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Abstract

Code completion is extensively used in IDE’s. While there has been extensive research into the field
of code completion, we identify an unexplored gap. In this thesis we investigate the automatic rec-
ommendation of a basic variable to an argument of a method call. We define the set of candidates to
recommend as all visible type-compatible variables. To determine which candidate should be recom-
mended, we first investigate how code prior to a method call argument can influence a completion. We
then identify 45 code features and train a deep neural network to determine how these code features
influence the candidate‘s likelihood of being the correct argument. After sorting the candidates based
on this likelihood value, we recommend the most likely candidate.

We compare our approach to the state-of-the-art, a rule-based algorithm implemented in the Parc
tool created by Asaduzzaman et al. [ARMS15]. The comparison shows that we outperform Parc, in
the percentage of correct recommendations, in 88.7% of tested open source projects. On average our
approach recommends 84.9% of arguments correctly while Parc recommends 81.3% correctly.
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Chapter 1

Introduction

Code completion is extensively used in IDE’s [MKF06]. It reduces the amount of typing [PLM15]
and ”speeds up the process of writing code by reducing typos or other programming errors, and frees
the developer from remembering every detail.” [ARMS15]. A well known form of code completion,
that has been researched extensively, is the completion of method calls [BMM09, NNN+12, ARSH14,
RVY14, PLM15, NHC+16]. Interestingly, however, the research into the completion of their respective
arguments (method call arguments) has been limited. As far as we know only two papers investi-
gate the completion of arguments directly [ZYZ+12, ARMS15] and one paper discusses it indirectly
[LLS+16].

This is interesting because the benefits of method call completion are also mostly applicable to
method call argument completion. It still reduces typing, reduces typos and frees developers from
remembering every detail in the same way method call completion does. Features, used in method call
argument completion, have also been shown to reduce the number of programming errors or coding
mistakes by automatically detecting relevant anomalies [PG11].

There is also an added benefit to also research method call argument completion. When both forms
of code completion reach a certain performance they can be combined to recommend a complete
method call including its arguments at once.

1.1 Previous work

For the Java programming language, method call argument completion has already been implemented
in well known IDE’s (Eclipse, Netbeans, IntelliJ). At first the completion simply consisted of a list
of accessible type-matched variables. This was later expanded so that likely arguments were located
more to the top.

However, one of the major challenges of argument completion is that the amount of type-compatible
candidates can be many. Arguments can also take the form of method calls, cast expressions, literals
or any expression that results in a type-compatible value.

Zhang et al. [ZYZ+12] were in 2012, to the best of our knowledge, the first to publish about the
completion of arguments. Using their tool Precise, they can recommend types of arguments that
could not be recommended before including cast ((int) var) and certain literal (4|"a") expressions.
Precise recommends method call arguments based on previously collected argument usage patterns.
Using four contextual features they capture the context of the code prior to the location of the
argument. This context (usage pattern) is then used to determine the contextual similarity of this
usage pattern to those in the dataset. Using a kNN (k-Nearest Neighbour) algorithm the best matching
usage patterns in the dataset are found. Subsequently the argument linked to this usage pattern is
recommended.

In 2015 Asaduzzaman et al. [ARMS15] presented a newer approach to this problem called Parc.
Parc uses a similar method to Precise but can recommend even more types of arguments. In total,
seventeen types of arguments were identified by Asaduzzaman et al. [ARMS15] and Parc supports
eleven of them.
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Asaduzzaman et al. [ARMS15] analyzed three code projects to discover the distribution of these
argument types over all of the projects arguments. They found that 98% of arguments fall in one of
the eleven argument types that are supported by Parc. This leaves 2% of arguments that can not
be recommended by Parc because their argument type is not supported. Adding support for any
or all of the remaining types can, therefore, only lead to an overall performance increase of 2%. On
the other hand, the analysis also shows that around 40% of all arguments are basic variables. This
number is also supported by research of Zhang et al [ZYZ+12]. This means that any improvement
in the recommendation of basic variables as arguments does have a significant effect on the overall
performance.
Precise delegates the recommendation of basic variables to the Eclipse JDT1. However, Asaduz-

zaman et al. [ARMS15] did investigate how basic variables should be recommended. They first
determined which rules the Eclipse JDT uses to recommend basic variables as arguments. They then
manually investigated code in which basic variables were used as arguments. They found that devel-
opers tend to initialize or assign new values to variables just before they use them for a method call
argument. Therefore, if the algorithm sorts all candidates according to the distance to their point of
initialization, it will increase the number of correct recommendations.

Despite the addition and improvement that Asaduzzaman et al. [ARMS15] made in regards to the
recommendation of basic variables as arguments, we expect that there is still an unexplored gap to
be filled.

1.2 Proposed approach

In this thesis we continue on the work by Asaduzzaman et al. [ARMS15]. We explore more of these
coding patterns and the features, like the initialization distance, in the code that could be used to
detect them. Using these features it is expected that more correct recommendations can be made.

However, adding features also necessitates modifying how they influence the recommendation. Using
a strict rule-based system like the one in Parc is, for our purposes, not the best approach. Instead
we propose to use a form of regression using deep neural networks. A neural network is useful because
it takes care of calculating not only how each feature should influence the recommendations but also
how these features should interact with each other to do that.

Figure 1.1: Example request for argument recommendations in IntelliJ.
The simple name variable candidates are: ’averageCharactersInWord’, ’characters’, ’helloWorld’ and

’words’.

The example in figure 1.1 is used to illustrate a request for a recommendation. For every can-
didate argument (all accessible type-compliant variables; ’averageCharactersInWord’, ’characters’,
’helloWorld’ and ’words’) a set of features is determined. Examples are the distance of the argu-

1Java development tools that includes a recommendation engine
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ment location to the line of code where the candidate is declared or initialized. Another example
is the similarity of the candidate’s name to the formal parameter name of the function or method.
All these features are then used as the input for the deep neural network (Figure 1.2). Using deep
neural regression a value for each candidate is calculated. This value represents the likelihood that
the candidate should be used in the context in which it is requested. The likelihood values of all
candidates are compared and they are sorted accordingly. The top candidate or candidates can then
be recommended.

Figure 1.2: Illustration of proposed method using a deep neural regression network.
For every candidate, features are collected. These features are used as input for the deep neural

network. Regression is used to calculate a value depicting the likelihood that the candidate is the
actual argument. The values are then compared and sorted resulting in a ranked list of most likely

candidates.

1.3 Research method

The proposed approach leads to one overall research question which can be subdivided into three sub
questions.

RQ1: Can we improve method call argument completion of basic variables using deep neural regres-
sion?

SQ1: Which code features contribute to the recommendation of the correct candidate variable?
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SQ2: In what way should the deep neural regression network be applied to improve the per-
centage of correct recommendations?

SQ3: How does the proposed approach compare to previous research?

To answer SQ1, existing systems like Eclipse JDT, Parc and literature are explored to find likely
features. Second, continuing the efforts of Asaduzzaman et al. [ARMS15] code surrounding method
call arguments of the basic variable type are manually reviewed for more likely features. Third, based
on Parc and our own approach we investigate code surrounding arguments that were incorrectly
recommended. Finally, these collected features are tested for their actual influence on the recommen-
dations and if they are beneficial to include or should be eliminated from the model.

To answer SQ2, the hyperparameters with which the network is initialized will be reviewed and
tweaked. We investigate the effect of the networks batch size, layer configuration and if candidates of
different arguments should be weighted differently or equally.

To answer SQ3, 142 open source Java projects are collected. From these projects all method call
arguments and their respective candidates are collected. Using both a replicated form of the algorithm
used in Parc and our own approach, recommendations are generated for all these arguments. The
percentage of correct recommendations of both methods is then compared and evaluated.

1.4 Outline

In Chapter 2 we discuss the background and context to our thesis. In Chapter 3 we discuss how the
features were identified and we demonstrate our motivation behind them. In Chapter 4 we evaluate
these features and the hyper parameters of the deep neural regression model. In Chapter 5 we compare
our results to the state of the art. Finally we summarize and discuss our results in Chapter 6.

4



Chapter 2

Background and Context

2.1 Types of arguments

To determine the number of basic variables that were used as method call arguments, Asaduzzaman
et al. [ARMS15] analysed three subject systems. They were JEdit1, ArgoUML2 and JHotDraw3. In
these projects all method calls were identified that targeted Swing or AWT libraries. The arguments
of all these method calls were then collected to determine their expression type. Asaduzzaman et
al. [ARMS15] found that between 36% and 41% of all arguments are of the basic variable type.

Zhang et al. [ZYZ+12] use a similar approach for three other subject systems. They were Eclipse
3.6.2, JBoss 5.0, and Tomcat 7.0. For Precise only method calls targeting the SWT framework4

have been investigated. Their results show that between 38% and 47% of arguments are of the basic
variable type.

2.2 Features from literature

The Parc tool by Asaduzzaman et al. [ARMS15] tries to determine the best match by ranking all
type-compliant accessible variables. These candidates are ranked according to the following set of
rules, whereby each rule is more significant than the rules below it.

• Locally declared candidates have precedence over field candidates.

• Field candidates have precedence over inherited field candidates.

• Candidates with a longer case insensitive substring match to the formal parameter name have
precedence.

• Unused candidates have precedence.

• Candidates that are declared, initialized or assigned a new value closer to the method call
argument have precedence.

Liu et al. [LLS+16] propose that the similarity between candidate names and formal parameter
names (of the targeted method) can effectively be used to pair candidates to an argument. They base
their work on code analysis and find another way to calculate the similarity compared to the feature
used by Parc. They calculate lexical similarity (Equation 2.2) using the subterms of each name
instead of the individual characters. The subterms of a variable name are defined as the individual
parts separated by capitalization (camelCase) or underscores. A variable with the name fieldLength
or field length will, therefore, be decomposed to field and length.

1http://sourceforge.net/projects/jedit/
2http://argouml.tigris.org/
3http://sourceforge.net/projects/jhotdraw/
4http://www.eclipse.org/swt/
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The process to calculate the lexical similarity is as follows; Let C be the name of the candidate
variable and let F be the name of the formal parameter. After decomposing the names, there are two
sequences of terms (Equation 2.1).

