
Estimating Cloud Application Performance Based on Micro-Benchmark
Profiling

Downloaded from: https://research.chalmers.se, 2024-10-09 03:18 UTC

Citation for the original published paper (version of record):
Scheuner, J., Leitner, P. (2018). Estimating Cloud Application Performance Based on
Micro-Benchmark Profiling. 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), 2018-July: 90-97. http://dx.doi.org/10.1109/CLOUD.2018.00019

N.B. When citing this work, cite the original published paper.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works. The definitive Version of Record was published in 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), July 2–7, 2018, San Francisco,
CA, USA, https://doi.org/10.1109/CLOUD.2018.00019

Estimating Cloud Application Performance
Based on Micro-Benchmark Profiling

Joel Scheuner
Software Engineering Division

Chalmers | University of Gothenburg
Gothenburg, Sweden

scheuner@chalmers.se

Philipp Leitner
Software Engineering Division

Chalmers | University of Gothenburg
Gothenburg, Sweden

philipp.leitner@chalmers.se

Abstract—The continuing growth of the cloud computing
market has led to an unprecedented diversity of cloud services. To
support service selection, micro-benchmarks are commonly used
to identify the best performing cloud service. However, it remains
unclear how relevant these synthetic micro-benchmarks are for
gaining insights into the performance of real-world applications.

Therefore, this paper develops a cloud benchmarking method-
ology that uses micro-benchmarks to profile applications and
subsequently predicts how an application performs on a wide
range of cloud services. A study with a real cloud provider
(Amazon EC2) has been conducted to quantitatively evaluate the
estimation model with 38 metrics from 23 micro-benchmarks
and 2 applications from different domains. The results reveal
remarkably low variability in cloud service performance and
show that selected micro-benchmarks can estimate the duration
of a scientific computing application with a relative error of less
than 10% and the response time of a Web serving application
with a relative error between 10% and 20%. In conclusion,
this paper emphasizes the importance of cloud benchmarking by
substantiating the suitability of micro-benchmarks for estimating
application performance in comparison to common baselines but
also highlights that only selected micro-benchmarks are relevant
to estimate the performance of a particular application.

I. INTRODUCTION

In Infrastructure-as-a-Service (IaaS) [1], computing re-
sources, such as CPU processing time, disk space, or network-
ing capabilities, can be acquired and released as self-service
via an Application Programming Interface (API), prevalently
in the form of Virtual Machines (VMs). VMs are typically
available in different configurations or sizes also known as
instance types, machine types, or flavors. This diversity ranges
from tiny-sized VMs with less than 1 (shared) CPU core and
1 GB RAM (e.g., f1-micro) to super-sized VMs with 128 CPU
cores and 1952 GB RAM (e.g., x1.32xlarge).

Given the large service diversity, selecting an appropriate
VM configuration for an application is a non-trivial challenge.
While functional properties can be compared by studying
provider information or using tools such as Cloudorado1,
non-functional properties, such as performance, need to be
quantified tediously. Previously promoted provider-defined
performance metrics, such as Amazon’s Elastic Compute Unit
(ECU), have been quietly discontinued in favor of specifying
the number of vCPUs and the type of processor as customary

1https://www.cloudorado.com/cloud_providers_comparison.jsp

in on-premise data centers2. Moreover, with the increasing
specialization of instance types (e.g., compute-, memory-,
I/O-optimized), it appears apparent that resource costs are
insufficient to derive application performance. An alternative
way of dynamically assessing cloud resource performance
is cloud benchmarking. This field of research is dedicated
to objectively measuring and comparing the differences in
performance between the various cloud services. A large body
of literature [2]–[8] reports performance measurements for
different workloads at the very resource-specific (e.g., CPU
integer operations) and artificial micro-level or at the domain-
specific (e.g., Web serving) and real-world application-level.

Existing literature largely focuses on either application
benchmarks or micro-benchmarks in isolation. Researchers
propose new cloud-specific application benchmarks [9], [10]
and evaluate their performance [11]–[13] in cloud environ-
ments. Extensive studies have been conducted to collect micro-
benchmark measurements for many different VM configura-
tions [2]–[4], [14]. However, it remains unclear how relevant
these artificial benchmarks are to gain insights into the per-
formance of real-world applications.

The goal of this paper is to investigate the suitability of
micro-benchmarks for estimating cloud application perfor-
mance across different instance types. A prestudy in line with
previous work on cloud benchmarking [2], [3] quantifies the
performance variability for equally configured services (i.e.,
how variable do repeatedly acquired instances of the same
instance type perform) because high variability could favor
(if correlated) or hamper (if random) meaningful estimates
and low variability could facilitate estimation across instance
types. Following the prestudy, our main research addresses two
questions:
RQ1 How accurate can a set of micro-benchmarks estimate

application performance?
RQ2 Which subset of micro-benchmarks estimates applica-

tion performance most accurately?
In order to answer these questions, a cloud benchmarking

study has been designed, implemented, and conducted using
Amazon’s Elastic Compute Cloud (EC2) as an example of a

