CHALMERS

UNIVERSITY OF TECHNOLOGY

Software Developer Productivity Loss Due to Technical Debt - A replication
and extension study examining developers’ development work

Downloaded from: https://research.chalmers.se, 2024-12-04 07:52 UTC

Citation for the original published paper (version of record):

Besker, T., Martini, A., Bosch, J. (2019). Software Developer Productivity Loss Due to Technical

Debt - A replication and extension study
examining developers’ development work. Journal of Systems and Software, 156: 41-61.

http://dx.doi.org/10.1016/1.js5.2019.06.004

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Software Developer Productivity Loss Due to Technical Debt

- Avreplication and extension study examining developers’ development work

Terese Besker Antonio Martini "+ Jan Bosch
Computer Science and Engineering, * University of Oslo Computer Science and Engineering,
Software Engineering Programming and Software Software Engineering
Chalmers University of Technology Engineering Chalmers University of Technology
Goteborg, Sweden Oslo, Norway Goteborg, Sweden
Besker@chalmers.se antonima@ifi.uio.no Jan.Bosch@chalmers.se

Abstract—Software companies need to deliver customer value continuously, both from a short-
and long-term perspective. However, software development can be impeded by technical debt
(TD). Although significant theoretical work has been undertaken to describe the negative effects
of TD, little empirical evidence exists on how much wasted time and additional activities TD
causes. The study aims to explore the consequences of TD in terms of wastage of development
time. This study investigates on which activities this wasted time is spent and whether different
TD types impact the wasted time differently. This study reports the results of a longitudinal study
surveying 43 developers and including16 interviews followed by validation by an additional study
using a different and independent dataset and focused on replicating the findings addressing
the findings. The analysis of the reported wasted time revealed that developers waste, on
average, 23% of their time due to TD and that developers are frequently forced to introduce new
TD. The most common activity on which additional time is spent is performing additional testing.
The study provides evidence that TD hinders developers by causing an excessive waste of
working time, where the wasted time negatively affects productivity.

Keywords—Software Development, Software Productivity, Technical Debt, Wasted Development Time

https://www.scopus.com/record/display.uri?eid=2-s2.0-85047096240&origin=resultslist&sort=plf-f&src=s&st1=A+study+and+replication&st2=&sid=573d95610205f039ce0075dc8210b5cb&sot=b&sdt=b&sl=30&s=TITLE%28A+study+and+replication%29&relpos=4&citeCnt=3&searchTerm=
mailto:Besker@chalmers.se

1 INTRODUCTION

To survive in today's fast-growing and ever-changing business environments, large-scale
software companies need to deliver customer value continuously, from both a short- and long-
term perspective.
During the software development lifecycle, companies need to consider the costs of the software
development process in terms of the required time and resources. In general, software companies
strive to increase the number of implemented features, the overall software quality, and the
overall efficiency and, at the same time, decrease the costs in each lifecycle phase by reducing
time and resources deployed by the development teams.
However, software development productivity can be hindered by what is described as technical
debt (TD). TD is recognized as a critical issue in today’s software development industry [1] and,
left unchecked in the software, TD can lead to large cost overruns, causing high maintenance
costs due to internal software quality issues [2],[3],[4],[5],[6],[7],[8] and an inability to add new
features [9] and even lead to a crisis point when a huge, costly refactoring or a replacement of
the whole software needs to be undertaken [10].
The TD metaphor was first coined at OOPSLA ‘92 by Ward Cunningham [11] to describe the
need to recognize the potential long-term negative effects of immature code that occur during the
software development lifecycle. Cunningham used the financial terms debt and interest when
describing the concept of TD:
“Shipping first-time code is like going into debt. A little debt speeds development so long as
it is paid back promptly with a rewrite. Objects make the cost of this transaction tolerable.
The danger occurs when the debt is not repaid. Every minute spent on not-quite-right code
counts as interest on that debt.”
An additional, and more recent, definition was provided by Avgeriou et al. [12] who define TD
as: “In software-intensive systems, technical debt is a collection of design or implementation
constructs that are expedient in the short term, but set up a technical context that can make future
changes more costly or impossible. Technical debt presents an actual or contingent liability
whose impact is limited to internal system qualities, primarily maintainability and evolvability.”
This debt potentially has to be repaid with interest in the long term. Interest is the negative effect
in terms of the extra effort and activities that have to be paid due to the accumulated amount of
TD in the software. This may include executing manual processes that could potentially be auto-
mated or expending excessive effort on modifying unnecessarily complex code or performance
problems due to lower resource usage caused by an inefficient code and similar costs [1],[13].
Software suffering from TD, however, forces the developers to perform additional time-
consuming activities to be able to continue the development work with the goal of delivering
high-quality software. Accordingly, an extensive amount of valuable developing working time is
wasted when developers are forced to execute these additional activities due to TD in their
software systems, and thus this wasted time negatively affects the efficiency and undermines the
productivity of software developers. This study aims at increasing the understanding of the
negative effects of experiencing TD by using weekly reporting of the wasted time over time since
it is essential to have informative and cost-effective indicators to evaluate aspects of the software
development processes and its product quality [14].
There are different ways of measuring software development productivity [15], and productivity

is typically defined as the output divided by the effort required to produce the output. Following
guidelines by Fonseca [16], we specify the operational definition [17] of developer productivity
by examining the developers’ reported amount of wasted time using weekly web surveys over
seven weeks. Since we can determine that the amount of wasted time has a negative impact on
software development duration, we define productivity as the ability to deliver high-quality
customer value in the shortest amount of time. This line of reasoning implies that a decrease in
the amount of wasted software development time would lead to an increase in software
development productivity.

Examining and quantifying the negative effects of TD plays an important role for both academia
and software management practitioners in understanding and raising awareness of the magnitude
of the negative effects TD has on developers’ productivity. This knowledge can also help to im-
prove software development efficiency and strategies for TD management.

The results of this study show that TD has a negative effect in terms of an extensive amount of
developer working time (on average 23%) wasted due to experiencing TD during the software
development lifecycle. This study also demonstrates the variance of the wasted time across the
sample and, furthermore, that due to the presence of TD during the development work,
developers most commonly have to perform additional testing, source code analysis, and
refactoring. This study also shows that, in a quarter of the occasions where developers encounter
TD, they are forced to introduce additional TD due to the already existing TD.

To the best of our knowledge, this is the first study to undertake a longitudinal examination of
software developers reporting their wasted time due to TD and examining which additional
activities the wasted time is spent on and also what type of TD caused the wasted time, which
also adds methodological novelty to the results.

The remainder of this study is structured in seven sections: Section 2 describes the research ques-
tions, and Section 3 introduces related work. Section 4 describes the research methods in detail.
Section 5 presents the research results. Sections 6 and 7 discuss the findings and threats to the
validity of the study, respectively. Finally, in Section 8, conclusions and recommendations for
future work will be presented.

This manuscript was originally published at the 1st International Conference on Technical Debt,
held jointly with ICSE [18]. The delta of this manuscript over the prior published paper is two-
sided. First this manuscript is an extension study of a previous paper, and secondly, this study is
a replication study of the original study.

This new manuscript includes a value-added extension to the previous conference version of the
study since that version was restricted due to space limitations. This manuscript has been ex-
tended to include additional research questions and, consequently, new findings to these research
questions. The related Research section has been extended to be broader and more carefully cover
additional related research publications. In the Methodology section, the novel approach of using
a longitudinal research method is described in greater depth. In the Results section, we have
added more subjects and more rigorous analysis by including more examples and explanations,
which may increase our confidence in the conclusions. In this extended version of the previous
paper, several of the figures and tables have also been refined to strengthen further the readability

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7592594

and understandability of the results. This manuscript also includes a validation by replication of
the findings focusing on the amount of wasted time and the different encountered TD types and
which additional activities this time is spent on. This replication phase confirms and strengthens
the results derived in the original study. Furthermore, this manuscript includes additional in-depth
analysis of how the results can be applied in practice, both by practitioners and by researchers.
Finally, this manuscript also includes a potential direction for future work.

2 RESEARCH QUESTIONS

The goal of this study, phrased as inspired by the goal-question-metric approach provided by
Basili [19] is: “To analyze the consequences of TD, for the purpose of understanding, with respect
to the negative effect TD has on software productivity, from the point of view of software devel-
opers and their managers, in the context of software development.” Based on this goal and more
specifically, this study will examine the following six research questions:

RQ1: In what ways does technical debt waste developers’ working time?

RQ1.1: How much of software developers’ overall development time is wasted due to technical
debt?

RQ1.2: Is there a significant difference between the wastage of working time due to technical
debt in relation to different developer characteristics?

In this regard, the characteristics refer to different variables such as years of experience as a
developer, gender, level of education, programming language, company, the age of the software,
and type of software.

RQ1.3: Are there different patterns among the distributions of the wasted time over the calendar
period?

The objectives of research question RQ1 (RQ1.1, RQ1.2, and RQ1.3) are to understand how
much of software developers’ overall development time is wasted due to TD and whether the
distribution of the wasted time varies with developer characteristics and follows any specific
distribution patterns.

RQ2: Upon which extra activities is the wasted time spent?
RQ3: In what ways do different technical debt types affect the amount of wasted time?

RQ4: How often are developers forced to introduce new technical debt due to already existing
technical debt?

RQS5: Is there a difference in the awareness of technical debt between developers and their man-
agers?

The objective of this research question focuses on the awareness of the negative consequences
TD has on the daily software development work and if (and in what way) the developers and
managers consider the insight into the wasted time valuable.

RQ6: What are the challenges in tracking the interest of technical debt?

3 RELATED WORK

In this section, we discuss related work concerning software productivity, the quantification of
negative effects due to TD, how TD affects the software development productivity, and, finally,
the term contagious debt.

Software productivity has been a frequently discussed subject since the beginning of software
engineering research [20],[21]. In software engineering, productivity is commonly defined, from
an economic point of view, as the effectiveness of productive effort measured in terms of the rate
of output per unit input [21],[20],[22].

Productivity is also a measure of the quality of an output relative to the input required to produce
the output. Productivity is a combined measurement of efficiency and quality. There are several
constraints that can influence the software development productivity in general, such as cost,
schedule, and scope [23]. Furthermore, Oliveira et al. [20] state that researchers have not yet
reached a consensus on how to measure productivity properly in software engineering. However,
as mentioned in the Introduction, in this study we have decided to focus on the productivity in
terms of the amount of wasted software development time because developers are hindered dur-
ing their daily software development work by experiencing TD within their software.

Sedano, Ralph, and Péraire [24] echo this notion by stating that “waste is any activity that pro-
duces no value for the customer or user” and reducing this waste of time would improve the
software development productivity. In their study, they identified that software suffering from
TD can lower the developer’s productivity both in terms of wasted time and by causing reworking
and an extraneous cognitive load.

Ernst et al. [25] surveyed three large organizations with 536 respondents and seven follow-up
interviews. Based on the responses from this survey, they found that architectural decisions are
the most important source of TD. This study based its conclusion on a survey in which practi-
tioners state their perception of how the respondents perceive TD. In this study, we cannot find a
quantification (reported or estimated) of the interest; there is also no explanation regarding the
types of activities on which the extra time is spent.

