
SYCL™ 2020 Specification (revision 9)
The Khronos® SYCL™ Working Group

2024-08-04 16:10:50Z: commit c1bc6a170f0537f9a9467ea2b281a35e1fa65f41

Table of Contents
1. Acknowledgements . 13

2. Introduction . 16

3. SYCL architecture . 18

3.1. Overview . 18

3.2. Anatomy of a SYCL application . 18

3.3. Normative references . 20

3.4. Non-normative notes and examples . 20

3.5. The SYCL platform model . 20

3.6. The SYCL backend model . 21

3.6.1. Platform mixed version support . 22

3.7. SYCL execution model . 22

3.7.1. SYCL application execution model . 22

3.7.1.1. Backend resources managed by the SYCL application . 23

3.7.1.2. SYCL command groups and execution order . 23

3.7.1.3. Controlling execution order with events . 25

3.7.2. SYCL kernel execution model . 25

3.7.2.1. Basic kernels . 25

3.7.2.2. ND-range kernels . 25

3.7.2.3. Backend-specific kernels . 26

3.8. Memory model . 26

3.8.1. SYCL application memory model . 26

3.8.2. SYCL device memory model . 29

3.8.2.1. Access to memory. 30

3.8.3. SYCL memory consistency model . 30

3.8.3.1. Memory ordering . 31

3.8.3.2. Memory scope . 32

3.8.3.3. Atomic operations . 33

3.8.3.4. Forward progress . 33

3.9. The SYCL programming model . 33

3.9.1. Minimum version of C++ . 33

3.9.2. Alignment with future versions of C++ . 34

3.9.3. Basic data parallel kernels . 34

3.9.4. Work-group data parallel kernels . 34

3.9.5. Hierarchical data parallel kernels. 35

3.9.6. Kernels that are not launched over parallel instances. 35

3.9.7. Pre-defined kernels. 35

3.9.8. Coordination and Synchronization. 35

3.9.8.1. Host-Device Coordination . 35

3.9.8.2. Work-item Coordination. 36

3.9.9. Error handling . 36

3.9.10. Fallback mechanism. 37

SYCL 2020 rev 9

2 | Table of Contents

3.9.11. Scheduling of kernels and data movement. 37

3.9.12. Managing object lifetimes . 37

3.9.13. Device discovery and selection . 38

3.9.14. Interfacing with the SYCL backend API . 38

3.10. Memory objects . 38

3.11. Multi-dimensional objects and linearization. 39

3.11.1. Linearization . 40

3.11.2. Multi-dimensional subscript operators . 40

3.12. Implementation options . 40

3.12.1. Single source multiple compiler passes. 40

3.12.2. Single source single compiler pass . 41

3.12.3. Library-only implementation. 41

3.13. Language restrictions in kernels . 41

3.13.1. Device copyable . 41

3.14. Endianness support . 43

3.15. Example SYCL application . 43

4. SYCL programming interface . 45

4.1. Backends. 45

4.1.1. Backend macros. 45

4.2. Generic vs non-generic SYCL . 45

4.3. Header files and namespaces . 46

4.4. Class availability . 46

4.5. Common interface . 46

4.5.1. Backend interoperability. 47

4.5.1.1. Type traits backend_traits . 47

4.5.1.2. Template function get_native . 48

4.5.1.3. Template functions make_* . 48

4.5.2. Common reference semantics . 50

4.5.3. Common by-value semantics . 52

4.5.4. Properties . 54

4.5.4.1. Properties interface . 55

4.6. SYCL runtime classes . 56

4.6.1. Device selection . 56

4.6.1.1. Device selector . 56

4.6.2. Platform class . 60

4.6.2.1. Platform interface . 60

4.6.2.2. Platform information descriptors . 62

4.6.3. Context class . 62

4.6.3.1. Context interface . 63

4.6.3.2. Context information descriptors . 65

4.6.3.3. Context properties . 67

4.6.4. Device class . 67

4.6.4.1. Device interface . 67

SYCL 2020 rev 9

Table of Contents | 3

4.6.4.2. Device information descriptors . 72

4.6.4.3. Device aspects . 84

4.6.5. Queue class . 88

4.6.5.1. Queue interface . 89

4.6.5.2. Queue shortcut functions . 96

4.6.5.3. Queue information descriptors . 102

4.6.5.4. Queue properties . 102

4.6.5.5. Queue error handling . 103

4.6.6. Event class. 103

4.6.6.1. Event information and profiling descriptors . 107

4.7. Data access and storage in SYCL . 109

4.7.1. Host allocation . 109

4.7.1.1. Default allocators . 109

4.7.2. Buffers . 110

4.7.2.1. Buffer interface . 111

4.7.2.2. Buffer properties . 129

4.7.2.3. Buffer destruction rules . 130

4.7.3. Images . 132

4.7.3.1. Unsampled image interface. 133

4.7.3.2. Sampled image interface . 146

4.7.3.3. Image properties . 152

4.7.3.4. Image destruction rules . 154

4.7.4. Sharing host memory with the SYCL data management classes . 154

4.7.4.1. Default behavior. 154

4.7.4.2. SYCL ownership of the host memory . 154

4.7.4.3. Shared SYCL ownership of the host memory . 155

4.7.5. Synchronization primitives . 155

4.7.6. Accessors . 156

4.7.6.1. Data type . 157

4.7.6.2. Access modes. 157

4.7.6.3. Deduction tags . 158

4.7.6.4. Properties. 158

4.7.6.5. Read only accessors . 160

4.7.6.6. Accessing elements of an accessor. 160

4.7.6.7. Container interface . 160

4.7.6.8. Ranged accessors . 161

4.7.6.9. Buffer accessor for commands . 161

4.7.6.9.1. Interface for buffer command accessors . 162

4.7.6.9.2. Deduction tags for buffer command accessors . 173

4.7.6.9.3. Read only buffer command accessors and implicit conversions 173

4.7.6.9.4. Deprecated features of the accessor class. 173

4.7.6.9.4.1. Aliased names. 173

4.7.6.9.4.2. Discard access modes . 174

SYCL 2020 rev 9

4 | Table of Contents

4.7.6.9.4.3. Placeholder template parameter . 174

4.7.6.9.4.4. Additional member functions for target::device specialization. 174

4.7.6.9.4.5. Accessor specialization with target::constant_buffer . 174

4.7.6.9.4.6. Accessor specialization with target::host_buffer . 179

4.7.6.9.4.7. Accessor specialization with target::local. 182

4.7.6.9.4.8. Common members for deprecated accessors . 185

4.7.6.9.4.9. Accessor specialization with access_mode::atomic . 188

4.7.6.10. Buffer accessor for host code . 189

4.7.6.10.1. Interface for buffer host accessors. 189

4.7.6.10.2. Deduction tags for buffer host accessors . 195

4.7.6.10.3. Read only buffer host accessors and implicit conversions. 195

4.7.6.11. Local accessor . 195

4.7.6.11.1. Interface for local accessors. 195

4.7.6.11.2. Read only local accessors and implicit conversions. 199

4.7.6.12. Common members for buffer and local accessors . 199

4.7.6.13. Unsampled image accessors . 205

4.7.6.13.1. Interface for unsampled image accessors . 206

4.7.6.13.2. Read only unsampled image accessors and implicit conversions 209

4.7.6.14. Sampled image accessors. 209

4.7.6.14.1. Interface for sampled image accessors . 209

4.7.6.14.2. Read only sampled image accessors and implicit conversions . 212

4.7.7. Address space classes . 212

4.7.7.1. Multi-pointer class . 212

4.7.7.2. Explicit pointer aliases . 233

4.7.8. Image samplers . 234

4.8. Unified shared memory (USM) . 235

4.8.1. Unified addressing . 237

4.8.2. Kinds of unified shared memory. 237

4.8.3. USM allocations . 239

4.8.3.1. C++ allocator interface . 240

4.8.3.2. Device allocation functions . 242

4.8.3.3. Host allocation functions . 244

4.8.3.4. Shared allocation functions. 245

4.8.3.5. Parameterized allocation functions. 247

4.8.3.6. Memory deallocation functions . 249

4.8.4. Unified shared memory pointer queries. 250

4.9. Expressing parallelism through kernels. 251

4.9.1. Ranges and index space identifiers . 251

4.9.1.1. range class . 251

4.9.1.2. nd_range class . 255

4.9.1.3. id class . 256

4.9.1.4. item class . 260

4.9.1.5. nd_item class . 262

SYCL 2020 rev 9

Table of Contents | 5

4.9.1.6. h_item class . 268

4.9.1.7. group class . 271

4.9.1.8. sub_group class. 278

4.9.2. Reduction variables . 280

4.9.2.1. reduction interface. 283

4.9.2.2. Reduction properties. 285

4.9.2.3. reducer class . 286

4.9.3. Command group scope . 289

4.9.4. Command group handler class . 290

4.9.4.1. SYCL functions for adding requirements . 292

4.9.4.2. SYCL functions for invoking kernels . 293

4.9.4.2.1. single_task invoke . 299

4.9.4.2.2. parallel_for invoke . 300

4.9.4.2.3. Parallel for hierarchical invoke. 303

4.9.4.3. SYCL functions for explicit memory operations . 306

4.9.4.4. Functions for using a kernel bundle . 310

4.9.5. Specialization constants . 311

4.9.5.1. Declaring a specialization constant . 311

4.9.5.1.1. Constructors . 313

4.9.5.1.2. Special member functions . 313

4.9.5.2. Setting and getting the value of a specialization constant . 313

4.9.5.3. Reading the value of a specialization constant from device code . 314

4.9.5.3.1. Member functions. 315

4.9.5.4. Example usage . 315

4.10. Host tasks . 316

4.10.1. Overview. 316

4.10.2. Class interop_handle . 317

4.10.2.1. Constructors . 318

4.10.2.2. Member functions . 318

4.10.2.3. Template member functions get_native_* . 318

4.10.3. Additions to the handler class. 320

4.11. Kernel bundles . 320

4.11.1. Overview. 321

4.11.2. Synopsis. 322

4.11.3. Fixed-function built-in kernels . 324

4.11.4. Bundle states . 324

4.11.5. Kernel identifiers . 325

4.11.6. Obtaining a kernel identifier . 325

4.11.7. Obtaining a kernel bundle . 326

4.11.8. Querying if a kernel bundle exists . 328

4.11.9. Querying if a kernel is compatible with a device . 330

4.11.10. Joining kernel bundles . 330

4.11.11. Online compiling and linking . 330

SYCL 2020 rev 9

6 | Table of Contents

4.11.12. The kernel_bundle class . 333

4.11.12.1. Queries . 334

4.11.12.2. Specialization constant support . 335

4.11.12.3. Device image support . 336

4.11.13. The kernel class . 337

4.11.13.1. Queries . 337

4.11.13.2. Kernel information descriptors . 338

4.11.14. The device_image class . 340

4.11.15. Example usage. 341

4.11.15.1. Controlling the timing of online compilation . 341

4.11.15.2. Specialization constants. 341

4.11.15.3. Kernel introspection . 342

4.11.15.4. Invoking a device built-in kernel. 343

4.12. Defining kernels . 344

4.12.1. Defining kernels as named function objects . 344

4.12.2. Defining kernels as lambda functions . 345

4.12.3. is_device_copyable type trait . 346

4.12.4. Rules for parameter passing to kernels . 347

4.13. Error handling . 348

4.13.1. Error handling rules. 348

4.13.1.1. Asynchronous error handler . 348

4.13.1.2. Behavior without an async handler . 348

4.13.1.3. Priorities of async handlers. 349

4.13.1.4. Asynchronous errors with a secondary queue. 349

4.13.2. Exception class interface. 350

4.14. Data types. 355

4.14.1. Scalar data types . 355

4.14.2. Vector types . 355

4.14.2.1. Vec interface . 356

4.14.2.2. Aliases. 377

4.14.2.3. Swizzles . 377

4.14.2.4. The swizzled vector classes . 378

4.14.2.4.1. Member type aliases for the swizzled vector class templates . 379

4.14.2.4.2. Constructors for the swizzled vector class templates . 379

4.14.2.4.3. Destructors for the swizzled vector class templates . 380

4.14.2.4.4. Member functions for the swizzled vector class templates . 380

4.14.2.4.5. Hidden friend functions of the swizzled vector class templates. 383

4.14.2.5. Rounding modes . 388

4.14.2.6. Memory layout and alignment . 388

4.14.2.7. Performance note . 389

4.14.3. Math array types . 389

4.14.3.1. Math array interface . 389

4.14.3.2. Aliases. 401

SYCL 2020 rev 9

Table of Contents | 7

4.14.3.3. Memory layout and alignment . 401

4.15. Synchronization and atomics . 401

4.15.1. Barriers and fences. 402

4.15.2. device_event class . 402

4.15.3. Atomic references. 403

4.15.4. Atomic types (deprecated) . 414

4.15.5. Interaction with host code . 422

4.16. Stream class. 423

4.16.1. Stream class interface . 423

4.16.2. Output . 427

4.16.3. Implicit flush . 428

4.16.4. Performance note . 428

4.17. SYCL built-in functions for SYCL host and device . 428

4.17.1. Function objects . 428

4.17.2. Group functions. 430

4.17.2.1. Group type trait . 431

4.17.2.2. group_broadcast . 431

4.17.2.3. group_barrier . 432

4.17.3. Group algorithms library . 432

4.17.3.1. any_of, all_of and none_of . 433

4.17.3.2. shift_left and shift_right . 436

4.17.3.3. permute . 437

4.17.3.4. select . 437

4.17.3.5. reduce . 438

4.17.3.6. exclusive_scan and inclusive_scan . 439

4.17.4. Math functions. 443

4.17.5. Native precision math functions . 481

4.17.6. Half precision math functions . 487

4.17.7. Integer functions. 494

4.17.8. Common functions . 505

4.17.9. Geometric functions . 510

4.17.10. Relational functions . 514

5. SYCL Device Compiler . 530

5.1. Offline compilation of SYCL source files. 530

5.2. Naming of kernels . 530

5.3. Compilation of functions . 531

5.4. Language restrictions for device functions . 531

5.5. Built-in scalar data types . 532

5.6. Preprocessor directives and macros . 534

5.7. Optional kernel features. 534

5.8. Attributes for device code . 535

5.8.1. Kernel attributes . 536

5.8.2. Device function attributes. 540

SYCL 2020 rev 9

8 | Table of Contents

5.9. Address-space deduction . 541

5.9.1. Address space assignment . 542

5.9.2. Common address space deduction rules . 542

5.9.3. Generic as default address space . 543

5.9.4. Inferred address space. 543

5.10. SYCL offline linking . 543

5.10.1. SYCL functions and member functions linkage. 543

6. SYCL Extensions. 545

6.1. Definition of an extension . 545

6.2. Requirements for an extension . 545

6.3. Guidelines for portable extensions . 546

6.3.1. Extension namespace. 546

6.3.2. Names for extensions to existing classes or enumerations . 546

6.3.3. Feature test macros. 546

6.3.4. Attribute namespace . 547

6.3.5. Include file paths. 547

6.3.6. Optional kernel features . 547

6.3.7. Adding a backend . 547

Appendix A: Information descriptors. 548

A.1. Platform information descriptors . 548

A.2. Context information descriptors . 548

A.3. Device information descriptors . 548

A.4. Queue information descriptors . 551

A.5. Kernel information descriptors . 551

A.6. Event information descriptors . 552

Appendix B: Feature sets . 553

B.1. Full feature set . 553

B.2. Reduced feature set . 553

B.3. Compatibility. 553

B.4. Conformance. 553

Appendix C: OpenCL backend specification . 554

C.1. SYCL application interoperability native backend objects . 554

C.2. Kernel function interoperability native backend objects . 554

C.3. Destruction of interop constructed objects with reference semantics . 555

C.4. SYCL for OpenCL framework . 555

C.5. Mapping of SYCL programming model on top of OpenCL . 556

C.5.1. Backend specific information descriptors . 556

C.5.2. OpenCL memory model. 556

C.5.3. OpenCL interface for buffer command accessors. 557

C.5.4. OpenCL resources managed by SYCL application. 557

C.6. Interoperability with the OpenCL API . 557

C.7. Programming interface . 560

C.7.1. Construct SYCL objects from OpenCL ones. 560

SYCL 2020 rev 9

Table of Contents | 9

C.7.2. Extension query . 562

C.7.3. Reference counting. 563

C.7.4. Errors and limitations . 563

C.7.5. Interoperability with kernel bundles. 563

C.7.6. Interoperability with kernels. 564

C.7.7. OpenCL kernel conventions and SYCL. 565

C.7.8. Data types . 566

C.8. Preprocessor directives and macros . 567

C.8.1. Offline linking with OpenCL C libraries . 567

C.9. SYCL support of non-core OpenCL features. 567

C.9.1. Half precision floating-point . 568

C.9.2. Writing to 3D image memory objects . 568

C.9.3. Interoperability with OpenGL . 568

C.10. Correspondence of some OpenCL features to SYCL. 568

C.10.1. Work-item functions . 568

C.10.2. Vector data load and store functions . 568

C.10.3. Synchronization functions . 569

C.10.4. printf function . 569

C.11. Precision of built-in math functions . 569

Appendix D: What has changed from previous versions . 570

D.1. What has changed from SYCL 1.2.1 to SYCL 2020 . 570

Appendix E: References . 576

Glossary . 577

SYCL 2020 rev 9

10 | Table of Contents

Copyright 2011-2024 The Khronos Group Inc.

This Specification is protected by copyright laws and contains material proprietary to Khronos. Except as
described by these terms, it or any components may not be reproduced, republished, distributed, trans
mitted, displayed, broadcast or otherwise exploited in any manner without the express prior written
permission of Khronos.

Khronos grants a conditional copyright license to use and reproduce the unmodified Specification for
any purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark or other intellectual
property rights are granted under these terms.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this Specification, including, without limitation: merchantability, fitness for a particular pur
pose, non-infringement of any intellectual property, correctness, accuracy, completeness, timeliness, and
reliability. Under no circumstances will Khronos, or any of its Promoters, Contributors or Members, or
their respective partners, officers, directors, employees, agents or representatives be liable for any dam
ages, whether direct, indirect, special or consequential damages for lost revenues, lost profits, or other
wise, arising from or in connection with these materials.

This Specification has been created under the Khronos Intellectual Property Rights Policy, which is
Attachment A of the Khronos Group Membership Agreement available at https://www.khronos.org/files/
member_agreement.pdf. Parties desiring to implement the Specification and make use of Khronos trade
marks in relation to that implementation, and receive reciprocal patent license protection under the
Khronos Intellectual Property Rights Policy must become Adopters and confirm the implementation as
conformant under the process defined by Khronos for this Specification; see https://www.khronos.org/
adopters.

The Khronos Intellectual Property Rights Policy defines the terms 'Scope', 'Compliant Portion', and 'Nec
essary Patent Claims'.

Some parts of this Specification are purely informative and so are EXCLUDED from the Scope of this
Specification. Section 3.4 defines how these parts of the Specification are identified.

Where this Specification uses technical terminology, defined in the Glossary or otherwise, that refer to
enabling technologies that are not expressly set forth in this Specification, those enabling technologies
are EXCLUDED from the Scope of this Specification. For clarity, enabling technologies not disclosed with
particularity in this Specification (e.g. semiconductor manufacturing technology, hardware architecture,
processor architecture or microarchitecture, memory architecture, compiler technology, object oriented
technology, basic operating system technology, compression technology, algorithms, and so on) are NOT
to be considered expressly set forth; only those application program interfaces and data structures dis
closed with particularity are included in the Scope of this Specification.

For purposes of the Khronos Intellectual Property Rights Policy as it relates to the definition of Necessary
Patent Claims, all recommended or optional features, behaviors and functionality set forth in this Speci
fication, if implemented, are considered to be included as Compliant Portions.

Where this Specification identifies specific sections of external references, only those specifically identi
fied sections define normative functionality. The Khronos Intellectual Property Rights Policy excludes
external references to materials and associated enabling technology not created by Khronos from the
Scope of this Specification, and any licenses that may be required to implement such referenced materi
als and associated technologies must be obtained separately and may involve royalty payments.

Khronos® and Vulkan® are registered trademarks, and 3D Commerce™, ANARI™, Kamaros™, KTX™,
glTF™, NNEF™, OpenVG™, OpenVX™, SPIR™, SPIR-V™, SYCL™, Vulkan SC™, and WebGL™ are trademarks
of The Khronos Group Inc. OpenXR™ is a trademark owned by The Khronos Group Inc. and is registered
as a trademark in China, the European Union, Japan and the United Kingdom. OpenCL™ is a trademark
of Apple Inc. used under license by Khronos. OpenGL® is a registered trademark and the OpenGL ES™
and OpenGL SC™ logos are trademarks of Hewlett Packard Enterprise used under license by Khronos.

SYCL 2020 rev 9

Preface | 11

https://www.khronos.org/files/member_agreement.pdf
https://www.khronos.org/files/member_agreement.pdf
https://www.khronos.org/adopters
https://www.khronos.org/adopters

ASTC is a trademark of ARM Holdings PLC. All other product names, trademarks, and/or company names
are used solely for identification and belong to their respective owners.

SYCL 2020 rev 9

12 | Preface

Chapter 1. Acknowledgements
Editors

• Maria Rovatsou, Codeplay

• Lee Howes, Qualcomm

• Ronan Keryell, AMD

• Greg Lueck, Intel (current)

Contributors

• Eric Berdahl, Adobe

• Shivani Gupta, Adobe

• David Neto, Altera

• Carlo Bertolli, AMD

• Andrew Gozillon, AMD

• Gauthier Harnisch, AMD

• Ronan Keryell, AMD

• Yiannis Papadopoulos, AMD

• Brian Sumner, AMD

• Lin-Ya Yu, AMD

• Thomas Applencourt, Argonne National Laboratory

• Hal Finkel, Argonne National Laboratory

• Kevin Harms, Argonne National Laboratory

• Nevin Liber, Argonne National Laboratory

• Anastasia Stulova, ARM

• Balázs Keszthelyi, Broadcom

• Alexandra Crabb, Caster Communications

• Stuart Adams, Codeplay

• Verena Beckham, Codeplay

• Aidan Belton, Codeplay

• Gordon Brown, Codeplay

• Hugh Delaney, Codeplay

• Atharva Dubey, Codeplay

• Morris Hafner, Codeplay

• Alexander Johnston, Codeplay

• Marios Katsigiannis, Codeplay

• Paul Keir, Codeplay

• Steffen Larsen, Codeplay

• Victor Lomüller, Codeplay

• Tomas Matheson, Codeplay

• Duncan McBain, Codeplay

• Nicolas Miller, Codeplay

SYCL 2020 rev 9

Chapter 1. Acknowledgements | 13

• Georgi Mirazchiyski, Codeplay

• Mahmoud Moadeli, Codeplay

• Ralph Potter, Codeplay

• Ruyman Reyes, Codeplay

• Andrew Richards, Codeplay

• Maria Rovatsou, Codeplay

• Panagiotis Stratis, Codeplay

• Michael Wong, Codeplay

• Peter Žužek, Codeplay

• Matt Newport, EA

• Rasool Maghareh, Huawei Technologies Co. Ltd.

• Guansong Zhang, Huawei Technologies Co. Ltd.

• Ruslan Arutyunyan, Intel

• Alexey Bader, Intel

• James Brodman, Intel

• Ilya Burylov, Intel

• Jessica Davies, Intel

• Felipe de Azevedo Piovezan, Intel

• Allen Hux, Intel

• Michael Kinsner, Intel

• Nikita Kornev, Intel

• Greg Lueck, Intel

• John Pennycook, Intel

• Roland Schulz, Intel

• Sergey Semenov, Intel

• Jason Sewall, Intel

• James O’Riordon, Khronos

• Jon Leech, Luna Princeps LLC

• Kathleen Mattson, Miller & Mattson, LLC

• Dave Miller, Miller & Mattson, LLC

• Stéphanie Even, Mercedes-Benz Research and Development NA

• Chris Gearing, Mobileye

• Seiji Nishimura, NSITEXE, Inc.

• Neil Trevett, NVIDIA

• Lee Howes, Qualcomm

• Chu-Cheow Lim, Qualcomm

• Jack Liu, Qualcomm

• Hongqiang Wang, Qualcomm

• Ruihao Zhang, Qualcomm

• Dave Airlie, Red Hat

• Hyesun Hong, Samsung Electronics

SYCL 2020 rev 9

14 | Chapter 1. Acknowledgements

• Aksel Alpay, Self

• Dániel Berényi, Self

• Nuno Nobre, STFC Hartree Centre

• Máté Nagy-Egri, Stream HPC

• Bálint Soproni, Stream HPC

• Tom Deakin, University of Bristol

• Philip Salzmann, University of Innsbruck

• Peter Thoman, University of Innsbruck

• Biagio Cosenza, University of Salerno

• Paul Preney, University of Windsor

SYCL 2020 rev 9

Chapter 1. Acknowledgements | 15

Chapter 2. Introduction
SYCL (pronounced “sickle”) is a royalty-free, cross-platform abstraction C++ programming model for het
erogeneous computing. SYCL builds on the underlying concepts, portability and efficiency of parallel API
or standards like OpenCL while adding much of the ease of use and flexibility of single-source C++.

Developers using SYCL are able to write standard modern C++ code, with many of the techniques they
are accustomed to, such as inheritance and templates. At the same time, developers have access to the
full range of capabilities of the underlying implementation (such as OpenCL) both through the features
of the SYCL libraries and, where necessary, through interoperation with code written directly using the
underneath implementation, via their APIs.

To reduce programming effort and increase the flexibility with which developers can write code, SYCL
extends the concepts found in standards like OpenCL model in a few ways beyond the general use of C++
features:

• execution of parallel kernels on a heterogeneous device is made simultaneously convenient and flexi
ble. Common parallel patterns are prioritized with simple syntax, which through a series C++ types
allow the programmer to express additional requirements, such as dependencies, if needed;

• when using buffers and accessors, data access in SYCL is separated from data storage. By relying on
the C++-style resource acquisition is initialization (RAII) idiom to capture data dependencies between
device code blocks, the runtime library can track data movement and provide correct behavior with
out the complexity of manually managing event dependencies between kernel instances and without
the programmer having to explicitly move data. This approach enables the data-parallel task-graphs
that might be already part of the execution model to be built up easily and safely by SYCL program
mers;

• Unified Shared Memory (USM) provides a mechanism for explicit data allocation and movement. This
approach enables the use of pointer-based algorithms and data structures on heterogeneous devices,
and allows for increased re-use of code across host and device;

• the hierarchical parallelism syntax offers a way of expressing data parallelism similar to the OpenCL
device or OpenMP target device execution model in an easy-to-understand modern C++ form. It more
cleanly layers parallel loops to avoid fragmentation of code and to more efficiently map to CPU-style
architectures.

SYCL retains the execution model, runtime feature set and device capabilities inspired by the OpenCL
standard. This standard imposes some limitations on the full range of C++ features that SYCL is able to
support. This ensures portability of device code across as wide a range of devices as possible. As a result,
while the code can be written in standard C++ syntax with interoperability with standard C++ programs,
the entire set of C++ features is not available in SYCL device code. In particular, SYCL device code, as
defined by this specification, does not support virtual function calls, function pointers in general, excep
tions, runtime type information or the full set of C++ libraries that may depend on these features or on
features of a particular host compiler. Nevertheless, these basic restrictions can be relieved by some spe
cific Khronos or vendor extensions.

SYCL implements an SMCP design which offers the power of source integration while allowing tool
chains to remain flexible. The SMCP design supports embedding of code intended to be compiled for a
device, for example a GPU, inline with host code. This embedding of code offers three primary benefits:

Simplicity
For novice programmers using frameworks like OpenCL, the separation of host and device source
code in OpenCL can become complicated to deal with, particularly when similar kernel code is used
for multiple different operations on different data types. A single compiler flow and integrated tool
chain combined with libraries that perform a lot of simple tasks simplifies initial OpenCL programs to
a minimum complexity. This reduces the learning curve for programmers new to heterogeneous pro
gramming and allows them to concentrate on parallelization techniques rather than syntax.

SYCL 2020 rev 9

16 | Chapter 2. Introduction

Reuse
C++'s type system allows for complex interactions between different code units and supports efficient
abstract interface design and reuse of library code. For example, a transform or map operation
applied to an array of data may allow specialization on both the operation applied to each element of
the array and on the type of the data. The SMCP design of SYCL enables this interaction to bridge the
host code/device code boundary such that the device code to be specialized on both of these factors
directly from the host code.

Efficiency
Tight integration with the type system and reuse of library code enables a compiler to perform inlin
ing of code and to produce efficient specialized device code based on decisions made in the host code
without having to generate kernel source strings dynamically.

The use of C++ features such as generic programming, templated code, functional programming and
inheritance on top of existing heterogeneous execution model opens a wide scope for innovation in soft
ware design for heterogeneous systems. Clean integration of device and host code within a single C++
type system enables the development of modern, templated generic and adaptable libraries that build
simple, yet efficient, interfaces to offer more developers access to heterogeneous computing capabilities
and devices. SYCL is intended to serve as a foundation for innovation in programming models for het
erogeneous systems, that builds on open and widely implemented standard foundation like OpenCL or
Vulkan.

SYCL is designed to be as close to standard C++ as possible. In practice, this means that as long as no
dependence is created on SYCL’s integration with the underlying implementation, a standard C++ com
piler can compile SYCL programs and they will run correctly on a host CPU. Any use of specialized low-
level features can be masked using the C preprocessor in the same way that compiler-specific intrinsics
may be hidden to ensure portability between different host compilers.

SYCL is designed to allow a compilation flow where the source file is passed through multiple different
compilers, including a standard C++ host compiler of the developer’s choice, and where the resulting
application combines the results of these compilation passes. This is distinct from a single-source flow
that might use language extensions that preclude the use of a standard host compiler. The SYCL standard
does not preclude the use of a single compiler flow, but is designed to not require it. SYCL can also be
implemented purely as a library, in which case no special compiler support is required at all.

The advantages of this design are two-fold. First, it offers better integration with existing tool chains. An
application that already builds using a chosen compiler can continue to do so when SYCL code is added.
Using the SYCL tools on a source file within a project will both compile for a device and let the same
source file be compiled using the same host compiler that the rest of the project is compiled with. Link
ing and library relationships are unaffected. This design simplifies porting of pre-existing applications to
SYCL. Second, the design allows the optimal compiler to be chosen for each device where different ven
dors may provide optimized tool-chains.

To summarize, SYCL enables computational kernels to be written inside C++ source files as normal C++
code, leading to the concept of “single-source” programming. This means that software developers can
develop and use generic algorithms and data structures using standard C++ template techniques, while
still supporting multi-platform, multi-device heterogeneous execution. Access to the low level APIs of an
underlying implementation (such as OpenCL) is also supported. The specification has been designed to
enable implementation across as wide a variety of platforms as possible as well as ease of integration
with other platform-specific technologies, thereby letting both users and implementers build on top of
SYCL as an open platform for system-wide heterogeneous processing innovation.

SYCL 2020 rev 9

Chapter 2. Introduction | 17

Chapter 3. SYCL architecture
This chapter describes the structure of a SYCL application, and how the SYCL generic programming
model lays out on top of a number of SYCL backends.

3.1. Overview
SYCL is an open industry standard for programming a heterogeneous system. The design of SYCL allows
standard C++ source code to be written such that it can run on either an heterogeneous device or on the
host.

The terminology used for SYCL inherits historically from OpenCL with some SYCL-specific additions.
However SYCL is a generic C++ programming model that can be laid out on top of other heterogeneous
APIs apart from OpenCL. SYCL implementations can provide SYCL backends for various heterogeneous
APIs, implementing the SYCL general specification on top of them. We refer to this heterogeneous API as
the SYCL backend API. The SYCL general specification defines the behavior that all SYCL implementa
tions must expose to SYCL users for a SYCL application to behave as expected.

A function object that can execute on a device exposed by a SYCL backend API is called a SYCL kernel
function.

To ensure maximum interoperability with different SYCL backend APIs, software developers can access
the SYCL backend API alongside the SYCL general API whenever they include the SYCL backend interop
erability headers. However, interoperability is a SYCL backend-specific feature. An application that uses
interoperability does not conform to the SYCL general application model, since it is not portable across
backends.

The target users of SYCL are C++ programmers who want all the performance and portability features of
a standard like OpenCL, but with the flexibility to use higher-level C++ abstractions across the
host/device code boundary. Developers can use most of the abstraction features of C++, such as tem
plates, classes and operator overloading.

However, some C++ language features are not permitted inside kernels, due to the limitations imposed
by the capabilities of the underlying heterogeneous platforms. These features include virtual functions,
virtual inheritance, throwing/catching exceptions, and run-time type-information. These features are
available outside kernels as normal. Within these constraints, developers can use abstractions defined
by SYCL, or they can develop their own on top. These capabilities make SYCL ideal for library developers,
middleware providers and application developers who want to separate low-level highly-tuned algo
rithms or data structures that work on heterogeneous systems from higher-level software development.
Software developers can produce templated algorithms that are easily usable by developers in other
fields.

3.2. Anatomy of a SYCL application
Below is an example of a typical SYCL application which schedules a job to run in parallel on any hetero
geneous device available.

 1 #include <iostream>
 2 #include <sycl/sycl.hpp>
 3 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 4
 5 int main() {
 6 int data[1024]; // Allocate data to be worked on
 7
 8 // Create a default queue to enqueue work to the default device

3.1. Overview SYCL 2020 rev 9

18 | Chapter 3. SYCL architecture

 9 queue myQueue;
10
11 // By wrapping all the SYCL work in a {} block, we ensure
12 // all SYCL tasks must complete before exiting the block,
13 // because the destructor of resultBuf will wait
14 {
15 // Wrap our data variable in a buffer
16 buffer<int, 1> resultBuf { data, range<1> { 1024 } };
17
18 // Create a command group to issue commands to the queue
19 myQueue.submit([&](handler& cgh) {
20 // Request write access to the buffer without initialization
21 accessor writeResult { resultBuf, cgh, write_only, no_init };
22
23 // Enqueue a parallel_for task with 1024 work-items
24 cgh.parallel_for(1024, [=](id<1> idx) {
25 // Initialize each buffer element with its own rank number starting at 0
26 writeResult[idx] = idx;
27 }); // End of the kernel function
28 }); // End of our commands for this queue
29 } // End of scope, so we wait for work producing resultBuf to complete
30
31 // Print result
32 for (int i = 0; i < 1024; i++)
33 std::cout << "data[" << i << "] = " << data[i] << std::endl;
34
35 return 0;
36 }

At line 1, we #include the SYCL header files, which provide all of the SYCL features that will be used.

A SYCL application runs on a SYCL Platform. The application is structured in three scopes which specify
the different sections; application scope, command group scope and kernel scope. The kernel scope spec
ifies a single kernel function that will be, or has been, compiled by a device compiler and executed on a
device. In this example kernel scope is defined by lines 25 to 26. The command group scope specifies a
unit of work which is comprised of a SYCL kernel function and accessors. In this example command
group scope is defined by lines 20 to 28. The application scope specifies all other code outside of a com
mand group scope. These three scopes are used to control the application flow and the construction and
lifetimes of the various objects used within SYCL, as explained in Section 3.9.12.

A SYCL kernel function is the scoped block of code that will be compiled using a device compiler. This
code may be defined by the body of a lambda function or by the operator() function of a function object.
Each instance of the SYCL kernel function will be executed as a single, though not necessarily entirely
independent, flow of execution and has to adhere to restrictions on what operations may be allowed to
enable device compilers to safely compile it to a range of underlying devices.

The parallel_for member function can be templated with a class. This class is used to manually name
the kernel when desired, such as to avoid a compiler-generated name when debugging a kernel defined
through a lambda, to provide a known name with which to apply build options to a kernel, or to ensure
compatibility with multiple compiler-pass implementations.

The parallel_for member function creates an instance of a kernel, which is the entity that will be
enqueued within a command group. In the case of parallel_for the SYCL kernel function will be exe
cuted over the given range from 0 to 1023. The different member functions to execute kernels can be
found in Section 4.9.4.2.

SYCL 2020 rev 9 3.2. Anatomy of a SYCL application

Chapter 3. SYCL architecture | 19

A command group scope is the syntactic scope wrapped by the construction of a command group func
tion object as seen on line 19. The command group function object may invoke only a single SYCL kernel
function, and it takes a parameter of type command group handler, which is constructed by the runtime.

All the requirements for a kernel to execute are defined in this command group scope, as described in
Section 3.7.1. In this case the constructor used for myQueue on line 9 is the default constructor, which
allows the queue to select the best underlying device to execute on, leaving the decision up to the run
time.

In SYCL, data that is required within a SYCL kernel function must be contained within a buffer, image, or
USM allocation, as described in Section 3.8. We construct a buffer on line 16. Access to the buffer is con
trolled via an accessor which is constructed on line 21. The buffer is used to keep track of access to the
data and the accessor is used to request access to the data on a queue, as well as to track the dependen
cies between SYCL kernel function. In this example the accessor is used to write to the data buffer on
line 26.

3.3. Normative references
The documents in the following list are referred to within this SYCL specification, and their content is a
requirement for this document.

1. C++17: ISO/IEC 14882:2017 Clauses 1-19, referred to in this specification as the C++ core language. The
SYCL specification refers to language in the following C++ defect reports and assumes a compiler that
implements them: DR2325.

2. C++20: ISO/IEC 14882:2020 Programming languages — C++, referred to in this specification as the next
C++ specification.

3.4. Non-normative notes and examples
Unless stated otherwise, text within this SYCL specification is normative and defines the required behav
ior of a SYCL implementation. Non-normative / informational notes are included within this specifica
tion using either of two formats. One format for non-normative notes is the “note” callout of this form:

Information within a note callout, such as this text, is for informational purposes and
does not impose requirements on or specify behavior of a SYCL implementation.

The other format for a non-normative note is like this:

[Note: This is also a non-normative note. — end note]

Source code examples within the specification are provided to aid with understanding, and are non-nor
mative.

In case of any conflict between a non-normative note or source example, and normative text within the
specification, the normative text must be taken to be correct.

3.5. The SYCL platform model
The SYCL platform model consists of a host connected to one or more heterogeneous devices, called
devices. Devices are grouped together into one or multiple platforms. An implementation may also
expose empty platforms that do not contain any devices.

A SYCL context is constructed, either directly by the user or implicitly when creating a queue, to hold all
the runtime information required by the SYCL runtime and the SYCL backend to operate on a device, or
group of devices. When a group of devices can be grouped together on the same context, they have some
visibility of each other’s memory objects. The SYCL runtime can assume that memory is visible across all

3.3. Normative references SYCL 2020 rev 9

20 | Chapter 3. SYCL architecture

devices in the same context. Not all devices exposed from the same platform can be grouped together in
the same context.

A SYCL application executes on the host as a standard C++ program. Devices are exposed through differ
ent SYCL backends to the SYCL application. The SYCL application submits command group function
objects to queues. Each queue enables execution on a given device.

The SYCL runtime then extracts operations from the command group function object, e.g. an explicit
copy operation or a SYCL kernel function. When the operation is a SYCL kernel function, the SYCL run
time uses a SYCL backend-specific mechanism to extract the device binary from the SYCL application
and pass it to the heterogeneous API for execution on the device.

A SYCL device is divided into one or more compute units (CUs) which are each divided into one or more
processing elements (PEs). Computations on a device occur within the processing elements. How compu
tation is mapped to PEs is SYCL backend and device specific. Two devices exposed via two different back
ends can map computations differently to the same device.

When a SYCL application contains SYCL kernel function objects, the SYCL implementation must provide
an offline compilation mechanism that enables the integration of the device binaries into the SYCL appli
cation. The output of the offline compiler can be an intermediate representation, such as SPIR-V, that
will be finalized during execution or a final device ISA.

A device may expose special purpose functionality as a built-in function. The SYCL API exposes functions
to query and dispatch said built-in functions. Some SYCL backends and devices may not support pro
grammable kernels, and only support built-in functions.

3.6. The SYCL backend model
SYCL is a generic programming model for the C++ language that can target multiple heterogeneous APIs,
such as OpenCL.

SYCL implementations enable these target APIs by implementing SYCL backends. For a SYCL implemen
tation to be conformant on said SYCL backend, it must execute the SYCL generic programming model on
the backend. All SYCL implementations must provide at least one backend.

The present document covers the SYCL generic interface available to all SYCL backends. How the SYCL
generic interface maps to a particular SYCL backend is defined either by a separate SYCL backend speci
fication document, provided by the Khronos SYCL group, or by the SYCL implementation documentation.
Whenever there is a SYCL backend specification document, this takes precedence over SYCL implemen
tation documentation.

When a SYCL user builds their SYCL application, she decides which of the SYCL backends will be used to
build the SYCL application. This is called the set of active backends. Implementations must ensure that
the active backends selected by the user can be used simultaneously by the SYCL implementation at run
time. If two backends are available at compile time but will produce an invalid SYCL application at run
time, the SYCL implementation must emit a compilation error.

A SYCL application built with a number of active backends does not necessarily guarantee that said
backends can be executed at runtime. The subset of active backends available at runtime is called avail
able backends. A backend is said to be available if the host platform where the SYCL application is exe
cuted exposes support for the heterogeneous API required for the SYCL backend.

It is implementation dependent whether certain backends require third-party libraries to be available in
the system. Failure to have all dependencies required for all active backends at runtime will cause the
SYCL application to not run.

Once the application is running, users can query what SYCL platforms are available. SYCL implementa
tions will expose the devices provided by each backend grouped into platforms. A backend must expose

SYCL 2020 rev 9 3.6. The SYCL backend model

Chapter 3. SYCL architecture | 21

at least one platform.

Under the SYCL backend model, SYCL objects can contain one or multiple references to a certain SYCL
backend native type. Not all SYCL objects will map directly to a SYCL backend native type. The mapping
of SYCL objects to SYCL backend native types is defined by the SYCL backend specification document
when available, or by the SYCL implementation otherwise.

To guarantee that multiple SYCL backend objects can interoperate with each other, SYCL memory objects
are not bound to a particular SYCL backend. SYCL memory objects can be accessed from any device
exposed by an available backend. SYCL Implementations can potentially map SYCL memory objects to
multiple native types in different SYCL backends.

Since SYCL memory objects are independent of any particular SYCL backend, SYCL command groups can
request access to memory objects allocated by any SYCL backend, and execute it on the backend associ
ated with the queue. This requires the SYCL implementation to be able to transfer memory objects
across SYCL backends.

USM allocations are subject to the limitations described in Section 4.8.

When a SYCL application runs on any number of SYCL backends without relying on any SYCL backend
-specific behavior or interoperability, it is said to be a SYCL general application, and it is expected to run
in any SYCL-conformant implementation that supports the required features for the application.

3.6.1. Platform mixed version support

The SYCL generic programming model exposes a number of platforms, each of them either empty or
exposing a number of devices. Each platform is bound to a certain SYCL backend. SYCL devices associ
ated with said platform are associated with that SYCL backend.

Although the APIs in the SYCL generic programming model are defined according to this specification
and their version is indicated by the macro SYCL_LANGUAGE_VERSION, this does not apply to APIs exposed by
the SYCL backends. Each SYCL backend provides its own document that defines its APIs, and that docu
ment tells how to query for the device and platform versions.

3.7. SYCL execution model
As described in Section 3.2, a SYCL application is comprised of three scopes: application scope, command
group scope, and kernel scope. Code in the application scope and command group scope runs on the host
and is governed by the SYCL application execution model. Code in the kernel scope runs on a device and
is governed by the SYCL kernel execution model.

A SYCL device does not necessarily correspond to a physical accelerator. A SYCL imple
mentation may choose to expose some or all of the host’s resources as a SYCL device;
such an implementation would execute code in kernel scope on the host, but that code
would still be governed by the SYCL kernel execution model.

3.7.1. SYCL application execution model

The SYCL application defines the execution order of the kernels by grouping each kernel with its
requirements into a command group function object. Command group function objects are submitted
for execution via a queue object, which defines the device where the kernel will run. This specification
sometimes refers to this as “submitting the kernel to a device”. The same command group object can be
submitted to different queues. When a command group is submitted to a SYCL queue, the requirements
of the kernel execution are captured. The implementation can start executing a kernel as soon as its
requirements have been satisfied.

3.6.1. Platform mixed version support SYCL 2020 rev 9

22 | Chapter 3. SYCL architecture

3.7.1.1. Backend resources managed by the SYCL application

The SYCL runtime integrated with the SYCL application will manage the resources required by the SYCL
backend API to manage the heterogeneous devices it is providing access to. This includes, but is not lim
ited to, resource handlers, memory pools, dispatch queues and other temporary handler objects.

The SYCL programming interface represents the lifetime of the resources managed by the SYCL applica
tion using RAII rules. Construction of a SYCL object will typically entail the creation of multiple SYCL
backend objects, which will be properly released on destruction of said SYCL object. The overall rules for
construction and destruction are detailed in Chapter 4. Those SYCL backends with a SYCL backend docu
ment will detail how the resource management from SYCL objects map down to the SYCL backend
objects.

In SYCL, the minimum required object for submitting work to devices is the queue, which contains refer
ences to a platform, device and a context internally.

The resources managed by SYCL are:

1. Platforms: all features of SYCL backend APIs are implemented by platforms. A platform can be
viewed as a given vendor’s runtime and the devices accessible through it. Some devices will only be
accessible to one vendor’s runtime and hence multiple platforms may be present. SYCL manages the
different platforms for the user which are accessible through a sycl::platform object. In some cases,
an implementation might also choose to expose empty sycl::platform objects, for example if a ven
dor’s runtime is available, but no devices supported by that runtime are available in the system.

2. Contexts: any SYCL backend resource that is acquired by the user is attached to a context. A context
contains a collection of devices that the host can use and manages memory objects that can be shared
between the devices. Devices belonging to the same context must be able to access each other’s global
memory using some implementation-specific mechanism. A given context can only wrap devices
owned by a single platform. A context is exposed to the user with a sycl::context object.

3. Devices: platforms may provide devices for executing SYCL kernels. In SYCL, a device is accessible
through a sycl::device object.

4. Kernels: the SYCL functions that run on SYCL devices are defined as C++ function objects (a named
function object type or a lambda function). A kernel can be introspected through a sycl::kernel
object.

Note that some SYCL backends may expose non-programmable functionality as pre-defined kernels.

5. Kernel bundles: Kernels are stored internally in the SYCL application as device images, and these
device images can be grouped into a sycl::kernel_bundle object. These objects provide a way for the
application to control the online compilation of kernels for devices.

6. Queues: SYCL kernels execute in command queues. The user must create a sycl::queue object, which
references an associated context, platform and device. The context, platform and device may be cho
sen automatically, or specified by the user. SYCL queues execute kernels on a particular device of a
particular context, but can have dependencies from any device on any available SYCL backend.

The SYCL implementation guarantees the correct initialization and destruction of any resource handled
by the underlying SYCL backend API, except for those the user has obtained manually via the SYCL inter
operability API.

3.7.1.2. SYCL command groups and execution order

By default, SYCL queues execute kernel functions in an out-of-order fashion based on dependency infor
mation. Developers only need to specify what data is required to execute a particular kernel. The SYCL
runtime will guarantee that kernels are executed in an order that guarantees correctness. By specifying
access modes and types of memory, a directed acyclic dependency graph (DAG) of kernels is built at run
time. This is achieved via the usage of command group objects. A SYCL command group object defines a

SYCL 2020 rev 9 3.7.1.1. Backend resources managed by the SYCL application

Chapter 3. SYCL architecture | 23

set of requisites (R) and a kernel function (k). A command group is submitted to a queue when using the
sycl::queue::submit member function.

A requisite (ri) is a requirement that must be fulfilled for a kernel-function (k) to be executed on a par
ticular device. For example, a requirement may be that certain data is available on a device, or that
another command group has finished execution. An implementation may evaluate the requirements of a
command group at any point after it has been submitted. The processing of a command group is the
process by which a SYCL runtime evaluates all the requirements in a given R. The SYCL runtime will exe
cute k only when all ri are satisfied (i.e., when all requirements are satisfied). To simplify the notation, in
the specification we refer to the set of requirements of a command group named foo as CGfoo = r1, …, rn.

The evaluation of a requisite (Satisfied(ri)) returns the status of the requisite, which can be True or False.
A satisfied requisite implies the requirement is met. Satisfied(ri) never alters the requisite, only observes
the current status. The implementation may not block to check the requisite, and the same check can be
performed multiple times.

An action (ai) is a collection of implementation-defined operations that must be performed in order to
satisfy a requisite. The set of actions for a given command group A is permitted to be empty if no opera
tion is required to satisfy the requirement. The notation ai represents the action required to satisfy ri.
Actions of different requisites can be satisfied in any order with respect to each other without side
effects (i.e., given two requirements rj and rk, (rj, rk) ≡ (rk, rj)). The intersection of two actions is not neces
sarily empty. Actions can include (but are not limited to): memory copy operations, memory mapping
operations, coordination with the host, or implementation-specific behavior.

Finally, Performing an action (Perform(ai)) executes the action operations required to satisfy the requi
site rj. Note that, after Perform(ai), the evaluation Satisfied(rj) will return True until the kernel is exe
cuted. After the kernel execution, it is not defined whether a different command group with the same
requirements needs to perform the action again, where actions of different requisites inside the same
command group object can be satisfied in any order with respect to each other without side effects:
Given two requirements rj and rk, Perform(aj) followed by Perform(ak) is equivalent to Perform(ak) fol
lowed by Perform(aj).

