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Resumo

As doenças cardiovasculares são a principal causa de morte em todo o mundo, afetando

particularmente os paı́ses mais carenciados. O diagnóstico precoce e a terapia adequada

são cruciais no combate a este problema de saúde global.

Esta tese apresenta uma nova abordagem para a avaliação da saúde cardiovascular

através da análise multimodal de sinais de eletrocardiograma e fonocardiograma cap-

turados simultaneamente. Estas ferramentas de diagnóstico não invasivas e de custo efi-

caz fornecem informações complementares sobre as atividades elétricas e mecânicas do

coração. Foram desenvolvidos e implementados métodos de aprendizagem profunda,

especificamente Redes Neurais Convolucionais (CNN), para a análise destes sinais.

Os escalogramas extraı́dos de segmentos curtos de sinal são usados como base para o

processo de aprendizagem.

Para enfrentar o desafio da limitada disponibilidade de dados publicamente acessı́veis,

foram desenvolvidas abordagens de transfer learning para tirar partido do conhecimento

de outros domı́nios.

A abordagem mais bem-sucedida alcançou uma accuracy de 82,79%, um ROC AUC de

91,26% e um F1-score de 88,52%. Comparativamente, o melhor modelo individual teve

uma accuracy de 81,15%, um ROC AUC de 88,51% e F1-score de 87,01%, demonstrando

o potencial da análise multimodal e do transfer learning na deteção de doenças cardiovas-

culares. Este estudo fornece uma base para futuras pesquisas destinadas a melhorar o

desempenho dos sistemas multimodais de deteção de anomalias cardı́acas.

Palavras-chave: Eletrocardiograma, Fonocardiograma, Sons cardı́acos, Multimodal,

Aprendizagem profunda, Diagnóstico
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Abstract

Cardiovascular diseases are the leading cause of death worldwide, particularly affecting

low and middle-income countries. Early diagnosis and appropriate therapy are crucial in

combating this global health issue.

This thesis presents a novel approach to the assessment of cardiovascular health through

the multimodal analysis of simultaneously recorded electrocardiogram and phonocardio-

gram signals. These cost-effective, noninvasive diagnostic tools provide complementary

information about the heart’s electrical and mechanical activities. Deep learning methods,

specifically Convolutional Neural Networks (CNN), were developed and implemented

for the analysis of these signals.

Scalograms extracted from short signal segments are used as the foundation for the

learning process.

To tackle the challenge of limited publicly available data, transfer learning approaches

were employed to leverage knowledge from other domains.

The most successful multimodal approach achieved an accuracy of 82.79%, a ROC

AUC score of 91.26%, and a F1-score of 88.52%. Comparatively, the best performing single

input model had an accuracy of 81.15%, a ROC AUC score of 88.51%, and a F1-score

of 87.01%, demonstrating the potential of multimodal analysis and transfer learning in

the detection of CVDs. This study provides a foundation for future research aimed at

enhancing the performance of multimodal cardiac abnormality detection systems.

Keywords: Electrocardiogram, Phonocardiogram, Heart sounds, Multimodal, Deep

learning, Diagnosis
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Chapter 1

Introduction

Cardiovascular diseases (CVDs) are the number one cause of death globally, taking ap-

proximately 17.9 million lives each year corresponding to an estimated 32% of all deaths

worldwide, according to the World Health Organization (WHO) [1, 2]. Among these

deaths, 85% were due to heart attack and stroke.

More 75% of CVDs related deaths occur in low and medium income countries [1].

Early diagnosis and appropriate therapy are often effective in eliminating or delaying the

disease progression [3].

Access to appropriate healthcare systems (including efficient disease monitoring and

diagnosis) is not always possible and affordable, especially on low-income countries. The

poorest people in low and middle-income countries are most affected. At the household

level, evidence is emerging that CVDs and other noncommunicable diseases contribute to

poverty due to catastrophic health spending and high out-of-pocket expenditure. At the

macro-economic level, CVDs place a heavy burden on the economies of low and middle-

income countries [1].

Electrocardiogram (ECG) and phonocardiogram (PCG) are cost effective, painless,

noninvasive and complementary diagnosis tools that provide relevant information in the

assessment of the cardiovascular health. Separate acquisition and automatic analysis of

this signals is already a valuable resource in the diagnosis of CVDs and for that several

systems have been developed, such as the DigiScope2 [4] for PCG and the BITalino for

ECG [5].

Information provided by the ECG is mostly related with the heart’s eletrical activity,

while PCG reflects the cardiac mechanical activity, complementing each other. The multi-

modal analysis of simultaneously recorded PCG and ECG has a substantial potential for

1
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the assessment of the cardiac health [6].

Over the years, researchers have extensively analyzed PCG or ECG separately using

deep learning methods to detect cardiovascular diseases.

1.1 Objectives

The main aim of this thesis is to study and implement deep learning based methods to

classify simultaneously obtained PCG and ECG signals. The development of highly accu-

rate, automatic, inexpensive CVDs detection systems can contribute to an early diagnosis

and treatment and therefore possibly allow a reduction on the number of CVDs related

deaths. Associated with the main objective the following sub-objectives are set:

• Characterize the current solutions for multimodal PCG and ECG analysis.

• Demonstrate the effectiveness of multimodal analysis for anomaly detection, when

compared to single input analysis.

• Exploration of different approaches to combine the information from PCG and ECG.

1.2 Contributions

The main contribution of this work is the development of the preprocessing and machine

learning framework. The developed framework is responsible for transforming the raw

data and extracting meaningful features from it, which are then used as input for the

machine learning models.

In addition, this study provides a comprehensive review and analysis of existing liter-

ature in the field of multimodal classification of PCG and ECG signals and a description

of the available databases.

Another significant contribution is the application of transfer learning techniques to

overcome the challenge of limited publicly available data. By leveraging knowledge ac-

quired in other domains, the developed models are able to learn more effectively even

with limited training data.

Furthermore, this work contributes to the field by demonstrating the potential of mul-

timodal analysis in the detection of cardiovascular diseases. By combining ECG and PCG

signals, the developed models are able to capture a more holistic view of the heart’s ac-

tivities, leading to improved performance in disease detection.
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Finally, the results of this work provide valuable insights into the performance of vari-

ous machine learning techniques in the context of cardiovascular disease detection. These

insights could guide future research in this field and contribute to the development of

more effective diagnostic tools.

1.3 Outline

The thesis is organized as follows:

• Chapter 2: Provides a brief description of the anatomy of physiology of the heart.

The PCG and the ECG are described. An introduction to machine learning, focusing

specifically on deep learning, is also presented in this chapter.

• Chapter 3: Presents the current state-of-the-art of multimodal PCG and ECG ma-

chine learning approaches and the publicly available databases that contain such

signals.

• Chapter 4: Describes the methodology used, namely the models implemented and

the development process.

• Chapter 5: Presents the results obtained with the implemented models.

• Chapter 6: Presents the main conclusions of the work developed indicating possible

future research directions.





Chapter 2

Background

2.1 Heart physiology

PCG and ECG are two of the most important biomedical signals to assess the condition

of the heart. Briefly, PCG presents the timing, duration and amplitude of different heart

sounds and allows the detection of structural defects of the heart valves by analyzing

heart sound signals. ECG represents the electrical activity of a heart. ECG is used to

monitor the cyclical contraction and relaxation of the human heart muscles. In this sec-

tion, the structure of the human heart and the characteristics of PCG and ECG signals are

discussed.

2.1.1 Cardiac anatomy and physiology

The heart is one of the most important organs of the human body. Its main function

is to pump adequate blood to the entire body through a network of veins and arteries.

The surface of the heart is surrounded by the coronary arteries that provide oxygen and

nutrients rich blood to the heart muscles and take way the waste products. The heart has

two main functions:

• Collect oxygen-rich blood from the lungs and send it to all the tissues of the body,

then oxygen and carbon dioxide are exchanged from the blood to the tissue cells.

• Collect the blood rich in carbon dioxide from the tissues and send it to the lungs,

then carbon dioxide and oxygen are exchanged from the alveolar blood to the alve-

olar air.

5
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As seen in Figure 2.1, the heart is composed by four chambers: the right atrium, the

right ventricle, the left atrium, and the left ventricle. The right atrium receives blood

from the veins and pumps it to the right ventricle through the tricuspid valve. The right

ventricle receives blood from the right atrium and pumps it to the lungs. The left atrium

receives oxygenated blood from the lungs and pumps it to the left ventricle through the

mitral valve. The left ventricle pumps oxygen-rich blood to the rest of the body [7].

The internal heart structure and components compel the blood to flow in one-way

only. The atrioventricular valves allow blood to flow only from the atriums to the ventri-

cles. The semilunar valves allow blood to flow out of the heart from the ventricles to the

great arteries, as shown in Figure 2.1.

FIGURE 2.1: The heart, showing valves, arteries and veins. The white arrows show the
normal direction of blood flow [8].

2.1.2 Cardiac cycle

A cardiac cycle is defined as a complete heartbeat. It consists of a complete relaxation

and contraction of both the atria and ventricles. It defines the electrical and mechanical
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activities of the heart throughout the systole and diastole interval. Systole interval is the

duration of the cardiac contraction and the diastole interval is the duration of the cardiac

relaxation. The average duration of a cardiac cycle is around 0.8 seconds.

FIGURE 2.2: The Wiggers diagram representing the behavior of typical pattern of certain
signals (including PCG and ECG) in the cardiac cycle [9].

During the systole, large amounts of blood are stored in the atriums since the atri-

oventricular valves are closed. At the end of the systole, the atrioventricular valves open

suddenly due to the increasing pressure in the atriums and the decreasing pressure in the

ventricles, a period known as the rapid filling of the ventricles. This period of rapid filling

corresponds to 2/3 of the diastolic time and the last 1/3 corresponds to the atrial contrac-

tion. This rapid filling results in a rising pressure in the ventricles, causing at the end of

the diastole the closing once again of the atrioventricular valves, the resulting vibration

is low in pitch and relatively long-lasting and it is known as the first heart sound (S1).

On the other hand, the semilunar valves do not open immediately and it takes around

0.02 to 0.03 seconds to do it, during this period, contraction is occurring in the ventri-

cles, but there is no emptying a period known as isometric contraction. When the left

ventricular pressure rises slightly above 80 mm Hg (and the right ventricular pressure

slightly above 8 mm Hg), the semilunar valves open and blood is ejected outside of the

ventricles, this period of ejection corresponds to the systole. At the end of this period,

ventricular relaxation begins suddenly, allowing both the right and left intraventricular
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pressures to decrease rapidly, in contrast the pressure in large arteries are very high since

they have been just filled with blood from the contracted ventricles, at the end of this pe-

riod, some expected blood flows back to the ventricles, forcing the aortic and pulmonary

valves to close resulting in a rapid snap sound called the second heart sound (S2). The

ventricle muscle continues to relax (isometric relaxation) and the intraventricular pres-

sures decrease rapidly compelling once again atrioventricular valves to open, therefore

marking the beginning of a new heart cycle [10].

2.1.3 PCG signal

PCG is a diagnosis tool providing the graphical depiction of heart sounds and murmurs.

It helps to monitor various components of the heart sounds through the heart cycle. Heart

sounds are produced due to the flow of blood across the heart valves, the opening and

the closure of the heart valves, and from the mechanical actions of heart muscles. These

heart sounds are primary monitoring technique for diagnosing different cardiac diseases.

Doctors and cardiologists usually use stethoscope to hear the heart sounds before any

clinical diagnosis. Heart sounds are similar in all healthy hearts. Abnormal heart sounds

are related to cardiovascular diseases. The interval from the starting point of S1 to the

starting point of S2 is called the systole interval (S1-S2 interval) and the interval from

the starting point of S2 to the starting point of S1 is called the diastole interval (S2-S1

interval). Diastole interval is usually longer than the systole interval. Beside S1 and S2,

two extra heart sounds known as third and fourth heart sound (S3 and S4) can appear

in both normal and pathological conditions. S3 appears just after S2, and S4 appears just

before S1. Besides these heart sounds different kinds of heart murmurs may also present

in the signal which are produced because of the turbulent flow of blood across the valves

and related to the cardiac diseases. Murmurs may present in systole or diastole or in both

intervals. Figure 2.3 shows a pathological PCG recording with the presence of murmurs

and the S3 sound. Murmurs usually have higher frequency compared to the heart sounds.