Martini and Bosch [26] have studied the interest growth and found that some Architectural TD
items are contagious, causing the interest to be not only fixed but potentially compounded, which
leads to the hidden growth of interest with the potentiality of growing exponentially. Even if that
study included some cases, the study did not track to the introduction of additional TD using the
same level of granularity as this study.

Kazman et al. [27] present a case study for identifying and quantifying architectural debts in an
industrial software project, using code changes as a proxy for calculating the interest. This study
focuses on identifying the architectural roots of TD, meaning that the study does not address the

cost of interest but instead aims to quantify the expected payback for refactoring. Similar to the
abovementioned related research, these costs are, to some extent, based on estimated values from
the interviewed architects, and, based on these assumptions, the expected benefit from the refac-
toring is calculated.

This study is, to a certain extent, related to a previous study [28], which also addresses the amount
of wasted software development time. That previous study was based on 32 interviews and a web
survey of 258 software practitioners addressing software practitioners’ estimations of wasted
time due to TD and also the estimations of which types of TD have the most negative impact on
daily software development work and on which different activities the respondents estimate they
spend this wasted time. The results of that study show that software practitioners (from several
different roles) estimate that, on average, 36% of all development time is wasted due to TD and
that Architectural TD and Requirement TD have the most negative impact, and that practitioners
perceive that the majority of time is wasted on understanding and/or measuring the TD.

Later on, when studying the time spent managing TD, we found, in a study by Martini et al. [29],
that the development time dedicated to managing TD is estimated to be, on average, 25% of the
overall development time and generally not performed systematically

The novelty of this study’s approach compared to the previous studies lies in the selection of a
longitudinal research methodology adopting a different sampling strategy specifically focusing
on developers and their reported experiences over time (compared to single estimates) by
collecting repetitive observations of the same variables (e.g., wasted time) on more than one
single occasion [30] and over seven weeks. The uniqueness of this extended study is also that
this study validates several of the findings by conducting an additional replication study using a
new and independent data set.

Compared to the previous studies, this original study had a duration of 10 months, with a
longitudinal data collection phase, collecting more than 470 reported data from 43 software
developers and 16 supplementary follow-up interviews with both developers and their managers.
Additionally, this study also reveals new insights and interpretations on how, developers are
frequently forced to introduce new TD caused by existing TD and, furthermore, reports the
negative effect TD has on developers’ work in terms of challenges and benefits, from both
developers’ and managers’ sides.

To date, there is limited research available that attempts to quantify empirically how TD nega-
tively affects software development productivity. The existing literature relating to TD and
productivity states that TD becomes a constant drain on software productivity [31],[32], which
leads to a slowing of the development and negatively affects productivity [1],[33],[34]. To the
best of our knowledge, no previous study has employed a longitudinal empirical study (based on
reported data) with the aim of understanding and quantifying how productivity (in terms of
wasted software development time) is affected by TD. Our study also addresses how frequently
developers are forced to introduce new TD. This topic relates to a previous study by Martini and
Bosch [26] in which they found that some TDs cause other parts of the system to be contaminated
with the same problem, which may lead to the non-linear growth of interest, called contagious
debt.

4 METHODOLOGY

Triangulation is important in increasing the precision of empirical research in terms of taking
different perspectives toward the studied object and thus providing a broader view [35]. To in-
crease the validity and the reliability of the result, we have used source, observer, and methodo-
logical triangulation and also replicated the study as a last phase.

Source triangulation refers to using several sampling strategies to ensure that data are gathered
at different times and in different situations. The use of more than one source of data makes the
conclusion more credible since it can be drawn from several sources of information [35], [36].
In this study, we used both interviews and surveys when collecting the data.

Observer triangulation refers to using more than one observer to gather and interpret data [35],
[36]. This type of triangulation was achieved in this study, where at least two of the involved
researchers worked together with different roles during the studies, thus enabling peer debriefing
and analysis of the collected data.

Methodological triangulation refers to combining different types of data collection methods and
was achieved in this study by combining both qualitative and quantitative methods [35], [36].

4.1 RESEARCH DESIGN

This study is based on a longitudinal study with supplementary follow-up interviews, carried out
to examine the negative impact TD has on software development, from September 2016 to June
2017. This research design was divided into seven phases, as visualized in Fig. 1. The following
sections describe each phase and the related research methods used in each stage.

| Phase 1 | | Phase 2 | | Phase 3 | | Phase 4 | | Phase 5 | ‘ Phase 6 |

,Contextflal Preparation | Longitudinal | Analysisa.nd | | Verification | Analy5|sa.nd | Replication
it Analysis § | Data | Synthesis i and | Synthesis |

and Design Collection Explanation

Workshop Invitation Statistical analysis Semi-structured Thematic analysis Internal,
and Prerequisites interview and coding exact,
independent,
partly,
. replication
Background Repeated ! | Retrospective
data measures data
Start-up survey 3 14 survey occasions j Follow-up survey

Fig. 1. Visualization of the research design and research method used in each phase

4.1.1 Contextual Analysis and Design. First, the study was presented and discussed during a
workshop with software practitioners from seven software companies within our network and
with an extensive range of software development. This study’s selection of participating compa-
nies was carried out with a representative convenience sample of software professionals from
our industrial partners.

This phase acted as a guide for collecting information about the studied context and selecting the
most appropriate research model to use. The research team decided to base the research model
on a longitudinal study together with supplementary follow-up interviews.

4.1.2 Preparation. Secondly, an invitation to participate in the study was emailed to the partic-
ipants in the workshop. Following the guidelines provided by Ployhart and Vandenberg [30], to
those six companies (43 developers in total) who agreed to participate in the study, we sent out
educational material intended to minimize inter-observer (all researchers communicate the same
knowledge) and inter-instrument (all participants receive the same information) variability.

This educational material included different topics such as TD definitions, different terms com-
monly related to TD (e.g., debt, principal, and interest), TD Landscape (also illustrating what TD
is not), and, finally, a short description of the different TD types. Since the definition of TD is
very important and sets the context for the entire study, we specifically focused the educational
material on guiding the respondents to fully understand the basic concepts of TD. In the material,
we, therefore, presented three different citations to describe what is meant by TD. First, Ward
Cunningham’s definition was [11] offered: “Shipping first time code is like going into debt. A
little debt speeds development so long it is paid back promptly with a rewrite... The danger occurs
when the debt is not repaid. Every minute spent on not-quite-right code counts as interest on the
debt,” followed by Steve McConnell’s definition of TD [37]: “4 design or construction approach
that s expedient in the short term but creates a technical context in which the same work will cost
more to do later than it would cost to do now (including increased cost over time).” Furthermore,
a third, shorter, definition was used: “Technical debt is a non-optimal solution in code (or other
artifacts related to software development) that gives a short-term benefit but cause an extra long-
term cost during the software life-cycle.”

4.1.3 Data Collection—Longitudinal study. A longitudinal study is a research method that in-
volves repeated observations of the same variables (e.g., time usage) on more than one occasion
[30], and is conducted over time [38].

The incentive for using a longitudinal research method in this study has two principal aspects:
a) to increase the precision of reporting experienced data (in our case, not based on single esti-
mations and single perceptions). This was achieved by studying each respondent over several
weeks where the reported data could be compared. Such designs are called repeated measures
designs [30], and

b) to examine the respondents’ changing responses over time: Longitudinal designs have a natural
appeal for the study of changes associated with development or changes over time. They have
value for describing both temporal changes and their dependence on individual characteristics
[30]. The longitudinal research method increases the precision of measuring and reduces inter-
individual variation. This method also examines the individual’s changing responses over time
and provides a value for describing both temporal changes and their dependencies on individual
characteristics [30].

To sustain the commitment of the respondents, before starting the study, all respondents had
agreed on their continuing participation with both their managers and ourselves.

The quantitative data collection during the longitudinal study was designed and hosted by an
online survey service called Survey Monkey. This data collection phase included three different
steps.

The first step was a start-up survey gathering descriptive statistics to summarize the
backgrounds of the respondents and their companies.

Based on guidelines from [39] and to identify the population from which the subjects and objects
are drawn, we studied compiled data for the participating respondents in the study. Juristo and
Moreno [40] state that “the more homogeneous the elements examined in the surveys are, the
better the results obtained will be,” and, as illustrated in Table 1, all the respondents were rela-
tively experienced as software developers: 56% had more than 10 years of experience, and only
7% had fewer than 2 years of experience. All respondents have a university-level education,
where 82% have a master’s degree. The age of the software with which the respondents worked
varied, but only 2% worked with software with an age of less than 2 years, and 44% of the
developers worked with software within the age range of 5-10 years. The most common system
type was an embedded system, and the most common programming languages were C (40%) and
C++ (21%).

The second step in the longitudinal phase used repeated measures [30]. This stage was designed
to collect reported data from 43 software developers more than 14 survey occasions (i.e., twice
a week for seven weeks) from October to November 2016. We collected 473 data points, and, on
average, each respondent reported their data on 11 out of 14 occasions.

In this step, we emailed out an invitation to an online survey to all the respondents, twice a week
(Tuesdays and Thursdays), with the goal of having equal spacing between the occasions, as sug-
gested by Morrison [41], and, for those respondents who did not answer within one day, a re-
minder was emailed.

During the entire period of this phase in the longitudinal study, the participants were asked to
report their answers to the three survey questions (SQ):

e SQI1: How much of the overall development time have you wasted due to technical debt
(TD) since last time you took the survey?

e SQ2: Which extra activities were the wasted time spent on?

e SQ3: What was the source of the problem for which you wasted time?

In survey question SQ1 (used for answering RQ1), the respondents reported the amount of wasted
time using a value between 0-100% of their overall working time since they last took the survey.
To address the potential problem with missing data from the respondents, if, for some reason, the
respondents did not enter the data in one or more surveys, the respondents were always asked to
report their experienced data since the last time they took the survey. This wording means that if,
for some reason, the respondent did not enter the data in one or more surveys, they would enter
the data from the last time the respondent took the survey. In this way, the surveys cover the full
period of sampling.

For survey question SQ2 (used for answering RQ2), the respondent could select between the

10

following options on which the extra time was spent (more than one option was selectable): “Ad-
ditional code analysis”, “Additional testing”, “Additional communication”, “Additional refactor-
ing necessary for new implementation”, “Additional searching for documentation”, “Implement-
ing workarounds” and “other”. If ticking the “other” option, the respondents were asked to tex-
tually describe this activity in a comment field. The listed activities were provided by Besker et
al. [28].

In survey question SQ3 (used for answering RQ3), the different TD types provided by Besker et
al. [28] were presented to distinguish the different sources on which the respondent had wasted
time. The terms used were “Code-related issues,” “Testing issues,” “Architectural issues,” “Doc-
umentation issues,” “Requirement issues,” “Infrastructure issues,” and “Other.” If ticking the
“Other” option, the respondents were asked to textually describe this issue in a comment field.
The respondents were asked to indicate the amount of impact each of these listed issues had on
their reported wasted time using a 5-point Likert Scale (Not at all - To a great extent).

The final third step of the longitudinal data collection phase was a follow-up survey to collect
retrospective specific data from each respondent.

4.1.4 Analysis and Synthesis. In the fourth phase, the data collected were analyzed qualita-
tively, that is, by statistical analysis of the data collected from the survey answers.