The requirements of different command groups submitted to the same or different queues are evaluated
in the relative order of submission. command group objects whose intersection of requirement sets is
not empty are said to depend on each other. They are executed in order of submission to the queue. If
command groups are submitted to different queues or by multiple threads, the order of execution is
determined by the SYCL runtime. Note that independent command group objects can be submitted
simultaneously without affecting dependencies.

Table 1 illustrates the execution order of three command group objects (CGa,CGb,CGc) with certain
requirements submitted to the same queue. Both CGa and CGb only have one requirement, r1 and r2

respectively. CGc requires both r1 and r2. This enables the SYCL runtime to potentially execute CGa and
CGb simultaneously, whereas CGc cannot be executed until both CGa and CGb have been completed. The
SYCL runtime evaluates the requisites and performs the actions required (if any) for the CGa and CGb.
When evaluating the requisites of CGc, they will be satisfied once the CGa and CGb have finished.

Table 1. Execution order of three command groups submitted to the same queue

SYCL Application Enqueue Order SYCL Kernel Execution Order

sycl::queue syclQueue;
syclQueue.submit(CGa(r1));
syclQueue.submit(CGb(r2));
syclQueue.submit(CGc(r1,r2));

Table 2 uses three separate SYCL queue objects to submit the same command group objects as before.

3.7.1.2. SYCL command groups and execution order SYCL 2020 rev 9

24 | Chapter 3. SYCL architecture

Regardless of using three different queues, the execution order of the different command group objects
is the same. When different threads enqueue to different queues, the execution order of the command
group will be the order in which the submit member functions are executed. In this case, since the dif
ferent command group objects execute on different devices, the actions required to satisfy the require
ments may be different (e.g, the SYCL runtime may need to copy data to a different device in a separate
context).

Table 2. Execution order of three command groups submitted to the different queues

SYCL Application Enqueue Order SYCL Kernel Execution Order

sycl::queue syclQueue1;
sycl::queue syclQueue2;
sycl::queue syclQueue3;
syclQueue1.submit(CGa(r1));
syclQueue2.submit(CGb(r2));
syclQueue3.submit(CGc(r1,r2));

3.7.1.3. Controlling execution order with events

Submitting an action for execution returns an event object. Programmers may use these events to explic
itly coordinate host and device execution. Host code can wait for an event to complete, which will block
execution on the host until the action(s) represented by the event have completed. The event class is
described in greater detail in Section 4.6.6.

Events may also be used to explicitly order the execution of kernels. Host code may wait for the comple
tion of specific event, which blocks execution on the host until that event’s action has completed. Events
may also define requisites between command groups. Using events in this manner informs the runtime
that one or more command groups must complete before another command group may begin executing.
See Section 4.9.4.1 for greater detail.

3.7.2. SYCL kernel execution model

When a kernel is submitted for execution, an index space is defined. An instance of the kernel body exe
cutes for each point in this index space. This kernel instance is called a work-item and is identified by its
point in the index space, which provides a global id for the work-item. Each work-item executes the
same code but the specific execution pathway through the code and the data operated upon can vary by
using the work-item global id to specialize the computation.

An index space of size zero is allowed. All aspects of kernel execution proceed as normal with the excep
tion that the kernel function itself is not executed. Note this means the command queue will still sched
ule this kernel after satisfying the requirements and this satisfies requirements of any dependent
enqueued kernels.

3.7.2.1. Basic kernels

SYCL allows a simple execution model in which a kernel is invoked over an N-dimensional index space
defined by range<N>, where N is one, two or three. Each work-item in such a kernel executes indepen
dently.

Each work-item is identified by a value of type item<N>. The type item<N> encapsulates a work-item iden
tifier of type id<N> and a range<N> representing the number of work-items executing the kernel.

3.7.2.2. ND-range kernels

Work-items can be organized into work-groups, providing a more coarse-grained decomposition of the
index space. Each work-group is assigned a unique work-group id with the same dimensionality as the

SYCL 2020 rev 9 3.7.1.3. Controlling execution order with events

Chapter 3. SYCL architecture | 25

index space used for the work-items. Work-items are each assigned a local id, unique within the work-
group, so that a single work-item can be uniquely identified by its global id or by a combination of its
local id and work-group id. The work-items in a given work-group execute on the processing elements of
a single compute unit.

When work-groups are used in SYCL, the index space is called an nd-range. An ND-range is an N-dimen
sional index space, where N is one, two or three. In SYCL, the ND-range is represented via the
nd_range<N> class. An nd_range<N> is made up of a global range and a local range, each represented via
values of type range<N>. Additionally, there can be a global offset, represented via a value of type id<N>;
this is deprecated in SYCL 2020. The types range<N> and id<N> are each N-element arrays of integers. The
iteration space defined via an nd_range<N> is an N-dimensional index space starting at the ND-range’s
global offset whose size is its global range, split into work-groups of the size of its local range.

Each work-item in the ND-range is identified by a value of type nd_item<N>. The type nd_item<N> encapsu
lates a global id, local id and work-group id, all of type id<N> (the iteration space offset also of type id<N>,
but this is deprecated in SYCL 2020), as well as global and local ranges and coordination mechanisms
necessary to make work-groups useful. Work-groups are assigned ids using a similar approach to that
used for work-item global ids. Work-items are assigned to a work-group and given a local id with compo
nents in the range from zero to the size of the work-group in that dimension minus one. Hence, the com
bination of a work-group id and the local id within a work-group uniquely defines a work-item.

3.7.2.3. Backend-specific kernels

SYCL allows a SYCL backend to expose fixed functionality as non-programmable built-in kernels. The
availability and behavior of these built-in kernels are SYCL backend-specific, and are not required to fol
low the SYCL execution and memory models. Furthermore the interface exposed utilize these built-in
kernels is also SYCL backend-specific. See the relevant backend specification for details.

3.8. Memory model
Since SYCL is a single-source programming model, the memory model affects both the application and
the device kernel parts of a program. On the SYCL application, the SYCL runtime will make sure data is
available for execution of the kernels. On the SYCL device kernel, the SYCL backend rules describing how
the memory behaves on a specific device are mapped to SYCL C++ constructs. Thus it is possible to pro
gram kernels efficiently in pure C++.

3.8.1. SYCL application memory model

The application running on the host uses SYCL buffer objects using instances of the sycl::buffer class or
USM allocation functions to allocate memory in the global address space, or can allocate specialized
image memory using the sycl::unsampled_image and sycl::sampled_image classes.

In the SYCL application, memory objects are bound to all devices in which they are used, regardless of
the SYCL context where they reside. SYCL memory objects (namely, buffer and image objects) can encap
sulate multiple underlying SYCL backend memory objects together with multiple host memory alloca
tions to enable the same object to be shared between devices in different contexts, platforms or back
ends. USM allocations uniquely identify a memory allocation and are bound to a SYCL context. They are
only valid on the backend used by the context.

The order of execution of command group objects ensures a sequentially consistent access to the mem
ory from the different devices to the memory objects. Accessing a USM allocation does not alter the
order of execution. Users must explicitly inform the SYCL runtime of any requirements necessary for a
legal execution.

To access a memory object, the user must create an accessor object which parameterizes the type of
access to the memory object that a kernel or the host requires. The accessor object defines a require

3.7.2.3. Backend-specific kernels SYCL 2020 rev 9

26 | Chapter 3. SYCL architecture

ment to access a memory object, and this requirement is defined by construction of an accessor, regard
less of whether there are any uses in a kernel or by the host. An accessor object specifies whether the
access is via global memory, constant memory or image samplers and their associated access functions.
The accessor also specifies whether the access is read-only (RO), write-only (WO) or read-write (RW). An
optional no_init property can be added to an accessor to tell the system to discard any previous contents
of the data the accessor refers to, so there are two additional requirement types: no-init-write-only
(NWO) and no-init-read-write (NRW). For simplicity, when a requisite represents an accessor object in a
certain access mode, we represent it as MemoryObjectAccessMode. For example, an accessor that accesses
memory object buf1 in RW mode is represented as buf1RW. A command group object that uses such an
accessor is represented as CG(buf1RW). The action required to satisfy a requisite and the location of the
latest copy of a memory object will vary depending on the implementation.

Table 3 illustrates an example where command group objects are enqueued to two separate SYCL queues
executing in devices in different contexts. The requisites for the command group execution are the
same, but the actions to satisfy them are different. For example, if the data is on the host before execu
tion, A(b1RW) and A(b2RW) can potentially be implemented as copy operations from the host memory to
context1 or context2 respectively. After CGa and CGb are executed, A'(b1RW) will likely be an empty opera
tion, since the result of the kernel can stay on the device. On the other hand, the results of CGb are now
on a different context than CGc is executing, therefore A'(b2RW) will need to copy data across two separate
contexts using an implementation specific mechanism.

Table 3. Actions performed when three command groups are submitted to two distinct queues

SYCL Application Enqueue Order SYCL Kernel Execution Order

sycl::queue q1(context1);
sycl::queue q2(context2);
q1.submit(CGa(b1RW));
q2.submit(CGb(b2RW));
q1.submit(CGc(b1RW,b2RW));

Possible implementation by a SYCL Runtime

Table 3 shows actions performed when three command groups are submitted to two distinct queues,
and potential implementation in an OpenCL SYCL backend by a SYCL runtime. Note that in this example,
each SYCL buffer (b2,b2) is implemented as separate cl_mem objects per context.

Note that the order of the definition of the accessors within the command group is irrelevant to the
requirements they define. All accessors always apply to the entire command group object where they
are defined.

When multiple accessors in the same command group define different requisites to the same memory
object these requisites must be resolved.

Firstly, any requisites with different access modes but the same access target are resolved into a single
requisite with the union of the different access modes according to Table 4. The atomic access mode acts

SYCL 2020 rev 9 3.8.1. SYCL application memory model

Chapter 3. SYCL architecture | 27

as if it was read-write (RW) when determining the combined requirement. The rules in Table 4 are com
mutative and associative.

Table 4. Combined requirement from two different accessor access modes within the same command group. The
rules are commutative and associative

One access mode Other access mode Combined requirement

read (RO) write (WO) read-write (RW)

read (RO) read-write (RW) read-write (RW)

write (WO) read-write (RW) read-write (RW)

no-init-write (NWO) no-init-read-write (NRW) no-init-read-write (NRW)

no-init-write (NWO) write (WO) write (WO)

no-init-write (NWO) read (RO) read-write (RW)

no-init-write (NWO) read-write (RW) read-write (RW)

no-init-read-write (NRW) write (WO) read-write (RW)

no-init-read-write (NRW) read (RO) read-write (RW)

no-init-read-write (NRW) read-write (RW) read-write (RW)

The result of this should be that there should not be any requisites with the same access target.

Secondly, the remaining requisites must adhere to the following rule. Only one of the requisites may
have write access (W or RW), otherwise the SYCL runtime must throw an exception. All requisites create
a requirement for the data they represent to be made available in the specified access target, however
only the requisite with write access determines the side effects of the command group, i.e. only the data
which that requisite represents will be updated.

For example:

• CG(b1G
RW, b1H

R) is permitted.

• CG(b1G
RW, b1H

RW) is not permitted.

• CG(b1G
W, b1C

RW) is not permitted.

Where G and C correspond to a target::device and target::constant_buffer accessor and H corresponds
to a host accessor.

A buffer created from a range of an existing buffer is called a sub-buffer. A buffer may be overlaid with
any number of sub-buffers. Accessors can be created to operate on these sub-buffers. Refer to Section
4.7.2 for details on sub-buffer creation and restrictions. A requirement to access a sub-buffer is repre
sented by specifying its range, e.g. CG(b1RW,[0,5)) represents the requirement of accessing the range [0,5)
buffer b1 in read write mode.

If two accessors are constructed to access the same buffer, but both are to non-overlapping sub-buffers
of the buffer, then the two accessors are said to not overlap, otherwise the accessors do overlap. Over
lapping is the test that is used to determine the scheduling order of command groups. Command-groups
with non-overlapping requirements may execute concurrently.

Table 5. Requirements on overlapping vs non-overlapping sub-buffer

3.8.1. SYCL application memory model SYCL 2020 rev 9

28 | Chapter 3. SYCL architecture

SYCL Application Enqueue Order SYCL Kernel Execution Order

sycl::queue q1(context1);
q1.submit(CGa(b1{RW,[0,10)}));
q1.submit(CGb(b1{RW,[10,20)));
q1.submit(CGc(b1RW,[5,15)));

It is permissible for command groups that only read data to not copy that data back to the host or other
devices after reading and for the runtime to maintain multiple read-only copies of the data on multiple
devices.

A special case of requirement is the one defined by a host accessor. Host accessors are represented with
H(MemoryObjectAccessMode), e.g, H(b1RW) represents a host accessor to b1 in read-write mode. Host accessors
are a special type of accessor constructed from a memory object outside a command group, and require
that the data associated with the given memory object is available on the host in the given pointer. This
causes the runtime to block on construction of this object until the requirement has been satisfied. Host
accessor objects are effectively barriers on all accesses to a certain memory object. Table 6 shows an
example of multiple command groups enqueued to the same queue. Once the host accessor H(b1RW) is
reached, the execution cannot proceed until CGa is finished. However, CGb does not have any require
ments on b1, therefore, it can execute concurrently with the barrier. Finally, CGc will be enqueued after
H(b1RW) is finished, but still has to wait for CGb to conclude for all its requirements to be satisfied. See
Section 3.9.8 for details on host-device coordination.

Table 6. Execution of command groups when using host accessors

SYCL Application Enqueue Order SYCL Kernel Execution Order

sycl::queue q1;
q1.submit(CGa(b1RW));
q1.submit(CGb(b2RW));

H(b1RW);

q1.submit(CGc(b1RW, b2RW));

3.8.2. SYCL device memory model

The memory model for SYCL devices is based on the OpenCL 1.2 memory model. Work-items executing
in a kernel have access to three distinct address spaces (memory regions) and a virtual address space
overlapping some concrete address spaces:

• Global-memory is accessible to all work-items in all work-groups. Work-items can read from or write
to any element of a global memory object. Reads and writes to global memory may be cached
depending on the capabilities of the device. Global memory is persistent across kernel invocations.
Concurrent access to a location in an USM allocation by two or more executing kernels where at least
one kernel modifies that location is a data race; there is no guarantee of correct results unless mem-
fence and atomic operations are used.

• Local-memory is accessible to all work-items in a single work-group. Attempting to access local mem
ory in one work-group from another work-group results in undefined behavior. This memory region
can be used to allocate variables that are shared by all work-items in a work-group. Work-group-level
visibility allows local memory to be implemented as dedicated regions of the device memory where
this is appropriate.

• Private-memory is a region of memory private to a work-item. Attempting to access private memory

SYCL 2020 rev 9 3.8.2. SYCL device memory model

Chapter 3. SYCL architecture | 29

in one work-item from another work-item results in undefined behavior.

• Generic-memory is a virtual address space which overlaps the global, local and private address
spaces. Therefore, an object that resides in the global, local, or private address space can also be
accessed through the generic address space.

3.8.2.1. Access to memory

Accessors in the device kernels provide access to the memory objects, acting as pointers to the corre
sponding address space.

Pointers can be passed directly as kernel arguments if an implementation supports USM. See Section 4.8
for information on when it is legal to dereference pointers passed from the host inside kernels.

To allocate local memory within a kernel, the user can either pass a sycl::local_accessor object as a
argument to an ND-range kernel (that has a user-defined work-group size), or can define a variable in
work-group scope inside sycl::parallel_for_work_group.

Any variable defined inside a sycl::parallel_for scope or sycl::parallel_for_work_item scope will be
allocated in private memory. Any variable defined inside a sycl::parallel_for_work_group scope will be
allocated in local memory.

Users can create accessors that reference sub-buffers as well as entire buffers.

Within kernels, the underlying C++ pointer types can be obtained from an accessor. The pointer types
will contain a compile-time deduced address space. So, for example, if a C++ pointer is obtained from an
accessor to global memory, the C++ pointer type will have a global address space attribute attached to it.
The address space attribute will be compile-time propagated to other pointer values when one pointer is
initialized to another pointer value using a defined algorithm.

When developers need to explicitly state the address space of a pointer value, one of the explicit pointer
classes can be used. There is a different explicit pointer class for each address space: sycl::raw_lo
cal_ptr, sycl::raw_global_ptr, sycl::raw_private_ptr, sycl::raw_generic_ptr, sycl::decorated_local_ptr,
sycl::decorated_global_ptr, sycl::decorated_private_ptr, or sycl::decorated_generic_ptr.

The classes with the decorated prefix expose pointers that use an implementation-defined address space
decoration, while the classes with the raw prefix do not. Buffer accessors with an access target tar
get::device or target::constant_buffer and local accessors can be converted into explicit pointer classes
(multi_ptr).

For templates that need to adapt to different address spaces, a sycl::multi_ptr class is defined which is
templated via a compile-time constant enumerator value to specify the address space.

3.8.3. SYCL memory consistency model

The SYCL memory consistency model is based upon the memory consistency model of the C++ core lan
guage. Where SYCL offers extensions to classes and functions that may affect memory consistency, the
default behavior when these extensions are not used always matches the behavior of standard C++.

A SYCL implementation must guarantee that the same memory consistency model is used across host
and device code. Every device compiler must support the memory model defined by the minimum ver
sion of C++ described in Section 3.9.1; SYCL implementations supporting additional versions of C++ must
also support the corresponding memory models.

Within a work-item, operations are ordered according to the sequenced before relation defined by the
C++ core language.

Ensuring memory consistency across different work-items requires careful usage of group barrier oper
ations, mem-fence operations and atomic operations. The ordering of operations across different work-

3.8.2.1. Access to memory SYCL 2020 rev 9

30 | Chapter 3. SYCL architecture

items is determined by the happens before relation defined by the C++ core language, with a single rela
tion governing all address spaces (memory regions).

On any SYCL device, local and global memory may be made consistent across work-items in a single
group through use of a group barrier operation. On SYCL devices supporting acquire-release or sequen
tially consistent memory orderings, all memory visible to a set of work-items may be made consistent
across the work-items in that set through the use of mem-fence and atomic operations.

Memory consistency between the host and SYCL device(s), or different SYCL devices in the same context,
can be guaranteed through library calls in the host application, as defined in Section 3.9.8. On SYCL
devices supporting concurrent atomic accesses to USM allocations and acquire-release or sequentially
consistent memory orderings, cross-device memory consistency can be enforced through the use of
mem-fence and atomic operations.

3.8.3.1. Memory ordering

 1 namespace sycl {
 2
 3 enum class memory_order : /* unspecified */ {
 4 relaxed,
 5 acquire,
 6 release,
 7 acq_rel,
 8 seq_cst
 9 };
10
11 inline constexpr auto memory_order_relaxed = memory_order::relaxed;
12 inline constexpr auto memory_order_acquire = memory_order::acquire;
13 inline constexpr auto memory_order_release = memory_order::release;
14 inline constexpr auto memory_order_acq_rel = memory_order::acq_rel;
15 inline constexpr auto memory_order_seq_cst = memory_order::seq_cst;
16
17 } // namespace sycl

The memory synchronization order of a given atomic operation is controlled by a sycl::memory_order
parameter, which can take one of the following values:

• sycl::memory_order::relaxed;

• sycl::memory_order::acquire;

• sycl::memory_order::release;

• sycl::memory_order::acq_rel;

• sycl::memory_order::seq_cst.

The meanings of these values are identical to those defined in the C++ core language.

These memory orders are listed above from weakest (memory_order::relaxed) to strongest (memo
ry_order::seq_cst).

The complete set of memory orders is not guaranteed to be supported by every device, nor across all
combinations of devices within a platform. The set of supported memory orders can be queried via the
information descriptors for the sycl::device and sycl::context classes.

SYCL implementations are not required to support a memory order equivalent to
std::memory_order::consume, and using this ordering within a SYCL device kernel results
in undefined behavior. Developers are encouraged to use sycl::memory_order::acquire

SYCL 2020 rev 9 3.8.3.1. Memory ordering

Chapter 3. SYCL architecture | 31

instead.

3.8.3.2. Memory scope

 1 namespace sycl {
 2
 3 enum class memory_scope : /* unspecified */ {
 4 work_item,
 5 sub_group,
 6 work_group,
 7 device,
 8 system
 9 };
10
11 inline constexpr auto memory_scope_work_item = memory_scope::work_item;
12 inline constexpr auto memory_scope_sub_group = memory_scope::sub_group;
13 inline constexpr auto memory_scope_work_group = memory_scope::work_group;
14 inline constexpr auto memory_scope_device = memory_scope::device;
15 inline constexpr auto memory_scope_system = memory_scope::system;
16
17 } // namespace sycl

The set of work-items and devices to which the memory ordering constraints of a given atomic operation
apply is controlled by a sycl::memory_scope parameter, which can take one of the following values:

• sycl::memory_scope::work_item The ordering constraint applies only to the calling work-item;

• sycl::memory_scope::sub_group The ordering constraint applies only to work-items in the same sub-
group as the calling work-item;

• sycl::memory_scope::work_group The ordering constraint applies only to work-items in the same work-
group as the calling work-item;

• sycl::memory_scope::device The ordering constraint applies only to work-items executing on the same
device as the calling work-item;

• sycl::memory_scope::system The ordering constraint applies to any work-item or host thread in the
system that is currently permitted to access the memory allocation containing the referenced object,
as defined by the capabilities of buffers and USM.

The memory scopes are listed above from narrowest (memory_scope::work_item) to widest (memory_s
cope::system).

The complete set of memory scopes is not guaranteed to be supported by every device. The set of sup
ported memory scopes can be queried via the information descriptors for the sycl::device and
sycl::context classes.

The widest scope that can be applied to an atomic operation corresponds to the set of work-items which
can access the associated memory location. For example, the widest scope that can be applied to atomic
operations in work-group local memory is sycl::memory_scope::work_group. If a wider scope is supplied,
the behavior is as-if the narrowest scope containing all work-items which can access the associated
memory location was supplied.

The addition of memory scopes to the C++ memory model modifies the definition of
some concepts from the C++ core language. For example: data races, the synchronizes-
with relationship and sequential consistency must be defined in a way that accounts for
atomic operations with differing (but compatible) scopes, in a manner similar to the
OpenCL 2.0 specification. Efforts to formalize the memory model of SYCL are ongoing,

3.8.3.2. Memory scope SYCL 2020 rev 9

32 | Chapter 3. SYCL architecture

and a formal memory model will be included in a future version of the SYCL specifica
tion.

3.8.3.3. Atomic operations

Atomic operations can be performed on memory in buffers and USM. The sycl::atomic_ref class must be
used to provide safe atomic access to the buffer or USM allocation from device code.

3.8.3.4. Forward progress

This section, and any subsequent section referring to progress guarantees, uses the following terms as
defined in the C++ core language: thread of execution; weakly parallel forward progress guarantees; par
allel forward progress guarantees; concurrent forward progress guarantees; and block with forward
progress guarantee delegation.

Each work-item in SYCL is a separate thread of execution, providing at least weakly parallel forward
progress guarantees. Whether work-items provide stronger forward progress guarantees is implementa
tion-defined.

All implementations must additionally ensure that a work-item arriving at a group barrier does not pre
vent other work-items in the same group from making progress. When a work-item arrives at a group
barrier acting on group G, implementations must eventually select and potentially strengthen another
work-item in group G that has not yet arrived at the barrier.

When a host thread blocks on the completion of a command previously submitted to a SYCL queue (for
example, via the sycl::queue::wait function), it blocks with forward progress guarantee delegation.

SYCL commands submitted to a queue are not guaranteed to begin executing until a host
thread blocks on their completion. In the absence of multiple host threads, there is no
guarantee that host and device code will execute concurrently.

3.9. The SYCL programming model
A SYCL program is written in standard C++. Host code and device code is written in the same C++ source
file, enabling instantiation of templated kernels from host code and also enabling kernel source code to
be shared between host and device. The device kernels are encapsulated C++ callable types (a function
object with operator() or a lambda function), which have been designated to be compiled as SYCL ker
nels.

SYCL programs target heterogeneous systems. The kernels may be compiled and optimized for multiple
different processor architectures with very different binary representations.

3.9.1. Minimum version of C++

The C++ features used in SYCL are based on a specific version of C++. Implementations of SYCL must sup
port this minimum C++ version, which defines the C++ constructs that can consequently be used by SYCL
feature definitions (for example, lambdas).

The minimum C++ version of this SYCL specification is determined by the normative C++ core language
defined in Section 3.3. All implementations of this specification must support at least this core language,
and features within this specification are defined using features of the core language. Note that not all
core language constructs are supported within SYCL kernel functions or code invoked by a SYCL kernel
function, as detailed by Section 5.4.

Implementations may support newer C++ versions than the minimum required by SYCL. Code written
using newer features than the SYCL requirement, though, may not be portable to other implementations
that don’t support the same C++ version.

SYCL 2020 rev 9 3.8.3.3. Atomic operations

Chapter 3. SYCL architecture | 33

3.9.2. Alignment with future versions of C++

Some features of SYCL are aligned with the next C++ specification, as defined in Section 3.3.

The following features are pre-adopted by SYCL 2020 and made available in the sycl:: namespace:
std::span, std::dynamic_extent, std::bit_cast. The implementations of pre-adopted features are compli
ant with the next C++ specification, and are expected to forward directly to standard C++ features in a
future version of SYCL.

The following features of SYCL 2020 use syntax based on the next C++ specification: sycl::atomic_ref.
These features behave as described in the next C++ specification, barring modifications to ensure com
patibility with other SYCL 2020 features and heterogeneous programming. Any such modifications are
documented in the corresponding sections of this specification.

3.9.3. Basic data parallel kernels

Data-parallel kernels that execute as multiple work-items and where no work-group-local coordination
is required are enqueued with the sycl::parallel_for function parameterized by a sycl::range parame
ter. These kernels will execute the kernel function body once for each work-item in the specified range.

Functionality tied to groups of work-items, including group barriers and local memory, must not be used
within these kernels.

Variables with reduction semantics can be added to basic data parallel kernels using the features
described in Section 4.9.2.

3.9.4. Work-group data parallel kernels

Data parallel kernels can also execute in a mode where the set of work-items is divided into work-groups
of user-defined dimensions. The user specifies the global range and local work-group size as parameters
to the sycl::parallel_for function with a sycl::nd_range parameter. In this mode of execution, kernels
execute over the nd-range in work-groups of the specified size. It is possible to share data among work-
items within the same work-group in local or global memory, and the group_barrier function can be
used to block a work-item until all work-items in the same work-group arrive at the barrier. All work-
groups in a given parallel_for will be the same size, and the global size defined in the nd-range must
either be a multiple of the work-group size in each dimension, or the global size must be zero. When the
global size is zero, the kernel function is not executed, the local size is ignored, and any dependencies
are satisfied.

Work-groups may be further subdivided into sub-groups. The work-items that compose a sub-group are
selected in an implementation-defined way, and therefore the size and number of sub-groups may differ
for each kernel. Moreover, different devices may make different guarantees with respect to how sub-
groups within a work-group are scheduled. The maximum number of work-items in any sub-group in a
kernel is based on a combination of the kernel and its dispatch dimensions. The size of any sub-group in
the dispatch is between 1 and this maximum sub-group size, and the size of an individual sub-group is
invariant for the duration of a kernel’s execution. Similarly to work-groups, the group_barrier function
can be used to block a work-item until all work-items in the same sub-group arrive at the barrier.

Portable device code must not assume that work-items within a sub-group execute in any particular
order, that work-groups are subdivided into sub-groups in a specific way, nor that the work-items within
a sub-group provide specific forward progress guarantees.

Variables with reduction semantics can be added to work-group data parallel kernels using the features
described in Section 4.9.2.

3.9.2. Alignment with future versions of C++ SYCL 2020 rev 9

34 | Chapter 3. SYCL architecture

3.9.5. Hierarchical data parallel kernels

Based on developer and implementation feedback, the hierarchical data parallel kernel
feature described next is undergoing improvements to better align with the frameworks
and patterns prevalent in modern programming. As this is a key part of the SYCL API
and we expect to make changes to it, we temporarily recommend that new codes refrain
from using this feature until the new API is finished in a near-future version of the SYCL
specification, when full use of the updated feature will be recommended for use in new
code. Existing codes using this feature will of course be supported by conformant imple
mentations of this specification.

The SYCL compiler provides a way of specifying data parallel kernels that execute within work-groups
via a different syntax which highlights the hierarchical nature of the parallelism. This mode is purely a
compiler feature and does not change the execution model of the kernel. Instead of calling sycl::paral
lel_for the user calls sycl::parallel_for_work_group with a sycl::range value representing the number
of work-groups to launch and optionally a second sycl::range representing the size of each work-group
for performance tuning. All code within the parallel_for_work_group scope effectively executes once per
work-group. Within the parallel_for_work_group scope, it is possible to call parallel_for_work_item which
creates a new scope in which all work-items within the current work-group execute. This enables a pro
grammer to write code that looks like there is an inner work-item loop inside an outer work-group loop,
which closely matches the effect of the execution model. All variables declared inside the parallel_for_
work_group scope are allocated in work-group local memory, whereas all variables declared inside the
parallel_for_work_item scope are declared in private memory. All parallel_for_work_item calls within a
given parallel_for_work_group execution must have the same dimensions.

3.9.6. Kernels that are not launched over parallel instances

Simple kernels for which only a single instance of the kernel function will be executed are enqueued
with the sycl::single_task function. The kernel enqueued takes no “work-item id” parameter and will
only execute once. The behavior is logically equivalent to executing a kernel on a single compute unit
with a single work-group comprising only one work-item. Such kernels may be enqueued on multiple
queues and devices and as a result may be executed in task-parallel fashion.

3.9.7. Pre-defined kernels

Some SYCL backends may expose pre-defined functionality to users as kernels. These kernels are not
programmable, hence they are not bound by the SYCL C++ programming model restrictions, and how
they are written is implementation-defined.

3.9.8. Coordination and Synchronization

Coordination between the host and any devices can be expressed in the host SYCL application using calls
into the SYCL runtime. Coordination between work-items executing inside of device code can be
expressed using group barriers.

Some function calls synchronize with other function calls performed by another thread (potentially on
another device). Other functions are defined in terms of their synchronization operations. Such func
tions can be used to ensure that the host and any devices do not access data concurrently, and/or to rea
son about the ordering of operations across the host and any devices.

3.9.8.1. Host-Device Coordination

The following operations can be used to coordinate host and device(s):

• Buffer destruction: The destructors for sycl::buffer, sycl::unsampled_image and sycl::sampled_image
objects block until all submitted work on those objects completes and copy the data back to host

SYCL 2020 rev 9 3.9.5. Hierarchical data parallel kernels

Chapter 3. SYCL architecture | 35

memory before returning. These destructors only block if the object was constructed with attached
host memory and if data needs to be copied back to the host.

More complex forms of buffer destruction can be specified by the user by constructing buffers with
other kinds of references to memory, such as shared_ptr and unique_ptr.

• Host Accessors: The constructor for a host accessor blocks until all kernels that modify the same
buffer (or image) in any queues complete and then copies data back to host memory before the con
structor returns. Any command groups with requirements to the same memory object cannot exe
cute until the host accessor is destroyed as shown on Table 6.

• Command group enqueue: The SYCL runtime internally ensures that any command groups added to
queues have the correct event dependencies added to those queues to ensure correct operation.
Adding command groups to queues never blocks, and the sycl::event returned by the queue’s submit
function contains event information related to the specific command group.

• Queue operations: The user can manually use queue operations, such as sycl::queue::wait() to block
execution of the calling thread until all the command groups submitted to the queue have finished
execution. Note that this will also affect the dependencies of those command groups in other queues.

• SYCL event objects: SYCL provides sycl::event objects which can be used to track and specify depen
dencies. The SYCL runtime must ensure that these objects can be used to enforce dependencies that
span SYCL contexts from different SYCL backends.

The specification for each of these blocking functions defines some set of operations that cause the func
tion to unblock. These operations always happen before the blocking function returns (using the defini
tion of "happens before" from the C++ specification).

Note that the destructors of other SYCL objects (sycl::queue, sycl::context,…) do not block. Only a
sycl::buffer, sycl::sampled_image or sycl::unsampled_image destructor might block. The rationale is that
an object without any side effect on the host does not need to block on destruction as it would impact the
performance. So it is up to the programmer to use a member function to wait for completion in some
cases if this does not fit the goal. See Section 3.9.12 for more information on object life time.

3.9.8.2. Work-item Coordination

A group barrier provides a mechanism to coordinate all work-items in the same group. All work-items in
a group must execute the barrier before any are allowed to continue execution beyond the barrier. Note
that the group barrier must be encountered by all work-items of a group executing the kernel or by none
at all. work-group barrier and sub-group barrier functionality is exposed via the group_barrier function.

Coordination between work-items in different work-groups must take place via atomic operations, and
is possible only on SYCL device with certain capabilities, as described in Section 3.8.3.

3.9.9. Error handling

In SYCL, there are two types of errors: synchronous errors that can be detected immediately when an
API call is made, and asynchronous errors that can only be detected later after an API call has returned.
Synchronous errors, such as failure to construct an object, are reported immediately by the runtime
throwing an exception. Asynchronous errors, such as an error occurring during execution of a kernel on
a device, are reported via an asynchronous error-handler mechanism.

Asynchronous errors are not reported immediately as they occur. The asynchronous error handler for a
context or queue is called with a sycl::exception_list object, which contains a list of asynchronously-
generated exception objects, on the conditions described by Section 4.13.1.1 and Section 4.13.1.2.

Asynchronous errors may be generated regardless of whether the user has specified any asynchronous
error handler(s), as described in Section 4.13.1.2.

Some SYCL backends can report errors that are specific to the platform they are targeting, or that are

3.9.8.2. Work-item Coordination SYCL 2020 rev 9

36 | Chapter 3. SYCL architecture

more concrete than the errors provided by the SYCL API. Any error reported by a SYCL backend must
derive from the base sycl::exception. When a user wishes to capture specifically an error thrown by a
SYCL backend, she must include the SYCL backend-specific headers for said SYCL backend.

3.9.10. Fallback mechanism

A command group function object can be submitted either to a single queue to be executed on, or to a
secondary queue. If a command group function object fails to be enqueued to the primary queue, then
the system will attempt to enqueue it to the secondary queue, if given as a parameter to the submit func
tion. If the command group function object fails to be queued to both of these queues, then a synchro
nous SYCL exception will be thrown.

It is possible that a command group may be successfully enqueued, but then asynchronously fail to run,
for some reason. In this case, it may be possible for the runtime system to execute the command group
function object on the secondary queue, instead of the primary queue. The situations where a SYCL run
time may be able to achieve this asynchronous fall-back is implementation-defined.

3.9.11. Scheduling of kernels and data movement

A command group function object takes a reference to a command group handler as a parameter and
anything within that scope is immediately executed and takes the handler object as a parameter. The
intention is that a user will perform calls to SYCL functions, member functions, destructors and con
structors inside that scope. These calls will be non-blocking on the host, but enqueue operations to the
queue that the command group is submitted to. All user functions within the command group scope will
be called on the host as the command group function object is executed, but any commands it invokes
will be added to the SYCL queue. All commands added to the queue will be executed out-of-order from
each other, according to their data dependencies.

3.9.12. Managing object lifetimes

A SYCL application does not initialize any SYCL backend features until a sycl::context object is created.
A user does not need to explicitly create a sycl::context object, but they do need to explicitly create a
sycl::queue object, for which a sycl::context object will be implicitly created if not provided by the user.

All SYCL backend objects encapsulated in SYCL objects are reference-counted and will be destroyed once
all references have been released. This means that a user needs only create a SYCL queue (which will
automatically create an SYCL context) for the lifetime of their application to initialize and release any
SYCL backend objects safely.

There is no global state specified to be required in SYCL implementations. This means, for example, that
if the user creates two queues without explicitly constructing a common context, then a SYCL implemen
tation does not have to create a shared context for the two queues. Implementations are free to share or
cache state globally for performance, but it is not required.

Memory objects can be constructed with or without attached host memory. If no host memory is
attached at the point of construction, then destruction of that memory object is non-blocking. The user
may use C++ standard pointer classes for sharing the host data with the user application and for defining
blocking, or non-blocking behavior of the buffers and images. If host memory is attached by using a raw
pointer, then the default behavior is followed, which is that the destructor will block until any command
groups operating on the memory object have completed, then, if the contents of the memory object is
modified on a device those contents are copied back to host and only then does the destructor return.

In the case where host memory is shared between the user application and the SYCL runtime with a
std::shared_ptr, then the reference counter of the std::shared_ptr determines whether the buffer needs
to copy data back on destruction, and in that case the blocking or non-blocking behavior depends on the
user application.

SYCL 2020 rev 9 3.9.10. Fallback mechanism

Chapter 3. SYCL architecture | 37

Instead of a std::shared_ptr, a std::unique_ptr may be provided, which uses move semantics for initial
izing and using the associated host memory. In this case, the behavior of the buffer in relation to the
user application will be non-blocking on destruction.

As said in Section 3.9.8, the only blocking operations in SYCL (apart from explicit wait operations) are:

• host accessor constructor, which waits for any kernels enqueued before its creation that write to the
corresponding object to finish and be copied back to host memory before it starts processing. The
host accessor does not necessarily copy back to the same host memory as initially given by the user;

• memory object destruction, in the case where copies back to host memory have to be done or when
the host memory is used as a backing-store.

3.9.13. Device discovery and selection

A user specifies which queue to submit a command group function object and each queue is targeted to
run on a specific device (and context). A user can specify the actual device on queue creation, or they
can specify a device selector which causes the SYCL runtime to choose a device based on the user’s pro
vided preferences. Specifying a device selector causes the SYCL runtime to perform device discovery. No
device discovery is performed until a SYCL device selector is passed to a queue constructor. Device topol
ogy may be cached by the SYCL runtime, but this is not required.

Device discovery will return all devices from all platforms exposed by all the supported SYCL backends.

3.9.14. Interfacing with the SYCL backend API

There are two styles of developing a SYCL application:

1. writing a pure SYCL generic application;

2. writing a SYCL application that relies on some SYCL backend specific behavior.

When users follow 1., there is no assumption about what SYCL backend will be used during compilation
or execution of the SYCL application. Therefore, the SYCL backend API is not assumed to be available to
the developer. Only standard C++ types and interfaces are assumed to be available, as described in Sec
tion 3.9. Users only need to include the <sycl/sycl.hpp> header to write a SYCL generic application.

On the other hand, when users follow 2., they must know what SYCL backend APIs they are using. In this
case, any header required for the normal programmability of the SYCL backend API is assumed to be
available to the user. In addition to the <sycl/sycl.hpp> header, users must also include the SYCL back
end-specific header as defined in Section 4.3. The SYCL backend-specific header provides the interoper
ability interface for the SYCL API to interact with native backend objects.

The interoperability API is defined in Section 4.5.1.

3.10. Memory objects
SYCL memory objects represent data that is handled by the SYCL runtime and can represent allocations
in one or multiple devices at any time. Memory objects, both buffers and images, may have one or more
underlying native backend objects to ensure that queues objects can use data in any device. A SYCL
implementation may have multiple native backend objects for the same device. The SYCL runtime is
responsible for ensuring the different copies are up-to-date whenever necessary, using whatever mecha
nism is available in the system to update the copies of the underlying native backend objects.

Implementation note

A valid mechanism for this update is to transfer the data from one SYCL backend into
the system memory using the SYCL backend-specific mechanism available, and then
transfer it to a different device using the mechanism exposed by the new SYCL backend.

3.9.13. Device discovery and selection SYCL 2020 rev 9

38 | Chapter 3. SYCL architecture

Memory objects in SYCL fall into one of two categories: buffer objects and image objects. A buffer object
stores a one-, two- or three-dimensional collection of elements that are stored linearly directly back to
back in the same way C or C++ stores arrays. An image object is used to store a one-, two- or three-dimen
sional texture, frame-buffer or image data that may be stored in an optimized and device-specific format
in memory and must be accessed through specialized operations.

Elements of a buffer object can be a scalar data type (such as an int or float), vector data type, or a user-
defined structure. In SYCL, a buffer object is a templated type (sycl::buffer), parameterized by the ele
ment type and number of dimensions. An image object is stored in one of a limited number of formats.
The elements of an image object are selected from a list of predefined image formats which are provided
by an underlying SYCL backend implementation. Images are encapsulated in the sycl::unsampled_image
or sycl::sampled_image types, which are templated by the number of dimensions in the image. The mini
mum number of elements in an image object is one. The minimum number of elements in a buffer
object is zero.

The fundamental differences between a buffer and an image object are:

• elements in a buffer are stored in an array of 1, 2 or 3 dimensions and can be accessed using an
accessor by a kernel executing on a device. The accessors for kernels provide a member function to
get C++ pointer types, or the sycl::global_ptr class;

• elements of an image are stored in a format that is opaque to the user and cannot be directly
accessed using a pointer. SYCL provides image accessors and samplers to allow a kernel to read from
or write to an image;

• for a buffer object the data is accessed within a kernel in the same format as it is stored in memory,
but in the case of an image object the data is not necessarily accessed within a kernel in the same for
mat as it is stored in memory;

• image elements are always a 4-component vector (each component can be a float or signed/unsigned
integer) in a kernel. Accessors that read an image convert image elements from their storage format
into a 4-component vector.

Similarly, the SYCL accessor member functions provided to write to an image convert the image ele
ment from a 4-component vector to the appropriate image format specified such as four 8-bit ele
ments, for example.

Users may want fine-grained control of the memory management and storage semantics of SYCL image
or buffer objects. For example, a user may wish to specify the host memory for a memory object to use,
but may not want the memory object to block on destruction.

Depending on the control and the use cases of the SYCL applications, well established C++ classes and
patterns can be used for reference counting and sharing data between user applications and the SYCL
runtime. For control over memory allocation on the host and mapping between host and device mem
ory, pre-defined or user-defined C++ std::allocator classes are used. To avoid data races when sharing
data between SYCL and non-SYCL applications, std::shared_ptr and std::mutex classes are used.

3.11. Multi-dimensional objects and linearization
SYCL defines a number of multi-dimensional objects such as buffers and accessors. The iteration space
of work-items in a kernel may also be multi-dimensional. The size of each dimension is defined by a
range object of one, two or three dimensions, and an element in the multi-dimensional space can be
identified using an id object with the same number of dimensions as the corresponding range.

If the size of any dimension is zero, there are zero elements in the multi-dimensional range.

SYCL 2020 rev 9 3.11. Multi-dimensional objects and linearization

Chapter 3. SYCL architecture | 39

3.11.1. Linearization

Some multi-dimensional objects can be viewed in a linear form. When this happens, the right-most term
in the object’s range varies fastest in the linearization.

A three-dimensional element id{id0, id1, id2} within a three-dimensional object of range range{r0,
r1, r2} has a linear position defined by:

A two-dimensional element id{id0, id1} within a two-dimensional range{r0, r1} follows a similar equa
tion:

A one-dimensional element id{id0} within a one-dimensional range range{r0} is equivalent to its linear
form.

3.11.2. Multi-dimensional subscript operators

Some multi-dimensional objects can be indexed using the subscript operator where consecutive sub
script operators correspond to each dimension. The right-most operator varies fastest, as with standard
C++ arrays. Formally, a three-dimensional subscript access a[id0][id1][id2] references the element at
id{id0, id1, id2}. A two-dimensional subscript access a[id0][id1] references the element at id{id0,
id1}. A one-dimensional subscript access a[id0] references the element at id{id0}.

3.12. Implementation options
The SYCL language is designed to allow several different possible implementations. The contents of this
section are non-normative, so implementations need not follow the guidelines listed here. However, this
section is intended to help readers understand the possible strategies that can be used to implement
SYCL.

3.12.1. Single source multiple compiler passes

With this technique, known as SMCP, there are separate host and device compilers. Each SYCL source
file is compiled two times: once by the host compiler and once by the device compiler. An implementa
tion could support more than one device compiler, in which case each SYCL source file is compiled more
than two times. The host compiler in this technique could be an off-the-shelf compiler with no special
knowledge of SYCL, but the device compiler must be SYCL aware. The device compiler parses the source
file to identify each SYCL kernel function and any device functions it calls. SYCL is designed so that this
analysis can be done statically. The device compiler then generates code only for the SYCL kernel func
tions and the device functions.

Typically, the device compilers generate header files which interface between the host compiler and the
SYCL runtime. Therefore, the device compiler runs first, and then the host compiler consumes these
header files when generating the host code.

The device compilers in this technique generate one or more device images for the SYCL kernel func
tions, which can be read by the SYCL runtime. Each device image could either contain native ISA for a
device or it could contain an intermediate language such as SPIR-V. In the later case, the SYCL runtime
must translate the intermediate language into native device ISA when the SYCL kernel function is sub
mitted to a device.

Since this technique has separate host and device compilers, there needs to be some way to associate a
SYCL kernel function (which is compiled by the device compiler) with the code that invokes it (which is
compiled by the host compiler). Implementations conformant to the reduced feature set (Section B.2) can

3.11.1. Linearization SYCL 2020 rev 9

40 | Chapter 3. SYCL architecture

do this by using the C++ type of the SYCL kernel function. This type is specified via the kernel name tem
plate parameter if the SYCL kernel function is a lambda function, or it is obtained from the class type if
the SYCL kernel function is an object. Implementations conformant to the full feature set (Section B.1) do
not require a kernel name at the invocation site, so they must implement some other way to make the
association.

3.12.2. Single source single compiler pass

With this technique, known as SSCP, the vendor implements a custom compiler that reads each SYCL
source file only once, and that compiler generates the host code as well as the device images for the SYCL
kernel functions. As in the SMCP case, each device image could either contain native device ISA or an
intermediate language.

3.12.3. Library-only implementation

It is also possible to implement SYCL purely as a library, using an off-the-shelf host compiler with no spe
cial support for SYCL. In such an implementation, each kernel may run on the host system.

3.13. Language restrictions in kernels
The SYCL kernels are executed on SYCL devices and all of the functions called from a SYCL kernel are
going to be compiled for the device by a SYCL device compiler. Due to restrictions of the heterogeneous
devices where the SYCL kernel will execute, there are certain restrictions on the base C++ language fea
tures that can be used inside kernel code. For details on language restrictions please refer to Section 5.4.

SYCL kernels use arguments that are captured by value in the command group scope or are passed from
the host to the device using accessors. Sharing data structures between host and device code imposes
certain restrictions, such as using only objects that are device copyable, and in general, no pointers ini
tialized for the host can be used on the device. SYCL memory objects, such as sycl::buffer, sycl::unsam
pled_image, and sycl::sampled_image, cannot be passed to a kernel. Instead, a kernel must interact with
these objects through accessors. No hierarchical structures of these memory object classes are supported
and any other data containers need to be converted to the SYCL data management classes using the SYCL
interface. For more details on the rules for kernel parameter passing, please refer to Section 4.12.4.

Pointers to USM allocations may be passed to a kernel either directly as arguments or indirectly inside of
other objects. Pointers to USM allocations that are passed as kernel arguments are treated as being in the
global address space.

3.13.1. Device copyable

The SYCL implementation may need to copy data between the host and a device or between two devices.
For example, this may occur when a command group has a requirement for the contents of a buffer or
when the application passes certain arguments to a SYCL kernel function (as described in Section 4.12.4).
Such data must have a type that is device copyable as defined below.

Any type that is trivially copyable (as defined by the C++ core language) is implicitly device copyable.

Although implementations are not required to support device code that calls library functions from the
C++ core language, some implementations may provide device support for some of these functions. If the
implementation provides device support for one of the following classes, that type is also implicitly
device copyable:

• std::array<T, 0>;

• std::array<T, N> if T is device copyable;

• std::optional<T> if T is device copyable;

SYCL 2020 rev 9 3.12.2. Single source single compiler pass

Chapter 3. SYCL architecture | 41

• std::pair<T1, T2> if T1 and T2 are device copyable;

• std::tuple<>;

• std::tuple<Types...> if all the types in the parameter pack Types are device copyable;

• std::variant<>;

• std::variant<Types...> if all the types in the parameter pack Types are device copyable;

• std::basic_string_view<CharT, Traits>;

• std::span<ElementType, Extent> (the std::span type has been introduced in C++20);

• sycl::span<ElementType, Extent>.

If the implementation provides device support for one of the classes listed above, arrays of that class and
cv-qualified versions of that class are also device copyable.

The types std::basic_string_view<CharT, Traits> and std::span<ElementType, Extent>
are both view types, which reference underlying data that is not contained within their
type. Although these view types are device copyable, the implementation copies just the
view and not the contained data when doing an inter-device copy. In order to reference
the contained data after such a copy, the application must allocate the contained data in
unified shared memory (USM) that is accessible on both the host and device (or on both
devices in the case of a device-to-device copy).