When the blood circulates through the heart valves and chamber, sometimes it produces

innocent murmurs which is not related to any cardiac diseases. There are mainly three

kinds of heart murmurs:

• Systolic murmurs: Start after S1 and ends before S2.

• Diastolic murmurs: Start after S2 and end before S1.
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• Continuous murmurs: Usually occur throughout or some parts of the cardiac cycle.

FIGURE 2.3: A pathological PCG recording [11].

Cardiac auscultation consists on an approach performed by physicians while listening

to heart sounds using a stethoscope. It involves listening the heart on specific points, each

of them near a cardiac valve (with the exception of the Erb’s point located at the third

intercostal space and the left lower sternal border), enabling the detection of murmurs

associated with valvular abnormalities.

There is not a standard methodology to collect heart sounds, although two systematic

procedures are well accepted: the physician should first auscultate the right upper sternal

border, followed by the left upper sternal border. Afterwards the down left sternal and

finally the apex is also auscultated. The other way around is also acceptable as long the

sequence is mantained (see Figure 2.4). In each spot, the frequencies listened are domi-

nated by a unique heart valve, allowing to uniquely assess the mechanical properties of a

specific heart valve [10].

FIGURE 2.4: Auscultation spots (adapted from [12]).
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2.1.4 ECG signal

The ECG is an essential tool in the evaluation of the cardiac function. The detailed study

and methodological analysis of the ECG components (waves, intervals and segments)

form the basis of its interpretation. It has many applications in the clinical diagnosis

and prognosis of CVDs, as well as in health assessment, biomedical recognition, fatigue

studies, and other areas [3].

When the cardiac impulse spreads through the eletrical conduction system of the heart

(see Figure 2.5), electromagnetic waves also spread from the heart into the adjacent tissues

surrounding the heart. These are detected and recorded by placing electrodes on opposite

sides of the heart creating the ECG signal.

FIGURE 2.5: Electrical conduction system of the heart [13].

ECG is the graphical record of changes in the magnitude and direction of the elec-

trical activity of the heart. More specifically, the electric current that is generated by the

depolarization and repolarization of the atria and ventricles can be monitored through

the ECG signal. The ECG signal is captured through an array of electrode sensors known

as leads. Leads are attached to the skin to detect the electrical activity of the heart. This

information is recorded on a graph. As the electrical signal traverses through the heart,

the graph shows each phase of the signal. Under normal condition, the ECG signal has

a very predictable direction, duration, and amplitude. Any change in the ECG signal
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is usually related to cardiac abnormalities. Therefore, by analyzing ECG signal contin-

uously, it is possible to detect any abnormal heart function in the primary stage which

helps cardiologists for the proper clinical diagnosis. However, reliable and efficient clin-

ical applications are highly dependent on the accuracy of information extracted from the

ECG recording. Usually ECG signals are subjected to contamination by various noises.

The sources of noise may be either cardiac or extra-cardiac. Reduction or disappearance

of the isoelectric interval, prolonged repolarization, and atrial flutter are responsible for

cardiac noise. Respiration, changes of electrode position, muscle contraction, and power

line interference can cause extra-cardiac noise.

The ECG signal is composed of 5 waves - P, Q, R, S and T. This signal can be measured

by electrodes from human body in typical engagement. Signals from these electrodes are

brought to simple electrical circuits with amplifiers and analogue to digital converters.

The muscle mass of the atria is small compared with the ventricles, and the electrical

change of the atria is very small. Contraction of atria associated with the ECG wave is

called P. For the large mass of ventricular, it has large deflection which is called QRS

complex. The T wave of the ECG is associated with the return of the ventricular mass

to its resting electrical state. Figure 2.6 shows the basic shape of a normal ECG signal.

Different ECG waves and their properties are given bellow:

• P-wave: It occurs due to the depolarization of atrial muscle. The amplitude of P

wave is around 0.25 mV.

• QRS complex: It occurs due to the repolarization of atria and depolarization of ven-

tricles. The amplitude of R wave is around 1.60 mV. The amplitude of Q wave is

around 25% of R wave. The time duration QRS interval is around 0.09 seconds.

• T-wave: It happens due to the ventricular repolarization. The amplitude of T wave

is around 0.1 to 0.5 mV.

• U-wave: If present, it comes after potential in the ventricular muscle and represents

repolarization of the purkinje fibers.

In a normal cardiac cycle, the P wave occurs first, followed by the QRS complex and

the T wave. The section of the ECG between the waves and complexes are called segments

and interval such as the PR segment, the ST segment, the TP segment, the PR interval, the

QT interval, and the R-R interval. When the electrical activity of the heart is not being

detected the ECG is a straight, flat line.
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FIGURE 2.6: Schematic diagram of the basic shape of a normal ECG [14].

The most common technique to record an ECG signal is the 12-lead ECG method. The

standard ECG has 12 leads. Six of the leads are considered as limb leads, as they are

placed on the arms and/or legs of the individual. The other six leads are considered as

chest leads because they are placed on the chest. The six limb leads are called lead I, II, III,

aVL, aVR and aVF. The letter “a” stands for “augmented”, as these leads are calculated as

a combination of leads I, II and III. The six chest leads are called leads V1, V2, V3, V4, V5

and V6. Leads I, II and III are each making use of a pair of electrodes (bipolar), with one

electrode measuring between itself and the other. Leads aVR, aVL, and aVF make use of

all the connections to the patient. Each of the six pericardial or chest electrodes (V1-V6)

represent six different views and unique information that cannot be derived from other

leads.
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2.1.5 Relationship between PCG and ECG signals

The PCG defines the mechanical activity of the heart and the ECG defines electrical activ-

ity of the heart. Mechanical activity of the heart is known as the opening and closure of

heart valves and the sound they produce during the cardiac cycle. This mechanical func-

tion relies on the electrical operation of the heart. So, if there is any defect in the electrical

action of the heart, the mechanical function of the heart will also be affected. Therefore,

ECG and PCG signals are correlated with each other. From Figure 2.7 we can see that,

in healthy subjects, the 1st heart sound (S1) appears 0.04 second to 0.06 second after the

beginning of the QRS complex. The second heart sound (S2) starts at the end of the T

wave. The third heart sound occurs after the T wave and before the P wave. The fourth

heart sound (S4) occurs after the P wave and before the QRS complex. S3 and S4 both

occur during the diastolic period [15].

FIGURE 2.7: A PCG (top tracing), with simultaneously recorded ECG (lower tracing) and
the four states of the PCG recording; S1, Systole, S2 and Diastole [16].
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2.2 Machine Learning

Machine Learning (ML) can be identified as a branch of Artificial Intelligence (AI), a big

field that generally can be described as an approach for adopting human cognitive think-

ing abilities, developing the ability to learn without being explicitly programmed. The

hierarchical relationship between data science, ML, AI and deep learning (DL) is shown

in Figure 2.8. The concept of AI was first developed in the middle of the 20th century

and started its development with various stages; the adoption of AI as a scientific method

started to increase from the beginning of the recent 21st century. It was also triggered

by the availability of an enormous amount of data and increasing computational power,

which made the use of AI possible in practical areas, namely healthcare [17].

Basic principles of those subfields of Data Science will be explored further in this chap-

ter.

FIGURE 2.8: Hierarchical relationship between data science, artificial intelligence, ma-
chine learning and deep learning

2.2.1 ML algorithms

ML algorithms can be divided into three main categories: supervised, unsupervised and

reinforcement learning [18].

Supervised learning systems use labeled datasets, essentially being taught by exam-

ple. The training set of input-output pairs is used to find a deterministic function that

maps inputs to the respective output value. As input data is fed into the model, it adjusts

its weights until the model has been fitted appropriately. This training dataset includes
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inputs and outputs, which allow the model to learn over time. The algorithm measures

its performance through the loss function, adjusting until the error has been sufficiently

minimized.

Supervised learning can be mainly separated into two types of problems:

• Classification: the learning algorithm is used to accurately assign test data into spe-

cific categories. It recognizes specific entities within the dataset and attempts to

draw some conclusions on how those entities should be labeled or defined. Com-

mon classification algorithms are linear classifiers, support vector machines (SVM),

decision trees, k-nearest neighbors (kNN), and random forest.

• Regression: aims to model the relationship between the features and a continuos

target variable. Examples of popular regression models include linear regression

and polynomial regression.

Supervised learning models can be used to build and advance a number of business

applications, including image and object recognition, customer sentiment analysis and

spam detection [19].

Unlike supervised learning, unsupervised learning uses unlabeled data. From that

data, it discovers patterns that help solve for clustering or association problems. This is

particularly useful when subject matter experts are unsure of common properties within a

data set. Common clustering algorithms are hierarchical, k-means, and Gaussian mixture

models [19]. Costumer segmentation and recommender systems are popular applications

of this learning strategy.

Reinforcement learning can be broadly described as an action-reward system. The

training and test phases are interconnected in the reinforcement learning process. The

learning process goes through user feedback for each guess or action that improves the

learning. The learning system calls an agent, after each action performed, the system

receives rewards or penalties (in the form of negative rewards). The algorithm aims to

learn by itself to receive a maximum reward as a result of its cases of action. Popular

algorithms include Markov decision process and Q-learning [17].



16
MULTIMODAL DEEP LEARNING FOR HEART SOUND AND ELECTROCARDIOGRAM

CLASSIFICATION

2.2.2 Feature extraction

Feature extraction is a process of deriving a compact and useful representation of the

signal information. Feature extraction and selection is an important step in several classi-

fication systems.

Regarding signals, such as the ECG and the PCG, features can be extracted with re-

spect to different domains, namely: time domain (for example the duration of certain

morphologically defined segments), frequency domain and time-frequency domain.

The Fourier transform is a widely used technique for providing resolution on the fre-

quency domain, it can show precisely the frequency content of a signal, but it does not

provide temporal resolution, meaning that there is no knowledge of when said frequen-

cies occurred in time. The Short-Time Fourier Transform (STFT) improves on this by com-

puting a sequence of Fourier transforms throughout the time series [20]. STFT provides

the time-localized frequency information to create what is called a spectogram, whereas

the standard Fourier transform provides the frequency information averaged over the en-

tire signal time interval. The spectrogram is obtained by windowing the input signal with

a window of constant length (duration) that is shifted in time and frequency [21]. The

application of a constant window, leads to a fixed time-frequency resolution (as shown in

2.9).

FIGURE 2.9: Difference in time and frequency resolution in time series (a), Fourier Trans-
form (b), STFT (c) and a Wavelet Transform (d) (adapted from [22]).

Another technique that inherits and improves on the ideia of time localization is the

Continuous Wavelet Transform (CWT), but unlike STFT, CWT is capable of providing

high time resolution and low frequency resolution in the high frequencies, and high fre-

quency resolution and low time resolution in the low frequencies by changing its param-

eters of scale and translation [22].
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The CWT for the signal f (t) is defined as the integration of the f (t) with the shifted

or scaled shapes from a mother wavelet ψa,b(t):

CWT(a, b) =
1√
a

∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt (2.1)

a ∈ R+ \ {0}, b ∈ R

The value a is a scale factor for scaling the function ψ(t), while the b is a shift factor for

translating the function ψ(t). The CWT is the sum of the signal multiplied by the shifted

and scaled shapes from a mother wavelet ψa,b(t), resulting in a matrix with wavelet coef-

ficients located by scale and position. Choosing the scale parameters and mother wavelet

in CWT is very important for analyzing signals [23].

In wavelet analysis, the way to relate scale (a) to an aproximate frequency, usually

referred as “pseudo frequency” (Fa), is to determine the center frequency of the wavelet,

Fc, and use the following relationship [24]:

Fa =
Fc

a
(2.2)

Figure 2.10 shows the graphical representation of several wavelet families.

FIGURE 2.10: Graphical representation of commonly used wavelet families [25].

The scalogram is the absolute value of the CWT coefficients of a signal, plotted as a

function of time and scale (or frequency) [21]. Figure 2.11 shows an example of a short

segment of normal sinus rhythm ECG (a) and its scalogram (b) obtained by a CWT using

the complex morlet.
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FIGURE 2.11: Short segment of a Normal ECG (a) and its CWT scalogram (b) obtained
using the complex morlet wavelet.

Another popular choice for feature extraction of accoustic signals (such as the PCG) is

the Mel Frequency Cepstral Coefficients (MFCC) which maps the signal onto a non-linear

Mel-Scale that mimics the human hearing [26].

2.2.3 DL algorithms

Deep learning is a branch of ML that focuses on building deep neural networks to per-

form tasks in different fields such as object detection, speech recognition and autonomous

vehicles [27].