For descriptive purposes, data is summarized by mean, median, and standard deviation for con-
tinuous variables, and numbers and percentages for categorical variables. The distribution of
waste by the developer and by their characteristics is presented and analyzed graphically using
boxplots. The strength of association between waste and various explanatory variables, such as
developer characteristics and TD-types, is summarized by R-squared, describing the fraction of
variance in wasted time explained by a set of explanatory variables.

Multivariable analyses of waste related to developer characteristics were also performed, aiming
at finding combinations of developer characteristics associated with greater or lower waste. For
this purpose, non-parametric regression trees were used. Model evaluation was performed by
leave-one-out cross-validation.

The distribution of waste over time, overall, and by subject was analyzed graphically by scatter-
plots overlaid by smooth regression curves estimated using LOESS.

Analyses of longitudinal data were performed using logit-linear mixed effects models with the
fraction of wasted time as the response variable. Activities or TD types were included as cate-
gorical explanatory variables in the models, and subject-specific intercepts and time effects were
included as random effects. Random effects were included to account for subject-specific time
trends and intra-individual correlations. Robust standard errors of the parameter estimates were
used to obtain standard errors and confidence intervals that are robust against heteroscedasticity.
Modeling was performed on a logit scale, motivated by the bounded nature of the response var-
iable, and the effect of TD activities on waste on the original scale was computed as follows. The
average effect on waste was computed by artificially changing the activity to inactive or active
state for each data record, accounting for both subject effects and other concurrent activities. A
confidence interval for this statistic was computed using the non-parametric bootstrap percentile
method with 10000 bootstrap replicates.

11

Statistical analyses were performed with SPSS (version 22), SAS 9.4 (SAS Institute, Cary NC)
using the GLIMMIX procedure for logit-linear mixed effects models, and R version 3.4.3 [42]
using the rpart package version 4.1-13 for non-parametric regression trees [43].

4.1.5 Verification and Explanation. In the fifth phase, the results and conclusions acquired in
previous phases were verified using supplementary qualitative semi-structured interviews. We
conducted 12 interviews with developers and four interviews with their managers. All the devel-
opers had participated in the previous data collection phases, and the managers were all familiar
with the study but had not actively participated in the previous data collection phases.

As suggested by Seaman [44], this study employed semi-structured interviews including a mix-
ture of open-ended and specific questions designed to elicit not only the information foreseen but
also unexpected types of information. In the interviews, the questions were planned but not nec-
essarily asked in the same order as they were listed. This interview technique allowed for the
flexibility to explore interesting insights as they emerged.

Each interview lasted between 30 and 40 minutes, and, to obtain a more accurate rendition of the
interviews, all interviews were digitally recorded and transcribed verbatim. All interviewees were
asked for recording permission before starting, and they all agreed to be recorded and to be anon-
ymously quoted for this paper.

During the interviews with the developers who had participated in the quantitative data collection
phase, the compiled results from their individual results were presented, and, during the inter-
views with their managers, an aggregated view of all the respondents from the respective com-
pany was presented. This presentation allowed the interviewees to more easily relate to the inter-
view questions where the results of the survey were addressed. Some interview questions had a
focus on corroborating certain findings that we already thought had been established during pre-
vious data collection activities, where the questions were carefully worded (avoiding leading
questions) to allow the interviewee to provide fresh commentaries on them [45].

The interview questions were primarily designed to a) advance the understanding of the survey
results, b) verify that the questions in the survey were understood as intended and in a uniform
manner, ¢) confirm the results of the survey, d) help to understand the implications of the results,
and e) investigate how the negative effects due to TD are communicated and managed by the
companies.

4.1.6 Analysis and synthesis.

When analyzing the qualitative data collected in this thesis, a thematic analysis approach was
used. Thematic analysis is a method for identifying, analyzing, and reporting patterns and themes
within data, which involves searching across a dataset to find repeated patterns of meaning. The
thematic analysis provides a flexible and useful research tool, which offers a detailed and
complex explanation of the collected data [46].

When analyzing the qualitative data, the guidelines provided by Braun and Clarke [46] were used
to conduct the analysis in a thorough and rigorous manner. The thematic analysis was conducted
using a six-phase guide.

First, the audio-recorded qualitative data collected from interviews was transcribed into written

12

form, where we were also able to familiarize ourselves with the data. The second step involved
the production of initial codes from the data, where we organized the data into meaningful
groups. In this phase of the analysis, a qualitative data analysis (QDA) software package called
Atlas.ti was used. The third phase focused on searching for themes by sorting the different codes
into potential themes and collating all the relevant coded data extracts within each identified
theme. Each extract of data was assigned to at least one theme and, in many cases, to multiple
themes. For example, the citation “Maybe you have to encourage the developers a bit, to get the
data” was coded as “Willingness to input data” in the theme “Measuring Wasted Time Aspects.”
To ensure that the coding was performed in a consistent and reliable fashion, triangulate the in-
terpretation of the data, and avoid bias as much as possible, two authors synchronized the output
of the coding, following guidelines provided by Campbell et al. [47].

The fourth phase focused on the revised set of candidate themes involving the refinement of those
themes. The refinement focused on forming coherent patterns within the themes. Otherwise, we
revised the themes or created a new theme. The fifth phase focused on identifying the essence of
each theme and determining what aspect of the data each theme captured. This phase also stressed
the importance of not just paraphrasing the content of the data extracts, but also identifying what
is interesting about them and why. The final phase of the thematic analysis took place when we
had a set of fully developed themes and involved the final analysis.

Based on the research taxonomy, a coding scheme containing four broad themes and 22 individ-
ual codes was developed. Fig. 2 shows the outcome of the analysis process, where the mapping
between different hierarchical categories and individual codes are graphically presented.

[Activities] [Measuring Wasted time aspects] Awareness about TD TD Types

|
i is associgtadywith ¥ assodiated with
is asspci with Remove TD
. ith
Refactorin { i '_ is phr
9 Eenetit=oikacn ol it h p\ Forced ta intro new TD

assbdlated with \
Code Analysis Awareness about waste |ty | Degree of refactoring
Rk oihated wi i
Estimation of wasted time

[Testing 1 [Wasted time - measuring]

Infrastructure

[DocumentatiDn] [Waste time in different phases]

Options- time usage
Willingness to input data
Responsabilities

Fig. 2. Coding Scheme

TABLE 1
CHARACTERISTICS OF RESPONDENTS

Individual-level No. of respondents (%) Company level No. of respondents (%)
Experience Software system type*
< 2 years 3 (6.98%) Embedded system 29 (67.44%)
2-5 years 7 (16.28%) Real-time system 14 (32.56%)
5-10 years 9 (20.93%) Data management system 5 (11.63%)
> 10 years 24 (55.81%) System Integration 2 (4.65%)
Modeling and/or simul. 2 (4.65%)
Educational level Data analysis system 7 (16.28%)
Master’s 35 (81.40%) Web2.0/SaaS system 1 (2.33%)
Bachelor’s 7 (16.28%) Other 1 (2.33%)
No. Univ. education 0 (0.00%) System Age
Other: 0 (0.00%) <2 years 1 (2.33%)
Ph.D. 1 (2.33%) 2-5 years 10 (23.26%)
5-10 years 19 (44.19%)
Gender 10-20 years 11 (25.58%)
Male 36 (83.72%) >20 years 2 (4.65%)
Female 7 (16.28%) Programming Language
C 17 (39.5%)
C++ 9 (20.9%)
Java 4 (9.3%)
Python 7 (16.28%)
Ada 3 (6.98%)
Other 3 (6.98%)

* More than one option was selectable.

4.1.7 Internal Exact Independent Partly Replication. YY

Replication plays a key role in empirical software engineering [48], and is proposed as an im-
portant means of increasing confidence and assessing reliability in the result [49], [50].

As illustrated in Fig. 1, the original study consists of six different research phases, followed by a
seventh phase in the replicated study. After the first sixth research phases, we were able to answer
all stated research questions. The replicated study aimed at answering three of the identical re-
search questions used in the original study. After the results from the replicated study were de-
rived, these results were compared with the results from the original study to either confirm or
disconfirm the original findings.

14

Validation through Replication

Research Phases Result for RQs Combarison Results for RQs Reseach Phases
-Original Study - Original Study P - Replication Study - Replication Study
Phase 7
Phase 1
Phase 2 Phase 1 from
original study
Phase 3 Phase 2 from
original study.
=
Phase 4 . Phase 3 from
" original study
5
Phase 5 8 Phase 4 from
F original study
Phase6 - 3 g
2 3
S 3
i &
2 RQ 11 i
3---» RQL6 RQ2 «--
& RQ3

Reached
same
conclusion?

The results is The results is
confirmed disconfirmed

Fig. 3. Integration of Replication study

As described above, in the seventh phase in this study we have conducted an internal exact in-
dependent partly replication of the study, where the Internal reflects that the replication team is
the same as in the previous phases. The categorization Exact reflects that the procedures are
followed as closely as possible to determine whether the same results can be obtained. To gain
more insight into the original results, this categorization also includes replications that are mod-
ified to some extent by, for example, altering the subject pool or other conditions. The categori-
zation of Independence reflects that, during the replication phase of the study, we deliberately
varied some aspects of the conditions when collecting the data [48]. The categorization Partly
points out that not all of the research areas and research questions are replicated. More specifi-
cally, this phase aims at replicating the findings for RQ1.1, RQ2, and RQ3 addressing the overall
amount of wasted time due to TD and also the extent of encountering different types of TD.
Due to restrictions on how this replication study could be carried out by the involved company,
and what data was feasible to collect, the datasets in this replication study do not include enough
information to allow for replications of all original research questions. For instance, the replica-
tion study did not include any follow-up interviews with the participating developers and their
managers. This limitation resulted in RQ5 and RQ6 not being replicated in this phase of the study,
and they were, therefore, omitted.
The design of this phase follows the guidelines proposed by Carver [51] for reporting replication
studies. The motivation for conducting this replication phase was to validate the results from the
original study by changing the participant pool and the way we collected data to gain additional
confidence that the original results were not the result of, for example, a data collection bias or

15

the selection of the study design. Below, we describe each activity for the replication study, using
the same phases as we used in the original study, to illustrate similarities and/or differences be-
tween the two sets of studies.

In the first phase (in comparison with section 4.1.1) of the replication study, this part of the
study was presented to one specific software company in Germany, with an extensive range of
software development. The company name has been anonymized for confidentiality reasons. The
research team decided with the contact persons at the company on a suitable research model to
use in this replication phase of the study.

During a second phase (in comparison with section 4.1.2) in the replication phase, the contact
persons in the company invited developers to voluntary participation in the study. Similar to the
original study, all the participants were provided educational material about the research topic.

The developers were quite experienced, where 21% had worked for more than 10 years in
software development, and only 21% had fewer than five years of experience. Fully 56% of the
respondents had a bachelor’s degree, and only two developers had no formal higher education.

We cannot share the rest of the characteristics of the developers and the company due to con-
fidentially reasons (such as gender, software system type, and programming language).

The third phase (in comparison with section 4.1.3) consisted of two steps of data collection
using two sets of surveys. The first survey gathered similar descriptive statistics to summarize
the backgrounds of the participants as were collected in the original study. The second step col-
lected data using a similar longitudinal research design (one survey per week). This stage was
designed to collect reported data from 47 software developers.