C = (c1, c2...cm)

F = (f1, f2...fn)
(2.1)

To calculate the similarity between these sequences of terms the Longest Sequence of Common
Terms is calculated. Using C and F, the LSCT is the longest subsequence of C where each term in the
subsequence appears in F (Listing 2.1).

1 Define the function LSCT(C,F) as:

2 Initialize subLSCT to 0

3 Initialize longestLSCT to 0

4

5 For each term in C do:

6 If F contains term do:

7 Add 1 to subLSCT

8 End of if

9

10 If F does not contain term do:

11 Set longestLSCT to the maximum of subLSCT and longestLSCT

12 Set subLSCT to 0

13 End of if

14 End of for

15

16 Set longestLSCT to the maximum of subLSCT and longestLSCT

17

18 Return longestLSCT

Listing 2.1: Pseudocode of LSCT algorithm.

The LSCT of C and F is not equal to the LSCT of F and C, therefore, the sum of both is taken.
The final value is then divided by the combined amount of terms of both names to get the lexical
similarity (Equation 2.2). Examples of names and their lexical similarity are provided in table 2.1.

Lexical Similarity =
LSCT (C,F ) + LSCT (F,C)

|C|+ |F | (2.2)

C C subterms F F subterms Lexical Similarity

length length inputLength input, length 1+1
1+2 = 2

3

field length field, length fieldLength field, length 2+2
2+2 = 1

1

thisVariableName this, variable, name thisNameVariable this, name, variable 3+3
3+3 = 1

1

variableThisName variable, this, name thisOtherVariable this, other, variable 2+1
3+3 = 1

2

variableThisName variable, this, name thisVariableOther this, variable, other 2+2
3+3 = 2

3

ASTNode ast, node node node 1+1
2+1 = 2

3

Table 2.1: Examples of calculating the Lexical Similarity for a name C and a name F.

Based on this paper the following feature is derived:
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• A candidate with a higher lexical similarity to its formal parameter has precedence.

One important aspect to note about this feature is that is requires knowledge about which method is
targeted with a method call. In the Java language this is, however, not always clear because methods
can be overloaded. However, following previous research [ARMS15, LLS+16] we assume knowledge
about the targeted method is available to minimize complexity.

2.3 Deep neural regression

For a neural network there are some settings that can be adjusted. These settings are called hyperpa-
rameters. These hyper-parameters influence how, how fast, how well and how long a model is trained.
From the start it is hard to predict which hyper-parameters will give the best result. A few of these
hyperparameters are now discussed and how they will likely influence the model.

Layers

Neural networks consist of layers, the input layer consists of all feature values collected in the data
collection step. The input layers are connected to a sequence of hidden layers of a certain depth and
width. The depth is the amount of hidden layers and the width is the amount of neurons each layer
contains. Finally the output layer is the final and last layer. In a regression network the end layer
consists of one layer that takes the sum of all values from the previous layer. The main question is
with which width and depth the network will produce the best results.

Batch size

The batch size is the number of candidates that are passed to the network before the network updates
the weights. In theory a higher batch size will lower the models ability to generalize [KMN+16] and
a smaller batch size will take a longer amount of time to train.

Epochs

The amount of epochs is automatically determined by a process that monitors the loss of the validation
set. The validation set is a small part of the training set that is not used to train the model, but is
set aside to monitor how well the model performs. When the loss does not improve on the validation
set for a certain amount of epochs the training is terminated and the best model, until that moment,
is chosen.

Weight initialization

Weights communicate to the network to what respect a training sample should impact how the model
is modified in between batches.

7



Chapter 3

Feature discovery

Research has already shown that source code has some structural, syntactic, contextual and semantic
attributes that influence which variables are more likely to be used as method call arguments. Source
code, just like natural language, has a ”surprising amount of regularity” and is more repetitive than
natural languages [HBG+]. This repetitiveness in code and how it is written opens up the possibility
to learn from past cases.

In other research, Asaduzzaman et al. [ARMS15] showed that source code is locally specific to
method call arguments. This means that there is a correlation between which candidate variable is
used and the tokens prior to the method call. In other words, the code prior to the method call
reflects which argument(s) will be used.

In this chapter more ideas and coding patterns are explored. Features are proposed to reflect the
existence of these patterns in the code prior to the method call argument. Being aware of these
patterns can help the deep neural network make a more informed recommendation.

3.1 Analysis of Parc features

Based on the algorithm for Parc (Section 2.2) the following features are derived:

• The candidate is:

– isLocal: a locally declared variable.

– isField: a field variable.

– isInheritedField: an inherited field variable.

– usedInMethodCall: used in a prior method call as an argument.

• lexicalSimilarityParc: A measure of lexical similarity between the candidate name and the
name of the formal parameter. This is expressed as the number of characters in the longest case
insensitive substring match.

• distanceToDeclaration: The number of declared candidates between where this candidate
is declared and the method call argument.

• distanceToInitialization: The number of candidates that have been initialized1 between
where this candidate was last initialized and the method call argument.

Continuing on this list, it is first concluded that Parc does not seem to make a distinction between
local variables and the method parameters. It could be, however, that there does exist a distinc-
tion between these two and therefore another feature is introduced alongside isLocal, isField and
isInheritedField:

• isParameter: Candidate is a parameter of the parent method.

1Initialized is used for both a variable that is initialized as a variable that is assigned a new value

8



Based on the research by Liu et al. [LLS+16] the feature LexicalSimilarity is also investigated. This
feature, similar to lexicalSimilarityParc used in Parc, measures the lexical similarity between
the name of the candidate variable and the name of the targeted formal parameter. In section 2.2 the
LexicalSimilarity feature is discussed based on the research by Liu et al. [LLS+16].

• lexicalSimilarity: The lexical similarity as discussed in section 2.2 using equation 2.2.

However, other methods to compare the candidate name to the formal parameter name can also be
used. We investigate both a stronger and weaker form of lexical similarity.

• lexicalSimilarityStrictOrder: The lexicalSimilarityStrictOrder is almost the same
as the lexicalSimilarity except that where lexicalSimilarity accepts a corresponding term
everywhere in the matching name it will only accept a corresponding term if it is in the same
relative order. For example: fieldLength and lengthField have a lexicalSimilarityStric-
tOrder value of 1+1

2+2 = 1
2 but a lexicalSimilarity of 2+2

2+2 = 1
1 (Equation 2.2).

• lexicalSimilarityCommonTerms: The ratio of common terms. The lexicalSimilarity-
CommonTerms is a more loose version of lexical similarity. The corresponding terms of
both names are counted and the lowest count is multiplied by two and then divided by the
number of terms in total. For example: variableThisName and thisOtherVariable have a
lexicalSimilarityCommonTerms of 2∗2

3+3 = 2
3

2 and a lexical similarity of 2+1
3+3 = 1

2
(Equation 2.2).

The Parc feature usedInMethodCall is true if the candidate has already been used as an
argument of a method call prior to this method call argument. However, a candidate can also be used
in any of the following ways.

• Candidate is used in:

– usedInVariableDeclaration: the initializer part of a variable declaration.

– usedInAssignExpression: the value part of an assign expression.

– usedInArrayAccessExpression: the index of an array access expression.

– usedInForEachStatement: the iterable variable of a foreach statement.

– usedInObjectCreationExpression: an argument to an object creation expression.

– usedInExplicitConstructorCall: an argument to an explicit constructor call state-
ment.

3.2 Code patterns

In this section code examples of interesting coding patterns are used to illustrate the need for specific
features.

We find a common coding pattern that is often misclassified in the remainder method of the
UnsignedInts package of the Google Guava library. The first method call in this method is toLong. It
accepts one argument, in this case, dividend. However it has actually two candidates: dividend and
divisor. Both are formal parameters of the parent method and dividend is declared before divisor.
Since both are unused, Parc would recommend the candidate that was declared or initialized closest,
in this case that would be the candidate divisor. However, as seen in the example (Listing 3.2), not
divisor is used but dividend.

An explanation for this behaviour is that when variables are declared without being used immedi-
ately it is because the developer wants to use them in the order of declaration. An example of this
is when a method has multiple formal parameters. This type of misclassification happens often and
therefore we want to detect this scenario.

To include this scenario in the model we add the following features so that the model could poten-
tially learn to detect this scenario.

2(variable, this) matches (this, variable)

9



1 public f ina l c lass UnsignedInts {

2 ...

3 public stat ic int remainder( int dividend , int divisor) {

4 return ( int ) (toLong(dividend) % toLong(divisor ));

5 }

6 ...

7 }

https://github.com/google/guava/blob/master/guava/src/com/google/common/primitives/UnsignedInts.java

Listing 3.2: Code example: Candidates used in order of declaration or initialization instead of the
inverse order.

• distanceToDeclarationSpecial: The distanceToDeclaration but in a different order:
First are all local variables in order of declaration, then all field variables and then all inherited
field variables.

• unusedLocalCandidates: The number of unused local candidates. More unused candidates
could indicate that another distance feature should be used.

• unusedLocalCandidatesInRow: The number of local candidates that are unused in sequence
(in the order of the distanceToInitialization feature). In the example. (Listing 3.2) the
value would be two. Both parameters are unused at the point of predicting the first method call
argument.

From the improved Parc algorithm we derived features concerning if the candidate was used in
specific ways. At that point an usage in the predicate of an if statement was not discussed. We
expect that if a variable is used in the predicate it does not negatively impact the likelihood that
that variable will be used again. The reason for this is that comparing a variable to something else is
in most instances not the goal in and of itself but a way to establish something about that variable.
Therefore, it could also be the case that when a variable is used in a predicate, it could actually
increase the likelihood that that variable is used within that if block. In the example from the
QuantilesAlgorithm package (Listing 3.3) all swap method calls indeed use the variables used in
the predicate of the parent if statement of the swap method call. Most interesting is the last if

statement. In this predicate not all three variables (array, from, to) are used. Only array and from

are used and indeed only those two are used in the swap method call.

1 stat ic double select( int k, double[] array) {

2 ...

3 int from = 0;

4 int to = array.length - 1;

5 ...

6 i f (array[from] > array[to]) {

7 swap(array , from , to);

8 }

9 i f (array[from + 1] > array[to]) {

10 swap(array , from + 1, to);

11 }

12 i f (array[from] > array[from + 1]) {

13 swap(array , from , from + 1);

14 }

15 ...