2http://blogs.gartner.com/kyle-hilgendorf/2014/04/16/
aws-moves-from-ecu-to-vcpu/

https://doi.org/10.1109/CLOUD.2018.00019
mailto:scheuner@chalmers.se
mailto:philipp.leitner@chalmers.se
https://www.cloudorado.com/cloud_providers_comparison.jsp
http://blogs.gartner.com/kyle-hilgendorf/2014/04/16/aws-moves-from-ecu-to-vcpu/
http://blogs.gartner.com/kyle-hilgendorf/2014/04/16/aws-moves-from-ecu-to-vcpu/

real public cloud computing environment. We benchmarked
11 instance types and collected 38 metrics for 23 micro-
benchmarks from nine micro-benchmark suites (e.g., StressNg
or iperf) and two example application benchmarks (a scientific
computing application and a Web application implemented
via WordPress). This suite of micro- and application bench-
marks [15] has been automated using the Web-based cloud
benchmark manager Cloud WorkBench (CWB) [16], [17]. The
prestudy reveals remarkably low variability in performance for
different instances of the same instance type in comparision to
prior research, which indicates that the studied cloud provider
fundamentally changed its performance model. Our main
results show that selected micro-benchmarks can estimate the
duration of a scientific computing application with a relative
error of less than 10% and the response time of a Web serving
application with a relative error between 10% and 20%. We
further show that choosing an appropriate micro-benchmark
to estimate application performance on previously unseen
instance types can vastly outperform commonly used baselines
such as the number of vCPUs [18], provider-defined perfor-
mance metrics [19], or resource costs. However, our study
also indicates that the appropriate micro-benchmark choice
can be very sensitive to configuration parameters and micro-
benchmarks testing the same resource cannot necessarily be
used interchangeably.

II. RELATED WORK

Studies extensively analyzed the stability of performance
delivered by cloud providers. One of the first large-scale
studies to address variability in a cloud environment collected
hourly measurements for over one month and revealed large
variability around 20% for CPU, I/O, and network perfor-
mance [5]. Other studies also observed high variability for
instances of the same type [12], [20] and identified hardware
heterogeneity [6], [7], [21] as the major cause for varying
CPU performance [22] beyond CPU sharing and noise due to
multi-tenancy [23], [24]. Further studies over time [2], [25]
have shown that performance variability remained relevant, in
particular for smaller instance types.

Micro-benchmarking aims at measuring cloud service per-
formance for individual resources such as CPU, I/O, memory,
and network. Initial studies [8] were extended in scope and
led to some of the most important contributions in this
field [3], [4]. Assessing and comparing the performance of
cloud services has also become a business and companies
such as CloudHarmony3 or Cloud Spectator4 offer comparison
services and publish their own analysis reports [26].

One of the earliest efforts geared towards more modern
workloads for the cloud comprises the Cloudstone bench-
mark [27], which proposes a new interaction-heavy Web 2.0
workload. CloudSuite [9] contributes an entire collection of
scale-out workloads, which were incrementally (v3.0 as of Jan,
2018) improved [10] and the SPEC CloudTM IaaS 2016 [28]

3https://cloudharmony.com/
4http://cloudspectator.com/

is specifically aimed to measure IaaS cloud performance.
The YCSB suite [29] maintains a large collection of scale-
out workloads for database systems. Several conceptual con-
tributions [30], [31] suggest ideas and guidelines on how
to design and implement application benchmarks for cloud
environments.

Application profiling aims to capture the performance be-
havior of applications on different platforms using system-
level monitoring tools [32], [33] or program similarity [34].
Application performance prediction is most closely related
to the work in this paper. CloudProphet [35] collects re-
source traces of on-premise Web applications and replays
them in cloud environments to accurately predict application
performance for cloud instance types. CloudProphet focuses
on accurate predictions for few instance types whereas this
paper provides rough estimates for many different instance
types. Hence, these approaches are complementary and could
be combined to achieve broad instance type coverage and
leverage CloudProphet to reduce the sampling effort, which
is required to train the model in this paper. The Cher-
ryPick [18] system guides cloud configuration choices and
iteratively refines runtime and cost predictions for distributed
big data analytic jobs using a Bayesian Optimization model.
In comparison, our work covers other application domains and
requires less initial training samples. Stewart and Shen [36]
contribute a performance model to predict the throughput and
response time of multi-component online services by combin-
ing queuing models with system-level resource monitoring.
Their evaluation is limited to 3 different server types while
we focus on a broader range of 11 cloud instance types.

III. METHODOLOGY

Based on existing guidelines for cloud benchmarking [30],
[31], [37], [38], we selected and designed relevant bench-
marks that cover different cloud resources and application
domains, as well as integrated them into the Cloud WorkBench
(CWB) [16] execution environment. Details regarding this
integration are out of scope here, and can be found in an
accompanying publication [15]. These automated benchmarks
are then repeatedly executed in a cloud environment and
performance measurements are collected from all these bench-
mark executions. The raw performance data is pre-processed
and prepared for the main analyses guided by the previously
introduced RQs.

Figure 1 illustrates the high-level architecture of this cloud
benchmarking methodology and lists the selected benchmarks.
The Benchmark Manager coordinates the entire lifecycle of all
benchmark executions. Its Scheduler component triggers new
executions and its Cloud Manager component abstracts the
cloud Provider APIs, Cloud VM provisioning, and commu-
nication with the Cloud VM. Via the Provider API, Cloud
VMs, which represent the System Under Test (SUT), are
acquired. Within the cloud VM, the Chef Client controls the
VM provisioning and the CWB Client steers the execution
of the entire benchmark suite. The Chef Client fetches the

https://cloudharmony.com/
http://cloudspectator.com/

provisioning configuration for the Cloud VM from the Pro-
visioning Service and applies it to install and configure all
Micro and Application (App) benchmarks. The CWB Client
directs the execution order and handles communication with
the Benchmark Manager such as submitting result metrics
via a REST API. Multi-VM benchmarks, such as iperf and
WordpressBench (WPBench), submit their tasks to the Load
Generator, which generates the specified task workload from
another dedicated cloud VM.