Inspired by the human brain with its billions of connections, deep neural networks

have multiple layers of interconnected units called neurons. Depending on the signals it

receives as inputs, the neuron can be activated, producing another signal sent to another

neuron. The set of input signals are propagated through the middle layers, called hidden

layers, and then to the output layer.

The basic structure of a neuron is represented in Figure 2.12.

A set of input values are weighted and summed. This result is used as input for

an activation function that determines how much the neuron will be activated by the

received input signal. In Figure 2.12 x1, . . . , xn represents the input values and w1, . . . , wn

represents the weights. An activation function is a mathematical function that determines

whether a particular input should be activated or not. There are several types of activation

functions that can be chosen for a given neural network, such as the Rectified Linear Unit
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FIGURE 2.12: Basic neuron structure (adapted from [28]).

(ReLU), a a piecewise linear function that will output the input directly if it is positive,

otherwise, it will output zero as shown in Figure 2.13.

FIGURE 2.13: Graphical representation of the ReLU activation function (adapted from
[29]).

DL algorithms use layers of neural-networks to convert raw input data to higher-level

information. There are different kinds of DL algorithms such as Convolutional Neural

Network (CNN), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long

Short Term Memory (LSTM) and so on.

A MLP is a network of artificial neurons with multiple hidden layers between input

and output layers. These neurons usually create a complex network of different layers.

Neurons from one layer pass signals to other neurons in the next layer. Figure 2.14 shows

a schematic representation of a MLP.
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FIGURE 2.14: A MLP with multiple hidden layers [30].

The output of the input layer works as input to the first hidden layer. This process will

continue until the final layer is reached. The output of the final layer will give the final

prediction. Each layer can have one or more neurons and each neuron uses a threshold

value in the form of an activation function to pass the signal to the next neuron. Two

neurons of consecutive layers are connected with a parameter called weight. The func-

tion of the weight is to transform the input data within the hidden layers. The network

parameters are modified to reduce the value of a function that expresses the difference

between the actual output and the ground truth, called loss function. The loss function

minimization is done via gradient-based optimization, where the gradient is computed

using the backpropagation algorithm. The gradient descent is a widely used optimiza-

tion method to update the weights by calculating the derivative of the error with respect

to the weights of the network. While training the model, MLP uses a backpropagation

algorithm to provide feedback to the network based on the output. The goal of the back-

propagation algorithm is to update each of the weights several times step-by-step, thereby

minimizing the error and gradually increase the overall performance [27].

The learning rate is a hyper-parameter, which determines the adjustment of the weights

with respect to the loss gradient. The range of the learning rate is usually between 0 to 1.
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This process of updating the weights will continue until the loss function is minimum or

until a specific stopping criteria is verified.

While MLPs are usually applied over a set of features selected and extracted from the

data, a CNN is a DL algorithm which uses a series of convolutions with different filters to

automatically learn important features directly from the raw data. The convolution layer

contains filters that pass over the data to capture the optimal features. For a 1-D signal

xn = [x1, x2, . . . , xN ], if it has K number of classes to classify and N is the signal length

then initially a 1D convolution method is used to extract the optimal features from the

raw input data by applying a series of 1-D convolutions with different 1-D kernels. This

process is achieved by sliding a kernel h(n) with length of W samples along the input

data [11]. In this way, the ith output yi(n) from the Conv1D layer can be expressed by:

yi(n) =
W−1

∑
k=0

hi(k)x(n − k)

If the the dimension of the feature is high, it can be reduced by using pooling function.

Pooling can be min, max, or average pooling. Pooling layers merge semantically similar

features found in the previous activation map and help control overfitting [31]. The most

common layer is the max-pooling which extract the maximum, as shown in Figure 2.15 a

max-pooling layer is applied with a 2× 2 kernel size (filter dimensions) and a stride (how

much the kernel is shifted during the convolution) of 2 .

FIGURE 2.15: Example of a max-pooling operation [32].
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Finally, the pooled features are passed into a fully connected layer for the final classi-

fication. Figure 2.16 represents schematically an example of a CNN architecture showing

several convolutional layers to extract the features and a MLP to combine them and obtain

the classification.

FIGURE 2.16: Convolutional neural network architecture that classifies input images as
belonging to a number of categories including cars, trucks, vans and bicycles [18].

To obtain the estimated probability for each class, sigmoid or softmax activation func-

tion are typically used at the final output of the fully connected layer. If the classification

is binary then Sigmoid activation function is generally used. If it is a multi-class classifica-

tion then Softmax activation is typically used. Softmax and sigmoid activation functions

are presented in Figure 2.17.

FIGURE 2.17: Graphical representation and equations of Sigmoid (left) and softmax
(right) activation functions [33].
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2.2.4 Transfer learning

Transfer learning is a machine learning technique in which a model created for a certain

task is re-purposed on a second related task. It is particulary useful in DL, since most

sophisticated models require access to vast amounts of data (not always available), time

and computational power [34].

DL requires vast amounts of large labeled datasets, for example, ImageNet, one of the

largest datasets for image classification (with over 14 million images) and very power-

ful computing resources to solve many challenging computer vision problems. Transfer

learning presents an attractive proposition in solving real-world problems such as medi-

cal image recognition tasks, where there is a shortage of labeled datasets, as they usually

require experts to label the data [35]. In this context, two transfer learning techniques have

been widely applied for image recognition tasks: (1) Pretrained networks as a feature ex-

tractor and (2) fine-tuning a pretrained network. In principle, transfer learning translates

knowledge that has already been learned in one domain (source) and applied to solve a

new task in a different but related problem (target) [36].

The most common use of transfer learning in the context of deep learning consist in

the following workflow:

1. Take layers from a previously trained model.

2. Freeze them, so as to avoid destroying any of the information they contain during

future training rounds.

3. Add some new, trainable layers on top of the frozen layers.

4. Train the new layers on the new dataset.

A last, optional step, is fine-tuning, which consists of unfreezing the entire model (or

part of it), and re-training it on the new data with a very low learning rate. This can

potentially achieve improvements, by incrementally adapting the pretrained features to

the new data [37].

2.2.5 Model performance evaluation

A confusion matrix is an N × N matrix used for evaluating the performance of a classi-

fication model, where N is the number of target classes. The matrix compares the actual
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target values with those predicted by the machine learning model. Figure 2.18 shows a

basic representation of confusion matrix for binary classification.

FIGURE 2.18: Basic representation of a 2x2 confusion matrix for binary classification [38].

Data from the confusion matrix can be used to calculate several classification metrics

such as sensitivity/recall, specificity and precision. This metrics can be used to assess

and compare model’s performances. The sensitivity/recall indicates the true positive rate

and measures the proportion of the correctly identified actual positives. The specificity

indicates the true negative rate and measures the proportion of the correctly identified

actual negatives. Out of predictive positive, how many of them are actual positive is

defined by the precision metric. All of these parameters can be calculated by using the

confusion matrix. Another important metric used to evaluate the classification model is

known as accuracy, which is the number of correctly predicted data points out of all the

data points. Sensitivity, specificity, and accuracy can be calculated by using the following

formulas:

Sensitivity/recall =
TP

TP + FN
(2.3)

Speci f icity =
TN

FP + TN
(2.4)

Precision =
TP

TP + FP
(2.5)
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Accuracy =
TP + TN

TP + TN + FP + FN
(2.6)

In equations (2.3)-(2.6), TP corresponds to the number of true positives, for example

when diagnosing a disease, represents the number of sick people correctly identified as

sick. TN correspond to the total of true negatives (the number of healthy people correctly

identified as healthy, FP (false positives) is the number of people healthy incorrectly di-

agnosed as sick and FN (false negatives) is the number of unhealthy people incorrecly

classified as healthy.

Moreover, precision and recall can both be taken into account through their harmonic

mean, generally referred as the F1-score, calculated as follows:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(2.7)

The receiver operating characteristics (ROC) curve is a graphical plot that shows the

classification performance of a model as its decision threshold varies [39]. The ROC curve

is created by plotting the true positive rate (TPR), on the y-axis, against the false positive

rate (FPR), on the x-axis, at various threshold settings. The TPR is equal to sensitivity

calculated by equation (2). The FPR can be calculate as (1 − speci f icity).

ROC curves summarize the trade-off between the true positive rate and false positive

rate for a predictive model using different probability thresholds [40]. The area under

the ROC curve (AUC) is a global measure of the classification performance, measure the

model’s ability to distiguish between the target classes. An AUC of 0.5 represents a test

with no discriminating ability (no better than chance), while an AUC of 1.0 represents a

test with perfect discrimination. Figure 2.19 shows a plot of ROC curves from different

classifiers. The dashed line represents a random classifier.



26
MULTIMODAL DEEP LEARNING FOR HEART SOUND AND ELECTROCARDIOGRAM

CLASSIFICATION

FIGURE 2.19: Representation of ROC curves from different classifiers [41].



Chapter 3

State of the art

In this chapter, a detailed characterization of the current studies that perform multimodal

analysis of ECG and PCG signals is provided. A thorough literature systematic search and

review was conducted with the objective of creating an extensive reference list of related

research and identify current and future trends in the particular scope of this study.

The publicly available databases, that provide simultaneously acquired ECG and PCG

and represent a valuable tool for researchers in this field, are also presented in this chapter.

3.1 Multimodal analysis of ECG and PCG

3.1.1 Search Methodology

Two online research databases were used in the search process: PubMed [42] and IEEEX-

plore [42]. Medical Subject Headings (MeSH) terms, a medical metadata nomenclature

system, were taken into account in the search query design. The designed search query is

a combination of 3 components, that aims to combine the different aspects of the intended

search. MeSH terms are written in bold:

Component 1 - Related to ECG:

(“electrocardiography” OR “electrocardiogram” OR “ECG” OR “EKG”)

Component 2 - Related to PCG:

(“phonocardiography” OR “phonocardiogram” OR “PCG” OR “auscultation” OR

“heart sounds”)

Component 3 - Related to analysis/outcome:

(“diagnosis” OR “classification’’ OR “machine learning” OR “deep learning” OR

“analysis” OR “multimodal”)

27
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The resulting complete search string is the following:

(“electrocardiography” OR “electrocardiogram” OR “ECG” OR “EKG”) AND

(“phonocardiography” OR “phonocardiogram” OR “PCG” OR “auscultation” OR “heart

sounds”) AND (“diagnosis” OR “classification’’ OR “machine learning” OR “deep learn-

ing” OR “analysis” OR “multimodal”)

A publication date range was applied to the search, selecting articles that were pub-

lished from 2010 to 2022. The query generated a total of 439 results (269 from PubMed

and 170 from IEEEXplore). From the 439 articles a total of 14 were duplicates, remaining

therefore 425 unique articles.

3.2 Systematic Review Methodology

In this section, the systematic review process is described. The main goal of this set of

steps, is to filter the publications that fit the eligibility criteria, i.e., studies in which simul-

taneously acquired PCG and ECG signals are analysed and features from both are used

to potentially obtain clinically relevant information, such as a possible diagnosis or esti-

mation of physiological parameters that can be used to further characterize the subject.

To provide an efficient systematic review process, the following sequential procedure

was designed and applied to the 425 unique publications:

1. Superficial selection - Assessment of the articles elligibility by analysing titles and

abstracts;

2. Deep selection - Analysis of the full text publications and applying the eligibility

criteria to a more restrictive level;

3. Information extraction and presentation - Extraction and presentation of several

important aspects related to the selected articles, like the objectives of the study and

the results obtained.

From superficial selection, a total of 378 (89%) of the articles were excluded as they

did not fulfill the inclusion criteria.

Deep selection was performed on the previously selected 47 articles, from which 35

did not meet the selection criteria and thus were excluded, therefore remaining 12. By

reference list analysis, one other eligible article not present in the original extraction was
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found, being then added to the set of selected articles, making a total of 13 final resulting

articles from this phase.

Therefore a total of 426 articles (including 1 from reference lists) were analysed, 378

were excluded in the first step (remaining 48) and the second selection step excluded 35

publications, thus remaining 13. Figure 3.1 presents a flowchart of the selection process.

It is important to note that a big fraction of the total 412 excluded publications in both

selection steps corresponded to articles that only analysed either ECG or PCG but not both

(45%), clinical case reports and observational studies (10%), about the development of

multimodal acquisition systems (5%), related to other physiological signals (4%), among

other excluding reasons (36%).