16 }

https://github.com/google/guava/blob/master/guava-tests/test/com/google/common/math/QuantilesAlgorithm.

java

Listing 3.3: Code example: Candidate used in the current predicate of the parent if statement.

To include this pattern in our model the following two features are proposed:
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• inIfStatement: Method call argument is within an if statement.

• usedInCurrentIfPredicate: Candidate is used in the predicate of the parent if statement.

A special case of the above idea was found in a discussion we had with the manager of the knowl-
edge centre of our hosting organization: Gert Jan Timmerman (G. J. Timmerman, personal com-
munication, June 13, 2018). This case can also be found in the createCacheBuilder method in
the CacheBuilderFactory package of the Google Guava library (Listing 3.4). The method call
builder.concurrencyLevel is wrapped in an if statement where one of its candidates is compared
to not null. Comparing to not null in Java can be done to determine if the variable exists. Testing
if the variable exists, we expect, is done because the developer wants to use that variable but is unsure
if it exists. The same pattern is apparent in the other two method calls in this method.

1 private CacheBuilder <Object , Object > createCacheBuilder(

2 Integer concurrencyLevel ,

3 Integer initialCapacity ,

4 Integer maximumSize ,

5 ...

6 ) {

7

8 CacheBuilder <Object , Object > builder = CacheBuilder.newBuilder ();

9 i f (concurrencyLevel != null ) {

10 builder.concurrencyLevel(concurrencyLevel );

11 }

12 i f (initialCapacity != null ) {

13 builder.initialCapacity(initialCapacity );

14 }

15 i f (maximumSize != null ) {

16 builder.maximumSize(maximumSize );

17 }

18 ...

19 }

https://github.com/google/guava/blob/master/guava-tests/test/com/google/common/cache/

CacheBuilderFactory.java

Listing 3.4: Code example: Candidate compared to null in predicate of parent if statement

To include this scenario in the model we add the following features so that the model can potentially
learn to detect this scenario.

• comparedToNotNullInIfPredicate: Is the candidate compared to not null in the pred-
icate of the parent if statement.

• comparedToNullInIfPredicate: Is the candidate compared to null in the predicate of the
parent if statement.

• inIfBlock: The method call argument is within an if block.

• inElseBlock: The method call argument is within an else block.

In Parc the candidate is negatively affected if is has been used in an earlier method call. However,
it is questionable if this is the case when not only the candidate but the whole method, including the
candidate, has been used before. In listing 3.5 an example is shown that illustrates this point. The
method call getComments is called twice in this example. Using our collected features the argument
of the first instance can be solved by looking at the initialization distance. For the argument of the
second method call this is not the case. As can be seen in the example, there are now four candidates
(excluding field and inherited field candidates). The candidate paginationRequest (actual argument)
is initialized farthest away, all candidates have been used before and there is no similarity between one
of the candidates names and the formal parameter name. However, in this case the same combination
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of method call and argument has been used before in this method. How effective this feature is could
in theory be subject to the position of the argument in the method call or the number of arguments.
To cover these scenarios three features are introduced.

• positionOfArgument: Starting at zero and from left to right the arguments position in the
method call is established.

• numberOfArguments: Number of arguments in the method call.

• usedInMethodCallCombination: The same method call is called before using the same
candidate name as an argument at the current position. The important aspect of this feature is
that it only takes the name of the candidate into account, not if it is actually the same candidate.
This could be useful in cases like listing 3.6.

1

2 public void addArticleComment () throws Exception {

3 ...

4 JSONObject paginationRequest = Requests.buildPaginationRequest("1/10/20");

5 JSONObject result = commentQueryService.getComments(paginationRequest );

6 ...

7 f ina l JSONObject requestJSONObject = new JSONObject ();

8 ...

9 f ina l JSONObject addResult =

10 commentMgmtService.addArticleComment(requestJSONObject );

11 ...

12 result = commentQueryService.getComments(paginationRequest );

13 ...

14 }

https://github.com/guoguibing/librec/blob/3.0.0-beta/core/src/main/java/net/librec/recommender/cf/

rating/FMALSRecommender.java

Listing 3.5: Code example: method call and candidate combination already used

1 stat ic f ina l void blackboxTestRecordWithValues (...) throws Exception

2 {

3 ...

4 for ( int i = 0; i < values.length; i++) {

5 f ina l int pos = permutation1[i];

6 rec.setField(pos , values[pos ]);

7 }

8 ...

9 for ( int i = 0; i < values.length; i++) {

10 f ina l int pos = permutation1[i];

11 rec.setField(pos , values[pos ]);

12 }

13 ...

14 }

https://github.com/stratosphere/stratosphere/blob/master/stratosphere-core/src/test/java/eu/

stratosphere/types/RecordTest.java

Listing 3.6: Code example: Same method call with same argument but the candidate is only the
same in name

Beside these collected features, most directed at the candidate in question, it could also be helpful
for the training to provide some more contextual features for the method call. One basic question is
where does the method call reside relative to other program constructs.
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• Method call is within

– inMethod: a method declaration.

– inConstructor: a constructor declaration.

– inEnum: an enum declaration.

– inForEach: a foreach statement.

– inFor: a for statement.

– inDo: a do statement.

– inWhile: a while statement.

– inTry: a try statement.

– inSwitch: a switch statement.

– inAssign: an assign expression.

– inVariable: a variable declaration.

Then there are four more features that might impact the prediction score by giving more context
about the code and the candidate.

• isPrimitive: Candidate is a primitive.

• numberOfCandidates: The number of candidates.

• scopeDistance: The distance in scope.

• parentCallableSize: The declaration size of the parent method or constructor in lines. When
the method call argument does not have a callable parent, it takes the size of the whole class.

3.3 Identified features

• comparedToNotNullInIfPredicate

• comparedToNullInIfPredicate

• distanceToDeclaration

• distanceToDeclarationSpecial

• distanceToInitialization

• inAssign

• inConstructor

• inDo

• inEnum

• inForEach

• inFor

• inElseBlock

• inIfBlock

• inIfStatement

• inMethod

• inSwitch
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• inTry

• inVariable

• inWhile

• isLocal

• isParameter

• isPrimitive

• isField

• isInheritedField

• lexicalSimilarityParc

• lexicalSimilarity

• lexicalSimilarityCommonTerms

• lexicalSimilarityStrictOrder

• parentCallableSize

• positionOfArgument

• numberOfArguments

• numberOfCandidates

• scopeDistance

• unusedLocalCandidates

• unusedLocalCandidatesInRow

• usedInArrayAccessExpression

• usedInAssignExpression

• usedInCurrentIfPredicate

• usedInExplicitConstructorCall

• usedInForEachStatement

• usedInIfPredicate

• usedInMethodCall

• usedInObjectCreationExpression

• usedInMethodCallCombination

• usedInVariableDeclaration
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Chapter 4

Evaluation

In this chapter the performance of the deep neural regression approach is evaluated. To test how
well our approach performs, we apply it to all method call arguments, whose actual argument is a
basic variable, from 142 open source projects (Appendix A). In our dataset, 36% of all method call
arguments are of the basic variable type, which is in line with the 36% to 47% found by [ZYZ+12,
ARMS15] (Section 2.1).

To evaluate how our approach performs on these method call arguments, the precision (Equation
4.1) is measured. The higher the precision, the better our approach performs.

Precision =
recommendations made ∩ relevant

recommendations made
(4.1)

In this equation, the recommendations are considered relevant if the top recommendation is equal
to the actual argument. When the precision of the deep neural regression approach is given it will be
referred to as the prediction score.

The deep neural regression method has certain hyperparameters that influence how well it will
perform (Section 2.3). The features selected in section 3.1 will also impact the prediction score.
In this chapter, these features and hyperparameters are therefore evaluated. The goal is to find a
combination of features and hyperparameters that result in more correct recommendations.

4.1 Approach

First, using some preliminary tests a base variation of features and hyperparameters is established.
All subsequent models are based on this model. It uses all features identified in section 3.1. The
hyperparameters of the model are set to a batch size of 1024, three hidden layers of respectively
2025, 45 and 45 nodes (layer configuration 7) and the candidates are all weighted the same. Second,
the individual features and hyperparameters are modified one at a time. By changing these model
variables slightly the effect of these individual parts on the prediction score can be compared. Third,
the best of all variations is used to determine the final prediction score of the deep neural regression
method.

The basic approach to determine the prediction score of a variation consists of five steps. First,
all projects (Appendix A) are listed. Second, the projects are randomly divided over two groups of
equal size, a training group and a testing group. Third, both groups are divided again into two sets
resulting in four separate sets. Each set is a subcollection of projects from the initial list. Fourth,
for every set in the training group a model is trained on the candidates of that set. There are two
training groups, therefore, two separate models are trained. Fifth, both models are separately used
to suggest candidates for both the first and second testing set. For each argument in the testing set
the actual argument is compared to the models suggested candidate. Resulting in a prediction score
for each of the four combinations (Equation 4.1).

However, if nothing is changed and step four and five are repeated, prediction scores will slightly
change. This is caused by how neural network models work and specifically how they are initialized
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using random numbers. Removing this randomness, by fixing these numbers, does result in equal
prediction scores for the same configuration, training set and testing set. This, however, does not
remove the underlying variation. It only fixes the prediction score to one specific variation. Therefore,
it does not provide any information to how the change in hyperparameters or features impacts the
prediction score.

Therefore, step four and five are repeated three times. Averaging the prediction scores of each run
into a final prediction score including the accompanying standard deviation. However, comparing two
numbers is different from comparing two means. Comparing the means of two prediction scores is
only valid when the means are statistically different from each other. If two means are not statis-
tically different from each other, their difference does not provide any information. To do this, the
students two-sample, two-tailed heteroscedastic t-test is used. This test provides a confidence value,
or p-value, as output that indicates how confident we can be that the two means are indeed different.
If the confidence of this test is below 0.05 the null hypothesis is rejected. In other words, the two
means can be assumed to be statistically different.

Splitting all projects into two groups and then splitting each group into two sets results in four
different sets of projects. These four sets are used in most of what is discussed in this chapter. When
an experiment deviates from this set-up it is explicitly conveyed. Table 4.1 shows basic information
about the four sets. In the subsequent text each set is referenced according to the group name and
set number displayed in this table1.

