
Ad Click Prediction: a View from the Trenches

H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young,
Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov,

Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg,
Arnar Mar Hrafnkelsson, Tom Boulos, Jeremy Kubica

Google, Inc.

mcmahan@google.com, gholt@google.com, dsculley@google.com

ABSTRACT
Predicting ad click–through rates (CTR) is a massive-scale
learning problem that is central to the multi-billion dollar
online advertising industry. We present a selection of case
studies and topics drawn from recent experiments in the
setting of a deployed CTR prediction system. These include
improvements in the context of traditional supervised learn-
ing based on an FTRL-Proximal online learning algorithm
(which has excellent sparsity and convergence properties)
and the use of per-coordinate learning rates.

We also explore some of the challenges that arise in a
real-world system that may appear at first to be outside
the domain of traditional machine learning research. These
include useful tricks for memory savings, methods for as-
sessing and visualizing performance, practical methods for
providing confidence estimates for predicted probabilities,
calibration methods, and methods for automated manage-
ment of features. Finally, we also detail several directions
that did not turn out to be beneficial for us, despite promis-
ing results elsewhere in the literature. The goal of this paper
is to highlight the close relationship between theoretical ad-
vances and practical engineering in this industrial setting,
and to show the depth of challenges that appear when ap-
plying traditional machine learning methods in a complex
dynamic system.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition—
Applications

Keywords
online advertising, data mining, large-scale learning

1. INTRODUCTION
Online advertising is a multi-billion dollar industry that

has served as one of the great success stories for machine

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

learning. Sponsored search advertising, contextual advertis-
ing, display advertising, and real-time bidding auctions have
all relied heavily on the ability of learned models to predict
ad click–through rates accurately, quickly, and reliably [28,
15, 33, 1, 16]. This problem setting has also pushed the
field to address issues of scale that even a decade ago would
have been almost inconceivable. A typical industrial model
may provide predictions on billions of events per day, using
a correspondingly large feature space, and then learn from
the resulting mass of data.

In this paper, we present a series of case studies drawn
from recent experiments in the setting of the deployed sys-
tem used at Google to predict ad click–through rates for
sponsored search advertising. Because this problem setting
is now well studied, we choose to focus on a series of topics
that have received less attention but are equally important
in a working system. Thus, we explore issues of memory
savings, performance analysis, confidence in predictions, cal-
ibration, and feature management with the same rigor that
is traditionally given to the problem of designing an effec-
tive learning algorithm. The goal of this paper is to give the
reader a sense of the depth of challenges that arise in real
industrial settings, as well as to share tricks and insights
that may be applied to other large-scale problem areas.

2. BRIEF SYSTEM OVERVIEW
When a user does a search q, an initial set of candidate

ads is matched to the query q based on advertiser-chosen
keywords. An auction mechanism then determines whether
these ads are shown to the user, what order they are shown
in, and what prices the advertisers pay if their ad is clicked.
In addition to the advertiser bids, an important input to the
auction is, for each ad a, an estimate of P (click | q,a), the
probability that the ad will be clicked if it is shown.

The features used in our system are drawn from a vari-
ety of sources, including the query, the text of the ad cre-
ative, and various ad-related metadata. Data tends to be
extremely sparse, with typically only a tiny fraction of non-
zero feature values per example.

Methods such as regularized logistic regression are a nat-
ural fit for this problem setting. It is necessary to make
predictions many billions of times per day and to quickly
update the model as new clicks and non-clicks are observed.
Of course, this data rate means that training data sets are
enormous. Data is provided by a streaming service based on
the Photon system – see [2] for a full discussion.

Because large-scale learning has been so well studied in
recent years (see [3], for example) we do not devote signif-



Figure 1: High-level system overview. Sparsification
is covered in Section 3, probabilistic feature inclu-
sion in Section 4, progressive validation in Section
5, and calibration methods in Section 7.

icant space in this paper to describing our system archi-
tecture in detail. We will note, however, that the training
methods bear resemblance to the Downpour SGD method
described by the Google Brain team [8], with the difference
that we train a single-layer model rather than a deep net-
work of many layers. This allows us to handle significantly
larger data sets and larger models than have been reported
elsewhere to our knowledge, with billions of coefficients. Be-
cause trained models are replicated to many data centers for
serving (see Figure 1), we are much more concerned with
sparsification at serving time rather than during training.

3. ONLINE LEARNING AND SPARSITY
For learning at massive scale, online algorithms for gen-

eralized linear models (e.g., logistic regression) have many
advantages. Although the feature vector x might have bil-
lions of dimensions, typically each instance will have only
hundreds of nonzero values. This enables efficient training
on large data sets by streaming examples from disk or over
the network [3], since each training example only needs to
be considered once.

To present the algorithm precisely, we need to establish
some notation. We denote vectors like gt ∈ Rd with bold-
face type, where t indexes the current training instance; the
ith entry in a vector gt is denoted gt,i. We also use the
compressed summation notation g1:t =

∑t
s=1 gs.

If we wish to model our problem using logistic regression,
we can use the following online framework. On round t,
we are asked to predict on an instance described by feature
vector xt ∈ Rd; given model parameters wt, we predict pt =
σ(wt · xt), where σ(a) = 1/(1 + exp(−a)) is the sigmoid
function. Then, we observe the label yt ∈ {0, 1}, and suffer
the resulting LogLoss (logistic loss), given as

`t(wt) = −yt log pt − (1− yt) log(1− pt), (1)

the negative log-likelihood of yt given p. It is straightforward
to show O`t(w) = (σ(w · xt)− yt)xt = (pt − yt)xt, and this
gradient is all we will need for optimization purposes.