Records identified through
database searching

(n=439)

Additional records identified
through reference lists

(n=1)

Records remaining
after duplicates removed

(n=426)

Titles/abstract screened
(n=426)

Full-text articles
accessed for eligibility

(n=48)

Articles selected
(n = 13)

378 records excluded

35 records excluded

FIGURE 3.1: Flowchart of the systematic review process

3.2.1 Results

Information extracted from the selected articles is presented in Table 3.2.1.
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Hettiarachchi et al. [43] introduced a novel dual-convolutional neural network (CNN)

based approach using transfer learning to tackle the problem of having limited amounts

of simultaneous PCG and ECG data that is publicly available, while having the potential

to adapt to larger datasets. The hypothesis was tested using data from a publicly avail-

able database, PhysioNet 2016 Challenge (training set A) further described in section 3.3.

Comparisons with methods which used single or dual modality data, namely making the

comparison with the dual modality SVM model used by Chakir et al. [44] (later described

in this chapter), show that the developed method can lead to better performance. Fur-

thermore, results show that individually collected ECG or PCG waveforms are able to

provide transferable features which could effectively help to make use of a limited num-

ber of synchronized PCG and ECG waveforms and still achieve significant classification

performance.

EL-Bouridy and EL-Batouty [45] used integrated cardiograph (ICG) scanned images

composed of 12-lead ECG and 5-probe PCG for each recorded subject. The proposed algo-

rithm consists of three fundamental steps. The initial step is image reading and denoising

using a 2-D adaptive noise-removal filtering. The second step is the pre-extracion, that

is divided into two channels, the statistical channel, and the decompositional channel.

Another set of features designates “post extracted” (such as the standard deviation) are

obtained from the pre-extracted features. The third step is an ANN classifier that consists

of three layers using feed forward back propagation computation with momentum term

the activation function between the input layer and the hidden layer is log-sigmoid, and

the activation function between the hidden layer and the output layer is linear. The best

obtained results regarding classification accuracy were 96.82 %. Information regarding

the size and source of the dataset was not provided in the publication.

In Balbin et al. [46] simultaneous PCG and ECG signals were acquired from 20 subjects

by an hardware apparatus assembled by the authors. The ECG recording is classified by

a CNN model specifically tuned for ECG. The PCG is transformed into Mel Frequency

Cepstral Coefficients before being classified by a separate CNN model specifically tuned

for PCG. Given that both models were trained separately, each model outputs its own

classification. The researchers have created a summary table to unify the classification

from both models, producing 3 classes: normal, abnormal and noisy. A sensitivity of

100% was obtained, while specificity was 77.78%, showing an accuracy of 80%.

Zhang et al. [47] proposed an effective method for mining cardiac mechano-electric
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coupling information and to evaluate its ability to distinguish patients with varying de-

grees of coronary artery stenosis (VDCAS). Five minutes of electrocardiogram and phono-

cardiogram signals collected synchronously from 191 VDCAS patients were used to con-

struct several interval time series (e.g. heartbeat interval –systolic time interval (STI)). Sev-

eral features were computed, namely the cross sample entropy (XSampEn), cross fuzzy

entropy (XFuzzyEn), joint distribution entropy (JDistEn). Subsequently, SVM recursive

feature elimination and XGBoost were utilized for feature selection and classification,

respectively. Results showed that the joint analysis of XSampEn, XFuzzyEn, and JDis-

tEn had the best ability to distinguish patients with VDCAS and can effectively capture

the cardiac mechano-electric coupling information of patients with VDCAS, which can

provide valuable information for clinicians to diagnose coronary heart disease (CHD).

The classification accuracy of distinguishing between severe CHD and mild-to-moderate

CHD groups, severe CHD and chest pain and chest pain and normal coronary angiog-

raphy (CPNCA) groups, and mild-to-moderate CHD and CPNCA groups were 80.43%,

76.59%, and 75.00%, respectively.

H. Li et al. [48] wrote a paper that aims to differentiate between Coronary Artery Dis-

ease (CAD) and non-CAD groups. A novel dual-input neural network that integrates the

feature extraction and deep learning methods is developed. First, the ECG and PCG fea-

tures are extracted from multiple domains, and the information gain ratio is used to select

important features. On the other hand, the ECG signal and the decomposed PCG signal

(at four scales) are concatenated as a five-channel signal. Then, the selected features and

the five-channel signal are fed into the proposed network composed of a fully connected

model and a deep learning model. The results show that the classification performance

of either feature extraction or deep learning is insufficient when using only ECG or PCG

signal, and combining the two signals improves the performance. Further, when using

the proposed network, the best result is obtained with accuracy, sensitivity, specificity,

and G-mean of 95.62%, 98.48%, 89.17%, and 93.69%, respectively.

X. Li et al. [49] did a study whose purpose was to determine the potential of synchro-

nized analysis of PCG and ECG in identifying patients with depressed left ventricular

ejection fraction (dLVEF). A total of 189 patients (76 with dLVEF; 113 with normal ejection

fraction) were enrolled. All were admitted to the hospital because of dyspnea or chest dis-

comfort. PCG and ECG signals were automatically analyzed using wavelet analysis and

uti- lized to determine electromechanical activation time (EMAT), EMAT/RR, S1-S2 time,
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and S1-S2/RR. EMAT in the dLVEF group was significantly higher than that in the control

group. ROC curve analysis allowed to determine the optimal EMAT cutoff point of 104

ms (records were classified dLVEF when EMAT was equal or bigger than the cutoff point),

having a sensitivity and specificity for the diagnosis of dLVEF of 92.1% and 92%, respec-

tively. The authors concluded that the PCG and ECG signal index EMAT contributes to

the diagnosis of dLVEF.

Singh et al. [50] developed a method for heart abnormality classification using PCG

and ECG. Both signals were initially preprocessed with the purpose of noise removal.

Wavelet decomposition, Hilbert transforms, Homomorphic filtering and power spectral

distributions were used to extract time-frequency features from the PCG signal. The Pan-

Tompkins algorithm was used to extract QRS based features. The extracted features from

PCG and ECG signals were independently trained and tested using different classifiers

(SVM, KNN, and Ensemble) and compared with the merged features of both the PCG

and ECG signals. The proposed model was validated using publicly available dataset

’A’ of PhysioNet 2016/ CinC challenge. The results show that ECG and PCG signals can

efficiently be employed for predicting cardiovascular disorders.

Yupapin et al. [51] developed a system for the detection of preliminary heart defects

composed by two subsystems. A set of 80 synchronous ECG and PCG signals were used.

The relationship between both signals is determined as an impulse response of a system,

where the decision is made based on the linear predictive coding coefficients of a heart’s

impulse response. The decision is made by the back propagation neural network from the

impulse response signal, the accuracy obtained was 90% and 85% for NPVs and PPVs, re-

spectively. The other subsystem is based on phase space of the signal (ECG or PCG).

The MSE value obtained by comparing the distance vector of the testing signal with the

reference distance vector is judged by the likelihood ratio test result. This technique pro-

vided 100% accuracy for decision making. The results from both techniques show that

the impulse response-based method can be used primarily to detect a heart abnormality,

whereas the phase space-based approach can be used to indicate whether the heart defect

is caused from the abnormal ECG signal and/or abnormal PCG signal.

H. Li et al. [52] also wrote a paper that describes the development of a multi-input

CNN framework that integrates time, frequency, and time-frequency domain deep fea-

tures of ECG and PCG for CAD detection. Simultaneously recorded ECG and PCG sig-

nals from 195 subjects are used. The proposed framework consists of 1-D and 2-D CNN
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models and uses signals, spectrum images, and time-frequency images of ECG and PCG

as inputs. The framework combining multi-domain deep features of two-modal signals

is very effective in classifying non-CAD and CAD subjects, achieving an accuracy, sensi-

tivity, and specificity of 96.51%, 99.37%, and 90.08%, respectively. The comparison with

existing studies demonstrates that the proposed method is very competitive in CAD de-

tection. The proposed approach is very promising in assisting the real-world CAD diag-

nosis, especially under general medical conditions.

In the paper by Chakir et al. [44], a subsample of 100 multimodal records from the

Physionet 2016 challenge was used to make a comparison between the performance of the

PCG-based features and that of the features extracted from synchronous PCG and ECG

recordings is presented. For that, the ROC curve and values of accuracy, AUC, sensitiv-

ity, and specificity are compared to select the best classifier for each feature combination

and then to select the more pertinent biomarkers from these two resulting classification

models. This paper demonstrates that a merging of ECG and PCG leads to higher perfor-

mance of heart condition assessment than the diagnosis based on PCG recordings alone

(Accuracy: 92.5% vs. 82.5%, AUC: 95.05% vs. 90.66%, sensitivity: 92.31% vs. 76.92% and

specificity: 92.86% for both).

Y. Li et al. [53], perfomed a study about the application of cardiac electromechanical

delay variability (EMDV) analysis to the detection of coronary heart disease. The authors

extracted the beat-to-beat EMD from 5-min simultaneously recorded electrocardiogram

and phonocardiogram signals in 30 patients with coronary artery disease and 30 healthy

control subjects, and studied its variability using the same methods as applied for HRV.

An SVM with 10-fold cross-validation was used for classification. The results suggest that

the EMDV analysis that could potentially be helpful for detecting CAD noninvasively.

Klum et al. [54], performed multimodal analysis (using PCG and ECG) to estimate

respiratory rate, pre-ejection period (PEP) and left ventricular ejection time (LVET) Res-

piratory rates were estimated using a time-delay neural network having as input several

PCG and ECG features with mean absolute errors below 1.2 bpm, and the respiratory

signal yielded a correlation of 0.66. Regarding the PEP and LVET estimations, the Pan-

Tompkins algorithm was used to detect the R-peak in the ECG signal. P, Q, S and T waves

were identified using successive rule based windowing and local maximum and mini-

mum detection. The start, end, and peak of S1 and S2 within the stethoscope PCG signals
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were detected using a modified approach of the empirical wavelet transform and instan-

taneous phase based method, combined with an ECG based PCG peak classification step.

The PEP was estimated with a mean error (ME) of 0.4 ms and an mean absolute error

(MAE) of 25.1 ms, which translated to 21.3% relative error. The LVET was estimated with

an ME of -3.6 ms and an MAE of 30.5 ms, which was a relative error of 10.0%.

Zeng Y. et al.[6] proposed a parallel multimodal method for left ventricular dysfunc-

tion (LVD) identification based on synchronous analysis of PCG and ECG signals. The

database used consisted of 1046 synchronous ECG and PCG recordings from patients

with 173 LVD and 873 normal patients. Signals were preprocessed and spectrograms

were obtained using short-time Fourier transform. Two-layer bidirectional gate recurrent

unit was used to extract features in the time domain, and the data were classified using

residual network 18. This research confirmed that fused ECG and PCG signals yielded

better performance than ECG or PCG signals alone, with an accuracy of 93.27%, precision

of 93.34%, sensitivity of 93.27%, and F1-score of 93.27%.

Table 3.1: Summary of the analysed publications.

Hettiarachchi

et al. (2021)

[43]

Binary classifi-

cation (normal

or abnormal)

Physionet

2016 challenge

dataset

Transfer

Learning

and CNN

With trans-

fer learning:

Sen = 87.72%,

Spe = 87.5%,

Acc = 87.67%,

AUC = 93.75%,

G-mean =

87.6%

Authors (year

of publication)

Focus Database Main Mod-

el/Method

Results

Continued on next page
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Table 3.1: Summary of the analysed publications. (Continued)

EL-Bouridy

and EL-

Batouty (2021)

[45]

Binary classifi-

cation (normal

or abnormal)

ICG scanned

images com-

posed of

12-lead ECG

and 5-probe

PCG (size

and origin of

dataset not

specified)

ANN Acc up to

96.82%

Balbin et al.

(2021) [46]

Classification

(normal, ab-

normal, noisy)

Data gathered

from 20 sub-

jects

CNN Sen = 100%,

Spe = 77.78%

and Acc = 80%

Zhang et al.