Figure 1. Architecture Overview

Figure 2 depicts an example benchmark configuration
within the CWB Web interface. The configuration includes
provider-specific resources (e.g., the geographic region), spec-
ifies an execution schedule (i.e., run every 3 hours), and refers
to the entire benchmark suite. The benchmark suite called
rmit-combined bundles all micro- and application benchmarks
and implements the Randomized Multiple Interleaved Trials
(RMIT) execution methodology [39] for a fair comparison of
competing alternatives by randomizing the benchmark order
within individual rounds. The selection of micro-benchmarks
is motivated by prior use in research and aims for broad-
resource coverage in the domains computation, I/O, network,
and memory but also specifically tests individual resources
(e.g., dividing I/O into low-level disk I/O and higher-level file
I/O with different operation types and sizes). The application
benchmarks consist of a Molecular Dynamics Simulation
(MDSim) from the scientific computing domain and a Word-
Press Benchmark (WPBench) from the Web serving domain.
MDSim is similarly used as an example of a scientific com-
puting application in previous work [14] and WordPress was
chosen because it is the most popular Content Management
System (CMS) software (60% market share) used by 30% of
the top 10 million websites (as of March 2017 from W3Techs5)
and it also has been used previously for benchmarking cloud
VMs [13]. The WPBench implements three user scenarios,
which capture short read, search, and write blogging browser
sessions. For detailed reproduction description and benchmark

5https://w3techs.com/technologies/overview/content_management/all

design rationales, we refer to Scheuner [40]. Further, we
provide the entire benchmark suite as open source software6.

Figure 2. Benchmark Configuration

Data pre-processing transforms the raw performance data
into an interim data set to facilitate further analysis by fil-
tering (e.g., discarding failed executions), restructuring (e.g.,
pivoting), converting units (e.g., "Kb/sec" to "Mb/sec"), and
replacing missing values. Appropriate replacement methods
have been used in four cases where missing values occurred
due to an adjustment in metric parsing and few transient
failures. For detailed description and illustration, we again
refer to Scheuner [40]. In addition, all scripts, as well as the
raw, interim, and output data sets, are documented and freely
available on Github7.

IV. BENCHMARKING DATA SET

Using the methodology from the previous section, a bench-
marking data set was collected for the Amazon EC2 cloud
provider. All configurations build upon the officially main-
tained Ubuntu 14.04 LTS images8 and have attached the gen-
eral purpose storage type gp2, which Amazon Web Services
(AWS) recommends for most workloads.

Table I
EC2 INSTANCE TYPE SPECIFICATIONS9

Instance Type vCPU ECU RAM Network Cost (eu / us)*

m1.small 1 1 1.7 Low 0.047 / 0.044
m1.medium 1 2 3.75 Moderate 0.095 / 0.087
m3.medium 1 3 3.75 Moderate 0.073 / 0.175
m1.large 2 4 7.5 Moderate 0.190 / 0.175
m3.large 2 6.5 7.5 Moderate 0.146 / 0.133
m4.large 2 6.5 8.0 Moderate 0.111 / 0.100
c3.large 2 7 3.75 Moderate 0.120 / 0.105
c4.large 2 8 3.75 Moderate 0.113 / 0.100
c3.xlarge 4 14 7.5 Moderate 0.239 / 0.210
c4.xlarge 4 16 7.5 High 0.226 / 0.199
c1.xlarge 8 20 7 High 0.592 / 0.520

*in USD/h for Linux On-Demand as of 2017-05-19

6https://github.com/sealuzh/cwb-benchmarks/tree/master/rmit-combined
7https://github.com/joe4dev/cwb-analysis
8https://cloud-images.ubuntu.com/locator/ec2/

https://w3techs.com/technologies/overview/content_management/all
https://github.com/sealuzh/cwb-benchmarks/tree/master/rmit-combined
https://github.com/joe4dev/cwb-analysis
https://cloud-images.ubuntu.com/locator/ec2/

Table I lists the specifications for the EC2 instance types in
this study. It includes all 11 available (as of April 2017) non-
bursting instance types with memory size below 15 GB, except
for c1.medium which consistently failed during experimenta-
tion for an unknown reason. This RAM threshold was chosen
to keep experimentation cost at a reasonable level because
the I/O workload grows substantially with increasing RAM
size. Table I also provides the EC2 Compute Unit (ECU)
specification, which Amazon used to promote as their own
relative measure for CPU performance. An ECU is equivalent
to the CPU power of a m1.small instance or a 1.0-1.2 GHz
2007 Opteron or Xeon processor type [4]. Amazon claims to
conduct benchmarking to align the ECU measure with CPU
power in particular regarding integer operations. However,
AWS quietly discontinued this approach in 2014 and moved
to a more traditional way, as customary in on-premise data
centers, of specifying the number of vCPUs and the type of
processor10. The ECU model is insufficient to describe the
family of general purpose instance types that follow a formal
model for burstable CPU performance [41]. These bursting
instance types are not included in this study because their
inherently varying performance impedes controlled bench-
marking.

The regions eu-west-1 (Ireland) and us-east-1 (N. Virginia)
were chosen to compare the results with prior work [2]. Each
configuration is scheduled to execute once every 3 hours
(i.e., 8 times per day) and runs 3 iterations. Every iteration
takes between 45 and 70 minutes depending on the instance
type. This corresponds to almost continuous execution on a
rolling basis (i.e., a new instance is acquired once the previous
instance is released) between 4 to 8 days for two low-tier, two
medium-tier, and one large-tier instance type. The number of
executions are at least 58 for m3.medium (eu) and m3.large
(eu) and at least 33 for m1.small (eu/us) and m3.medium (us).
At least one execution was run for the remaining instance
types. In total, 62952 measurements were collected over 244
executions between April and May 2017.