Data set Training group Testing group
Set 1 Set 2 Set 1 Set 2

Name Training1 Training2 Testing1 Testing2
Projects included 36 36 36 35
Arguments 90.408 127.951 127.568 167.438
Candidates 444.259 805.877 569.357 862.376
Guess score 20,4 % 15,9 % 22,4 % 19,4 %
Prediction score average (n=9) - - 87,3 % 82,9 %

Table 4.1: Context for the used training and testing sets.
The prediction score for each training and testing set combination is the average of 9 runs. To get

the prediction score average for each testing set, the two training sets that were applied to that
testing set are averaged

4.2 Hyperparameters

As discussed in section 2.3, tweaking the hyperparameters of the neural network model could increase
the prediction score. Three hyperparameters are tested. The configuration (width and height) of the
hidden layers, the batch size and if the candidates should be weighted differently based on the amount
of candidates per argument. The activation and loss function are not tested and are set to the ReLu
function and the mean squared error (MSE) respectively.

To determine which configuration of layers performs best we first establish 14 different configura-
tions.

f = number of input features. The layers are separated by a comma.

• Model 1: f

• Model 2: f2

• Model 3: f3

• Model 4: f, f

1Example: Set 1 of the training group is named training1
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• Model 5: f, f, f

• Model 6: f, f, f, f

• Model 7: f2, f

• Model 8: f2, f, f

• Model 9: f2, f2

• Model 10: f2, f2, f, f

• Model 11: f2, f2, f, f/2

• Model 12: f2, f2, f, f/2, f/4

• Model 13: f3, f

• Model 14: f3, f, f

• Model 152: f3, f3

These configurations are not exhaustive but represent certain aspects we want to test. Specifically,
the height of the first hidden layer relative to the input layer, the height of the last layer and the
width of the network. The number of nodes is always relative to the number of input features because
this allows for specific scenarios. If the number of nodes is equal to the number of input features,
every feature can be combined with one or more other features into a new node. With the second
power of the number of input features, every input feature can be combined with every other input
feature into a separate node. The third power is tested as an experiment whether even more nodes
could be beneficial.

Changing the configuration of the hidden layers (Table 4.2) does not have a statistically relevant
impact3 on the prediction score for 10 out of 14 different configurations (Table 4.2). From these 10
different configuration, configuration 7 is chosen. Configuration 7 has a comparatively low amount
of nodes and connections which results in comparatively lower training time. The average standard
deviation of the scores in configuration 7 is also low compared to the other configurations with a low
amount of nodes.

Name Hidden layers Testing1 Testing2
Training1 Training2 Training1 Training2

7 2025, 45 86.6% ± 0.2 88.0% ± 0.0 82.7% ± 0.1 83.1% ± 0.1
3 91125 86.7% ± 0.3 87.9% ± 0.2 82.7% ± 0.1 83.0% ± 0.0

14 91125, 45, 45 86.4% ± 0.2 87.9% ± 0.3 82.6% ± 0.1 83.2% ± 0.2
12 2025, 2025, 45, 22, 11 86.6% ± 0.4 87.7% ± 0.3 82.6% ± 0.6 83.0% ± 0.2
8 2025, 45, 45 86.5% ± 0.4 88.0% ± 0.2 82.2% ± 0.4 83.1% ± 0.1

10 2025, 2025, 45, 45 86.7% ± 0.2 87.8% ± 0.5 82.5% ± 0.3 82.9% ± 0.2
9 2025, 2025 86.3% ± 0.4 87.8% ± 0.3 82.5% ± 0.2 83.0% ± 0.1
2 2025 86.6% ± 0.4 87.7% ± 0.1 82.5% ± 0.2 82.8% ± 0.2

11 2025, 2025, 45, 22 85.9% ± 0.4 87.9% ± 0.1 82.3% ± 0.2 82.9% ± 0.1
6 45, 45, 45, 45 85.8% ± 0.7 87.7% ± 0.3 81.5% ± 0.4 82.5% ± 0.2
5 45, 45, 45 86.1% ± 0.6 86.8% ± 0.9 82.0% ± 0.4 82.2% ± 0.6
4 45, 45 85.7% ± 0.6 87.1% ± 0.5 81.3% ± 0.4 81.8% ± 0.4
1 45 84.1% ± 2.4 86.6% ± 0.8 79.5% ± 2.6 81.5% ± 0.7

13 91125, 45 73.7% ± 0.0 78.4% ± 6.5 69.5% ± 0.0 73.9% ± 6.2

Table 4.2: Prediction scores of variations in the structure of hidden layers (Section 2.3) (n=3).
If the scores between two layers are equal, they both have the same position score (ranking) for that

combination of training and test set. Cells in red are statistically different (Students T-Test,
two-sample, two-tailed, heteroscedastic) from the average prediction score of configuration 7.

2Server did not have enough GPU memory to do this operation
3Using the students T-Test (two-sample, two-tailed, heteroscedastic) compared to prediction scores of batch size

1024
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For the different batch sizes (Table 4.3) a similar pattern is present. Changing the batch size does
not impact the prediction score in a statistically significant way (Table 4.3) for most sizes. Only the
batch sizes 32, 64 and 8 are significantly different4 in more than one combination. Therefore, based
on the data available nothing can be said about which of the other batch sizes will result in better
prediction scores. In section 2.3 it is discussed that higher batch sizes result in quicker training.
Therefore, the batch size of 1024 is chosen.

Batch size Test set 1 Test set 2
Train set 1 Train set 2 Train set 1 Train set 2

1024 86.9% ± 0.7 88.0% ± 0.2 82.8% ± 0.2 83.1% ± 0.0
512 86.9% ± 0.3 87.9% ± 0.2 82.8% ± 0.1 82.8% ± 0.3
128 86.6% ± 0.7 88.0% ± 0.1 82.6% ± 0.2 82.8% ± 0.1
16 86.8% ± 0.5 87.8% ± 0.1 82.4% ± 0.5 82.7% ± 0.3
256 86.5% ± 0.6 87.7% ± 0.3 82.4% ± 0.5 82.9% ± 0.2
32 86.4% ± 0.1 87.7% ± 0.2 82.5% ± 0.1 82.6% ± 0.2
64 86.4% ± 0.6 87.5% ± 0.2 82.2% ± 0.2 82.7% ± 0.1
8 86.5% ± 0.1 87.4% ± 0.4 82.3% ± 0.2 82.3% ± 0.3

Table 4.3: Prediction scores of different batch sizes (n=3).
If the scores between two layers are equal, they both have the same position score (ranking) for that

combination of training and test set. Cells in red are statistically different (Students T-Test,
two-sample, two-tailed, heteroscedastic) from the average prediction score of batch size 1024.

The last hyper parameter that we test is the weight initialization of the individual candidates.
Weights communicate to the network to what respect collections of candidates should impact how the
model is modified in between epochs.

In the dataset used in this study, every argument has a certain amount of candidates. Some argu-
ments have few candidates and some have more than twenty. Because all candidates are evaluated
individually, arguments with few candidates could be underrepresented and arguments with a lot of
candidates could be overrepresented. To counteract this, the model can weigh the candidates differ-
ently. The candidates of arguments, that have few candidates, are weighed more (few candidates
more) in this scenario.

However, an argument can also be made that if an argument has more candidates, it is also more
complex. Which will mean that the model should weigh each candidate the same or these candidates
more. Another possibility is that certain kinds of candidates will always be found among a large set
of candidates. An example could be inherited field or field variables. This can lead to the model not
being able to learn how to recommend candidates of these types well. Therefore candidates of this
type should be weighed more (many candidates more).

Another reason to weigh the candidates is that for every argument only one candidate is the
actual argument. Therefore, there are more positive training examples than negative ones. This will,
however, be true for both the training set (with which the model is trained) and the testing set (which
is used to simulate giving the recommendations).

To evaluate how we should set this hyperparameter a different approach is chosen than for the
other hyperparameters. In the first two tests we noticed that it was hard to determine a significant
difference between two batch sizes or layer structures. Therefore, we try a different approach for this
hyperparameter. Instead of the two training and two testing sets used before, we divide all projects
over one training and one testing set. We also shuffle the projects after every three runs to get a new
configuration of projects in the training and testing set each time. We call every new configuration
of projects a project set. In table 4.4 we see that initializing the candidates with weights does not
impact the prediction score significantly. It does not matter if we weigh some candidates more or less.
Therefore, no weight initialization is used.

4Students t-test (two-sample, two-tailed, heteroscedastic) compared to prediction scores of batch size 1024
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Project set No weight initialization Few candidates more Many candidates more
1 84, 8%± 0, 3 84, 9%± 0, 3 85, 0%± 0, 5
2 84, 3%± 0, 2 84, 2%± 0, 5 84, 1%± 0, 2
3 86, 1%± 0, 2 85, 8%± 0, 0 86, 2%± 0, 5
4 84, 5%± 0, 4 84, 3%± 0, 5 84, 0%± 0, 1
5 85, 9%± 0, 3 85, 9%± 0, 5 85, 9%± 0, 1
6 83, 9%± 0, 2 84, 1%± 0, 3 83, 8%± 0, 1
7 84, 1%± 0, 3 84, 7%± 0, 1 84, 1%± 0, 8
8 85, 4%± 0, 2 85, 3%± 0, 1 85, 1%± 0, 1
9 85, 2%± 0, 3 85, 2%± 0, 4 85, 2%± 0, 1

10 84, 7%± 0, 1 84, 7%± 0, 3 84, 7%± 0, 0
11 84, 1%± 0, 2 84, 3%± 0, 3 84, 1%± 0, 2
12 85, 2%± 0, 1 85, 7%± 0, 2 85, 3%± 0, 2
13 83, 7%± 0, 2 84, 3%± 0, 3 83, 9%± 0, 2
14 85, 0%± 0, 2 85, 5%± 0, 3 85, 0%± 0, 4
15 84, 2%± 0, 2 83, 8%± 0, 1 83, 8%± 0, 3
16 86, 7%± 0, 1 86, 6%± 0, 3 86, 7%± 0, 2
17 84, 2%± 0, 1 84, 0%± 0, 3 84, 2%± 0, 1
18 86, 7%± 0, 2 86, 2%± 0, 4 86, 4%± 0, 2
19 84, 8%± 0, 7 85, 2%± 0, 2 84, 1%± 1, 3
20 84, 9%± 0, 3 * *

Average 84, 9%± 0, 3 85, 0%± 0, 3 84, 8%± 0, 3

Table 4.4: Prediction scores of different weight initializations (n=3).
All candidates of an argument are weighted according to the number of candidates that argument
has. Few candidates more weights smaller candidate sets more and Many candidates more

weights larger candidate sets more.
* Early termination, no data available.