In addition, the implementation may allow the application to explicitly declare certain class types as
device copyable. If the implementation has this support, it must predefine the preprocessor macro
SYCL_DEVICE_COPYABLE to 1, and it must not predefine this preprocessor macro if it does not have this sup
port. When the implementation has this support, a class type T is device copyable if all of the following
statements are true:

• The application defines the trait is_device_copyable_v<T> to true;

• Type T has at least one eligible copy constructor, move constructor, copy assignment operator, or
move assignment operator;

• Each eligible copy constructor, move constructor, copy assignment operator, and move assignment
operator is public;

• When doing an inter-device transfer of an object of type T, the effect of each eligible copy constructor,
move constructor, copy assignment operator, and move assignment operator is the same as a bitwise
copy of the object;

• Type T has a public non-deleted destructor;

• The destructor has no effect when executed on the device.

When the application explicitly declares a class type to be device copyable, arrays of that type and cv-
qualified versions of that type are also device copyable, and the implementation sets the is_device_copy
able_v trait to true for these array and cv-qualified types.

It is unspecified whether the implementation actually calls the copy constructor, move
constructor, copy assignment operator, or move assignment operator of a class declared
as is_device_copyable_v when doing an inter-device copy. Since these operations must all
be the same as a bitwise copy, the implementation may simply copy the memory where
the object resides. Likewise, it is unspecified whether the implementation actually calls
the destructor for such a class on the device since the destructor must have no effect on
the device.

3.13.1. Device copyable SYCL 2020 rev 9

42 | Chapter 3. SYCL architecture

3.14. Endianness support
SYCL does not mandate any particular byte order, but the byte order of the host always matches the byte
order of the devices. This allows data to be copied between the host and the devices without any byte
swapping.

3.15. Example SYCL application
Below is a more complex example application, combining some of the features described above.

 1 #include <iostream>
 2 #include <sycl/sycl.hpp>
 3 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 4
 5 // Size of the matrices
 6 constexpr size_t N = 2000;
 7 constexpr size_t M = 3000;
 8
 9 int main() {
10 // Create a queue to work on
11 queue myQueue;
12
13 // Create some 2D buffers of float for our matrices
14 buffer<float, 2> a { range<2> { N, M } };
15 buffer<float, 2> b { range<2> { N, M } };
16 buffer<float, 2> c { range<2> { N, M } };
17
18 // Launch an asynchronous kernel to initialize a
19 myQueue.submit([&](handler& cgh) {
20 // The kernel writes a, so get a write accessor on it
21 accessor A { a, cgh, write_only };
22
23 // Enqueue a parallel kernel iterating on a N*M 2D iteration space
24 cgh.parallel_for(range<2> { N, M },
25 [=](id<2> index) { A[index] = index[0] * 2 + index[1]; });
26 });
27
28 // Launch an asynchronous kernel to initialize b
29 myQueue.submit([&](handler& cgh) {
30 // The kernel writes b, so get a write accessor on it
31 accessor B { b, cgh, write_only };
32
33 // From the access pattern above, the SYCL runtime detects that this
34 // command_group is independent from the first one and can be
35 // scheduled independently
36
37 // Enqueue a parallel kernel iterating on a N*M 2D iteration space
38 cgh.parallel_for(range<2> { N, M }, [=](id<2> index) {
39 B[index] = index[0] * 2014 + index[1] * 42;
40 });
41 });
42
43 // Launch an asynchronous kernel to compute matrix addition c = a + b
44 myQueue.submit([&](handler& cgh) {
45 // In the kernel a and b are read, but c is written

SYCL 2020 rev 9 3.14. Endianness support

Chapter 3. SYCL architecture | 43

46 accessor A { a, cgh, read_only };
47 accessor B { b, cgh, read_only };
48 accessor C { c, cgh, write_only };
49
50 // From these accessors, the SYCL runtime will ensure that when
51 // this kernel is run, the kernels computing a and b have completed
52
53 // Enqueue a parallel kernel iterating on a N*M 2D iteration space
54 cgh.parallel_for(range<2> { N, M },
55 [=](id<2> index) { C[index] = A[index] + B[index]; });
56 });
57
58 // Ask for an accessor to read c from application scope. The SYCL runtime
59 // waits for c to be ready before returning from the constructor
60 host_accessor C { c, read_only };
61 std::cout << std::endl << "Result:" << std::endl;
62 for (size_t i = 0; i < N; i++) {
63 for (size_t j = 0; j < M; j++) {
64 // Compare the result to the analytic value
65 if (C[i][j] != i * (2 + 2014) + j * (1 + 42)) {
66 std::cout << "Wrong value " << C[i][j] << " on element " << i << " "
67 << j << std::endl;
68 exit(-1);
69 }
70 }
71 }
72
73 std::cout << "Good computation!" << std::endl;
74 return 0;
75 }

3.15. Example SYCL application SYCL 2020 rev 9

44 | Chapter 3. SYCL architecture

Chapter 4. SYCL programming interface
The SYCL programming interface provides a common abstracted feature set to one or more SYCL back
end APIs. This section describes the C++ library interface to the SYCL runtime which executes across
those SYCL backends.

The entirety of the SYCL interface defined in this section is required to be available for any SYCL back
ends, with the exception of the interoperability interface, which is described in general terms in this
document, not pertaining to any particular SYCL backend.

SYCL guarantees that all the member functions and special member functions of the SYCL classes
described are thread safe.

The underlying types for all enumerations defined in this specification are implementation-defined. In
addition, all enumerators within an enumeration have some implementation-defined unique value
unless the specification specifically indicates a value for the enumerator.

4.1. Backends
The SYCL backends that can be supported by a SYCL implementation are identified using the enum class
backend.

1 namespace sycl {
2 enum class backend : /* unspecified */ {
3 /* see below */
4 };
5 } // namespace sycl

The enum class backend is implementation-defined and must be populated with a unique identifier for
each SYCL backend that the SYCL implementation can support. Note that the SYCL backends listed in the
enum class backend are not guaranteed to be available in a given installation.

Each named SYCL backend enumerated in the enum class backend must be associated with a SYCL back
end specification. Many sections of this specification will refer to the associated SYCL backend specifica
tion.

4.1.1. Backend macros

As the identifiers defined in enum class backend are implementation-defined, and the associated back
ends are not guaranteed to be available, a SYCL implementation must also define a preprocessor macro
for each of these identifiers. If the SYCL backend is defined by the Khronos SYCL group, the name of the
macro has the form SYCL_BACKEND_<backend_name>, where backend_name is the associated identifier from
backend in all upper-case. See Chapter 6 for the name of the macro if the vendor defines the SYCL back
end outside of the Khronos SYCL group.

If a backend listed in the enum class backend is not available, the associated macro must be left unde
fined.

4.2. Generic vs non-generic SYCL
The SYCL programming API is split into two categories; generic SYCL and non-generic SYCL. Almost
everything in the SYCL programming API is considered generic SYCL. However any usage of the enum
class backend is considered non-generic SYCL and should only be used for SYCL backend specialized
code paths, as the identifiers defined in backend are implementation-defined.

SYCL 2020 rev 9 4.1. Backends

Chapter 4. SYCL programming interface | 45

In any non-generic SYCL application code where the backend enum class is used, the expression must be
guarded with a preprocessor #ifdef guard using the associated preprocessor macro to ensure that the
SYCL application will compile even if the SYCL implementation does not support that SYCL backend
being specialized for.

4.3. Header files and namespaces
SYCL provides one standard header file: <sycl/sycl.hpp>, which needs to be included in every transla
tion unit that uses the SYCL programming API.

All SYCL classes, constants, types and functions defined by this specification should exist within the
::sycl namespace.

For compatibility with SYCL 1.2.1, SYCL provides another standard header file: <CL/sycl.hpp>, which can
be included in place of <sycl/sycl.hpp>. In that case, all SYCL classes, constants, types and functions
defined by this specification should exist within the ::cl::sycl C++ namespace.

For consistency, the programming API will only refer to the <sycl/sycl.hpp> header and the ::sycl name
space, but this should be considered synonymous with the SYCL 1.2.1 header and namespace.

Include paths starting with "sycl/ext/" and "sycl/backend/" are reserved for extensions to SYCL and for
backend interop headers respectively. Other include paths starting with "sycl/" and the sycl::detail
namespace are reserved for implementation details.

When a SYCL backend is defined by the Khronos SYCL group, functionality for that SYCL backend is
available via the header "sycl/backend/<backend_name>.hpp", and all SYCL backend-specific functionality
is made available in the namespace sycl::<backend_name> where <backend_name> is the name of the SYCL
backend as defined in the SYCL backend specification.

Chapter 6 defines the allowable header files and namespaces for any extensions that a vendor may pro
vide, including any SYCL backend that the vendor may define outside of the Khronos SYCL group.

Unless otherwise specified, the behavior of a SYCL program is undefined if it adds any entity to name
space sycl or to a namespace within namespace sycl.

4.4. Class availability
In SYCL some SYCL runtime classes are available to the SYCL application, some are available within a
SYCL kernel function and some are available on both and can be passed as arguments to a SYCL kernel
function.

Each of the following SYCL runtime classes: buffer, buffer_allocator, context, device, device_image, event,
exception, handler, host_accessor, host_sampled_image_accessor, host_unsampled_image_accessor, id,
image_allocator, kernel, kernel_id, marray, kernel_bundle, nd_range, platform, queue, range, sampled_image,
image_sampler, stream, unsampled_image and vec must be available to the host application.

Each of the following SYCL runtime classes: accessor, atomic_ref, device_event, group, h_item, id, item,
local_accessor, marray, multi_ptr, nd_item, range, reducer, sampled_image_accessor, stream, sub_group,
unsampled_image_accessor and vec must be available within a SYCL kernel function.

4.5. Common interface
When a dimension template parameter is used in SYCL classes, it is defaulted as 1 in most cases.

4.3. Header files and namespaces SYCL 2020 rev 9

46 | Chapter 4. SYCL programming interface

4.5.1. Backend interoperability

Many of the SYCL runtime classes may be implemented such that they encapsulate an object unique to
the SYCL backend that underpins the functionality of that class. Where appropriate, these classes may
provide an interface for interoperating between the SYCL runtime object and the native backend object
in order to support interoperability within an application between SYCL and the associated SYCL back
end API.

There are three forms of interoperability with SYCL runtime classes: interoperability on the SYCL appli
cation with the SYCL backend API, interoperability within a SYCL kernel function with the equivalent
kernel language types of the SYCL backend, and interoperability within a host task with the interop_han
dle.

SYCL application interoperability, SYCL kernel function interoperability and host task interoperability
are provided via different interfaces and may have different behavior for the same SYCL object.

SYCL application interoperability may be provided for buffer, context, device, device_image, event, kernel,
kernel_bundle, platform, queue, sampled_image, and unsampled_image.

SYCL kernel function interoperability may be provided for accessor, device_event, local_accessor, sam
pled_image_accessor, stream and unsampled_image_accessor inside kernel scope only and is not available
outside of that scope.

host task interoperability may be provided for accessor, sampled_image_accessor, unsampled_image_acces
sor, queue, device, context inside the scope of a host task only, see Section 4.10.

Support for SYCL backend interoperability is optional and therefore not required to be provided by a
SYCL implementation. A SYCL application using SYCL backend interoperability is considered to be non-
generic SYCL.

Details on the interoperability for a given SYCL backend are available on the SYCL backend specification
document for that SYCL backend.

4.5.1.1. Type traits backend_traits

 1 namespace sycl {
 2
 3 template <backend Backend> class backend_traits {
 4 public:
 5 template <class T> using input_type = /* see below */;
 6
 7 template <class T> using return_type = /* see below */;
 8 };
 9
10 template <backend Backend, typename SyclType>
11 using backend_input_t =
12 typename backend_traits<Backend>::template input_type<SyclType>;
13
14 template <backend Backend, typename SyclType>
15 using backend_return_t =
16 typename backend_traits<Backend>::template return_type<SyclType>;
17
18 } // namespace sycl

A series of type traits are provided for SYCL backend interoperability, defined in the backend_traits
class.

SYCL 2020 rev 9 4.5.1. Backend interoperability

Chapter 4. SYCL programming interface | 47

A specialization of backend_traits must be provided for each named SYCL backend enumerated in the
enum class backend that is available at compile time.

• For each SYCL runtime class T which supports SYCL application interoperability with the SYCL back
end, a specialization of input_type must be defined as the type of SYCL application interoperability
native backend object associated with T for the SYCL backend, specified in the SYCL backend specifi
cation. input_type is used when constructing SYCL objects from backend specific native objects. See
the relevant backend specification for details.

• For each SYCL runtime class T which supports SYCL application interoperability with the SYCL back
end, a specialization of return_type must be defined as the type of SYCL application interoperability
native backend object associated with T for the SYCL backend, specified in the SYCL backend specifi
cation. return_type is used when retrieving the backend specific native object from a SYCL object. See
the relevant backend specification for details.

• For each SYCL runtime class T which supports kernel function interoperability with the SYCL back
end, a specialization of return_type within backend_traits must be defined as the type of the kernel
function interoperability native backend object associated with T for the SYCL backend, specified in
the backend specification. See the relevant backend specification for details.

The type alias backend_input_t is provided to enable less verbose access to the input_type type within
backend_traits for a specific SYCL object of type T. The type alias backend_return_t is provided to enable
less verbose access to the return_type type within backend_traits for a specific SYCL object of type T.

4.5.1.2. Template function get_native

1 namespace sycl {
2
3 template <backend Backend, class T>
4 backend_return_t<Backend, T> get_native(const T& syclObject);
5
6 } // namespace sycl

For each SYCL runtime class T which supports SYCL application interoperability, a specialization of get_
native must be defined, which takes an instance of T and returns a SYCL application interoperability
native backend object associated with syclObject which can be used for SYCL application interoperabil
ity. The lifetime of the object returned is backend-defined and specified in the backend specification.

For each SYCL runtime class T which supports kernel function interoperability, a specialization of get_
native must be defined, which takes an instance of T and returns the kernel function interoperability
native backend object associated with syclObject which can be used for kernel function interoperability.
The availability and behavior of these template functions are defined by the SYCL backend specification
document.

The get_native function must throw an exception with the errc::backend_mismatch error code if the back
end of the SYCL object doesn’t match the target backend.

4.5.1.3. Template functions make_*

 1 namespace sycl {
 2
 3 template <backend Backend>
 4 platform make_platform(const backend_input_t<Backend, platform>& backendObject);
 5
 6 template <backend Backend>
 7 device make_device(const backend_input_t<Backend, device>& backendObject);
 8

4.5.1.2. Template function get_native SYCL 2020 rev 9

48 | Chapter 4. SYCL programming interface

 9 template <backend Backend>
10 context make_context(const backend_input_t<Backend, context>& backendObject,
11 const async_handler asyncHandler = {});
12
13 template <backend Backend>
14 queue make_queue(const backend_input_t<Backend, queue>& backendObject,
15 const context& targetContext,
16 const async_handler asyncHandler = {});
17
18 template <backend Backend>
19 event make_event(const backend_input_t<Backend, event>& backendObject,
20 const context& targetContext);
21
22 template <backend Backend, typename T, int Dimensions = 1,
23 typename AllocatorT = buffer_allocator<std::remove_const_t<T>>>
24 buffer<T, Dimensions, AllocatorT>
25 make_buffer(const backend_input_t<Backend, buffer<T, Dimensions, AllocatorT>>&
26 backendObject,
27 const context& targetContext, event availableEvent);
28
29 template <backend Backend, typename T, int Dimensions = 1,
30 typename AllocatorT = buffer_allocator<std::remove_const_t<T>>>
31 buffer<T, Dimensions, AllocatorT>
32 make_buffer(const backend_input_t<Backend, buffer<T, Dimensions, AllocatorT>>&
33 backendObject,
34 const context& targetContext);
35
36 template <backend Backend, int Dimensions = 1,
37 typename AllocatorT = sycl::image_allocator>
38 sampled_image<Dimensions, AllocatorT> make_sampled_image(
39 const backend_input_t<Backend, sampled_image<Dimensions, AllocatorT>>&
40 backendObject,
41 const context& targetContext, image_sampler imageSampler,
42 event availableEvent);
43
44 template <backend Backend, int Dimensions = 1,
45 typename AllocatorT = sycl::image_allocator>
46 sampled_image<Dimensions, AllocatorT> make_sampled_image(
47 const backend_input_t<Backend, sampled_image<Dimensions, AllocatorT>>&
48 backendObject,
49 const context& targetContext, image_sampler imageSampler);
50
51 template <backend Backend, int Dimensions = 1,
52 typename AllocatorT = sycl::image_allocator>
53 unsampled_image<Dimensions, AllocatorT> make_unsampled_image(
54 const backend_input_t<Backend, unsampled_image<Dimensions, AllocatorT>>&
55 backendObject,
56 const context& targetContext, event availableEvent);
57
58 template <backend Backend, int Dimensions = 1,
59 typename AllocatorT = sycl::image_allocator>
60 unsampled_image<Dimensions, AllocatorT> make_unsampled_image(
61 const backend_input_t<Backend, unsampled_image<Dimensions, AllocatorT>>&
62 backendObject,
63 const context& targetContext);
64

SYCL 2020 rev 9 4.5.1.3. Template functions make_*

Chapter 4. SYCL programming interface | 49

65 template <backend Backend, bundle_state State>
66 kernel_bundle<State> make_kernel_bundle(
67 const backend_input_t<Backend, kernel_bundle<State>>& backendObject,
68 const context& targetContext);
69
70 template <backend Backend>
71 kernel make_kernel(const backend_input_t<Backend, kernel>& backendObject,
72 const context& targetContext);
73
74 } // namespace sycl

For each SYCL runtime class T which supports SYCL application interoperability, a specialization of the
appropriate template function make_{sycl_class} where {sycl_class} is the class name of T, must be
defined, which takes a SYCL application interoperability native backend object and constructs and
returns an instance of T. The availability and behavior of these template functions are defined by the
SYCL backend specification document.

Overloads of the make_{sycl_class} function which take a SYCL context object as an argument must
throw an exception with the errc::backend_mismatch error code if the backend of the provided SYCL con
text doesn’t match the target backend.

4.5.2. Common reference semantics

Each of the following SYCL runtime classes: accessor, buffer, context, device, device_image, event,
host_accessor, host_sampled_image_accessor, host_unsampled_image_accessor, kernel, kernel_id, ker
nel_bundle, local_accessor, platform, queue, sampled_image, sampled_image_accessor, stream, unsampled_im
age and unsampled_image_accessor must obey the following statements, where T is the runtime class type:

• T must be copy constructible and copy assignable in the host application and within SYCL kernel func
tions in the case that T is a valid kernel argument. Any instance of T that is constructed as a copy of
another instance, via either the copy constructor or copy assignment operator, must behave as-if it
were the original instance and as-if any action performed on it were also performed on the original
instance and must represent the same underlying native backend object as the original instance
where applicable.

• T must be destructible in the host application and within SYCL kernel functions in the case that T is a
valid kernel argument. When any instance of T is destroyed, including as a result of the copy assign
ment operator, any behavior specific to T that is specified as performed on destruction is only per
formed if this instance is the last remaining host copy, in accordance with the above definition of a
copy.

• T must be move constructible and move assignable in the host application and within SYCL kernel
functions in the case that T is a valid kernel argument. Any instance of T that is constructed as a move
of another instance, via either the move constructor or move assignment operator, must replace the
original instance rendering said instance invalid and must represent the same underlying native
backend object as the original instance where applicable.

• T must be equality comparable in the host application. Equality between two instances of T (i.e. a ==
b) must be true if one instance is a copy of the other and non-equality between two instances of T (i.e.
a != b) must be true if neither instance is a copy of the other, in accordance with the above definition
of a copy, unless either instance has become invalidated by a move operation. By extension of the
requirements above, equality on T must guarantee to be reflexive (i.e. a == a), symmetric (i.e. a == b
implies b == a and a != b implies b != a) and transitive (i.e. a == b && b == c implies c == a).

• A specialization of std::hash for T must exist in the host application that returns a unique value such
that if two instances of T are equal, in accordance with the above definition, then their resulting hash
values are also equal and subsequently if two hash values are not equal, then their corresponding
instances are also not equal, in accordance with the above definition.

4.5.2. Common reference semantics SYCL 2020 rev 9

50 | Chapter 4. SYCL programming interface

Some SYCL runtime classes will have additional behavior associated with copy, movement, assignment
or destruction semantics. If these are specified they are in addition to those specified above unless stated
otherwise.

Each of the runtime classes mentioned above must provide a common interface of special member func
tions in order to fulfill the copy, move, destruction requirements and hidden friend functions in order to
fulfill the equality requirements.

A hidden friend function is a function first declared via a friend declaration with no additional out of
class or namespace scope declarations. Hidden friend functions are only visible to ADL (Argument
Dependent Lookup) and are hidden from qualified and unqualified lookup. Hidden friend functions
have the benefits of avoiding accidental implicit conversions and faster compilation.

These common special member functions and hidden friend functions are described in Table 7 and Ta
ble 8 respectively.

 1 namespace sycl {
 2
 3 class T {
 4 ...
 5
 6 public : T(const T& rhs);
 7
 8 T(T&& rhs);
 9
10 T& operator=(const T& rhs);
11
12 T& operator=(T&& rhs);
13
14 ~T();
15
16 ...
17
18 friend bool
19 operator==(const T& lhs, const T& rhs) { /* ... */
20 }
21
22 friend bool operator!=(const T& lhs, const T& rhs) { /* ... */ }
23
24 ...
25 };
26 } // namespace sycl

Table 7. Common special member functions for reference semantics

Special member function Description

T(const T& rhs)
Constructs a T instance as a copy of the RHS SYCL T in accordance
with the requirements set out above.

T(T&& rhs)
Constructs a SYCL T instance as a move of the RHS SYCL T in accor
dance with the requirements set out above.

T& operator=(const T& rhs)
Assigns this SYCL T instance with a copy of the RHS SYCL T in accor
dance with the requirements set out above.

SYCL 2020 rev 9 4.5.2. Common reference semantics

Chapter 4. SYCL programming interface | 51

Special member function Description

T& operator=(T&& rhs)
Assigns this SYCL T instance with a move of the RHS SYCL T in accor
dance with the requirements set out above.

~T()
Destroys this SYCL T instance in accordance with the requirements
set out in Section 4.5.2. On destruction of the last copy, may perform
additional lifetime related operations required for the underlying
native backend object specified in the SYCL backend specification
document, if this SYCL T instance was originally constructed using
one of the backend interoperability make_* functions specified in
Section 4.5.1.3. See the relevant backend specification for details.

Table 8. Common hidden friend functions for reference semantics

Hidden friend function Description

bool operator==(const T& lhs, const T& rhs)
Returns true if this LHS SYCL T is equal to the RHS
SYCL T in accordance with the requirements set
out above, otherwise returns false.

bool operator!=(const T& lhs, const T& rhs)
Returns true if this LHS SYCL T is not equal to the
RHS SYCL T in accordance with the requirements
set out above, otherwise returns false.

4.5.3. Common by-value semantics

Each of the following SYCL runtime classes: id, range, item, nd_item, h_item, group, sub_group and nd_range
must follow the following statements, where T is the runtime class type:

• T must be default copy constructible and copy assignable in the host application (in the case where T
is available on the host) and within SYCL kernel functions.

• T must be default destructible in the host application (in the case where T is available on the host)
and within SYCL kernel functions.

• T must be default move constructible and default move assignable in the host application (in the case
where T is available on the host) and within SYCL kernel functions.

• T must be equality comparable in the host application (in the case where T is available on the host)
and within SYCL kernel functions. Equality between two instances of T (i.e. a == b) must be true if the
value of all members are equal and non-equality between two instances of T (i.e. a != b) must be true
if the value of any members are not equal, unless either instance has become invalidated by a move
operation. By extension of the requirements above, equality on T must guarantee to be reflexive (i.e. a
== a), symmetric (i.e. a == b implies b == a and a != b implies b != a) and transitive (i.e. a == b && b
== c implies c == a).

Some SYCL runtime classes will have additional behavior associated with copy, movement, assignment
or destruction semantics. If these are specified they are in addition to those specified above unless stated
otherwise.

Each of the runtime classes mentioned above must provide a common interface of special member func
tions and member functions in order to fulfill the copy, move, destruction and equality requirements,
following the rule of five and the rule of zero.

These common special member functions and hidden friend functions are described in Table 9 and Ta
ble 10 respectively.

 1 namespace sycl {
 2

4.5.3. Common by-value semantics SYCL 2020 rev 9

52 | Chapter 4. SYCL programming interface

 3 class T {
 4 ...
 5
 6 public
 7 :
 8 // If any of the following five special member functions are not
 9 // public, inline or defaulted, then all five of them should be
10 // explicitly declared (see rule of five).
11 // Otherwise, none of them should be explicitly declared
12 // (see rule of zero).
13
14 // T(const T &rhs);
15
16 // T(T &&rhs);
17
18 // T &operator=(const T &rhs);
19
20 // T &operator=(T &&rhs);
21
22 // ~T();
23
24 ...
25
26 friend bool
27 operator==(const T& lhs, const T& rhs) { /* ... */
28 }
29
30 friend bool operator!=(const T& lhs, const T& rhs) { /* ... */ }
31
32 ...
33 };
34 } // namespace sycl

Table 9. Common special member functions for by-value semantics

Special member function (see rule of five and rule of zero) Description

T(const T& rhs);
Copy constructor.

T(T&& rhs);
Move constructor.

T& operator=(const T& rhs);
Copy assignment operator.

T& operator=(T&& rhs);
Move assignment operator.

~T();
Destructor.

Table 10. Common hidden friend functions for by-value semantics

SYCL 2020 rev 9 4.5.3. Common by-value semantics

Chapter 4. SYCL programming interface | 53

Hidden friend function Description

bool operator==(const T& lhs, const T& rhs)
Returns true if this LHS SYCL T is equal to the RHS
SYCL T in accordance with the requirements set
out above, otherwise returns false.

bool operator!=(const T& lhs, const T& rhs)
Returns true if this LHS SYCL T is not equal to the
RHS SYCL T in accordance with the requirements
set out above, otherwise returns false.

4.5.4. Properties

Each of the following SYCL runtime classes: accessor, buffer, host_accessor, host_sampled_image_accessor,
host_unsampled_image_accessor, context, local_accessor, queue, sampled_image, sampled_image_accessor,
stream, unsampled_image, unsampled_image_accessor and usm_allocator provide an optional parameter in
each of their constructors to provide a property_list which contains zero or more properties. Each of
those properties augments the semantics of the class with a particular feature. Each of those classes
must also provide has_property and get_property member functions for querying for a particular prop
erty.

The listing below illustrates the usage of various buffer properties, described in Section 4.7.2.2.

The example illustrates how using properties does not affect the type of the object, thus, does not pre
vent the usage of SYCL objects in containers.

 1 {
 2 context myContext;
 3
 4 std::vector<buffer<int, 1>> bufferList {
 5 buffer<int, 1> { ptr, rng },
 6 buffer<int, 1> { ptr, rng, property::use_host_ptr {} },
 7 buffer<int, 1> { ptr, rng, property::context_bound { myContext } }
 8 };
 9
10 for (auto& buf : bufferList) {
11 if (buf.has_property<property::context_bound>()) {
12 auto prop = buf.get_property<property::context_bound>();
13 assert(myContext == prop.get_context());
14 }
15 }
16 }

Each property is represented by a unique class and an instance of a property is an instance of that type.
Some properties can be default constructed while others will require an argument on construction. A
property may be applicable to more than one class, however some properties may not be compatible
with each other. See the requirements for the properties of the SYCL buffer class, SYCL unsampled_image
class and SYCL sampled_image class in Table 41 and Table 48 respectively.

Properties can be passed to a SYCL runtime class via an instance of property_list. These properties get
tied to the SYCL runtime class instance and copies of the object will contain the same properties.

A SYCL implementation or a SYCL backend may provide additional properties other than those defined
here, provided they are defined in accordance with the requirements described in Section 4.3.

4.5.4. Properties SYCL 2020 rev 9

54 | Chapter 4. SYCL programming interface

4.5.4.1. Properties interface

Each of the runtime classes mentioned above must provide a common interface of member functions in
order to fulfill the property interface requirements.

A synopsis of the common properties interface, the SYCL property_list class and the SYCL property
classes is provided below. The member functions of the common properties interface are listed in Table
12. The constructors of the SYCL property_list class are listed in Table 13.

 1 namespace sycl {
 2
 3 template <typename Property> struct is_property;
 4
 5 template <typename Property>
 6 inline constexpr bool is_property_v = is_property<Property>::value;
 7
 8 template <typename Property, typename SyclObject> struct is_property_of;
 9
10 template <typename Property, typename SyclObject>
11 inline constexpr bool is_property_of_v =
12 is_property_of<Property, SyclObject>::value;
13
14 class T {
15 ...
16
17 template <typename Property>
18 bool has_property() const noexcept;
19
20 template <typename Property> Property get_property() const;
21
22 ...
23 };
24
25 class property_list {
26 public:
27 template <typename... Properties> property_list(Properties... props);
28 };
29 } // namespace sycl

Table 11. Traits for properties

Traits Description

template <typename Property> struct
is_property

An explicit specialization of is_property that inher
its from std::true_type must be provided for each
property, where Property is the class defining the
property. This includes both standard properties
described in this specification and any additional
non-standard properties defined by an implemen
tation. All other specializations of is_property
must inherit from std::false_type.

template <typename Property>
inline constexpr bool is_property_v;

Variable containing value of is_property<Prop
erty>.

SYCL 2020 rev 9 4.5.4.1. Properties interface

Chapter 4. SYCL programming interface | 55

Traits Description

template <typename Property, SyclObject>
struct is_property_of

An explicit specialization of is_property_of that
inherits from std::true_type must be provided for
each property that can be used in constructing a
given SYCL class, where Property is the class defin
ing the property and SyclObject is the SYCL class.
This includes both standard properties described
in this specification and any additional non-stan
dard properties defined by an implementation. All
other specializations of is_property_of must
inherit from std::false_type.

template <typename Property, SyclObject>
inline constexpr bool is_property_of_v;

Variable containing value of is_property_of<Prop
erty, SyclObject>.

Table 12. Common member functions of the SYCL property interface

Member function Description

template <typename Property> bool
has_property() const noexcept

Returns true if T was constructed with the property specified
by Property. Returns false if it was not.

template <typename Property>
Property get_property() const

Returns a copy of the property of type Property that T was
constructed with. Must throw an exception with the
errc::invalid error code if T was not constructed with the
Property property.

Table 13. Constructors of the SYCL property_list class

Constructor Description

template <typename... PropertyN>
property_list(PropertyN... props)

Available only when: is_property<property>::value evaluates
to true where property is each property in PropertyN.

Construct a SYCL property_list with zero or more properties.

4.6. SYCL runtime classes

4.6.1. Device selection

Since a system can have several SYCL-compatible devices attached, it is useful to have a way to select a
specific device or a set of devices to construct a specific object such as a device (see Section 4.6.4) or a
queue (see Section 4.6.5), or perform some operations on a device subset.

Device selection is done either by already having a specific instance of a device (see Section 4.6.4) or by
providing a device selector which is a ranking function that will give an integer ranking value to all the
devices on the system.

4.6.1.1. Device selector

The interface for a device selector is any object that meets the C++ named requirement Callable, taking a
parameter of type const device & and returning a value that is implicitly convertible to int.

At any point where the SYCL runtime needs to select a SYCL device using a device selector, the system
queries all root devices from all SYCL backends in the system, calls the device selector on each device

4.6. SYCL runtime classes SYCL 2020 rev 9

56 | Chapter 4. SYCL programming interface

and selects the one which returns the highest score. If the highest value is strictly negative no device is
selected.

In places where only one device has to be picked and the high score is obtained by more than one
device, then one of the tied devices will be returned, but which one is not defined and may depend on
enumeration order, for example, outside the control of the SYCL runtime.

Some predefined device selectors are provided by the system as described on Table 14 in a header file
with some definition similar to the following:

Table 14. Standard device selectors included with all SYCL implementations

SYCL device selectors Description

default_selector_v
Select a SYCL device from any supported SYCL
backend based on an implementation-defined
heuristic. Since all implementations must support
at least one device, this selector must always
return a device.

Implementations may choose to
return an emulated device (with
aspect::emulated) as a fallback if
there is no physical device avail
able on the system.

gpu_selector_v
Select a SYCL device from any supported SYCL
backend for which the device type is
info::device_type::gpu. The SYCL class constructor
using it must throw an exception with the
errc::runtime error code if no device matching this
requirement can be found.

accelerator_selector_v
Select a SYCL device from any supported SYCL
backend for which the device type is
info::device_type::accelerator. The SYCL class
constructor using it must throw an exception with
the errc::runtime error code if no device matching
this requirement can be found.

cpu_selector_v
Select a SYCL device from any supported SYCL
backend for which the device type is
info::device_type::cpu. The SYCL class constructor
using it must throw an exception with the
errc::runtime error code if no device matching this
requirement can be found.

SYCL 2020 rev 9 4.6.1.1. Device selector

Chapter 4. SYCL programming interface | 57

SYCL device selectors Description

__unspecified_callable__
aspect_selector(const std::vector<aspect>&
aspectList,
 const std::vector<aspect>&
denyList = {});

template <typename... AspectList>
__unspecified_callable__ aspect_selector
(AspectList... aspectList);

template <aspect... AspectList>
__unspecified_callable__ aspect_selector();

The free function aspect_selector has several over
loads, each of which returns a selector object that
selects a SYCL device from any supported SYCL
backend which contains all the requested aspects,
i.e. for the specific device dev and each aspect
devAspect from aspectList dev.has(devAspect)
equals true. If no aspects are passed in, the gener
ated selector behaves like default_selector_v.

Required aspects can be passed in as a vector, as
function arguments, or as template parameters,
depending on the function overload. The function
overload that takes aspectList as a vector takes
another vector argument denyList where the user
can specify all the aspects that have to be avoided,
i.e. for the specific device dev and each aspect
devAspect from denyList dev.has(devAspect) equals
false.

The SYCL class constructor using the generated
selector must throw an exception with the
errc::runtime error code if no device matching this
requirement can be found. There are multiple
overloads of this function, please refer to
[header:device-selector] for full definitions and to
[example:aspect-selector] for examples.

 1 namespace sycl {
 2
 3 // Predefined device selectors
 4 __unspecified__ default_selector_v;
 5 __unspecified__ cpu_selector_v;
 6 __unspecified__ gpu_selector_v;
 7 __unspecified__ accelerator_selector_v;
 8
 9 // Predefined types for compatibility with old SYCL 1.2.1 device selectors
10 // Deprecated in SYCL 2020
11 using default_selector = __unspecified__;
12 using cpu_selector = __unspecified__;
13 using gpu_selector = __unspecified__;
14 using accelerator_selector = __unspecified__;
15
16 // Returns a selector that selects a device based on desired aspects
17 __unspecified_callable__
18 aspect_selector(const std::vector<aspect>& aspectList,
19 const std::vector<aspect>& denyList = {});
20 template <class... AspectList>
21 __unspecified_callable__ aspect_selector(AspectList... aspectList);
22 template <aspect... AspectList> __unspecified_callable__ aspect_selector();
23
24 } // namespace sycl

Typical examples of default and user-provided device selectors could be:

4.6.1.1. Device selector SYCL 2020 rev 9

58 | Chapter 4. SYCL programming interface

 1 sycl::device my_gpu { sycl::gpu_selector_v };
 2
 3 sycl::queue my_accelerator { sycl::accelerator_selector_v };
 4
 5 int prefer_my_vendor(const sycl::device& d) {
 6 // Return 1 if the vendor name is "MyVendor" or 0 else.
 7 // 0 does not prevent another device to be picked as a second choice
 8 return d.get_info<info::device::vendor>() == "MyVendor";
 9 }
10
11 // Get the preferred device or another one if not available
12 sycl::device preferred_device { prefer_my_vendor };
13
14 // This throws if there is no such device in the system
15 sycl::queue half_precision_controller {
16 // Can use a lambda as a device ranking function.
17 // Returns a negative number to fail in the case there is no such device
18 [] (auto& d) { return d.has(sycl::aspect::fp16) ? 1 : -1; }
19 };
20
21 // To ease porting SYCL 1.2.1 code, there are types whose
22 // construction leads to the equivalent predefined device selector
23 sycl::queue my_old_style_gpu { sycl::gpu_selector {} };

Examples of using aspect_selector:

 1 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 2
 3 // Unrestrained selection, equivalent to default_selector_v
 4 auto dev0 = device{aspect_selector()};
 5
 6 // Pass aspects in a vector
 7 // Only accept CPUs that support half
 8 auto dev1 = device{aspect_selector(std::vector{aspect::cpu, aspect::fp16})};
 9
10 // Pass aspects without a vector
11 // Only accept GPUs that support half
12 auto dev2 = device{aspect_selector(aspect::gpu, aspect::fp16)};
13
14 // Pass aspects as compile-time parameters
15 // Only accept devices that can be debugged on host and support half
16 auto dev3 = device{aspect_selector<aspect::host_debuggable, aspect::fp16>()};
17
18 // Pass aspects in an allowlist and a denylist
19 // Only accept devices that support half and double floating point precision,
20 // but exclude emulated devices and devices of type "custom"
21 auto dev4 = device{aspect_selector(
22 std::vector{aspect::fp16, aspect::fp64},
23 std::vector{aspect::emulated, aspect::custom}
24)};

In SYCL 1.2.1 the predefined device selectors were actually types that had to be instanti
ated to be used. Now they are just instances. To simplify porting code using the old type
instantiations, a backward-compatible API is still provided, though deprecated, such as

SYCL 2020 rev 9 4.6.1.1. Device selector

Chapter 4. SYCL programming interface | 59

sycl::default_selector. The new predefined device selectors have their new names
appended with "_v" to avoid conflicts, thus following the naming style used by traits in
the C++ standard library. There is no requirement for the implementation to have for
example sycl::gpu_selector_v being an instance of sycl::gpu_selector.

Implementation note: the SYCL API might rely on SFINAE or C++20 concepts to resolve
some ambiguity in constructors with default parameters.

4.6.2. Platform class

The SYCL platform class encapsulates a single SYCL platform on which SYCL kernel functions may be exe
cuted. A SYCL platform must be associated with a single SYCL backend.

A SYCL platform is also associated with any number of SYCL devices associated with the same SYCL back
end. A platform may contain no devices.

All member functions of the platform class are synchronous and errors are handled by throwing syn
chronous SYCL exceptions.

The execution environment for a SYCL application has a fixed number of platforms which does not vary
as the application executes. The application can get a list of all these platforms via platform::get_plat
forms(), and the order of the platform objects is the same each time the application calls that function.
The platform class also provides constructors, but constructing a new platform instance merely creates a
new object that is a copy of one of the objects returned by platform::get_platforms().

The SYCL platform class provides the common reference semantics (see Section 4.5.2).

4.6.2.1. Platform interface

A synopsis of the SYCL platform class is provided below. The constructors, member functions and static
member functions of the SYCL platform class are listed in Table 15, Table 16 and Table 17 respectively.
The additional common special member functions and common member functions are listed in Section
4.5.2 in Table 7 and Table 8 respectively.

 1 namespace sycl {
 2 class platform {
 3 public:
 4 platform();
 5
 6 template <typename DeviceSelector>
 7 explicit platform(const DeviceSelector& deviceSelector);
 8
 9 /* -- common interface members -- */
10
11 backend get_backend() const noexcept;
12
13 std::vector<device>
14 get_devices(info::device_type = info::device_type::all) const;
15
16 template <typename Param> typename Param::return_type get_info() const;
17
18 template <typename Param>
19 typename Param::return_type get_backend_info() const;
20
21 bool has(aspect asp) const;
22

4.6.2. Platform class SYCL 2020 rev 9

60 | Chapter 4. SYCL programming interface

23 bool has_extension(const std::string& extension) const; // Deprecated
24
25 static std::vector<platform> get_platforms();
26 };
27 } // namespace sycl

Table 15. Constructors of the SYCL platform class

Constructor Description

platform()
Constructs a SYCL platform
instance that is a copy of the plat
form which contains the device
returned by default_selector_v.

template <typename DeviceSelector> explicit platform(const
DeviceSelector&)

Constructs a SYCL platform
instance that is a copy of the plat
form which contains the device
returned by the device selector
parameter.

Table 16. Member functions of the SYCL platform class

Member function Description

backend get_backend() const noexcept
Returns a backend identifying the
SYCL backend associated with this
platform.

template <typename Param> typename Param::return_type
get_info() const

Queries this SYCL platform for
information requested by the tem
plate parameter Param. The type
alias Param::return_type must be
defined in accordance with the
info parameters in Table 18 to
facilitate returning the type associ
ated with the Param parameter.

template <typename Param> typename Param::return_type
get_backend_info() const

Queries this SYCL platform for
SYCL backend-specific information
requested by the template parame
ter Param. The type alias
Param::return_type must be
defined in accordance with the
SYCL backend specification. Must
throw an exception with the
errc::backend_mismatch error code
if the SYCL backend that corre
sponds with Param is different from
the SYCL backend that is associated
with this platform.

bool has(aspect asp) const
Returns true if all of the SYCL
devices associated with this SYCL
platform have the given aspect.
Returns false if this SYCL platform
does not contain any devices.

SYCL 2020 rev 9 4.6.2.1. Platform interface

Chapter 4. SYCL programming interface | 61

Member function Description

bool has_extension(const std::string& extension) const
Deprecated, use has() instead.

Returns true if this SYCL platform
supports the extension queried by
the extension parameter. A SYCL
platform can only support an
extension if all associated SYCL
devices support that extension.
Returns false if this SYCL platform
does not contain any devices.

std::vector<device>
get_devices(info::device_type deviceType = info
::device_type::all) const

Returns a std::vector containing
all the root devices associated with
this SYCL platform which have the
device type encapsulated by
deviceType.

Table 17. Static member functions of the SYCL platform class

Static member function Description

static std::vector<platform> get_platforms()
Returns a std::vector containing
all SYCL platforms from all SYCL
backends available in the system.

4.6.2.2. Platform information descriptors

A platform can be queried for information using the get_info member function of the platform class,
specifying one of the info parameters in info::platform. The possible values for each info parameter and
any restrictions are defined in the specification of the SYCL backend associated with the platform. All
info parameters in info::platform are specified in Table 18 and the synopsis for info::platform is
described in Section A.1.

Table 18. Platform information descriptors

Platform descriptors Return type Description

info::platform::version
std::string Returns a backend-defined platform ver

sion.

info::platform::name
std::string Returns the name of the platform.

info::platform::vendor
std::string Returns the name of the vendor providing

the platform.

info::platform::extensions
std::vec
tor<std::string>

Deprecated, use device::get_info() with
info::device::aspects instead.

Returns the extensions supported by this
platform. Returns an empty list if this plat
form does not contain any devices.

4.6.3. Context class

The context class represents a SYCL context. A context represents the runtime data structures and state
required by a SYCL backend API to interact with a group of devices associated with a platform.

4.6.2.2. Platform information descriptors SYCL 2020 rev 9

62 | Chapter 4. SYCL programming interface

The SYCL context class provides the common reference semantics (see Section 4.5.2).

4.6.3.1. Context interface

The constructors and member functions of the SYCL context class are listed in Table 19 and Table 20,
respectively. The additional common special member functions and common member functions are
listed in Section 4.5.2 in Table 7 and Table 8, respectively.

All member functions of the context class are synchronous and errors are handled by throwing synchro
nous SYCL exceptions.

All constructors of the SYCL context class will construct an instance associated with a particular SYCL
backend, determined by the constructor parameters or, in the case of the default constructor, the SYCL
device produced by the default_selector_v.

A SYCL context can optionally be constructed with an async_handler parameter. In this case the
async_handler is used to report asynchronous SYCL exceptions, as described in Section 4.13.

Information about a SYCL context may be queried through the get_info() member function.

 1 namespace sycl {
 2 class context {
 3 public:
 4 explicit context(const property_list& propList = {});
 5
 6 explicit context(async_handler asyncHandler,
 7 const property_list& propList = {});
 8
 9 explicit context(const device& dev, const property_list& propList = {});
10
11 explicit context(const device& dev, async_handler asyncHandler,
12 const property_list& propList = {});
13
14 explicit context(const std::vector<device>& deviceList,
15 const property_list& propList = {});
16
17 explicit context(const std::vector<device>& deviceList,
18 async_handler asyncHandler,
19 const property_list& propList = {});
20
21 /* -- property interface members -- */
22
23 /* -- common interface members -- */
24
25 backend get_backend() const noexcept;
26
27 platform get_platform() const;
28
29 std::vector<device> get_devices() const;
30
31 template <typename Param> typename Param::return_type get_info() const;
32
33 template <typename Param>
34 typename Param::return_type get_backend_info() const;
35 };
36 } // namespace sycl

SYCL 2020 rev 9 4.6.3.1. Context interface

Chapter 4. SYCL programming interface | 63

Table 19. Constructors of the SYCL context class

Constructor Description

explicit context(async_handler asyncHandler = {})
Constructs a SYCL context instance
using an instance of default_selec
tor_v to select the associated SYCL
platform and device(s). The
devices that are associated with
the constructed context are imple
mentation-defined but must con
tain the device chosen by the
device selector. The constructed
SYCL context will use the asyncHan
dler parameter to handle excep
tions.

explicit context(const device& dev, async_handler
asyncHandler = {})

Constructs a SYCL context instance
using the dev parameter as the
associated SYCL device and the
SYCL platform associated with the
dev parameter as the associated
SYCL platform. The constructed
SYCL context will use the asyncHan
dler parameter to handle excep
tions.

explicit context(const std::vector<device>& deviceList,
 async_handler asyncHandler = {})

Constructs a SYCL context instance
using the SYCL device(s) in the
deviceList parameter as the associ
ated SYCL device(s) and the SYCL
platform associated with each SYCL
device in the deviceList parameter
as the associated SYCL platform.
This requires that all SYCL devices
in the deviceList parameter have
the same associated SYCL platform.
The constructed SYCL context will
use the asyncHandler parameter to
handle exceptions.

Table 20. Member functions of the context class

Member function Description

backend get_backend() const noexcept
Returns a backend identifying the
SYCL backend associated with this
context.

template <typename Param> typename Param::return_type
get_info() const

Queries this SYCL context for infor
mation requested by the template
parameter Param. The type alias
Param::return_type must be
defined in accordance with the
info parameters in Table 21 to
facilitate returning the type associ
ated with the Param parameter.

4.6.3.1. Context interface SYCL 2020 rev 9

64 | Chapter 4. SYCL programming interface

Member function Description

template <typename Param> typename Param::return_type
get_backend_info() const

Queries this SYCL context for SYCL
backend-specific information
requested by the template parame
ter Param. The type alias
Param::return_type must be
defined in accordance with the
SYCL backend specification. Must
throw an exception with the
errc::backend_mismatch error code
if the SYCL backend that corre
sponds with Param is different from
the SYCL backend that is associated
with this context.

platform get_platform() const
Returns the SYCL platform that is
associated with this SYCL context.
The value returned must be equal
to that returned by
get_info<info::context::plat
form>().

std::vector<device> get_devices() const
Returns a std::vector containing
all SYCL devices that are associated
with this SYCL context. The value
returned must be equal to that
returned by get_info<info::con
text::devices>().

4.6.3.2. Context information descriptors

A context can be queried for information using the get_info member function of the context class, speci
fying one of the info parameters in info::context. The possible values for each info parameter and any
restrictions are defined in the specification of the SYCL backend associated with the context. All info
parameters in info::context are specified in Table 21 and the synopsis for info::context is described in
Section A.2.

Table 21. Context information descriptors

Context Descriptors Return type Description

info::context::platform
platform Returns the platform associated with the

context.

info::context::devices
std::vec
tor<device>

Returns all of the devices associated with the
context.

SYCL 2020 rev 9 4.6.3.2. Context information descriptors

Chapter 4. SYCL programming interface | 65

Context Descriptors Return type Description

info::context::atomic_memory_or
der_capabilities

std::vector<memo
ry_order>

This query applies only to the capabilities of
atomic operations that are applied to mem
ory that can be concurrently accessed by
multiple devices in the context. If these
capabilities are not uniform across all
devices in the context, the query reports
only the capabilities that are common for all
devices.

Returns the set of memory orders supported
by these atomic operations. When a context
returns a "stronger" memory order in this
set, it must also return all "weaker" memory
orders. (See Section 3.8.3.1 for a definition of
"stronger" and "weaker" memory orders.)
The memory orders memory_order::acquire,
memory_order::release, and memo
ry_order::acq_rel are all the same strength.
If a context returns one of these, it must
return them all.

At a minimum, each context must support
memory_order::relaxed.

info::context::atomic_fence_ord
er_capabilities

std::vector<memo
ry_order>

This query applies only to the capabilities of
atomic_fence when applied to memory that
can be concurrently accessed by multiple
devices in the context. If these capabilities
are not uniform across all devices in the
context, the query reports only the capabili
ties that are common for all devices.

Returns the set of memory orders supported
by these atomic_fence operations. When a
context returns a "stronger" memory order
in this set, it must also return all "weaker"
memory orders. (See Section 3.8.3.1 for a
definition of "stronger" and "weaker" mem
ory orders.)