Online gradient descent1 (OGD) has proved very effective
for these kinds of problems, producing excellent prediction
accuracy with a minimum of computing resources. How-
ever, in practice another key consideration is the size of the
final model; since models can be stored sparsely, the num-
ber of non-zero coefficients in w is the determining factor of

1OGD is essentially the same as stochastic gradient descent;
the name online emphasizes we are not solving a batch prob-
lem, but rather predicting on a sequence of examples that
need not be IID.

Algorithm 1 Per-Coordinate FTRL-Proximal with L1 and
L2 Regularization for Logistic Regression

#With per-coordinate learning rates of Eq. (2).
Input: parameters α, β, λ1, λ2
(∀i ∈ {1, . . . , d}), initialize zi = 0 and ni = 0
for t = 1 to T do

Receive feature vector xt and let I = {i | xi 6= 0}
For i ∈ I compute

wt,i =

{
0 if |zi| ≤ λ1
−
(
β+
√
ni

α
+ λ2

)−1
(zi − sgn(zi)λ1) otherwise.

Predict pt = σ(xt ·w) using the wt,i computed above
Observe label yt ∈ {0, 1}
for all i ∈ I do
gi = (pt − yt)xi #gradient of loss w.r.t. wi

σi = 1
α

(√
ni + g2i −

√
ni

)
#equals 1

ηt,i
− 1
ηt−1,i

zi ← zi + gi − σiwt,i
ni ← ni + g2i

end for
end for

memory usage.
Unfortunately, OGD is not particularly effective at pro-

ducing sparse models. In fact, simply adding a subgradi-
ent of the L1 penalty to the gradient of the loss (Ow`t(w))
will essentially never produce coefficients that are exactly
zero. More sophisticated approaches such as FOBOS and
truncated gradient do succeed in introducing sparsity [11,
20]. The Regularized Dual Averaging (RDA) algorithm pro-
duces even better accuracy vs sparsity tradeoffs than FO-
BOS [32]. However, we have observed the gradient-descent
style methods can produce better accuracy than RDA on
our datasets [24]. The question, then, is can we get both
the sparsity provided by RDA and the improved accuracy
of OGD? The answer is yes, using the “Follow The (Prox-
imally) Regularized Leader” algorithm, or FTRL-Proximal.
Without regularization, this algorithm is identical to stan-
dard online gradient descent, but because it uses an alter-
native lazy representation of the model coefficients w, L1

regularization can be implemented much more effectively.
The FTRL-Proximal algorithm has previously been framed

in a way that makes theoretical analysis convenient [24].
Here, we focus on describing a practical implementation.
Given a sequence of gradients gt ∈ Rd, OGD performs the
update

wt+1 = wt − ηtgt,
where ηt is a non-increasing learning-rate schedule, e.g., ηt =
1√
t
. The FTRL-Proximal algorithm instead uses the update

wt+1 = arg min
w

(
g1:t ·w +

1

2

t∑
s=1

σs‖w −ws‖22 + λ1‖w‖1
)
,

where we define σs in terms of the learning-rate schedule
such that σ1:t = 1

ηt
. On the surface, these updates look very

different, but in fact when we take λ1 = 0, they produce
an identical sequence of coefficient vectors. However, the
FTRL-Proximal update with λ1 > 0 does an excellent job
of inducing sparsity (see experimental results below).

On quick inspection, one might think the FTRL-Proximal
update is harder to implement than gradient descent, or
requires storing all the past coefficients. In fact, however,
only one number per coefficient needs to be stored, since we



Num. Non-Zero’s AucLoss Detriment

FTRL-Proximal baseline baseline
RDA +3% 0.6%
FOBOS +38% 0.0%
OGD-Count +216% 0.0%

Table 1: FTRL results, showing the relative number
of non-zero coefficient values and AucLoss (1−AUC))
for competing approaches (smaller numbers are bet-
ter for both). Overall, FTRL gives better sparsity
for the same or better accuracy (a detriment of 0.6%
is significant for our application). RDA and FOBOS
were compared to FTRL on a smaller prototyping
dataset with millions of examples, while OGD-Count
was compared to FTRL on a full-scale data set.

can re-write the update as the argmin over w ∈ Rd of(
g1:t −

t∑
s=1

σsws

)
·w +

1

ηt
‖w‖22 + λ1‖w‖1 + (const).

Thus, if we have stored zt−1 = g1:t−1 −
∑t−1
s=1 σsws, at the

beginning of round t we update by letting zt = zt−1 + gt +
( 1
ηt
− 1

ηt−1
)wt, and solve for wt+1 in closed form on a per-

coordinate bases by

wt+1,i =

{
0 if |zt,i| ≤ λ1

−ηt(zt,i − sgn(zt,i)λ1) otherwise.

Thus, FTRL-Proximal stores z ∈ Rd in memory, whereas
OGD stores w ∈ Rd. Algorithm 1 takes this approach, but
also adds a per-coordinate learning rate schedule (discussed
next), and supports L2 regularization of strength λ2. Alter-
natively, we could store −ηtzt instead of storing zt directly;
then, when λ1 = 0, we are storing exactly the normal gradi-
ent descent coefficient. Note that when ηt is a constant value
η and λ1 = 0, it is easy to see the equivalence to online gra-
dient descent, since we have wt+1 = −ηzt = −η

∑t
s=1 gs,

exactly the point played by gradient descent.

Experimental Results. In earlier experiments on smaller
prototyping versions of our data, McMahan [24] showed that
FTRL-Proximal with L1 regularization significantly outper-
formed both RDA and FOBOS in terms of the size-versus-
accuracy tradeoffs produced; these previous results are sum-
marized in Table 1, rows 2 and 3.