4.3 Features

To understand which features impact the final prediction scores two methods are proposed. The first
method concerns a simple statistical analysis of the candidates in the dataset. For both test sets
and for every feature we determine how many candidates possess that feature and how many actual
arguments have that feature. Some features are also combined with another feature to measure their
combined effect. The second method concerns the actual deep neural regression model. For each
feature a model is trained with all features except for that feature. The resulting change in prediction
score is used to determine the impact of the feature on the total prediction score. Combinations of
features are also tested. In particular the feature combinations that overlap in some respects.

In table 4.5 for both test sets it is shown what percentage of candidates possess a certain feature.
They also show what percentage of those candidates, that possess the feature, are the actual argument
and what percentage of the remaining candidates are the actual argument. For example in the set
testing1 (Table 4.5) 29.99% of candidates are inherited fields. Of those 29.99% of candidates, only
5,96% of them are the actual argument used. Of the remaining 70.01% of candidates 29,45% are used
as the actual argument. Therefore, if the only available information about the candidate is that it is
an inherited field, then that candidate is not likely to be the actual argument. The same principle
holds in reverse. If it is known that a candidate is not an inherited field, it increases the chance of
it being the actual argument.

There is a point were it will be beneficial to increase or decrease the likelihood of the candidate
being the actual argument. This point is equal to the guess score (Table 4.1) of the respective test
set, taking into account slight variations in data between sets of projects. If the percentage is above
the guess score it is beneficial. If not, it is detrimental.

However, notice that this table does not show the distribution of the features across the candidates
of an argument. Therefore, if all candidates for a single argument possess the feature, this still does
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not help in predicting the correct argument. It, however, does give some insight in the features of the
testing sets and the distribution over the aggregated candidates.

Testing1

Feature Candidate has feature Candidate does not have feature
Candidate is actual argument

isPrimitive 15,50 % 13,75 % 23,99 %
isLocal 21,58 % 43,81 % 16,52 %
isParameter 15,39 % 54,53 % 16,56 %
isField 33,13 % 8,46 % 29,32 %
isInheritedField 29,99 % 5,96 % 29,45 %
usedInMethodCallCombination 6,50 % 48,19 % 20,61 %
comparedToNullInIfPredicate 0,10 % 39,45 % 22,39 %
comparedToNotNullInIfPredicate 0,38 % 70,58 % 22,22 %
usedInIfPredicate 7,32 % 19,32 % 22,65 %
usedInMethodCall 37,48 % 26,62 % 19,88 %
usedInVariableDeclaration 16,20 % 21,43 % 22,59 %
usedInForEachStatement 0,40 % 14,12 % 22,44 %
usedInCurrentIfPredicate 1,75 % 51,68 % 21,88 %
usedInAssignExpression 6,16 % 20,85 % 22,51 %
usedInExplicitConstructorCall 0,10 % 11,36 % 22,42 %
usedInObjectCreationExpression 5,32 % 17,82 % 22,66 %
usedInArrayAccessExpression 0,25 % 19,05 % 22,41 %

Testing2

Feature Candidate has feature Candidate does not have feature
Candidate is actual argument

isPrimitive 31,45 % 8,02 % 24,64 %
isLocal 22,12 % 38,84 % 13,90 %
isParameter 16,86 % 48,45 % 13,53 %
isField 35,22 % 6,82 % 26,26 %
isInheritedField 25,86 % 0,99 % 25,84 %
usedInMethodCallCombination 7,03 % 44,94 % 17,49 %
ComparedToNullInIfPredicate 0,12 % 41,60 % 19,39 %
ComparedToNotNullInIfPredicate 0,32 % 60,59 % 19,29 %
usedInIfPredicate 8,61 % 16,53 % 19,69 %
usedInMethodCall 37,43 % 20,31 % 18,88 %
usedInVariableDeclaration 17,38 % 17,48 % 19,82 %
usedInForEachStatement 0,31 % 20,98 % 19,41 %
usedInCurrentIfPredicate 1,87 % 49,18 % 18,85 %
usedInAssignExpression 8,41 % 16,47 % 19,69 %
usedInExplicitConstructorCall 0,35 % 2,84 % 19,47 %
usedInObjectCreationExpression 3,78 % 15,87 % 19,56 %
usedInArrayAccessExpression 0,34 % 13,83 % 19,43 %

Table 4.5: Candidate specific features for testing1 and testing2.
For all candidate specific features that can be present or not present it is established in what

percentage of candidates they occur (candidate has feature). For these candidates it is tested if they
are the actual argument used. For the remaining candidates the same is done.

Parc proposed to replace the distance measurement. Instead of the declaration distance, they
proposed to use the distanceToInitialization of a candidate. For the arguments in the testing
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sets (Table 4.6) it is indeed the case that the closest candidate according to the distanceToInitial-
ization is more often the actual argument than according to the distanceToDeclaration.

In section 3.2 the distanceToDeclarationSpecial was the third distance value discussed. How-
ever, this feature is supposed to work together in the model with the unusedLocalCandidatesIn-
Row feature to get a valuable distance measurement. In this respect however, the same distance
feature as intended can be created out of distanceToInitialization and unusedLocalCandi-
datesInRow (Equation 4.2).

Variables =

{
i = distanceToInitialization

u = unusedLocalCandidatesInRow− 1

distanceToInitializationUnused =

{
u− i, if i 5 u

i, otherwise

(4.2)

This distance measurement does not outperform the distanceToInitialization and distance-
ToDeclaration features in testing1 but it does in testing2.

The feature scope distance is less effective than the other distance measurements but it mea-
sures something different. In contrast to the other distance measures, candidates can have the same
scopeDistance. However if the distanceToInitialization is used as a tie-breaker the top pick is
still not better than the distanceToInitialization on its own. The feature could however still be
beneficial, especially in combinations with others, and is not ruled out based on these scores.

Testing1

Feature First candidate Remaining candidates
Candidate is actual argument

distanceToInitialization 22,41% 76,10% 6,90%
distanceToDeclaration 22,41% 75,60% 7,04%
distanceToInitializationUnused 22,41% 75,39% 7,11%
scopeDistance 19,50% 40,26% 18,08%

Testing2

Feature First candidate Remaining candidates
Candidate is actual argument

distanceToInitialization 19,42% 70,97% 6,99%
distanceToDeclaration 19,42% 70,71% 7,06%
distanceToInitializationUnused 19,42% 71,87% 6,78%
scopeDistance 22,70% 30,73% 16,09%

Table 4.6: Distance features for testing1 and testing2.
For all distance related features the candidates for each argument are sorted according to the

distance feature. It is established what percentage of candidates are first if sorted according to the
specific distance feature. Each first candidate is then compared to the actual argument. Each

remaining candidate is also compared to the actual argument. The percentage of the candidates
that are sorted first and are the actual argument is equal to the prediction score because for every

argument only one candidate is first (except for scopeDistance).

The similarity between the formal parameter name and the candidate name can be an important
indicator that can help predict the correct candidate to use. Four features are proposed (Section
3.1) to cover this aspect, all calculating some form of lexical similarity between the two names. In
table 4.7 the performance of each lexical feature is stated. Based on these two test sets the lexical
similarity measured according to the lexicalSimilarity, lexicalSimilarityStrictOrder and
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lexicalSimilarityCommonTerms features outperforms the lexicalSimilarityParc feature in
the used data set.

Testing1

Feature A similarity is measured No similarity Candidate is best match
Candidate is actual argument

lexicalSimilarityParc 25,59% 65,52% 7,58% 84,38%
lexicalSimilarity 23,15% 70,00% 10,59% 84,66%
lexicalSimilarityStrictOrder 23,15% 70,00% 10,59% 84,68%
lexicalSimilarityCommonTerms 23,15% 70,00% 10,59% 84,68%

Testing2

Feature A similarity is measured No similarity Candidate is best match
Candidate is actual argument

lexicalSimilarityParc 24,23% 53,85% 8,40% 77,54%
lexicalSimilarity 20,19% 59,93% 11,21% 77,76%
lexicalSimilarityStrictOrder 20,19% 59,93% 11,21% 77,78%
lexicalSimilarityCommonTerms 20,19% 59,93% 11,21% 77,78 %

Table 4.7: Lexical features for testing1 and testing2.
For all features related to lexical similarity, the percentage of candidates that have a similarity with

their respective formal parameter are calculated (similarity above 0.0). Of these candidates it is
established which are the actual argument used and what percentage of candidates that are not

similar in any way are the actual argument used. A candidate is the best match for its argument if
the similarity according to the specific feature is highest compared to the other candidates. Note

that because of how the features are extracted from the projects, the initial ordering is based on the
distanceToInitialization feature, therefore when no similarity is found or the similarities are

equal, the distanceToInitialization breaks the tie.

The statistical distribution of features over all the candidates and the actual arguments specifically
tells a lot about the importance of the feature. However, for the proposed method of deep neural
regression, it is also important to know what the combined effect of the features are. For all features we
create and test a model using all but that one feature (Table 4.8). By measuring how the elimination
of each feature impacts the prediction score we aim to find how important the feature is to our
approach.