However, the replication survey was designed slightly differently, compared to the survey that
was used in the original study. Each week, the respondents were asked to report on one specific
major work item within their ongoing project and both how much time the respondents spent on
this item and how much time was wasted due to experiencing TD for this specific item. More
specifically, the participants were asked to report the share of their total development time spent
on the specific work item and the share of that time they wasted due to TD as well as what extra
activities the wasted time was spent on and the source of the problem for which they wasted time
on this work item?

The fourth phase (in comparison with section 4.1.4), the analysis of the collected data in the
replicated study has been analyzed in quantitatively, that is, by interpreting the numbers collected
from the survey answers. The replicated phase did not include steps similar to the fifth and sixth
phases we conducted in the original study, where we conducted supplementary qualitative semi-
structured interviews and analysis of those.

In total, we received data from 177 different working items, and the results of the replicated
study and its comparison with the original study are presented in Section 5.7.

5 RESULTS AND FINDINGS

The following subsections present the results for the research questions presented in Section 2,
and the results are grouped according to each research question.

16

5.1 WASTED TIME

The first set of questions (RQ1.1, RQ1.2, and RQ1.3) focused on how much of software devel-
opers’ overall development time is wasted due to TD and whether the distribution of the wasted
time varies with developer characteristics and follows any patterns.

5.1.1 Wasted time (RQ1.1). During the longitudinal data collection phase, 43 developers re-
ported their wasted working time due to experiencing TD twice a week for seven weeks (in total
473 data points). On average, each developer reported 10.7 times out of 14 possible occasions
(with a median of 12 and standard deviation of 3.9 times) with the average time interval between
the reporting occasions of 3.1 days, with a median of 2.7 and standard deviation of 1.3 days
(excluding Saturdays and Sundays).

The single most striking observation to emerge from the data was that the respondents reported
that, on average, 23.1% of all software development time is wasted due to TD, with the standard
deviation of 21.1% and a median value of 17.13%.

When calculating the average amount of wasted time, the different interval lengths between the
occasions were taken into account. This meant that, for example, when a developer reported 33%
waste for a three-day period following a reported waste of 40% for a 10-day period, the average
wasted time was calculated as 38.38%.

Turning to the distribution of the reported wasted time, Fig. 4 shows a histogram of the respond-
ents and their wasted time. Most respondents wasted between 0% and 10% of their working time.
It is interesting that six respondents reported a wastage of more than 50% of their working time.

157

Respondets

20,00 40,00 60,00 80,00 100,00

Waste of time (%)
Fig. 4. Distribution of the reported wasted time

To put the above numbers into context, Fig. 5 shows an overview of the distribution of the wasted
time as a function of calendar time. The mean wasted time remained quite stable over the entire
study period at about 25%.

17

1004{ 00 ©00 000 °°°o oo o0 O
oo o ° ®
— [} ° o
R o oo o oo o©
‘g 754 o oo o o
a c o]) o° o
E o° °O °°
'E [-) (] 00
3 50{ 00 o000 0 00 oo o
= ° \d °
5 oo ° oo oo
2 o © L o o o
= o0 o0 0 o000 o 0000 00 o
B8 251 % 00 O g_gﬁr_o.n_n.g &
7 [~ 0 OO0 [
z oo % go oo® o) o
B oop oobB og o0 o000
0o o oo o
0 oog o@o 6600 oo 880 gﬁo o
N\ D N\ AD
SN o é@‘*“ &L

Date

Fig. 5. Wasted time on technical debt as a function of calendar time. The blue curve, presenting mean waste as a smooth func-
tion of time, was estimated using LOESS.

100,00+ o * =

0,00

60,00

Wasted Time (%)

40,00

20,00

*

* \
'n T
w1 |ri1 |13 [Ris | miz [m1s | roo [ez | ros [Ras | mos | A |t | res | rs | Re |Ros [ran | raz | RS | R7 | R
RID RI2 R14 R16 RIE R2 R21 R23 R25 R R29 R3I0 R32 RM R3I6 R R4 R41 R43 RE RE

Respondent

Fig. 6. Distribution of the wasted time for each respondent
Fig. 6 shows the distribution of each respondent’s reported wasted time illustrated by a boxplot.

Looking at the comparison of medians (the bold horizontal black line in each box) among the
different respondents in the figure, it is apparent that the different respondents waste different
amounts of time due to experiencing TD. The figure also demonstrates that there are different
distances between the median values and the upper and lower quartile among the different re-
spondents, which indicates that, among the respondents, there are variances in terms of how con-
sistently the wasted time is reported. Some respondents’ amounts of reported wasted time vary

greatly over time, while other respondents’ amounts of reported wasted time are more consistent
and concentrated.

5.1.2 Characteristics (RQ1.2). When examining the distribution of the wasted time with re-
spect to different characteristics, we focused on the different variables: (a) years of experience as
a developer, (b) gender, (c) level of education, (d) programming language, (e) company, (f) age
of the software, and, (g) type of software.

The used variables were the same variables that were collected and assessed in the first step in
the data collection phase (e.g., the start-up survey).

The percentage of wasted time versus related to various subject characteristics is presented in
Fig. 7 and Fig. 8. As illustrated in Fig. 7, three variables showed substantial differences with
respect to the reported amount of wasted time:

e The company, explaining 20.4% of the variance in wasted time, with an average waste rang-
ing from 18.1% in company A to 51.5% in company G (Fig. 7a).

e Software age, explaining 17.4% of the variance in wasted time, with an average waste rang-
ing from 15.3% (software 5 - 10 years old) to 55.3% (software > 20 years old, n = 2) (Fig. 7b).
e Type of software, explaining 33.3% of the variance in waste time. The wasted time was be-
low average for Modelling and Simulation Systems, Real-Time Systems and Embedded Sys-
tems, and more than twice the average for Data Management Systems, System Integration Web
2.0/ SaaS Systems (Fig. 7c).

As illustrated in Fig. 8, there were only small variations in the reported amount of waste time
with respect to experience, gender, level of education and programming language.

Fraction variance explained: 20.4% Fraction variance explained: 17.4%

1009 o 1001 °

751 751

w oo B
ssles

n=11 n=8 n=7 n=4 n=4 n=2 n=4 n=10 n=17 n=11 n=2
A B C D E F G 2-5yrs 5-10yrs 10-20 yrs >20 yrs
Company Software age

50+

25+ 251

Wasted time on Technical Debt (%
[+
Wasted time on Technical Debt (%
oo | o

a)d b)

Fraction variance explained: 33.3%

9

< 100+ °

o

[0

[a)

T 751

L0

£ o -
2@ 507 t

c

o

(0] i

£ 25 ——

©

% 0_*

= n=2 n=14 n=27 n=1 n=7 n=4 n=2 n=1

e cem e et e gtem aon _ ste™
ation SYere SY5ea Y57 ONEie s¥SiC sY (ea@i0s sY°
ndlof S Redl T g b® patd a\r;;amaﬂage Sy 5\\[\? o020 ‘
NG al Da
Mode

Software system

c)

Fig. 7 (a, b, c): Percentage wasted due to technical debt vs. (a) company, (b) software age, and (c) software system. Circles
represent individual data points, binned into 50 distinct intervals along the y-axis. The red diamonds show the mean within each

19

group. For a software system, individuals may appear in multiple groups. Means and fraction variance explained are computed by
ordinary least squares regression, taking concurrent software systems into account.

Fraction variance explained: 0.9% Fraction variance explained: 0.7%
€ 1001 o £ 100 3
o o
a a8
w© 751 © 751
o
c g o
5 1 5 :
2 50+ i ° 50+
5 o 5
(O]
254 * Q55
£ V== E? 8 £ 8 :
© (%) ©
% 0 % 04 3 3%%
o
= nTS nl=5 nl=8 n=l24 S n=6 n=34
<2yrs 2-5yrs 5-10yrs >10yrs Female Male
Experience in Software Development Gender
a) b)
Fraction variance explained: 2.1% . Fraction variance explained: 6.0%
9 &
< 100+ ° 100+ o
2 o
8 8
3 754 _g 757
2 z
£ : I s
é 504 % 2 507 T ° ©
5 & . -
g 251 & g 257 i 4)
- : : B i
2 04 K B 07
2 n=7 n=33 = n=7_ n=16 n=5 n=8 n=4
. \g\ie‘ Python C Other* Java C++
Bao\'\e\o‘ ae Ja\e %) or® Programming language
oo KOY un\ * Ada; None, only performed testing; Javascript
1
wase ded

Level of education
d)

c)

Fig. 8 (a, b, ¢, d): Percent wasted time on technical debt vs. experience in software development (a), gender (b), level of educa-
tion (c), and programming language (d). Circles represent individual data points, binned into 50 distinct intervals along the y-axis.
The red diamonds show the mean within each group. For the programming language, individuals may appear in multiple groups.
Means and fraction variance explained are computed by ordinary least squares regression, taking concurrent programming lan-
guages into account.

Developer characteristics were further evaluated in multivariable analyses using non-parametric
regression trees, aiming to find combinations of characteristics associated with greater or lower
waste. However, only trivial models consisting of a single variable were found, as adding more
variables resulted in increased cross-validation error. This is probably due to the limited sample
size and more specifically to the small number of individuals in subgroups with high waste.

5.1.3 Distribution (RQ1.3). When examining each respondent's distribution of the wasted time
over the study period, we noticed that the variations in mean level and trend during the study
period differed between the respondents. All respondents showed an individual distribution of

20

the wasted time during the study period, but, when examining all different distributions, we could
identify four main distribution profiles of the reported wasted time which were generally com-
mon to all of the respondents’ reported data. The four identified profiles are associated with the
pattern of the distribution of the wasted time and labeled: Fluctuating, Periodical, High, and
Low. Examples of these profiles are illustrated in Fig. 9. For some developers, it was evident that
the wasted time varied periodically over time, meaning that, within a sub-period, the distribution
followed a low, high, or fluctuating pattern, but, at some point, this pattern changed. The fluctu-
ating profile demonstrates that, over time, the wasted time did not show any clearly discernable
time-related pattern and included both high and low amounts of wasted time. The Low and High
profiles illustrate a wasted time that is largely consistent over time, even if some peaks can be
recognized.

Low High
100 - 00~00~00~00—®~00~0~0
754
2 504
k]
8 251 © o0
g o
£ 0 o oo
é Periodical Fluctuating
§ 100 A 1
<t o
£ 754 ?
3 o
2 501 °
©
= 25- ®
o
0 L o T w T ol

00“0,\ © © dec’o\ 680'\600“0'\ o ® ¢0°0'\ 690'\6

Date

Fig. 9: Different distribution profiles of the wasted time. The blue curves, presenting mean waste as a smooth function of time,
were estimated using LOESS.

The most common pattern among the respondents was the Low profile, and the less common
pattern was the High profile. The distribution between the Fluctuating and the Periodical patterns
was largely equally divided.

Finding 1: Almost a quarter of all developers’ working time is reported as wasted due to
having TD.

Finding 2: Company and System types have the strongest impact on the amount of wasted
time.

Finding 3: Even if the distribution of the wasted time varies over time for individual devel-

opers (following different identified patterns), the overall distribution of the wasted time for
all developers and over time is largely consistent.