At a minimum, each context must support
memory_order::relaxed, memo
ry_order::acquire, memory_order::release,
and memory_order::acq_rel.

info::context::atomic_memory_sc
ope_capabilities

std::vector<memo
ry_scope>

Returns the set of memory scopes supported
by atomic operations on all devices in the
context. When a context returns a "wider"
memory scope in this set, it must also return
all "narrower" memory scopes. (See Section
3.8.3.2 for a definition of "wider" and "nar
rower" scopes.) At a minimum, each context
must support memory_scope::work_item, memo
ry_scope::sub_group, and memory_s
cope::work_group.

4.6.3.2. Context information descriptors SYCL 2020 rev 9

66 | Chapter 4. SYCL programming interface

Context Descriptors Return type Description

info::context::atomic_fence_sco
pe_capabilities

std::vector<memo
ry_scope>

Returns the set of memory orderings sup
ported by atomic_fence on all devices in the
context. When a context returns a "wider"
memory scope in this set, it must also return
all "narrower" memory scopes. (See Section
3.8.3.2 for a definition of "wider" and "nar
rower" scopes.) At a minimum, each context
must support memory_scope::work_item, memo
ry_scope::sub_group, and memory_s
cope::work_group.

4.6.3.3. Context properties

The property_list constructor parameters are present for extensibility.

4.6.4. Device class

The SYCL device class encapsulates a single SYCL device on which kernels can be executed.

All member functions of the device class are synchronous and errors are handled by throwing synchro
nous SYCL exceptions.

The execution environment for a SYCL application has a fixed number of root devices which does not
vary as the application executes. The application can get a list of all these devices via device::get_de
vices(), and the order of the device objects is the same each time the application calls that function
(assuming the parameter to that function is the same for each call). The device class also provides con
structors, but constructing a new device instance merely creates a new object that is a copy of one of the
objects returned by device::get_devices().

A SYCL device can be partitioned into multiple SYCL devices, by calling the create_sub_devices() member
function template. The resulting SYCL devices are considered sub devices, and it is valid to partition
these sub devices further. The range of support for this feature is SYCL backend and device specific and
can be queried for through get_info().

The SYCL device class provides the common reference semantics (see Section 4.5.2).

4.6.4.1. Device interface

A synopsis of the SYCL device class is provided below. The constructors, member functions and static
member functions of the SYCL device class are listed in Table 22, Table 23 and Table 24 respectively. The
additional common special member functions and common member functions are listed in Section 4.5.2
in Table 7 and Table 8, respectively.

 1 namespace sycl {
 2
 3 class device {
 4 public:
 5 device();
 6
 7 template <typename DeviceSelector>
 8 explicit device(const DeviceSelector& deviceSelector);
 9
10 /* -- common interface members -- */
11
12 backend get_backend() const noexcept;

SYCL 2020 rev 9 4.6.3.3. Context properties

Chapter 4. SYCL programming interface | 67

13
14 bool is_cpu() const;
15
16 bool is_gpu() const;
17
18 bool is_accelerator() const;
19
20 platform get_platform() const;
21
22 template <typename Param> typename Param::return_type get_info() const;
23
24 template <typename Param>
25 typename Param::return_type get_backend_info() const;
26
27 bool has(aspect asp) const;
28
29 bool has_extension(const std::string& extension) const; // Deprecated
30
31 // Available only when Prop == info::partition_property::partition_equally
32 template <info::partition_property Prop>
33 std::vector<device> create_sub_devices(size_t count) const;
34
35 // Available only when Prop == info::partition_property::partition_by_counts
36 template <info::partition_property Prop>
37 std::vector<device>
38 create_sub_devices(const std::vector<size_t>& counts) const;
39
40 // Available only when Prop ==
41 // info::partition_property::partition_by_affinity_domain
42 template <info::partition_property Prop>
43 std::vector<device>
44 create_sub_devices(info::partition_affinity_domain affinityDomain) const;
45
46 static std::vector<device>
47 get_devices(info::device_type deviceType = info::device_type::all);
48 };
49 } // namespace sycl

Table 22. Constructors of the SYCL device class

Constructor Description

device()
Constructs a SYCL device instance
that is a copy of the device
returned by default_selector_v.

template <typename DeviceSelector> explicit device(const
DeviceSelector&)

Constructs a SYCL device instance
that is a copy of the device
returned by the device selector
parameter.

Table 23. Member functions of the SYCL device class

Member function Description

backend get_backend() const noexcept
Returns a backend identifying the SYCL
backend associated with this device.

4.6.4.1. Device interface SYCL 2020 rev 9

68 | Chapter 4. SYCL programming interface

Member function Description

platform get_platform() const
Returns the associated SYCL platform. The
value returned must be equal to that
returned by get_info<info::device::plat
form>().

bool is_cpu() const
Returns the same value as
has(aspect::cpu). See Table 26.

bool is_gpu() const
Returns the same value as
has(aspect::gpu). See Table 26.

bool is_accelerator() const
Returns the same value as
has(aspect::accelerator). See Table 26.

template <typename Param> typename Param
::return_type get_info() const

Queries this SYCL device for information
requested by the template parameter
Param. The type alias Param::return_type
must be defined in accordance with the
info parameters in Table 25 to facilitate
returning the type associated with the
Param parameter.

template <typename Param> typename Param
::return_type get_backend_info() const

Queries this SYCL device for SYCL backend
-specific information requested by the
template parameter Param. The type alias
Param::return_type must be defined in
accordance with the SYCL backend specifi
cation. Must throw an exception with the
errc::backend_mismatch error code if the
SYCL backend that corresponds with Param
is different from the SYCL backend that is
associated with this device.

bool has(aspect asp) const
Returns true if this SYCL device has the
given aspect. SYCL applications can use
this member function to determine which
optional features this device supports (if
any).

bool has_extension(const std::string& extension)
const

Deprecated, use has() instead.

Returns true if this SYCL device supports
the extension queried by the extension
parameter.

SYCL 2020 rev 9 4.6.4.1. Device interface

Chapter 4. SYCL programming interface | 69

Member function Description

template <info::partition_property Prop>
std::vector<device> create_sub_devices(size_t count)
const

Available only when Prop is info::parti
tion_property::partition_equally. Returns
a std::vector of sub devices partitioned
from this SYCL device based on the count
parameter. The returned vector contains
as many sub devices as can be created
such that each sub device contains count
compute units. If the device’s total num
ber of compute units (as returned by
info::device::max_compute_units) is not
evenly divided by count, then the remain
ing compute units are not included in any
of the sub devices.

If this SYCL device does not support
info::partition_property::partition_e
qually an exception with the errc::fea
ture_not_supported error code must be
thrown. If count exceeds the total number
of compute units in the device, an excep
tion with the errc::invalid error code
must be thrown.

template <info::partition_property Prop>
std::vector<device> create_sub_devices(const std
::vector<size_t>& counts) const

Available only when Prop is info::parti
tion_property::partition_by_counts.
Returns a std::vector of sub devices parti
tioned from this SYCL device based on the
counts parameter. For each non-zero value
M in the counts vector, a sub device with
M compute units is created.

If the SYCL device does not support
info::partition_property::partition_by_
counts an exception with the errc::fea
ture_not_supported error code must be
thrown. If the number of non-zero values
in counts exceeds the device’s maximum
number of sub devices (as returned by
info::device::partition_max_sub_devices)
or if the total of all the values in the counts
vector exceeds the total number of com
pute units in the device (as returned by
info::device::max_compute_units), an
exception with the errc::invalid error
code must be thrown.

4.6.4.1. Device interface SYCL 2020 rev 9

70 | Chapter 4. SYCL programming interface

Member function Description

template <info::partition_property Prop>
std::vector<device>
create_sub_devices(info::partition_affinity_domain
domain) const

Available only when Prop is info::parti
tion_property::partition_by_affinity_do
main. Returns a std::vector of sub devices
partitioned from this SYCL device by affin
ity domain based on the domain parameter,
which must be one of the following val
ues:

• info::partition_affinity_domain::numa:
Split the device into sub devices com
prised of compute units that share a
NUMA node.

• info::partition_affinity_domain::L4_
cache: Split the device into sub devices
comprised of compute units that share
a level 4 data cache.

• info::partition_affinity_domain::L3_
cache: Split the device into sub devices
comprised of compute units that share
a level 3 data cache.

• info::partition_affinity_domain::L2_
cache: Split the device into sub devices
comprised of compute units that share
a level 2 data cache.

• info::partition_affinity_domain::L1_
cache: Split the device into sub devices
comprised of compute units that share
a level 1 data cache.

• info::partition_affinity_domain::nex
t_partitionable: Split the device along
the next partitionable affinity domain.
The implementation shall find the first
level along which the device or sub
device may be further subdivided in
the order numa, L4_cache, L3_cache, L2_
cache, L1_cache, and partition the
device into sub devices comprised of
compute units that share memory sub
systems at this level. The user may
determine what happened via
info::device::partition_type_affini
ty_domain.

If the SYCL device does not support
info::partition_property::parti
tion_by_affinity_domain or the SYCL
device does not support the info::parti
tion_affinity_domain provided, an excep
tion with the errc::feature_not_supported
error code must be thrown.

Table 24. Static member functions of the SYCL device class

SYCL 2020 rev 9 4.6.4.1. Device interface

Chapter 4. SYCL programming interface | 71

Static member function Description

static std::vector<device>
get_devices(info::device_type deviceType = info
::device_type::all)

Returns a std::vector containing
all the root devices from all SYCL
backends available in the system
which have the device type encap
sulated by deviceType.

4.6.4.2. Device information descriptors

A device can be queried for information using the get_info member function of the device class, specify
ing one of the info parameters in info::device. The possible values for each info parameter and any
restriction are defined in the specification of the SYCL backend associated with the device. All info para
meters in info::device are specified in Table 25 and the synopsis for info::device is described in Section
A.3.

Table 25. Device information descriptors

Device descriptors Return type Description

info::device::device_type
info::device_type Returns the device type associated with the

device. May not return info::device_
type::all.

info::device::vendor_id
uint32_t Returns a unique vendor device identifier.

info::device::max_compute_units
uint32_t Returns the number of parallel compute

units available to the device. The minimum
value is 1.

info::device::max_work_item_dim
ensions

uint32_t Returns the maximum dimensions that spec
ify the global and local work-item IDs used
by the data parallel execution model. The
minimum value is 3 if this SYCL device is not
of device type info::device_type::custom.

info::device::max_work_item_siz
es<1>

range<1> Returns the maximum number of work-
items that are permitted in a work-group for
a kernel running in a one-dimensional index
space. The minimum value is for devices
that are not of device type info::device_
type::custom.

info::device::max_work_item_siz
es<2>

range<2> Returns the maximum number of work-
items that are permitted in each dimension
of a work-group for a kernel running in a
two-dimensional index space. The minimum
value is for devices that are not of
device type info::device_type::custom.

info::device::max_work_item_siz
es<3>

range<3> Returns the maximum number of work-
items that are permitted in each dimension
of a work-group for a kernel running in a
three-dimensional index space. The mini
mum value is for devices that are not
of device type info::device_type::custom.

4.6.4.2. Device information descriptors SYCL 2020 rev 9

72 | Chapter 4. SYCL programming interface

Device descriptors Return type Description

info::device::max_work_group_si
ze

size_t Returns the maximum number of work-
items that this device is capable of executing
in a work-group. The minimum value is 1.
This value is an upper limit and will not nec
essarily maximize performance. The maxi
mum number of work-items in a work-
group depends on the kernel and the imple
mentation. Use info::kernel_device_spe
cific::work_group_size to query this limit.

info::device::max_num_sub_group
s

uint32_t Returns the maximum number of sub-
groups in a work-group for any kernel exe
cuted on the device. The minimum value is
1.

info::device::sub_group_sizes
std::vec
tor<size_t>

Returns a std::vector of size_t containing
the set of sub-group sizes supported by the
device.

info::device::preferred_vector_
width_char
info::device::preferred_vector_
width_short
info::device::preferred_vector_
width_int
info::device::preferred_vector_
width_long
info::device::preferred_vector_
width_float
info::device::preferred_vector_
width_double
info::device::preferred_vector_
width_half

uint32_t Returns the preferred native vector width
size for built-in scalar types that can be put
into vectors. The vector width is defined as
the number of scalar elements that can be
stored in the vector. Must return 0 for
info::device::preferred_vector_width_dou
ble if the device does not have aspect::fp64
and must return 0 for info::device::pre
ferred_vector_width_half if the device does
not have aspect::fp16.

info::device::native_vector_wid
th_char
info::device::native_vector_wid
th_short
info::device::native_vector_wid
th_int
info::device::native_vector_wid
th_long
info::device::native_vector_wid
th_float
info::device::native_vector_wid
th_double
info::device::native_vector_wid
th_half

uint32_t Returns the native ISA vector width. The
vector width is defined as the number of
scalar elements that can be stored in the
vector. Must return 0 for
info::device::native_vector_width_double if
the device does not have aspect::fp64 and
must return 0 for info::device::native_vec
tor_width_half if the device does not have
aspect::fp16.

info::device::max_clock_frequen
cy

uint32_t Returns the maximum configured clock fre
quency of this SYCL device in MHz.

SYCL 2020 rev 9 4.6.4.2. Device information descriptors

Chapter 4. SYCL programming interface | 73

Device descriptors Return type Description

info::device::address_bits
uint32_t Returns the default compute device address

space size specified as an unsigned integer
value in bits. Must return either 32 or 64.

info::device::max_mem_alloc_siz
e

uint64_t Returns the maximum size of memory
object allocation in bytes. The minimum
value is max (1/4th of info::device::glob
al_mem_size,128*1024*1024) if this SYCL
device is not of device type info::device_
type::custom.

info::device::image_support
bool Deprecated.

Returns the same value as
device::has(aspect::image).

info::device::max_read_image_ar
gs

uint32_t Returns the maximum number of simultane
ous image objects that can be read from by a
kernel. The minimum value is 128 if the
SYCL device has aspect::image.

info::device::max_write_image_a
rgs

uint32_t Returns the maximum number of simultane
ous image objects that can be written to by a
kernel. The minimum value is 8 if the SYCL
device has aspect::image.

info::device::image2d_max_width
size_t Returns the maximum width of a 2D image

or 1D image in pixels. The minimum value is
8192 if the SYCL device has aspect::image.

info::device::image2d_max_heigh
t

size_t Returns the maximum height of a 2D image
in pixels. The minimum value is 8192 if the
SYCL device has aspect::image.

info::device::image3d_max_width
size_t Returns the maximum width of a 3D image

in pixels. The minimum value is 2048 if the
SYCL device has aspect::image.

info::device::image3d_max_heigh
t

size_t Returns the maximum height of a 3D image
in pixels. The minimum value is 2048 if the
SYCL device has aspect::image.

info::device::image3d_max_depth
size_t Returns the maximum depth of a 3D image

in pixels. The minimum value is 2048 if the
SYCL device has aspect::image.

info::device::image_max_buffer_
size

size_t Returns the number of pixels for a 1D image
created from a buffer object. The minimum
value is 65536 if the SYCL device has
aspect::image. Note that this information is
intended for OpenCL interoperability only
as this feature is not supported in SYCL.

info::device::max_samplers
uint32_t Returns the maximum number of samplers

that can be used in a kernel. The minimum
value is 16 if the SYCL device has
aspect::image.

4.6.4.2. Device information descriptors SYCL 2020 rev 9

74 | Chapter 4. SYCL programming interface

Device descriptors Return type Description

info::device::max_parameter_siz
e

size_t Returns the maximum size in bytes of the
arguments that can be passed to a kernel.
The minimum value is 1024 if this SYCL
device is not of device type info::device_
type::custom. For this minimum value, only
a maximum of 128 arguments can be passed
to a kernel.

info::device::mem_base_addr_ali
gn

uint32_t Returns the minimum value in bits of the
largest supported SYCL built-in data type if
this SYCL device is not of device type
info::device_type::custom.

info::device::half_fp_config
std::vec
tor<info::fp_con
fig>

Returns a std::vector of info::fp_config
describing the half precision floating-point
capability of this SYCL device. The std::vec
tor may contain zero or more of the follow
ing values:

• info::fp_config::denorm: denorms are
supported.

• info::fp_config::inf_nan: INF and quiet
NaNs are supported.

• info::fp_config::round_to_nearest:
round to nearest even rounding mode is
supported.

• info::fp_config::round_to_zero: round
to zero rounding mode is supported.

• info::fp_config::round_to_inf: round to
positive and negative infinity rounding
modes are supported.

• info::fp_config::fma: IEEE754-2008
fused multiply add is supported.

• info::fp_config::correctly_rounded_di
vide_sqrt: divide and sqrt are correctly
rounded as defined by the IEEE754 speci
fication. This property is deprecated.

• info::fp_config::soft_float: basic float
ing-point operations (such as addition,
subtraction, multiplication) are imple
mented in software.

If half precision is supported by this SYCL
device (i.e. the device has aspect::fp16) there
is no minimum floating-point capability. If
half support is not supported the returned
std::vector must be empty.

SYCL 2020 rev 9 4.6.4.2. Device information descriptors

Chapter 4. SYCL programming interface | 75

Device descriptors Return type Description

info::device::single_fp_config
std::vec
tor<info::fp_con
fig>

Returns a std::vector of info::fp_config
describing the single precision floating-point
capability of this SYCL device. The std::vec
tor must contain one or more of the follow
ing values:

• info::fp_config::denorm: denorms are
supported.

• info::fp_config::inf_nan: INF and quiet
NaNs are supported.

• info::fp_config::round_to_nearest:
round to nearest even rounding mode is
supported.

• info::fp_config::round_to_zero: round
to zero rounding mode is supported.

• info::fp_config::round_to_inf: round to
positive and negative infinity rounding
modes are supported.

• info::fp_config::fma: IEEE754-2008
fused multiply add is supported.

• info::fp_config::correctly_rounded_di
vide_sqrt: divide and sqrt are correctly
rounded as defined by the IEEE754 speci
fication. This property is deprecated.

• info::fp_config::soft_float: basic float
ing-point operations (such as addition,
subtraction, multiplication) are imple
mented in software.

If this SYCL device is not of type
info::device_type::custom then the mini
mum floating-point capability must be:
info::fp_config::round_to_nearest and
info::fp_config::inf_nan.

4.6.4.2. Device information descriptors SYCL 2020 rev 9

76 | Chapter 4. SYCL programming interface

Device descriptors Return type Description

info::device::double_fp_config
std::vec
tor<info::fp_con
fig>

Returns a std::vector of info::fp_config
describing the double precision floating-
point capability of this SYCL device. The
std::vector may contain zero or more of the
following values:

• info::fp_config::denorm: denorms are
supported.

• info::fp_config::inf_nan: INF and NaNs
are supported.

• info::fp_config::round_to_nearest:
round to nearest even rounding mode is
supported.

• info::fp_config::round_to_zero: round
to zero rounding mode is supported.

• info::fp_config::round_to_inf: round to
positive and negative infinity rounding
modes are supported.

• info::fp_config::fma: IEEE754-2008
fused multiply-add is supported.

• info::fp_config::soft_float: basic float
ing-point operations (such as addition,
subtraction, multiplication) are imple
mented in software.

If double precision is supported by this SYCL
device (i.e. the device has aspect::fp64 and
this SYCL device is not of type info::device_
type::custom then the minimum floating-
point capability must be: info::fp_con
fig::fma, info::fp_config::round_to_nearest,
info::fp_config::round_to_zero, info::fp_
config::round_to_inf, info::fp_con
fig::inf_nan and info::fp_config::denorm. If
double support is not supported the
returned std::vector must be empty.

info::device::global_mem_cache_
type

info::glob
al_mem_cache_type

Returns the type of global memory cache
supported.

info::device::global_mem_cache_
line_size

uint32_t Returns the size of global memory cache line
in bytes.

info::device::global_mem_cache_
size

uint64_t Returns the size of global memory cache in
bytes.

info::device::global_mem_size
uint64_t Returns the size of global device memory in

bytes.

SYCL 2020 rev 9 4.6.4.2. Device information descriptors

Chapter 4. SYCL programming interface | 77

Device descriptors Return type Description

info::device::max_constant_buff
er_size

uint64_t Deprecated in SYCL 2020. Returns the maxi
mum size in bytes of a constant buffer allo
cation. The minimum value is 64 KB if this
SYCL device is not of type info::device_
type::custom.

info::device::max_constant_args
uint32_t Deprecated in SYCL 2020. Returns the maxi

mum number of constant arguments that
can be declared in a kernel. The minimum
value is 8 if this SYCL device is not of type
info::device_type::custom.

info::device::local_mem_type
info::local_mem_
type

Returns the type of local memory supported.
This can be info::local_mem_type::local
implying dedicated local memory storage
such as SRAM, or info::local_mem_
type::global. If this SYCL device is of type
info::device_type::custom this can also be
info::local_mem_type::none, indicating local
memory is not supported.

info::device::local_mem_size
uint64_t Returns the size of local memory arena in

bytes. The minimum value is 32 KB if this
SYCL device is not of type info::device_
type::custom.

info::device::error_correction_
support

bool Returns true if the device implements error
correction for all accesses to compute device
memory (global and constant). Returns false
if the device does not implement such error
correction.

info::device::host_unified_memo
ry

bool Deprecated, use device::has() with one of
the aspect::usm_* aspects instead.

Returns true if the device and the host have
a unified memory subsystem and returns
false otherwise.

info::device::atomic_memory_ord
er_capabilities

std::vector<memo
ry_order>

Returns the set of memory orders supported
by atomic operations on the device. When a
device returns a "stronger" memory order in
this set, it must also return all "weaker"
memory orders. (See Section 3.8.3.1 for a
definition of "stronger" and "weaker" mem
ory orders.) The memory orders memo
ry_order::acquire, memory_order::release,
and memory_order::acq_rel are all the same
strength. If a device returns one of these, it
must return them all.

At a minimum, each device must support
memory_order::relaxed.

4.6.4.2. Device information descriptors SYCL 2020 rev 9

78 | Chapter 4. SYCL programming interface

Device descriptors Return type Description

info::device::atomic_fence_orde
r_capabilities

std::vector<memo
ry_order>

Returns the set of memory orders supported
by atomic_fence on the device. When a
device returns a "stronger" memory order in
this set, it must also return all "weaker"
memory orders. (See Section 3.8.3.1 for a
definition of "stronger" and "weaker" mem
ory orders.) At a minimum, each device
must support memory_order::relaxed, memo
ry_order::acquire, memory_order::release,
and memory_order::acq_rel.

info::device::atomic_memory_sco
pe_capabilities

std::vector<memo
ry_scope>

Returns the set of memory scopes supported
by atomic operations on the device. When a
device returns a "wider" memory scope in
this set, it must also return all "narrower"
memory scopes. (See Section 3.8.3.2 for a
definition of "wider" and "narrower"
scopes.) At a minimum, each device must
support memory_scope::work_item, memory_s
cope::sub_group, and memory_scope::work_
group.

info::device::atomic_fence_scop
e_capabilities

std::vector<memo
ry_scope>

Returns the set of memory scopes supported
by atomic_fence on the device. When a
device returns a "wider" memory scope in
this set, it must also return all "narrower"
memory scopes. (See Section 3.8.3.2 for a
definition of "wider" and "narrower"
scopes.) At a minimum, each device must
support memory_scope::work_item, memory_s
cope::sub_group, and memory_scope::work_
group.

info::device::profiling_timer_r
esolution

size_t Returns the resolution of device timer in
nanoseconds.

info::device::is_endian_little
bool Deprecated. Check the byte order of the host

system instead. The host and device are
required to have the same byte order.

Returns true if this SYCL device is a little
endian device and returns false otherwise.

info::device::is_available
bool Returns true if the SYCL device is available

and returns false if the device is not avail
able.

info::device::is_compiler_avail
able

bool Deprecated.

Returns the same value as
device::has(aspect::online_compiler).

info::device::is_linker_availab
le

bool Deprecated.

Returns the same value as
device::has(aspect::online_linker).

SYCL 2020 rev 9 4.6.4.2. Device information descriptors

Chapter 4. SYCL programming interface | 79

Device descriptors Return type Description

info::device::execution_capabil
ities

std::vec
tor<info::execu
tion_capability>

Returns a std::vector of the info::execu
tion_capability describing the supported
execution capabilities. Note that this infor
mation is intended for OpenCL interoper
ability only as SYCL only supports info::exe
cution_capability::exec_kernel.

info::device::queue_profiling
bool Deprecated.

Returns the same value as
device::has(aspect::queue_profiling).

info::device::built_in_kernel_i
ds

std::vector<ker
nel_id>

Returns a std::vector of identifiers for the
built-in kernels supported by this SYCL
device.

info::device::built_in_kernels
std::vec
tor<std::string>

Deprecated. Use info::device::built_in_k
ernel_ids instead.

Returns a std::vector of built-in OpenCL
kernels supported by this SYCL device.

info::device::platform
platform Returns the SYCL platform associated with

this SYCL device.

info::device::name
std::string Returns the device name of this SYCL device.

info::device::vendor
std::string Returns the vendor of this SYCL device.

info::device::driver_version
std::string Returns a vendor-defined string describing

the version of the underlying backend soft
ware driver.

info::device::profile
std::string Deprecated in SYCL 2020. Only supported

when using the OpenCL backend (see
Appendix C). Throws an exception with the
errc::invalid error code if used with a
device whose backend is not OpenCL.

The value returned can be one of the follow
ing strings:

• FULL_PROFILE - if the device supports
the OpenCL specification (functionality
defined as part of the core specification
and does not require any extensions to
be supported).

• EMBEDDED_PROFILE - if the device sup
ports the OpenCL embedded profile.

info::device::version
std::string Returns a backend-defined device version.

4.6.4.2. Device information descriptors SYCL 2020 rev 9

80 | Chapter 4. SYCL programming interface

Device descriptors Return type Description

info::device::backend_version
std::string Returns a string describing the version of

the SYCL backend associated with the
device. The possible values are specified in
the SYCL backend specification of the SYCL
backend associated with the device.

info::device::aspects
std::vec
tor<aspect>

Returns a std::vector of aspect values sup
ported by this SYCL device.

SYCL 2020 rev 9 4.6.4.2. Device information descriptors

Chapter 4. SYCL programming interface | 81

Device descriptors Return type Description

info::device::extensions
std::vec
tor<std::string>

Deprecated, use info::device::aspects
instead.

Returns a std::vector of extension names
(the extension names do not contain any
spaces) supported by this SYCL device. The
extension names returned can be vendor
supported extension names and one or more
of the following Khronos approved exten
sion names:

• cl_khr_int64_base_atomics

• cl_khr_int64_extended_atomics

• cl_khr_3d_image_writes

• cl_khr_fp16

• cl_khr_gl_sharing

• cl_khr_gl_event

• cl_khr_d3d10_sharing

• cl_khr_dx9_media_sharing

• cl_khr_d3d11_sharing

• cl_khr_depth_images

• cl_khr_gl_depth_images

• cl_khr_gl_msaa_sharing

• cl_khr_image2d_from_buffer

• cl_khr_initialize_memory

• cl_khr_context_abort

• cl_khr_spir

If this SYCL device is an OpenCL device then
following approved Khronos extension
names must be returned by all device that
support OpenCL C 1.2:

• cl_khr_global_int32_base_atomics

• cl_khr_global_int32_extended_atomics

• cl_khr_local_int32_base_atomics

• cl_khr_local_int32_extended_atomics

• cl_khr_byte_addressable_store

• cl_khr_fp64 (for backward compatibility
if double precision is supported)

Please refer to the OpenCL 1.2 Extension
Specification for a detailed description of
these extensions.

4.6.4.2. Device information descriptors SYCL 2020 rev 9

82 | Chapter 4. SYCL programming interface

Device descriptors Return type Description

info::device::printf_buffer_siz
e

size_t Deprecated in SYCL 2020.

Returns the maximum size of the internal
buffer that holds the output of printf calls
from a kernel. The minimum value is 1 MB if
info::device::profile returns true for this
SYCL device.

info::device::preferred_interop
_user_sync

bool Deprecated in SYCL 2020. Only supported
when using the OpenCL backend (see
Appendix C). Throws an exception with the
errc::invalid error code if used with a
device whose backend is not OpenCL.

Returns true if the preference for this SYCL
device is for the user to be responsible for
synchronization, when sharing memory
objects between OpenCL and other APIs
such as DirectX, false if the device/imple
mentation has a performant path for per
forming synchronization of memory object
shared between OpenCL and other APIs
such as DirectX.

info::device::parent_device
device Returns the parent SYCL device to which this

sub-device is a child if this is a sub-device.
Must throw an exception with the
errc::invalid error code if this SYCL device
is not a sub device.

info::device::partition_max_sub
_devices

uint32_t Returns the maximum number of sub-
devices that can be created when this SYCL
device is partitioned. The value returned
cannot exceed the value returned by
info::device::max_compute_units.

info::device::partition_propert
ies

std::vec
tor<info::parti
tion_property>

Returns the partition properties supported
by this SYCL device; a vector of info::parti
tion_property. An element is returned in this
vector only if the device can be partitioned
into at least two sub devices along that parti
tion property.

info::device::partition_affinit
y_domains

std::vec
tor<info::parti
tion_affinity_do
main>

Returns a std::vector of the partition affin
ity domains supported by this SYCL device
when partitioning with info::parti
tion_property::partition_by_affinity_do
main. An element is returned in this vector
only if the device can be partitioned into at
least two sub devices along that affinity
domain.

SYCL 2020 rev 9 4.6.4.2. Device information descriptors

Chapter 4. SYCL programming interface | 83

Device descriptors Return type Description

info::device::partition_type_pr
operty

info::parti
tion_property

Returns the partition property of this SYCL
device. If this SYCL device is not a sub device
then the return value must be info::parti
tion_property::no_partition, otherwise it
must be one of the following values:

• info::partition_property::partition_e
qually

• info::partition_property::parti
tion_by_counts

• info::partition_property::parti
tion_by_affinity_domain

info::device::partition_type_af
finity_domain

info::parti
tion_affinity_do
main

Returns the partition affinity domain of this
SYCL device. If this SYCL device is not a sub
device or the sub device was not partitioned
with info::partition_type::parti
tion_by_affinity_domain then the return
value must be info::partition_affinity_do
main::not_applicable, otherwise it must be
one of the following values:

• info::partition_affinity_domain::numa

• info::partition_affinity_domain::L4_
cache

• info::partition_affinity_domain::L3_
cache

• info::partition_affinity_domain::L2_
cache

• info::partition_affinity_domain::L1_
cache

4.6.4.3. Device aspects

Every SYCL device has an associated set of aspects which identify characteristics of the device. Aspects
are defined via the enum class aspect enumeration:

 1 namespace sycl {
 2
 3 enum class aspect : /* unspecified */ {
 4 cpu,
 5 gpu,
 6 accelerator,
 7 custom,
 8 emulated,
 9 host_debuggable,
10 fp16,
11 fp64,
12 atomic64,
13 image,
14 online_compiler,
15 online_linker,

4.6.4.3. Device aspects SYCL 2020 rev 9

84 | Chapter 4. SYCL programming interface

16 queue_profiling,
17 usm_device_allocations,
18 usm_host_allocations,
19 usm_atomic_host_allocations,
20 usm_shared_allocations,
21 usm_atomic_shared_allocations,
22 usm_system_allocations
23 };
24
25 } // namespace sycl

SYCL applications can query the aspects for a device via device::has() in order to determine whether the
device supports any optional features. Table 26 lists the aspects that are defined in the core SYCL specifi
cation and tells which optional features correspond to each. Backends and extensions may provide addi
tional aspects and additional optional device features. If so, the SYCL backend specification document or
the extension document describes them.

Table 26. Device aspects defined by the core SYCL specification

Aspect Description

aspect::cpu
A device that runs on a CPU. Devices with this
aspect have device type info::device_type::cpu.

aspect::gpu
A device that can also be used to accelerate a 3D
graphics API. Devices with this aspect have device
type info::device_type::gpu.

aspect::accelerator
A dedicated accelerator device, usually using a
peripheral interconnect for communication.
Devices with this aspect have device type
info::device_type::accelerator.

aspect::custom
A dedicated accelerator that can use the SYCL API,
but programmable kernels cannot be dispatched to
the device, only fixed functionality is available. See
Section 3.9.7. Devices with this aspect have device
type info::device_type::custom.

aspect::emulated
Indicates that the device is somehow emulated. A
device with this aspect is not intended for perfor
mance, and instead will generally have another
purpose such as emulation or profiling. The pre
cise definition of this aspect is left open to the SYCL
implementation.

As an example, a vendor might
support both a hardware FPGA
device and a software emulated
FPGA, where the emulated FPGA
has all the same features as the
hardware one but runs more
slowly and can provide additional
profiling or diagnostic informa
tion. In such a case, an applica
tion’s device selector can use
aspect::emulated to distinguish the
two.

SYCL 2020 rev 9 4.6.4.3. Device aspects

Chapter 4. SYCL programming interface | 85

Aspect Description

aspect::host_debuggable
Indicates that kernels running on this device can
be debugged using standard debuggers that are
normally available on the host system where the
SYCL implementation resides. The precise defini
tion of this aspect is left open to the SYCL imple
mentation.

aspect::fp16
Indicates that kernels submitted to the device may
use the sycl::half data type.

aspect::fp64
Indicates that kernels submitted to the device may
use the double data type.

aspect::atomic64
Indicates that kernels submitted to the device may
perform 64-bit atomic operations.

aspect::image
Indicates that the device supports images.

aspect::online_compiler
Indicates that the device supports online compila
tion of device code. Devices that have this aspect
support the build() and compile() functions
defined in Section 4.11.11.

aspect::online_linker
Indicates that the device supports online linking of
device code. Devices that have this aspect support
the link() functions defined in Section 4.11.11. All
devices that have this aspect also have
aspect::online_compiler.

aspect::queue_profiling
Indicates that the device supports queue profiling
via property::queue::enable_profiling.

aspect::usm_device_allocations
Indicates that the device supports explicit USM
allocations as described in Section 4.8.

aspect::usm_host_allocations
Indicates that the device can access USM memory
allocated via usm::alloc::host. The device only
supports atomic modification of a host allocation if
aspect::usm_atomic_host_allocations is also sup
ported. (See Section 4.8.)

aspect::usm_atomic_host_allocations
Indicates that the device supports USM memory
allocated via usm::alloc::host. The host and this
device may concurrently access and atomically
modify host allocations. (See Section 4.8.)

aspect::usm_shared_allocations
Indicates that the device supports USM memory
allocated via usm::alloc::shared on the same
device. Concurrent access and atomic modification
of a shared allocation is only supported if
aspect::usm_atomic_shared_allocations is also sup
ported. (See Section 4.8.)

4.6.4.3. Device aspects SYCL 2020 rev 9

86 | Chapter 4. SYCL programming interface

Aspect Description

aspect::usm_atomic_shared_allocations
Indicates that the device supports USM memory
allocated via usm::alloc::shared. The host and
other devices in the same context that also support
this capability may concurrently access and atomi
cally modify shared allocations. The allocation is
free to migrate between the host and the appropri
ate devices. (See Section 4.8.)

aspect::usm_system_allocations
Indicates that the system allocator may be used
instead of SYCL USM allocation mechanisms for
usm::alloc::shared allocations on this device. (See
Section 4.8.)

The implementation also provides two traits that the application can use to query aspects at compilation
time. The traits any_device_has<aspect> and all_devices_have<aspect> are set according to the collection
of devices D that can possibly execute device code, as determined by the compilation environment. The
trait any_device_has<aspect> inherits from std::true_type only if at least one device in D has the specified
aspect. The trait all_devices_have<aspect> inherits from std::true_type only if all devices in D have the
specified aspect.

 1 namespace sycl {
 2
 3 template <aspect Aspect> struct any_device_has;
 4 template <aspect Aspect> struct all_devices_have;
 5
 6 template <aspect A>
 7 inline constexpr bool any_device_has_v = any_device_has<A>::value;
 8 template <aspect A>
 9 inline constexpr bool all_devices_have_v = all_devices_have<A>::value;
10
11 } // namespace sycl

Applications can use these traits to reduce their code size. The following example demonstrates one way
to use these traits to avoid instantiating a templated kernel for device features that are not supported by
any device.

 1 #include <sycl/sycl.hpp>
 2 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 3
 4 constexpr int N = 512;
 5
 6 template <bool HasFp16> class MyKernel {
 7 public:
 8 void operator()(id<1> i) {
 9 if constexpr (HasFp16) {
10 // Algorithm using sycl::half type
11 } else {
12 // Fall back code for devices that don't support sycl::half
13 }
14 }
15 };
16
17 int main() {

SYCL 2020 rev 9 4.6.4.3. Device aspects

Chapter 4. SYCL programming interface | 87

18 queue myQueue;
19 myQueue.submit([&](handler& cgh) {
20 device dev = myQueue.get_device();
21 if (dev.has(aspect::fp16)) {
22 cgh.parallel_for(range { N },
23 MyKernel<any_device_has_v<aspect::fp16>> {});
24 } else {
25 cgh.parallel_for(range { N },
26 MyKernel<all_devices_have_v<aspect::fp16>> {});
27 }
28 });
29
30 myQueue.wait();
31 }

The kernel function MyKernel is templated to use a different algorithm depending on whether the device
has the aspect aspect::fp16, and the call to dev.has() chooses the kernel function instantiation that
matches the device’s capabilities. However, the use of any_device_has_v and all_devices_have_v entirely
avoid useless instantiations of the kernel function. For example, when the compilation environment
does not support any devices with aspect::fp16, any_device_has_v<aspect::fp16> is false, and the kernel
function is never instantiated with support for the sycl::half type.

Like any trait, the definitions of any_device_has and all_devices_have are uniform across
all parts of a SYCL application. If an implementation uses SMCP, all compiler passes
define a particular aspect’s specialization of the traits the same way, regardless of
whether that compiler pass' device supports the aspect. Thus, any_device_has and all_de
vices_have cannot be used to determine whether any particular device supports an
aspect. Instead, applications must use device::has() or platform::has() for this.

An implementation could choose to provide command line options which affect the set
of devices that it supports. If so, those command line options would also affect these
traits. For example, if an implementation provides a command line option that disables
aspect::accelerator devices, the trait any_device_has<aspect::accelerator> would inherit
from std::false_type when that command line option was specified.

These traits only reflect the supported devices at the time the SYCL application is com
piled. It’s possible that unsupported devices are still visible to the application when it
runs. However, if a device D is not supported when the application is compiled, the
application will not be able to submit kernels to that device D.

4.6.5. Queue class

The SYCL queue class encapsulates a single SYCL queue which schedules kernels on a SYCL device.

A SYCL queue can be used to submit command groups to be executed by the SYCL runtime using the sub
mit member function.

All member functions of the queue class are synchronous and errors are handled by throwing synchro
nous SYCL exceptions. The submit member function synchronously invokes the provided command
group function object (as described in Section 3.7.1.2) in the calling thread, thereby scheduling a com
mand group for asynchronous execution. Any error in the submission of a command group is handled
by throwing a synchronous SYCL exception. Any errors from the command group after it has been sub
mitted are handled by passing asynchronous errors at specific times to an async_handler, as described
in Section 4.13.

4.6.5. Queue class SYCL 2020 rev 9

88 | Chapter 4. SYCL programming interface

A SYCL queue can wait for all command groups that it has submitted by calling wait or wait_and_throw.

The default constructor of the SYCL queue class will construct a queue based on the SYCL device returned
from the default_selector_v (see Section 4.6.1.1). All other constructors construct a queue as determined
by the parameters provided. All constructors will implicitly construct a SYCL platform, device and con
text in order to facilitate the construction of the queue.

Each constructor takes as the last parameter an optional SYCL property_list to provide properties to the
SYCL queue.

A SYCL queue may be destroyed even when there are uncompleted commands that have been submitted
to the queue. Doing so does not block. Instead, any commands that have been submitted to the queue
begin execution when their requisites are satisfied, just as they would had the queue not been destroyed.
Any event objects for those commands are signaled in the normal manner when the command com
pletes. Resources associated with the queue will be freed by the time the last command completes.

The SYCL queue class provides the common reference semantics (see Section 4.5.2).

4.6.5.1. Queue interface

A synopsis of the SYCL queue class is provided below. The constructors and member functions of the SYCL
queue class are listed in Table 27 and Table 28 respectively. The additional common special member func
tions and common member functions are listed in Section 4.5.2 in Table 7 and Table 8, respectively.

Some queue member functions are shortcuts to member functions of the handler class. These are listed
in Section 4.6.5.2.

 1 namespace sycl {
 2 class queue {
 3 public:
 4 explicit queue(const property_list& propList = {});
 5
 6 explicit queue(const async_handler& asyncHandler,
 7 const property_list& propList = {});
 8
 9 template <typename DeviceSelector>
 10 explicit queue(const DeviceSelector& deviceSelector,
 11 const property_list& propList = {});
 12
 13 template <typename DeviceSelector>
 14 explicit queue(const DeviceSelector& deviceSelector,
 15 const async_handler& asyncHandler,
 16 const property_list& propList = {});
 17
 18 explicit queue(const device& syclDevice, const property_list& propList = {});
 19
 20 explicit queue(const device& syclDevice, const async_handler& asyncHandler,
 21 const property_list& propList = {});
 22
 23 template <typename DeviceSelector>
 24 explicit queue(const context& syclContext,
 25 const DeviceSelector& deviceSelector,
 26 const property_list& propList = {});
 27
 28 template <typename DeviceSelector>
 29 explicit queue(const context& syclContext,
 30 const DeviceSelector& deviceSelector,

SYCL 2020 rev 9 4.6.5.1. Queue interface

Chapter 4. SYCL programming interface | 89

 31 const async_handler& asyncHandler,
 32 const property_list& propList = {});
 33
 34 explicit queue(const context& syclContext, const device& syclDevice,
 35 const property_list& propList = {});
 36
 37 explicit queue(const context& syclContext, const device& syclDevice,
 38 const async_handler& asyncHandler,
 39 const property_list& propList = {});
 40
 41 /* -- common interface members -- */
 42
 43 /* -- property interface members -- */
 44
 45 backend get_backend() const noexcept;
 46
 47 context get_context() const;
 48
 49 device get_device() const;
 50
 51 bool is_in_order() const;
 52
 53 template <typename Param> typename Param::return_type get_info() const;
 54
 55 template <typename Param>
 56 typename Param::return_type get_backend_info() const;
 57
 58 template <typename T> event submit(T cgf);
 59
 60 template <typename T> event submit(T cgf, const queue& secondaryQueue);
 61
 62 void wait();
 63
 64 void wait_and_throw();
 65
 66 void throw_asynchronous();
 67
 68 /* -- convenience shortcuts -- */
 69
 70 template <typename KernelName, typename KernelType>
 71 event single_task(const KernelType& kernelFunc);
 72
 73 template <typename KernelName, typename KernelType>
 74 event single_task(event depEvent, const KernelType& kernelFunc);
 75
 76 template <typename KernelName, typename KernelType>
 77 event single_task(const std::vector<event>& depEvents,
 78 const KernelType& kernelFunc);
 79
 80 // Parameter pack acts as-if: Reductions&&... reductions, const KernelType
 81 // &kernelFunc
 82 template <typename KernelName, int Dims, typename... Rest>
 83 event parallel_for(range<Dims> numWorkItems, Rest&&... rest);
 84
 85 // Parameter pack acts as-if: Reductions&&... reductions, const KernelType
 86 // &kernelFunc

4.6.5.1. Queue interface SYCL 2020 rev 9

90 | Chapter 4. SYCL programming interface

 87 template <typename KernelName, int Dims, typename... Rest>
 88 event parallel_for(range<Dims> numWorkItems, event depEvent, Rest&&... rest);
 89
 90 // Parameter pack acts as-if: Reductions&&... reductions, const KernelType
 91 // &kernelFunc
 92 template <typename KernelName, int Dims, typename... Rest>
 93 event parallel_for(range<Dims> numWorkItems,
 94 const std::vector<event>& depEvents, Rest&&... rest);
 95
 96 // Parameter pack acts as-if: Reductions&&... reductions, const KernelType
 97 // &kernelFunc
 98 template <typename KernelName, int Dims, typename... Rest>
 99 event parallel_for(nd_range<Dims> executionRange, Rest&&... rest);
100
101 // Parameter pack acts as-if: Reductions&&... reductions, const KernelType
102 // &kernelFunc
103 template <typename KernelName, int Dims, typename... Rest>
104 event parallel_for(nd_range<Dims> executionRange, event depEvent,
105 Rest&&... rest);
106
107 // Parameter pack acts as-if: Reductions&&... reductions, const KernelType
108 // &kernelFunc
109 template <typename KernelName, int Dims, typename... Rest>
110 event parallel_for(nd_range<Dims> executionRange,
111 const std::vector<event>& depEvents, Rest&&... rest);
112
113 /* -- USM functions -- */
114
115 event memcpy(void* dest, const void* src, size_t numBytes);
116 event memcpy(void* dest, const void* src, size_t numBytes, event depEvent);
117 event memcpy(void* dest, const void* src, size_t numBytes,
118 const std::vector<event>& depEvents);
119
120 template <typename T> event copy(const T* src, T* dest, size_t count);
121 template <typename T>
122 event copy(const T* src, T* dest, size_t count, event depEvent);
123 template <typename T>
124 event copy(const T* src, T* dest, size_t count,
125 const std::vector<event>& depEvents);
126
127 event memset(void* ptr, int value, size_t numBytes);
128 event memset(void* ptr, int value, size_t numBytes, event depEvent);
129 event memset(void* ptr, int value, size_t numBytes,
130 const std::vector<event>& depEvents);
131
132 template <typename T> event fill(void* ptr, const T& pattern, size_t count);
133 template <typename T>
134 event fill(void* ptr, const T& pattern, size_t count, event depEvent);
135 template <typename T>
136 event fill(void* ptr, const T& pattern, size_t count,
137 const std::vector<event>& depEvents);
138
139 event prefetch(void* ptr, size_t numBytes);
140 event prefetch(void* ptr, size_t numBytes, event depEvent);
141 event prefetch(void* ptr, size_t numBytes,
142 const std::vector<event>& depEvents);

SYCL 2020 rev 9 4.6.5.1. Queue interface

Chapter 4. SYCL programming interface | 91

143
144 event mem_advise(void* ptr, size_t numBytes, int advice);
145 event mem_advise(void* ptr, size_t numBytes, int advice, event depEvent);
146 event mem_advise(void* ptr, size_t numBytes, int advice,
147 const std::vector<event>& depEvents);
148
149 /// Placeholder accessor shortcuts
150
151 // Explicit copy functions
152
153 template <typename SrcT, int SrcDims, access_mode SrcMode, target SrcTgt,
154 access::placeholder IsPlaceholder, typename DestT>
155 event copy(accessor<SrcT, SrcDims, SrcMode, SrcTgt, IsPlaceholder> src,
156 std::shared_ptr<DestT> dest);
157
158 template <typename SrcT, typename DestT, int DestDims, access_mode DestMode,
159 target DestTgt, access::placeholder IsPlaceholder>
160 event copy(std::shared_ptr<SrcT> src,
161 accessor<DestT, DestDims, DestMode, DestTgt, IsPlaceholder> dest);
162
163 template <typename SrcT, int SrcDims, access_mode SrcMode, target SrcTgt,
164 access::placeholder IsPlaceholder, typename DestT>
165 event copy(accessor<SrcT, SrcDims, SrcMode, SrcTgt, IsPlaceholder> src,
166 DestT* dest);
167
168 template <typename SrcT, typename DestT, int DestDims, access_mode DestMode,
169 target DestTgt, access::placeholder IsPlaceholder>
170 event copy(const SrcT* src,
171 accessor<DestT, DestDims, DestMode, DestTgt, IsPlaceholder> dest);
172
173 template <typename SrcT, int SrcDims, access_mode SrcMode, target SrcTgt,
174 access::placeholder IsSrcPlaceholder, typename DestT, int DestDims,
175 access_mode DestMode, target DestTgt,
176 access::placeholder IsDestPlaceholder>
177 event
178 copy(accessor<SrcT, SrcDims, SrcMode, SrcTgt, IsSrcPlaceholder> src,
179 accessor<DestT, DestDims, DestMode, DestTgt, IsDestPlaceholder> dest);
180
181 template <typename T, int Dims, access_mode Mode, target Tgt,
182 access::placeholder IsPlaceholder>
183 event update_host(accessor<T, Dim, Mode, Tgt, IsPlaceholder> acc);
184
185 template <typename T, int Dims, access_mode Mode, target Tgt,
186 access::placeholder IsPlaceholder>
187 event fill(accessor<T, Dims, Mode, Tgt, IsPlaceholder> dest, const T& src);
188 };
189 } // namespace sycl

Table 27. Constructors of the queue class

4.6.5.1. Queue interface SYCL 2020 rev 9

92 | Chapter 4. SYCL programming interface

Constructor Description

explicit queue(const property_list& propList = {})
Constructs a SYCL queue instance
using the device constructed from
the default_selector_v. Zero or
more properties can be provided to
the constructed SYCL queue via an
instance of property_list.

explicit queue(const async_handler& asyncHandler,
 const property_list& propList = {})

Constructs a SYCL queue instance
with an async_handler using the
device constructed from the
default_selector_v. Zero or more
properties can be provided to the
constructed SYCL queue via an
instance of property_list.

template <typename DeviceSelector>
explicit queue(const DeviceSelector& deviceSelector,
 const property_list& propList = {})

Constructs a SYCL queue instance
using the device returned by the
device selector provided. Zero or
more properties can be provided to
the constructed SYCL queue via an
instance of property_list.

template <typename DeviceSelector>
explicit queue(const DeviceSelector& deviceSelector,
 const async_handler& asyncHandler,
 const property_list& propList = {})

Constructs a SYCL queue instance
with an async_handler using the
device returned by the device
selector provided. Zero or more
properties can be provided to the
constructed SYCL queue via an
instance of property_list.

explicit queue(const device& syclDevice, const
property_list& propList = {})

Constructs a SYCL queue instance
using the syclDevice provided.
Zero or more properties can be
provided to the constructed SYCL
queue via an instance of proper
ty_list.

explicit queue(const device& syclDevice, const
async_handler& asyncHandler,
 const property_list& propList = {})

Constructs a SYCL queue instance
with an async_handler using the
syclDevice provided. Zero or more
properties can be provided to the
constructed SYCL queue via an
instance of property_list.

template <typename DeviceSelector>
explicit queue(const context& syclContext, const
DeviceSelector& deviceSelector,
 const property_list& propList = {})

Constructs a SYCL queue instance
that is associated with the syclCon
text provided, using the device
returned by the device selector
provided. Must throw an exception
with the errc::invalid error code
if syclContext does not encapsulate
the SYCL device returned by
deviceSelector. Zero or more prop
erties can be provided to the con
structed SYCL queue via an instance
of property_list.