V. VARIABILITY FOR THE SAME INSTANCE TYPES

Before addressing our research questions, it is necessary to
assess the performance variability for different instances of the
same instance type. We compare the Relative Standard Devia-
tions (RSDs) for 38 metrics against a 5% relevancy threshold
following the definition of a large benchmarking study [2].
The RSD is formally defined as RSD = 100 · σm

m where
σm is the absolute standard deviation and m is the arithmetic
mean of the metric m. The five selected configurations (i.e.,
instance type and region) have 33 samples for the 38 metrics
and focus on smaller instance types because prior work has
shown that they tend to deliver less stable performance than
larger instance types [2], [24], [25].

9http://www.ec2instances.info/
10http://blogs.gartner.com/kyle-hilgendorf/2014/04/16/

aws-moves-from-ecu-to-vcpu/

1) Results: Figure 3 summarizes the variability in terms of
RSD for each selected configuration and all benchmarks using
violin plots with annotated mean values to attribute for its
non-normal distribution. All medians are clearly below the 5%
threshold and almost all means, denoted by the blue diamond,
lie underneath this relevant variability threshold. Thus, we
conclude that performance does not vary relevantly for the
majority of benchmarks in all these tested configurations.

4.41 4.3
3.16 3.32

4.14

2 outliers

(54% and 56%)

0

5

10

20

30

m1.small (eu) m1.small (us) m3.medium (eu) m3.medium (us) m3.large (eu)

Configuration [Instance Type (Region)]

R
e

la
ti
ve

 S
ta

n
d

a
rd

 D
e
v
ia

ti
o

n
 (

R
S

D
)

[%
]

Figure 3. Variability per Configuration

2) Discussion: The observed performance stability is fairly
surprising and reveals a shifts from previously reported large
variability in performance (>10% RSD) between supposedly
identical instances [5]–[7], [12], [20]–[24], [42] towards de-
livering much more stable performance. Concerning Amazon
EC2, all these studies exclusively focused on instance types
of the first generation11 and more recent studies provide
further evidence that newer generations perform remarkably
more stable [2], [43], [44]. CPU performance became very
predictable at levels below 0.3% RSD, which is largely due
to diminishing relevancy of hardware heterogeneity in AWS
(which is also reported by Leitner and Cito [2]). The migration
from an HDD- to an SSD-backed file I/O storage reduced
variability from 20%-100% [2] to below 1.5%-10%. Most
surprisingly, network performance achieved almost perfect
stability, which contrasts the 25% RSD from 2012 [6].

3) Implications: The results of this paper suggest that
instance seeking and placement gaming approaches [6], [7],
[21] are no longer worthwhile under current conditions in
Amazon EC2. Furthermore, cloud benchmarking studies spent
a lot of resources on obtaining relevant sample sizes to achieve
statistically plausible results within typical confidence intervals
(i.e., 95% or 99%). Our results indicate that benchmarking
efforts can be reduced considerably and even single samples
can be sufficient to achieve the 99% confidence interval for
highly stable categories such as CPU or intra-Availability Zone
(AZ) network performance. This makes clouds more viable
to collect a relevant amount of performance data for a broad

11https://aws.amazon.com/blogs/aws/ec2-instance-history/

http://www.ec2instances.info/
http://blogs.gartner.com/kyle-hilgendorf/2014/04/16/aws-moves-from-ecu-to-vcpu/
http://blogs.gartner.com/kyle-hilgendorf/2014/04/16/aws-moves-from-ecu-to-vcpu/
https://aws.amazon.com/blogs/aws/ec2-instance-history/

range of instance types. Further, public clouds can now poten-
tially be used even in use case such as software performance
testing, where performance predictability is key [44].

VI. RESULTS AND DISCUSSION

We now present, discuss, and summarize the results guided
by the previously introduced research questions.

A. RQ1 – Estimation Accuracy

To estimate the application performance, a linear regression
model is trained using 38 metrics from 23 micro-benchmarks
and evaluated for two applications from different domains.
Motivated by the findings from our prestudy, as discussed
in Section V, sample filtering selects three iterations from
the same execution for each instance type in the European
data center. The boundary instance types (i.e., the smallest
and largest) are labeled as training data to capture the largest
possible instance type diversity. A forward feature selection
algorithm is combined with linear regression to automatically
identify the best performing set of features (i.e., metrics)
regarding the relative error performance criterion, which is
defined as Relative Error(RE) = 100 · εm where ε is the
absolute error and m is the actual measurement. Forward
feature selection starts with an empty set of features and
iteratively adds a previously unused feature. The candidate
feature set is then used to build a linear regression model
with the training data. This model is applied to the test data
and the mean relative error is calculated between the predicted
and actual application performance. In doing so, only features
that yield the highest gain for the performance criterion (i.e.,
minimize the relative error) are kept. This process is repeated
until no additional feature can further improve the relative
error. Finally, forward feature selection outputs a weighted
feature list and various performance indicators such as the
relative error or the Pearson correlation coefficient, also known
as squared correlation or R2.

1) Results: Table II reports the estimation accuracy in
terms of the relative estimation error achieved by the best
micro-benchmark predictor for WPBench and MDSim. For
WPBench, all three scenarios (i.e., read, search, write) are
evaluated regarding their Response Time (RT). For the results
of the additional throughput metric, we refer to [40]. The
boundary instance types are labeled as training data (i.e.,
Train) and the relative estimation error is listed per instance
type. For each instance type, the averaged relative error over
the three iterations indicates how far the estimated perfor-
mance consistently lies above (cf., +) or below (cf.,-) the
actual performance. Wherever the actual values are spread on
both sides of the regression line, the pipe (cf., |) indicates the
absolute error due to high variability between iterations. In
summary, the mean Relative Error (RE) combined with the
max RE indicates the fitness of cross-instance performance
estimation. The max RE estimates the upper bound for the
relative error assuming that the smallest instance performs
worst and the largest instance performs best. This provides
an orientation on how far the minimum and maximum of

the application performance is spread. Hence, a high max RE
implies that high accuracy (i.e., low relative error) is harder to
achieve. Conversely, a low max RE diminishes the significance
of low relative errors because they are more likely to occur
by chance.