(2021) [47]

Classification:

distinguish

patients with

VDCAS (se-

vere vs. mild-

to moderate

CHD, se-

vere CHD vs

CPNCA, mild-

to-moderate

CHD vs. CP-

NCA)

5 min of sig-

nals collected

synchronously

from 191 VD-

CAS patients

XGBoost Acc in distin-

guishing each

group bigger

than 75%

Authors (year

of publication)

Focus Database Main Mod-

el/Method

Results

Continued on next page
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Table 3.1: Summary of the analysed publications. (Continued)

H. Li et al.

(2019) [48]

Classification:

differentiate

between Coro-

nary Artery

Disease (CAD)

and non-CAD

groups

Data acquired

from 195 sub-

jects

ANN Acc = 95.62%,

Sem = 98.48%,

Spe = 89.17%

and G-mean =

93.69%

X. Li et al.

(2020) [49]

Identifying

patients with

depressed left

ventricular

ejection frac-

tion (dLVEF)

A total of 189

patients (76

with dLVEF;

113 with nor-

mal ejection

fraction)

ROC curve

analysis

EMAT in the

dLVEF group

was signifi-

cantly higher

than that in the

control group

Singh et al.

(2021) [50]

Binary classifi-

cation (normal

or abnormal)

Physionet

2016 challenge

dataset

SVM (pro-

posed

method),

KNN and

Ensemble

SVM: Sen =

94.00%, Spe

= 90.00% and

Acc = 93.13%

Yupapin et al.

(2011) [51]

Binary classifi-

cation (normal

or abnormal)

80 records Back propaga-

tion ANN

PPV = 90%,

NPV = 85%

H. Li et al.

(2021) [52]

Classification

(CAD and

non-CAD)

Data acquired

from 195 sub-

jects

CNN Acc = 96.51%,

Sen = 99.37%,

Spe = 90.08%

Authors (year

of publication)

Focus Database Main Mod-

el/Method

Results

Continued on next page
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Table 3.1: Summary of the analysed publications. (Continued)

Chakir et al.

(2020) [44]

Binary classifi-

cation (normal

or abnormal)

Subsample of

100 records

from Phys-

ionet 2016

challenge

SVM was

the proposed

model

Acc = 92.5%,

AUC = 95.05%,

Sen = 92.31%,

Spe = 92.86%

Y. Li et al.

(2019) [53]

Study the im-

pact of adding

EMDV to the

detection of

CAD

60 records (30

from CAD

subjects and 30

from healthy

control group)

SVM Adding EMDV

increased the

classification

accuracy from

72.9% to 95.8%

Klum et al.

(2020) [54]

Estimate res-

piratory rate,

LVET and PEP

Data from

10 healthy

subjects

Time-delay

NN for the

Respiratory

rate, Pan-

Tompkins and

wavelet trans-

form for PEP

and LVET

Respiratory

rate MAE

below 1.2

bpm, signal

correlation of

0.66. LVET and

PEP estimation

errors were

10% and 21%,

respectively.

Zeng et al.

(2022) [6]

LVD diagnosis Records from

1046 subjects

(173 with

LVD and 873

healthy)

Residual Net-

work

Acc = 93.27%,

Sen = 93.27%,

and F1-score of

93.27%.

Authors (year

of publication)

Focus Database Main Mod-

el/Method

Results

From the selected set it can be concluded that most of the articles are recent (54% were

published since 2021), having only one article published prior to 2018. This may indicate a

growing interest in the particular topic of this review. Further characterizing the selected
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set, publications can be divided in two groups: (a) articles that focus on classification

(mostly binary) and (b) articles that aim to estimate a certain potentially relevant cardiac

parameter and evaluate its importance.

A significant fraction of the articles presented (8 out of 12) use deep learning ap-

proaches. Most of these studies acknowledge that one of the limitations to their studies is

the lack of data, namely publicly available datasets containing multimodal data. Transfer

learning, as performed by Hettiarachchi et al. [43], can be further explored and can lead

to interesting and even more promising results since databases that contain only ECG or

only PCG are much more abundant.

Moreover, articles that feature NN either present a model that combines the signal-

s/features in the first stages (early fusion) or a model that has basically separate pipelines

for each signal, combining only the resulting features in the last stages of the network (late

fusion). A comparison between both these approaches is yet to be made for this particular

problem in order to possibly identify the most effective method.

3.2.2 Other considerations

It is worth mentioning that during the review process, several publications were anal-

ysed in which simultaneously captured PCG and ECG signals are used, but the resulting

publication is not within the particular scope of this study. Namely, several articles in

which PCG segmentation is aided by ECG’s reference points identification and no further

multimodal analysis is performed [55–58].

3.3 Databases

One of the many challenges in performing studies regarding ECG and PCG multimodal

analysis is the relatively low volume of publicly available data when compared to indi-

vidual signals datasets (only PCG or only ECG) [43].

Multimodal analysis of simultaneously recorded ECG and PCG can provide interest-

ing insights into the inter-relationship between the mechanical and electrical mechanisms

of the heart, combining advantages from both signals, potentially improving disease di-

agnosis and estimation of certain features/parameters. Moreover, synchronized data can

be used also for other applications, namely:
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• Testing the performance of synthetic signal generators that attempt to simulate a

signal having the other as input, for example generating artificial ECG from real

PCG records as done by McSharry et al. [59] ;

• Use one of the signals as a gold standard reference to train or evaluate the perfor-

mance of a single input model, such as QT interval estimation from PCG with ECG

determined QT interval as gold standard, studied by Sbrollini et al. [60].

Table 3.2 contains a summary of 3 publicly available databases that will be further

described in the following subsections.

TABLE 3.2: Summary of publicly available databases that contain simultaneously
recorded ECG and PCG.

Database
Name

Number
of

Subjects

Number
of

Records

Record
Length

Number of
Healthy
Records

Number of
Pathological

Records

PhysioNet
2016 Challenge
(training set A)
[61]

Unknown 405 Variable
duration (9

- 37 s)

117 288

EPHNOGRAM
[62]

24 69 0.5 or 30
min

69 0

GUARDIAN
Vital Sign Data
[63]

11 259 approx. 60
s

259 0

3.3.1 PhysioNet 2016 Computing in Cardiology Challenge Dataset

PhysioNet is a very important web-based resource supplying well-characterized phys-

iologic signals and related open-source tools to the biomedical research community. It

provides a public service of the Research Resource for Complex Physiologic Signals, a

cooperative project started by researchers at Boston’s Beth Israel Deaconess Medical Cen-

ter/Harvard Medical School, Boston University, MIT and McGill University [64].

PhysioNet promotes challenges, that invite participants to deal with clinically chal-

lenging questions that are currently either unsolved or not very well-solved. PhysioNet

has been co-hosting a challenge annually, collaborating with the Computing in Cardiol-

ogy (CinC) conference [65].

In 2016, the PhysioNet/CinC challenge focused on the classification of heart sound

recordings [61]. This challenge aimed the development of algorithms to classify PCG
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recordings, to determine from a single short recording, whether the subject should be

referred for an expert diagnosis.

The challenge provides one of the largest public collection of PCG recordings, col-

lected from several contributors around the world from both healthy and pathological

subjects, including children and adults, allowing participants and researchers to poten-

tially develop accurate and robust algorithms . It is unknown exactly how many records

each subject contributed, the number of contributions may range between one and six

PCG recordings per subject. The recordings have been sampled at 2000 Hz and each

recording contains one PCG signal provided as .wav format [61].

The training set is divided in five databases (A through E) corresponding to a total of

3126 PCG recording of varying length (from 5 seconds up to 120 seconds) [61]. Although

the challenge is focused exclusively in classification having PCG as the only input, most of

the records in training dataset A contain also an ECG lead. Among the 409 records present

in training set A, a total of 405 (99.02%) records present a simultaneously captured ECG

lead with .dat format and sampled at 2000 Hz.

On this particular multimodal subset, there are 288 pathologic records, including va-

riety of illnesses, namely, heart valve defects and coronary artery disease, and the remain-

ing 117 are classified as normal [61, 66]. Signal duration ranges from 9.625 seconds to

36.502 seconds, with an average duration of 32.56 seconds. The total length is approxi-

mately 13187 seconds (220 minutes). Figure 3.2 presents a histogram of the time length

distribution of this subset.

3.3.2 EPHNOGRAM

The electro-phono-cardiogram (EPHNOGRAM) project focused on the development of

low-cost and low-power devices for recording simultaneous ECG and PCG data, with

auxiliary channels for capturing environmental audio noise. The current database, recorded

by version 2.1 of the developed hardware, has been acquired from 24 healthy adults aged

between 23 and 29 (average: 25.4 ± 1.9 years) in 30min stress-test sessions during sev-

eral states (resting, walking, running and biking conditions, using indoor fitness center

equipment). The dataset also contains several 30s sample records acquired during rest

conditions [62].
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FIGURE 3.2: Multimodal records duration histogram for the Physionet dataset.

The dataset consists of 69 simultaneous ECG and PCG recordings, each with a dura-

tion of 30 seconds (8 records) and 30 minutes (61 records), acquired synchronously from

a three-lead ECG and a single PCG stethoscope.

The 30 minutes records of the dataset were acquired in an indoor sports center. A

structured interview determined that the participants were in good physical condition

and none reported symptoms of cardiovascular disorder.

The resulting dataset is also available through PhysioNet [62, 64].

3.3.3 GUARDIAN Vital Sign Data

The GUARDIAN Vital Sign Data is a dataset designed for the validation of the feasibil-

ity of radar-based heart sound detection and the algorithm’s functionality provided by

simultaneously evaluating the ECG and PCG reference data [63, 67].

This dataset consists of synchronised data which are acquired using a Six-Port-based

radar system operating at 24 GHz, a digital stethoscope, an ECG, and a respiration sensor.

A total of 11 test subjects were measured in different defined scenarios and at several

measurement positions such as at the carotid, the back, and several frontal positions on

the thorax. It was intended for each record to have 60 seconds. A total of 259 records were

produced, whose duration is slighty less than 60 seconds (mainly due to synchronization)
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[63]. Around 223 minutes of data were acquired at scenarios such as breath-holding, post-

exercise measurements, and while speaking.

Although the main objective in the acquisition of this dataset was to assess the feasi-

bility of radar-based heart sound detection, since reference ECG and PCG recordings are

provided, this dataset is also suitable for multimodal ECG and PCG analysis.

The dataset also provides an overview file, in which the recordings of each person are

described. Noted there are the exact times of the recordings, which also serve as unique

file identifers in the file names, subjective ratings of the signal qualities of the diferent

sensor signals of a recording, and the exact positions and scenarios of the measurements.

The whole dataset is freely available at figshare [68]. All the records are stored in .mat

(MATLAB) format.



Chapter 4

Methodology

In this chapter, a detailed description of the methods and techniques explored and im-

plemented is provided. Implementation aspects such as data selection, preprocessing,

feature extraction and model design are presented.

Due to the low amount of multimodal PCG and ECG data, a transfer learning ap-

proach is explored to leverage knowledge obtained from related domains to improve per-

formance in the target task. This consists in the detection of abnormalities in the multi-

modal records leading to a binary classification in which the positive class (1) corresponds

to the presence of abnormalities and the negative class (0) is attributed to normal (healthy)

subjects. Since individual signal databases, of either PCG or ECG, have a much higher

data volume than the available multimodal datasets, it is possible to extract knowledge

from their interpretation and transfer it to the specific multimodal problem, as describer

further in this chapter.

A data pipeline that allows signal pre-processing and the generation of scalograms is

developed and explained in this chapter. Scalograms are used, since they have proven to

be effective in the detection and classification of cardiac signals both individually and in

a multimodal fashion [43, 50, 69–72].

As signals in the available datasets usually have variable lengths, a fixed length win-

dow of 5 seconds is used with no overlapping portions for length regularization and data

augmentation [72]. Record portions with less than 5 seconds are discarded. The 5 seconds

signal samples are extracted consecutively, not segmented taking into account specific

signal components, such as the R-wave for the ECG, pre-processed, transformed by CWT

and the resulting scalogram is exported as an image file. The scalograms are then used

43



44
MULTIMODAL DEEP LEARNING FOR HEART SOUND AND ELECTROCARDIOGRAM

CLASSIFICATION

as input in the model development, including model training and evaluation. Figure 4.1

illustrates the described process.

FIGURE 4.1: Graphical representation of the machine learning pipeline.

4.1 Datasets

In this section, the datasets that form the foundation of the learning process are described,

including the multimodal dataset and the individual datasets used for transfer learning.