SYCL 2020 rev 9 4.6.5.1. Queue interface

Chapter 4. SYCL programming interface | 93

Constructor Description

template <typename DeviceSelector>
explicit queue(const context& syclContext, const
DeviceSelector& deviceSelector,
 const async_handler& asyncHandler,
 const property_list& propList = {})

Constructs a SYCL queue instance
with an async_handler that is asso
ciated with the syclContext pro
vided, using the device returned by
the device selector provided. Must
throw an exception with the
errc::invalid error code if
syclContext does not encapsulate
the SYCL device returned by
deviceSelector. Zero or more prop
erties can be provided to the con
structed SYCL queue via an instance
of property_list.

explicit queue(const context& syclContext, const device&
syclDevice,
 const property_list& propList = {})

Constructs a SYCL queue instance
using the syclDevice provided. This
device must either be contained by
syclContext or it must be a descen
dent device of some device that is
contained by that context, other
wise this function throws a syn
chronous exception with the
errc::invalid error code. Zero or
more properties can be provided to
the constructed SYCL queue via an
instance of property_list.

explicit queue(const context& syclContext, const device&
syclDevice,
 const async_handler& asyncHandler,
 const property_list& propList = {})

Constructs a SYCL queue instance
with an async_handler using the
syclDevice provided. This device
must either be contained by
syclContext or it must be a descen
dent device of some device that is
contained by that context, other
wise this function throws a syn
chronous exception with the
errc::invalid error code. Zero or
more properties can be provided to
the constructed SYCL queue via an
instance of property_list.

Table 28. Member functions for queue class

Member function Description

backend get_backend() const noexcept
Returns a backend identifying the
SYCL backend associated with this
queue.

context get_context() const
Returns the SYCL queue’s context.
The value returned must be equal
to that returned by
get_info<info::queue::context>().

4.6.5.1. Queue interface SYCL 2020 rev 9

94 | Chapter 4. SYCL programming interface

Member function Description

device get_device() const
Returns the SYCL device the queue
is associated with. The value
returned must be equal to that
returned by
get_info<info::queue::device>().

bool is_in_order() const
Returns true if the SYCL queue was
created with the in_order property.
Equivalent to has_property<prop
erty::queue::in_order>().

void wait()
Performs a blocking wait for the
completion of all enqueued tasks
in the queue. Synchronous errors
will be reported through SYCL
exceptions.

void wait_and_throw()
Performs a blocking wait for the
completion of all enqueued tasks
in the queue. Synchronous errors
will be reported through SYCL
exceptions. Any unconsumed asyn
chronous errors will be passed to
the async_handler associated with
the queue or enclosing context. If
no user defined async_handler is
associated with the queue or
enclosing context, then an imple
mentation-defined default
async_handler is called to handle
any errors, as described in Section
4.13.1.2.

void throw_asynchronous()
Checks to see if any unconsumed
asynchronous errors have been
produced by the queue and if so
reports them by passing them to
the async_handler associated with
the queue or enclosing context. If
no user defined async_handler is
associated with the queue or
enclosing context, then an imple
mentation-defined default
async_handler is called to handle
any errors, as described in Section
4.13.1.2.

template <typename Param> typename Param::return_type
get_info() const

Queries this SYCL queue for infor
mation requested by the template
parameter Param. The type alias
Param::return_type must be
defined in accordance with the
info parameters in Table 30 to
facilitate returning the type associ
ated with the Param parameter.

SYCL 2020 rev 9 4.6.5.1. Queue interface

Chapter 4. SYCL programming interface | 95

Member function Description

template <typename T> event submit(T cgf)
Submit a command group function
object to the queue, in order to be
scheduled for execution on the
device.

template <typename T> event submit(T cgf, queue&
secondaryQueue)

Submit a command group function
object to the queue, in order to be
scheduled for execution on the
device. On a kernel error, this com
mand group function object is then
scheduled for execution on the sec
ondary queue. Returns an event,
which corresponds to the queue
the command group function
object is being enqueued on.

template <typename Param> typename Param::return_type
get_backend_info() const

Queries this SYCL queue for SYCL
backend-specific information
requested by the template parame
ter Param. The type alias
Param::return_type must be
defined in accordance with the
SYCL backend specification. Must
throw an exception with the
errc::backend_mismatch error code
if the SYCL backend that corre
sponds with Param is different from
the SYCL backend that is associated
with this queue.

4.6.5.2. Queue shortcut functions

Queue shortcut functions are member functions of the queue class that implicitly create a command
group with an implicit command group handler consisting of a single command, a call to the member
function of the handler object with the same signature (e.g. queue::single_task will call handler::sin
gle_task with the same arguments), and submit the command group. The main signature difference
comes from the return type: member functions of the handler return void, whereas corresponding queue
shortcut functions return an event object that represents the submitted command group. Queue short
cuts can additionally take a list of events to wait on, as if passing the event list to handler::depends_on for
the implicit command group.

The full list of queue shortcuts is defined in Table 29. The list of handler member functions is defined in
Table 129.

It is not allowed to capture accessors into the implicitly created command group. If a queue shortcut
function launches a kernel (via single_task or parallel_for), only USM pointers are allowed inside such
kernels. However, queue shortcuts that perform non-kernel operations can be provided with a valid
placeholder accessor as an argument. In that case there is an additional step performed: the implicit
command group handler calls handler::require on each accessor passed in as a function argument.

An example of using queue shortcuts is shown below.

 1 class MyKernel;
 2
 3 queue myQueue;

4.6.5.2. Queue shortcut functions SYCL 2020 rev 9

96 | Chapter 4. SYCL programming interface

 4 auto usmPtr = malloc_device<int>(1024, myQueue); // USM pointer
 5
 6 int* data = /* pointer to some data */;
 7 buffer buf { data, 1024 };
 8 accessor acc { buf }; // Placeholder accessor
 9
10 // Queue shortcut for a kernel invocation
11 myQueue.single_task<MyKernel>([=] {
12 // Allowed to use USM pointers,
13 // not allowed to use accessors
14 usmPtr[0] = 0;
15 });
16
17 // Placeholder accessor will automatically be registered
18 myQueue.copy(data, acc);

Table 29. Queue shortcut functions

Function Definition Function
Type

Description

template <typename KernelName, typename KernelType>
event single_task(const KernelType& kernelFunc)

Kernel
function

Equivalent to submit
ting a command-
group containing han
dler::single_
task(kernelFunc).

template <typename KernelName, typename KernelType>
event single_task(event depEvent, const KernelType&
kernelFunc)

Kernel
function

Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvent) and
handler::single_
task(kernelFunc).

template <typename KernelName, typename KernelType>
event single_task(const std::vector<event>& depEvents,
 const KernelType& kernelFunc)

Kernel
function

Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvents) and
handler::single_
task(kernelFunc).

template <typename KernelName, int Dimensions, typename...
Rest>
event parallel_for(range<Dimensions> numWorkItems, Rest&&...
rest)

Kernel
function

Equivalent to submit
ting a command-
group containing han
dler::parallel_
for(numWorkItems,
rest).

template <typename KernelName, int Dimensions, typename...
Rest>
event parallel_for(range<Dimensions> numWorkItems, event
depEvent,
 Rest&&... rest)

Kernel
function

Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvent) and
handler::parallel_
for(numWorkItems,
rest).

SYCL 2020 rev 9 4.6.5.2. Queue shortcut functions

Chapter 4. SYCL programming interface | 97

Function Definition Function
Type

Description

template <typename KernelName, int Dimensions, typename...
Rest>
event parallel_for(range<Dimensions> numWorkItems,
 const std::vector<event>& depEvents,
Rest&&... rest)

Kernel
function

Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvents) and
handler::parallel_
for(numWorkItems,
rest).

template <typename KernelName, int Dimensions, typename...
Rest>
event parallel_for(nd_range<Dimensions> executionRange,
Rest&&... rest)

Kernel
function

Equivalent to submit
ting a command-
group containing han
dler::parallel_
for(executionRange,
rest).

template <typename KernelName, int Dimensions, typename...
Rest>
event parallel_for(nd_range<Dimensions> executionRange, event
depEvent,
 Rest&&... rest)

Kernel
function

Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvent) and
handler::parallel_
for(executionRange,
rest).

template <typename KernelName, int Dimensions, typename...
Rest>
event parallel_for(nd_range<Dimensions> executionRange,
 const std::vector<event>& depEvents,
Rest&&... rest)

Kernel
function

Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvents) and
handler::parallel_
for(executionRange,
rest).

event memcpy(void* dest, const void* src, size_t numBytes)
USM Equivalent to submit

ting a command-
group containing han
dler::memcpy(dest,
src, numBytes).

event memcpy(void* dest, const void* src, size_t numBytes,
event depEvent)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvent) and
handler::mem
cpy(dest, src, num
Bytes).

event memcpy(void* dest, const void* src, size_t numBytes,
 const std::vector<event>& depEvents)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvents) and
handler::mem
cpy(dest, src, num
Bytes).

4.6.5.2. Queue shortcut functions SYCL 2020 rev 9

98 | Chapter 4. SYCL programming interface

Function Definition Function
Type

Description

template <typename T> event copy(const T* src, T* dest,
size_t count)

USM Equivalent to submit
ting a command-
group containing han
dler::copy(src,
dest, count).

template <typename T>
event copy(const T* src, T* dest, size_t count, event
depEvent)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvent) and
handler::copy(src,
dest, count).

template <typename T>
event copy(const T* srct, T* dest, size_t count,
 const std::vector<event>& depEvents)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvents) and
handler::copy(src,
dest, count).

event memset(void* ptr, int value, size_t numBytes)
USM Equivalent to submit

ting a command-
group containing han
dler::memset(ptr,
value, numBytes).

event memset(void* ptr, int value, size_t numBytes, event
depEvent)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvent) and
handler::memset(ptr,
value, numBytes).

event memset(void* ptr, int value, size_t numBytes,
 const std::vector<event>& depEvents)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvents) and
handler::memset(ptr,
value, numBytes).

template <typename T> event fill(void* ptr, const T& pattern,
size_t count)

USM Equivalent to submit
ting a command-
group containing han
dler::fill(ptr, pat
tern, count).

template <typename T>
event fill(void* ptr, const T& pattern, size_t count, event
depEvent)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvent) and
handler::fill(ptr,
pattern, count).

SYCL 2020 rev 9 4.6.5.2. Queue shortcut functions

Chapter 4. SYCL programming interface | 99

Function Definition Function
Type

Description

template <typename T>
event fill(void* ptr, const T& pattern, size_t count,
 const std::vector<event>& depEvents)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvents) and
handler::fill(ptr,
pattern, count).

event prefetch(void* ptr, size_t numBytes)
USM Equivalent to submit

ting a command-
group containing han
dler::prefetch(ptr,
numBytes).

event prefetch(void* ptr, size_t numBytes, event depEvent)
USM Equivalent to submit

ting a command-
group containing han
dler::depend
s_on(depEvent) and
han
dler::prefetch(ptr,
numBytes).

event prefetch(void* ptr, size_t numBytes, const std::vector
<event>& depEvents)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvents) and
han
dler::prefetch(ptr,
numBytes).

event mem_advise(void* ptr, size_t numBytes, int advice)
USM Equivalent to submit

ting a command-
group containing han
dler::mem_ad
vise(ptr, numBytes,
advice).

event mem_advise(void* ptr, size_t numBytes, int advice,
event depEvent)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvent) and
handler::mem_ad
vise(ptr, numBytes,
advice).

event mem_advise(void* ptr, size_t numBytes, int advice,
 const std::vector<event>& depEvents)

USM Equivalent to submit
ting a command-
group containing han
dler::depend
s_on(depEvents) and
handler::mem_ad
vise(ptr, numBytes,
advice).

4.6.5.2. Queue shortcut functions SYCL 2020 rev 9

100 | Chapter 4. SYCL programming interface

Function Definition Function
Type

Description

template <typename SrcT, int SrcDims, access_mode SrcMode,
target SrcTgt,
 access::placeholder IsPlaceholder, typename DestT>
event copy(accessor<SrcT, SrcDims, SrcMode, SrcTgt,
IsPlaceholder> src,
 std::shared_ptr<DestT> dest);

Explicit
copy

Equivalent to submit
ting a command-
group containing han
dler::require(src)
and han
dler::copy(src,
dest).

template <typename SrcT, typename DestT, int DestDims,
access_mode DestMode,
 target DestTgt, access::placeholder IsPlaceholder>
event copy(std::shared_ptr<SrcT> src,
 accessor<DestT, DestDims, DestMode, DestTgt,
IsPlaceholder> dest);

Explicit
copy

Equivalent to submit
ting a command-
group containing han
dler::require(dest)
and han
dler::copy(src,
dest).

template <typename SrcT, int SrcDims, access_mode SrcMode,
target SrcTgt,
 access::placeholder IsPlaceholder, typename DestT>
event copy(accessor<SrcT, SrcDims, SrcMode, SrcTgt,
IsPlaceholder> src,
 DestT* dest);

Explicit
copy

Equivalent to submit
ting a command-
group containing han
dler::require(src)
and han
dler::copy(src,
dest).

template <typename SrcT, typename DestT, int DestDims,
access_mode DestMode,
 target DestTgt, access::placeholder IsPlaceholder>
event copy(const SrcT* src,
 accessor<DestT, DestDims, DestMode, DestTgt,
IsPlaceholder> dest);

Explicit
copy

Equivalent to submit
ting a command-
group containing han
dler::require(dest)
and han
dler::copy(src,
dest).

template <typename SrcT, int SrcDims, access_mode SrcMode,
target SrcTgt,
 access::placeholder IsSrcPlaceholder, typename
DestT, int DestDims,
 access_mode DestMode, target DestTgt,
 access::placeholder IsDestPlaceholder>
event copy(
 accessor<SrcT, SrcDims, SrcMode, SrcTgt,
IsSrcPlaceholder> src,
 accessor<DestT, DestDims, DestMode, DestTgt,
IsDestPlaceholder> dest);

Explicit
copy

Equivalent to submit
ting a command-
group containing han
dler::require(src),
han
dler::require(dest)
and han
dler::copy(src,
dest).

template <typename T, int Dims, access_mode Mode, target Tgt,
 access::placeholder IsPlaceholder>
event update_host(accessor<T, Dims, Mode, Tgt, IsPlaceholder>
acc);

Explicit
copy

Equivalent to submit
ting a command-
group containing han
dler::require(acc)
and han
dler::update_host(ac
c).

SYCL 2020 rev 9 4.6.5.2. Queue shortcut functions

Chapter 4. SYCL programming interface | 101

Function Definition Function
Type

Description

template <typename T, int Dims, access_mode Mode, target Tgt,
 access::placeholder IsPlaceholder>
event fill(accessor<T, Dims, Mode, Tgt, IsPlaceholder> dest,
const T& src);

Explicit
copy

Equivalent to submit
ting a command-
group containing han
dler::require(dest)
and han
dler::fill(dest,
src).

4.6.5.3. Queue information descriptors

A queue can be queried for information using the get_info member function of the queue class, specify
ing one of the info parameters in info::queue. The possible values for each info parameter and any
restriction are defined in the specification of the SYCL backend associated with the queue. All info para
meters in info::queue are specified in Table 30 and the synopsis for info::queue is described in Section
A.4.

Table 30. Queue information descriptors

Queue Descriptors Return type Description

info::queue::context
context Returns the SYCL context associated with

this SYCL queue.

info::queue::device
device Returns the SYCL device associated with this

SYCL queue.

4.6.5.4. Queue properties

The properties that can be provided when constructing the SYCL queue class are describe in Table 31.

Table 31. Properties supported by the SYCL queue class

Property Description

property::queue::enable_profiling
The enable_profiling property
adds the requirement that the
SYCL runtime must capture profil
ing information for the command
groups that are submitted from
this SYCL queue and provide said
information via the SYCL event
class get_profiling_info member
function. If the queue’s associated
device does not have
aspect::queue_profiling, passing
this property to the queue’s con
structor causes the constructor to
throw a synchronous exception
with the errc::feature_not_sup
ported error code.

4.6.5.3. Queue information descriptors SYCL 2020 rev 9

102 | Chapter 4. SYCL programming interface

Property Description

property::queue::in_order
The in_order property adds the
requirement that a SYCL queue pro
vides in-order semantics whereby
commands submitted to said queue
are executed in the order in which
they are submitted. Commands
submitted in this fashion can be
viewed as-if having an implicit
dependence on the previous com
mand submitted to that queue.
Using the in_order property makes
no guarantees about the ordering
of commands submitted to differ
ent queues with respect to each
other.

The constructors of the queue property classes are listed in Table 32.

Table 32. Constructors of the queue property classes

Constructor Description

property::queue::enable_profiling::enable_profiling()
Constructs a SYCL enable_profiling
property instance.

property::queue::in_order::in_order()
Constructs a SYCL in_order prop
erty instance.

4.6.5.5. Queue error handling

Queue errors come in two forms:

• Synchronous Errors are those that we would expect to be reported directly at the point of waiting
on an event, and hence waiting for a queue to complete, as well as any immediate errors reported by
enqueuing work onto a queue. Such errors are reported through C++ exceptions.

• Asynchronous errors are those that are produced or detected after associated host API calls have
returned (so can’t be thrown as exceptions by the API call), and that are handled by an async_handler
through which the errors are reported. Handling of asynchronous errors from a queue occurs at spe
cific times, as described by Section 4.13.

Note that if there are asynchronous errors to be processed when a queue is destructed, the handler is
called and this might delay or block the destruction, according to the behavior of the handler.

4.6.6. Event class

An event in SYCL is an object that represents the status of an operation that is being executed by the
SYCL runtime.

Typically in SYCL, data dependency and execution order is handled implicitly by the SYCL runtime. How
ever, in some circumstances developers want fine grain control of the execution, or want to retrieve
properties of a command that is running.

Note that, although an event represents the status of a particular operation, the dependencies of a cer
tain event can be used to keep track of multiple steps required to block on the results of said operation.

A SYCL event is returned by the submission of a command group. The dependencies of the event

SYCL 2020 rev 9 4.6.5.5. Queue error handling

Chapter 4. SYCL programming interface | 103

returned via the submission of the command group are the implementation-defined commands associ
ated with the command group execution.

The SYCL event class provides the common reference semantics (see Section 4.5.2).

The constructors and member functions of the SYCL event class are listed in Table 33 and Table 34,
respectively. The additional common special member functions and common member functions are
listed in Table 7 and Table 8, respectively.

 1 namespace sycl {
 2
 3 class event {
 4 public:
 5 event();
 6
 7 /* -- common interface members -- */
 8
 9 backend get_backend() const noexcept;
10
11 std::vector<event> get_wait_list();
12
13 void wait();
14
15 static void wait(const std::vector<event>& eventList);
16
17 void wait_and_throw();
18
19 static void wait_and_throw(const std::vector<event>& eventList);
20
21 template <typename Param> typename Param::return_type get_info() const;
22
23 template <typename Param>
24 typename Param::return_type get_backend_info() const;
25
26 template <typename Param>
27 typename Param::return_type get_profiling_info() const;
28 };
29
30 } // namespace sycl

Table 33. Constructors of the event class

4.6.6. Event class SYCL 2020 rev 9

104 | Chapter 4. SYCL programming interface

Constructor Description

event()
Constructs an event that is immedi
ately ready. The event has no
dependencies and no associated
commands. Waiting on this event
will return immediately and
querying its status will return
info::event_command_status::com
plete.

The event is constructed as though
it was created from a default-con
structed queue. Therefore, its back
end is the same as the backend
from the default device.

Table 34. Member functions for the event class

Member function Description

backend get_backend() const noexcept
Returns a backend identifying the
SYCL backend associated with this
event.

std::vector<event> get_wait_list()
Return the list of events that this
event waits for in the dependence
graph. Only direct dependencies
are returned, and not transitive
dependencies that direct depen
dencies wait on. Whether already
completed events are included in
the returned list is implementa
tion-defined.

void wait()
Blocks until all commands associ
ated with this event and any
dependent events have completed.

SYCL 2020 rev 9 4.6.6. Event class

Chapter 4. SYCL programming interface | 105

Member function Description

void wait_and_throw()
Blocks until all commands associ
ated with this event and any
dependent events have completed.

At least all unconsumed asynchro
nous errors held by queues (or
their associated contexts) which
were used to enqueue commands
associated with this event and any
dependent events, are passed to
the appropriate async_handler as
described in Section 4.13.1.3.

This behavior is
equivalent to call
ing
queue::throw_asyn
chronous() on the
queue associated
with this event and
any dependent
events.

static void wait(const std::vector<event>& eventList)
Behaves as if calling event::wait()
on each event in eventList.

static void wait_and_throw(const std::vector<event>&
eventList)

Behaves as if calling event::wait
_and_throw() on each event in
eventList.

template <typename Param> typename Param::return_type
get_info() const

Queries this SYCL event for infor
mation requested by the template
parameter Param. The type alias
Param::return_type must be
defined in accordance with the
info parameters in Table 35 to
facilitate returning the type associ
ated with the Param parameter.

template <typename Param> typename Param::return_type
get_backend_info() const

Queries this SYCL event for SYCL
backend-specific information
requested by the template parame
ter Param. The type alias
Param::return_type must be
defined in accordance with the
SYCL backend specification. Must
throw an exception with the
errc::backend_mismatch error code
if the SYCL backend that corre
sponds with Param is different from
the SYCL backend that is associated
with this event.

4.6.6. Event class SYCL 2020 rev 9

106 | Chapter 4. SYCL programming interface

Member function Description

template <typename Param> typename Param::return_type
get_profiling_info() const

Queries this SYCL event for profil
ing information requested by the
parameter Param. If the requested
profiling information is unavail
able when get_profiling_info is
called due to incompletion of com
mand groups associated with the
event, then the call to get_profil
ing_info will block until the
requested profiling information is
available. An example is asking for
info::event_profiling::com
mand_end when the associated com
mand group action has yet to fin
ish execution. Calls to get_profil
ing_info must throw an exception
with the errc::invalid error code
if the SYCL queue which submitted
the command group this SYCL
event is associated with was not
constructed with the prop
erty::queue::enable_profiling
property. The type alias
Param::return_type must be
defined in accordance with the
info parameters in Table 37 to
facilitate returning the type associ
ated with the Param parameter.

4.6.6.1. Event information and profiling descriptors

An event can be queried for information using the get_info member function of the event class, specify
ing one of the info parameters in info::event. The possible values for each info parameter and any
restrictions are defined in the specification of the SYCL backend associated with the event. All info para
meters in info::event are specified in Table 35 and the synopsis for info::event is described in Section
A.6.

Table 35. Event class information descriptors

Event Descriptors Return type Description

info::event::command_execution_
status

info::event_com
mand_status

Returns the event status of the command
group and contained action (e.g. kernel invo
cation) associated with this SYCL event.

The info::event::command_execution_status query returns one of the values defined in Table 36.

Table 36. Event command status

Status Description

info::event_command_status::submitted
Indicates that the command has been submitted to the
SYCL queue but has not yet started running on the
device.

SYCL 2020 rev 9 4.6.6.1. Event information and profiling descriptors

Chapter 4. SYCL programming interface | 107

Status Description

info::event_command_status::running
Indicates that the command has started running on the
device but has not yet completed.

info::event_command_status::complete
Indicates that the command has finished running on the
device. Attempting to wait on such an event will not
block.

An event can be queried for profiling information using the get_profiling_info member function of the
event class, specifying one of the profiling info parameters enumerated in info::event_profiling. The
possible values for each info parameter and any restrictions are defined in the specification of the SYCL
backend associated with the event. All info parameters in info::event_profiling are specified in Table 37
and the synopsis for info::event_profiling is described in Section A.6.

Each profiling descriptor returns a 64-bit timestamp that represents the number of nanoseconds that
have elapsed since some implementation-defined timebase. All events that share the same backend are
guaranteed to share the same timebase, therefore the difference between two timestamps from the same
backend yields the number of nanoseconds that have elapsed between those events.

Table 37. Profiling information descriptors for the SYCL event class

Event information profiling descriptor Return
type

Description

info::event_profiling::command_submit
uint64_t Returns a timestamp telling when the associ

ated command group was submitted to the
queue. This is always some time after the
command group function object returns and
before the associated call to queue::submit
returns.

info::event_profiling::command_start
uint64_t Querying this profiling descriptor blocks

until the event’s state becomes either
info::event_command_status::running or
info::event_command_status::complete. The
returned timestamp tells when the action
associated with the command group (e.g.
kernel invocation) started executing on the
device. For any given event, this timestamp
is always greater than or equal to the
info::event_profiling::command_submit time
stamp. Implementations are encouraged to
return a timestamp that is as close as possi
ble to the point when the action starts run
ning on the device, but there is no specific
accuracy that is guaranteed.

info::event_profiling::command_end
uint64_t Querying this profiling descriptor blocks

until the event’s state becomes info::event_
command_status::complete. The returned
timestamp tells when the action associated
with the command group (e.g. kernel invoca
tion) finished executing on the device. For
any given event, this timestamp is always
greater than or equal to the info::even
t_profiling::command_start timestamp.

4.6.6.1. Event information and profiling descriptors SYCL 2020 rev 9

108 | Chapter 4. SYCL programming interface

4.7. Data access and storage in SYCL
In SYCL, when using buffers and images, data storage and access are handled by separate classes.
Buffers and images handle storage and ownership of the data, whereas accessors handle access to the
data. Buffers and images in SYCL can be bound to more than one device or context, including across dif
ferent SYCL backends. They also handle ownership of the data, while allowing exception handling for
blocking and non-blocking data transfers. Accessors manage data transfers between the host and all of
the devices in the system, as well as tracking of data dependencies.

Zero-sized buffers and accessors are permitted, but attempting to access data within them produces
undefined behavior, similar to dereferencing a null pointer in C++. Note that zero-sized accessors can be
created in several ways: by creating an accessor from a zero-sized buffer, by creating an accessor with a
zero-sized buffer sub-range, or by creating an accessor with its default constructor.

When using USM allocations, data storage is managed by USM allocation functions, and data access is via
pointers. See Section 4.8 for greater detail.

4.7.1. Host allocation

A SYCL runtime may need to allocate temporary objects on the host to handle some operations (such as
copying data from one context to another). Allocation on the host is managed using an allocator object,
following the standard C++ allocator class definition. The default allocator for memory objects is imple
mentation-defined, but the user can supply their own allocator class.

1 {
2 buffer<int, 1, UserDefinedAllocator<int>> b(d);
3 }

When an allocator returns a nullptr, the runtime cannot allocate data on the host. Note that in this case
the runtime will raise an error if it requires host memory but it is not available (e.g when moving data
across SYCL backend contexts).

In some cases, the implementation may retain a copy of the allocator object even after the buffer is
destroyed. For example, this can happen when the buffer object is destroyed before commands using
accessors to the buffer have completed. Therefore, the application must be prepared for calls to the allo
cator even after the buffer is destroyed.

If the application needs to know when the implementation has destroyed all copies of
the allocator, it can maintain a reference count within the allocator.

The definition of allocators extends the current functionality of SYCL, ensuring that users can define
allocator functions for specific hardware or certain complex shared memory mechanisms (e.g. NUMA),
and improves interoperability with STL-based libraries (e.g, Intel’s TBB provides an allocator).

4.7.1.1. Default allocators

A default allocator is always defined by the implementation. For allocations greater than size zero, when
successful it is guaranteed to return non-nullptr and new memory positions every call. The default allo
cator for const buffers will remove the const-ness of the type (therefore, the default allocator for a buffer
of type const int will be an Allocator<int>). This implies that host accessors will not share memory with
the pointer given by the user in the buffer/image constructor, but will use the memory returned by the
Allocator itself for that purpose. The user can implement an allocator that returns the same address as
the one passed in the buffer constructor, but it is the responsibility of the user to handle the potential
race conditions.

SYCL 2020 rev 9 4.7. Data access and storage in SYCL

Chapter 4. SYCL programming interface | 109

Table 38. SYCL Default Allocators

Allocators Description

template <class T> buffer_allocator
It is the default buffer allocator
used by the runtime, when no allo
cator is defined by the user. Meets
the C++ named requirement Allo
cator. A buffer of data type const T
uses buffer_allocator<T> by
default.

image_allocator
It is the default allocator used by
the runtime for the SYCL unsam
pled_image and sampled_image
classes when no allocator is pro
vided by the user. The image_allo
cator is required to allocate in ele
ments of std::byte.

See Section 4.7.5 for details of using manual synchronization to avoid data races between host and
device.

4.7.2. Buffers

The buffer class defines a shared array of one, two or three dimensions that can be used by the SYCL ker
nel and has to be accessed using accessor classes. Buffers are templated on both the type of their data,
and the number of dimensions that the data is stored and accessed through.

A buffer does not map to only one underlying backend object, and all SYCL backend memory objects
may be temporary for use within a command group on a specific device.

The underlying data type of a buffer T must be device copyable as defined in Section 3.13.1. Some over
loads of the buffer constructor initialize the buffer contents by copying objects from host memory while
other overloads construct the buffer without copying objects from the host. For the overloads that do not
copy host objects, the initial state of the objects in the buffer depends on whether T is an implicit-lifetime
type (as defined in the C++ core language). If T is an implicit-lifetime type, objects of that type are implic
itly created in the buffer with indeterminate values. For other types, these constructor overloads merely
allocate uninitialized memory, and the application is responsible for constructing objects by calling
placement-new and for destroying them later by manually calling the object’s destructor.

For the overloads that do copy objects from host memory, the hostData pointer must point to at least N
bytes of memory where N is sizeof(T) * bufferRange.size(). If N is zero, hostData is permitted to be a
null pointer.

A SYCL buffer can construct an instance of a SYCL buffer that reinterprets the original SYCL buffer with
a different type, dimensionality and range using the member function reinterpret. The reinterpreted
SYCL buffer that is constructed must behave as though it were a copy of the SYCL buffer that constructed
it (see Section 4.5.2) with the exception that the type, dimensionality and range of the reinterpreted SYCL
buffer must reflect the type, dimensionality and range specified when calling the reinterpret member
function. By extension of this, the class member types value_type, reference and const_reference, and the
member functions get_range() and size() of the reinterpreted SYCL buffer must reflect the new type,
dimensionality and range. The data that the original SYCL buffer and the reinterpreted SYCL buffer man
age remains unaffected, though the representation of the data when accessed through the reinterpreted
SYCL buffer may alter to reflect the new type, dimensionality and range. It is important to note that a
reinterpreted SYCL buffer is a copy of the original SYCL buffer only, and not a new SYCL buffer. Con
structing more than one SYCL buffer managing the same host pointer is still undefined behavior.

4.7.2. Buffers SYCL 2020 rev 9

110 | Chapter 4. SYCL programming interface

The SYCL buffer class template provides the common reference semantics (see Section 4.5.2).

4.7.2.1. Buffer interface

The constructors and member functions of the SYCL buffer class template are listed in Table 39 and Ta
ble 40, respectively. The additional common special member functions and common member functions
are listed in Table 7 and Table 8, respectively.

Each constructor takes as the last parameter an optional SYCL property_list to provide properties to the
SYCL buffer.

The SYCL buffer class template takes a template parameter AllocatorT for specifying an allocator which
is used by the SYCL runtime when allocating temporary memory on the host. If no template argument is
provided, then the default allocator for the SYCL buffer class buffer_allocator<T> will be used (see Sec
tion 4.7.1.1).

 1 namespace sycl {
 2 namespace property {
 3 namespace buffer {
 4 class use_host_ptr {
 5 public:
 6 use_host_ptr() = default;
 7 };
 8
 9 class use_mutex {
 10 public:
 11 use_mutex(std::mutex& mutexRef);
 12
 13 std::mutex* get_mutex_ptr() const;
 14 };
 15
 16 class context_bound {
 17 public:
 18 context_bound(context boundContext);
 19
 20 context get_context() const;
 21 };
 22 } // namespace buffer
 23 } // namespace property
 24
 25 template <typename T, int Dimensions = 1,
 26 typename AllocatorT = buffer_allocator<std::remove_const_t<T>>>
 27 class buffer {
 28 public:
 29 using value_type = T;
 30 using reference = value_type&;
 31 using const_reference = const value_type&;
 32 using allocator_type = AllocatorT;
 33
 34 buffer(const range<Dimensions>& bufferRange,
 35 const property_list& propList = {});
 36
 37 buffer(const range<Dimensions>& bufferRange, AllocatorT allocator,
 38 const property_list& propList = {});
 39
 40 buffer(T* hostData, const range<Dimensions>& bufferRange,

SYCL 2020 rev 9 4.7.2.1. Buffer interface

Chapter 4. SYCL programming interface | 111

 41 const property_list& propList = {});
 42
 43 buffer(T* hostData, const range<Dimensions>& bufferRange,
 44 AllocatorT allocator, const property_list& propList = {});
 45
 46 buffer(const T* hostData, const range<Dimensions>& bufferRange,
 47 const property_list& propList = {});
 48
 49 buffer(const T* hostData, const range<Dimensions>& bufferRange,
 50 AllocatorT allocator, const property_list& propList = {});
 51
 52 /* Available only if Container is a contiguous container:
 53 - std::data(container) and std::size(container) are well formed
 54 - return type of std::data(container) is convertible to T*
 55 and Dimensions == 1 */
 56 template <typename Container>
 57 buffer(Container& container, AllocatorT allocator,
 58 const property_list& propList = {});
 59
 60 /* Available only if Container is a contiguous container:
 61 - std::data(container) and std::size(container) are well formed
 62 - return type of std::data(container) is convertible to T*
 63 and Dimensions == 1 */
 64 template <typename Container>
 65 buffer(Container& container, const property_list& propList = {});
 66
 67 buffer(const std::shared_ptr<T>& hostData,
 68 const range<Dimensions>& bufferRange, AllocatorT allocator,
 69 const property_list& propList = {});
 70
 71 buffer(const std::shared_ptr<T>& hostData,
 72 const range<Dimensions>& bufferRange,
 73 const property_list& propList = {});
 74
 75 buffer(const std::shared_ptr<T[]>& hostData,
 76 const range<Dimensions>& bufferRange, AllocatorT allocator,
 77 const property_list& propList = {});
 78
 79 buffer(const std::shared_ptr<T[]>& hostData,
 80 const range<Dimensions>& bufferRange,
 81 const property_list& propList = {});
 82
 83 template <class InputIterator>
 84 buffer<T, 1>(InputIterator first, InputIterator last, AllocatorT allocator,
 85 const property_list& propList = {});
 86
 87 template <class InputIterator>
 88 buffer<T, 1>(InputIterator first, InputIterator last,
 89 const property_list& propList = {});
 90
 91 buffer(buffer& b, const id<Dimensions>& baseIndex,
 92 const range<Dimensions>& subRange);
 93
 94 /* -- common interface members -- */
 95
 96 /* -- property interface members -- */

4.7.2.1. Buffer interface SYCL 2020 rev 9

112 | Chapter 4. SYCL programming interface

 97
 98 range<Dimensions> get_range() const;
 99
100 size_t byte_size() const noexcept;
101
102 size_t size() const noexcept;
103
104 // Deprecated
105 size_t get_count() const;
106
107 // Deprecated
108 size_t get_size() const;
109
110 AllocatorT get_allocator() const;
111
112 template <access_mode Mode = access_mode::read_write,
113 target Targ = target::device>
114 accessor<T, Dimensions, Mode, Targ> get_access(handler& commandGroupHandler);
115
116 // Deprecated
117 template <access_mode Mode>
118 accessor<T, Dimensions, Mode, target::host_buffer> get_access();
119
120 template <access_mode Mode = access_mode::read_write,
121 target Targ = target::device>
122 accessor<T, Dimensions, Mode, Targ>
123 get_access(handler& commandGroupHandler, range<Dimensions> accessRange,
124 id<Dimensions> accessOffset = {});
125
126 // Deprecated
127 template <access_mode Mode>
128 accessor<T, Dimensions, Mode, target::host_buffer>
129 get_access(range<Dimensions> accessRange, id<Dimensions> accessOffset = {});
130
131 template <typename... Ts> auto get_access(Ts...);
132
133 template <typename... Ts> auto get_host_access(Ts...);
134
135 template <typename Destination = std::nullptr_t>
136 void set_final_data(Destination finalData = nullptr);
137
138 void set_write_back(bool flag = true);
139
140 bool is_sub_buffer() const;
141
142 template <typename ReinterpretT, int ReinterpretDim>
143 buffer<ReinterpretT, ReinterpretDim,
144 typename std::allocator_traits<AllocatorT>::template rebind_alloc<
145 ReinterpretT>>
146 reinterpret(range<ReinterpretDim> reinterpretRange) const;
147
148 // Only available when ReinterpretDim == 1
149 // or when (ReinterpretDim == Dimensions) &&
150 // (sizeof(ReinterpretT) == sizeof(T))
151 template <typename ReinterpretT, int ReinterpretDim = Dimensions>
152 buffer<ReinterpretT, ReinterpretDim,

SYCL 2020 rev 9 4.7.2.1. Buffer interface

Chapter 4. SYCL programming interface | 113

153 typename std::allocator_traits<AllocatorT>::template rebind_alloc<
154 ReinterpretT>>
155 reinterpret() const;
156 };
157
158 // Deduction guides
159 template <class InputIterator, class AllocatorT>
160 buffer(InputIterator, InputIterator, AllocatorT, const property_list& = {})
161 -> buffer<typename std::iterator_traits<InputIterator>::value_type, 1,
162 AllocatorT>;
163
164 template <class InputIterator>
165 buffer(InputIterator, InputIterator, const property_list& = {})
166 -> buffer<typename std::iterator_traits<InputIterator>::value_type, 1>;
167
168 template <class T, int Dimensions, class AllocatorT>
169 buffer(const T*, const range<Dimensions>&, AllocatorT,
170 const property_list& = {}) -> buffer<T, Dimensions, AllocatorT>;
171
172 template <class T, int Dimensions>
173 buffer(const T*, const range<Dimensions>&, const property_list& = {})
174 -> buffer<T, Dimensions>;
175
176 template <class Container, class AllocatorT>
177 buffer(Container&, AllocatorT, const property_list& = {})
178 -> buffer<typename Container::value_type, 1, AllocatorT>;
179
180 template <class Container>
181 buffer(Container&, const property_list& = {})
182 -> buffer<typename Container::value_type, 1>;
183
184 } // namespace sycl

Table 39. Constructors of the buffer class

Constructor Description

buffer(const range<Dimensions>& bufferRange,
 const property_list& propList = {})

Construct a SYCL buffer instance
with uninitialized memory. The
constructed SYCL buffer will use a
default constructed AllocatorT
when allocating memory on the
host. The range of the constructed
SYCL buffer is specified by the buf
ferRange parameter provided. Data
is not written back to the host on
destruction of the buffer unless the
buffer has a valid non-null pointer
specified via the member function
set_final_data(). Zero or more
properties can be provided to the
constructed SYCL buffer via an
instance of property_list.

4.7.2.1. Buffer interface SYCL 2020 rev 9

114 | Chapter 4. SYCL programming interface

Constructor Description

buffer(const range<Dimensions>& bufferRange,
 AllocatorT allocator,
 const property_list& propList = {})

Construct a SYCL buffer instance
with uninitialized memory. The
constructed SYCL buffer will use
the allocator parameter provided
when allocating memory on the
host. The range of the constructed
SYCL buffer is specified by the buf
ferRange parameter provided. Data
is not written back to the host on
destruction of the buffer unless the
buffer has a valid non-null pointer
specified via the member function
set_final_data(). Zero or more
properties can be provided to the
constructed SYCL buffer via an
instance of property_list.

buffer(T* hostData, const range<Dimensions>& bufferRange,
 const property_list& propList = {})

Construct a SYCL buffer instance
with the hostData parameter pro
vided. The buffer is initialized with
the memory specified by hostData,
and the buffer assumes exclusive
access to this memory for the dura
tion of its lifetime. The constructed
SYCL buffer will use a default con
structed AllocatorT when allocat
ing memory on the host. The range
of the constructed SYCL buffer is
specified by the bufferRange para
meter provided. Zero or more
properties can be provided to the
constructed SYCL buffer via an
instance of property_list.

buffer(T* hostData, const range<Dimensions>& bufferRange,
 AllocatorT allocator,
 const property_list& propList = {})

Construct a SYCL buffer instance
with the hostData parameter pro
vided. The buffer is initialized with
the memory specified by hostData,
and the buffer assumes exclusive
access to this memory for the dura
tion of its lifetime. The constructed
SYCL buffer will use the allocator
parameter provided when allocat
ing memory on the host. The range
of the constructed SYCL buffer is
specified by the bufferRange para
meter provided. Zero or more
properties can be provided to the
constructed SYCL buffer via an
instance of property_list.

SYCL 2020 rev 9 4.7.2.1. Buffer interface

Chapter 4. SYCL programming interface | 115

Constructor Description

buffer(const T* hostData,
 const range<Dimensions>& bufferRange,
 const property_list& propList = {})

Construct a SYCL buffer instance
with the hostData parameter pro
vided. The buffer assumes exclu
sive access to this memory for the
duration of its lifetime.

The constructed SYCL buffer will
use a default constructed Alloca
torT when allocating memory on
the host.

The host address is const T, so the
host accesses can be read-only.
However, the typename T is not
const so the device accesses can be
both read and write accesses. Since
the hostData is const, this buffer is
only initialized with this memory
and there is no write back after its
destruction, unless the buffer has
another valid non-null final data
address specified via the member
function set_final_data() after
construction of the buffer.

The range of the constructed SYCL
buffer is specified by the buffer
Range parameter provided.

Zero or more properties can be
provided to the constructed SYCL
buffer via an instance of proper
ty_list.

4.7.2.1. Buffer interface SYCL 2020 rev 9

116 | Chapter 4. SYCL programming interface

Constructor Description

buffer(const T* hostData,
 const range<Dimensions>& bufferRange,
 AllocatorT allocator,
 const property_list& propList = {})

Construct a SYCL buffer instance
with the hostData parameter pro
vided. The buffer assumes exclu
sive access to this memory for the
duration of its lifetime.

The constructed SYCL buffer will
use the allocator parameter pro
vided when allocating memory on
the host.

The host address is const T, so the
host accesses can be read-only.
However, the typename T is not
const so the device accesses can be
both read and write accesses.
Since, the hostData is const, this
buffer is only initialized with this
memory and there is no write back
after its destruction, unless the
buffer has another valid non-null
final data address specified via the
member function set_final_data()
after construction of the buffer.

The range of the constructed SYCL
buffer is specified by the buffer
Range parameter provided.

Zero or more properties can be
provided to the constructed SYCL
buffer via an instance of proper
ty_list.

SYCL 2020 rev 9 4.7.2.1. Buffer interface

Chapter 4. SYCL programming interface | 117

Constructor Description

template <typename Container>
buffer(Container& container,
 const property_list& propList = {})

Construct a one dimensional SYCL
buffer instance from the elements
starting at std::data(container)
and containing std::size(con
tainer) number of elements. The
buffer is initialized with the con
tents of container, and the buffer
assumes exclusive access to con
tainer for the duration of its life
time.

Data is written back to container
before the completion of buffer
destruction if the return type of
std::data(container) is not const.

The constructed SYCL buffer will
use a default constructed Alloca
torT when allocating memory on
the host.

Zero or more properties can be
provided to the constructed SYCL
buffer via an instance of proper
ty_list.

This constructor is only defined for
a buffer parameterized with Dimen
sions == 1, and when
std::data(container) is convertible
to T*.

4.7.2.1. Buffer interface SYCL 2020 rev 9

118 | Chapter 4. SYCL programming interface

Constructor Description

template <typename Container>
buffer(Container& container, AllocatorT allocator,
 const property_list& propList = {})

Construct a one dimensional SYCL
buffer instance from the elements
starting at std::data(container)
and containing std::size(con
tainer) number of elements. The
buffer is initialized with the con
tents of container, and the buffer
assumes exclusive access to con
tainer for the duration of its life
time.

Data is written back to container
before the completion of buffer
destruction if the return type of
std::data(container) is not const.

The constructed SYCL buffer will
use the allocator parameter pro
vided when allocating memory on
the host.

Zero or more properties can be
provided to the constructed SYCL
buffer via an instance of proper
ty_list.

This constructor is only defined for
a buffer parameterized with Dimen
sions == 1, and when
std::data(container) is convertible
to T*.

SYCL 2020 rev 9 4.7.2.1. Buffer interface

Chapter 4. SYCL programming interface | 119

Constructor Description

buffer(const std::shared_ptr<T>& hostData,
 const range<Dimensions>& bufferRange,
 const property_list& propList = {})

When hostData is not empty, con
struct a SYCL buffer with the con
tents of its stored pointer. The
buffer assumes exclusive access to
this memory for the duration of its
lifetime. The buffer also creates its
own internal copy of the
shared_ptr that shares ownership
of the hostData memory, which
means the application can safely
release ownership of this
shared_ptr when the constructor
returns.

When hostData is empty, construct
a SYCL buffer with uninitialized
memory.

The constructed SYCL buffer will
use a default constructed Alloca
torT when allocating memory on
the host. The range of the con
structed SYCL buffer is specified by
the bufferRange parameter pro
vided. Zero or more properties can
be provided to the constructed
SYCL buffer via an instance of
property_list.

4.7.2.1. Buffer interface SYCL 2020 rev 9

120 | Chapter 4. SYCL programming interface

Constructor Description

buffer(const std::shared_ptr<T>& hostData,
 const range<Dimensions>& bufferRange,
 AllocatorT allocator,
 const property_list& propList = {})

When hostData is not empty, con
struct a SYCL buffer with the con
tents of its stored pointer. The
buffer assumes exclusive access to
this memory for the duration of its
lifetime. The buffer also creates its
own internal copy of the
shared_ptr that shares ownership
of the hostData memory, which
means the application can safely
release ownership of this
shared_ptr when the constructor
returns.

When hostData is empty, construct
a SYCL buffer with uninitialized
memory.

The constructed SYCL buffer will
use the allocator parameter pro
vided when allocating memory on
the host. The range of the con
structed SYCL buffer is specified by
the bufferRange parameter pro
vided. Zero or more properties can
be provided to the constructed
SYCL buffer via an instance of
property_list.

SYCL 2020 rev 9 4.7.2.1. Buffer interface

Chapter 4. SYCL programming interface | 121

Constructor Description

buffer(const std::shared_ptr<T[]>& hostData,
 const range<Dimensions>& bufferRange,
 const property_list& propList = {})

When hostData is not empty, con
struct a SYCL buffer with the con
tents of its stored pointer. The
buffer assumes exclusive access to
this memory for the duration of its
lifetime. The buffer also creates its
own internal copy of the
shared_ptr that shares ownership
of the hostData memory, which
means the application can safely
release ownership of this
shared_ptr when the constructor
returns.

When hostData is empty, construct
a SYCL buffer with uninitialized
memory.

The constructed SYCL buffer will
use a default constructed Alloca
torT when allocating memory on
the host. The range of the con
structed SYCL buffer is specified by
the bufferRange parameter pro
vided. Zero or more properties can
be provided to the constructed
SYCL buffer via an instance of
property_list.

4.7.2.1. Buffer interface SYCL 2020 rev 9

122 | Chapter 4. SYCL programming interface

Constructor Description

buffer(const std::shared_ptr<T[]>& hostData,
 const range<Dimensions>& bufferRange,
 AllocatorT allocator,
 const property_list& propList = {})

When hostData is not empty, con
struct a SYCL buffer with the con
tents of its stored pointer. The
buffer assumes exclusive access to
this memory for the duration of its
lifetime. The buffer also creates its
own internal copy of the
shared_ptr that shares ownership
of the hostData memory, which
means the application can safely
release ownership of this
shared_ptr when the constructor
returns.

When hostData is empty, construct
a SYCL buffer with uninitialized
memory.