Table II
RELATIVE ESTIMATION ERRORS [%]

WPBench Response Time MDSim
DurationInstance Type Read Search Write

m1.small Train Train Train Train
m3.medium (pv) +6.9 +7.5 |21.5| +5.4
m3.medium (hvm) +14.7 +6.1 |42.6| +5.8
m1.medium +9.0 +9.0 |36.2| -0.2
m3.large -17.8 -25.6 |53.1| -10.2
m1.large +17.0 +17.5 |40.9| -0.8
c3.large -17.4 -26.1 |51.5| -10.1
m4.large -3.6 -12.8 |52.8| -12.4
c4.large -9.7 -18.4 |50.3| -12.5
c3.xlarge -26.3 -34.4 +32.8 -11.2
c4.xlarge -2.2 -17.6 +26.1 -13.7
c1.xlarge Train Train Train Train

Mean RE 12.5 17.5 40.8 8.2
Max RE 2100 1810 140 600

2) Discussion: The most accurate estimates are achieved
by MDSim and the read and search scenarios of WPBench as
shown in Table II. Duration estimates for MDSim reach 8.2%
accuracy for its duration values in the interval [69.7, 491.7]
seconds (cf., max RE of 600%). The read and search scenarios
of WPBench exhibit by far the largest spread in their response
time distribution in the interval [65.8, 1457.8]. This spread is
illustrated in Figure 4 for the read scenario and results in
a maximum relative error of 2100%. Nevertheless, moderate
relative errors of 12.5% and 17.5% are achieved on average.
Furthermore, these linear regression models are statistically
significant at the 0.001 level and thus support the assumption
of low variability shown in RQ1.

0

1000

2000

25 50 75 100

Sysbench - CPU Multi Thread Duration [s]

W
P

B
e

n
c
h

 R
e

a
d

 -
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
s
]

Instance Type

m1.small

m3.medium (pv)

m3.medium (hvm)

m1.medium

m3.large

m1.large

c3.large

m4.large

c4.large

c3.xlarge

c4.xlarge

c1.xlarge

Group

test

train

Figure 4. Linear Regression Model for WPBench Read – Response Time

The relative errors for the WPBench write scenario are gen-
erally high, particularly given the relatively low spread of their
performance data. Additionally, even within the same instance
type, application performance is overestimated and underes-
timated simultaneously and therefore provided as modulus
value. Furthermore, their regression models are less significant
at the 0.05 (response time) and the 0.1 (throughput) level,

1000

2000

3000

4000

25 50 75 100

Sysbench - CPU Multi Thread Duration [s]

W
P

B
e

n
c
h

 W
ri

te
 -

 R
e

s
p

o
n

s
e

 T
im

e
 [

m
s
]

Instance Type

m1.small

m3.medium (pv)

m3.medium (hvm)

m1.medium

m3.large

m1.large

c3.large

m4.large

c4.large

c3.xlarge

c4.xlarge

c1.xlarge

Group

test

train

Figure 5. Linear Regression Model for WPBench Write – Response Time

which adds further evidence for the existence of performance
variability between different iterations. This hypothesis is
further investigated by performing statistical tests for the 5
instance types used in RQ1 with relevant sample sizes between
33 and 61 executions from the interim data set. A One-way
ANOVA test [45] is performed upon the iteration column as
its group attribute. The results confirm that both response
time and throughput vary greatly (i.e., particularly high f
value) between the 3 different iterations with high significance
(i.e., p < 0.001) for all 5 tested instance types. ANOVA is
an omnibus test and therefore only confirms a statistically
significant difference between the iterations but does identify
the specific iterations that differ statistically significant from
each other. Therefore, we also conduct a Mann Whitney U-
Test to demonstrate that even the differences between all pairs
of iterations are statistically significant for all 5 instance types.
The increasing performance between the individual iterations
becomes apparent in the linear regression model shown in
Figure 5. Notice that the statistical tests have also shown that
apart from WPBench, none of the other benchmarks exhibit
statistically significant differences between iterations.

3) Implications: The ability to estimate application perfor-
mance with an acceptable accuracy highlights the usefulness
of micro-benchmarks. It encourages to catalog cloud ser-
vices based on their performance characteristics using generic
micro-benchmarks and subsequently relate to the performance
of individual applications by using at least two instance types
at the boundary of the designated resource spectrum (i.e., the
least and most capable resource) as training input for the
estimation model. The remaining challenge is to identify a
set of relevant micro-benchmarks for a given application.

B. RQ2 – Micro-Benchmark Selection

Following the same feature selection process as described
for RQ1, the most important features (i.e., micro-benchmark
metrics) are identified and compared against three commonly
used baselines.

1) Results: For the response time across all scenarios
of WPBench and the duration of MDSim, forward feature
selection included the Sysbench – CPU Multi-Thread micro-

benchmark in the linear model. For the WPBench write
scenario, two additional benchmarks were proposed with
equal weights but rejected because their contribution to the
model was statistically insignificant with p=0.393 for fio/8k-
rand-read-latency and p=0.450 for fio/4k-seq-write-bandwidth.
Similarly, for MDSim, the additional attribute fio/8k-rand-
read-iops was discarded due to its p-value 0.0976 at the
border of being insignificant. Due to limited space, we omit
the throughput metric of the WPBench benchmark where
the StressNg – Network Internet Control Message Protocol
(ICMP) Ping was chosen as the best estimator.