In many instances, a simple heuristic works almost as well
as the more principled approach, but this is not one of those
cases. Our straw-man algorithm, OGD-Count, simply main-
tains a count of the number of times it has seen a feature;
until that count passes a threshold k, the coefficient is fixed
at zero, but after the count passes k, online gradient descent
(without any L1 regularization) proceeds as usual. To test
FTRL-Proximal against this simpler heuristic we ran on a
very large data set. We tuned k to produce equal accuracy
to FTRL-Proximal; using a larger k leads to worse AucLoss.
Results are given in Table 1, row 4.

Overall, these results show that FTRL-Proximal gives sig-
nificantly improved sparsity with the same or better predic-
tion accuracy.

3.1 Per-Coordinate Learning Rates
The standard theory for online gradient descent suggests

using a global learning rate schedule ηt = 1√
t

that is com-

mon for all coordinates [34]. A simple thought experiment
shows that this may not be ideal: suppose we are estimat-
ing Pr(heads | coini) for 10 coins using logistic regression.
Each round t, a single coin i is flipped, and we see a feature
vector x ∈ R10 with xi = 1 and xj = 0 for j 6= i. Thus,
we are essentially solving 10 independent logistic regression
problems, packaged up into a single problem.

We could run 10 independent copies of online gradient
descent, where the algorithm instance for problem i would
use a learning rate like ηt,i = 1√

nt,i
where nt,i is the number

of times coin i has been flipped so far. If coin i is flipped
much more often than coin j, then the learning rate for coin
i will decrease more quickly, reflecting the fact we have more
data; the learning rate will stay high for coin j, since we have
less confidence in our current estimate, and so need to react
more quickly to new data.

On the other hand, if we look at this as a single learn-
ing problem, the standard learning rate schedule ηt = 1√

t

is applied to all coordinates: that is, we decrease the learn-
ing rate for coin i even when it is not being flipped. This
is clearly not the optimal behavior. In fact, Streeter and
McMahan [29] have shown a family of problems where the
performance for the standard algorithm is asymptotically
much worse than running independent copies.2 Thus, at
least for some problems, per-coordinate learning rates can
offer a substantial advantage.

Recall that gs,i is the ith coordinate of the gradient gs =
O`s(ws). Then, a careful analysis shows the per-coordinate
rate

ηt,i =
α

β +
√∑t

s=1 g
2
s,i

, (2)

is near-optimal in a certain sense.3 In practice, we use a
learning rate where α and β are chosen to yield good per-
formance under progressive validation (see Section 5.1). We
have also experimented with using a power on the counter
nt,i other than 0.5. The optimal value of α can vary a fair
bit depending on the features and dataset, and β = 1 is
usually good enough; this simply ensures that early learning
rates are not too high.

As stated, this algorithm requires us to keep track of both
the sum of the gradients and the sum of the squares of
the gradients for each feature. Section 4.5 presents an al-
ternative memory-saving formulation where the sum of the
squares of the gradients is amortized over many models.

A relatively simple analysis of per-coordinate learning rates
appears in [29], as well as experimental results on small
Google datasets; this work builds directly on the approach
of Zinkevich [34]. A more theoretical treatment for FTRL-
Proximal appears in [26]. Duchi et al. [10] analyze RDA
and mirror-descent versions, and also give numerous exper-
imental results.

Experimental Results. We assessed the impact of per-
coordinate learning rates by testing two identical models,

2Formally, regret (see, e.g., [34]) is Ω(T
2
3 ) for standard gra-

dient descent, while independent copies yields regret O(T
1
2 ).

3For a fixed sequence of gradients, if we take α to be twice
the maximum allowed magnitude for wi, and β = 0, we
bound our regret within a factor of

√
2 of the best possi-

ble regret bound (not regret) for any non-increasing per-
coordinate learning rate schedule [29].



Method RAM Saved AucLoss Detriment

Bloom (n = 2) 66% 0.008%
Bloom (n = 1) 55% 0.003%

Poisson (p = 0.03) 60% 0.020%
Poisson (p = 0.1) 40% 0.006%

Table 2: Effect Probabilistic Feature Inclusion.
Both methods are effective, but the bloom filter-
ing approach gives better tradeoffs between RAM
savings and prediction accuracy.

one using a single global learning rate and one using per-
coordinate learning rates. The base parameter α was tuned
separately for each model. We ran on a representative data
set, and used AucLoss as our evaluation metric (see Sec-
tion 5). The results showed that using a per-coordinate
learning rates reduced AucLoss by 11.2% compared to the
global-learning-rate baseline. To put this result in context,
in our setting AucLoss reductions of 1% are considered large.

4. SAVING MEMORY AT MASSIVE SCALE
As described above, we use L1 regularization to save mem-

ory at prediction time. In this section, we describe addi-
tional tricks for saving memory during training.

4.1 Probabilistic Feature Inclusion
In many domains with high dimensional data, the vast

majority of features are extremely rare. In fact, in some of
our models, half the unique features occur only once in the
entire training set of billions of examples.4

It is expensive to track statistics for such rare features
which can never be of any real use. Unfortunately, we do not
know in advance which features will be rare. Pre-processing
the data to remove rare features is problematic in an on-line
setting: an extra read and then write of the data is very
expensive, and if some features are dropped (say, because
they occur fewer than k times), it is no longer possible to
try models that use those feature to estimate the cost of the
pre-processing in terms of accuracy.

One family of methods achieves sparsity in training via
an implementation of L1 regularization that doesn’t need
to track any statistics for features with a coefficient of zero
(e.g.,[20]). This allows less informative features to be re-
moved as training progresses. However, we found that this
style of sparsification leads to an unacceptable loss in accu-
racy compared to methods (like FTRL-Proximal) that track
more features in training and sparsify only for serving. An-
other common solution to this problem, hashing with colli-
sions, also did not give useful benefit (see Section 9.1).