The constructed SYCL buffer will
use the allocator parameter pro
vided when allocating memory on
the host. The range of the con
structed SYCL buffer is specified by
the bufferRange parameter pro
vided. Zero or more properties can
be provided to the constructed
SYCL buffer via an instance of
property_list.

template <typename InputIterator>
buffer(InputIterator first, InputIterator last,
 const property_list& propList = {})

Create a new allocated 1D buffer
initialized from the given elements
ranging from first up to one
before last. The data is copied to
an intermediate memory position
by the runtime. Data is not written
back to the same iterator set pro
vided. However, if the buffer has a
valid non-const iterator specified
via the member function set_fi
nal_data(), data will be copied
back to that iterator. The con
structed SYCL buffer will use a
default constructed AllocatorT
when allocating memory on the
host. Zero or more properties can
be provided to the constructed
SYCL buffer via an instance of
property_list.

SYCL 2020 rev 9 4.7.2.1. Buffer interface

Chapter 4. SYCL programming interface | 123

Constructor Description

template <typename InputIterator>
buffer(InputIterator first, InputIterator last,
 AllocatorT allocator = {},
 const property_list& propList = {})

Create a new allocated 1D buffer
initialized from the given elements
ranging from first up to one
before last. The data is copied to
an intermediate memory position
by the runtime. Data is not written
back to the same iterator set pro
vided. However, if the buffer has a
valid non-const iterator specified
via the member function set_fi
nal_data(), data will be copied
back to that iterator. The con
structed SYCL buffer will use the
allocator parameter provided
when allocating memory on the
host. Zero or more properties can
be provided to the constructed
SYCL buffer via an instance of
property_list.

4.7.2.1. Buffer interface SYCL 2020 rev 9

124 | Chapter 4. SYCL programming interface

Constructor Description

buffer(buffer& b, const id<Dimensions>& baseIndex,
 const range<Dimensions>& subRange)

Create a new sub-buffer without
allocation to have separate acces
sors later. b is the buffer with the
real data, which must not be a sub-
buffer. baseIndex specifies the ori
gin of the sub-buffer inside the
buffer b. subRange specifies the size
of the sub-buffer. The sum of
baseIndex and subRange in any
dimension must not exceed the
parent buffer (b) size (bufferRange)
in that dimension, and an excep
tion with the errc::invalid error
code must be thrown if violated.

The offset and range specified by
baseIndex and subRange together
must represent a contiguous
region of the original SYCL buffer.

If a non-contiguous region of a
buffer is requested when con
structing a sub-buffer, then an
exception with the errc::invalid
error code must be thrown.

The origin (based on baseIndex) of
the sub-buffer being constructed
must be a multiple of the memory
base address alignment of each
SYCL device which accesses data
from the buffer. This value is
retrievable via the SYCL device
class info query
info::device::mem_base_addr_align.
Violating this requirement causes
the implementation to throw an
exception with the errc::invalid
error code from the accessor con
structor (if the accessor is not a
placeholder) or from han
dler::require() (if the accessor is a
placeholder). If the accessor is
bound to a command group with a
secondary queue, the sub-buffer’s
alignment must be compatible
with both the primary queue’s
device and the secondary queue’s
device, otherwise this exception is
thrown.

Must throw an exception with the
errc::invalid error code if b is a
sub-buffer.

SYCL 2020 rev 9 4.7.2.1. Buffer interface

Chapter 4. SYCL programming interface | 125

Table 40. Member functions for the buffer class

Member function Description

range<Dimensions> get_range() const
Return a range object representing
the size of the buffer in terms of
number of elements in each
dimension as passed to the con
structor.

size_t size() const noexcept
Returns the total number of ele
ments in the buffer. Equal to
get_range()[0] * ... *
get_range()[Dimensions-1].

size_t get_count() const
Returns the same value as size().
Deprecated.

size_t byte_size() const noexcept
Returns the size of the buffer stor
age in bytes. Equal to
size()*sizeof(T).

size_t get_size() const
Returns the same value as byte_
size(). Deprecated.

AllocatorT get_allocator() const
Returns the allocator provided to
the buffer.

template <access_mode Mode = access_mode::read_write,
 target Targ = target::device>
accessor<T, Dimensions, Mode, Targ> get_access(handler&
commandGroupHandler)

Returns a valid accessor to the
buffer with the specified access
mode and target in the command
group buffer. The value of target
can be target::device, tar
get::constant_buffer or [code]#tar
get::host_task.

template <access_mode Mode>
accessor<T, Dimensions, Mode, target::host_buffer>
get_access()

Deprecated in SYCL 2020. Use
get_host_access() instead.

Returns a valid host accessor to the
buffer with the specified access
mode and target.

template <access_mode Mode = access_mode::read_write,
 target Targ = target::device>
accessor<T, Dimensions, Mode, Targ> get_access(handler&
commandGroupHandler,
 range
<Dimensions> accessRange,
 id
<Dimensions> accessOffset = {})

Returns a valid accessor to the
buffer with the specified access
mode and target in the command
group buffer. The accessor is a
ranged accessor, where the range
starts at the given offset from the
beginning of the buffer. The value
of target can be target::device,
target::constant_buffer or
[code]#target::host_task.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of the buffer in
any dimension.

4.7.2.1. Buffer interface SYCL 2020 rev 9

126 | Chapter 4. SYCL programming interface

Member function Description

template <access_mode Mode>
accessor<T, Dimensions, Mode, target::host_buffer>
get_access(range<Dimensions> accessRange, id<Dimensions>
accessOffset = {})

Deprecated in SYCL 2020. Use
get_host_access() instead.

Returns a valid host accessor to the
buffer with the specified access
mode and target. The accessor is a
ranged accessor, where the range
starts at the given offset from the
beginning of the buffer. The value
of target can only be tar
get::host_buffer.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of the buffer in
any dimension.

template <typename... Ts> auto get_access(Ts... args)
Returns a valid accessor as if con
structed via passing the buffer and
all provided arguments to the
accessor constructor.

Possible implementation:

return accessor{*this, args...};

template <typename... Ts> auto get_host_access(Ts... args)
Returns a valid host_accessor as if
constructed via passing the buffer
and all provided arguments to the
host_accessor constructor.

Possible implementation:

return host_accessor{*this,
args...};

template <typename Destination = std::nullptr_t>
void set_final_data(Destination finalData = nullptr)

The finalData points to where the
outcome of all the buffer process
ing is going to be copied to at
destruction time, if the buffer was
involved with a write accessor.

Destination can be either an output
iterator or a std::weak_ptr<T>.

Note that a raw pointer is a special
case of output iterator and thus
defines the host memory to which
the result is to be copied.

In the case of a weak pointer, the
output is not updated if the weak
pointer has expired.

If Destination is std::nullptr_t,
then the copy back will not hap
pen.

SYCL 2020 rev 9 4.7.2.1. Buffer interface

Chapter 4. SYCL programming interface | 127

Member function Description

void set_write_back(bool flag = true)
This member function allows
dynamically forcing or canceling
the write-back of the data of a
buffer on destruction according to
the value of flag.

Forcing the write-back is similar to
what happens during a normal
write-back as described in Section
4.7.2.3 and Section 4.7.4.

If there is nowhere to write-back,
using this function does not have
any effect.

bool is_sub_buffer() const
Returns true if this SYCL buffer is a
sub-buffer, otherwise returns false.

template <typename ReinterpretT, int ReinterpretDim>
buffer<ReinterpretT, ReinterpretDim,
 typename std::allocator_traits<AllocatorT>::template
rebind_alloc<
 std::remove_const_t<ReinterpretT>>>
reinterpret(range<ReinterpretDim> reinterpretRange) const

Creates and returns a reinter
preted SYCL buffer with the type
specified by ReinterpretT, dimen
sions specified by ReinterpretDim
and range specified by reinterpre
tRange. The buffer object being
reinterpreted can be a SYCL sub-
buffer that was created from a
SYCL buffer and must throw excep
tion with the errc::invalid error
code if the total size in bytes repre
sented by the type and range of the
reinterpreted SYCL buffer (or sub-
buffer) does not equal the total size
in bytes represented by the type
and range of this SYCL buffer (or
sub-buffer). Reinterpreting a sub-
buffer provides a reinterpreted
view of the sub-buffer only, and
does not change the offset or size
of the sub-buffer view (in bytes)
relative to the parent buffer.

4.7.2.1. Buffer interface SYCL 2020 rev 9

128 | Chapter 4. SYCL programming interface

Member function Description

template <typename ReinterpretT, int ReinterpretDim =
Dimensions>
buffer<ReinterpretT, ReinterpretDim,
 typename std::allocator_traits<AllocatorT>::template
rebind_alloc<
 std::remove_const_t<ReinterpretT>>>
reinterpret() const

Creates and returns a reinter
preted SYCL buffer with the type
specified by ReinterpretT and
dimensions specified by Reinter
pretDim. Only valid when (Reinter
pretDim == 1) or when ((Reinter
pretDim == Dimensions) &&
(sizeof(ReinterpretT) ==
sizeof(T))). The buffer object
being reinterpreted can be a SYCL
sub-buffer that was created from a
SYCL buffer. The implementation
must throw an exception with the
errc::invalid error code if the
total size in bytes represented by
this SYCL buffer (or sub-buffer) is
not evenly divisible by
sizeof(ReinterpretT). Reinterpret
ing a sub-buffer provides a reinter
preted view of the sub-buffer only,
and does not change the offset or
size of the sub-buffer view (in
bytes) relative to the parent buffer.

4.7.2.2. Buffer properties

The properties that can be provided when constructing the SYCL buffer class are describe in Table 41.

Table 41. Properties supported by the SYCL buffer class

Property Description

property::buffer::use_host_ptr
The use_host_ptr property adds the
requirement that the SYCL runtime
must not allocate any memory for
the SYCL buffer and instead uses
the provided host pointer directly.
This prevents the SYCL runtime
from allocating additional tempo
rary storage on the host.

This property has a special guaran
tee for buffers that are constructed
from a hostData pointer. If a
host_accessor is constructed from
such a buffer, then the address of
the reference type returned from
the accessor’s member functions
such as operator[](id<>) will be
the same as the corresponding
hostData address.

SYCL 2020 rev 9 4.7.2.2. Buffer properties

Chapter 4. SYCL programming interface | 129

Property Description

property::buffer::use_mutex
The use_mutex property is valid for
the SYCL buffer, unsampled_image
and sampled_image classes. The
property adds the requirement
that the memory which is owned
by the SYCL buffer can be shared
with the application via a
std::mutex provided to the prop
erty. The mutex m is locked by the
runtime whenever the data is in
use and unlocked otherwise. The
contents of hostData are guaran
teed to reflect the contents of the
buffer when the std::mutex is
unlocked by the runtime.

property::buffer::context_bound
The context_bound property adds
the requirement that the SYCL
buffer can only be associated with
a single SYCL context that is pro
vided to the property.

The constructors and special member functions of the buffer property classes are listed in Table 42 and
Table 43 respectively.

Table 42. Constructors of the buffer property classes

Constructor Description

property::buffer::use_host_ptr::use_host_ptr()
Constructs a SYCL use_host_ptr
property instance.

property::buffer::use_mutex::use_mutex(std::mutex&
mutexRef)

Constructs a SYCL use_mutex prop
erty instance with a reference to
mutexRef parameter provided.

property::buffer::context_bound::context_bound(context
boundContext)

Constructs a SYCL context_bound
property instance with a copy of a
SYCL context.

Table 43. Member functions of the buffer property classes

Member function Description

std::mutex* property::buffer::use_mutex::get_mutex_ptr()
const

Returns the std::mutex which was
specified when constructing this
SYCL use_mutex property.

context property::buffer::context_bound::get_context()
const

Returns the context which was
specified when constructing this
SYCL context_bound property.

4.7.2.3. Buffer destruction rules

Buffers are reference-counted. When a buffer value is constructed from another buffer, the two values
reference the same buffer and a reference count is incremented. When a buffer value is destroyed, the

4.7.2.3. Buffer destruction rules SYCL 2020 rev 9

130 | Chapter 4. SYCL programming interface

reference count is decremented. Only when there are no more buffer values that reference a specific
buffer is the actual buffer destroyed and the buffer destruction behavior defined below is followed.

If any error occurs on buffer destruction, it is reported via the associated queue’s asynchronous error
handling mechanism.

The basic rule for the blocking behavior of a buffer destructor is that it blocks if there is some data to
write back because a write accessor on it has been created, or if the buffer was constructed with
attached host memory and is still in use.

More precisely:

1. A buffer can be constructed from a range (and without a hostData pointer). The memory management
for this type of buffer is entirely handled by the SYCL system. The destructor for this type of buffer
does not need to block, even if work on the buffer has not completed. Instead, the SYCL system frees
any storage required for the buffer asynchronously when it is no longer in use in queues. The initial
contents of the buffer are unspecified.

2. A buffer can be constructed from a hostData pointer. The buffer will use this host memory for its full
lifetime, but the contents of this host memory are unspecified for the lifetime of the buffer. If the host
memory is modified on the host or if it is used to construct another buffer or image during the life
time of this buffer, then the results are undefined. The initial contents of the buffer will be the con
tents of the host memory at the time of construction.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have
completed, then copy the contents of the buffer back to the host memory (if required) and then
return.

a. If the type of the host data is const, then the buffer is read-only; only read accessors are allowed
on the buffer and no-copy-back to host memory is performed (although the host memory must
still be kept available for use by SYCL). When using the default buffer allocator, the const-ness of
the type will be removed in order to allow host allocation of memory, which will allow temporary
host copies of the data by the SYCL runtime, for example for speeding up host accesses.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have
completed and then return, as there is no copy of data back to host.

b. If the type of the host data is not const but the pointer to host data is const, then the read-only
restriction applies only on host and not on device accesses.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have
completed.

3. A buffer can be constructed using a shared_ptr to host data. This pointer is shared between the SYCL
application and the runtime. In order to allow synchronization between the application and the run
time a mutex is used which will be locked by the runtime whenever the data is in use, and unlocked
when it is no longer needed.

The shared_ptr reference counting is used in order to prevent destroying the buffer host data prema
turely. If the shared_ptr is deleted from the user application before buffer destruction, the buffer can
continue securely because the pointer hasn’t been destroyed yet. It will not copy data back to the host
before destruction, however, as the application side has already deleted its copy.

Note that since there is an implicit conversion of a std::unique_ptr to a std::shared_ptr, a
std::unique_ptr can also be used to pass the ownership to the SYCL runtime.

4. A buffer can be constructed from a pair of iterator values. In this case, the buffer construction will
copy the data from the data range defined by the iterator pair. The destructor will not copy back any
data and does not need to block.

SYCL 2020 rev 9 4.7.2.3. Buffer destruction rules

Chapter 4. SYCL programming interface | 131

5. A buffer can be constructed from a container on which std::data(container) and std::size(con
tainer) are well-formed. The initial contents of the buffer will be the contents of the container at the
time of construction.

The buffer may use the memory within the container for its full lifetime, and the contents of this
memory are unspecified for the lifetime of the buffer. If the container memory is modified by the
host during the lifetime of this buffer, then the results are undefined.

When the buffer is destroyed, the destructor will block until all work in queues on the buffer have
completed. If the return type of std::data(container) is not const then the destructor will also copy
the contents of the buffer to the container (if required).

If set_final_data() is used to change where to write the data back to, then the destructor of the buffer
will block if a write accessor on it has been created.

A sub-buffer object can be created which is a sub-range reference to a base buffer. This sub-buffer can
be used to create accessors to the base buffer, which have access to the range specified at time of con
struction of the sub-buffer. Sub-buffers cannot be created from sub-buffers, but only from a base buffer
which is not already a sub-buffer.

Sub-buffers must be constructed from a contiguous region of memory in a buffer. This requirement is
potentially non-intuitive when working with buffers that have dimensionality larger than one, but maps
to one-dimensional SYCL backend native allocations without performance cost due to index mapping
computation. For example:

 1 buffer<int, 2> parent_buffer { range<2> {
 2 8, 8 } }; // Create 2-d buffer with 8x8 ints
 3
 4 // OK: Contiguous region from middle of buffer
 5 buffer<int, 2> sub_buf1 { parent_buffer, /*offset*/ range<2> { 2, 0 },
 6 /*size*/ range<2> { 2, 8 } };
 7
 8 // invalid exception: Non-contiguous regions of 2-d buffer
 9 buffer<int, 2> sub_buf2 { parent_buffer, /*offset*/ range<2> { 2, 0 },
10 /*size*/ range<2> { 2, 2 } };
11 buffer<int, 2> sub_buf3 { parent_buffer, /*offset*/ range<2> { 2, 2 },
12 /*size*/ range<2> { 2, 6 } };
13
14 // invalid exception: Out-of-bounds size
15 buffer<int, 2> sub_buf4 { parent_buffer, /*offset*/ range<2> { 2, 2 },
16 /*size*/ range<2> { 2, 8 } };

4.7.3. Images

The classes unsampled_image (Table 44) and sampled_image (Table 46) define shared image data of one, two
or three dimensions, that can be used by kernels in queues and have to be accessed using the image
accessor classes.

The constructors and member functions of the SYCL unsampled_image and sampled_image class templates
are listed in Table 44, Table 45, Table 46 and Table 47, respectively. The additional common special mem
ber functions and common member functions are listed in Table 7 and Table 8, respectively.

Where relevant, it is the responsibility of the user to ensure that the format of the data matches the for
mat described by image_format.

The allocator template parameter of the SYCL unsampled_image and sampled_image classes can be any allo

4.7.3. Images SYCL 2020 rev 9

132 | Chapter 4. SYCL programming interface

cator type including a custom allocator, however it must allocate in units of std::byte.

For any image that is constructed with the range with an element type size in bytes of s, the
image row pitch and image slice pitch should be calculated as follows:

The SYCL unsampled_image and sampled_image class templates provide the common reference semantics
(see Section 4.5.2).

4.7.3.1. Unsampled image interface

Each constructor of the unsampled_image takes an image_format to describe the data layout of the image
data.

Each constructor additionally takes as the last parameter an optional SYCL property_list to provide
properties to the SYCL unsampled_image.

The SYCL unsampled_image class template takes a template parameter AllocatorT for specifying an alloca
tor which is used by the SYCL runtime when allocating temporary memory on the host. If no template
argument is provided, the default allocator for the SYCL unsampled_image class image_allocator is used
(see Section 4.7.1.1).

 1 namespace sycl {
 2
 3 enum class image_format : /* unspecified */ {
 4 r8g8b8a8_unorm,
 5 r16g16b16a16_unorm,
 6 r8g8b8a8_sint,
 7 r16g16b16a16_sint,
 8 r32b32g32a32_sint,
 9 r8g8b8a8_uint,
 10 r16g16b16a16_uint,
 11 r32b32g32a32_uint,
 12 r16b16g16a16_sfloat,
 13 r32g32b32a32_sfloat,
 14 b8g8r8a8_unorm
 15 };
 16
 17 template <int Dimensions = 1, typename AllocatorT = sycl::image_allocator>
 18 class unsampled_image {
 19 public:
 20 unsampled_image(image_format format, const range<Dimensions>& rangeRef,
 21 const property_list& propList = {});
 22
 23 unsampled_image(image_format format, const range<Dimensions>& rangeRef,
 24 AllocatorT allocator, const property_list& propList = {});
 25
 26 /* Available only when: Dimensions > 1 */
 27 unsampled_image(image_format format, const range<Dimensions>& rangeRef,
 28 const range<Dimensions - 1>& pitch,
 29 const property_list& propList = {});
 30
 31 /* Available only when: Dimensions > 1 */
 32 unsampled_image(image_format format, const range<Dimensions>& rangeRef,
 33 const range<Dimensions - 1>& pitch, AllocatorT allocator,

SYCL 2020 rev 9 4.7.3.1. Unsampled image interface

Chapter 4. SYCL programming interface | 133

 34 const property_list& propList = {});
 35
 36 unsampled_image(void* hostPointer, image_format format,
 37 const range<Dimensions>& rangeRef,
 38 const property_list& propList = {});
 39
 40 unsampled_image(void* hostPointer, image_format format,
 41 const range<Dimensions>& rangeRef, AllocatorT allocator,
 42 const property_list& propList = {});
 43
 44 /* Available only when: Dimensions > 1 */
 45 unsampled_image(void* hostPointer, image_format format,
 46 const range<Dimensions>& rangeRef,
 47 const range<Dimensions - 1>& pitch,
 48 const property_list& propList = {});
 49
 50 /* Available only when: Dimensions > 1 */
 51 unsampled_image(void* hostPointer, image_format format,
 52 const range<Dimensions>& rangeRef,
 53 const range<Dimensions - 1>& pitch, AllocatorT allocator,
 54 const property_list& propList = {});
 55
 56 unsampled_image(std::shared_ptr<void>& hostPointer, image_format format,
 57 const range<Dimensions>& rangeRef,
 58 const property_list& propList = {});
 59
 60 unsampled_image(std::shared_ptr<void>& hostPointer, image_format format,
 61 const range<Dimensions>& rangeRef, AllocatorT allocator,
 62 const property_list& propList = {});
 63
 64 /* Available only when: Dimensions > 1 */
 65 unsampled_image(std::shared_ptr<void>& hostPointer, image_format format,
 66 const range<Dimensions>& rangeRef,
 67 const range<Dimensions - 1>& pitch,
 68 const property_list& propList = {});
 69
 70 /* Available only when: Dimensions > 1 */
 71 unsampled_image(std::shared_ptr<void>& hostPointer, image_format format,
 72 const range<Dimensions>& rangeRef,
 73 const range<Dimensions - 1>& pitch, AllocatorT allocator,
 74 const property_list& propList = {});
 75
 76 /* -- common interface members -- */
 77
 78 /* -- property interface members -- */
 79
 80 range<Dimensions> get_range() const;
 81
 82 /* Available only when: Dimensions > 1 */
 83 range<Dimensions - 1> get_pitch() const;
 84
 85 size_t byte_size() const noexcept;
 86
 87 size_t size() const noexcept;
 88
 89 AllocatorT get_allocator() const;

4.7.3.1. Unsampled image interface SYCL 2020 rev 9

134 | Chapter 4. SYCL programming interface

 90
 91 template <typename DataT,
 92 access_mode Mode = (std::is_const_v<DataT>
 93 ? access_mode::read
 94 : access_mode::read_write),
 95 image_target Targ = image_target::device>
 96 unsampled_image_accessor<DataT, Dimensions, Mode, Targ>
 97 get_access(handler& commandGroupHandler, const property_list& propList = {});
 98
 99 template <typename DataT, access_mode Mode = (std::is_const_v<DataT>
100 ? access_mode::read
101 : access_mode::read_write)>
102 host_unsampled_image_accessor<DataT, Dimensions, Mode>
103 get_host_access(const property_list& propList = {});
104
105 template <typename Destination = std::nullptr_t>
106 void set_final_data(Destination finalData = nullptr);
107
108 void set_write_back(bool flag = true);
109 };
110
111 } // namespace sycl

Table 44. Constructors of the unsampled_image class template

Constructor Description

unsampled_image(image_format format,
 const range<Dimensions>& rangeRef,
 const property_list& propList = {})

Construct a SYCL unsampled_image
instance with uninitialized mem
ory. The constructed SYCL unsam
pled_image will use a default con
structed AllocatorT when allocat
ing memory on the host. The ele
ment size of the constructed SYCL
unsampled_image will be derived
from the format parameter. The
range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the default
size determined by the SYCL run
time. Unless the member function
set_final_data() is called with a
valid non-null pointer, there will
be no write back on destruction.
Zero or more properties can be
provided to the constructed SYCL
unsampled_image via an instance of
property_list.

SYCL 2020 rev 9 4.7.3.1. Unsampled image interface

Chapter 4. SYCL programming interface | 135

Constructor Description

unsampled_image(image_format format,
 const range<Dimensions>& rangeRef,
 AllocatorT allocator,
 const property_list& propList = {})

Construct a SYCL unsampled_image
instance with uninitialized mem
ory. The constructed SYCL unsam
pled_image will use the allocator
parameter provided when allocat
ing memory on the host. The ele
ment size of the constructed SYCL
unsampled_image will be derived
from the format parameter. The
range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the default
size determined by the SYCL run
time. Unless the member function
set_final_data() is called with a
valid non-null pointer, there will
be no write back on destruction.
Zero or more properties can be
provided to the constructed SYCL
unsampled_image via an instance of
property_list.

unsampled_image(image_format format,
 const range<Dimensions>& rangeRef,
 const range<Dimensions - 1>& pitch,
 const property_list& propList = {})

Available only when: Dimensions >
1.

Construct a SYCL unsampled_image
instance with uninitialized mem
ory. The constructed SYCL unsam
pled_image will use a default con
structed AllocatorT when allocat
ing memory on the host. The ele
ment size of the constructed SYCL
unsampled_image will be derived
from the format parameter. The
range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the pitch
parameter provided. Unless the
member function set_final_data()
is called with a valid non-null
pointer, there will be no write back
on destruction. Zero or more prop
erties can be provided to the con
structed SYCL unsampled_image via
an instance of property_list.

4.7.3.1. Unsampled image interface SYCL 2020 rev 9

136 | Chapter 4. SYCL programming interface

Constructor Description

unsampled_image(image_format format,
 const range<Dimensions>& rangeRef,
 const range<Dimensions - 1>& pitch,
 AllocatorT allocator,
 const property_list& propList = {})

Available only when: Dimensions >
1.

Construct a SYCL unsampled_image
instance with uninitialized mem
ory. The constructed SYCL unsam
pled_image will use the allocator
parameter provided when allocat
ing memory on the host. The ele
ment size of the constructed SYCL
unsampled_image will be derived
from the format parameter. The
range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the pitch
parameter provided. Unless the
member function set_final_data()
is called with a valid non-null
pointer, there will be no write back
on destruction. Zero or more prop
erties can be provided to the con
structed SYCL unsampled_image via
an instance of property_list.

unsampled_image(void* hostPointer, image_format format,
 const range<Dimensions>& rangeRef,
 const property_list& propList = {})

Construct a SYCL unsampled_image
instance with the hostPointer para
meter provided. The unsampled_im
age assumes exclusive access to
this memory for the duration of its
lifetime. The constructed SYCL
unsampled_image will use a default
constructed AllocatorT when allo
cating memory on the host. The
element size of the constructed
SYCL unsampled_image will be
derived from the format parameter.
The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the default
size determined by the SYCL run
time. Unless the member function
set_final_data() is called with a
valid non-null pointer, any mem
ory allocated by the SYCL runtime
is written back to hostPointer. Zero
or more properties can be pro
vided to the constructed SYCL
unsampled_image via an instance of
property_list.

SYCL 2020 rev 9 4.7.3.1. Unsampled image interface

Chapter 4. SYCL programming interface | 137

Constructor Description

unsampled_image(void* hostPointer, image_format format,
 const range<Dimensions>& rangeRef,
 AllocatorT allocator,
 const property_list& propList = {})

Construct a SYCL unsampled_image
instance with the hostPointer para
meter provided. The unsampled_im
age assumes exclusive access to
this memory for the duration of its
lifetime. The constructed SYCL
unsampled_image will use the allo
cator parameter provided when
allocating memory on the host. The
element size of the constructed
SYCL unsampled_image will be
derived from the format parameter.
The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the default
size determined by the SYCL run
time. Unless the member function
set_final_data() is called with a
valid non-null pointer, any mem
ory allocated by the SYCL runtime
is written back to hostPointer. Zero
or more properties can be pro
vided to the constructed SYCL
unsampled_image via an instance of
property_list.

4.7.3.1. Unsampled image interface SYCL 2020 rev 9

138 | Chapter 4. SYCL programming interface

Constructor Description

unsampled_image(void* hostPointer, image_format format,
 const range<Dimensions>& rangeRef,
 const range<Dimensions - 1>& pitch,
 const property_list& propList = {})

Available only when: Dimensions >
1

Construct a SYCL unsampled_image
instance with the hostPointer para
meter provided. The unsampled_im
age assumes exclusive access to
this memory for the duration of its
lifetime. The constructed SYCL
unsampled_image will use a default
constructed AllocatorT when allo
cating memory on the host. The
element size of the constructed
SYCL unsampled_image will be
derived from the format parameter.
The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the pitch
parameter provided. Unless the
member function set_final_data()
is called with a valid non-null
pointer, any memory allocated by
the SYCL runtime is written back to
hostPointer. Zero or more proper
ties can be provided to the con
structed SYCL unsampled_image via
an instance of property_list.

SYCL 2020 rev 9 4.7.3.1. Unsampled image interface

Chapter 4. SYCL programming interface | 139

Constructor Description

unsampled_image(void* hostPointer, image_format format,
 const range<Dimensions>& rangeRef,
 const range<Dimensions - 1>& pitch,
 AllocatorT allocator,
 const property_list& propList = {})

Available only when: Dimensions >
1.

Construct a SYCL unsampled_image
instance with the hostPointer para
meter provided. The unsampled_im
age assumes exclusive access to
this memory for the duration of its
lifetime. The constructed SYCL
unsampled_image will use the allo
cator parameter provided when
allocating memory on the host. The
element size of the constructed
SYCL unsampled_image will be
derived from the format parameter.
The range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the pitch
parameter provided. Unless the
member function set_final_data()
is called with a valid non-null
pointer, any memory allocated by
the SYCL runtime is written back to
hostPointer. Zero or more proper
ties can be provided to the con
structed SYCL unsampled_image via
an instance of property_list.

4.7.3.1. Unsampled image interface SYCL 2020 rev 9

140 | Chapter 4. SYCL programming interface

Constructor Description

unsampled_image(std::shared_ptr<void>& hostPointer,
 image_format format,
 const range<Dimensions>& rangeRef,
 const property_list& propList = {})

When hostPointer is not empty,
construct a SYCL unsampled_image
with the contents of its stored
pointer. The unsampled_image
assumes exclusive access to this
memory for the duration of its life
time. The unsampled_image also cre
ates its own internal copy of the
shared_ptr that shares ownership
of the hostData memory, which
means the application can safely
release ownership of this
shared_ptr when the constructor
returns.

When hostPointer is empty, con
struct a SYCL unsampled_image with
uninitialized memory.

The constructed SYCL unsam
pled_image will use a default con
structed AllocatorT when allocat
ing memory on the host. The ele
ment size of the constructed SYCL
unsampled_image will be derived
from the format parameter. The
range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the default
size determined by the SYCL run
time. Unless the member function
set_final_data() is called with a
valid non-null pointer, any mem
ory allocated by the SYCL runtime
is written back to hostPointer. Zero
or more properties can be pro
vided to the constructed SYCL
unsampled_image via an instance of
property_list.

SYCL 2020 rev 9 4.7.3.1. Unsampled image interface

Chapter 4. SYCL programming interface | 141

Constructor Description

unsampled_image(std::shared_ptr<void>& hostPointer,
 image_format format,
 const range<Dimensions>& rangeRef,
 AllocatorT allocator,
 const property_list& propList = {})

When hostPointer is not empty,
construct a SYCL unsampled_image
with the contents of its stored
pointer. The unsampled_image
assumes exclusive access to this
memory for the duration of its life
time. The unsampled_image also cre
ates its own internal copy of the
shared_ptr that shares ownership
of the hostData memory, which
means the application can safely
release ownership of this
shared_ptr when the constructor
returns.

When hostPointer is empty, con
struct a SYCL unsampled_image with
uninitialized memory.

The constructed SYCL unsam
pled_image will use the allocator
parameter provided when allocat
ing memory on the host. The ele
ment size of the constructed SYCL
unsampled_image will be derived
from the format parameter. The
range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the default
size determined by the SYCL run
time. Unless the member function
set_final_data() is called with a
valid non-null pointer, any mem
ory allocated by the SYCL runtime
is written back to hostPointer. Zero
or more properties can be pro
vided to the constructed SYCL
unsampled_image via an instance of
property_list.

4.7.3.1. Unsampled image interface SYCL 2020 rev 9

142 | Chapter 4. SYCL programming interface

Constructor Description

unsampled_image(std::shared_ptr<void>& hostPointer,
 image_format format,
 const range<Dimensions>& rangeRef,
 const range<Dimensions - 1>& pitch,
 const property_list& propList = {})

When hostPointer is not empty,
construct a SYCL unsampled_image
with the contents of its stored
pointer. The unsampled_image
assumes exclusive access to this
memory for the duration of its life
time. The unsampled_image also cre
ates its own internal copy of the
shared_ptr that shares ownership
of the hostData memory, which
means the application can safely
release ownership of this
shared_ptr when the constructor
returns.

When hostPointer is empty, con
struct a SYCL unsampled_image with
uninitialized memory.

The constructed SYCL unsam
pled_image will use a default con
structed AllocatorT when allocat
ing memory on the host. The ele
ment size of the constructed SYCL
unsampled_image will be derived
from the format parameter. The
range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the pitch
parameter provided. Unless the
member function set_final_data()
is called with a valid non-null
pointer, any memory allocated by
the SYCL runtime is written back to
hostPointer. Zero or more proper
ties can be provided to the con
structed SYCL unsampled_image via
an instance of property_list.

SYCL 2020 rev 9 4.7.3.1. Unsampled image interface

Chapter 4. SYCL programming interface | 143

Constructor Description

unsampled_image(std::shared_ptr<void>& hostPointer,
 image_format format,
 const range<Dimensions>& rangeRef,
 const range<Dimensions - 1>& pitch,
 AllocatorT allocator,
 const property_list& propList = {})

When hostPointer is not empty,
construct a SYCL unsampled_image
with the contents of its stored
pointer. The unsampled_image
assumes exclusive access to this
memory for the duration of its life
time. The unsampled_image also cre
ates its own internal copy of the
shared_ptr that shares ownership
of the hostData memory, which
means the application can safely
release ownership of this
shared_ptr when the constructor
returns.

When hostPointer is empty, con
struct a SYCL unsampled_image with
uninitialized memory.

The constructed SYCL unsam
pled_image will use the allocator
parameter provided when allocat
ing memory on the host. The ele
ment size of the constructed SYCL
unsampled_image will be derived
from the format parameter. The
range of the constructed SYCL
unsampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL
unsampled_image will be the pitch
parameter provided. Unless the
member function set_final_data()
is called with a valid non-null
pointer, any memory allocated by
the SYCL runtime is written back to
hostPointer. Zero or more proper
ties can be provided to the con
structed SYCL unsampled_image via
an instance of property_list.

Table 45. Member functions of the unsampled_image class template

Member function Description

range<Dimensions> get_range() const
Return a range object representing
the size of the image in terms of
the number of elements in each
dimension as passed to the con
structor.

range<Dimensions - 1> get_pitch() const
Available only when: Dimensions >
1.

Return a range object representing
the pitch of the image in bytes.

4.7.3.1. Unsampled image interface SYCL 2020 rev 9

144 | Chapter 4. SYCL programming interface

Member function Description

size_t size() const noexcept
Returns the total number of ele
ments in the image. Equal to
get_range()[0] * ... *
get_range()[Dimensions-1].

size_t byte_size() const noexcept
Returns the size of the image stor
age in bytes. The number of bytes
may be greater than size()*ele
ment size due to padding of ele
ments, rows and slices of the image
for efficient access.

AllocatorT get_allocator() const
Returns the allocator provided to
the image.

template <typename DataT,
 access_mode Mode = (std::is_const_v<DataT>
 ? access_mode::read
 : access_mode::
read_write),
 image_target Targ = image_target::device>
unsampled_image_accessor<DataT, Dimensions, Mode, Targ>
get_access(handler& commandGroupHandler)

Returns a valid unsampled_im
age_accessor to the unsampled
image with the specified data type,
access mode and target in the com
mand group.

template <typename DataT, access_mode Mode = (std
::is_const_v<DataT>
 ?
access_mode::read
 :
access_mode::read_write)>
host_unsampled_image_accessor<DataT, Dimensions, Mode>
get_host_access();

Returns a valid host_unsampled_im
age_accessor to the unsampled
image with the specified data type
and access mode.

template <typename Destination = std::nullptr_t>
void set_final_data(Destination finalData = nullptr)

The finalData point to where the
output of all the image processing
is going to be copied to at destruc
tion time, if the image was
involved with a write accessor.

Destination can be either an output
iterator, or a std::weak_ptr<T>.

Note that a raw pointer is a special
case of output iterator and thus
defines the host memory to which
the result is to be copied.

In the case of a weak pointer, the
output is not copied if the weak
pointer has expired.

If Destination is std::nullptr_t,
then the copy back will not hap
pen.

SYCL 2020 rev 9 4.7.3.1. Unsampled image interface

Chapter 4. SYCL programming interface | 145

Member function Description

void set_write_back(bool flag = true)
This member function allows
dynamically forcing or canceling
the write-back of the data of an
image on destruction according to
the value of flag.

Forcing the write-back is similar to
what happens during a normal
write-back as described in Section
4.7.3.4 and Section 4.7.4.

If there is nowhere to write-back,
using this function does not have
any effect.

4.7.3.2. Sampled image interface

Each constructor of the sampled_image class requires a pointer to the host data the image will sample, an
image_format to describe the data layout and an image_sampler (Section 4.7.8) to describe how to sample
the image data.

Each constructor additionally takes as the last parameter an optional SYCL property_list to provide
properties to the SYCL sampled_image.

 1 namespace sycl {
 2
 3 enum class image_format : /* unspecified */ {
 4 r8g8b8a8_unorm,
 5 r16g16b16a16_unorm,
 6 r8g8b8a8_sint,
 7 r16g16b16a16_sint,
 8 r32b32g32a32_sint,
 9 r8g8b8a8_uint,
10 r16g16b16a16_uint,
11 r32b32g32a32_uint,
12 r16b16g16a16_sfloat,
13 r32g32b32a32_sfloat,
14 b8g8r8a8_unorm
15 };
16
17 template <int Dimensions = 1, typename AllocatorT = sycl::image_allocator>
18 class sampled_image {
19 public:
20 sampled_image(const void* hostPointer, image_format format,
21 image_sampler sampler, const range<Dimensions>& rangeRef,
22 const property_list& propList = {});
23
24 /* Available only when: Dimensions > 1 */
25 sampled_image(const void* hostPointer, image_format format,
26 image_sampler sampler, const range<Dimensions>& rangeRef,
27 const range<Dimensions - 1>& pitch,
28 const property_list& propList = {});
29
30 sampled_image(std::shared_ptr<const void>& hostPointer, image_format format,
31 image_sampler sampler, const range<Dimensions>& rangeRef,

4.7.3.2. Sampled image interface SYCL 2020 rev 9

146 | Chapter 4. SYCL programming interface

32 const property_list& propList = {});
33
34 /* Available only when: Dimensions > 1 */
35 sampled_image(std::shared_ptr<const void>& hostPointer, image_format format,
36 image_sampler sampler, const range<Dimensions>& rangeRef,
37 const range<Dimensions - 1>& pitch,
38 const property_list& propList = {});
39
40 /* -- common interface members -- */
41
42 /* -- property interface members -- */
43
44 range<Dimensions> get_range() const;
45
46 /* Available only when: Dimensions > 1 */
47 range<Dimensions - 1> get_pitch() const;
48
49 size_t byte_size() const noexcept;
50
51 size_t size() const noexcept;
52
53 template <typename DataT, image_target Targ = image_target::device>
54 sampled_image_accessor<DataT, Dimensions, Targ>
55 get_access(handler& commandGroupHandler, const property_list& propList = {});
56
57 template <typename DataT>
58 host_sampled_image_accessor<DataT, Dimensions>
59 get_host_access(const property_list& propList = {});
60 };
61
62 } // namespace sycl

Table 46. Constructors of the sampled_image class template

SYCL 2020 rev 9 4.7.3.2. Sampled image interface

Chapter 4. SYCL programming interface | 147

Constructor Description

sampled_image(const void* hostPointer, image_format format,
 image_sampler sampler,
 const range<Dimensions>& rangeRef,
 const property_list& propList = {})

Construct a SYCL sampled_image
instance with the hostPointer para
meter provided. The sampled_image
assumes exclusive access to this
memory for the duration of its life
time. The host address is const, so
the host accesses must be read-
only. Since, the hostPointer is
const, this image is only initialized
with this memory and there is no
write after its destruction. The ele
ment size of the constructed SYCL
sampled_image will be derived from
the format parameter. Accessors
that read the constructed SYCL
sampled_image will use the sampler
parameter to sample the image.
The range of the constructed SYCL
sampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL sam
pled_image will be the default size
determined by the SYCL runtime.
Zero or more properties can be
provided to the constructed SYCL
sampled_image via an instance of
property_list.

4.7.3.2. Sampled image interface SYCL 2020 rev 9

148 | Chapter 4. SYCL programming interface

Constructor Description

sampled_image(const void* hostPointer, image_format format,
 image_sampler sampler,
 const range<Dimensions>& rangeRef,
 const range<Dimensions - 1>& pitch,
 const property_list& propList = {})

Available only when: Dimensions >
1.

Construct a SYCL sampled_image
instance with the hostPointer para
meter provided. The sampled_image
assumes exclusive access to this
memory for the duration of its life
time. The host address is const, so
the host accesses must be read-
only. Since, the hostPointer is
const, this image is only initialized
with this memory and there is no
write after destruction. The ele
ment size of the constructed SYCL
sampled_image will be derived from
the format parameter. Accessors
that read the constructed SYCL
sampled_image will use the sampler
parameter to sample the image.
The range of the constructed SYCL
sampled_image is specified by the
rangeRef parameter provided. The
pitch of the constructed SYCL sam
pled_image will be the pitch para
meter provided. Zero or more
properties can be provided to the
constructed SYCL sampled_image via
an instance of property_list.

SYCL 2020 rev 9 4.7.3.2. Sampled image interface

Chapter 4. SYCL programming interface | 149

Constructor Description

sampled_image(std::shared_ptr<const void>& hostPointer,
 image_format format,
 image_sampler sampler,
 const range<Dimensions>& rangeRef,
 const property_list& propList = {})

When hostPointer is not empty,
construct a SYCL sampled_image
with the contents of its stored
pointer. The sampled_image assumes
exclusive access to this memory for
the duration of its lifetime. The
sampled_image also creates its own
internal copy of the shared_ptr that
shares ownership of the hostData
memory, which means the applica
tion can safely release ownership
of this shared_ptr when the con
structor returns.

When hostPointer is empty, con
struct a SYCL sampled_image with
uninitialized memory.

The host address is const, so the
host accesses must be read-only.
Since, the hostPointer is const, this
image is only initialized with this
memory and there is no write after
its destruction. The element size of
the constructed SYCL sampled_image
will be derived from the format
parameter. Accessors that read the
constructed SYCL sampled_image
will use the sampler parameter to
sample the image. The range of the
constructed SYCL sampled_image is
specified by the rangeRef parame
ter provided. The pitch of the con
structed SYCL sampled_image will be
the default size determined by the
SYCL runtime. Zero or more prop
erties can be provided to the con
structed SYCL sampled_image via an
instance of property_list.

4.7.3.2. Sampled image interface SYCL 2020 rev 9

150 | Chapter 4. SYCL programming interface

Constructor Description

sampled_image(std::shared_ptr<const void>& hostPointer,
 image_format format,
 image_sampler sampler,
 const range<Dimensions>& rangeRef,
 const range<Dimensions - 1>& pitch,
 const property_list& propList = {})

When hostPointer is not empty,
construct a SYCL sampled_image
with the contents of its stored
pointer. The sampled_image assumes
exclusive access to this memory for
the duration of its lifetime. The
sampled_image also creates its own
internal copy of the shared_ptr that
shares ownership of the hostData
memory, which means the applica
tion can safely release ownership
of this shared_ptr when the con
structor returns.

When hostPointer is empty, con
struct a SYCL sampled_image with
uninitialized memory.

The host address is const, so the
host accesses can be read-only.
Since, the hostPointer is const, this
image is only initialized with this
memory and there is no write after
its destruction. The element size of
the constructed SYCL sampled_image
will be derived from the format
parameter. Accessors that read the
constructed SYCL sampled_image
will use the sampler parameter to
sample the image. The range of the
constructed SYCL sampled_image is
specified by the rangeRef parame
ter provided. The pitch of the con
structed SYCL sampled_image will be
the pitch parameter provided. Zero
or more properties can be pro
vided to the constructed SYCL sam
pled_image via an instance of prop
erty_list.

Table 47. Member functions of the sampled_image class template

Member function Description

range<Dimensions> get_range() const
Return a range object representing
the size of the image in terms of
the number of elements in each
dimension as passed to the con
structor.

range<Dimensions - 1> get_pitch() const
Available only when: Dimensions >
1.

Return a range object representing
the pitch of the image in bytes.

SYCL 2020 rev 9 4.7.3.2. Sampled image interface

Chapter 4. SYCL programming interface | 151

Member function Description

size_t size() const noexcept
Returns the total number of ele
ments in the image. Equal to
get_range()[0] * ... *
get_range()[Dimensions-1].

size_t byte_size() const noexcept
Returns the size of the image stor
age in bytes. The number of bytes
may be greater than size()*ele
ment size due to padding of ele
ments, rows and slices of the image
for efficient access.

template <typename DataT, image_target Targ =
image_target::device>
sampled_image_accessor<DataT, Dimensions, Targ>
get_access(handler& commandGroupHandler)

Returns a valid sampled_image_ac
cessor to the sampled image with
the specified data type and target
in the command group.

template <typename DataT>
host_sampled_image_accessor<DataT, Dimensions>
get_host_access()

Returns a valid host_sampled_im
age_accessor to the sampled image
with the specified data type in the
command group.

4.7.3.3. Image properties

The properties that can be provided when constructing the SYCL unsampled_image and sampled_image
classes are describe in Table 48.

 1 namespace sycl {
 2 namespace property {
 3 namespace image {
 4 class use_host_ptr {
 5 public:
 6 use_host_ptr() = default;
 7 };
 8
 9 class use_mutex {
10 public:
11 use_mutex(std::mutex& mutexRef);
12
13 std::mutex* get_mutex_ptr() const;
14 };
15
16 class context_bound {
17 public:
18 context_bound(context boundContext);
19
20 context get_context() const;
21 };
22 } // namespace image
23 } // namespace property
24 } // namespace sycl

Table 48. Properties supported by the SYCL image classes

4.7.3.3. Image properties SYCL 2020 rev 9

152 | Chapter 4. SYCL programming interface

Property Description

property::image::use_host_ptr
The use_host_ptr property adds the
requirement that the SYCL runtime
must not allocate any memory for
the image and instead uses the pro
vided host pointer directly. This
prevents the SYCL runtime from
allocating additional temporary
storage on the host.

property::image::use_mutex
The property adds the requirement
that the memory which is owned
by the SYCL image can be shared
with the application via a
std::mutex provided to the prop
erty. The std::mutex is locked by
the runtime whenever the data is
in use and unlocked otherwise. The
contents of hostData are guaran
teed to reflect the contents of the
image when the std::mutex is
unlocked by the runtime.

property::image::context_bound
The context_bound property adds
the requirement that the SYCL
image can only be associated with a
single SYCL context that is pro
vided to the property.

The constructors and member functions of the image property classes are listed in Table 49 and Table 50

Table 49. Constructors of the image property classes

Constructor Description

property::image::use_host_ptr::use_host_ptr()
Constructs a SYCL use_host_ptr
property instance.

property::image::use_mutex::use_mutex(std::mutex& mutexRef)
Constructs a SYCL use_mutex prop
erty instance with a reference to
mutexRef parameter provided.

property::image::context_bound::context_bound(context
boundContext)

Constructs a SYCL context_bound
property instance with a copy of a
SYCL context.

Table 50. Member functions of the image property classes

Member function Description

std::mutex* property::image::use_mutex::get_mutex_ptr()
const

Returns the std::mutex which was
specified when constructing this
SYCL use_mutex property.

context property::image::context_bound::get_context() const
Returns the context which was
specified when constructing this
SYCL context_bound property.

SYCL 2020 rev 9 4.7.3.3. Image properties

Chapter 4. SYCL programming interface | 153

4.7.3.4. Image destruction rules

The rules are similar to those described in Section 4.7.2.3.

For the lifetime of the image object, the associated host memory must be left available to the SYCL run
time and the contents of the associated host memory is unspecified until the image object is destroyed. If
an image object value is copied, then only a reference to the underlying image object is copied. The
underlying image object is reference-counted. Only after all image value references to the underlying
image object have been destroyed is the actual image object itself destroyed.

If an image object is constructed with associated host memory, then its destructor blocks until all opera
tions in all SYCL queues on that image object have completed. Any modifications to the image data will
be copied back, if necessary, to the associated host memory. Any errors occurring during destruction are
reported to any associated context’s asynchronous error handler. If an image object is constructed with
a storage object, then the storage object defines what blocking or copying behavior occurs on image
object destruction.

4.7.4. Sharing host memory with the SYCL data management classes

In order to allow the SYCL runtime to do memory management and allow for data dependencies, there
are two classes defined, buffer and image. The default behavior for them is that a “raw” pointer is given
during the construction of the data management class, with full ownership to use it until the destruction
of the SYCL object.

In this section we go in greater detail on sharing or explicitly not sharing host memory with the SYCL
data classes, and we will use the buffer class as an example. The same rules will apply to images as well.

4.7.4.1. Default behavior

When using a SYCL buffer, the ownership of the pointer passed to the constructor of the class is, by
default, passed to SYCL runtime, and that pointer cannot be used on the host side until the buffer or
image is destroyed. A SYCL application can access the contents of the memory managed by a SYCL buffer
by using a host_accessor as defined in Section 4.7.6. However, there is no guarantee that the host acces
sor will copy data back to the original host address used in its constructor.