Table III presents the best benchmark estimators and three
instance type specification metrics serving as a baseline. For
each estimator, the mean relative error with its range and the
squared correlation R2 are provided. R-squared, also known
as the coefficient of determination, measures how well the
data fits the regression line where 0% implies that the model
captures no variability in the data and 100% implies that the
model perfectly fits all data on the regression line. Finally, the
max RE is provided analogous to its previous definition.

Table III
WPBENCH RESPONSE TIME AND MDSIM DURATION ESTIMATORS [%]

WPBench MDSim

Benchmark Read RT Search RT Write RT Duration

Sysbench – CPU Multi-Thread Duration
RE±Range 12.5±7.1 17.5±8.7 40.8±34.9 8.2±4.7
R2 99.2 98.9 42.5 99.8

Sysbench – CPU Single-Thread Duration
RE±Range 454±520 411.72±451 41.7±20.8 232±163
R2 85.1 83.8 38.7 87.3

Baseline

vCPUs
RE±Range 616±607 546±515 127±89.8 317±184
R2 68.0 68.7 28.1 68.3

ECU
RE±Range 359±219 319±185.13 100±79.2 206±95
R2 64.6 64.7 27.3 65.6

Cost
RE±Range 663±730 586±622 127.3±91.3 329.3±222
R2 59.1 61.2 22.7 57.9

Max RE 2100 1810 140 600

For the response time of the WPBench read and search
scenarios and the duration of MDSim presented in Table III,
the multi-thread Sysbench – CPU benchmark serves as a good
estimator. The almost perfect fit of the regression model (i.e.,
R2 > 98.9) together with low relative errors below 10%
for MDSim and between 10% and 20% for the read and
write scenarios of WPBench indicate that this multi-thread
CPU benchmark can be a suitable estimator. Further, the
vastly inferior results for the single-thread version of the same
benchmark reveal that they cannot be used interchangeably.
In addition, the improvements upon the vCPU, ECU, and
hourly cost baselines are substantial. Although ECU is already
~50% more accurate than using the number of vCPUs, the
Sysbench benchmark outperforms this baseline by factor 17
to 29 in terms of relative error. The CPU benchmark also
fits the regression line considerably better with over 33%

improvement in squared correlation compared to the baseline
metrics. Finally, the costs baseline performs worst in all
metrics.

2) Discussion: While the results support the conjecture that
these estimates could be meaningful for applications with a
resource profile similar to micro-benchmarks, such as MDSim,
the linear model also works surprisingly well for a more
diverse application such as WPBench. The MDSim application
is CPU-intense, potentially stresses the main memory, but does
not involve I/O operations. Despite the fact that MDSim per-
forms higher-level real-world computations compared to low-
level artificial micro-benchmark workloads, such as iterating
over meaningless loops, resource usage of MDSim is pre-
sumably very similar to a CPU micro-benchmark. Conversely,
the WPBench application is much more heterogeneous and its
resource footprint is not inherently obvious using various kind
of system resources. Beyond CPU-driven request processing,
WPBench receives requests and sends responses over the
network, reads and writes from the file system, and requires
the scheduler to switch between its various database or Web
server processes. Therefore, it is not apparent whether micro-
benchmarks are able to capture such a varying workload.
Nevertheless, the results revealed that the linear model is
able to assess application response time surprisingly well,
prevalently with error rates below 20%.

3) Implications: Concurrency plays an important role when
estimating the performance across instance types with a dif-
ferent number of vCPUs. The Sysbench – CPU single-thread
versus multi-thread scenario revealed that micro-benchmarks
need to match its estimation target application in terms of
optimization for multi-core (cf., multi-vCPUs) platforms. It
also shows that CPU micro-benchmarks are suited to identify
optimal instance types for workloads with a particular concur-
rency level (e.g., single-threaded). Further, it emphasizes that
benchmark parameters, such as the level of concurrency, can
have a profound impact on results.

The baseline metrics vCPU, ECU, and cost are insufficient
to estimate the performance of certain applications. The cost
baseline is worst to estimate application performance and
should never be used in isolation for estimating application
performance. The number of vCPUs is only slightly better
and fails to capture fundamental technological differences such
as different CPU clock frequencies and thus exhibits large
relative errors for many instance types. Although the ECU
metric yields considerably better estimates than vCPU, its
relative error is still unacceptably high above 100%. Therefore,
ECUs could be used at most to obtain a very rough estimate
if no other metric is available but application specific micro-
benchmarks should be favored to obtain the most accurate
application performance estimate.

VII. CONCLUSION

This paper investigated the relevancy of widely-used ar-
tificial micro-benchmarks to estimate real-world application
performance. A cloud benchmarking methodology has been
designed that combines single-instance and multi-instance

micro- and application benchmarks. The methodology has
been instantiated in a study with a market-leading cloud
provider and a linear estimation model has been evaluated.
Over 60000 measurements were collected to answer three
research questions addressing performance variability, estima-
tion accuracy, and micro-benchmark selection.

Contrary to previous research, our results reveal that perfor-
mance between instances does not vary relevantly anymore.
The low performance variability motivates inter-instance type
performance estimation because only the sufficiency of small
sample sizes makes such an approach practically viable. We
show that selective micro-benchmarks are able to estimate cer-
tain application performance metrics with acceptable accuracy.
A scientific computing application achieves relative error rates
below 10% and the response time of a Web serving application
is estimated with a relative error between 10% and 20%.
Further, a single CPU benchmark was able to estimate the
duration of a scientific computing application and the response
time of a Web serving application most accurately. However,
it has also been shown that benchmarks cannot necessarily be
used interchangeably even if they test the same resource and
benchmark parameters can have a profound impact.