In the table, the cells that are colored red indicate that the mean prediction score in that cell is
assumed statistically different from the base scores (the prediction score derived using all features).
The t-test that is used to determine if two means are statistically different uses a p-value of 0.05. This
means that in 5% of cases the test has a false positive. For this table 180 t-tests were executed. That
results in 9 possible means which could be misclassified. If this is taken into account the table does
not provide much information except that most features do not, in and of itself, have an impact on the
prediction score. There are, however, two features that do show a statistical significant difference in all
runs. They are methodCallCombinationUsed and unusedLocalCandidatesInRow. Another
feature has a difference in three runs (usedInMethodCall). Because of the low statistical proof,
only these three features are considered to be proven beneficial to the model using this set-up.
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Testing1 Testing2
Feature Training1 Training2 Training1 Training2

All features included (n=9) 86.7% ± 0.5 87.9% ± 0.3 82.7% ± 0.3 83.2% ± 0.2

methodCallCombinationUsed 85.7% ± 0.2 87.4% ± 0.1 80.9% ± 1.1 81.9% ± 0.0
unusedLocalCandidatesInRow 86.0% ± 0.3 87.4% ± 0.3 82.1% ± 0.2 82.0% ± 0.2
usedInMethodCall 86.2% ± 0.2 87.2% ± 0.3 81.9% ± 0.2 81.8% ± 0.2
numberOfArguments 86.3% ± 0.3 87.3% ± 1.0 82.3% ± 0.3 82.3% ± 1.2
positionOfArgument 86.1% ± 0.1 87.6% ± 0.2 82.3% ± 0.3 82.7% ± 0.1
inEnum 86.2% ± 0.3 87.6% ± 0.3 82.3% ± 0.3 82.8% ± 0.5
numberOfCandidates 86.0% ± 0.1 87.5% ± 0.1 82.4% ± 0.1 82.9% ± 0.0
usedInIfPredicate 85.8% ± 1.0 87.9% ± 0.2 81.7% ± 1.8 82.8% ± 0.3
inAssign 86.4% ± 0.3 87.6% ± 0.3 82.4% ± 0.3 82.6% ± 0.4
inVariable 85.8% ± 0.3 87.8% ± 0.4 82.2% ± 0.1 82.9% ± 0.4
inDo 86.2% ± 0.1 87.6% ± 0.2 82.4% ± 0.1 82.9% ± 0.2
isLocal 85.9% ± 0.2 87.7% ± 0.1 82.4% ± 0.1 82.9% ± 0.2
callInElseBlock 86.4% ± 0.3 87.7% ± 0.8 82.3% ± 0.3 82.7% ± 0.9
inElseBlock 86.4% ± 0.5 87.6% ± 0.2 82.5% ± 0.4 82.6% ± 0.2
scopeDistance 86.2% ± 0.1 87.9% ± 0.3 82.3% ± 0.3 82.7% ± 0.4
distanceToInitialization 86.4% ± 0.3 87.5% ± 0.3 82.6% ± 0.2 82.6% ± 0.6
unusedLocalCandidates 86.2% ± 0.1 87.7% ± 0.1 82.4% ± 0.2 82.9% ± 0.1
usedInCurrentIfPredicate 86.4% ± 0.4 87.8% ± 0.3 82.2% ± 0.2 82.7% ± 0.3
lexicalSimilarityCommonTerms 86.2% ± 0.2 87.8% ± 0.3 82.4% ± 0.1 82.8% ± 0.2
lexicalSimilarityStrictOrder 86.0% ± 0.2 87.9% ± 0.2 82.3% ± 0.1 82.9% ± 0.3
usedInExplicitConstructorCall 86.2% ± 0.4 87.8% ± 0.1 82.4% ± 0.4 82.8% ± 0.2
usedInObjectCreationExpression 86.4% ± 0.2 87.6% ± 0.4 82.6% ± 0.2 82.6% ± 0.5
comparedToNotNullInIfPredicate 86.3% ± 0.3 87.5% ± 0.1 82.7% ± 0.3 82.6% ± 0.1
lexicalSimilarityParc 86.3% ± 0.4 87.8% ± 0.3 82.1% ± 0.2 82.9% ± 0.4
isField 86.2% ± 0.1 87.7% ± 0.3 82.5% ± 0.3 82.9% ± 0.3
inForEach 86.3% ± 0.2 87.6% ± 0.4 82.7% ± 0.0 82.6% ± 0.6
inVariable 86.5% ± 0.4 87.6% ± 0.3 82.6% ± 0.2 82.5% ± 0.5
isPrimitive 86.4% ± 0.2 87.7% ± 0.2 82.6% ± 0.2 82.6% ± 0.2
isParameter 86.1% ± 0.2 87.9% ± 0.1 82.3% ± 0.1 83.0% ± 0.1
isInheritedField 86.4% ± 0.7 87.8% ± 0.1 81.8% ± 1.2 83.0% ± 0.3
distanceToDeclaration 86.8% ± 0.1 87.4% ± 1.1 82.7% ± 0.1 82.1% ± 1.5
inFor 86.4% ± 0.2 87.7% ± 0.0 82.5% ± 0.2 82.9% ± 0.1
inForEach 86.2% ± 0.3 87.9% ± 0.3 82.6% ± 0.1 82.8% ± 0.4
inSwitch 86.6% ± 0.4 87.7% ± 0.4 82.5% ± 0.1 82.7% ± 0.4
usedInArrayAccessExpression 86.5% ± 0.4 87.7% ± 0.4 82.6% ± 0.1 82.7% ± 0.4
usedInAssignExpression 86.2% ± 0.2 87.9% ± 0.3 82.5% ± 0.2 83.0% ± 0.2
inWhile 86.5% ± 0.2 87.8% ± 0.3 82.5% ± 0.2 82.8% ± 0.3
lexicalSimilarity 86.1% ± 0.1 87.9% ± 0.1 82.6% ± 0.2 83.0% ± 0.1
inTry 86.3% ± 0.3 88.1% ± 0.2 82.3% ± 0.2 83.1% ± 0.1
parentCallableSize 86.4% ± 0.2 88.0% ± 0.1 82.4% ± 0.2 83.1% ± 0.2
distanceToDeclarationSpecial 87.5% ± 0.4 87.9% ± 0.6 82.9% ± 0.1 82.5% ± 0.7
inMethod 86.5% ± 0.3 87.8% ± 0.4 82.6% ± 0.0 83.2% ± 0.3
inConstructor 86.5% ± 0.3 88.0% ± 0.0 82.6% ± 0.1 83.1% ± 0.0
comparedToNullInIfPredicate 86.7% ± 0.4 88.0% ± 0.2 82.5% ± 0.3 83.2% ± 0.1
inIfStatement 86.6% ± 0.1 88.0% ± 0.1 82.6% ± 0.4 83.1% ± 0.1

Table 4.8: Impact of elimination of features on prediction score.
Features ordered on how much eliminating them from the model impacts the prediction score. All prediction

scores are an average of running the training model and predicting the arguments three times (n=3) for
their respective training and testing set. Cells in red indicate that the mean prediction score is statistically

different from the base prediction score according to a students t-test.

Almost all features do not significantly impact the prediction score if eliminated. However, this can
also be attributed to the fact that some features overlap in some respects. To counteract this effect
combinations of features are removed (Table 4.9 and 4.10).

Removing all features that calculate a kind of lexical similarity (lexicalSimilarityStrictOrder,
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lexicalSimilarity, lexicalSimilarityCommonTerms and lexicalSimilarityParc) between
the formal parameter name and the candidate name has the most impact (Table 4.9). Removing the
distance measurements does not provide a conclusive result. There is no clear statistical benefit or
disadvantage (Table 4.10).

Features removed Testing1 Testing2
Training1 Training2 Training1 Training2

All features included
(n=9)

86.7%± 0.5 87.9%± 0.3 82.7%± 0.3 83.2%± 0.2

Keep none 81.4% ± 0.1 81.5% ± 0.3 78.7% ± 0.2 78.8% ± 0.6
Keep only lexicalSimilari-
tyParc

85.7% ± 0.3 86.5% ± 0.5 81.5% ± 0.1 81.5% ± 0.65

Keep only lexicalSimilari-
tyCommonTerms

86.1% ± 0.5 86.5% ± 0.5 82.1% ± 0.2 82.2% ± 0.7

Keep only lexicalSimilar-
ity

86.1% ± 0.3 87.5% ± 0.5 82.1% ± 0.1 82.8% ± 0.4

Keep only lexicalSimilari-
tyStrictOrder

86.2% ± 0.0 87.1% ± 0.6 82.2% ± 0.3 82.6% ± 0.2

Table 4.9: Eliminating combinations of lexical similarity features.
The lexical similarity features consist of lexicalSimilarityStrictOrder, lexicalSimilarity,
lexicalSimilarityCommonTerms and lexicalSimilarityParc. In this table, all these features

are removed from the model except for one. The model is also run without any of these features.

Features removed Testing1 Testing2
Training1 Training2 Training1 Training2

All features included
(n=9)

86.7%± 0.5 87.9%± 0.3 82.7%± 0.3 83.2%± 0.2

Keep none 87.3% ± 0.2 87.6% ± 0.2 81.7% ± 0.2 81.6% ± 0.2
Keep only scopeDistance 87.5% ± 0.2 87.7% ± 0.1 82.3% ± 0.1 81.8% ± 0.1
Keep only distanceToDec-
laration

87.5% ± 0.3 87.8% ± 0.1 82.8% ± 0.1 82.6% ± 0.1

Keep only distanceToIni-
tialization

87.6% ± 0.3 88.0% ± 0.2 82.7% ± 0.4 82.7% ± 0.2

Table 4.10: Eliminating combinations of distance features.
The distance features consist of distanceToInitialization, distanceToDeclaration,

distanceToDeclarationSpecial and scopeDistance. In this table, all these features are
removed from the model except for one. The model is also run without any of these features.
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Chapter 5

Comparison to previous work

In this chapter we compare our approach to previous work. We, however, do not compare our
method directly to Precise because Precise does not natively support the recommendation of basic
variables. It delegates this to the Eclipse IDE. The only difference between the algorithm used in
the Eclipse IDE and Parc is how they measure distance [ARMS15]. The Eclipse IDE uses the
distanceToDeclaration feature while Parc uses the distanceToInitialization feature. Based
on table 4.6 we derive that, in our dataset too, the distanceToInitialization feature is indeed the
better choice. However, in table 4.10 we do not see a significant difference between the two features.
Based on this information we do not expect the Eclipse IDE algorithm to perform better than Parc.
Therefore, we only compare our approach to Parc directly.

To compare our approach to that of Parc [ARMS15], we change the method of evaluation. In the
original method all projects were divided into four sets. Therefore, every prediction score was based
on only 1 set for training and 1 set for testing. In total every prediction score was, therefore, based
on only 50% of available projects. In this part however, all projects are used. For every calculated
prediction score 50% of projects will be used to train a model and the other 50% will be used to
test that model and calculate the prediction score. For every run the projects are first shuffled to
randomize their order and then divided into the training and testing set according to that order.