Another family of methods we explored is probabilistic
feature inclusion, in which new features are included in the
model probabilistically as they first occur. This achieves the
effect of pre-processing the data, but can be executed in an
online setting.

We tested two methods for this approach.

• Poisson Inclusion. When we encounter a feature
that is not already in our model, we only add it to
the model with probability p. Once a feature has been

4Because we deal exclusively with extremely sparse data in
this paper, we say a feature “occurs” when it appears with
a non-zero value in an example.

added, in subsequent observations we update its co-
efficient values and related statistics used by OGD as
per usual. The number of times a feature needs to be
seen before it is added to the model follows a geometric
distribution with expected value 1

p
.

• Bloom Filter Inclusion. We use a rolling set of
counting Bloom filters [4, 12] to detect the first n times
a feature is encountered in training. Once a feature has
occurred more than n times (according to the filter),
we add it to the model and use it for training in sub-
sequent observations as above. Note that this method
is also probabilistic, because a counting bloom filter
is capable of false positives (but not false negatives).
That is, we will sometimes include a feature that has
actually occurred less than n times.

Experimental Results. The effect of these methods is
seen in Table 2, and shows that both methods work well,
but the Bloom filter approach gives a better set of tradeoffs
for RAM savings against loss in predictive quality.

4.2 Encoding Values with Fewer Bits
Naive implementations of OGD use 32 or 64 bit floating

point encodings to store coefficient values. Floating point
encodings are often attractive because of their large dynamic
range and fine-grained precision; however, for the coefficients
of our regularized logistic regression models this turns out
to be overkill. Nearly all of the coefficient values lie within
the range (−2,+2). Analysis shows that the fine-grained
precision is also not needed [14], motivating us to explore
the use of a fixed-point q2.13 encoding rather than floating
point.

In q2.13 encoding, we reserve two bits to the left of the
binary decimal point, thirteen bits to the right of the binary
decimal point, and a bit for the sign, for a total of 16 bits
used per value.

This reduced precision could create a problem with accu-
mulated roundoff error in an OGD setting, which requires
the accumulation of a large number of tiny steps. (In fact, we
have even seen serious roundoff problems using 32 bit floats
rather than 64.) However, a simple randomized rounding
strategy corrects for this at the cost of a small added regret
term [14]. The key is that by explicitly rounding, we can
ensure the discretization error has zero mean.

In particular, if we are storing the coefficient w, we set

wi,rounded = 2−13 ⌊213wi +R
⌋

(3)

where R is a random deviate uniformly distributed between
0 and 1. gi,rounded is then stored in the q2.13 fixed point
format; values outside the range [−4, 4) are clipped. For
FTRL-Proximal, we can store ηtzt in this manner, which
has similar magnitude to wt.

Experimental Results. In practice, we observe no mea-
surable loss comparing results from a model using q2.13 en-
coding instead of 64-bit floating point values, and we save
75% of the RAM for coefficient storage.

4.3 Training Many Similar Models
When testing changes to hyper-parameter settings or fea-

tures, it is often useful to evaluate many slight variants of
one form or another. This common use-case allows for ef-
ficient training strategies. One interesting piece of work in



this line is [19], which used a fixed model as a prior and al-
lowed variations to be evaluated against residual error. This
approach is very cheap, but does not easily allow the evalu-
ation of feature removals or alternate learning settings.

Our main approach relies on the observation that each co-
ordinate relies on some data that can be efficiently shared
across model variants, while other data (such as the coeffi-
cient value itself) is specific to each model variant and can-
not be shared. If we store model coefficients in a hash table,
we can use a single table for all of the variants, amortizing
the cost of storing the key (either a string or a many-byte
hash). In the next section (4.5), we show how the per-model
learning-rate counters ni can be replaced by statistics shared
by all the variants, which also decreases storage.

Any variants which do not have a particular feature will
store the coefficient for that feature as 0, wasting a small
amount of space. (We enforce that by setting the learning
rate for those features to 0.) Since we train together only
highly similar models, the memory savings from not repre-
senting the key and the counts per model is much larger
than the loss from features not in common.

When several models are trained together, the amortized
cost is driven down for all per-coordinate metadata such as
the counts needed for per-coordinate learning rates, and the
incremental cost of additional models depends only on the
additional coefficient values that need to be stored. This
saves not only memory, but also network bandwidth (the
values are communicated across the network in the same
way, and we read the training data only once), CPU (only
one hash table lookup rather than many, and features are
generated from the training data only once rather than once
per model), and disk space. This bundled architecture in-
creases our training capacity significantly.

4.4 A Single Value Structure
Sometimes we wish to evaluate very large sets of model

variants together that differ only by the addition or removal
of small groups of features. Here, we can employ an even
more compressed data structure that is both lossy and ad
hoc but in practice gives remarkably useful results. This Sin-
gle Value Structure stores just one coefficient value for each
coordinate which is shared by all model variants that include
that feature, rather than storing separate coefficient values
for each model variant. A bit-field is used to track which
model variants include the given coordinate. Note that this
is similar in spirit to the method of [19], but also allows
the evaluation of feature removals as well as additions. The
RAM cost grows much more slowly with additional model
variants than the method of Section 4.3.

Learning proceeds as follows. For a given update in OGD,
each model variant computes its prediction and loss using
the subset of coordinates that it includes, drawing on the
stored single value for each coefficient. For each feature i,
each model that uses i computes a new desired value for
the given coefficient. The resulting values are averaged and
stored as a single value that will then be shared by all vari-
ants on the next step.

We evaluated this heuristic by comparing large groups
of model variants trained with the single value structure
against the same variants trained exactly with the set up
from Section 4.3. The results showed nearly identical rela-
tive performance across variants, but the single value struc-
ture saved an order of magnitude in RAM.