This paper substantiates the suitability of micro-benchmarks
for estimating application performance, but also highlights that
only some micro-benchmarks are relevant for any particu-
lar application. It also emphasizes the importance of cloud
benchmarking by showing that benchmark-based metrics can
vastly improve estimation accuracy upon using instance type
specification-based metrics. Further, this paper corroborates
the dynamicity of cloud environments with indications that
the tested cloud provider shifts from delivering best effort
performance to specifically designed performance levels with
high predictability.

Beyond covering further traditional instance types offered
by well-known providers [46], such as Microsoft Azure, a par-
ticularly interesting extension examines individually tailorable
instance types, such as offered by Century Link12 or Google’s
Cloud Platform13. Another avenue for future research is the
extension to scale-out workloads with distributed application
components. Finally, cloud instance selection could become
an integral part of scaling strategies combined with runtime
performance data to train the estimation model instead of being
perceived as wasted effort.

ACKNOWLEDGMENT

We are grateful to Adam Barker and Long Thai for their
input to initial discussions regarding this research.

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, and M. Zaharia, “Above

12https://www.ctl.io/servers/#Features
13https://cloud.google.com/custom-machine-types/

https://www.ctl.io/servers/#Features
https://cloud.google.com/custom-machine-types/

the Clouds: A Berkeley View of Cloud Computing,” EECS Department,
University of California, Berkeley, Tech. Rep., Feb 2009.

[2] P. Leitner and J. Cito, “Patterns in the Chaos — A Study of Performance
Variation and Predictability in Public IaaS Clouds,” ACM Trans. Internet
Technol., vol. 16, no. 3, pp. 15:1–15:23, Apr. 2016.

[3] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance Analysis of Cloud Computing Services for
Many-Tasks Scientific Computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 6, pp. 931–945, June 2011.

[4] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “A performance analysis of EC2 cloud computing services
for scientific computing,” in Cloud Computing. Springer, 2009, vol. 34,
pp. 115–131.

[5] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime Measurements in
the Cloud: Observing, Analyzing, and Reducing Variance,” Proceedings
of the VLDB Endowment, vol. 3, no. 1, pp. 460–471, Sep. 2010.

[6] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers,
and M. M. Swift, “More for Your Money: Exploiting Performance
Heterogeneity in Public Clouds,” in Proc. of the 3rd ACM Symposium
on Cloud Computing (SoCC ’12), 2012, pp. 20:1–20:14.

[7] Z. Ou, H. Zhuang, A. Lukyanenko, J. K. Nurminen, P. Hui, V. Mazalov,
and A. Ylä-Jääski, “Is the Same Instance Type Created Equal? Ex-
ploiting Heterogeneity of Public Clouds,” IEEE Transactions on Cloud
Computing, vol. 1, no. 2, pp. 201–214, July 2013.

[8] E. Walker, “Benchmarking Amazon EC2 for High-Performance Scien-
tific Computing,” Usenix Login, vol. 33, no. 5, pp. 18–23, October 2008.

[9] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
in ASPLOS ’12, 2012, pp. 37–48.

[10] T. Palit, Y. Shen, and M. Ferdman, “Demystifying cloud benchmarking,”
in IEEE ISPASS, April 2016, pp. 122–132.

[11] A. Iosup, N. Yigitbasi, and D. Epema, “On the Performance Variability
of Production Cloud Services,” in 11th IEEE/ACM Int. Symp. on
CCGrid, May 2011, pp. 104–113.

[12] J. Dejun, G. Pierre, and C.-H. Chi, EC2 Performance Analysis for
Resource Provisioning of Service-Oriented Applications. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 197–207.

[13] A. H. Borhani, P. Leitner, B. S. Lee, X. Li, and T. Hung, “Wpress:
An application-driven performance benchmark for cloud-based virtual
machines,” in 2014 IEEE 18th International Enterprise Distributed
Object Computing Conference, Sept 2014, pp. 101–109.

[14] B. Varghese, O. Akgun, I. Miguel, L. Thai, and A. Barker, “Cloud
Benchmarking For Maximising Performance of Scientific Applications,”
IEEE Transactions on Cloud Computing, no. 99, 2017.

[15] J. Scheuner and P. Leitner, “A cloud benchmark suite combining micro
and applications benchmarks,” in 4th International Workshop on Quality-
Aware DevOps (QUDOS), In Press.

[16] J. Scheuner, P. Leitner, J. Cito, and H. Gall, “Cloud WorkBench -
Infrastructure-as-Code Based Cloud Benchmarking,” in Proc. of the 6th
IEEE Int. Conf. on CloudCom, 2014.

[17] J. Scheuner, J. Cito, P. Leitner, and H. Gall, “Cloud WorkBench:
Benchmarking IaaS Providers based on Infrastructure-as-Code,” in Proc.
of the 24th Int. World Wide Web Conference (WWW) - Demo Track, 2015.

[18] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “CherryPick: Adaptively Unearthing the Best Cloud Con-
figurations for Big Data Analytics,” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2017.

[19] J. O’Loughlin and L. Gillam, “Towards performance prediction for pub-
lic infrastructure clouds: An ec2 case study,” in IEEE 5th International
Conference on Cloud Computing Technology and Science (CloudCom),
vol. 1, Dec 2013, pp. 475–480.

