snippet of code, and by showing that the predicated execution

approach increases the cyclomatic complexity of the code.

During the design of the validation of our work, we also eval-

uated the possibility of conducting an user study to evaluate the

performance of different decompilers, as done in [22]. However, we

deemed that such kind of user study is really helpful to evaluate

the overall performance of a decompiler tool only once aspects

orthogonal to what presented in this paper are developed, such

as the identification of library functions and type identification

techniques. In this paper instead, we focused on the control flow

recovery portion of the decompilation task, and this led us to set

up the experimental evaluation in the way we did. Anyway, we do

not exclude to conduct an user study, once the other mentioned

aspects of the decompiler have matured.



1 if (!cond1 && !cond2) {

2 v4 = sub4634E2(a1+a2*4, a7, 0, ...);

3 v2 = v4;

4 if (v4) {

5 cond3 = v4 == -4;

6 ...

7 }

8 }

9 if((cond1 || v4) && (cond1 || !cond2)

10 && (cond3 || !v3) && (!cond1 || !v3))

11 v2 = -3;

12 if(! HeapValidate(GetProcessHeap (), 0, lpMem))

13 return v2;

14 HeapFree(GetProcessHeap (), 0, lpMem);

15 return v2;

1 if (var_4) {

2 v4 = sub4634E2(a1+a2*4, a7, 0, ...);

3 if (v4) {

4 if (v4 == -4) {

5 v2 = -3;

6 } else {

7 v2 = v4

8 }

9 if(! HeapValidate(GetProcessHeap (), 0, lpMem))

10 return v2;

11 HeapFree(GetProcessHeap (), 0, lpMem);

12 }

13 ...

14 }

15 return v2;

Figure 16: Side by side SpyeEye listings of the decompiled source by DREAM (on the left) and revng-c (on the right).
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