4.5 Computing Learning Rates with Counts
As presented in Section 3.1, we need to store for each

feature both the sum of the gradients and the sum of the
squares of the gradients. It is important that the gradi-
ent calculation be correct, but gross approximations may be
made for the learning rate calculation.

Suppose that all events containing a given feature have
the same probability. (In general, this is a terrible approx-
imation, but it works for this purpose.) Suppose further
that the model has accurately learned the probability. If
there are N negative events, and P positive events, then the
probability is p = P/(N + P ). If we use logistic regression,
the gradient for positive events is p− 1 and the gradient for
negative events is p, the sum of the gradients needed for the
learning rate Eq. (2) is∑

g2t,i =
∑

positive events

(1− pt)2 +
∑

negative events

p2t

≈ P
(

1− P

N + P

)2

+N

(
P

N + P

)2

=
PN

N + P
.

This ruthless approximation allows us to keep track of only
the counts N and P , and dispense with storing

∑
g2t,i. Em-

pirically, learning rates calculated with this approximation
work just as well for us as learning rates calculated with the
full sum. Using the framework of Section 4.3, total stor-
age costs are lower since all variant models have the same
counts, so the storage cost for N and P is amortized. The
counts can be stored with variable length bit encodings, and
the vast majority of the features do not require many bits.

4.6 Subsampling Training Data
Typical CTRs are much lower than 50%, which means

that positive examples (clicks) are relatively rare. Thus,
simple statistical calculations indicate that clicks are rela-
tively more valuable in learning CTR estimates. We can
take advantage of this to significantly reduce the training
data size with minimal impact on accuracy. We create sub-
sampled training data by including in our sample:

• Any query for which at least one of the ads was clicked.

• A fraction r ∈ (0, 1] of the queries where none of the
ads were clicked.

Sampling at the query level is desirable, since computing
many features requires common processing on the query
phrase. Of course, naively training on this subsampled data
would lead to significantly biased predictions. This problem
is easily addressed by assigning an importance weight ωt to
each example, where

ωt =

{
1 event t is in a clicked query
1
r

event t is in a query with no clicks.

Since we control the sampling distribution, we do not have
to estimate the weights ω as in general sample selection [7].
The importance weight simply scales up the loss on each
event, Eq. (1), and hence also scales the gradients. To see
that this has the intended effect, consider the expected con-
tribution of a randomly chosen event t in the unsampled
data to the sub-sampled objective function. Let st be the



Figure 2: Screen shot of the high-dimensional analysis visualization. Here, three variants are compared with a
control model, with results for AucLoss and LogLoss computed across a range of query topics. Column width
reflects impression count. Detailed information pops up for a specific breakdown on mouse-over. The user
interface allows for selection of multiple metrics and several possible breakdowns, including breakdowns by
topic, country, match type, and page layouts. This allows fast scanning for anomalies and deep understanding
of model performance. Best viewed in color.

probability with which event t is sampled (either 1 or r),
and so by definition st = 1

ωt
. Thus, we have

E[`t(wt)] = stωt`t(wt) + (1− st)0 = st
1

st
`t(wt) = `t(wt).

Linearity of expectation then implies the expected weighted
objective on the subsampled training data equals the ob-
jective function on the original data set. Experiments have
verified that even fairly aggressive sub-sampling of unclicked
queries has a very mild impact on accuracy, and that predic-
tive performance is not especially impacted by the specific
value of r.

5. EVALUATING MODEL PERFORMANCE
Evaluating the quality of our models is done most cheaply

through the use of logged historical data. (Evaluating mod-
els on portions of live traffic is an important, but more ex-
pensive, piece of evaluation; see, for example, [30].)

Because the different metrics respond in different ways to
model changes, we find that it is generally useful to evaluate
model changes across a plurality of possible performance
metrics. We compute metrics such as AucLoss (that is,
1 − AUC, where AUC is the standard area under the ROC
curve metric [13]), LogLoss (see Eq. (1)), and SquaredError.
For consistency, we also design our metrics so that smaller
values are always better.

5.1 Progressive Validation
We generally use progressive validation (sometimes called

online loss) [5] rather than cross-validation or evaluation on
a held out dataset. Because computing a gradient for learn-
ing requires computing a prediction anyway, we can cheaply
stream those predictions out for subsequent analysis, aggre-
gated hourly. We also compute these metrics on a variety of
sub-slices of the data, such as breakdowns by country, query
topic, and layout.

The online loss is a good proxy for our accuracy in serving
queries, because it measures the performance only on the
most recent data before we train on it—exactly analogous

to what happens when the model serves queries. The online
loss also has considerably better statistics than a held-out
validation set, because we can use 100% of our data for
both training and testing. This is important because small
improvements can have meaningful impact at scale and need
large amounts of data to be observed with high confidence.

Absolute metric values are often misleading. Even if pre-
dictions are perfect, the LogLoss and other metrics vary de-
pending on the difficulty of the problem (that is, the Bayes
risk). If the click rate is closer to 50%, the best achievable
LogLoss is much higher than if the click rate is closer to 2%.
This is important because click rates vary from country to
country and from query to query, and therefore the averages
change over the course of a single day.

We therefore always look at relative changes, usually ex-
pressed as a percent change in the metric relative to a base-
line model. In our experience, relative changes are much
more stable over time. We also take care only to compare
metrics computed from exactly the same data; for exam-
ple, loss metrics computed on a model over one time range
are not comparable to the same loss metrics computed on
another model over a different time range.