4.1.1 Multimodal Dataset

Among the databases presented in Section 3.3, the PhysioNet 2016 Computing in Cardi-

ology challenge dataset (training-set A) is the only one that contains records classified as

abnormal. Since the main focus of this work is to study methods to classify multimodal

PCG and ECG records, only the database from Physionet will be used. The other two

available multimodal datasets contain only records acquired from healthy subjects, thus

hindering the ability to conduct clinically relevant tests regarding the capabilities of the

proposed models in detecting abnormalities. Combining the three datasets could influ-

ence the model’s behavior by adding heterogeneity due to differences such as the sensors

used, signal resolution, noise, clinical signal capture procedure, frequency of sampling

and different pre-processing techniques [73].

Moreover, the selected dataset with respect to the target class contains a portion of

71.1 % abnormal records and the remaining 28.9 % correspond to normal records.
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Signal information regarding the binary classification is extracted from the header file

(.hea format) for each record. PCG and ECG signals are extracted from .wav and .dat files.

Standardization is applied on the input signals in order to rescale them amplitude wise.

More information regarding this particular dataset is presented in Section 3.3.1.

4.1.2 ECG

The 2017 PhysioNet/CinC Challenge aims to encourage the classification of short ECG

single lead recordings in 4 classes: normal sinus rhythm, atrial fibrillation (AF), abnormal

alternative rhythm (designated as “other rythms”), or too noisy to be classified [74]. In-

cluding a total of 8528 single lead ECG recordings with durations lasting from 9 s to just

over 60 s is one of the largest ECG databases publicly available. Table 4.1 shows the data

profile for the original dataset categories.

The provided ECG recordings are sampled at 300 Hz and already band pass filtered

by the AliveCor device, having a frequency range of 0.5-40 Hz [74]. All data are provided

in MATLAB V4 WFDB-compliant format (each including a .mat file containing the ECG

and a .hea file containing the waveform information).

Figure 4.2 shows a plot of example waveforms for each of the original dataset labels

[74, 75].

TABLE 4.1: Original data profile for the PhysioNet 2017 training set [74].

Type Number of
Recordings

Mean Time
Length (s)

Normal 5154 31.9
AF 771 31.6
Other Rhythm 2557 34.1
Noisy 46 27.1
Total 8528 32.5

To match the binary classes present in the multimodal dataset the AF and other rythms

are set to be abnormal. Records classified as too noisy are removed since they do not fit

either target binary classes. Resulting in a total of 8482 recordings, of which, 5154 are

normal (60.8%) and 3328 are abnormal (39.2%).

4.1.3 PCG

Besided the training-set A, the Physionet 2016 Computing in Cardiology challenge dataset

provides 5 other training sets that contain PCG only. This subset of the Physionet dataset
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FIGURE 4.2: Examples of ECG waveforms for the categories provided in the Physionet
2017 challenge [76].

includes a total of 2831 records, of which 373 are abnormal (13.2%) and 2458 are normal

(86.8%) [61, 75], as presented in Table 4.2.

Like the training-set A, the sampling frequency is 2000 Hz, the target class presented

is binary and the file structure is identical.

As the training-set A is already used as the source of multimodal signals, it is not

considered in the PCG dataset for individual signals, mainly to reduce the risk of overfit

and avoid data leaking.
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TABLE 4.2: Number of normal and abnormal recordings for each database in the training
set excluding training-set A. [61]

Database name Abnormal
Recordings

Normal
Recordings

Training-b 104 386
Training-c 24 7
Training-d 28 27
Training-e 183 1958
Training-f 34 80
Total 373 2458

4.2 Pre-processing

Short signal frames with a duration of 5 seconds are extracted consecutively (with no

overlapping) from the original records for both the PCG and ECG signals. The window

size of 5 seconds is a common choice in studies regarding ECG and PCG [50, 77, 78]. Each

frame is pre-processed before being submitted to CWT for scalogram generation.

For both signals, band-pass filters are applied. In the field of signal processing, a filter

is a device or process that suppresses unwanted components or features from a signal.

The most commonly used filters are low-pass, high-pass, band-pass and band-stop. The

main characteristics that describe a filter are its type, order and cutoff frequency [79].

For the ECG signal the pre-processing consists on applying a 4th order digital band-

pass Butterworth filter with cufoff frequencies of 0.5 Hz and 100 Hz, as it encapsulates

most of the useful frequency range for the ECG signal while attenuating noise and signals

artefacts such as baseline wander[80, 81]. The filtered signal is then standardized using

the following formula:

z =
x − µ

σ
(4.1)

in which, x representation the signal data points, µ represents the mean value of the

signal and σ represents the standard deviation.

The PCG signal is also treated in a similar fashion in which a 4th order digital bandpass

Butterworth filter with cufoff frequencies of 25 Hz and 400 Hz, to remove low and high

frequency noise while keeping the fundamental heart sounds and murmurs components

[82, 83].

An additional spike removal algorithm is applied inspired on the work develop by

Singh et al. [78, 84]. The steps for the spike removal algorithm are as follows:
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Spike removal

1. Based on a 0.5-second window, divide the PCG recording.

2. Compute the maximum absolute amplitude (MAA) for each sliding window.

3. If the value of MAA equal three times the median values of MAA then advance to

step (4) else continue.

I. Determine the window with the highest MAA value.

II. With the previous window as reference MAA, the noise spikes are computed

from the respected location.

III. Determine the last zero-crossing point using the starting location of the noise

spike, which is just before the MAA point.

IV. Determine the first zero-crossing point using the end location of the noise spike

which is just after the MAA point.

V. The determined noise spike is displaced by zeros.

VI. Start again from step (2).

4. Tasks completed.

Like the ECG, the PCG is also standardized.

Figure 4.3 shows the result of the pre-processing for a raw PCG sample with noticeable

noise and spikes.

FIGURE 4.3: Plot of a PCG signal (a) through different stages of pre-processing: band-
pass filter (b) and spike removal (c).
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4.3 Scalogram Generation

After pre-processing, CWT is applied to PCG and ECG. Due to the distinct nature and

properties of the signals, CWT parameters (such as the wavelet used) are different for

PCG and ECG.

The complex Morlet is selected as the mother wavelet for the ECG CWT, as it has

proven to be effective in this task [43]. The bandwith parameter and central frequency

are set to 1.5 Hz and 1 Hz, respectively. For the ECG signals sampled at 2000 Hz, the

scale parameter goes from 20 to 500, as the corresponding pseudo-frequencies encapsulate

most of the ECG’s fundamental frequency content. For the ECG signals sampled at 300

Hz (Physionet 2017) the scale ranges from 3 to 100, taking into account the influence of the

sampling period in the calculation of the corresponding pseudo-frequencies, as shown in

Equation 2.2.

The Morlet wavelet is chosen to perform the PCG CWT, as it is frequenctly used for

this analysis [43, 85]. Since all the PCG signals have a sampling frequency of 2000 Hz, the

scale parameter range is set from 4 to 100, taking into account the Morlet’s default center

frequency of 0.8125 Hz and the PCG’s fundamental frequency content.

Figure 4.4 shows examples of scalograms generated from multimodal samples.

Table 4.3 presents the number of scalograms (corresponding to 5 seconds) generated

(divided per class) for each of the datasets used, as well as, the number of recordings per

dataset. Regarding the multimodal dataset, since each record contains 2 signals, each pair

of scalograms is only counted once in the table calcultations.

TABLE 4.3: Numbers of recordings, abnormal and normal scalograms generated for each
database.

Database Records Abnormal
Scalograms

Normal
Scalograms

Physionet 2017
(ECG only)

8482 21187 32115

Physionet 2016
(Multimodal)

405 1824 738

Physionet 2016
sets b,c,d,e,f
(PCG only)

2831 1306 9119

Total 11718 25842 41971
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FIGURE 4.4: Scalograms generated from the multimodal dataset: (a) and (c) represent,
respectively, the ECG and PCG from the same normal multimodal sample , (b) and (d)

represent the ECG and PCG, respectively, for an abnormal multimodal sample.

4.4 Models

The base model implemented is derived from the VGG-16 architecture. The VGG-16 net-

work was created by Karen Simonyan and Andrew Zisserman for the task of image classi-

fication from the University of Oxford in the paper “Very Deep Convolutional Networks

for Large-Scale Image Recognition”[86]. The VGG16 model achieves almost 92.7% top-5

test accuracy in ImageNet (a dataset consisting of more than 14 million images belonging

to nearly 1000 classes). It was one of the most popular models submitted to ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) 2014 . It replaces the large kernel-

sized filters with several 3×3 kernel-sized filters one after the other, making significant

improvements over AlexNet [87]. Figure 4.5 shows the VGG-16 network.

The VGG-16 architecture consists of six blocks (five convolutional blocks and 1 clas-

sification block). The input consists of 224x224 RGB images. Each of the first two blocks
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FIGURE 4.5: The original VGG-16 network.

contains two convolutional layers and one pooling layer, each of the next three blocks con-

tains three convolutional layers and one pooling layer, and finally, the last block contains

three fully connected layers. Therefore, the network, in total, has 13 convolutional layers,

5 pooling layers, and 3 fully connected layers. Each of the convolutional operations in

this network is performed using filters of kernel size 3x3 and followed by an activation

operation using the ReLU function [88].

A modification is made to the model, that affects only the classifier portion. The con-

volution portion is kept unchanged to allow the use of transfer learning of the pre-trained

CNN on the ImageNet dataset. After the convolution section a flatten layer is added

followed by a hidden dense layer with N neurons and ReLU activation, N is set to be

tunable, a 0.5 dropout layer (to prevent overfitting) and a 1 neuron dense layer with a

sigmoid activation.

Figure 4.6 shows the architecture of the custom VGG-16 network.

The presented modified network takes a single 224x224 RGB image as input and out-

puts the predicted binary classification probability. Since the main classification task of

this study is multimodal, a dual input network is developed consisting essentially of two

branches (one for PCG scalograms and the other ECG scalograms) of the individual cus-

tom network whose output after the N neuron fully connected network is concatenated
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FIGURE 4.6: The custom VGG-16 network.

and passed through a multimodal classifier that consists of another N fully connected

dense layer with ReLU activation, a dropout layer and a dense layer with 1 neuron and

sigmoid output. The resulting multimodal network is shown in Figure 4.7.

FIGURE 4.7: The custom multimodal VGG-16 network.
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4.5 Data Splitting

The datasets are split into training and test. The split is stratified (meaning that the ratio of

abnormal/normal records is kept the same in test and training) and record-wise to ensure

that samples from the same record are not in both sets and the proportion used is 70% for

training and 30% for test.

4.6 Model Selection

Throughout the experiments, grid search with 5-fold cross validation (GridSearchCV) is

applied for hyperparameter tuning. Cross validation is applied only on the training set to

keep the test set unseen as shown in Figure 4.8.

FIGURE 4.8: Schematic representation of the 5-fold cross validation applied on the train-
ing set (adapted from [89]).

In the cross validation data splitting, a group stratified split [90] is applied in order

to both ensure that the class distribution across each fold’s sets remains the same and

making the cross validation sets exclusive, meaning that samples from the same group

(record) cannot end up on different cross validation sets.
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The grid search results are analyzed for each parameter combination. The average

scoring metrics for sample-wise classification are calculated and the model with the best

performance is selected. ROC AUC is the metric used to rank the models, since it sum-

marizes the performance of a model across all possible decision thresholds. The selected

model is retrained on the full train set and tested on the unseen test set for evaluation.

Figure 4.9 illustrates the described process.

FIGURE 4.9: The model selection and evaluation process.

4.7 Classification

Predictions obtained from samples can be combined to obtain recordwise classification.

Therefore two classification modalities are used:

• Frame-wise evaluation: Short signal samples are classified individually. If the prob-

ability determined by the model exceeds 0.5 the sample is classified as abnormal,

otherwise the sample is classified as normal.

• Record-wise evaluation: The results from the frame-wise classification are taken into

account aggregated by the respective record.

A soft voting probabilistic approach is taken to obtain the record-wise predicitions.

For each record, a set of samples is evaluated by the model resulting in a set of predicted

probabilities. The mean of predicted probabilities is computed and if it exceeds 0.5 the

record is classified as abnormal.

Figure 4.10 shows an example of a 20 seconds record (record-A) that is split into 4

non-overlapping 5-seconds frames.

For example, if the predicted probabilities for frames 1-4 are 0.25, 0.50, 0.75, 0.80, re-

spectively, the average value is 0.575, meaning that the record would be classified as ab-

normal since the average exceeds the applied threshold (0.5).
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Record – A 
ECG Signal

Record – A 
PCG Signal

FIGURE 4.10: A multimodal record being splitted into multiple frames.