The pointer passed in is the one used to copy data back to the host, if needed, before buffer destruction.
The memory pointed by host pointer will not be de-allocated by the runtime, and the data is copied back
from the device if there is a need for it.

4.7.4.2. SYCL ownership of the host memory

In the case where there is host memory to be used for initialization of data but there is no intention of
using that host memory after the buffer is destroyed, then the buffer can take full ownership of that host
memory.

When a buffer owns the host pointer there is no copy back, by default. In this situation, the SYCL applica
tion may pass a unique pointer to the host data, which will be then used by the runtime internally to ini
tialize the data in the device.

For example, the following could be used:

1 {
2 auto ptr = std::make_unique<int>(-1234);
3 buffer<int, 1> b { std::move(ptr), range { 1 } };
4 // ptr is not valid anymore.
5 // There is nowhere to copy data back
6 }

4.7.3.4. Image destruction rules SYCL 2020 rev 9

154 | Chapter 4. SYCL programming interface

However, optionally the buffer::set_final_data() can be set to a std::weak_ptr to enable copying data
back, to another host memory address that will be valid when the buffer is destroyed.

1 {
2 auto ptr = std::make_unique<int>(-42);
3 buffer<int, 1> b { std::move(ptr), range { 1 } };
4 // ptr is not valid anymore.
5 // There is nowhere to copy data back.
6 // To get copy back, a location can be specified:
7 b.set_final_data(std::weak_ptr<int> { })
8 }

4.7.4.3. Shared SYCL ownership of the host memory

When an instance of std::shared_ptr is passed to the buffer constructor, then the buffer object and the
developer’s application share the memory region. If the shared pointer is still used on the application’s
side then the data will be copied back from the buffer or image and will be available to the application
after the buffer or image is destroyed.

If the shared_ptr is not empty, the contents of the referenced memory are used to initialize the buffer. If
the shared_ptr is empty, then the buffer is created with uninitialized memory.

When the buffer is destroyed and the data have potentially been updated, if the number of copies of the
shared pointer outside the runtime is 0, there is no user-side shared pointer to read the data. Therefore
the data is not copied out, and the buffer destructor does not need to wait for the data processes to be
finished, as the outcome is not needed on the application’s side.

This behavior can be overridden using the set_final_data() member function of the buffer class, which
will by any means force the buffer destructor to wait until the data is copied to wherever the set_final_
data() member function has put the data (or not wait nor copy if set final data is nullptr).

1 {
2 std::shared_ptr<int> ptr { data };
3 {
4 buffer<int, 1> b { ptr, range<2>{ 10, 10 } };
5 // update the data
6 [...]
7 } // Data is copied back because there is an user side shared_ptr
8 }

1 {
2 std::shared_ptr<int> ptr { data };
3 {
4 buffer<int, 1> b { ptr, range<2>{ 10, 10 } };
5 // update the data
6 [...]
7 ptr.reset();
8 } // Data is not copied back, there is no user side shared_ptr.
9 }

4.7.5. Synchronization primitives

To prevent race conditions between accesses to the host memory owned by a buffer in the SYCL runtime

SYCL 2020 rev 9 4.7.4.3. Shared SYCL ownership of the host memory

Chapter 4. SYCL programming interface | 155

(e.g., by accessors) and in host code, it is necessary to use manual synchronization through a host_acces
sor, or by passing a std::mutex to the buffer constructor through a property.

When a buffer was constructed with a std::mutex property, the SYCL runtime is required to lock the
mutex whenever the data is in use by the runtime, and unlock the mutex when the data is not in use by
the SYCL runtime.

 1 {
 2 std::mutex m;
 3 auto shD = std::make_shared<int>(42)
 4 sycl::buffer b { shD, { sycl::property::buffer::use_mutex { m } } };
 5 {
 6 std::lock_guard lck { m };
 7
 8 // User accesses the data
 9 do_something(shD);
10
11 /* m is unlocked when lck goes out of scope, either at normal ending of this
12 block or if an exception is thrown */
13 }
14 }

When the runtime releases the mutex, the user is guaranteed that the data has been copied back
through the shared pointer --- unless the final data destination has been changed using the member
function set_final_data().

4.7.6. Accessors

Accessors provide three different capabilities: they provide access to the data managed by a buffer or
image, they provide access to local memory on a device, and they define the requirements to memory
objects which determine the scheduling of kernels (see Section 3.8.1).

A memory object requirement is created when an accessor is constructed, unless the accessor is a place
holder in which case the requirement is created when the accessor is bound to a command by calling
handler::require().

There are several different C++ classes that implement accessors:

• The accessor class provides access to data in a buffer from within a command.

• The host_accessor class provides access to data in a buffer from host code that is outside of a com
mand. These accessors are typically used in application scope.

• The local_accessor class provides access to device local memory from within a SYCL kernel function.

• The unsampled_image_accessor and sampled_image_accessor classes provide access to data in an unsam
pled_image and sampled_image from within a command.

• The host_unsampled_image_accessor and host_sampled_image_accessor classes provide access to data in
an unsampled_image and sampled_image from host code that is outside of a command. These accessors
are typically used in application scope.

Accessor objects must always be constructed in host code, either in command group scope or in applica
tion scope. Whether the constructor blocks until data is available depends on the type of accessor. Those
accessors which provide access to data within a command do not block. Instead, these accessors define a
requirement which influences the scheduling of the command. Those accessors which provide access to
data from host code do block until the data is available on the host.

For those accessors which provide access to data within a command, the member functions which access

4.7.6. Accessors SYCL 2020 rev 9

156 | Chapter 4. SYCL programming interface

data should only be called from within the command. Programs which call these member functions
from outside of the command are ill formed. The sections below describe exactly which member func
tions fall into this category.

4.7.6.1. Data type

All accessors have a DataT template parameter which specifies the type of each element that the accessor
accesses. For accessor and host_accessor, this type must either match the type of each element in the
underlying buffer, or it must be a const qualified version of that type.

For the image accessors (unsampled_image_accessor, sampled_image_accessor, host_unsampled_image_acces
sor, and host_sampled_image_accessor), DataT must be one of:

• int4 (vec<int32_t,4>),

• uint4 (vec<uint32_t,4>),

• float4 (vec<float,4>), or

• half4 (vec<half,4>)

For local_accessor see Section 4.7.6.11 for the allowable DataT types.

4.7.6.2. Access modes

Most accessors have an AccessMode template parameter which specifies whether the accessor can read or
write the underlying data. This information is used by the runtime when defining the requirements for
the associated command, and it tells the runtime whether data needs to be transferred to or from a
device before data can be accessed through the accessor.

The access_mode enumeration, shown in Table 51, describes the potential modes of an accessor. How
ever, not all accessor classes support all modes, so see the description of each class for more details.

 1 namespace sycl {
 2
 3 enum class access_mode : /* unspecified */ {
 4 read,
 5 write,
 6 read_write,
 7 discard_write, // Deprecated in SYCL 2020
 8 discard_read_write, // Deprecated in SYCL 2020
 9 atomic // Deprecated in SYCL 2020
10 };
11
12 namespace access {
13 // The legacy type "access::mode" is deprecated.
14 using mode = sycl::access_mode;
15 } // namespace access
16
17 } // namespace sycl

Table 51. Enumeration of access modes available to accessors

access_mode Description

access_mode::read
Read-only access.

SYCL 2020 rev 9 4.7.6.1. Data type

Chapter 4. SYCL programming interface | 157

access_mode Description

access_mode::write
Write-only access.

access_mode::read_write
Read and write access.

4.7.6.3. Deduction tags

Some accessor constructors take a TagT parameter, which is used to deduce template arguments for the
constructor’s class. Each of the access modes in Table 51 has an associated tag, but there are additional
tags which set other template parameters in addition to the access mode. The synopsis below shows the
namespace scope variables that the implementation provides as possible values for the TagT parameter.

 1 namespace sycl {
 2
 3 inline constexpr __unspecified__ read_only;
 4 inline constexpr __unspecified__ read_write;
 5 inline constexpr __unspecified__ write_only;
 6 inline constexpr __unspecified__ read_only_host_task;
 7 inline constexpr __unspecified__ read_write_host_task;
 8 inline constexpr __unspecified__ write_only_host_task;
 9
10 } // namespace sycl

The precise meaning of these tags depends on the specific accessor class that is being constructed, so
they are described more fully below in the section that pertains to each of the accessor types.

4.7.6.4. Properties

All accessor constructors accept a property_list parameter, which affects the semantics of the accessor.
Table 52 shows the set of all possible accessor properties and tells which properties are allowed when
constructing each accessor class.

1 namespace sycl {
2 namespace property {
3 struct no_init {};
4 } // namespace property
5
6 inline constexpr property::no_init no_init;
7 } // namespace sycl

Table 52. Properties supported by accessors

4.7.6.3. Deduction tags SYCL 2020 rev 9

158 | Chapter 4. SYCL programming interface

Property Allowed with Description

property::no_init accessor
host_accessor
unsampled_image_accessor
host_unsampled_image_accessor

This property is useful when an application
expects to write new values to all of the acces
sor’s elements without reading their previous
values. The implementation can use this
information to avoid copying the accessor’s
data in some cases. Following is a more for
mal description.

This property is allowed only for accessors
with access_mode::write or access_
mode::read_write access modes. Attempting to
construct an access_mode::read accessor with
this property causes an exception with the
errc::invalid error code to be thrown.

The usage of this property is different
depending on whether the accessor’s under
lying data type DataT is an implicit-lifetime
type (as defined in the C++ core language). If
it is an implicit-lifetime type, the accessor
implicitly creates objects of that type with
indeterminate values. The application is not
required to write values to each element of
the accessor, but unwritten elements of the
accessor’s buffer or image receive indetermi
nate values, even if those buffer or image ele
ments previously had defined values. If this is
a ranged accessor, this applies only to the ele
ments within the accessor’s range. The values
of unwritten elements outside of this range
are preserved.

If DataT is not an implicit-lifetime type, the
accessor merely allocates uninitialized mem
ory, and the application is responsible for
constructing objects in that memory (e.g. by
calling placement-new). The application must
create an object in each element of the acces
sor unless the corresponding element of the
underlying buffer did not previously contain
an object. If this is a ranged accessor, this
applies only to the elements within the acces
sor’s range. The content of objects in the
buffer outside of this range is preserved.

As stated above, the property::no_init property requires the application to construct an
object for each accessor element when the element’s type is not an implicit-lifetime type
(except in the case when the corresponding buffer element did not previously contain
an object). The reason for this requirement is to avoid the possibility of overwriting a
valid object with indeterminate bytes, for example, when a command using the accessor
completes. This means that the implementation can unconditionally copy memory from
the device back to the host when the command completes, regardless of whether the
DataT type is an implicit-lifetime type.

SYCL 2020 rev 9 4.7.6.4. Properties

Chapter 4. SYCL programming interface | 159

The constructors of the accessor property classes are listed in Table 53.

Table 53. Constructors of the accessor property classes

Constructor Description

property::no_init::no_init()
Constructs a no_init property
instance.

4.7.6.5. Read only accessors

Accessors which have an AccessMode template parameter can be declared as read-only by specifying
access_mode::read for the template parameter. A read-only accessor provides read-only access to the
underlying data and provides a "read" requirement for the memory object when it is constructed.

The DataT template parameter for a read-only accessor can optionally be const qualified, and the seman
tics of the accessor are unchanged. For example, an accessor declared with const DataT and access_
mode::read has the same semantics as an accessor declared with DataT and access_mode::read.

As detailed in the sections below, some accessor types have a default value for AccessMode, which
depends on whether the DataT parameter is const qualified. This provides a convenient way to declare a
read-only accessor without explicitly specifying the access mode.

A const qualified DataT is only allowed for a read-only accessor. Programs which specify a const qualified
DataT and any access mode other than access_mode::read are ill formed, and the implementation must
issue a diagnostic in this case.

Each accessor class also provides implicit conversions between the two forms of read-only accessors.
This makes it possible, for example, to assign an accessor whose type has const DataT and access_
mode::read to an accessor whose type has DataT and access_mode::read, so long as the other template
parameters are the same. There is also an implicit conversion from a read-write accessor to either of the
forms of a read-only accessor. These implicit conversions are described in detail for each accessor class
in the sections that follow.

4.7.6.6. Accessing elements of an accessor

Accessors of type accessor, host_accessor, and local_accessor can have zero, one, two, or three Dimen
sions. A zero dimension accessor provides access to a single scalar element via an implicit conversion
operator to the underlying type of that element and via an overloaded copy/move assignment operators
from the underlying type of the element.

One, two, or three dimensional specializations of these accessors provide access to the elements they
contain in two ways. The first way is through a subscript operator that takes an instance of an id class
which has the same dimensionality as the accessor. The second way is by passing a single size_t value to
multiple consecutive subscript operators as specified in Section 3.11.2.

In all these cases, the reference to the contained element is of type const DataT& for read-only accessors
and of type DataT& for other accessors.

Accessors of all types have a range that defines the set of indices that may be used to access elements.
For buffer accessors, this is the range of the underlying buffer, unless it is a ranged accessor in which
case the range comes from the accessor’s constructor. For image accessors, this is the range of the under
lying image. Local accessors specify the range when the accessor is constructed. Any attempt to access
an element via an index that is outside of this range produces undefined behavior.

4.7.6.7. Container interface

Accessors of type accessor, host_accessor, and local_accessor meet the C++ requirement of Reversible
Container. The exception to this is that only local_accessor owns the underlying data, meaning that its

4.7.6.5. Read only accessors SYCL 2020 rev 9

160 | Chapter 4. SYCL programming interface

destructor destroys elements and frees the memory. The accessor and host_accessor types don’t destroy
any elements or free the memory on destruction. The iterator for the container interface meets the C++
requirement of LegacyRandomAccessIterator and the underlying pointers/references correspond to the
address space specified by the accessor type. For multidimensional accessors the iterator linearizes the
data according to Section 3.11.1.

4.7.6.8. Ranged accessors

Accessors of type accessor and host_accessor can be constructed from a sub-range of a buffer by provid
ing a range and offset to the constructor. This limits the elements that can be accessed to the specified
sub-range, which allows the implementation to perform certain optimizations such as reducing the
amount of memory that needs to be copied to or from a device.

If the ranged accessor is multi-dimensional, the sub-range is allowed to describe a region of memory in
the underlying buffer that is not contiguous in the linear address space. It is also legal to construct sev
eral ranged accessors for the same underlying buffer, either overlapping or non-overlapping.

A ranged accessor still creates a requisite for the entire underlying buffer, even for the portions not
within the range. For example, if one command writes through a ranged accessor to one region of a
buffer and a second command reads through a ranged accessor from a non-overlapping region of the
same buffer, the second command must still be scheduled after the first because the requisites for the
two commands are on the entire buffer, not on the sub-ranges of the ranged accessors.

Most of the accessor member functions which provide a reference to the underlying buffer elements are
affected by a ranged accessor’s offset and range. For example, calling operator[](0) on a one-dimen
sional ranged accessor returns a reference to the element at the position specified by the accessor’s off
set, which is not necessarily the first element in the buffer. In addition, the accessor’s iterator functions
iterate only over the elements that are within the sub-range.

The only exceptions are the get_pointer and get_multi_ptr member functions, which return a pointer to
the beginning of the underlying buffer regardless of the accessor’s offset. Applications using these func
tions must take care to manually add the offset before dereferencing the pointer because accessing an
element that is outside of the accessor’s range results in undefined behavior.

There is no change in behavior for ranged accessors with a range of zero. It still creates a
requisite for the entire underlying buffer, and an attempt to access an element produces
undefined behavior.

4.7.6.9. Buffer accessor for commands

The accessor class provides access to data in a buffer in three different ways. It can be used to access the
buffer’s data from within a SYCL kernel function via the device’s global memory. It can also be used to
access the buffer’s data on host from within a host task. Finally, it can be used to get a native backend
handle to the buffer from within a host task. The AccessTarget template parameter helps distinguish
these three cases as shown in Table 54.

Table 54. Description of access targets for buffer accessors

Access target Meaning

target::device Access a buffer from a SYCL kernel function via device global memory. Also
used to get a native backend handle to the buffer from within a host task.

target::host_task Access a buffer’s data on host from within a host task.

When an accessor is used from within a SYCL kernel function, the access target must be target::device,
target::constant_buffer, or target::local; otherwise the behavior is undefined. See Section 4.7.6.9.4.5
and Section 4.7.6.9.4.7 for a description of the deprecated target::constant_buffer and target::local tar
gets.

SYCL 2020 rev 9 4.7.6.8. Ranged accessors

Chapter 4. SYCL programming interface | 161

When an accessor is used from within a host task, the use of the accessor must correspond to the access
target, otherwise the behavior is undefined. If the access target is target::host_task, the accessor may
only be used to access the buffer’s data on host, from within the host task function. If the access target is
target::device, the accessor may only be used to get a native backend handle for the buffer as described
in Section 4.10.2.

The dimensionality of the accessor must match the underlying buffer, however, there is a special case if
the buffer is one-dimensional. In this case, the accessor may either be one-dimensional or it may be
zero-dimensional. A zero-dimensional accessor has access to just the first element of the buffer, whereas
a one-dimensional accessor has access to the entire buffer.

Certain accessor constructors create a "placeholder" accessor. Such an accessor is bound to a buffer and
its semantics such as access target and access mode are defined. However, a placeholder accessor is not
yet bound to a command group. Before such an accessor can be used in a command, it must be bound by
calling handler::require(). Passing a placeholder accessor as an argument to a command without first
being bound to a command group with handler::require() will result in undefined behavior.

Implementations are encouraged to throw either a synchronous or an asynchronous
exception when a placeholder accessor, that has not been bound to the corresponding
command group with handler::require(), is either passed as an argument to or is used
inside a command.

4.7.6.9.1. Interface for buffer command accessors

A synopsis of the accessor class is provided below, showing the interface when it is specialized with tar
get::device or target::host_task. Since some of the class types and member functions have the same
name and meaning as other accessors, the common types and functions are described in Section 4.7.6.12.
The member types are listed in Table 79 and Table 55. The constructors are listed in Table 56, and the
member functions are listed in Table 80 and Table 57.

The additional common special member functions and common member functions are listed in Section
4.5.2 in Table 7 and Table 8, respectively. For valid implicit conversions between accessor types refer to
Section 4.7.6.9.3. Additionally, accessors of the same type must be equality comparable both in the host
application and also in SYCL kernel functions.

 1 namespace sycl {
 2
 3 enum class target : /* unspecified */ {
 4 device,
 5 host_task,
 6 constant_buffer, // Deprecated
 7 local, // Deprecated
 8 host_buffer, // Deprecated
 9 global_buffer = device // Deprecated
 10 };
 11
 12 namespace access {
 13 // The legacy type "access::target" is deprecated.
 14 using sycl::target;
 15
 16 enum class placeholder : /* unspecified */ { // Deprecated
 17 false_t,
 18 true_t
 19 };
 20
 21 } // namespace access

4.7.6.9.1. Interface for buffer command accessors SYCL 2020 rev 9

162 | Chapter 4. SYCL programming interface

 22
 23 template <typename DataT, int Dimensions = 1,
 24 access_mode AccessMode =
 25 (std::is_const_v<DataT> ? access_mode::read
 26 : access_mode::read_write),
 27 target AccessTarget = target::device,
 28 access::placeholder isPlaceholder = access::placeholder::false_t>
 29 class accessor {
 30 public:
 31 using value_type = // const DataT for read-only accessors, DataT otherwise
 32 __value_type__;
 33 using reference = value_type&;
 34 using const_reference = const DataT&;
 35 template <access::decorated IsDecorated>
 36 using accessor_ptr = // multi_ptr to value_type with target address space,
 37 __pointer_class__; // unspecified for access_mode::host_task
 38 using iterator = __unspecified_iterator__<value_type>;
 39 using const_iterator = __unspecified_iterator__<const value_type>;
 40 using reverse_iterator = std::reverse_iterator<iterator>;
 41 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 42 using difference_type =
 43 typename std::iterator_traits<iterator>::difference_type;
 44 using size_type = size_t;
 45
 46 accessor();
 47
 48 /* Available only when: (Dimensions == 0) */
 49 template <typename AllocatorT>
 50 accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
 51 const property_list& propList = {});
 52
 53 /* Available only when: (Dimensions == 0) */
 54 template <typename AllocatorT>
 55 accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
 56 handler& commandGroupHandlerRef, const property_list& propList = {});
 57
 58 /* Available only when: (Dimensions > 0) */
 59 template <typename AllocatorT>
 60 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 61 const property_list& propList = {});
 62
 63 /* Available only when: (Dimensions > 0) */
 64 template <typename AllocatorT, typename TagT>
 65 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef, TagT tag,
 66 const property_list& propList = {});
 67
 68 /* Available only when: (Dimensions > 0) */
 69 template <typename AllocatorT>
 70 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 71 handler& commandGroupHandlerRef, const property_list& propList = {});
 72
 73 /* Available only when: (Dimensions > 0) */
 74 template <typename AllocatorT, typename TagT>
 75 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 76 handler& commandGroupHandlerRef, TagT tag,
 77 const property_list& propList = {});

SYCL 2020 rev 9 4.7.6.9.1. Interface for buffer command accessors

Chapter 4. SYCL programming interface | 163

 78
 79 /* Available only when: (Dimensions > 0) */
 80 template <typename AllocatorT>
 81 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 82 range<Dimensions> accessRange, const property_list& propList = {});
 83
 84 /* Available only when: (Dimensions > 0) */
 85 template <typename AllocatorT, typename TagT>
 86 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 87 range<Dimensions> accessRange, TagT tag,
 88 const property_list& propList = {});
 89
 90 /* Available only when: (Dimensions > 0) */
 91 template <typename AllocatorT>
 92 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 93 range<Dimensions> accessRange, id<Dimensions> accessOffset,
 94 const property_list& propList = {});
 95
 96 /* Available only when: (Dimensions > 0) */
 97 template <typename AllocatorT, typename TagT>
 98 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 99 range<Dimensions> accessRange, id<Dimensions> accessOffset, TagT tag,
100 const property_list& propList = {});
101
102 /* Available only when: (Dimensions > 0) */
103 template <typename AllocatorT>
104 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
105 handler& commandGroupHandlerRef, range<Dimensions> accessRange,
106 const property_list& propList = {});
107
108 /* Available only when: (Dimensions > 0) */
109 template <typename AllocatorT, typename TagT>
110 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
111 handler& commandGroupHandlerRef, range<Dimensions> accessRange,
112 TagT tag, const property_list& propList = {});
113
114 /* Available only when: (Dimensions > 0) */
115 template <typename AllocatorT>
116 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
117 handler& commandGroupHandlerRef, range<Dimensions> accessRange,
118 id<Dimensions> accessOffset, const property_list& propList = {});
119
120 /* Available only when: (Dimensions > 0) */
121 template <typename AllocatorT, typename TagT>
122 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
123 handler& commandGroupHandlerRef, range<Dimensions> accessRange,
124 id<Dimensions> accessOffset, TagT tag,
125 const property_list& propList = {});
126
127 /* -- common interface members -- */
128
129 void swap(accessor& other);
130
131 bool is_placeholder() const;
132
133 size_type byte_size() const noexcept;

4.7.6.9.1. Interface for buffer command accessors SYCL 2020 rev 9

164 | Chapter 4. SYCL programming interface

134
135 size_type size() const noexcept;
136
137 size_type max_size() const noexcept;
138
139 // Deprecated
140 size_t get_size() const;
141
142 // Deprecated
143 size_t get_count() const;
144
145 bool empty() const noexcept;
146
147 /* Available only when: (Dimensions > 0) */
148 range<Dimensions> get_range() const;
149
150 /* Available only when: (Dimensions > 0) */
151 id<Dimensions> get_offset() const;
152
153 /* Available only when: (AccessMode != access_mode::atomic && Dimensions == 0) */
154 operator reference() const;
155
156 /* Available only when: (AccessMode != access_mode::atomic &&
157 AccessMode != access_mode::read && Dimensions == 0) */
158 const accessor& operator=(const value_type& other) const;
159
160 /* Available only when: (AccessMode != access_mode::atomic &&
161 AccessMode != access_mode::read && Dimensions == 0) */
162 const accessor& operator=(value_type&& other) const;
163
164 /* Available only when: (Dimensions > 0) */
165 reference operator[](id<Dimensions> index) const;
166
167 /* Available only when: (Dimensions > 1) */
168 __unspecified__ operator[](size_t index) const;
169
170 /* Available only when: (AccessMode != access_mode::atomic && Dimensions == 1)
171 */
172 reference operator[](size_t index) const;
173
174 /* Deprecated
175 Available only when: (AccessMode == access_mode::atomic && Dimensions == 0)
176 */
177 operator sycl::atomic<DataT, access::address_space::global_space>() const;
178
179 /* Deprecated
180 Available only when: (AccessMode == access_mode::atomic && Dimensions == 1) */
181 sycl::atomic<DataT, access::address_space::global_space>
182 operator[](id<Dimensions> index) const;
183
184 /* Deprecated in SYCL 2020
185 Available only when: (AccessTarget == target::device) */
186 global_ptr<value_type> get_pointer() const noexcept;
187
188 /* Available only when: (AccessTarget == target::host_task) */
189 std::add_pointer_t<value_type> get_pointer() const noexcept;

SYCL 2020 rev 9 4.7.6.9.1. Interface for buffer command accessors

Chapter 4. SYCL programming interface | 165

190
191 /* Available only when: (AccessTarget == target::device) */
192 template <access::decorated IsDecorated>
193 accessor_ptr<IsDecorated> get_multi_ptr() const noexcept;
194
195 iterator begin() const noexcept;
196
197 iterator end() const noexcept;
198
199 const_iterator cbegin() const noexcept;
200
201 const_iterator cend() const noexcept;
202
203 reverse_iterator rbegin() const noexcept;
204
205 reverse_iterator rend() const noexcept;
206
207 const_reverse_iterator crbegin() const noexcept;
208
209 const_reverse_iterator crend() const noexcept;
210 };
211
212 } // namespace sycl

Table 55. Member types of the accessor class

Member types Description

template <access::decorated IsDecorated> accessor_ptr
If (AccessTarget == tar
get::device): multi_ptr<value_
type, access::address_
space::global_space, IsDecorated>.

The definition of this type is not
specified when (AccessTarget ==
target::host_task).

Table 56. Constructors of the accessor class

Constructor Description

accessor()
Constructs an empty accessor
which fulfills the following post-
conditions:

• (empty() == true)

• All size queries return 0.

• The return values of get_
pointer() and get_multi_ptr()
are unspecified.

• A default constructed accessor
can be passed to a SYCL kernel
function, but attempting to
access data elements from it
produces undefined behavior.

4.7.6.9.1. Interface for buffer command accessors SYCL 2020 rev 9

166 | Chapter 4. SYCL programming interface

Constructor Description

template <typename AllocatorT>
accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
 const property_list& propList = {})

Available only when (Dimensions
== 0).

Constructs a placeholder accessor
for accessing the first element of a
buffer. The optional property_list
provides properties for the con
structed accessor.

template <typename AllocatorT>
accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, const
property_list& propList = {})

Available only when (Dimensions
== 0).

Constructs an accessor for access
ing the first element of a buffer
within a SYCL kernel function on
the queue associated with command
GroupHandlerRef. The optional prop
erty_list provides properties for
the constructed accessor.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a placeholder accessor
for accessing a buffer. The optional
property_list provides properties
for the constructed accessor.

template <typename AllocatorT, typename TagT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
TagT tag,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a placeholder accessor
for accessing a buffer. The tag is
used to deduce template argu
ments of the accessor as described
in Section 4.7.6.9.2. The optional
property_list provides properties
for the constructed accessor.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, const
property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor for access
ing a buffer within a SYCL kernel
function on the queue associated
with commandGroupHandlerRef. The
optional property_list provides
properties for the constructed
accessor.

SYCL 2020 rev 9 4.7.6.9.1. Interface for buffer command accessors

Chapter 4. SYCL programming interface | 167

Constructor Description

template <typename AllocatorT, typename TagT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, TagT tag,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor for access
ing a buffer within a SYCL kernel
function on the queue associated
with commandGroupHandlerRef. The
tag is used to deduce template
arguments of the accessor as
described in Section 4.7.6.9.2. The
optional property_list provides
properties for the constructed
accessor.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 range<Dimensions> accessRange, const
property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a placeholder accessor
that is a ranged accessor, where
the range starts at the beginning of
the buffer. The optional proper
ty_list provides properties for the
constructed accessor.

Throws an exception with the
errc::invalid error code if access
Range exceeds the range of buffer
Ref in any dimension.

template <typename AllocatorT, typename TagT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 range<Dimensions> accessRange, TagT tag,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a placeholder accessor
that is a ranged accessor, where
the range starts at the beginning of
the buffer. The tag is used to
deduce template arguments of the
accessor as described in Section
4.7.6.9.2. The optional proper
ty_list provides properties for the
constructed accessor.

Throws an exception with the
errc::invalid error code if access
Range exceeds the range of buffer
Ref in any dimension.

4.7.6.9.1. Interface for buffer command accessors SYCL 2020 rev 9

168 | Chapter 4. SYCL programming interface

Constructor Description

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 range<Dimensions> accessRange, id<Dimensions>
accessOffset,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a placeholder accessor
that is a ranged accessor, where
the range starts at an offset from
the beginning of the buffer. The
optional property_list provides
properties for the constructed
accessor.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of bufferRef in
any dimension.

template <typename AllocatorT, typename TagT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 range<Dimensions> accessRange, id<Dimensions>
accessOffset, TagT tag,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a placeholder accessor
that is a ranged accessor, where
the range starts at an offset from
the beginning of the buffer. The
tag is used to deduce template
arguments of the accessor as
described in Section 4.7.6.9.2. The
optional property_list provides
properties for the constructed
accessor.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of bufferRef in
any dimension.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, range<Dimensions>
accessRange,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor that is a
ranged accessor, where the range
starts at the beginning of the
buffer. The accessor can only be
used in a SYCL kernel function on
the queue associated with command
GroupHandlerRef. The optional prop
erty_list provides properties for
the constructed accessor.

Throws an exception with the
errc::invalid error code if access
Range exceeds the range of buffer
Ref in any dimension.

SYCL 2020 rev 9 4.7.6.9.1. Interface for buffer command accessors

Chapter 4. SYCL programming interface | 169

Constructor Description

template <typename AllocatorT, typename TagT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, range<Dimensions>
accessRange,
 TagT tag, const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor that is a
ranged accessor, where the range
starts at the beginning of the
buffer. The accessor can only be
used in a SYCL kernel function on
the queue associated with command
GroupHandlerRef. The tag is used to
deduce template arguments of the
accessor as described in Section
4.7.6.9.2. The optional proper
ty_list provides properties for the
constructed accessor.

Throws an exception with the
errc::invalid error code if access
Range exceeds the range of buffer
Ref in any dimension.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, range<Dimensions>
accessRange,
 id<Dimensions> accessOffset, const property_list&
propList = {})

Available only when (Dimensions >
0).

Constructs an accessor that is a
ranged accessor, where the range
starts at an offset from the begin
ning of the buffer. The accessor
can only be used in a SYCL kernel
function on the queue associated
with commandGroupHandlerRef. The
optional property_list provides
properties for the constructed
accessor.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of bufferRef in
any dimension.

4.7.6.9.1. Interface for buffer command accessors SYCL 2020 rev 9

170 | Chapter 4. SYCL programming interface

Constructor Description

template <typename AllocatorT, typename TagT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, range<Dimensions>
accessRange,
 id<Dimensions> accessOffset, TagT tag,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor that is a
ranged accessor, where the range
starts at an offset from the begin
ning of the buffer. The accessor
can only be used in a SYCL kernel
function on the queue associated
with commandGroupHandlerRef. The
tag is used to deduce template
arguments of the accessor as
described in Section 4.7.6.9.2. The
optional property_list provides
properties for the constructed
accessor.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of bufferRef in
any dimension.

Table 57. Member functions of the accessor class

Member function Description

void swap(accessor& other);
Swaps the contents of the current
accessor with the contents of other.

bool is_placeholder() const
Returns true if the accessor is a
placeholder. Otherwise returns
false.

id<Dimensions> get_offset() const
Available only when (Dimensions >
0).

If this is a ranged accessor, returns
the offset that was specified when
the accessor was constructed. For
other accessors, returns the default
constructed id<Dimensions>{}.

SYCL 2020 rev 9 4.7.6.9.1. Interface for buffer command accessors

Chapter 4. SYCL programming interface | 171

Member function Description

global_ptr<value_type> get_pointer() const noexcept
Available only when (AccessTarget
== target::device).

Returns a multi_ptr to the start of
this accessor’s underlying buffer,
even if this is a ranged accessor
whose range does not start at the
beginning of the buffer. The return
value is unspecified if the accessor
is empty.

This function may only be called
from within a command.

Deprecated in SYCL 2020. Use get_
multi_ptr instead.

std::add_pointer_t<value_type> get_pointer() const noexcept
Available only when (AccessTarget
== target::host_task).

Returns a pointer to the start of
this accessor’s underlying buffer,
even if this is a ranged accessor
whose range does not start at the
beginning of the buffer. The return
value is unspecified if the accessor
is empty.

This function may only be called
from within a command.

template <access::decorated IsDecorated>
accessor_ptr<IsDecorated> get_multi_ptr() const noexcept

Available only when (AccessTarget
== target::device).

Returns a multi_ptr to the start of
this accessor’s underlying buffer,
even if this is a ranged accessor
whose range does not start at the
beginning of the buffer. The return
value is unspecified if the accessor
is empty.

This function may only be called
from within a command.

const accessor& operator=(const value_type& other) const
Available only when (AccessMode
!= access_mode::atomic && Access
Mode != access_mode::read &&
Dimensions == 0).

Assignment to the single element
that is accessed by this accessor.

This function may only be called
from within a command.

4.7.6.9.1. Interface for buffer command accessors SYCL 2020 rev 9

172 | Chapter 4. SYCL programming interface

Member function Description

const accessor& operator=(value_type&& other) const
Available only when (AccessMode
!= access_mode::atomic && Access
Mode != access_mode::read &&
Dimensions == 0).

Assignment to the single element
that is accessed by this accessor.

This function may only be called
from within a command.

4.7.6.9.2. Deduction tags for buffer command accessors

Some accessor constructors take a TagT parameter, which is used to deduce template arguments. The
permissible values for this parameter are listed in Table 58 along with the access mode and accessor tar
get that they imply.

Table 58. Enumeration of tags available for accessor construction

Tag value Access mode Accessor target

read_write access_mode::read_write target::device

read_only access_mode::read target::device

write_only access_mode::write target::device

read_write_host_task access_mode::read_write target::host_task

read_only_host_task access_mode::read target::host_task

write_only_host_task access_mode::write target::host_task

4.7.6.9.3. Read only buffer command accessors and implicit conversions

Table 59 shows the specializations of accessor with target::device or target::host_task that are read-
only accessors. There is an implicit conversion between any of these specializations, provided that all
other template parameters are the same.

Table 59. Specializations of accessor that are read-only

Data type Access mode

not const-qualified access_mode::read

const-qualified access_mode::read

There is also an implicit conversion from the read-write specialization shown in Table 60 to any of the
read-only specializations shown in Table 59, provided that all other template parameters are the same.

Table 60. Specializations of accessor that are read-write

Data type Access mode

not const-qualified access_mode::read_write

4.7.6.9.4. Deprecated features of the accessor class

All of the features defined in this section are deprecated and will likely be removed from a future ver
sion of the specification.

4.7.6.9.4.1. Aliased names

The enumerated value target::global_buffer is an alias for target:::device. It has the same type and

SYCL 2020 rev 9 4.7.6.9.2. Deduction tags for buffer command accessors

Chapter 4. SYCL programming interface | 173

value as its alias.

The enumerated type access::target is an alias for target, and the enumerated type access::mode is an
alias for access_mode.

4.7.6.9.4.2. Discard access modes

An accessor instance specialized with access mode access_mode::discard_write has the same behavior as
an accessor instance of mode access_mode::write that is constructed with the property property::no_init.

An accessor instance specialized with access mode access_mode::discard_read_write has the same behav
ior as an accessor instance of mode access_mode::read_write that is constructed with the property prop
erty::no_init.

4.7.6.9.4.3. Placeholder template parameter

The accessor template parameter IsPlaceholder is allowed to be specified, but it has no bearing on
whether the accessor instance is a placeholder. This is determined solely by the constructor used to cre
ate the instance.

The associated type access::placeholder is also deprecated.

4.7.6.9.4.4. Additional member functions for target::device specialization

Specializations of the accessor class with target::device have the additional member functions
described in Table 61.

Table 61. Deprecated member functions of the accessor class

Member function Description

size_t get_size() const
Returns the same value as byte_
size().

size_t get_count() const
Returns the same value as size().

4.7.6.9.4.5. Accessor specialization with target::constant_buffer

The accessor class may be specialized with target target::constant_buffer, which results in an accessor
that can be used within a SYCL kernel function to access the contents of a buffer through the device’s
constant memory.

As with other accessor specializations, the dimensionality must match the underlying buffer, however
there is a special case if the buffer is one-dimensional. In this case, the accessor may either be one-
dimensional or it may be zero-dimensional. A zero-dimensional accessor has access to just the first ele
ment of the buffer, whereas a one-dimensional accessor has access to the entire buffer.

This specialization of accessor is available only for the access mode access_mode::read.

This accessor type can be constructed as a "placeholder" accessor. As with other accessor specializations
that are placeholders, handler::require() must be called before passing a placeholder accessor to a com
mand. Passing a placeholder accessor as an argument to a command without first being bound to a com
mand group with handler::require() will result in undefined behavior.

A synopsis for this specialization of accessor is provided below. Since some of the class types and mem
ber functions have the same name and meaning as other accessors, the common types and functions are
described in Section 4.7.6.9.4.8. The member types are listed in Table 68. The constructors are listed in
Table 62, and the member functions are listed in Table 69 and Table 63.

4.7.6.9.4.2. Discard access modes SYCL 2020 rev 9

174 | Chapter 4. SYCL programming interface

The additional common special member functions and common member functions are listed in Section
4.5.2 in Table 7 and Table 8, respectively. Additionally, accessors of the same type must be equality com
parable.

 1 namespace sycl {
 2
 3 template <typename DataT, int Dimensions, access_mode AccessMode,
 4 target AccessTarget, access::placeholder IsPlaceholder>
 5 class accessor {
 6 public:
 7 using value_type = const DataT;
 8 using reference = const DataT&;
 9 using const_reference = const DataT&;
10
11 /* Available only when: (Dimensions == 0) */
12 template <typename AllocatorT>
13 accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
14 const property_list& propList = {});
15
16 /* Available only when: (Dimensions == 0) */
17 template <typename AllocatorT>
18 accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
19 handler& commandGroupHandlerRef, const property_list& propList = {});
20
21 /* Available only when: (Dimensions > 0) */
22 template <typename AllocatorT>
23 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
24 const property_list& propList = {});
25
26 /* Available only when: (Dimensions > 0) */
27 template <typename AllocatorT>
28 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
29 handler& commandGroupHandlerRef, const property_list& propList = {});
30
31 /* Available only when: (Dimensions > 0) */
32 template <typename AllocatorT>
33 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
34 range<Dimensions> accessRange, const property_list& propList = {});
35
36 /* Available only when: (Dimensions > 0) */
37 template <typename AllocatorT>
38 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
39 range<Dimensions> accessRange, id<Dimensions> accessOffset,
40 const property_list& propList = {});
41
42 /* Available only when: (Dimensions > 0) */
43 template <typename AllocatorT>
44 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
45 handler& commandGroupHandlerRef, range<Dimensions> accessRange,
46 const property_list& propList = {});
47
48 /* Available only when: (Dimensions > 0) */
49 template <typename AllocatorT>
50 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
51 handler& commandGroupHandlerRef, range<Dimensions> accessRange,
52 id<Dimensions> accessOffset, const property_list& propList = {});

SYCL 2020 rev 9 4.7.6.9.4.5. Accessor specialization with target::constant_buffer

Chapter 4. SYCL programming interface | 175

53
54 /* -- common interface members -- */
55
56 bool is_placeholder() const;
57
58 size_t get_size() const noexcept;
59
60 size_t get_count() const noexcept;
61
62 /* Available only when: (Dimensions > 0) */
63 range<Dimensions> get_range() const;
64
65 /* Available only when: (Dimensions > 0) */
66 id<Dimensions> get_offset() const;
67
68 /* Available only when: (Dimensions == 0) */
69 operator reference() const;
70
71 /* Available only when: (Dimensions > 0) */
72 reference operator[](id<Dimensions> index) const;
73
74 /* Available only when: (Dimensions > 1) */
75 __unspecified__ operator[](size_t index) const;
76
77 /* Available only when: (Dimensions == 1) */
78 reference operator[](size_t index) const;
79
80 constant_ptr<DataT> get_pointer() const noexcept;
81 };
82
83 } // namespace sycl

Table 62. Constructors of the deprecated constant accessor

Constructor Description

template <typename AllocatorT>
accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
 const property_list& propList = {})

Available only when (Dimensions
== 0).

Constructs a placeholder accessor
for accessing the first element of a
buffer. The optional property_list
provides properties for the con
structed accessor.

template <typename AllocatorT>
accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, const
property_list& propList = {})

Available only when (Dimensions
== 0).

Constructs an accessor for access
ing the first element of a buffer
within a SYCL kernel function on
the queue associated with command
GroupHandlerRef. The optional prop
erty_list provides properties for
the constructed accessor.

4.7.6.9.4.5. Accessor specialization with target::constant_buffer SYCL 2020 rev 9

176 | Chapter 4. SYCL programming interface

Constructor Description

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a placeholder accessor
for accessing a buffer. The optional
property_list provides properties
for the constructed accessor.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, const
property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor for access
ing a buffer within a SYCL kernel
function on the queue associated
with commandGroupHandlerRef. The
optional property_list provides
properties for the constructed
accessor.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 range<Dimensions> accessRange, const
property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a placeholder accessor
that is a ranged accessor, where
the range starts at the beginning of
the buffer. The optional proper
ty_list provides properties for the
constructed accessor.

Throws an exception with the
errc::invalid error code if access
Range exceeds the range of buffer
Ref in any dimension.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 range<Dimensions> accessRange, id<Dimensions>
accessOffset,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a placeholder accessor
that is a ranged accessor, where
the range starts at an offset from
the beginning of the buffer. The
optional property_list provides
properties for the constructed
accessor.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of bufferRef in
any dimension.

SYCL 2020 rev 9 4.7.6.9.4.5. Accessor specialization with target::constant_buffer

Chapter 4. SYCL programming interface | 177

Constructor Description

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, range<Dimensions>
accessRange,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor that is a
ranged accessor, where the range
starts at the beginning of the
buffer. The accessor can only be
used in a SYCL kernel function on
the queue associated with command
GroupHandlerRef. The optional prop
erty_list provides properties for
the constructed accessor.

Throws an exception with the
errc::invalid error code if access
Range exceeds the range of buffer
Ref in any dimension.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 handler& commandGroupHandlerRef, range<Dimensions>
accessRange,
 id<Dimensions> accessOffset, const property_list&
propList = {})

Available only when (Dimensions >
0).

Constructs an accessor that is a
ranged accessor, where the range
starts at an offset from the begin
ning of the buffer. The accessor
can only be used in a SYCL kernel
function on the queue associated
with commandGroupHandlerRef. The
optional property_list provides
properties for the constructed
accessor.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of bufferRef in
any dimension.

Table 63. Member functions of the deprecated constant accessor

Member function Description

bool is_placeholder() const
Returns true if the accessor was
constructed as a placeholder and
returns false otherwise.

id<Dimensions> get_offset() const
Available only when (Dimensions >
0).

If this is a ranged accessor, returns
the offset that was specified when
the accessor was constructed, oth
erwise returns the default con
structed id<Dimensions>{}.

4.7.6.9.4.5. Accessor specialization with target::constant_buffer SYCL 2020 rev 9

178 | Chapter 4. SYCL programming interface

Member function Description

constant_ptr<DataT> get_pointer() const noexcept
Returns a multi_ptr to the start of
this accessor’s underlying buffer,
even if this is a ranged accessor
whose range does not start at the
beginning of the buffer. The return
value is unspecified if the accessor
is empty.

This function may only be called
from within a command.

4.7.6.9.4.6. Accessor specialization with target::host_buffer

The accessor class may be specialized with target target::host_buffer, which results in a host accessor
similar to host_accessor. This specialization provides access to data in a buffer from host code that is out
side of a command, and constructors of this specialization block until the requested data is available on
the host.

As with other accessor specializations, the dimensionality must match the underlying buffer, however
there is a special case if the buffer is one-dimensional. In this case, the accessor may either be one-
dimensional or it may be zero-dimensional. A zero-dimensional accessor has access to just the first ele
ment of the buffer, whereas a one-dimensional accessor has access to the entire buffer.

This specialization of accessor is available for all access modes except for access_mode::atomic.

A synopsis for this specialization of accessor is provided below. Since some of the class types and mem
ber functions have the same name and meaning as other accessors, the common types and functions are
described in Section 4.7.6.9.4.8. The member types are listed in Table 68. The constructors are listed in
Table 64, and the member functions are listed in Table 69 and Table 65.

The additional common special member functions and common member functions are listed in Section
4.5.2 in Table 7 and Table 8, respectively. Additionally, accessors of the same type must be equality com
parable.

 1 namespace sycl {
 2
 3 template <typename DataT, int Dimensions, access_mode AccessMode,
 4 target AccessTarget, access::placeholder IsPlaceholder>
 5 class accessor {
 6 public:
 7 using value_type = // const DataT for access_mode::read, DataT otherwise
 8 __value_type__;
 9 using reference = value_type&;
10 using const_reference = const DataT&;
11
12 /* Available only when: (Dimensions == 0) */
13 template <typename AllocatorT>
14 accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
15 const property_list& propList = {});
16
17 /* Available only when: (Dimensions > 0) */
18 template <typename AllocatorT>
19 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
20 const property_list& propList = {});
21

SYCL 2020 rev 9 4.7.6.9.4.6. Accessor specialization with target::host_buffer

Chapter 4. SYCL programming interface | 179

22 /* Available only when: (Dimensions > 0) */
23 template <typename AllocatorT>
24 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
25 range<Dimensions> accessRange, const property_list& propList = {});
26
27 /* Available only when: (Dimensions > 0) */
28 template <typename AllocatorT>
29 accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
30 range<Dimensions> accessRange, id<Dimensions> accessOffset,
31 const property_list& propList = {});
32
33 /* -- common interface members -- */
34
35 bool is_placeholder() const;
36
37 size_t get_size() const;
38
39 size_t get_count() const;
40
41 /* Available only when: (Dimensions > 0) */
42 range<Dimensions> get_range() const;
43
44 /* Available only when: (Dimensions > 0) */
45 id<Dimensions> get_offset() const;
46
47 /* Available only when: (Dimensions == 0) */
48 operator reference() const;
49
50 /* Available only when: (Dimensions > 0) */
51 reference operator[](id<Dimensions> index) const;
52
53 /* Available only when: (Dimensions > 1) */
54 __unspecified__ operator[](size_t index) const;
55
56 /* Available only when: (Dimensions == 1) */
57 reference operator[](size_t index) const;
58
59 std::add_pointer_t<value_type> get_pointer() const noexcept;
60 };
61
62 } // namespace sycl

Table 64. Constructors of the deprecated host buffer accessor

Constructor Description

template <typename AllocatorT>
accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
 const property_list& propList = {})

Available only when (Dimensions
== 0).

Constructs an accessor for access
ing the first element of a buffer
immediately on the host. The
optional property_list provides
properties for the constructed
accessor.

4.7.6.9.4.6. Accessor specialization with target::host_buffer SYCL 2020 rev 9

180 | Chapter 4. SYCL programming interface

Constructor Description

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor for access
ing a buffer immediately on the
host. The optional property_list
provides properties for the con
structed accessor.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 range<Dimensions> accessRange, const
property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor that is a
ranged accessor which accesses a
buffer immediately on the host,
where the range starts at the
beginning of the buffer. The
optional property_list provides
properties for the constructed
accessor.

Throws an exception with the
errc::invalid error code if access
Range exceeds the range of buffer
Ref in any dimension.

template <typename AllocatorT>
accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 range<Dimensions> accessRange, id<Dimensions>
accessOffset,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor that is a
ranged accessor which accesses a
buffer immediately on the host,
where the range starts at an offset
from the beginning of the buffer.
The optional property_list pro
vides properties for the con
structed accessor.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of bufferRef in
any dimension.

Table 65. Member functions of the deprecated host buffer accessor

Member function Description

bool is_placeholder() const
Always returns false.

SYCL 2020 rev 9 4.7.6.9.4.6. Accessor specialization with target::host_buffer

Chapter 4. SYCL programming interface | 181

Member function Description

id<Dimensions> get_offset() const
Available only when (Dimensions >
0).

If this is a ranged accessor, returns
the offset that was specified when
the accessor was constructed, oth
erwise returns the default con
structed id<Dimensions>{}.

std::add_pointer_t<value_type> get_pointer() const noexcept
Returns a pointer to the start of
this accessor’s underlying buffer,
even if this is a ranged accessor
whose range does not start at the
beginning of the buffer. The return
value is unspecified if the accessor
is empty.