5.2 Deep Understanding through Visualization
One potential pitfall in massive scale learning is that ag-

gregate performance metrics may hide effects that are spe-
cific to certain sub-populations of the data. For example,
a small aggregate accuracy win on one metric may in fact
be caused by a mix of positive and negative changes in dis-
tinct countries, or for particular query topics. This makes
it critical to provide performance metrics not only on the
aggregate data, but also on various slicings of the data, such
as a per-country basis or a per-topic basis.

Because there are hundreds of ways to slice the data mean-
ingfully, it is essential that we be able to examine a visual
summary of the data effectively. To this end, we have de-
veloped a high-dimensional interactive visualization called
GridViz to allow comprehensive understanding of model per-
formance.

A screen-shot of one view from GridViz is shown in Fig-



Figure 3: Visualizing Uncertainty Scores. Log-odds
errors |σ−1(pt) − σ−1(p∗t )| plotted versus the uncer-
tainty score, a measure of confidence. The x-axis
is normalized so the density of the individual esti-
mates (gray points) is uniform across the domain.
Lines give the estimated 25%, 50%, 75% error per-
centiles. High uncertainties are well correlated with
larger prediction errors.

ure 2, showing a set of slicings by query topic for two models
in comparison to a control model. Metric values are rep-
resented by colored cells, with rows corresponding to the
model name and the columns corresponding to each unique
slicing of the data. The column width connotes the impor-
tance of the slicing, and may be set to reflect quantities such
as number of impressions or number of clicks. The color of
the cell reflects the value of the metric compared to a chosen
baseline, which enables fast scanning for outliers and areas
of interest, as well as visual understanding of the overall per-
formance. When the columns are wide enough the numeric
value of the selected metrics are shown. Multiple metrics
may be selected; these are shown together in each row. A
detailed report for a given cell pops up when the user mouse
overs over the cell.

Because there are hundreds of possible slicings, we have
designed an interactive interface that allows the user to se-
lect different slicing groups via a dropdown menu, or via a
regular expression on the slicing name. Columns may be
sorted and the dynamic range of the color scale modified to
suite the data at hand. Overall, this tool has enabled us
to dramatically increase the depth of our understanding for
model performance on a wide variety of subsets of the data,
and to identify high impact areas for improvement.

6. CONFIDENCE ESTIMATES
For many applications, it is important to not only esti-

mate the CTR of the ad, but also to quantify the expected
accuracy of the prediction. In particular, such estimates can
be used to measure and control explore/exploit tradeoffs: in
order to make accurate predictions, the system must some-
times show ads for which it has little data, but this should
be balanced against the benefit of showing ads which are
known to be good [21, 22].

Confidence intervals capture the notion of uncertainty,
but for both practical and statistical reasons, they are inap-
propriate for our application. Standard methods would as-
sess the confidence of predictions of a fully-converged batch

model without regularization; our models are online, do not
assume IID data (so convergence is not even well defined),
and heavily regularized. Standard statistical methods (e.g.,
[18], Sec. 2.5) also require inverting a n×n matrix; when n
is in the billions, this is a non-starter.

Further, it is essential that any confidence estimate can
be computed extremely cheaply at prediction time — say in
about as much time as making the prediction itself.

We propose a heuristic we call the uncertainty score, which
is computationally tractable and empirically does a good job
of quantifying prediction accuracy. The essential observa-
tion is that the learning algorithm itself maintains a notion
of uncertainty in the per-feature counters nt,i used for learn-
ing rate control. Features for which ni is large get a smaller
learning rate, precisely because we believe the current coef-
ficient values are more likely to be accurate. The gradient
of logistic loss with respect to the log-odds score is (pt− yt)
and hence has absolute value bounded by 1. Thus, if we
assume feature vectors are normalized so |xt,i| ≤ 1, we can
bound the change in the log-odds prediction due to observ-
ing a single training example (x, y). For simplicity, consider
λ1 = λ2 = 0, so FTRL-Proximal is equivalent to online gra-
dient descent. Letting nt,i = β +

∑t
s=1 g

2
s,i and following

Eq. (2), we have

|x ·wt − x ·wt+1| =
∑

i:|xi|>0

ηt,i|gt,i|

≤ α
∑

i:|xi|>0

xt,i√
nt,i

= αηηη · x ≡ u(x)

where ηηη to is the vector of learning rates. We define the
uncertainty score to be the upper bound u(x) ≡ αηηη · x; it
can be computed with a single sparse dot product, just like
the prediction p = σ(w · x).

Experimental Results. We validated this methodology
as follows. First, we trained a “ground truth” model on real
data, but using slightly different features than usual. Then,
we discarded the real click labels, and sampled new labels
taking the predictions of the ground-truth model as the true
CTRs. This is necessary, as assessing the validity of a confi-
dence procedure requires knowing the true labels. We then
ran FTRL-Proximal on the re-labeled data, recording pre-
dictions pt, which allows us to compare the accuracy of the
predictions in log-odds space, et = |σ−1(pt)−σ−1(p∗t )| where
p∗t was the true CTR (given by the ground truth model).
Figure 3 plots the errors et as a function of the uncertainty
score ut = u(xt); there is a high degree of correlation.

Additional experiments showed the uncertainty scores per-
formed comparably (under the above evaluation regime) to
the much more expensive estimates obtained via a bootstrap
of 32 models trained on random subsamples of data.

7. CALIBRATING PREDICTIONS
Accurate and well-calibrated predictions are not only es-

sential to run the auction, they also allow for a loosely cou-
pled overall system design separating concerns of optimiza-
tions in the auction from the machine learning machinery.

Systematic bias (the difference between the average pre-
dicted and observed CTR on some slice of data) can be
caused by a variety of factors, e.g., inaccurate modeling as-
sumptions, deficiencies in the learning algorithm, or hidden
features not available at training and/or serving time. To



address this, we can use a calibration layer to match pre-
dicted CTRs to observed click–through rates.