5.2 ADDITIONAL ACTIVITIES

The next research question (RQ2) explores the different activities on which the wasted time is
spent and also whether the amount of the wasted time relates to any specific activity.

21

When developers encounter TD during their software development work, they are forced to per-
form supplementary actions. Accordingly, these different activities would not have been neces-
sary if the TD were not present.

During the longitudinal data collection phase, the respondents were asked to report the additional
activities on which the wasted time was spent during each occurrence. For each of the 473 re-
porting occurrences, the respondents selected the activities on which the wasted time was spent
from a list of pre-defined options (listed in Section 4.1.2).

The distribution of wasted time across different activities is presented in Fig. 10, with activities
sorted according to mean waste per activity. As illustrated in this Figure, the mean wasted time
was greatest when performing Additional Testing, with a mean wasted time of 43.1%, followed
by Additional Refactoring (mean waste 42.8%) and Additional Code Analysis (mean waste
37.9%). The activity with the weakest association to the wasted time is Additional Communica-
tion, with a mean waste of 28.8%. The “None” option was mainly chosen when no time at all
was wasted (mean waste 5.4%).

The marginal effect of each activity, accounting for concurrent activities and subject effects
through mixed effects models, is presented in Table 2. The activity with the strongest effect on
wastage of time was again performing Additional Testing, associated with a waste increase of
12.4 percentage units (p.u.) (95% CI 8.7 to 17.3 p.u.), followed by Additional Code Analysis
(mean waste increase 11.7 p.u) and Additional Refactoring (mean waste increase 10.3 p.u.).
Again, performing Additional Communication was associated with little additional waste (mean
waste increase 4.1 p.u., 95% CI 0.9 to 8.0 p.u.). This means that having to perform Additional
Code Analysis increases the average amount of wasted time by 12.4%, compared to if no addi-
tional code analysis had to be performed. When selecting among the different activities the
wasted time was spent upon, the respondents also could enter an additional activity manually in
a text field that was not predefined, and, interestingly, no other additional activities caused by the
present TD were added here by the respondents. This implies that the six listed activities cover
most of the extra activities on which the time is wasted due to experiencing TD.

What extra activities was the wasted time spent on?

Additional
testing

Additional
refactoring

Additional d
code analysis

Additional J
work-arounds

Additional
searching
for documents

Increasing Technical Debt —

Additional J
communication

o @
oo
o

LS
wo

None of above

0 25 50 75 100
Wasted time on Technical Debt (%)

Fig. 10: Wasted time due to technical debt vs. Activities. Circles represent individual data points, binned into 50 distinct intervals
along the y-axis. The red diamonds represent the mean waste for each activity.

22

TABLE 2
THE AVERAGE EFFECT OF TD ACTIVITIES ON WASTED TIME

What extra activities was the wasted time spent on? Estimated effect on waste increase* (95% CI)**
Additional testing 12.4 (8.7; 17.3)

Additional code analysis 11.7 (7.8; 16.0)

Additional refactoring 10.3 (6.4; 15.2)

Additional searching for documents 6.5 (2.3; 11.6)

Additional work-arounds 6.3 (1.7; 10.1)

Additional communication 4.1 (0.9; 8.0)

* Estimated effects are presented in percentage units.

** 95% confidence intervals were computed using the non-parametric bootstrap percentile method, using 10000
bootstrap replicates.

Finding 4: The activity “Additional testing” has the strongest association with the wasted time
followed by conducting “Additional source code analysis” and “Additional refactoring.”

5.3 TECHNICAL DEBT TYPES

Since there are several types of TD [52], and these different TD types could have different levels
of negative impact on the amount of the wasted time, and these different TD types could poten-
tially have different levels of negative impact on the amount of the wasted time, in this third
research question (RQ3), we sought to explore the ways in which these TD types impact wasted
time and also which TD type has the most negative impact on the wasted time from a developer’s
perspective. For each reporting occasion, during the longitudinal data collection phase, the re-
spondents ranked the level of negative impact different listed TD types had on the reported
wasted time, using a list of different TD types. For each listed TD type, a 5-point Likert ranking
scale was set from “Not at all” to “To a great extent.”

From the data in Table 3, it is apparent that a significant proportion of the TD encountered is
related to source code, where 19.3% of the code-related TD is encountered “To a great extent.”

23

TABLE 3
THE LIKERT SCALE OF EACH ENCOUNTERED TD TYPE

100,0% .
80,0% 7
7
60,0%
40,0%
20,0%
0,0%
Architectural =~ Requirement - Code related Infrastructure Documentatio
. . Testing issues . . .
issues issues issues issues n issues
M To a great extent 4,7% 3,0% 10,0% 19,3% 4,7% 6,1%
= Somewhat 17,0% 11,0% 11,9% 17,6% 6,4% 11,2%
Little 6,1% 5,3% 7,6% 6,8% 4,7% 7,8%
7 Very little 6,6% 7,8% 5,7% 6,1% 7,0% 7,0%
H Not at all 65,7% 72,9% 64,8% 50,2% 77,3% 67,8%

Fig. 11 illustrates each studied TD type and its relation to the reported amount of wasted time. A
positive trend was observed between increased levels of encountering the different TD-types and
increased average waste—meaning that the more of each TD type the developers encounter, the
more time they waste—although a monotonic trend was not observed for all TD types. The
strongest association with wasted time was observed for 7esting issues, explaining 21.2% of the
variance in wasted time, followed by Code-related issues and Architectural issues. Only a weak
association was observed between wasted time and Requirement issues, explaining only 9.0% of
the variation in waste. We, therefore, suggest that the association of Requirement TD and the
amount of wasted time be investigated further in future studies.

24

What was the soure of the problem for which you wasted the time ?

Testing issues Code related issues
R-squared = 21.2% R-squared = 19.9%

100 -
75 1
50-

ZS-IIIIIIIIII

0-n=319 n=27 n=36 n=57 n=47| In=249 n=29 n=32 n=84 n=92

Architectural issues Infrastructure issues

9
o
Tﬁ’ R-squared = 17.0% R-squared = 13.0%
[-
2 100
8 751
£
g8 507
< by i1
(O]
£ O0n=a24 n=31 n=20 =80 n=22| o= = = = =
8
% Documentation issues Requirement issues
; R-squared = 12.4% R-squared = 9.0%
100 A
75 1
50 -

s, TEEY P

Om=as n=34 =37 n=55 n=30 lo= = = = =
T T T T T

0 1 2 3 4 0 1 2 3 4
0- Notatall, 4 - To a great extent

Fig. 11: Wasted time on technical debt vs. technical debt type. The black diamonds represent the mean for each level on the
Likert scale, error bars present 95% confidence intervals for the mean.

Finding 5: The TD type “Testing issues’ has the strongest association with the wasted time,
followed by “Code-related issues” and “Architectural issues,” with increased level of nega-
tive impact associated with increased amount of wasted time. Only a weak association be-
tween Requirement TD and amount of wasted time was observed.

5.4 INTRODUCING NEW TECHNICAL DEBT

Sometimes, developers are forced to introduce new additional TD due to already existing TD.
The interest payment could take place in the form of, for example, introducing new shortcuts and
maintenance obligations taken as the developer tries to fix the prior debt.

This research question (RQ4) aims to address the amount of additional TD developers are forced
to introduce due to present TD.

The result in Fig. 12 graphically illustrates that in 24% of all the reported occasions the develop-
ers reported that they were, to some extent, forced to introduce additional TD. Within these 24%
reported occasions, on 13% of the occasions the respondents reported that they were forced to
introduce additional TD “To a very little extent,” and 3.6% reported “To a little extent,” and 4%
“To some extent,” and 3% reported that they were forced to introduce additional TD “To a great
extent.”

When performing a detailed analysis of each reported occasion where the respondents were

25

forced to introduce new additional TD due to already existing TD “To a great extent,” the result
shows that the encountered TD types for these occasions were Test TD (in 53% of the occasions)
and Source Code TD (in 47% of the occasions).

B None ' Verylittle IliLittle #Somewhat M To a greatextent
Fig.12. Introduction of new TD

The majority of the interviewees explained the reasons why they were forced to introduce addi-
tional TD in terms of “time pressure.”

This expressed time pressure was commonly described both in relation to the implementation of
the solution, but also that it caused other activities to suffer, such as performing sufficient testing-
or updating related documentations.

For example, one interviewee claimed, “Usually, it takes a longer time to make the correct solu-
tion. It is more or less always a time question. Often, when you introduce technical debt, its
because something had turned up. Which was not quite the way that we thought it was when we
planned how to do the software.” Moreover, in discussing this issue, another interviewee said,
“You implement suboptimal solutions because you are in a hurry. Plus, we don t find the time to
use the test tools we have and write tests for everything.”

Finding 6: In a quarter of all occasions of encountering TD, developers are forced to intro-
duce additional TD due to already existing TD, potentially causing contagious debt.

Finding 7: Encountering Test TD and Source Code TD forces the developers to introduce
additional TD to the largest extent.

5.5 AWARENESS AND BENEFITS

This research question (RQS5) focuses on the awareness of the negative consequences TD has on
the daily software development work and whether (and in what way) the developers and manag-
ers consider the insight of the wasted time valuable.

Apart from when participating in this study, none of the developers explicitly measured, tracked,
or reported their wasted time but still considered themselves to have a high level of awareness
regarding the amount of time they wasted due to TD.

Initially, during the interviews with each of the developers, we asked them how much time they
estimate they waste in general, and after that, we showed them their results from their average

26

reported wasted time from the longitudinal study. When we presented the individually reported
wasted time for each developer, all developers acknowledged their reported amount of time. As
one interviewee stated, “Yes, so we thought there would be some time, so it's not that we're
shocked by it [22% wasted time], but it could have been worse,” while another developer com-
mented, “7o me, it's a natural part that you waste 25%, and I think it's quite reasonable to spend
so much time maintaining old code.”

On the other hand, during the interviews with the developers’ managers, the general level of
awareness of the amount of time developers waste due to TD was considerably lower. As one
manager observed, “As a manager, if I had data telling me that people are wasting around 25%
of the time they have available for developing, I would for sure like to know that because that s
unacceptable... If I knew, I would be able to do something about it, or at least to raise the prob-
lem.”

These quotes also highlight the different ways developers and managers seem to appraise the
amount of development time that is reasonable to waste due to TD.

Overall, both developers and managers considered the benefits of knowing the amount of wasted
time similarly. The benefits were described by the developers as the quantified wasted time po-
tentially helping to detect and to predict the need for additional quality improvements.

Some developers also highlighted the benefits of being able to improve forecasting and capacity
planning and being able to justify change and thereby motivate their managers. For example, one
developer stated: “Yes, it would be useful when you do the estimation of when you start a project
and when you finish it.... So I could use it to predict my baselines in my delivering.”