4.8 Experiments

This section provides a comprehensive overview of the experimental design and the strate-

gies employed in this study. A detailed description of the hardware and software config-

urations used in the experiments, outlining the specific equipment, systems, and software

versions utilized. Additionally, this section delves into experimental setttings used in the

study, elaborating on the learning strategies applied.

4.8.1 Experimental Setup

The experiments presented in this work are programmed in Python 3.7.6 and run in a 64-

bits Windows 10 operating system. The system hardware includes an AMD Ryzen 3600

CPU (with 6 cores and 12 logical processors), 16 GB of random access memory (RAM) and

a NVIDIA GeForce GTX 1660 Super GPU with 1408 CUDA cores. Model implementations

were performed using Keras, a deep learning API written in Python, running on top of the

machine learning platform TensorFlow [91]. PyWavelets, an open source wavelet trans-

form software for python, was used to perform CWT [92].
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4.8.2 Experimental settings

Using the architectures described in Section 4.4, three experimental multimodal settings

are developed:

• Setting 1: No transfer learning. The multimodal network is trained from scratch on

the multimodal dataset using the custom multimodal architecture.

• Setting 2: Transfer learning from ImageNet. The multimodal network receives

knowledge from the pre-trained network on ImageNet.

• Setting 3: Transfer learning and fine-tuning. The custom single input network is

trained on the individual datasets, meaning the Physionet 2017 for ECG and the

Physionet 2016 (sets b, c, d, e, f) for PCG. Knowledge is transferred to the multi-

modal network.

On setting 1, the multimodal network is trained completely from scratch, showing the

performance without the use of transfer learning.

On setting 2, the feature extraction block for both branches of the multimodal net-

work uses weights from the VGG-16 network pre-trained on ImageNet. The convolu-

tional blocks are frozen and the classifier portion is trained from scratch.

On setting 3, learning is done firstly on the individual datasets. The feature extraction

block is initializated with weights from a pre-trained VGG-16 network trained on Ima-

geNet. The initial 3 convolutional blocks are frozen while the remaining 2 are finetuned.

The classifier portion is trained from scratch. The individual learning pipeline consists in

the following sequence:

1. GridSearchCV is performed on the training set. The best set of hyperparameters is

selected.

2. Evaluation of the previously selected model by training on the full individual train-

ing set and testing on the test set.

3. Training on the full individual (single modality) PCG or ECG dataset (training and

test sets).

4. The finetuned feature extractor weights are transferred to the respective branch on

the multimodal network.
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Figure 4.11 shows a schematic representation of the described individual learning pro-

cess.

FIGURE 4.11: The individual learning pipeline.

The remaining portion of the multimodal network is trained from scratch on the mul-

timodal dataset.

Figure 4.12 shows the architecture of the custom individual network with annotations

regarding transfer learning.

FIGURE 4.12: The custom individual network used on setting 3 (adapted from [93]).

Binary cross entropy is used as the loss function across all models/settings, since it is

the standard and most commonly used for binary classification problems [94].

Regarding the optimizer, Adam (Adaptive Moment Estimation) is used, since it is

computationally efficient and broadly adopted for deep learning applications [95].

Since the class distributions in the datasets used throughout the experimental settings

are not balanced, the use of class weighs is experimented upon, assigning higher weights

to the minority class resulting in a reduced bias towards the majority class. Class weights
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are calculated based on the dataset’s inverse of the class frequencies. The weight for each

class is computed by dividing the total number of samples by the product of the number

of classes and the number of samples in that class [96]. To incorporate these class weights

during training, a weighted binary cross-entropy loss function is employed, which adjusts

the contribution of each class to the overall loss according to its weight.

In addition to the multimodal settings, baseline single input settings are also em-

ployed. These networks serve as a baseline, providing a comparative measure for the

performance of individual and multimodal approaches. The single input networks are

trained from scratch, similarly to setting 1, considering the individual signals from the tar-

get multimodal dataset. Meaning that the individual samples are considered separately,

disregarding the multimodal component.

Table 4.4 shows the set of parameters used on the GridSearchCV process for each

setting. The number of neurons parameter corresponds to the amount of neurons per

fully connected hidden layer in the classifier portion of the network.

TABLE 4.4: The grid search parameters used in the experiments.

Setting Model Batch
Size(s)

Learning
Rate(s)

Epochs Number
of Neu-

rons

Class
Weights

Baseline Individual
- PCG

32 1e-6, 1e-5,
5e-5

10 32 True,
False

Baseline Individual
- ECG

32 1e-6, 1e-5,
5e-5

10 32 True,
False

1 Multimodal 8 1e-6, 1e-5,
0.0005

30 128 True,
False

2 Multimodal 8 1e-6, 1e-5,
5e-5

10, 20 32 True,
False

3 Individual
- PCG

32 5e-7, 1e-6 30 128 True,
False

3 Individual
- ECG

32 1e-6 20, 30 128 True,
False

3 Multimodal 8 0.0001,
0.001, 0.005

20 32 True,
False



Chapter 5

Results

In this chapter, the outcomes from the experiments described on Section 4.8.2 are pre-

sented.

Firstly, the GridSearchCV process results are shown. This technique allows the deter-

mination of the optimal set of parameters for each model.

Furthermore, the final evaluation results of the selected models is presented and ana-

lyzed, providing an understanding of the predictive capabilities of the model on unseen

data, for both sample-wise and record-wise classification.

5.1 Hyperparameter Tuning

In this section, results regarding the hyperparameter tuning through GridSearchCV are

presented for the previously mentioned experimental settings. Average cross validation

train and test scores are displayed, as well as, loss and accuracy score curves to show the

models predictive power and generalization capabilities.

5.1.1 Baseline

5.1.1.1 PCG

Table 5.1 shows the GridSearchCV results for the baseline PCG only model (trained on

the PCG portion of the multimodal dataset).

The best set of parameters (highest test ROC AUC score) for this model corresponds to

a learning rate of 1e-5, batch size of 32, 10 epochs, 32 neurons for the dense hidden layer,

and without the inclusion of class weights.

59
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TABLE 5.1: The GridSearchCV results for the individual PCG network trained from
scratch (baseline).

Parameters Mean
Train ROC

AUC

Mean Test
ROC AUC

Mean Train
F1-score

Mean Test
F1-score

Learning Rate: 1e-05,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: False

0.809 0.626 0.852 0.829

Learning Rate: 1e-05,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: True

0.776 0.578 0.709 0.604

Learning Rate: 5e-05,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: False

0.663 0.607 0.826 0.825

Learning Rate: 1e-06,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: True

0.664 0.540 0.697 0.643

Learning Rate: 1e-06,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: False

0.691 0.574 0.832 0.801

Learning Rate: 5e-05,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: True

0.604 0.563 0.478 0.495

Figure 5.1, shows the training and validation loss and accuracy score curves, through-

out the training epochs.

5.1.1.2 ECG

Table 5.1 shows the GridSearchCV results for the baseline ECG only model (trained on

the ECG portion of the multimodal dataset).

The best set of parameters for this model corresponds to a learning rate of 1e-5, batch

size of 32, 10 epochs, 32 neurons for the dense hidden layer, and with the inclusion of

class weights.

Figure 5.2, shows the training and validation loss and accuracy score curves, through-

out the training epochs.
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FIGURE 5.1: The baseline PCG model average loss (a) and average accuracy (b) for the
training and validation during cross validation.

FIGURE 5.2: The baseline ECG model average loss (a) and average accuracy (b) for the
training and validation during cross validation.

5.1.2 Setting 1

Table 5.3 shows the GridSearchCV of the setting 1 model trained from scratch on the

multimodal dataset.

The set of parameters responsible for the best performance are: learning rate of 1e-5,

batch size of 8, 30 epochs, no class weights and 32 neurons for the dense hidden layer.

Figure 5.3, shows the training and validation loss and accuracy score curves, through-

out the training epochs.

5.1.3 Setting 2

Table 5.4 shows the GridSearchCV results of the setting 2 model.

The set of parameters responsible for the best performance are: learning rate of 5e-5,

batch size of 8, 20 epochs, no class weights and 32 neurons for the dense hidden layer.

Figure 5.4, shows the training and validation loss and accuracy score curves, through-

out the training epochs.
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TABLE 5.2: The GridSearchCV results for the individual ECG network trained from
scratch (baseline).

Parameters Mean
Train ROC

AUC

Mean Test
ROC AUC

Mean Train
F1-score

Mean Test
F1-score

Learning Rate: 1e-05,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: True

0.993 0.875 0.962 0.863

Learning Rate: 1e-05,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: False

0.982 0.800 0.945 0.815

Learning Rate: 5e-05,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: True

0.827 0.745 0.660 0.590

Learning Rate: 5e-05,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: False

0.839 0.734 0.851 0.811

Learning Rate: 1e-06,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: True

0.878 0.707 0.839 0.753

Learning Rate: 1e-06,
Batch Size: 32, Epochs:
10, Neurons: 32, Class
Weights: False

0.847 0.674 0.869 0.806

5.1.4 Setting 3

In setting 3, firstly the individual models GridSearchCV results are displayed. The se-

lected individual (single input) models are retrained on the full individual dataset and

knowledge is transferred to the respective branch of the multimodal network. Multi-

modal GridSearchCV results are also shown in this section.

5.1.4.1 Individual - ECG

Table 5.5 shows the GridSearchCV results for the individual finetuned ECG model (trained

on the Physionet 2017 dataset).
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TABLE 5.3: The GridSearchCV results for the multimodal network trained from scratch
on the multimodal dataset (setting 1).

Parameters Mean
Train ROC

AUC

Mean Test
ROC AUC

Mean Train
F1-score

Mean Test
F1-score

Learning Rate: 1e-05,
Batch Size: 8, Epochs:
30, Neurons: 128, Class
Weights: False

0.989 0.869 0.969 0.867

Learning Rate: 1e-05,
Batch Size: 8, Epochs:
30, Neurons: 128, Class
Weights: True

0.977 0.862 0.941 0.845

Learning Rate: 1e-06,
Batch Size: 8, Epochs:
30, Neurons: 128, Class
Weights: True

0.980 0.814 0.857 0.734

Learning Rate: 1e-06,
Batch Size: 8, Epochs:
30, Neurons: 128, Class
Weights: False

0.982 0.812 0.953 0.831

Learning Rate: 0.0005,
Batch Size: 8, Epochs:
30, Neurons: 128, Class
Weights: False

0.571 0.563 0.830 0.830

Learning Rate: 0.0005,
Batch Size: 8, Epochs:
30, Neurons: 128, Class
Weights: False

0.500 0.500 - -

The best set of parameters for this model corresponds to a learning rate of 1e-6, batch

size of 32, 30 epochs, 128 neurons for the dense hidden layer, and without the use of class

weights.

5.1.4.2 Individual - PCG

Results from the GridSearchCV for the individual PCG network finetuned on the Phys-

ionet 2016 PCG-only dataset (sets b, c, d, e, f) are displayed on Table 5.6.

The best set of parameters for this model corresponds to a learning rate of 1e-6, batch

size of 32, 30 epochs, 128 neurons for the dense hidden layer, and the use of class weights.

5.1.4.3 Multimodal

The setting 3 multimodal GridSearchCV results are displayed on Table 5.7.
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FIGURE 5.3: The setting 1 model average accuracy (a) and average loss (b) for the training
and validation during cross validation.

FIGURE 5.4: The setting 2 model average loss (a) and average accuracy (b) for the training
and validation during cross validation.

The best set of parameters for this model corresponds to a learning rate of 5e-5, batch

size of 8, 20 epochs, 32 neurons for the dense hidden layer and without the use of class

weights.

Figure 5.5 shows the training and validation loss and accuracy score curves, through-

out the training epochs.

FIGURE 5.5: The setting 3 model average loss (a) and average accuracy (b) for the training
and validation during cross validation.
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TABLE 5.4: The GridSearchCV results for the multimodal network with ImageNet
weights (setting 2).