Our predictions are calibrated on a slice of data d if on
average when we predict p, the actual observed CTR was
near p. We can improve calibration by applying correction
functions τd(p) where p is the predicted CTR and d is an
element of a partition of the training data. We define success
as giving well calibrated predictions across a wide range of
possible partitions of the data.

A simple way of modeling τ is to fit a function τ(p) = γpκ

to the data. We can learn γ and κ using Poisson regression
on aggregated data. A slightly more general approach that
is able to cope with more complicated shapes in bias curves
is to use a piecewise linear or piecewise constant correction
function. The only restriction is that the mapping function
τ should be isotonic (monotonically increasing). We can
find such a mapping using isotonic regression, which com-
putes a weighted least-squares fit to the input data subject
to that constraint (see, e.g., [27, 23]). This piecewise-linear
approach significantly reduced bias for predictions at both
the high and low ends of the range, compared to the reason-
able baseline method above.

It is worth noting that, without strong additional assump-
tions, the inherent feedback loop in the system makes it im-
possible to provide theoretical guarantees for the impact of
calibration [25].

8. AUTOMATED FEATURE MANAGEMENT
An important aspect of scalable machine learning is man-

aging the scale of the installation, encompassing all of the
configuration, developers, code, and computing resources
that make up a machine learning system. An installation
comprised of several teams modeling dozens of domain spe-
cific problems requires some overhead. A particularly in-
teresting case is the management of the feature space for
machine learning.

We can characterize the feature space as a set of contex-
tual and semantic signals, where each signal (e.g., ‘words in
the advertisement’, ‘country of origin’, etc.) can be trans-
lated to a set of real-valued features for learning. In a large
installation, many developers may work asynchronously on
signal development. A signal may have many versions corre-
sponding to configuration changes, improvements, and alter-
native implementations. An engineering team may consume
signals which they do not directly develop. Signals may be
consumed on multiple distinct learning platforms and ap-
plied to differing learning problems (e.g. predicting search
vs. display ad CTR). To handle the combinatorial growth of
use cases, we have deployed a metadata index for managing
consumption of thousands of input signals by hundreds of
active models.

Indexed signals are annotated both manually and auto-
matically for a variety of concerns; examples include dep-
recation, platform-specific availability, and domain-specific
applicability. Signals consumed by new and active models
are vetted by an automatic system of alerts. Different learn-
ing platforms share a common interface for reporting signal
consumption to a central index. When a signal is depre-
cated (such as when a newer version is made available), we
can quickly identify all consumers of the signal and track
replacement efforts. When an improved version of a signal
is made available, consumers can be alerted to experiment
with the new version.

New signals can be vetted by automatic testing and white-
listed for inclusion. White-lists can be used both for ensuring
correctness of production systems, and for learning systems
using automated feature selection. Old signals which are
no longer consumed are automatically earmarked for code
cleanup, and for deletion of any associated data.

Effective automated signal consumption management en-
sures that more learning is done correctly the first time. This
cuts down on wasted and duplicate engineering effort, saving
many engineering hours. Validating configurations for cor-
rectness before running learning algorithms eliminates many
cases where an unusable model might result, saving signifi-
cant potential resource waste.

9. UNSUCCESSFUL EXPERIMENTS
In this final section, we report briefly on a few directions

that (perhaps surprisingly) did not yield significant benefit.

9.1 Aggressive Feature Hashing
In recent years, there has been a flurry of activity around

the use of feature hashing to reduce RAM cost of large-scale
learning. Notably, [31] report excellent results using the
hashing trick to project a feature space capable of learning
personalized spam filtering model down to a space of only
224 features, resulting in a model small enough to fit easily
in RAM on one machine. Similarly, Chapelle reported using
the hashing trick with 224 resultant features for modeling
display-advertisement data [6].

We tested this approach but found that we were unable
to project down lower than several billion features without
observable loss. This did not provide significant savings for
us, and we have preferred to maintain interpretable (non-
hashed) feature vectors instead.

9.2 Dropout
Recent work has placed interest around the novel tech-

nique of randomized “dropout” in training, especially in the
deep belief network community [17]. The main idea is to
randomly remove features from input example vectors inde-
pendently with probability p, and compensate for this by
scaling the resulting weight vector by a factor of (1 − p)
at test time. This is seen as a form of regularization that
emulates bagging over possible feature subsets.

We have experimented with a range of dropout rates from
0.1 to 0.5, each with an accompanying grid search for learn-
ing rate settings, including varying the number of passes over
the data. In all cases, we have found that dropout training
does not give a benefit in predictive accuracy metrics or gen-
eralization ability, and most often produces detriment.

We believe the source of difference between these negative
results and the promising results from the vision community
lie in the differences in feature distribution. In vision tasks,
input features are commonly dense, while in our task input
features are sparse and labels are noisy. In the dense setting,
dropout serves to separate effects from strongly correlated
features, resulting in a more robust classifier. But in our
sparse, noisy setting adding in dropout appears to simply
reduce the amount of data available for learning.

9.3 Feature Bagging
Another training variant along the lines of dropout that

we investigated was that of feature bagging, in which k mod-
els are trained independently on k overlapping subsets of the



feature space. The outputs of the models are averaged for a
final prediction. This approach has been used extensively in
the data mining community, most notably with ensembles of
decision trees [9], offering a potentially useful way of man-
aging the bias-variance tradeoff. We were also interested in
this as a potentially useful way to further parallelize training.
However, we found that feature bagging actually slightly re-
duced predictive quality, by between 0.1% and 0.6% AucLoss
depending on the bagging scheme.