We also introduce the Parc score, which represents the precision (Equation 4.1) of the Parc tool.

5.1 Parc

To compare our approach to that of Parc the prediction score and Parc score are calculated using
the same training and testing sets. All projects have been shuffled 20 times to generate 20 different
training and 20 different testing sets. For each training set a corresponding testing set exists that
together contain all projects. Based on these 20 sets the average prediction score is 84.9%± 0.3 and
the average Parc score is 81.3% (Table 5.1). The deep neural regression approach results therefore
in an improvement over Parc of 3.6± 0.3 percent point (pp) or 4.4% on this dataset.

25



Project set Prediction score Parc Score Difference (pp)
1 84.8%± 0.3 81.6% 3.3 pp
2 84.3%± 0.2 80.5% 3.8 pp
3 86.1%± 0.2 83.4% 2.7 pp
4 84.5%± 0.4 81.6% 2.9 pp
5 85.9%± 0.3 82.5% 3.4 pp
6 83.9%± 0.2 79.3% 4.6 pp
7 84.1%± 0.3 81.0% 3.1 pp
8 85.4%± 0.2 81.3% 4.1 pp
9 85.2%± 0.3 81.0% 4.2 pp

10 84.7%± 0.1 80.7% 4.0 pp
11 84.1%± 0.2 80.9% 3.3 pp
12 85.2%± 0.1 81.3% 3.9 pp
13 83.7%± 0.2 80.1% 3.5 pp
14 85.0%± 0.2 82.2% 2.9 pp
15 84.2%± 0.2 81.2% 3.1 pp
16 86.7%± 0.1 82.9% 3.7 pp
17 84.2%± 0.1 80.2% 4.0 pp
18 86.7%± 0.2 83.1% 3.6 pp
19 84.8%± 0.7 81.4% 3.5 pp
20 84.9%± 0.3 80.8% 4.2 pp

Average 84.9%± 0.3 81.3% 3.6± 0.3 pp

Table 5.1: Prediction score (n=3), Parc score and difference.
For randomly shuffled sets of projects. The prediction score is calculated based on all arguments.

The prediction scores in table 5.1 are calculated based on the aggregated set of all arguments from
all projects. However, if the model is applied to the individual projects, in a test set, 88.7% of projects
have the same prediction score or benefit from the new approach over Parc (Figure 5.2). In total an
average gain of 2.6 percent point is realized on the individual projects of this test set. However, if
the size of the individual projects, expressed in the amount of arguments they contain, is taking into
account, then the average gain is 4.1 percent point (pp). This indicates that arguments in bigger
projects are better to predict than smaller projects in the data used1. Eleven of the twelve projects
that show no improvement or a negative improvement indeed contain less arguments than the average
and median amount of arguments.

1A project is always used for the training set or the testing set, never both.
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Figure 5.1: Prediction score and Parc score for individual projects (1 of 2).
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Figure 5.2: Prediction score and Parc score for individual projects (2 of 2).
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5.2 Limiting features

In this chapter the features are discussed that can be removed without making an impact on the actual
precision achieved. For most features however, no conclusive evidence is found that indicates that
they do not provide a positive outcome. Only the overlapping features for distance (declarationDis-
tance) and lexical similarity (parcLexicalSimilarity, lexicalSimilarity, commonTermRatio) were found
to conclusively not be beneficial to the prediction score. There is also no evidence that the feature
parentCallableSize does provide a beneficial factor (Table 4.8). Removing these features in the
model indeed does not change the final results (Table 5.2).

If all features that are not used in the Parc algorithm are removed than we see a definite drop
in performance (Table 5.2). Compared to the precision of Parc itself the score achieved using deep
neural regression is 2 percent point lower for this instance. In other words, the deep neural regression
method does not outperform the Parc algorithm using only the features used in Parc.

Project set Prediction score Prediction score Prediction score
with all features with limited features with Parc features

1 84, 8%± 0, 3 84, 5%± 0, 2 78, 6%± 0, 1
2 84, 3%± 0, 2 84, 6%± 0, 2 78, 9%± 0, 1
3 86, 1%± 0, 2 86, 5%± 0, 3 81, 4%± 0, 5
4 84, 5%± 0, 4 84, 3%± 0, 2 79, 7%± 0, 2
5 85, 9%± 0, 3 85, 6%± 0, 3 80, 1%± 0, 1
6 83, 9%± 0, 2 83, 6%± 0, 0 77, 1%± 0, 0
7 84, 1%± 0, 3 84, 6%± 0, 3 79, 1%± 0, 3
8 85, 4%± 0, 2 84, 7%± 0, 0 78, 9%± 0, 1
9 85, 2%± 0, 3 85, 1%± 0, 1 79, 3%± 0, 3

10 84, 7%± 0, 1 84, 3%± 0, 1 77, 3%± 0, 1
11 84, 1%± 0, 2 84, 8%± 0, 2 79, 2%± 0, 2
12 85, 2%± 0, 1 84, 9%± 0, 1 79, 0%± 0, 3
13 83, 7%± 0, 2 84, 5%± 0, 1 78, 0%± 0, 4
14 85, 0%± 0, 2 85, 9%± 0, 1 79, 7%± 0, 6
15 84, 2%± 0, 2 84, 7%± 0, 2 79, 2%± 0, 1
16 86, 7%± 0, 1 87, 1%± 0, 2 79, 9%± 0, 3
17 84, 2%± 0, 1 83, 8%± 0, 1 78, 0%± 0, 3
18 86, 7%± 0, 2 85, 8%± 0, 3 80, 0%± 0, 0
19 84, 8%± 0, 7 85, 0%± 0, 1 79, 1%± 0, 1
20 84, 9%± 0, 3 85, 1%± 0, 2 78.4%± 0, 6∗

Average 84, 9%± 0, 3 85, 0%± 0, 2 79, 0%± 0, 3

Table 5.2: Prediction scores for all features, limited features and Parc features.
The limited features contain all features except for: distanceToDeclaration,

lexicalSimilarityParc, lexicalSimilarity, lexicalSimilarityCommonTerms and
parentCallableSize. The Parc features consist of isParameter, isLocal, isField,

isInheritedField, lexicalSimilarityParc, usedInMethodCall and
distanceToInitialization.

* Early termination, average is taken over two runs instead of three.

5.3 Allowing multiple recommendations

In all evaluations we have focused only on the top-1 recommendation (Section 4) provided by the
method used. This is largely done because in many cases there is only room for one argument
recommendation of the basic variable type. If there is room to recommend more variables we can
modify the precision equation 4.1. A top-n recommendation is, in this section, relevant when one of
the first n recommendations is the actual argument. In figure 5.3 the prediction score and Parc score
are shown for the top-1, top-2 and top-3 recommendations. The top-2 and top-3 recommendations
show the same trend as the top-1 recommendation compared to the Parc score. From this it can
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be concluded that the deep neural regression method does not only improve the top suggestion but
it is also beneficial if more recommendations are requested. There is also another interesting pattern
in that the top-2 recommendations of the deep neural regression method are quite close to the top-3
Parc score. Meaning that almost the same precision can be achieved with two recommendations
using the deep neural regression method as with three using Parc.

Figure 5.3: Prediction score and Parc score for top-n recommendations.
Showing what the prediction and Parc score would be if 1, 2 and 3 recommendations could be

provided.

5.4 Runtime performance

The usability of a recommendation is also dependent on how fast recommendations can be given.
According to Proksch et al. [PLM15] a recommendation should be provided within 100 milliseconds
to be useful to the developer. Based on a test with 20 projects (Table 5.3) we establish that collecting
all features for every candidate of one argument takes on average 2 milliseconds. The recommendations
are generated separately in this test and this takes around 33 seconds for all 46170 arguments, which
is negligible per argument. Therefore, our approach is well within the maximum of 100 milliseconds.
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Projects Arguments Seconds
NanoHttpd nanohttpd 602 15
NLPchina elasticsearch-sql 1397 27
OpenTSDB opentsdb 708 17
Pi4J pi4j 2804 44
xetorthio jedis 6906 108
allure-framework allure1 467 14
apache rocketmq 8432 116
apache storm 4172 79
biezhi wechat-ap 210 10
brettwooldridge HikariCP 492 13
brianfrankcooper YCSB 528 10
bytedeco javacpp 1776 27
cglib cglib 866 12
changmingxie tcc-transaction 280 5
codingXiaxw seckill 64 3
coobird thumbnailator 3011 21
DozerMapper dozer 3644 50
dropwizard dropwizard 1877 165
dropwizard metrics 1434 48
FasterXML jackson-core 6500 90
Total 46170 874

Table 5.3: Time taken to collect all candidates, and their features, for all method call arguments in
a project.
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Chapter 6

Conclusions

This work continues on the research by Zhang et al. [ZYZ+12] and Asaduzzaman et al. [ARMS15] to
improve the recommendation of method call arguments. We determined that the highest performance
increase could be attained by improving the completion of one specific type of argument, instead of
adding support for more types of arguments. Therefore, we focussed on the completion of basic
variables, which represent around 40% of all method call arguments [ZYZ+12, ARMS15].

By analysing code prior to method call arguments we determined features in the code which should
impact argument completion. 45 possible features were found. We then demonstrate that a deep
neural regression approach is useful to infer the most likely candidate, for the argument, based on
these features.

6.1 Discussion

This study identifies certain threats to its validity. The data that is used throughout the study is
based on popular open source projects found on Github (Appendix A). The fact that the projects
are popular could indicate that they are well supported and that the code has been refactored. This
could mean that the code used is more structured and names of variables are better chosen than live
code being written on the fly.

The manner in which the arguments and their candidates were extracted from the open source
projects is also of importance. For the extraction a third party open source library was used that was
still in development. Although the library performed well, there were some problems. In some cases
we could not link the correct method to a method call. For some methods we also could not solve the
names of their formal parameters. Adding to this there were also some cases in which generics could
not be resolved. In all theses cases the arguments have been ignored.