[20] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: Comparing
public cloud providers,” in Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement (IMC ’10), 2010, pp. 1–14.

[21] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui, “Exploit-
ing hardware heterogeneity within the same instance type of amazon
ec2,” in Proc. of the 4th USENIX Conference on HotCloud, 2012.

[22] D. Cerotti, M. Gribaudo, P. Piazzolla, and G. Serazzi, “Flexible CPU
Provisioning in Clouds: A New Source of Performance Unpredictabil-
ity,” in 9th Int. Conf. on Quantitative Evaluation of Systems, Sept 2012,
pp. 230–237.

[23] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proc. of the 1st ACM/SIGMM
Conf. on Multimedia Systems (MMSys), 2010, pp. 35–46.

[24] G. Wang and T. S. E. Ng, “The impact of virtualization on network
performance of amazon ec2 data center,” in Proc. IEEE INFOCOM,
March 2010, pp. 1–9.

[25] L. Kotthoff, “Reliability of computational experiments on virtualised
hardware,” Journal of Experimental & Theoretical Artificial Intelligence,
vol. 26, no. 1, pp. 33–49, 2014.

[26] C. Spectator, “Price-Performance Analysis of the Top 10 Public IaaS
Vendors,” Cloud Spectator, Tech. Rep., 2017.

[27] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web
2.0,” 2008.

[28] T. S. Consortium, “SPEC Cloud™ IaaS 2016 Benchmark,” 2016.
[Online]. Available: http://spec.org/cloud_iaas2016/

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking Cloud Serving Systems with YCSB,” in Proc. of the 1st
ACM Symposium on Cloud Computing (SoCC), 2010, pp. 143–154.

[30] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the weather
tomorrow?: Towards a benchmark for the cloud,” in Proc. of the 2nd
Int. Workshop on Testing Database Systems (DBTest). ETH Zurich,
2009, pp. 9:1–9:6.

[31] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. To-
sun, “Benchmarking in the Cloud: What It Should, Can, and Cannot
Be,” in Selected Topics in Performance Evaluation and Benchmarking.
Springer, 2013, vol. 7755, pp. 173–188.

[32] A. Evangelinou, M. Ciavotta, D. Ardagna, A. Kopaneli, G. Kousiouris,
and T. Varvarigou, “Enterprise applications cloud rightsizing through
a joint benchmarking and optimization approach,” Future Generation
Computer Systems, pp. –, 2016.

[33] M. Canuto, R. Bosch, M. Macias, and J. Guitart, “A methodology
for full-system power modeling in heterogeneous data centers,” in
Proceedings of the 9th International Conference on Utility and Cloud
Computing (UCC ’16), 2016, pp. 20–29.

[34] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere, “Performance prediction based on inherent program
similarity,” in Proc. of the 15th Int. Conf. on Parallel Architectures and
Compilation Techniques (PACT), 2006, pp. 114–122.

[35] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang, “Cloudprophet:
Towards application performance prediction in cloud,” in Proc. of the
ACM/SIGCOMM Conf. (SIGCOMM), 2011, pp. 426–427.

[36] C. Stewart and K. Shen, “Performance Modeling and System Manage-
ment for Multi-component Online Services,” in Proc. of the 2nd Conf.
on Symposium on NSDI, 2005, pp. 71–84.

[37] V. Vedam and J. Vemulapati, “Demystifying cloud benchmarking
paradigm - an in depth view,” in 36th IEEE Computer Software and
Applications Conference (COMPSAC), July 2012, pp. 416–421.

[38] A. Iosup, R. Prodan, and D. Epema, IaaS Cloud Benchmarking: Ap-
proaches, Challenges, and Experience. Springer, 2014, pp. 83–104.

[39] A. Abedi and T. Brecht, “Conducting repeatable experiments in highly
variable cloud computing environments,” in 8th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE), April 2017.

[40] J. Scheuner, “Cloud Benchmarking – Estimating Cloud Application
Performance Based on Micro Benchmark Profiling,” Master’s thesis,
University of Zurich, 2017. [Online]. Available: http://www.merlin.uzh.
ch/publication/show/15364

[41] P. Leitner and J. Scheuner, “Bursting With Possibilities – an Empir-
ical Study of Credit-Based Bursting Cloud Instance Types,” in 8th
IEEE/ACM Int. Conf. on Utility and Cloud Computing (UCC), 2015.

[42] Y. El-Khamra, H. Kim, S. Jha, and M. Parashar, “Exploring the
Performance Fluctuations of HPC Workloads on Clouds,” in 2nd IEEE
Int. Conf. on CloudCom, Nov 2010, pp. 383–387.

[43] C. Davatz, C. Inzinger, J. Scheuner, and P. Leitner, “An approach
and case study of cloud instance type selection for multi-tier web
applications,” in 17th IEEE/ACM CCGrid, 2017.

[44] C. Laaber, J. Scheuner, and P. Leitner, “Performance testing in the
cloud. how bad is it really?” PeerJ Preprints, vol. 6, Jan. 2018.
[Online]. Available: https://doi.org/10.7287/peerj.preprints.3507v1

[45] L. S. F. Barbara G. Tabachnick, Using Multivariate Statistics, 6th ed.,
ser. 6th Edition. Pearson, 2012.

[46] L. Leong, G. Petri, B. Gill, and M. Dorosh, “Magic Quadrant for Cloud
Infrastructure as a Service, Worldwide,” August 2016.

http://spec.org/cloud_iaas2016/
http://www.merlin.uzh.ch/publication/show/15364
http://www.merlin.uzh.ch/publication/show/15364
https://doi.org/10.7287/peerj.preprints.3507v1