Parameters Mean
Train ROC

AUC

Mean Test
ROC AUC

Mean Train
F1-score

Mean Test
F1-score

Learning Rate: 5e-05,
Batch Size: 8, Epochs:
20, Neurons: 32, , Class
Weights: False

1.000 0.882 0.989 0.855

Learning Rate: 5e-05,
Batch Size: 8, Epochs:
20, Neurons: 32, Class
Weights: True

1.000 0.869 0.985 0.858

Learning Rate: 5e-05,
Batch Size: 8, Epochs:
10, Neurons: 32, Class
Weights: False

0.984 0.860 0.962 0.863

Learning Rate: 5e-05,
Batch Size: 8, Epochs:
10, Neurons: 32, Class
Weights: True

0.995 0.852 0.949 0.811

Learning Rate: 1e-05,
Batch Size: 8, Epochs:
20, Neurons: 32, Class
Weights: False

0.998 0.835 0.985 0.849

Learning Rate: 1e-05,
Batch Size: 8, Epochs:
20, Neurons: 32, Class
Weights: True

0.994 0.824 0.950 0.809

Learning Rate: 1e-05,
Batch Size: 8, Epochs:
10, Neurons: 32, Class
Weights: True

0.956 0.759 0.889 0.739

Learning Rate: 1e-05,
Batch Size: 8, Epochs:
10, Neurons: 32, Class
Weights: False

0.962 0.753 0.930 0.822

Learning Rate: 1e-06,
Batch Size: 8, Epochs:
20, Neurons: 32, Class
Weights: True

0.794 0.658 0.751 0.696

Learning Rate: 1e-06,
Batch Size: 8, Epochs:
20, Neurons: 32, Class
Weights: False

0.748 0.615 0.839 0.796

Learning Rate: 1e-06,
Batch Size: 8, Epochs:
10, Neurons: 32, Class
Weights: False

0.684 0.614 0.796 0.775

Learning Rate: 1e-
06, Batch Size: 8,
Epochs:10, Neurons:
32, Class Weights: False

0.647 0.584 0.678 0.638
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TABLE 5.5: The GridSearchCV results for the individual network finetuned on the Phys-
ionet 2017 ECG-only dataset.

Parameters Mean
Train ROC

AUC

Mean Test
ROC AUC

Mean Train
F1-score

Mean Test
F1-score

Learning Rate: 1e-06,
Batch Size: 32, Epochs:
30, Neurons: 128, Class
Weights: False

0.933 0.855 0.819 0.738

Learning Rate: 1e-06,
Batch Size: 32, Epochs:
20, Neurons: 128, Class
Weights: False

0.916 0.845 0.780 0.700

Learning Rate: 1e-06,
Batch Size: 32, Epochs:
30, Neurons: 128, Class
Weights: True

0.948 0.845 0.846 0.731

Learning Rate: 1e-06,
Batch Size: 32, Epochs:
20, Neurons: 128, Class
Weights: True

0.917 0.832 0.822 0.701

TABLE 5.6: The GridSearchCV results for the individual network finetuned on the Phys-
ionet 2016 PCG-only dataset (sets b, c, d, e, f).

Parameters Mean
Train ROC

AUC

Mean Test
ROC AUC

Mean Train
F1-score

Mean Test
F1-score

Learning Rate: 1e-6,
Batch Size: 32, Epochs:
30, Neurons: 128, Class
Weights: True

0.996 0.969 0.853 0.730

Learning Rate: 1e-6,
Batch Size: 32, Epochs:
30, Neurons: 128, Class
Weights: False

0.999 0.967 0.947 0.673

Learning Rate: 5e-7,
Batch Size: 32, Epochs:
30, Neurons: 128, Class
Weights: True

0.986 0.956 0.800 0.696

Learning Rate: 5e-7,
Batch Size: 32, Epochs:
30, Neurons: 128, Class
Weights: False

0.990 0.955 0.860 0.639
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TABLE 5.7: The GridSearchCV results for the multimodal finetuned network (setting 3).

Parameters Mean
Train ROC

AUC

Mean Test
ROC AUC

Mean Train
F1-score

Mean Test
F1-score

Learning Rate: 5e-5,
Batch Size: 8, Epochs:
20, Neurons: 32, Class
Weights: True

1.000 0.845 0.994 0.867

Learning Rate: 5e-5,
Batch Size: 8, Epochs:
20, Neurons: 32, Class
Weights: False

1.000 0.839 0.998 0.868

Learning Rate: 1e-5,
Batch Size: 8, Epochs:
20, Neurons: 32 , Class
Weights: False

0.977 0.806 0.945 0.863

Learning Rate: 1e-5,
Batch Size: 8, Epochs:
20, Neurons: 32 , Class
Weights: True

0.977 0.804 0.932 0.813

Learning Rate: 1e-6,
Batch Size: 8, Epochs:
20, Neurons: 32, Class
Weights: True

0.746 0.595 0.728 0.658

Learning Rate: 1e-6,
Batch Size: 8, Epochs:
20, Neurons: 32, Class
Weights: False

0.702 0.588 0.831 0.809
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5.2 Evaluation

This section is devoted to the presentation of the final evaluation results. The selected

models are retrained on the full training set, tested and sample-wise classification is ob-

tained. Combining each record’s samples predictions allows the calculation of the record-

wise prediction.

5.2.1 Sample-wise classification

Scoring metrics obtained for sample-wise classification of the selected models are shown

on Table 5.8. Additionaly, the confusion matrices for all the experimental settings are

displayed on Figure 5.6.

TABLE 5.8: Sample-wise testing scores.

Setting ROC AUC Recall Precision Accuracy F1-score

Baseline - PCG 0.739 0.949 0.749 0.734 0.837
Baseline - ECG 0.865 0.875 0.861 0.808 0.868
Setting 1 0.859 0.909 0.831 0.802 0.868
Setting 2 0.888 0.920 0.851 0.827 0.884
Setting 3 0.809 0.817 0.848 0.763 0.832

Setting 2 model presents the best overall performance, outperforming the other set-

tings across all metrics presented, besides recall and precision.

Although, the baseline PCG model achieves the highest recall, it has the lowest scores

in the other metrics as it seems to exhibit a high bias towards classifying records as abnor-

mal (positive) as shown by the number of false positives in the confusion matrix.

Setting 2 outperforms the baseline models regarding ROC AUC, accuracy and F1-

score, demonstrating the effectiveness of the multimodal approach.

Setting 3 fails to outperform the baseline ECG model, showing that improvements

have to be made in this modality in order to surpass the baseline.

Figure 5.7 shows the sample-wise classification ROC curves for all the experimental

settings.

5.2.2 Record-wise classification

Record-wise testing scores are presented on Table 5.9.

Figure 5.8 shows the confusion matrices for each of the experiments.
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FIGURE 5.6: The test sample-wise classification confusion matrices for baseline PCG,
baseline ECG, setting 1, setting 2 and setting 3 models.

TABLE 5.9: Record-wise testing scores.

Setting ROC AUC Recall Precision Accuracy F1-score

Baseline - PCG 0.797 0.966 0.743 0.738 0.840
Baseline - ECG 0.885 0.885 0.856 0.811 0.870
Setting 1 0.861 0.931 0.826 0.811 0.876
Setting 2 0.913 0.931 0.844 0.828 0.885
Setting 3 0.839 0.851 0.860 0.795 0.855

Record-wise scores show a general increase in ROC AUC when compared with the

sample-wise respective across all models, demonstrating a performance gain associated

with the combination of several samples per record.

Setting 1 has a very close performance to the ECG baseline model, having better results

in terms of recall and f1-score, identical accuracy but worse ROC AUC and precision.

Setting 1 and setting 2 models have identical performance regarding recall. However,

setting 2 classifies the negative records better having higher score across the other metrics.

Setting 3 has the highest precision across all the record-wise classification score. How-

ever it is outperformed by the baseline ECG on the other metrics.
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FIGURE 5.7: The sample-wise classification ROC curves.

The baseline PCG model exhibits the same behavior as in sample-wise classification,

showing a significant bias towards classifying records as positive.

Figure 5.9 shows the record-wise classification ROC curves for the experiments per-

formed in this study.

Setting 2 has the best overall results, like in the sample-wise classification, achieving

the highest score in all the metrics besides recall.
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FIGURE 5.8: The test record-wise classification confusion matrices for baseline PCG, base-
line ECG, setting 1, setting 2 and setting 3 models.

FIGURE 5.9: The record-wise classification ROC curves.
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5.3 Discussion

A substancial portion of the models show signs of overfitting, having significantly bet-

ter training scores when compared with testing scores on the GridSearchCV. This could

be improved upon by reducing model complexity, adding regularization techniques and

using early stopping to stop training when the model’s performance starts degrading [97].

Setting 3 failed to outperform the ECG baseline, this might be explained by several

factors namely, differences in the label distribution of the datasets used for finetuning

when compared with the target dataset, especially regarding the PCG dataset, Physionet

2016 PCG only (datasets b, c, d, e, f) has only 14% of abnormal samples, meanwhile the

multimodal dataset has roughly 70%. The use of other larger and more balanced datasets

for finetuning, such as, the CirCor Digiscope Phonocardiogram Dataset [98], could also

contribute to improvements in this setting.

Nevertheless, the setting 2 model achieved an overall better performance when com-

pared with the other experimental settings, demonstrating the potential of transfer learn-

ing and multimodal classification.

As expected, settings whose best parameter combination included the use of class

weights (baseline ECG and setting 3) have results less biased towards the majority class,

performing better in classifying the minority (negative) class, as shown in Figure 5.8.

Table 5.10 shows a comparison of the setting 2 performance with other author imple-

mentations of multimodal PCG and ECG approaches that used the multimodal Physionet

2016 dataset.

TABLE 5.10: Comparison of the best performing experiments developed in this study
and other multimodal state of the art works .

Author Method Modality Accuracy
(%)

AUC
(%)

Recall (%)

Chakir et al. [44] (2020) SVM Record-
wise

92.50 95.05 92.31

Hettiarachchi et al. [43]
(2021)

CNN Record-
wise

87.67 93.75 87.72

Hettiarachchi et al. [43]
(2021)

CNN Sample-
wise

81.45 85.83 81.71

This study - setting 2 CNN Sample-
wise

82.70 88.77 92.02

This study - setting 2 CNN Record-
wise

82.79 91.26 93.10
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The developed setting 2 model shares a similar performance (specially regarding sample-

wise classification) to the Hettiarachch et al. CNN approach that used the full 405 records

from the Physionet 2016 multimodal dataset (split into 70% training, 10% validation and

20% test).

The SVM based method implemented by Chakir et al. [44], outperforms the ap-

proaches developed on this work. The results obtained by this author were based on a

small subsample of 100 simultaneous records (split into 60% training and 40% test) from

the Physionet 2016 multimodal dataset and classification was performed using a set of

handcrafted features which might not be able to capture diverse and complex abnormali-

ties that may appear on a larger dataset.





Chapter 6

Conclusions

PCG and ECG have been used separately for decades to detect cardiac abnormalities.

The main goal of this thesis is to show the effectiveness and potential of the multimodal

analysis of simultaneously recorded ECG and PCG signals. DL approaches, based on

CNN, were developed and implemented.

The main current limitation in the developing of machine learning based multimodal

PCG and ECG classification algorithms is the lack of publicly available data. Transfer

learning approaches were developed in order to leverage knowledge acquired in other

domains.

The most successful approach, combining multimodal analysis and transfer learning,

achieved scores of 82.79%, 91.26 %, 88.52% for accuracy, ROC AUC and F1-score, respec-

tively, highlighting the potential of this techniques.

Although the objectives of this work were fulfilled, in general, significant improve-

ments can still be made, which can ultimately enhance the performance. Section 6.1 pro-

vides an in depth analysis of the current limitations and future research directions.

6.1 Future work

In the course of this study, several current limitations and potential avenues for future

research have been identified. These opportunities for further improvement, exploration

and development are outlined below:

• The expansion of the individual datasets used for finetuning: by incorporating

datasets such as the CirCor Digiscope Phonocardiogram Dataset and the PhysioNet/-

Computing in Cardiology Challenge 2020 dataset [98, 99] .

75
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• The use of image data augmentation techniques to increase the training size and

attenuate overfitting [100].

• Dealing with data imbalance by using techniques besides class weights, such as

resampling, which can lead to less biased models.

• The use of other popular features, such as the spectogram and MFCC, to find the

most effective features and possibly combine them.

• The use of other CNN architectures, such as residual networks and GoogLeNet [101,

102]. Early fusion based archictectures can also be explored.

• Besides the implemented soft voting record-wise classification, other approaches

could also be studied, namely hard voting, which can lead to improvements in

record-wise performance.

• The use of segmentation techniques, such as the Pan-Tompkins algorithm for ECG

and hidden Markov models for PCG, to study the impact of the use of segmentation

in the performance [103].

• Exploration of different parameters related with the scalogram generation, such as

segment sizes, mother wavelet used, scale range and colormap to find the parame-

ters that can lead to the most effective features.
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