One developer in the study also described the benefits of tracking the wasted time as a useful
tool when implementing a new type of management strategy with the goal of decreasing the
negative impact of TD. “You could combine it [the reporting of the wasted time] with working in
another way. Because you can use it for tracking ... We should also change the way that we actu-
ally make new things to try to work without creating new technical debt. And then you use the
tracking so if these working methods actually work.” Furthermore, when discussing the quality
issues, an interviewee claimed, “If I had a huge amount of wasted time, it also shows that we
have a lack of quality... I think it would be a tool that could help us improve our quality.”
Moreover, the managers emphasize the benefits of quantifying the amount of the wasted time in
terms of being able to discuss and identify various causes that adversely affect the development
work. For example, one manager claimed, “But, as a manager, I thought it was interesting be-
cause I want there to be as few barriers to my team as possible. And this is a form of obstacle.
And sometimes when you ask people ‘what's the obstacle to you?’then it almost becomes more
an emotional question than it becomes a fact.”

Finding 8: Developers have a higher awareness than their managers of how much time is

wasted due to TD, and the developers and their managers seem to appraise the amount of
development time that is reasonable to waste due to TD in different ways.

Finding 9: Both developers and managers described the benefits of knowing the amount of
wasted time in a similar manner. The amount of wasted time was found to be a useful indi-

cator of the software quality, and it could also be used for improving forecasting and better
capacity planning and assisting the communication between managers and their developers.

27

5.6 CHALLENGES OF TRACKING TD INTEREST

This question (RQ6) highlights the interaction between developers and managers with regard to
the challenges of tracking the interest of TD.

Overall, even though developers consider themselves to benefit from making the amount of
wasted time evident, most of the developers did not have a positive attitude toward continuously
reporting the wasted time to their managers. Even if the interviewed developers generally
claimed that the specific reporting task took them only a couple of minutes for each reporting
occasion, several interviewees argued that this reporting task would require unwanted additional
time and effort.

Similarly, even if the managers consider the benefits of knowing the amount of wasted time to
be important, the managers did not explicitly request this information from the developers, and,
in general, they did not have a positive attitude to asking the developers to report their wasted
time.

Several managers expressed their unwillingness to introduce new reporting tasks to the develop-
ers, and one manager described the fear of causing extra stress for the developers. “There is a
certain fear of reporting. It will almost become a negative spiral of it eventually. We have little
stress-related sick leave. If you get that, because of such a system, you probably have not achieved
that much.” Another manager echoed this notion, describing the attitude toward introducing re-
porting of wasted time to the developers. “Even though I see the value of this kind of data, it's
nothing I'm going to force anyone to report, but if people are interested in continuing this here,
I'm very welcome from my side, but it may be on an interest-based basis.”

Even if all interviewees were familiar with the concept of TD and its related negative effects, this
knowledge was not put into practice, and the lack of having an overall strategy for managing TD
was evident.

Finding 10: The willingness to quantify the wasted time is a major challenge, since developers
and managers do not, in general, have a positive attitude toward implementing additional re-
porting.

Finding 11: None of the interviewed companies had a clear strategy on how to track and ad-
dress the wasted time.

5.7 RESULT OF THE REPLICATION STUDY

The motivation to carry out this replication part of the study is to investigate further whether the
previous results demonstrate that the findings can be repeatedly generated and thus the original
findings were not an exceptional case. In particular, the aim is to broaden the results obtained in
RQI1.1, RQ2, and RQ3 by investigating the same research areas but with other independent data
sets, as described in section 4.1.7.

Each sub-section will first report the results from the replicated study and then present a compar-
ison of its results with the results of the original study.

5.7.1 Replication of result addressing wasted time due to technical debt
Research question RQ1.1 addresses how much of software developers’ overall development time

28

is wasted due to technical debt. The replicated study focuses on how much time was wasted on
specific working items.

In total, we have analyzed data from 177 reported working items from 47 developers at the same
company but working on different projects and with different products.

407

307

No of Work Items

,00 20,00 40,00 60,00 80,00 100,00
Waste of time (%)
Fig 13. Distribution of the reported wasted time from the replicated phase

The replicated study found that, on average, 28.51% of the software development time for the
reported working tasks is wasted due to TD, with the standard deviation of 25.37% and a median
value of 20.0%. Fig. 13 shows a histogram of the reported wasted time for each work item. Most
work items wasted, on average, 20% of their time due to experiencing technical debt.

Even if both data sets from the original and the replicated study are large enough to support
comparison, they do not permit comparison using the same statistical methods since they are
based on different variables. However, the result of the two studies can be examined together by
studying the result of the reported amount of wasted time.

In the replicated study, the respondents were asked to report on the wasted time for the work item
they spent most of their working time on since the last time they took the survey. However, since
the respondents potentially could perform other working tasks during the period (for which we
do not know the amount of wasted time), we cannot generalize their reported waste of time for
the full period. Our analysis of the time the respondents spent on the reported work items shows
that the respondents spend on average 57.63% of their working time on each of reported work
item.

Despite the different used variables, one might intuitively expect that the amount of wasted time
due to TD should be quite similar in both of the studies. In the original study, the respondents
reported that, on average, 23.1% of all software development time is wasted due to TD. This

29

result is a slighter lower share of wasted time than the reported average of the replicated study,
where the respondents reported that, on average, they waste 28.5% on each of the reported tasks.
However, by combining results from the original study with results from the replication study,
we conclude that Finding 1 stating that “Almost a quarter of all developers’ working time is
reported as wasted due to having TD* is valid and strengthened.

5.7.2 Replication of result addressing different activities

This part of the replication study aims at replicating the findings from RQ2 by exploring the
different activities on which the wasted time is spent and also whether the amount of the wasted
time relates to any specific activity.

The distribution of wasted time across different activities from the replication study is presented
in Fig. 14 where the activities are sorted according to mean waste per activity. By studying the
ranking of activities with respect to average waste of time in this figure, it is evident that this data
differs noticeably from the data in the original study. For instance, in the replicated study, the
activity of performing “Additional code analysis™ has the strongest association to the wasted time
whereas, in the original study, performing “Additional Testing” has the strongest association. In
the replication study, the additional activity of performing “Additional Testing” is ranked quite
differently since it has the weakest association with the wasted time (except for the “other activity
option”).

However, one should note that the mean value of each of the activities is fairly close to the orig-
inal study, except for the mean value of “Additional Testing.”

What extra activities was the wasted time spent on?

Additional
code analysis

Additional

T searching - g
+. fordocuments

o

) -
O Additional
© refactoring g
Q

c
£ Additional 4

8 work-arounds
|_

)]
£ Additional i 8
g communication o
3

€ Additional 8
— testing

Other -
T T T T T
0 25 50 75 100

Wasted time on Technical Debt (%)

Fig. 14: Wasted time due to technical debt vs. activities for the replicated study. Circles represent individual data points, binned
into 50 distinct intervals along the y-axis. The red diamonds represent the mean waste for each activity.

30

In a similar way as in the original study, the marginal effect of each activity, accounting for con-
current activities and subject effects through mixed effects models, is presented in Table 4. The
activity with strongest effect on wastage of time in the replicated study was again performing
Additional code analysis, associated with a waste increase of 10.4 percentage units (p.u.) (95%
CI 3.9 to 18.2 p.u.), followed by Additional searching for documents (mean waste increase 8.7
p.u) and Additional Refactoring (mean waste increase 8.6 p.u.).

TABLE 4
THE AVERAGE EFFECT OF TD ACTIVITIES ON WASTED TIME FROM THE REPLICATED STUDY
What extra activities was the wasted time spent on? Estimated effect on waste increase* (95% CI)**
Additional code analysis 10.4 (3.9; 18.2)
Additional searching for documents 8.7 (-0.0; 17.1)
Additional refactoring 8.6 (1.6; 15.8)
Additional work-arounds 6.9 (-3.2; 15.0)
Additional communication 1.8(-4.1;9.2)
Additional testing 1.8(-3.8;8.9)
* Estimated effects are presented in percentage units.
** 95% confidence intervals were computed using the non-parametric bootstrap percentile method, using 10000
bootstrap replicates.

To conclude, the original and the replicated studies show a somewhat different relationship and
ranking between the amounts of wasted time in relation to the different activities, even if the
mean value of each individual activity is quite similar to the values in the original study.

5.7.3 Replication of result addressing technical debt types
When answering research question RQ3, we examined the extent to which different TDs were

encountered in order to understand their frequency.

THE LIKERT SCALE OF EACH ENCOUNTERED TD TYPE
100,0% - _ -
80,0% = V7
77 7 7z
60,0%
v
40,0%
20,0%
0,0%
Architectural Requirement Testing Code related Infrastructure Documentation
issues issues issues issues issues issues
B Toa great extent 4,7% 3,0% 10,0% 19,3% 4,7% 6,1%
= Somewhat 17,0% 11,0% 11,9% 17,6% 6,4% 11,2%
Little 6,1% 5,3% 7,6% 6,8% 4,7% 7,8%
7 Very little 6,6% 7,8% 5,7% 6,1% 7,0% 7,0%

H Not at all 05,7% 72,9% 64,8% 50,2% 77,3% 67,8%

31

As shown in Table 5, a significant proportion of the encountered TD is related to source code and
testing, where 12.36% of the TD for those types is encountered ““To a great extent.”

Even though the two sets of results are not identical, they share the same finding when studying
which TD types are most often and most seldom encountered to a large extent. When comparing
the result from the original study with the result from the replicated study, it is apparent that the
code-related TD and test related TD are the two TD types that are most often encountered “To a
great extent.” Furthermore, the results in both studies show that requirement related TD is most
seldom encountered “To a great extent.”

To conclude, these replicated results confirm previous findings and contribute additional evi-
dence that developers suffer from several different TD types and that they differ in terms of their
frequency and magnitude.

6 DiscussIiON

The following subsections present discussions and limitations for the research results presented
in Section 5, and the results are grouped according to each research question followed by a sec-
tion addressing the replicated phase of the study and, finally, a section about the implications for
practitioners and researchers.

6.1 WASTED TIME AND INTRODUCTION OF NEW TD

The first three research questions (RQ1, RQ1.1, and RQ1.2) focus on how much software devel-
opment time developers are wasting due to TD, and the fourth question (RQ4) addresses to what
extent developers are forced to introduce new TD because of already existing TD.

The most striking finding shows that developers waste almost a quarter of all development time
due to TD, and, even if different patterns of the distribution over calendar time were observed,
the overall distribution of the wasted time did not show any clear trend.

Even if this study does not explore if, and in what ways, the first introduction of TD affected the
productivity of the development work, this result indicates that the present TD causes a great deal
of wasted time during the overall development work, where the ratio of development effort and
maintenance effort in a product development lifecycle becomes tilted toward more maintenance
effort due to the presence of TD in the software.

Moreover, this indicates that, if the software companies are not aware of this time and have not
calculated for it, they could easily end up with time pressure, forcing them to introduce additional
TD. In fact, the developers report that a quarter of all encountered TD forces them to introduce
additional TD. This result indicates that, depending on software companies’ degree of ability to
remediate TD, the amount of TD could potentially increase continuously, and, in the worst case,
this could lead to a vicious circle of TD growth. This result quantitatively corroborates the find-
ings of [26], where the term contagious debt is described.

32

6.2 ADDITIONAL ACTIVITIES

The second research question (RQ?2) in this study sought to explore on which activities the wasted
time was spent and also whether the amount of the wasted time was related to any specific activ-
ity. The result shows that the most common activity on which the extra time was spent is per-
forming additional testing, followed by additional source code analysis and additional refactor-
ing.