9.4 Feature Vector Normalization
In our models the number of non-zero features per event

can vary significantly, causing different examples x to have
different magnitudes ‖x‖. We worried that this variability
may slow convergence or impact prediction accuracy. We
explored several flavors of normalizing by training with x

‖x‖
with a variety of norms, with the goal of reducing the vari-
ance in magnitude across example vectors. Despite some
early results showing small accuracy gains we were unable
to translate these into overall positive metrics. In fact, our
experiments looked somewhat detrimental, possibly due to
interaction with per-coordinate learning rates and regular-
ization.

10. ACKNOWLEDGMENTS
We gratefully acknowledge the contributions of the fol-

lowing: Vinay Chaudhary, Jean-Francois Crespo, Jonathan
Feinberg, Mike Hochberg, Philip Henderson, Sridhar Ra-
maswamy, Ricky Shan, Sajid Siddiqi, and Matthew Streeter.

11. REFERENCES
[1] D. Agarwal, B.-C. Chen, and P. Elango. Spatio-temporal

models for estimating click-through rate. In Proceedings of
the 18th international conference on World wide web,
pages 21–30. ACM, 2009.

[2] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta,
H. Jiang, T. Qiu, A. Reznichenko, D. Ryabkov, M. Singh,
and S. Venkataraman. Photon: Fault-tolerant and scalable
joining of continuous data streams. In SIGMOD
Conference, 2013. To appear.

[3] R. Bekkerman, M. Bilenko, and J. Langford. Scaling up
machine learning: Parallel and distributed approaches.
2011.

[4] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7), July 1970.

[5] A. Blum, A. Kalai, and J. Langford. Beating the hold-out:
Bounds for k-fold and progressive cross-validation. In
COLT, 1999.

[6] O. Chapelle. Click modeling for display advertising. In
AdML: 2012 ICML Workshop on Online Advertising, 2012.

[7] C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh.
Sample selection bias correction theory. In ALT, 2008.

[8] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin,
Q. V. Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Y. Ng. Large scale distributed deep
networks. In NIPS, 2012.

[9] T. G. Dietterich. An experimental comparison of three
methods for constructing ensembles of decision trees:
Bagging, boosting, and randomization. Machine learning,
40(2):139–157, 2000.

[10] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient
methods for online learning and stochastic optimization. In
COLT, 2010.

[11] J. Duchi and Y. Singer. Efficient learning using
forward-backward splitting. In Advances in Neural
Information Processing Systems 22, pages 495–503. 2009.

[12] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary
cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking, 8(3), jun 2000.

[13] T. Fawcett. An introduction to roc analysis. Pattern
recognition letters, 27(8):861–874, 2006.

[14] D. Golovin, D. Sculley, H. B. McMahan, and M. Young.
Large-scale learning with a small-scale footprint. In ICML,
2013. To appear.

[15] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich.
Web-scale Bayesian click-through rate prediction for
sponsored search advertising in microsofts bing search
engine. In Proc. 27th Internat. Conf. on Machine Learning,
2010.

[16] D. Hillard, S. Schroedl, E. Manavoglu, H. Raghavan, and
C. Leggetter. Improving ad relevance in sponsored search.
In Proceedings of the third ACM international conference
on Web search and data mining, WSDM ’10, pages
361–370, 2010.

[17] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Improving neural networks by
preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012.

[18] D. W. Hosmer and S. Lemeshow. Applied logistic
regression. Wiley-Interscience Publication, 2000.

[19] H. A. Koepke and M. Bilenko. Fast prediction of new
feature utility. In ICML, 2012.

[20] J. Langford, L. Li, and T. Zhang. Sparse online learning via
truncated gradient. JMLR, 10, 2009.

[21] S.-M. Li, M. Mahdian, and R. P. McAfee. Value of learning
in sponsored search auctions. In WINE, 2010.

[22] W. Li, X. Wang, R. Zhang, Y. Cui, J. Mao, and R. Jin.
Exploitation and exploration in a performance based
contextual advertising system. In KDD, 2010.

[23] R. Luss, S. Rosset, and M. Shahar. Efficient regularized
isotonic regression with application to gene–gene
interaction search. Ann. Appl. Stat., 6(1), 2012.

[24] H. B. McMahan. Follow-the-regularized-leader and mirror
descent: Equivalence theorems and L1 regularization. In
AISTATS, 2011.

[25] H. B. McMahan and O. Muralidharan. On calibrated
predictions for auction selection mechanisms. CoRR,
abs/1211.3955, 2012.

[26] H. B. McMahan and M. Streeter. Adaptive bound
optimization for online convex optimization. In COLT,
2010.

[27] A. Niculescu-Mizil and R. Caruana. Predicting good
probabilities with supervised learning. In ICML, ICML ’05,
2005.

[28] M. Richardson, E. Dominowska, and R. Ragno. Predicting
clicks: estimating the click-through rate for new ads. In
Proceedings of the 16th international conference on World
Wide Web, pages 521–530. ACM, 2007.

[29] M. J. Streeter and H. B. McMahan. Less regret via online
conditioning. CoRR, abs/1002.4862, 2010.

[30] D. Tang, A. Agarwal, D. O’Brien, and M. Meyer.
Overlapping experiment infrastructure: more, better, faster
experimentation. In KDD, pages 17–26, 2010.

[31] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and
J. Attenberg. Feature hashing for large scale multitask
learning. In ICML, pages 1113–1120. ACM, 2009.

[32] L. Xiao. Dual averaging method for regularized stochastic
learning and online optimization. In NIPS, 2009.

[33] Z. A. Zhu, W. Chen, T. Minka, C. Zhu, and Z. Chen. A
novel click model and its applications to online advertising.
In Proceedings of the third ACM international conference
on Web search and data mining, pages 321–330. ACM,
2010.

[34] M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. In ICML, 2003.