Another threat to the validity is the use of the students t-test in the evaluation. There are two
problems identified regarding this test. The first is the low number of samples that is used to calculate
the average prediction scores. Although there does not exist a minimum amount of samples to compare
means using the students t-test, it is generally assumed that a higher number of samples provides
more robust results. Secondly, using the t-test for multiple comparisons significantly lowers the validity
because every test has a 5% change of giving an incorrect result. To counteract this, the t-test is
only used in experiments to compare prediction scores to one base score and not between all scores.
Secondly, the results of the t-test are only used for conclusions when they provide the same results
for both testing sets in the evaluation.

The data and the features that were used in this study were focussed on the completion of method
call arguments in the Java programming language. However, we assume that this method could
be used in most other general-purpose object-oriented programming languages (Python, C#.net,
VB.net). The reasoning for this is that most of these languages show the same characteristics that
are caught in the selected features found in chapter three. However, this does not mean it will
be as successful in these other languages. One big obstacle is statically versus dynamically typed
languages. In a dynamically typed language we cannot filter the list of candidates based on type-
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compliancy, therefore, we are left with more candidates. Another obstacle could be how and if late
binding and dynamic dispatch are implemented. However, in this study we have assumed that the
method being targeted by a method call is always known.

6.2 Conclusion

In this work we have explored a deep neural regression approach to the completion of method call
arguments of the basic variable type. We focused on understanding which coding features contributed
to the correct recommendation of candidate variables (SQ1), how the deep neural regression network
should be applied to improve the percentage of correct recommendations (SQ2) and how our proposed
approach compares to previous research (SQ3).

Based on the evaluation we conclude that the features we have added are beneficial to the perfor-
mance (SQ1). We identified four features that significantly affect the performance:

• usedInMethodCallCombination: if the combination of method call and argument was used
prior to where the argument is requested.

• unusedLocalCandidatesInRow: the amount of unused candidates in sequence from where the
argument is requested.

• usedInMethodCall: if the candidate in question has been used in another method call.

• lexicalSimilarity: the lexical similarity between the name of the candidate and the formal
parameter name.

Based on the results regarding the variations, on batch size and hidden layer structure and weight
initialization of the deep neural regression network we do not see a significant impact on the perfor-
mance of our approach (SQ2). Therefore, the variations resulting in faster training and calculation
times have been chosen.

We compare the results of our approach to that of the rule-based algorithm used in Parc, which
represents the state of the art in this field of research.

To compare our approach to Parc we randomly selected 71 out of 142 open source projects. To
make predictions for all method call arguments in these 71 projects, we trained our deep neural
network on the remaining 71 projects. Repeating these steps 20 times with a new selection of projects
ever time, we average the prediction scores to find the final prediction score. We find that our approach
outperforms PARC consistently and predicts on average 84.9% of method call arguments correctly to
Parc’s 81.3% (SQ3). On the individual project level, based on one of these selections of 71 projects,
we show that our approach is on par with or outperforms Parc in 88.7% of projects.

Based on our evaluation we conclude that we can improve method call argument completion of
basic variables using deep neural regression (RQ1).

6.3 Future work

In future work we would like to incorporate our approach into an IDE plugin that can be used by
developers. Secondly, we would like to explore more features. In the current approach all type-
compliant variables are treated equally. However, we could argue that in Java there are certain
degrees of type-compliancy. Does the candidate type exactly match the requested type or is it a
sub-type of this type or a sub-type of that sub-type? A feature could be added that would reflect this
information. In the study we also noticed the importance of the lexical similarity between the name
of the candidate and the name of the formal parameter name. This similarity is measured using the
exact strings used for both names. However, it would be interesting to see if developers use synonyms
of the formal parameter name in their naming of candidates, especially if the method call targets a
method from an external library or framework. Synonyms can be found using standard dictionaries.
These list of synonyms can then be extended or limited to words used in the accompanying text of
the code and overall project. Accompanying text could provide enough information for this purpose
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because ”In order to manage and understand the complexity of their programs, software developers
embed important, useful information in test suites, error messages, manuals, variable names, code
comments, and specifications” [Ern17].

In this study we have recommended method call arguments for projects with an unknown amount
of developers. It will be interesting to see how well this method performs on personal projects written
by only one developer. The method could also be personalized by training the model on a combination
of the project and the code of an individual developer.

In this study a project has always been used to either train the model or recommend arguments,
never both. However, it could be beneficial on larger existing projects to train the model on the
existing code repository as well. This could enhance the method by learning the local rules of the
project.

It can also be investigated if this method works for other types of arguments. A likely candidate
to begin with is the field access expression (object.field).
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Appendix A

Open source java projects that
were used

• Activiti/Activiti.git

• alibaba/fastjson.git

• allure-framework/allure1.git

• Alluxio/alluxio.git

• antlr/antlr4.git

• apache/commons-lan.git

• apache/flink.git

• apache/flume.git

• apache/httpcomponents-clien.git

• apache/rocketmq.git

• apache/storm.git

• asciidocfx/AsciidocFX.git

• ata4/disunity.git

• AxonFramework/AxonFramework.git

• b3log/solo.git

• b3log/symphony.git

• biezhi/wechat-ap.git

• bitcoinj/bitcoinj.git

• brettwooldridge/HikariCP.git

• brianfrankcooper/YCSB.git

• BroadleafCommerce/BroadleafCommerce.git

• bytedeco/javacpp.git

• caoxinyu/RedisClien.git

• cglib/cglib.git

• changmingxie/tcc-transaction.git

• checkstyle/checkstyle.git

• chewiebug/GCViewer.git

• clojure/clojure.git

• cloudera/flume.git

• code4craft/webmagic.git

• codingXiaxw/seckill.git

• coobird/thumbnailator.git

• deeplearning4j/dl4j-examples.git

• DozerMapper/dozer.git

• dropwizard/dropwizard.git

• dropwizard/metrics.git

• ebean-orm/ebean.git

• eclipse/smarthome.git

• eclipse/vert.x.git

• elasticjob/elastic-job-lite.git

• fabric8io/fabric8.git

• FasterXML/jackson-core.git

• google/auto.git

• google/closure-compiler.git

• google/error-prone.git

• google/truth.git

• Graylog2/graylog2-server.git

• gsh199449/spider.git

• guoguibing/librec.git

• hankcs/HanLP.git

• haraldk/TwelveMonkeys.git

• hcoles/pites.git

• hs-web/hsweb-framework.git

• HubSpot/Singularity.git

• Impetus/Kundera.git

• jamesdbloom/mockserver.git

• jdbi/jdb.git

• jfinal/jfinal.git

• jhalterman/failsafe.git

• jhipster/jhipster-sample-app.git

• jmxtrans/jmxtrans.git

• joel-costigliola/assertj-core.git
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• JpressProjects/jpress.git

• junit-team/junit4.git

• kanwangzjm/funiture.git

• kbastani/spring-cloud-microservice-example.git

• kevinsawicki/http-reques.git

• kevin-wayne/algs4.git

• kiegroup/optaplanner.git

• knightliao/disconf.git

• lets-blade/blade.git

• lettuce-io/lettuce-core.git

• liaohuqiu/android-Ultra-Pull-To-Refresh.git

• linkedin/camus.git

• liyifeng1994/ssm.git

• lukehutch/fast-classpath-scanner.git

• mahmoudparsian/data-algorithms-book.git

• medcl/elasticsearch-analysis-ik.git

• medcl/elasticsearch-analysis-pinyin.git

• mitreid-connect/OpenID-Connect-Java-
Spring-Server.git

• monkeyWie/proxyee-down.git

• mrniko/netty-socketio.git

• NanoHttpd/nanohttpd.git

• naver/pinpoin.git

• Nilhcem/FakeSMTP.git

• ninjaframework/ninja.git

• NLPchina/ansj se.git

• NLPchina/elasticsearch-sql.git

• NLPchina/nlp-lan.git

• oldmanpushcart/greys-anatomy.git

• OpenFeign/feign.git

• OpenHFT/Chronicle-Map.git

• OpenHFT/Chronicle-Queue.git

• opentripplanner/OpenTripPlanner.git

• OpenTSDB/opentsdb.git

• openzipkin/zipkin.git

• pac4j/pac4j.git

• pagehelper/Mybatis-PageHelper.git

• Pi4J/pi4j.git

• plantuml/plantuml.git

• plutext/docx4j.git

• proxyee-down-org/proxyee-down.git

• Qihoo360/XLearnin.git

• qos-ch/logback.git

• qos-ch/slf4j.git

• quartz-scheduler/quartz.git

• querydsl/querydsl.git

• rakam-io/rakam.git

• rampatra/jbo.git

• rapidoid/rapidoid.git

• redisson/redisson.git

• rest-assured/rest-assured.git

• richardwilly98/elasticsearch-river-mongodb.git

• rkalla/imgscalr.git

• sarxos/webcam-capture.git

• scouter-project/scouter.git

• scribejava/scribejava.git

• shardingjdbc/sharding-jdbc.git

• socketio/socket.io-client-java.git

• spring-cloud/spring-cloud-netflix.git

• spring-projects/spring-data-elasticsearch.git

• spring-projects/spring-data-mongodb.git

• spring-projects/spring-petclinic.git

• sqshq/PiggyMetrics.git

• square/javapoe.git

• square/keywhiz.git

• square/okio.git

• Tencent/angel.git

• tinkerpop/gremlin.git

• tjake/Solandra.git

• TooTallNate/Java-WebSocke.git

• traccar/traccar.git

• twitter/ambrose.git

• twitter/elephant-bird.git

• vert-x3/vertx-examples.git

• vipshop/Saturn.git

• winder/Universal-G-Code-Sender.git

• xetorthio/jedis.git

• xmindltd/xmind.git

• xuhuisheng/lemon.git

• xuxueli/xxl-job.git

• zouzg/mybatis-generator-gu.git

The projects were downloaded on the 13th of June 2018. The selection of projects was based on the following
requirements:

• The project is a Java project
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– This will be limited even further by also filtering on projects that do not contain the word Arduino
or Android in the maven file to limit the projects as much to pure java projects.

• The project is build with Maven

– Useful because dependencies can be automatically acquired.

– Automatically establish if the project compiles.

• The project compiles

• The size of the projects is between 10MB and 500MB

– Due to limited time and disk space.

• Projects are sorted based on the amount of times they were starred

– The assumption is that starred projects are used more and are generally of a better quality
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