This result implies that, if the systems did not have TD, the time spent on these activities could
be reduced. Furthermore, spending a great deal of time on these activities during the software
development could, consequently, potentially be an indicator of a system suffering from TD and
also an indicator of the amount of interest that has to be paid and thereby indicate a decrease in
developer productivity.

6.3 TECHNICAL DEBT TYPES

The results from the third research question (RQ3) show that all TD types are significant and
strongly associated with the amount of the wasted time, whereby Source code TD has the strong-
est association with the amount of wasted time. This result demonstrates that all the different
types of TD require attention. A possible explanation for these results may be that developers
have a higher awareness of Source Code TD and, therefore, experience its negative impact as
more prominent. Likewise, the results show that developers encounter less Requirement TD and
Infrastructure TD, which also points to the idea that developers are less prone to attribute the
wasted time to those TD types.

This result further implies that software companies need to focus on several different types of
TD and not, as is currently the case, focus primarily on code-related TD.

6.4 AWARENESS AND CHALLENGES

The fifth and sixth research questions (RQS5 and RQ6) address the levels of awareness of the
developers and their manager regarding the amount of time wasted due to TD, the benefits of this
insight, and how they communicate these issues within their organizations. From the results, we
can see that software developers are reasonably aware of the amount of time they waste during
the development phase, despite the fact that they do not attempt to measure, track, or quantify it.
However, the managers of the developers have a much lower awareness of the amount of time
the developers waste, and the professions also seem to have different views on what is a reason-
able or unreasonable amount of time to waste on TD. Both developers and managers could see
the benefits of quantifying the amount of wasted time, but both professions were, in general,
reluctant to practically implement a systematic approach to quantifying the wasted time. Devel-
opers argued that reporting the wasted time due to TD would require additional time and effort,
while the managers were hesitant to implement such measures due to the extra workload it would
place on the developers. If the managers are not aware of the amount of software development
time the developers waste because of TD, they are consequently not able to react and take appro-
priate action regarding the wasted time. This means that, in a worst-case scenario, the amount of
wasted time and the lack of developer productivity could end up being increased instead of being

33

reduced. In the long run, low developer productivity can, due to time pressure, stress the devel-
opers to further introduce new TD and can also have a negative impact on the amount of new
features that can be implemented and can harm both the maintainability and evolvability of the
software product.

6.5 REPLICATION STUDY

In general, a successful replication of a study is one that helps the research community gain
information about conditions under which the results hold [53], [54].

The replication phase of this study aimed at replicating the results addressing RQ1.1, RQ2, and
RQ3. The replicated results for RQ1.1 and RQ3 where, overall, in line with the results from the
original study, which implies greater reliability and confidence in these results.

Further, the results for RQ2 contradicted to some extent the results from the original study ad-
dressing the different activities on which the wasted working time was spent.

A hypothetical explanation of this discrepancy may be found in how the data was collected in the
replicated study. One of the major alterations of the data collection in the replicated study is that
it was collected at only one company (compared with six companies in the original study). This
replication setting creates a context in which the sources of variations potentially could be lim-
ited. One could expect that several of the participating developers in the replication study worked
in a similar environment or even in the same code base, thus experiencing TD that required spe-
cific activities to take place, resulting in a company-specific result that is less generalizable to a
broader community.

However, even if the results from this research questions show a different ranking of how strong
each activity is associated with the amount of wasted time, the mean value of each activity was
quite similar to the original results. In the replication study, the result showed that performing
additional code analysis had the strongest association with the amount of wasted working time
due to experiencing TD, as compared with the original study where performing “Additional Test-
ing” had the strongest association. This result could potentially be explained by a company-
specific environmental setting, but further studies that take these variables into account will need
to be undertaken.

6.6 IMPLICATIONS FOR PRACTITIONERS AND RESEARCHERS

It is commonly quite difficult to motivate and argue for the need to prioritize refactoring activities
due to software experiencing TD in today’s software industry. One major reason for this can be
described in terms of the lack of knowledge about how TD negatively affects the software devel-
oper productivity.

This study has shown that an extensive amount of valuable working time is wasted due to TD
and that this TD causes the developer to perform different activities that would not have been
necessary if the TD were not present.

However, being able to describe and understand the amount of the negative effects of TD in terms
of wasted time can help when developers argue for the need to initiate refactoring to reduce the
amount of TD and thereby potentially decrease the future amount of time wastage.

34

This study makes a novel contribution to the existing body of knowledge and suggests several
important practical implications that demonstrate the impact TD has on software development
productivity. This contribution of this study can be used by both software practitioners and re-
searchers within the field:

» Based on this study’s empirical result, we show that software developers report that they
waste, on average, 23% of their working time due to TD.

o We present results showing that the wasted time is most commonly spent on performing ad-
ditional testing, followed by conducting additional source code analysis and performing addi-
tional refactoring.

o The results show that in almost a quarter of all occasions when encountering TD, the devel-
opers are forced to introduce additional TD due to the already existing TD.

o This study provides new insights into TD research by revealing that the developers are largely
aware of the amount of the time they waste due to TD. However, the study shows that the devel-
opers’ managers are not as aware of the amount of time developers waste and that the different
professions seem to have different views on what is a reasonable or unreasonable amount of time
to waste due to TD.

o This study shows that none of the companies tracked or measured the amount of wasted time
due to TD, and none of the companies had an aligned strategy for addressing the interest of TD.
o This study shows that both developers and managers see the benefits of tracking the amount
of wasted time, but both professions are somewhat reluctant to implement such measures in prac-
tice. This unwillingness is recognized as a challenge for the companies.

o We provide an empirically based study on how TD negatively affects practitioners within the
software industry, based on both quantitative and qualitative data. A major strength of this study
is the longitudinal research, which increases the validity of the results compared to cross-sec-
tional studies.

» Overall, these findings suggest strong recommendations for software companies to focus fur-
ther on continuously undertaking refactoring initiatives of TD issues to keep the amount of TD
at bay on an ongoing basis. In general terms, this means that such TD remediation and prevention
initiatives also would have a positive impact on the overall developer productivity.

7 VERIFIABILITY, LIMITATIONS, AND THREATS TO VALIDITY

The purpose of this section is to reflect on the extent to which this study has addressed the goal
of ensuring verifiability, describing limitations, and finally addressing potential threats to valid-
ity.

7.1 VERIFIABILITY AND LIMITATIONS

There are several important limitations that necessitate a cautious interpretation of the results of
the present study. First, selection bias is a potential limitation since the data from the invited
companies in the study was gathered only in specifically chosen companies. Second, given the
self-reported nature of the collected data in the surveys, the findings should be interpreted with

35

caution, particularly because, during the longitudinal data collection phase, the surveyed devel-
opers may have had insufficient knowledge and ability to categorize and quantify the correct TD
type and to quantify the correct amount of wasted time due to TD.

However, one could argue, since reporting the time spent on different tasks and activities is a
common practice for developers performing their time registration, their ability to report the time
should be reasonably sound. With this as a background, together with the provided education
material, guiding the participating developer to distinguish between different types of TD would
assist in determining the amount of wasted time and the specific type of TD on which it is being
wasted.

Third, a note of caution is due, since this study’s result is derived from reports from developers
and managers only, meaning that the findings cannot be generalized to other software practitioner
roles.

7.2 THREATS TO VALIDITY

The result of this study may be affected by some threats to validity such as internal validity,
external validity, construct validity, and reliability.

The major threat to the internal validity of this research design is when the causal relationships
between the wasted time and the different TD types and the different activities were examined,
as it affects our ability to explain accurately the phenomena that we observed [45]. To mitigate
this threat, we have adopted both a univariable and a multivariable analysis of the data.

In this work, we have analyzed data to find a correlation between specific parameters in the
reported data. However, we do acknowledge that this correlation does not imply causality be-
tween the variables and that the same results may not be reached if considering another collection
of companies or developers with different characteristics. However, to further mitigate this threat,
we conducted follow-up interviews with 12 of the participating developers in which the relation-
ship between the reported amount of wasted time and the listed additional activities and the dif-
ferent TD types were assessed. Several of the findings were also validated by an additional rep-
lication study using a different and independent data sets, concluding and strengthening several
of the derived results.

Furthermore, to mitigate the potential threat to the validity of self-reports, all participants re-
ported the wasted time related to TD for a short period of time (on average 3.1 days). The confi-
dence of self-reporting data was also supported by the fact that the practitioners knew that the
surveys were coming, so they could pay special attention to their working tasks and effort spent.
In addition, in management research, it is not uncommon to use self-assessment when studying
participants’ productivity since this method is considered as a consistent method for objective
measurements of performance [55].

The external aspect of validity addresses the extent to which it is possible to generalize the find-
ings [35]. The responses that our respondents gave might not be representative of the entire de-
veloper population. Although we cannot generalize the results, we can rely on a relatively high
number of participating organizations (6), working in different business and application domains.
Furthermore, in surveys, there is always a risk that the sample is biased, and, therefore, a potential

36

threat relates to, for instance, the geographical, cultural, and demographic distribution of re-
sponse samples. However, to confirm the generalizability of this study and to mitigate this threat,
we have replicated the study with a different set of respondents, both in terms of geographical
area and software development culture.

Construct validity addresses the extent to which the operational measures that are studied accu-
rately represent what the researchers are considering [35]. This threat is related to whether we
can correctly use the amount of wasted time as a substitute for software development productivity
and whether the data collection approach is well-designed for the research purpose.

Using only a single report for each respondent involves a risk that this reporting gives a meas-
urement bias [38]. To mitigate this threat, the data were collected using several reporting occa-
sions over time, using a longitudinal data collection approach. This approach reduces the subjec-
tivity of only studying the reported data on one single occasion.

Furthermore, this threat also relates to whether the study constructs are defined and interpreted
correctly by the respondents [35]. To mitigate this risk and to ensure that the respondents had the
same base of knowledge in the field of the study, all participants in the longitudinal study received
the educational material before starting the study. Another threat concerning the survey questions
relates to whether the question could be clearly understood by the participants. To mitigate this
threat, the initial survey draft was reviewed by all the authors, and we additionally made a pilot
study with one software practitioner to examine the understanding of the survey questions.

The goal of reliability is to minimize the errors and biases in a study [45]. Reliability addresses
whether the study would yield the same results if other researchers replicated them, following
the same procedure, by means of the extent to which the analysis is dependent on specific re-
searchers [35], [45].

To mitigate this threat in the original study, following guidelines by Yin [45], we designed the
study in six distinct and separately documented phases (see Section 4.1), and made these steps
as operational as possible to assist the repeatability of the study results.

As mentioned briefly in the above section, this study also includes an additional phase with the
goal of replicating several of the findings. This replication study also assisted in mitigating sev-
eral validity issues of the original study. In terms of external validity, the replication of the study
assisted us by showing that several of the original results were not dependent on the specific
conditions of the original study. The independence of the replicators from the original study lends
additional confidence that the original results were not the result of data collection bias.
Similarly, in terms of internal validity, the replication study also assisted in showing the range of
conditions under which the results hold. Since the several variables of the replication study were
different from those of the original study (e.g., a new set of respondents, different data collection
design, etc.), the replication phase contributed some confidence that the findings are not limited
to the particular setting we had in the original study. Consequently, the additional replication
study addressed both external as well as internal validity.

8 CONCLUSION AND FUTURE WORK

This study set out to analyze the negative effect TD has on software productivity from the point

37

of view of software developers and their managers.

This study reports on the replication and extension of a longitudinal study of technical debt,
where 43 developers reported twice a week for seven weeks how much time they waste due to
TD, on which additional activities this time was spent, and what type of TD caused the wasted
time.

This study provides evidence that TD hinders software developers by causing a substantial
amount of wasted time. This wasted time negatively affects the development productivity and
viability of the software. Even if both developers and their managers clearly see the benefits of
reporting the wasted time, it is a challenge to implement such a reporting task due to unwilling-
ness and time restrictions. This study shows that TD also contributes to the need to perform time-
consuming additional activities, and developers report that, on average, 23% of all software de-
velopment working time is wasted due to TD.

Furthermore, due to the presence of TD during the development work, developers most com-
monly have to perform additional testing, source code analysis, and refactoring. This study also
shows that, in a quarter of the occasions where developers encounter TD, they are forced to in-
troduce additional TD due to the already existing TD. This burden of being forced to introduce
additional TD demonstrates the contagiousness of TD, and our results suggest that TD should be
prioritized for refactoring because it forces the developers to introduce further additional TD,
which generates even more interest.

These findings indicate that software companies need to be armed with strategies and proactive
management to enable them to track the interest of TD. Such a strategy could result in better,
more informed decisions to balance the accumulation and the repayment of TD.

It was not possible in the present study to study the relationship between the qualities of the
developers’ software in relation to the wastage of their working time. However, as part of future
work, we plan to extend this study by applying a triangulation of the quantum of TD within the
investigated software system by, for instance, using tools for source code statistics, test statistics,
or code churn metrics. This extension and replication of the study would provide additional het-
erogeneity in the relationship between TD and the productivity loss over different values of TD.

ACKNOWLEDGMENT

Many thanks to the industrial partners who participated in both the original and the replication
study and interviews. We would also like to thank Henrik Imberg for his valued support during
the statistical analysis of the data.

38

REFERENCES

[1] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,” Journal of Systems and Software, vol. 86, no. 6, pp. 1498-1516,
2013.

[2] T. Besker, A. Martini, and J. Bosch, "Time to Pay Up - Technical Debt from a Software Quality Perspective." p. pp. in print. .

[3] P. Kruchten, R. L. Nord, and |. Ozkaya, “Technical Debt: From Metaphor to Theory and Practice,” Software, |IEEE, vol. 29, no. 6, pp.
18-21, 2012.

[4] R. Mo, J. Garcia, C. Yuanfang, and N. Medvidovic, "Mapping architectural decay instances to dependency models." pp. 39-46.

[5] Z. Li, P. Liang, and P. Avgeriou, "Architectural Debt Management in Value-Oriented Architecting," Economics-Driven Software
Architecture, pp. 183-204, 2014.

[6] C. Fernandez-Sanchez, J. Diaz, J. Pérez, and J. Garbajosa, "Guiding flexibility investment in agile architecting." pp. 4807-4816.

[7] Z. Li, P. Liang, and P. Avgeriou, "Architectural Technical Debt Identification Based on Architecture Decisions and Change Scenarios."
pp. 65-74.

[8] T. Besker, A. Martini, and J. Bosch, “Managing architectural technical debt: A unified model and systematic literature review,” Journal
of Systems and Software, vol. 135, no. Supplement C, pp. 1-16, 2018/01/01/, 2018.

[9] C. Seaman et al., "Using technical debt data in decision making: Potential decision approaches." pp. 45-48.

[10] A. Martini, J. Bosch, and M. Chaudron, "Architecture technical debt: Understanding causes and a qualitative model." pp. 85-92.

[11] W. Cunningham, "The WyCash portfolio management system, in: 7th International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA *92)." pp. 29-30.

[12] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Technical Debt in Software Engineering (Dagstuhl Seminar 16162),”
Dagstuhl Reports, vol. 6, no. 4, pp. 110-138, 2016.

[13] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the size, cost, and types of technical debt,” in Proceedings of the Third
International Workshop on Managing Technical Debt, Zurich, Switzerland, 2012, pp. 49-53.

[14] N. Mellegard, “Using weekly open defect reports as an indicator for software process efficiency: theoretical framework and a

longitudinal automotive industrial case study,” in Proceedings of the 27th International Workshop on Software Measurement and 12th
International Conference on Software Process and Product Measurement, Gothenburg, Sweden, 2017, pp. 170-175.

[15] K. D. Maxwell, “Software Development Productivity,” Advances in Computers, vol. 58, pp. 1-46, 2003/01/01/, 2003.

[16] V. S. Fonseca, M. P. Barcellos, and R. de Aimeida Falbo, “An ontology-based approach for integrating tools supporting the software
measurement process,” Science of Computer Programming, vol. 135, pp. 20-44, 2017/02/15/, 2017.

[17] M. Murray, and N. Kujundzic, Critical Reflection : A Textbook for Critical Thinking, Montreal, CANADA: MQUP, 2005.

[18] T. Besker, A. Martini, and J. Bosch, “Technical Debt Cripples Software Developer Productivity - A longitudinal study on developers’

daily software development work,” First International Conference on Technical Debt @ ICSE18, 2018.
[19] V. Basili, G. Caldiera, and D. Rombach, “The Goal Question Metric Approach,” Encyclopedia of Software Eng., J.J. Marciniak, ed.,
pp. 528-532, 19924.

[20] E. Oliveira, D. Viana, M. Cristo, T. Conte, and "How have Software Engineering Researchers been Measuring Software Productivity?
A Systematic Mapping Study ". pp. 76-87.

[21] W. Scacchi, “Understanding Software Productivity, ,” International Journal of Software Engineering and Knowledge Engineering, vol.
1, no. 3, pp. 293-321, 1991.

[22] K. D. Maxwell, “Collecting data for comparability: benchmarking software development productivity,” IEEE Software, vol. 18, no. 5,
pp. 22-25, 2001.

[23] R. W. Jensen, Improving Software Development Productivity: Effective Leadership and Quantitative Methods in Software
Management: Prentice Hall Press, 2014.

[24] T. Sedano, P. Ralph, and C. e. Péraire, “Software development waste,” in Proceedings of the 39th International Conference on
Software Engineering, Buenos Aires, Argentina, 2017, pp. 130-140.

[25] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and |. Gorton, “Measure it? Manage it? Ignore it? software practitioners and technical
debt,” in Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, Bergamo, Italy, 2015, pp. 50-60.

[26] A. Martini, and J. Bosch, “On the interest of architectural technical debt: Uncovering the contagious debt phenomenon,” Journal of
Software: Evolution and Process, 2017.

[27] R. Kazman et al., "A Case Study in Locating the Architectural Roots of Technical Debt." pp. 179-188.

[28] T. Besker, A. Martini, and J. Bosch, "The pricey Bill of Technical Debt - When and by whom will it be paid? ." pp. 13-23.

[29] A. Martini, T. Besker, and J. Bosch, “Technical debt tracking: Current state of practice a survey and multiple case study in 15 large
organizations,” Science of Computer Programming, 2018.

[30] R. E. Ployhart, and R. J. Vandenberg, “Longitudinal Research: The Theory, Design, and Analysis of Change,” Journal of Management,

vol. 36, no. 1, pp. 94-120, 2010/01/01, 2009.
[31] R. J. Eisenberg, “A threshold based approach to technical debt,” SIGSOFT Softw. Eng. Notes, vol. 37, no. 2, pp. 1-6, 2012.

39

[32]

[33]

[34]

[39]

[36]

[37]

[38]
[39]

[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
(53]

[54]

[59]

Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt and its management,” Journal of Systems and
Software, vol. 101, pp. 193-220, 2015.

N. S. R. Alves et al., “Identification and Management of Technical Debt: A Systematic Mapping Study,” Information and Software
Technology, 2015.

P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, and C. Seaman, “Reducing friction in software development,” IEEE Software, vol. 33,
no. 1, pp. 66-72, 2016.

P. Runeson, and M. Host, “Guidelines for conducting and reporting case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131-164, 2009.

J. Miller, “Triangulation as a basis for knowledge discovery in software engineering,” Empirical Software Engineering, vol. 13, no. 2,
pp. 223-228, 2008.

S. McConnell. "Technical Debt. 10x Software Development [cited 2010 June 141"
http://www.construx.com/10x_Software Development/Technical Debt/.

C. Wohlin et al., Experimentation in software engineering: an introduction: Kluwer Academic Publishers, 2000.

B. A. Kitchenham et al., “Preliminary guidelines for empirical research in software engineering,” Software Engineering, IEEE
Transactions on, vol. 28, no. 8, pp. 721-734, 2002.

N. Juristo, A. M. Moreno, SpringerLink, and A. SpringerLink, Basics of Software Engineering Experimentation, 1 ed., Boston, MA:
Springer US, 2001.

D. F. Morrison, “The optimal spacing of repeated measurements,” Biometrics, vol. 26:281-90, 1970.

R. Core-Team, "R: A language and environment for statistical computing. R Foundation for Statistical Computing."

T. Therneau, and B. Atkinson, “ rpart: Recursive Partitioning and Regression Trees. R package version 4.1-13.

URL https://CRAN.R-project.org/package=rpart,” 2018.

C. B. Seaman, “Qualitative methods in empirical studies of software engineering,” IEEE Transactions on Software Engineering, vol.
25, no. 4, pp. 557-572, 1999.

R. K. Yin, Case study research: design and methods, London: SAGE, 2014.

V. Braun, and V. Clarke, "Using thematic analysis in psychology, Qualitative research in psychology, 3(2)." pp. 77-101.

J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen, “Coding In-depth Semistructured Interviews Problems of Unitization
and Intercoder Reliability and Agreement,” Sociological Methods & Research, 2013.

F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of replications in Empirical Software Engineering,” Empirical Software
Engineering, vol. 13, no. 2, pp. 211-218, 2008/04/01, 2008.

L. M. Pickard, B. A. Kitchenham, and P. W. Jones, “Combining empirical results in software engineering,” Information and Software
Technology, vol. 40, no. 14, pp. 811-821, 1998/12/01/, 1998.

M. Shepperd, N. Ajienka, and S. Counsell, “The role and value of replication in empirical software engineering results,” Information
and Software Technology, vol. 99, pp. 120-132, 2018/07/01/, 2018.

J. C. Carver, "Towards Reporting Guidelines for Experimental Replications: A Proposal.”

N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O. Spinola, "Towards an Ontology of Terms on Technical Debt." pp. 1-7.
V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge through families of experiments,” IEEE Transactions on Software
Engineering, vol. 25, no. 4, pp. 456-473, 1999.

S. Vegas et al., “Analysis of the influence of communication between researchers on experiment replication,” in Proceedings of the
2006 ACM/IEEE international symposium on Empirical software engineering, Rio de Janeiro, Brazil, 2006, pp. 28-37.

D. Graziotin, X. Wang, and P. Abrahamsson, “Do feelings matter? On the correlation of affects and the self-assessed productivity in
software engineering,” J. Softw. Evol. Process, vol. 27, no. 7, pp. 467-487, 2015.

http://www.construx.com/10x_Software_Development/Technical_Debt/
https://cran.r-project.org/package=rpart,