4.7.6.9.4.7. Accessor specialization with target::local

The accessor class may be specialized with target target::local, which results in a local accessor that has
the same semantics and restrictions as local_accessor.

This specialization of accessor is only available for access modes access_mode::read_write and access_
mode::atomic.

A synopsis for this specialization of accessor is provided below. Since some of the class types and mem
ber functions have the same name and meaning as other accessors, the common types and functions are
described in Section 4.7.6.9.4.8. The member types are listed in Table 68. The constructors are listed in
Table 66, and the member functions are listed in Table 69 and Table 67.

The additional common special member functions and common member functions are listed in Section
4.5.2 in Table 7 and Table 8, respectively. Additionally, accessors of the same type must be equality com
parable.

 1 namespace sycl {
 2
 3 template <typename DataT, int Dimensions, access_mode AccessMode,
 4 target AccessTarget, access::placeholder IsPlaceholder>
 5 class accessor {
 6 public:
 7 using value_type = DataT;
 8 using reference = DataT&;
 9 using const_reference = const DataT&;
10
11 /* Available only when: (Dimensions == 0) */
12 accessor(handler& commandGroupHandlerRef, const property_list& propList = {});
13
14 /* Available only when: (Dimensions > 0) */
15 accessor(range<Dimensions> allocationSize, handler& commandGroupHandlerRef,
16 const property_list& propList = {});
17
18 /* -- common interface members -- */
19
20 size_t get_size() const;
21

4.7.6.9.4.7. Accessor specialization with target::local SYCL 2020 rev 9

182 | Chapter 4. SYCL programming interface

22 size_t get_count() const;
23
24 /* Available only when: (Dimensions > 0) */
25 range<Dimensions> get_range() const;
26
27 /* Available only when: (AccessMode == access_mode::read_write && Dimensions
28 * == 0) */
29 operator reference() const;
30
31 /* Available only when: (AccessMode == access_mode::read_write && Dimensions >
32 * 0) */
33 reference operator[](id<Dimensions> index) const;
34
35 /* Available only when: (Dimensions > 1) */
36 __unspecified__ operator[](size_t index) const;
37
38 /* Available only when: (AccessMode == access_mode::read_write && Dimensions
39 * == 1) */
40 reference operator[](size_t index) const;
41
42 /* Available only when: (AccessMode == access_mode::atomic && Dimensions == 0)
43 */
44 operator atomic<DataT, access::address_space::local_space>() const;
45
46 /* Available only when: (AccessMode == access_mode::atomic && Dimensions > 0)
47 */
48 atomic<DataT, access::address_space::local_space>
49 operator[](id<Dimensions> index) const;
50
51 /* Available only when: (AccessMode == access_mode::atomic && Dimensions == 1)
52 */
53 atomic<DataT, access::address_space::local_space>
54 operator[](size_t index) const;
55
56 local_ptr<DataT> get_pointer() const noexcept;
57 };
58
59 } // namespace sycl

Table 66. Constructors of the deprecated local accessor

Constructor Description

accessor(handler& commandGroupHandlerRef, const
property_list& propList = {})

Available only when (Dimensions
== 0).

Constructs an accessor instance for
accessing local memory of a single
DataT element within a SYCL kernel
function on the queue associated
with commandGroupHandlerRef. The
optional property_list provides
properties for the constructed
accessor.

SYCL 2020 rev 9 4.7.6.9.4.7. Accessor specialization with target::local

Chapter 4. SYCL programming interface | 183

Constructor Description

accessor(range<Dimensions> allocationSize, handler&
commandGroupHandlerRef,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs an accessor instance for
accessing local memory of an array
of DataT elements within a SYCL
kernel function on the queue asso
ciated with commandGroupHandlerRef.
The number of elements in the
array is defined by allocationSize.
The optional property_list pro
vides properties for the con
structed accessor.

Table 67. Member functions of the deprecated local accessor

Member function Description

operator atomic<DataT, access::address_space::local_space
>() const

Available only when (AccessMode
== access_mode::atomic && Dimen
sions == 0).

Returns an instance of atomic of
type DataT providing atomic access
to the element stored within the
work-group’s local memory alloca
tion that this accessor is accessing.

This function may only be called
from within a command.

atomic<DataT, access::address_space::local_space>
operator[](id<Dimensions> index) const

Available only when (AccessMode
== access_mode::atomic && Dimen
sions > 0).

Returns an instance of atomic of
type DataT providing atomic access
to the element stored within the
work-group’s local memory alloca
tion that this accessor is accessing,
at the index specified by index.

This function may only be called
from within a command.

atomic<DataT, access::address_space::local_space>
operator[](size_t index) const

Available only when (AccessMode
== access_mode::atomic && Dimen
sions == 1).

Returns an instance of atomic of
type DataT providing atomic access
to the element stored within the
work-group’s local memory alloca
tion that this accessor is accessing,
at the index specified by index.

This function may only be called
from within a command.

4.7.6.9.4.7. Accessor specialization with target::local SYCL 2020 rev 9

184 | Chapter 4. SYCL programming interface

Member function Description

local_ptr<DataT> get_pointer() const noexcept
Returns a multi_ptr to the work-
group’s local memory allocation
that this accessor is accessing. The
return value is unspecified if the
accessor is empty.

This function may only be called
from within a command.

4.7.6.9.4.8. Common members for deprecated accessors

Specializations of the accessor class with target::constant_buffer, target::host_buffer and tar
get::local have many member types and member functions with the same name and meaning. Table 68
describes these common types and Table 69 describes the common member functions.

Table 68. Common member types of the deprecated accessors

Member types Description

value_type
If (AccessMode == access_
mode::read), equal to const DataT,
otherwise equal to DataT.

reference
Equal to value_type&.

const_reference
Equal to const DataT&.

Table 69. Common member functions of the deprecated accessors

Member function Description

size_t get_size() const noexcept
Returns the size in bytes of the
memory region this accessor may
access.

When AccessTarget is target::con
stant_buffer or tar
get::host_buffer, the returned
value is the size of the elements in
the underlying buffer, unless this
is a ranged accessor in which case
it is the size of the elements within
the accessor’s range.

When AccessTarget is tar
get::local, the returned value is
the size in bytes of the accessor’s
local memory allocation, per work-
group.

SYCL 2020 rev 9 4.7.6.9.4.8. Common members for deprecated accessors

Chapter 4. SYCL programming interface | 185

Member function Description

size_t get_count() const noexcept
Returns the number of DataT ele
ments of the memory region this
accessor may access.

When AccessTarget is target::con
stant_buffer or tar
get::host_buffer, the returned
value is the number of elements in
the underlying buffer, unless this
is a ranged accessor in which case
it is the number of elements within
the accessor’s range.

When AccessTarget is tar
get::local, the returned value is
the number of elements in the
accessor’s local memory allocation,
per work-group.

range<Dimensions> get_range() const
Available only when (Dimensions >
0).

Returns a range object which repre
sents the number of elements of
DataT per dimension that this
accessor may access.

When AccessTarget is target::con
stant_buffer or tar
get::host_buffer, the returned
value is the range of the underly
ing buffer, unless this is a ranged
accessor in which case it is the
range that was specified when the
accessor was constructed.

When AccessTarget is tar
get::local, the returned value is
the range that was specified when
the accessor was constructed.

4.7.6.9.4.8. Common members for deprecated accessors SYCL 2020 rev 9

186 | Chapter 4. SYCL programming interface

Member function Description

operator reference() const
When AccessTarget is target::con
stant_buffer or tar
get::host_buffer, available only
when (Dimensions == 0).

When AccessTarget is tar
get::local, available only when
(AccessMode == access_mode::read
_write && Dimensions == 0).

Returns a reference to the single
element that is accessed by this
accessor.

When AccessTarget is tar
get::local or target::constan
t_buffer, this function may only be
called from within a command.

reference operator[](id<Dimensions> index) const
When AccessTarget is target::con
stant_buffer or tar
get::host_buffer, available only
when (Dimensions > 0).

When AccessTarget is tar
get::local, available only when
(AccessMode == access_mode::read
_write && Dimensions > 0).

Returns a reference to the element
at the location specified by index. If
this is a ranged accessor, the ele
ment is determined by adding
index to the accessor’s offset.

When AccessTarget is tar
get::local or target::constan
t_buffer, this function may only be
called from within a command.

SYCL 2020 rev 9 4.7.6.9.4.8. Common members for deprecated accessors

Chapter 4. SYCL programming interface | 187

Member function Description

__unspecified__ operator[](size_t index) const
Available only when (Dimensions >
1).

Returns an instance of an unde
fined intermediate type represent
ing this accessor, with the dimen
sionality Dimensions-1 and contain
ing an implicit id with index Dimen
sions set to index. The intermediate
type returned must provide all
available subscript operators
which take a size_t parameter
defined by this accessor class that
are appropriate for the type it rep
resents (including this subscript
operator).

If this is a ranged accessor, the
implicit id in the returned instance
also includes the accessor’s offset.

When AccessTarget is tar
get::local or target::constan
t_buffer, this function may only be
called from within a command.

reference operator[](size_t index) const
When AccessTarget is target::con
stant_buffer or tar
get::host_buffer, available only
when (Dimensions == 1).

When AccessTarget is tar
get::local, available only when
(AccessMode == access_mode::read
_write && Dimensions == 1).

Returns a reference to the element
at the location specified by index. If
this is a ranged accessor, the ele
ment is determined by adding
index to the accessor’s offset.

When AccessTarget is tar
get::local or target::constan
t_buffer, this function may only be
called from within a command.

4.7.6.9.4.9. Accessor specialization with access_mode::atomic

The accessor class may be specialized with target target::device and access mode access_mode::atomic.
This specialization provides additional member functions beyond those that are provided for other tar
get::device specializations as described in Table 70.

Table 70. Deprecated atomic member functions of the accessor class

4.7.6.9.4.9. Accessor specialization with access_mode::atomic SYCL 2020 rev 9

188 | Chapter 4. SYCL programming interface

Member function Description

operator atomic<DataT, access::address_space::global_space
>() const

Available only when (AccessMode
== access_mode::atomic && Dimen
sions == 0).

Returns an instance of atomic of
type DataT providing atomic access
to the single element that is
accessed by this accessor.

atomic<DataT, access::address_space::global_space>
operator[](id<Dimensions> index) const

Available only when (AccessMode
== access_mode::atomic && Dimen
sions > 0).

Returns an instance of atomic of
type DataT providing atomic access
to the element stored within the
accessor’s buffer at the index spec
ified by index.

If this is a ranged accessor, the
returned atomic instance provides
access to the buffer element whose
location is determined by adding
the accessor’s offset to index.

atomic<DataT, access::address_space::global_space>
operator[](size_t index) const

Available only when (AccessMode
== access_mode::atomic && Dimen
sions == 1).

Returns an instance of atomic of
type DataT providing atomic access
to the element stored within the
accessor’s buffer at the index spec
ified by index.

If this is a ranged accessor, the
returned atomic instance provides
access to the buffer element whose
location is determined by adding
the accessor’s offset to index.

4.7.6.10. Buffer accessor for host code

The host_accessor class provides access to data in a buffer from host code that is outside of a command
(i.e. do not use this class to access a buffer inside a host task).

As with accessor, the dimensionality of host_accessor must match the underlying buffer, however, there
is a special case if the buffer is one-dimensional. In this case, the accessor may either be one-dimen
sional or it may be zero-dimensional. A zero-dimensional accessor has access to just the first element of
the buffer, whereas a one-dimensional accessor has access to the entire buffer.

The host_accessor class supports the following access modes: access_mode::read, access_mode::write and
access_mode::read_write.

4.7.6.10.1. Interface for buffer host accessors

A synopsis of the host_accessor class is provided below. Since some of the class types and member func
tions have the same name and meaning as other accessors, the common types and functions are

SYCL 2020 rev 9 4.7.6.10. Buffer accessor for host code

Chapter 4. SYCL programming interface | 189

described in Section 4.7.6.12. The member types are listed in Table 79. The constructors are listed in Ta
ble 71, and the member functions are listed in Table 80 and Table 72.

The additional common special member functions and common member functions are listed in Section
4.5.2 in Table 7 and Table 8, respectively. For valid implicit conversions between accessor types refer to
Section 4.7.6.10.3. Additionally, accessors of the same type must be equality comparable.

 1 namespace sycl {
 2 template <typename DataT, int Dimensions = 1,
 3 access_mode AccessMode =
 4 (std::is_const_v<DataT> ? access_mode::read
 5 : access_mode::read_write)>
 6 class host_accessor {
 7 public:
 8 using value_type = // const DataT for read-only accessors, DataT otherwise
 9 __value_type__;
 10 using reference = value_type&;
 11 using const_reference = const DataT&;
 12 using iterator = __unspecified_iterator__<value_type>;
 13 using const_iterator = __unspecified_iterator__<const value_type>;
 14 using reverse_iterator = std::reverse_iterator<iterator>;
 15 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 16 using difference_type =
 17 typename std::iterator_traits<iterator>::difference_type;
 18 using size_type = size_t;
 19
 20 host_accessor();
 21
 22 /* Available only when: (Dimensions == 0) */
 23 template <typename AllocatorT>
 24 host_accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
 25 const property_list& propList = {});
 26
 27 /* Available only when: (Dimensions > 0) */
 28 template <typename AllocatorT>
 29 host_accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 30 const property_list& propList = {});
 31
 32 /* Available only when: (Dimensions > 0) */
 33 template <typename AllocatorT, typename TagT>
 34 host_accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef, TagT tag,
 35 const property_list& propList = {});
 36
 37 /* Available only when: (Dimensions > 0) */
 38 template <typename AllocatorT>
 39 host_accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 40 range<Dimensions> accessRange,
 41 const property_list& propList = {});
 42
 43 /* Available only when: (Dimensions > 0) */
 44 template <typename AllocatorT, typename TagT>
 45 host_accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 46 range<Dimensions> accessRange, TagT tag,
 47 const property_list& propList = {});
 48
 49 /* Available only when: (Dimensions > 0) */

4.7.6.10.1. Interface for buffer host accessors SYCL 2020 rev 9

190 | Chapter 4. SYCL programming interface

 50 template <typename AllocatorT>
 51 host_accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 52 range<Dimensions> accessRange, id<Dimensions> accessOffset,
 53 const property_list& propList = {});
 54
 55 /* Available only when: (Dimensions > 0) */
 56 template <typename AllocatorT, typename TagT>
 57 host_accessor(buffer<DataT, Dimensions, AllocatorT>& bufferRef,
 58 range<Dimensions> accessRange, id<Dimensions> accessOffset,
 59 TagT tag, const property_list& propList = {});
 60
 61 /* -- common interface members -- */
 62
 63 void swap(host_accessor& other);
 64
 65 size_type byte_size() const noexcept;
 66
 67 size_type size() const noexcept;
 68
 69 size_type max_size() const noexcept;
 70
 71 bool empty() const noexcept;
 72
 73 /* Available only when: (Dimensions > 0) */
 74 range<Dimensions> get_range() const;
 75
 76 /* Available only when: (Dimensions > 0) */
 77 id<Dimensions> get_offset() const;
 78
 79 /* Available only when: (Dimensions == 0) */
 80 operator reference() const;
 81
 82 /* Available only when: (AccessMode != access_mode::read && Dimensions == 0) */
 83 const host_accessor& operator=(const value_type& other) const;
 84
 85 /* Available only when: (AccessMode != access_mode::read && Dimensions == 0) */
 86 const host_accessor& operator=(value_type&& other) const;
 87
 88 /* Available only when: (Dimensions > 0) */
 89 reference operator[](id<Dimensions> index) const;
 90
 91 /* Available only when: (Dimensions > 1) */
 92 __unspecified__ operator[](size_t index) const;
 93
 94 /* Available only when: (Dimensions == 1) */
 95 reference operator[](size_t index) const;
 96
 97 std::add_pointer_t<value_type> get_pointer() const noexcept;
 98
 99 iterator begin() const noexcept;
100
101 iterator end() const noexcept;
102
103 const_iterator cbegin() const noexcept;
104
105 const_iterator cend() const noexcept;

SYCL 2020 rev 9 4.7.6.10.1. Interface for buffer host accessors

Chapter 4. SYCL programming interface | 191

106
107 reverse_iterator rbegin() const noexcept;
108
109 reverse_iterator rend() const noexcept;
110
111 const_reverse_iterator crbegin() const noexcept;
112
113 const_reverse_iterator crend() const noexcept;
114 };
115 } // namespace sycl

Table 71. Constructors of the host_accessor class

Constructor Description

host_accessor()
Constructs an empty accessor
which fulfills the following post-
conditions:

• (empty() == true)

• All size queries return 0.

• The return value of get_
pointer() is unspecified.

• Trying to access the underlying
memory is undefined behavior.

template <typename AllocatorT>
host_accessor(buffer<DataT, 1, AllocatorT>& bufferRef,
 const property_list& propList = {})

Available only when (Dimensions
== 0).

Constructs a host_accessor for
accessing the first element of a
buffer immediately on the host.
The optional property_list pro
vides properties for the con
structed accessor.

template <typename AllocatorT>
host_accessor(buffer<DataT, Dimensions, AllocatorT>&
bufferRef,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a host_accessor for
accessing a buffer immediately on
the host. The optional proper
ty_list provides properties for the
constructed accessor.

template <typename AllocatorT, typename TagT>
host_accessor(buffer<DataT, Dimensions, AllocatorT>&
bufferRef, TagT tag,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a host_accessor for
accessing a buffer immediately on
the host. The tag is used to deduce
template arguments of the acces
sor as described in Section
4.7.6.10.2. The optional proper
ty_list provides properties for the
constructed accessor.

4.7.6.10.1. Interface for buffer host accessors SYCL 2020 rev 9

192 | Chapter 4. SYCL programming interface

Constructor Description

template <typename AllocatorT>
host_accessor(buffer<DataT, Dimensions, AllocatorT>&
bufferRef,
 range<Dimensions> accessRange, const
property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a host_accessor that is a
ranged accessor which accesses a
buffer immediately on the host,
where the range starts at the
beginning of the buffer. The
optional property_list provides
properties for the constructed
accessor.

Throws an exception with the
errc::invalid error code if access
Range exceeds the range of buffer
Ref in any dimension.

template <typename AllocatorT, typename TagT>
host_accessor(buffer<DataT, Dimensions, AllocatorT>&
bufferRef,
 range<Dimensions> accessRange, TagT tag,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a host_accessor that is a
ranged accessor which accesses a
buffer immediately on the host,
where the range starts at the
beginning of the buffer. The tag is
used to deduce template argu
ments of the accessor as described
in Section 4.7.6.10.2. The optional
property_list provides properties
for the constructed accessor.

Throws an exception with the
errc::invalid error code if access
Range exceeds the range of buffer
Ref in any dimension.

template <typename AllocatorT>
host_accessor(buffer<DataT, Dimensions, AllocatorT>&
bufferRef,
 range<Dimensions> accessRange, id<Dimensions>
accessOffset,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a host_accessor that is a
ranged accessor which accesses a
buffer immediately on the host,
where the range starts at an offset
from the beginning of the buffer.
The optional property_list pro
vides properties for the con
structed accessor.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of bufferRef in
any dimension.

SYCL 2020 rev 9 4.7.6.10.1. Interface for buffer host accessors

Chapter 4. SYCL programming interface | 193

Constructor Description

template <typename AllocatorT, typename TagT>
host_accessor(buffer<DataT, Dimensions, AllocatorT>&
bufferRef,
 range<Dimensions> accessRange, id<Dimensions>
accessOffset,
 TagT tag, const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a host_accessor that is a
ranged accessor which accesses a
buffer immediately on the host,
where the range starts at an offset
from the beginning of the buffer.
The tag is used to deduce template
arguments of the accessor as
described in Section 4.7.6.10.2. The
optional property_list provides
properties for the constructed
accessor.

Throws an exception with the
errc::invalid error code if the sum
of accessRange and accessOffset
exceeds the range of bufferRef in
any dimension.

Table 72. Member functions of the host_accessor class

Member function Description

void swap(host_accessor& other);
Swaps the contents of the current
accessor with the contents of other.

id<Dimensions> get_offset() const
Available only when (Dimensions >
0).

If this is a ranged accessor, returns
the offset that was specified when
the accessor was constructed. For
other accessors, returns the default
constructed id<Dimensions>{}.

std::add_pointer_t<value_type> get_pointer() const noexcept
Returns a pointer to the start of
this accessor’s underlying buffer,
even if this is a ranged accessor
whose range does not start at the
beginning of the buffer. The return
value is unspecified if the accessor
is empty.

const host_accessor& operator=(const value_type& other)
const

Available only when (AccessMode
!= access_mode::read && Dimen
sions == 0).

Assignment to the single element
that is accessed by this accessor.

const host_accessor& operator=(value_type&& other) const
Available only when (AccessMode
!= access_mode::read && Dimen
sions == 0).

Assignment to the single element
that is accessed by this accessor.

4.7.6.10.1. Interface for buffer host accessors SYCL 2020 rev 9

194 | Chapter 4. SYCL programming interface

4.7.6.10.2. Deduction tags for buffer host accessors

Some host_accessor constructors take a TagT parameter, which is used to deduce template arguments.
The permissible values for this parameter are listed in Table 73 along with the access mode that they
imply.

Table 73. Enumeration of tags available for host_accessor construction

Tag value Access mode

read_write access_mode::read_write

read_only access_mode::read

write_only access_mode::write

4.7.6.10.3. Read only buffer host accessors and implicit conversions

Table 74 shows the specializations of host_accessor that are read-only accessors. There is an implicit con
version between any of these specializations, provided that all other template parameters are the same.

Table 74. Specializations of host_accessor that are read-only

Data type Access mode

not const-qualified access_mode::read

const-qualified access_mode::read

There is also an implicit conversion from the read-write host_accessor type shown in Table 75 to any of
the read-only accessors in Table 74, provided that all other template parameters are the same.

Table 75. Specializations of host_accessor that are read-write

Data type Access mode

not const-qualified access_mode::read_write

4.7.6.11. Local accessor

The local_accessor class allocates device local memory and provides access to this memory from within
a SYCL kernel function. The local memory that is allocated is shared between all work-items of a work-
group. If multiple work-groups execute simultaneously in an implementation, each work-group receives
its own independent copy of the allocated local memory.

The underlying DataT type can be any C++ type that the device supports. If DataT is an implicit-lifetime
type (as defined in the C++ core language), the local accessor implicitly creates objects of that type with
indeterminate values. For other types, the local accessor merely allocates uninitialized memory, and the
application is responsible for constructing objects in that memory (e.g. by calling placement-new).

A local accessor must not be used in a SYCL kernel function that is invoked via single_task or via the
simple form of parallel_for that takes a range parameter. In these cases submitting the kernel to a queue
must throw a synchronous exception with the errc::kernel_argument error code.

4.7.6.11.1. Interface for local accessors

A synopsis of the local_accessor class is provided below. Since some of the class types and member func
tions have the same name and meaning as other accessors, the common types and functions are
described in Section 4.7.6.12. The member types are listed in Table 79 and Table 76. The constructors are
listed in Table 77, and the member functions are listed in Table 80 and Table 78.

The additional common special member functions and common member functions are listed in Section
4.5.2 in Table 7 and Table 8, respectively. For valid implicit conversions between accessor types refer to
Section 4.7.6.11.2. Additionally, accessors of the same type must be equality comparable.

SYCL 2020 rev 9 4.7.6.10.2. Deduction tags for buffer host accessors

Chapter 4. SYCL programming interface | 195

 1 namespace sycl {
 2 template <typename DataT, int Dimensions = 1> class local_accessor {
 3 public:
 4 using value_type = DataT;
 5 using reference = value_type&;
 6 using const_reference = const DataT&;
 7 template <access::decorated IsDecorated>
 8 using accessor_ptr =
 9 multi_ptr<value_type, access::address_space::local_space, IsDecorated>;
10 using iterator = __unspecified_iterator__<value_type>;
11 using const_iterator = __unspecified_iterator__<const value_type>;
12 using reverse_iterator = std::reverse_iterator<iterator>;
13 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
14 using difference_type =
15 typename std::iterator_traits<iterator>::difference_type;
16 using size_type = size_t;
17
18 local_accessor();
19
20 /* Available only when: (Dimensions == 0) */
21 local_accessor(handler& commandGroupHandlerRef,
22 const property_list& propList = {});
23
24 /* Available only when: (Dimensions > 0) */
25 local_accessor(range<Dimensions> allocationSize,
26 handler& commandGroupHandlerRef,
27 const property_list& propList = {});
28
29 /* -- common interface members -- */
30
31 void swap(accessor& other);
32
33 size_type byte_size() const noexcept;
34
35 size_type size() const noexcept;
36
37 size_type max_size() const noexcept;
38
39 bool empty() const noexcept;
40
41 range<Dimensions> get_range() const;
42
43 /* Available only when: (Dimensions == 0) */
44 operator reference() const;
45
46 /* Available only when: (!std::is_const_v<DataT> && Dimensions == 0) */
47 const local_accessor& operator=(const value_type& other) const;
48
49 /* Available only when: (!std::is_const_v<DataT> && Dimensions == 0) */
50 const local_accessor& operator=(value_type&& other) const;
51
52 /* Available only when: (Dimensions > 0) */
53 reference operator[](id<Dimensions> index) const;
54
55 /* Available only when: (Dimensions > 1) */

4.7.6.11.1. Interface for local accessors SYCL 2020 rev 9

196 | Chapter 4. SYCL programming interface

56 __unspecified__ operator[](size_t index) const;
57
58 /* Available only when: (Dimensions == 1) */
59 reference operator[](size_t index) const;
60
61 /* Deprecated in SYCL 2020 */
62 local_ptr<value_type> get_pointer() const noexcept;
63
64 template <access::decorated IsDecorated>
65 accessor_ptr<IsDecorated> get_multi_ptr() const noexcept;
66
67 iterator begin() const noexcept;
68
69 iterator end() const noexcept;
70
71 const_iterator cbegin() const noexcept;
72
73 const_iterator cend() const noexcept;
74
75 reverse_iterator rbegin() const noexcept;
76
77 reverse_iterator rend() const noexcept;
78
79 const_reverse_iterator crbegin() const noexcept;
80
81 const_reverse_iterator crend() const noexcept;
82 };
83 } // namespace sycl

Table 76. Member types of the local_accessor class

Member types Description

template <access::decorated IsDecorated> accessor_ptr
Equal to multi_ptr<value_type,
access::address_space::local_
space, IsDecorated>.

Table 77. Constructors of the local_accessor class

Constructor Description

local_accessor()
Constructs an empty local accessor
which fulfills the following post-
conditions:

• (empty() == true)

• All size queries return 0.

• The return values of get_
pointer() and get_multi_ptr()
are unspecified.

• A default constructed local
accessor can be passed to a
SYCL kernel function, but
attempting to access data ele
ments from it produces unde
fined behavior.

SYCL 2020 rev 9 4.7.6.11.1. Interface for local accessors

Chapter 4. SYCL programming interface | 197

Constructor Description

local_accessor(handler& commandGroupHandlerRef,
 const property_list& propList = {})

Available only when (Dimensions
== 0).

Constructs a local_accessor for
accessing local memory of a single
DataT element within a SYCL kernel
function on the queue associated
with commandGroupHandlerRef. The
optional property_list provides
properties for the constructed
accessor.

local_accessor(range<Dimensions> allocationSize,
 handler& commandGroupHandlerRef,
 const property_list& propList = {})

Available only when (Dimensions >
0).

Constructs a local_accessor for
accessing local memory of an array
of DataT elements within a SYCL
kernel function on the queue asso
ciated with commandGroupHandlerRef.
The number of elements in the
array is defined by allocationSize.
The optional property_list pro
vides properties for the con
structed accessor.

Table 78. Member functions of the local_accessor class

Member function Description

void swap(local_accessor& other);
Swaps the contents of the current
accessor with the contents of other.

local_ptr<value_type> get_pointer() const noexcept
Returns a multi_ptr to the start of
this accessor’s local memory
region which corresponds to the
calling work-group. The return
value is unspecified if the accessor
is empty.

This function may only be called
from within a command.

Deprecated in SYCL 2020. Use get_
multi_ptr instead.

template <access::decorated IsDecorated>
accessor_ptr<IsDecorated> get_multi_ptr() const noexcept

Returns a multi_ptr to the start of
the accessor’s local memory region
which corresponds to the calling
work-group. The return value is
unspecified if the accessor is
empty.

This function may only be called
from within a SYCL kernel func
tion.

4.7.6.11.1. Interface for local accessors SYCL 2020 rev 9

198 | Chapter 4. SYCL programming interface

Member function Description

const local_accessor& operator=(const value_type& other)
const

Available only when (!std::is_
const_v<DataT> && Dimensions ==
0).

Assignment to the single element
that is accessed by this accessor.

This function may only be called
from within a command.

const local_accessor& operator=(const value_type&& other)
const

Available only when (!std::is_
const_v<DataT> && Dimensions ==
0).

Assignment to the single element
that is accessed by this accessor.

This function may only be called
from within a command.

4.7.6.11.2. Read only local accessors and implicit conversions

Since local_accessor has no template parameter for the access mode, the only specialization for a read-
only local accessor is by providing a const qualified DataT parameter. Specializations with a non-const
qualified DataT parameter are read-write. There is an implicit conversion from the read-write specializa
tion to the read-only specialization, provided that all other template parameters are the same.

4.7.6.12. Common members for buffer and local accessors

The accessor, host_accessor, and local_accessor classes have many member types and member functions
with the same name and meaning. Table 79 describes these common types and Table 80 describes the
common member functions.

Table 79. Common buffer and local accessor member types

Member types Description

value_type
If the accessor is read-only, equal
to const DataT, otherwise equal to
DataT.

See Section 4.7.6.9.3, Section
4.7.6.10.3 and Section 4.7.6.11.2 for
which accessors are considered
read-only.

reference
Equal to value_type&.

const_reference
Equal to const DataT&.

SYCL 2020 rev 9 4.7.6.11.2. Read only local accessors and implicit conversions

Chapter 4. SYCL programming interface | 199

Member types Description

iterator
Iterator that can provide ranged
access. Cannot be written to if the
accessor is read-only. The underly
ing pointer is address space quali
fied for accessor specializations
with target::device and for
local_accessor.

const_iterator
Iterator that can provide ranged
access. Cannot be written to. The
underlying pointer is address
space qualified for accessor spe
cializations with target::device
and for local_accessor.

reverse_iterator
Iterator adaptor that reverses the
direction of iterator.

const_reverse_iterator
Iterator adaptor that reverses the
direction of const_iterator.

difference_type
Equal to typename std::iterator_
traits<iterator>::difference_type.

size_type
Equal to size_t.

Table 80. Common buffer and local accessor member functions

Member function Description

size_type byte_size() const noexcept
Returns the size in bytes of the
memory region this accessor may
access.

For a buffer accessor this is the size
of the underlying buffer, unless it
is a ranged accessor in which case
it is the size of the elements within
the accessor’s range.

For a local accessor this is the size
of the accessor’s local memory
allocation, per work-group.

4.7.6.12. Common members for buffer and local accessors SYCL 2020 rev 9

200 | Chapter 4. SYCL programming interface

Member function Description

size_type size() const noexcept
Returns the number of DataT ele
ments of the memory region this
accessor may access.

For a buffer accessor this is the
number of elements in the under
lying buffer, unless it is a ranged
accessor in which case it is the
number of elements within the
accessor’s range.

For a local accessor this is the num
ber of elements in the accessor’s
local memory allocation, per work-
group.

size_type max_size() const noexcept
Returns the maximum number of
elements any accessor of this type
would be able to access.

bool empty() const noexcept
Returns true if (size() == 0).

range<Dimensions> get_range() const
Available only when (Dimensions >
0).

Returns a range object which repre
sents the number of elements of
DataT per dimension that this
accessor may access.

For a buffer accessor this is the
range of the underlying buffer,
unless it is a ranged accessor in
which case it is the range that was
specified when the accessor was
constructed.

operator reference() const
For accessor available only when
(AccessMode != access_
mode::atomic && Dimensions == 0).

For host_accessor and local_acces
sor available only when (Dimen
sions == 0).

Returns a reference to the single
element that is accessed by this
accessor.

For accessor and local_accessor,
this function may only be called
from within a command.

SYCL 2020 rev 9 4.7.6.12. Common members for buffer and local accessors

Chapter 4. SYCL programming interface | 201

Member function Description

reference operator[](id<Dimensions> index) const
For accessor available only when
(AccessMode != access_
mode::atomic && Dimensions > 0).

For host_accessor and local_acces
sor available only when (Dimen
sions > 0).

Returns a reference to the element
at the location specified by index. If
this is a ranged accessor, the ele
ment is determined by adding
index to the accessor’s offset.

For accessor and local_accessor,
this function may only be called
from within a command.

__unspecified__ operator[](size_t index) const
Available only when (Dimensions >
1).

Returns an instance of an unde
fined intermediate type represent
ing this accessor, with the dimen
sionality Dimensions-1 and contain
ing an implicit id with index Dimen
sions set to index. The intermediate
type returned must provide all
available subscript operators
which take a size_t parameter
defined by this accessor class that
are appropriate for the type it rep
resents (including this subscript
operator).

If this is a ranged accessor, the
implicit id in the returned instance
also includes the accessor’s offset.

For accessor and local_accessor,
this function may only be called
from within a command.

4.7.6.12. Common members for buffer and local accessors SYCL 2020 rev 9

202 | Chapter 4. SYCL programming interface

Member function Description

reference operator[](size_t index) const
For accessor available only when
(AccessMode != access_
mode::atomic && Dimensions == 1).

For host_accessor and local_acces
sor available only when (Dimen
sions == 1).

Returns a reference to the element
at the location specified by index. If
this is a ranged accessor, the ele
ment is determined by adding
index to the accessor’s offset.

For accessor and local_accessor,
this function may only be called
from within a command.

iterator begin() const noexcept
Returns an iterator to the first ele
ment of the memory this accessor
may access.

For a buffer accessor this is an iter
ator to the first element of the
underlying buffer, unless this is a
ranged accessor in which case it is
an iterator to first element within
the accessor’s range.

For accessor and local_accessor,
this function may only be called
from within a command.

iterator end() const noexcept
Returns an iterator to one element
past the last element of the mem
ory this accessor may access.

For a buffer accessor this is an iter
ator to one element past the last
element in the underlying buffer,
unless this is a ranged accessor in
which case it is an iterator to one
element past the last element
within the accessor’s range.

For accessor and local_accessor,
this function may only be called
from within a command.

SYCL 2020 rev 9 4.7.6.12. Common members for buffer and local accessors

Chapter 4. SYCL programming interface | 203

Member function Description

const_iterator cbegin() const noexcept
Returns a const iterator to the first
element of the memory this acces
sor may access.

For a buffer accessor this is a const
iterator to the first element of the
underlying buffer, unless this is a
ranged accessor in which case it is
a const iterator to first element
within the accessor’s range.

For accessor and local_accessor,
this function may only be called
from within a command.

const_iterator cend() const noexcept
Returns a const iterator to one ele
ment past the last element of the
memory this accessor may access.

For a buffer accessor this is a const
iterator to one element past the
last element in the underlying
buffer, unless this is a ranged
accessor in which case it is a const
iterator to one element past the
last element within the accessor’s
range.

For accessor and local_accessor,
this function may only be called
from within a command.

reverse_iterator rbegin() const noexcept
Returns an iterator adaptor to the
last element of the memory this
accessor may access.

For a buffer accessor this is an iter
ator adaptor to the last element of
the underlying buffer, unless this
is a ranged accessor in which case
it is an iterator adaptor to the last
element within the accessor’s
range.

For accessor and local_accessor,
this function may only be called
from within a command.

4.7.6.12. Common members for buffer and local accessors SYCL 2020 rev 9

204 | Chapter 4. SYCL programming interface

Member function Description

reverse_iterator rend() const noexcept
Returns an iterator adaptor to one
element before the first element of
the memory this accessor may
access.

For a buffer accessor this is an iter
ator adaptor to one element before
the first element in the underlying
buffer, unless this is a ranged
accessor in which case it is an iter
ator adaptor to one element before
the first element within the acces
sor’s range.

For accessor and local_accessor,
this function may only be called
from within a command.

const_reverse_iterator crbegin() const noexcept
Returns a const iterator adaptor to
the last element of the memory
this accessor may access.

For a buffer accessor this is a const
iterator adaptor to the last element
of the underlying buffer, unless
this is a ranged accessor in which
case it is an const iterator adaptor
to last element within the acces
sor’s range.

For accessor and local_accessor,
this function may only be called
from within a command.

const_reverse_iterator crend() const noexcept
Returns a const iterator adaptor to
one element before the first ele
ment of the memory this accessor
may access.

For a buffer accessor this is a const
iterator adaptor to one element
before the first element in the
underlying buffer, unless this is a
ranged accessor in which case it is
a const iterator adaptor to one ele
ment before the first element
within the accessor’s range.

For accessor and local_accessor,
this function may only be called
from within a command.

4.7.6.13. Unsampled image accessors

There are two classes which implement accessors for unsampled images, unsampled_image_accessor and
host_unsampled_image_accessor. The former provides access from within a SYCL kernel function or from

SYCL 2020 rev 9 4.7.6.13. Unsampled image accessors

Chapter 4. SYCL programming interface | 205

within a host task. The latter provides access from host code that is outside of a host task.

The dimensionality of an unsampled image accessor must match the dimensionality of the underlying
image to which it provides access. Both unsampled image accessor classes support the access_mode::read
and access_mode::write access modes. In addition, the host_unsampled_image_accessor class supports
access_mode::read_write.

The AccessTarget template parameter dictates how the unsampled_image_accessor can be used: image_tar
get::device means the accessor can be used in a SYCL kernel function while image_target::host_task
means the accessor can be used in a host task. Programs which specify this template parameter as
image_target::device and then use the unsampled_image_accessor from a host task are ill formed. Like
wise, programs which specify this template parameter as image_target::host_task and then use the
unsampled_image_accessor from a SYCL kernel function are ill formed.

4.7.6.13.1. Interface for unsampled image accessors

A synopsis of the two unsampled image accessor classes is provided below. Both classes have member
types with the same name, which are described in Table 81. The constructors for the two classes are
described in Table 82 and Table 83. Both classes also have member functions with the same name, which
are described in Table 84.

The additional common special member functions and common member functions are listed in Section
4.5.2 in Table 7 and Table 8, respectively. For valid implicit conversions between unsampled accessor
types refer to Section 4.7.6.13.2.

Two unsampled_image_accessor objects of the same type must be equality comparable in both the host
code and in SYCL kernel functions. Two host_unsampled_image_accessor objects of the same type must be
equality comparable in the host code.

 1 namespace sycl {
 2
 3 enum class image_target : /* unspecified */ { device, host_task };
 4
 5 template <typename DataT, int Dimensions, access_mode AccessMode,
 6 image_target AccessTarget = image_target::device>
 7 class unsampled_image_accessor {
 8 public:
 9 using value_type = // const DataT for read-only accessors, DataT otherwise
10 __value_type__;
11 using reference = value_type&;
12 using const_reference = const DataT&;
13
14 template <typename AllocatorT>
15 unsampled_image_accessor(unsampled_image<Dimensions, AllocatorT>& imageRef,
16 handler& commandGroupHandlerRef,
17 const property_list& propList = {});
18
19 /* -- common interface members -- */
20
21 /* -- property interface members -- */
22
23 size_t size() const noexcept;
24
25 /* Available only when: AccessMode == access_mode::read
26 if Dimensions == 1, CoordT = int
27 if Dimensions == 2, CoordT = int2
28 if Dimensions == 3, CoordT = int4 */

4.7.6.13.1. Interface for unsampled image accessors SYCL 2020 rev 9

206 | Chapter 4. SYCL programming interface

29 template <typename CoordT> DataT read(const CoordT& coords) const noexcept;
30
31 /* Available only when: AccessMode == access_mode::write
32 if Dimensions == 1, CoordT = int
33 if Dimensions == 2, CoordT = int2
34 if Dimensions == 3, CoordT = int4 */
35 template <typename CoordT>
36 void write(const CoordT& coords, const DataT& color) const;
37 };
38
39 template <typename DataT, int Dimensions = 1,
40 access_mode AccessMode =
41 (std::is_const_v<DataT> ? access_mode::read
42 : access_mode::read_write)>
43 class host_unsampled_image_accessor {
44 public:
45 using value_type = // const DataT for read-only accessors, DataT otherwise
46 __value_type__;
47 using reference = value_type&;
48 using const_reference = const DataT&;
49
50 template <typename AllocatorT>
51 host_unsampled_image_accessor(
52 unsampled_image<Dimensions, AllocatorT>& imageRef,
53 const property_list& propList = {});
54
55 /* -- common interface members -- */
56
57 /* -- property interface members -- */
58
59 size_t size() const noexcept;
60
61 /* Available only when: (AccessMode == access_mode::read ||
62 AccessMode == access_mode::read_write)
63 if Dimensions == 1, CoordT = int
64 if Dimensions == 2, CoordT = int2
65 if Dimensions == 3, CoordT = int4 */
66 template <typename CoordT> DataT read(const CoordT& coords) const noexcept;
67
68 /* Available only when: (AccessMode == access_mode::write ||
69 AccessMode == access_mode::read_write)
70 if Dimensions == 1, CoordT = int
71 if Dimensions == 2, CoordT = int2
72 if Dimensions == 3, CoordT = int4 */
73 template <typename CoordT>
74 void write(const CoordT& coords, const DataT& color) const;
75 };
76
77 } // namespace sycl

Table 81. Member types of the unsampled image classes

SYCL 2020 rev 9 4.7.6.13.1. Interface for unsampled image accessors

Chapter 4. SYCL programming interface | 207

Member types Description

value_type
If the accessor is read-only, equal
to const DataT, otherwise equal to
DataT.

See Section 4.7.6.13.2 for which
accessors are considered read-only.

reference
Equal to value_type&.

const_reference
Equal to const DataT&.

Table 82. Constructors of the unsampled_image_accessor class

Constructor Description

template <typename AllocatorT>
unsampled_image_accessor(unsampled_image<Dimensions,
AllocatorT>& imageRef,
 handler& commandGroupHandlerRef,
 const property_list& propList =
{})

Constructs an unsampled_image_ac
cessor for accessing an unsam
pled_image within a command on
the queue associated with command
GroupHandlerRef. The optional prop
erty_list provides properties for
the constructed object.

If AccessTarget is image_tar
get::device, throws an exception
with the errc::feature_not_sup
ported error code if the device
associated with commandGroupHan
dlerRef does not have
aspect::image.

Table 83. Constructors of the host_unsampled_image_accessor class

Constructor Description

template <typename AllocatorT>
host_unsampled_image_accessor(unsampled_image<Dimensions,
AllocatorT>& imageRef,
 const property_list& propList
= {})

Constructs a host_unsampled_im
age_accessor for accessing an
unsampled_image immediately on
the host. The optional proper
ty_list provides properties for the
constructed object.

Table 84. Member functions of the unsampled image classes

Member function Description

size_t size() const noexcept
Returns the number of elements of
the underlying unsampled_image
that this accessor is accessing.

4.7.6.13.1. Interface for unsampled image accessors SYCL 2020 rev 9

208 | Chapter 4. SYCL programming interface

Member function Description

template <typename CoordT> DataT read(const CoordT& coords)
const

Available only when (AccessMode
== access_mode::read || Access
Mode == access_mode::read_write).

Reads and returns an element of
the unsampled_image at the coordi
nates specified by coords. Permit
ted types for CoordT are int when
Dimensions == 1, int2 when Dimen
sions == 2 and int4 when Dimen
sions == 3.

For unsampled_image_accessor, this
function may only be called from
within a command.

template <typename CoordT>
void write(const CoordT& coords, const DataT& color) const

Available only when (AccessMode
== access_mode::write || Access
Mode == access_mode::read_write).

Writes the value specified by color
to the element of the image at the
coordinates specified by coords.
Permitted types for CoordT are int
when Dimensions == 1, int2 when
Dimensions == 2 and int4 when
Dimensions == 3.

For unsampled_image_accessor, this
function may only be called from
within a command.

4.7.6.13.2. Read only unsampled image accessors and implicit conversions

All specializations of unsampled image accessors with access_mode::read are read-only regardless of
whether DataT is const qualified. There is an implicit conversion between the const qualified and non-
const qualified specializations, provided that all other template parameters are the same.

4.7.6.14. Sampled image accessors

There are two classes which implement accessors for sampled images, sampled_image_accessor and
host_sampled_image_accessor. The former provides access from within a SYCL kernel function or from
within a host task. The latter provides access from host code that is outside of a host task.

The dimensionality of a sampled image accessor must match the dimensionality of the underlying image
to which it provides access. Sampled image accessors are always read-only.

The AccessTarget template parameter dictates how the sampled_image_accessor can be used: image_tar
get::device means the accessor can be used in a SYCL kernel function while image_target::host_task
means the accessor can be used in a host task. Programs which specify this template parameter as
image_target::device and then use the sampled_image_accessor from a host task are ill formed. Likewise,
programs which specify this template parameter as image_target::host_task and then use the sam
pled_image_accessor from a SYCL kernel function are ill formed.

4.7.6.14.1. Interface for sampled image accessors

A synopsis of the two sampled image accessor classes is provided below. Both classes have member

SYCL 2020 rev 9 4.7.6.13.2. Read only unsampled image accessors and implicit conversions

Chapter 4. SYCL programming interface | 209

types with the same name, which are described in Table 85. The constructors for the two classes are
described in Table 86 and Table 87. Both classes also have member functions with the same name, which
are described in Table 88.

The additional common special member functions and common member functions are listed in Section
4.5.2 in Table 7 and Table 8, respectively. For valid implicit conversions between sampled accessor types
refer to Section 4.7.6.14.2.

Two sampled_image_accessor objects of the same type must be equality comparable in both the host code
and in SYCL kernel functions. Two host_sampled_image_accessor objects of the same type must be equality
comparable in the host code.

 1 namespace sycl {
 2
 3 enum class image_target : /* unspecified */ { device, host_task };
 4
 5 template <typename DataT, int Dimensions,
 6 image_target AccessTarget = image_target::device>
 7 class sampled_image_accessor {
 8 public:
 9 using value_type = const DataT;
10 using reference = const DataT&;
11 using const_reference = const DataT&;
12
13 template <typename AllocatorT>
14 sampled_image_accessor(sampled_image<Dimensions, AllocatorT>& imageRef,
15 handler& commandGroupHandlerRef,
16 const property_list& propList = {});
17
18
19 /* -- common interface members -- */
20
21 /* -- property interface members -- */
22
23 size_t size() const noexcept;
24
25 /* if Dimensions == 1, CoordT = float
26 if Dimensions == 2, CoordT = float2
27 if Dimensions == 3, CoordT = float4 */
28 template <typename CoordT> DataT read(const CoordT& coords) const noexcept;
29 };
30
31 template <typename DataT, int Dimensions> class host_sampled_image_accessor {
32 public:
33 using value_type = const DataT;
34 using reference = const DataT&;
35 using const_reference = const DataT&;
36
37 template <typename AllocatorT>
38 host_sampled_image_accessor(sampled_image<Dimensions, AllocatorT>& imageRef,
39 const property_list& propList = {});
40
41 /* -- common interface members -- */
42
43 /* -- property interface members -- */
44

4.7.6.14.1. Interface for sampled image accessors SYCL 2020 rev 9

210 | Chapter 4. SYCL programming interface

45 size_t size() const noexcept;
46
47 /* if Dimensions == 1, CoordT = float
48 if Dimensions == 2, CoordT = float2
49 if Dimensions == 3, CoordT = float4 */
50 template <typename CoordT> DataT read(const CoordT& coords) const noexcept;
51 };
52
53 } // namespace sycl

Table 85. Member types of the sampled image classes

Member types Description

value_type
Equal to const DataT.

reference
Equal to const DataT&.

const_reference
Equal to const DataT&.

Table 86. Constructors of the sampled_image_accessor class

Constructor Description

template <typename AllocatorT>
sampled_image_accessor(sampled_image<Dimensions,
AllocatorT>& imageRef,
 handler& commandGroupHandlerRef,
 const property_list& propList = {})

Constructs a sampled_image_acces
sor for accessing a sampled_image
within a command on the queue
associated with commandGroupHan
dlerRef. The optional property_list
provides properties for the con
structed object.

If AccessTarget is image_tar
get::device, throws an exception
with the errc::feature_not_sup
ported error code if the device
associated with commandGroupHan
dlerRef does not have
aspect::image.

Table 87. Constructors of the host_sampled_image_accessor class

Constructor Description

template <typename AllocatorT>
host_sampled_image_accessor(sampled_image<Dimensions,
AllocatorT>& imageRef,
 const property_list& propList =
{})

Constructs a host_sampled_im
age_accessor for accessing a sam
pled_image immediately on the
host. The optional property_list
provides properties for the con
structed object.

Table 88. Member functions of the sampled image classes

SYCL 2020 rev 9 4.7.6.14.1. Interface for sampled image accessors

Chapter 4. SYCL programming interface | 211

Member function Description

size_t size() const noexcept
Returns the number of elements of
the underlying sampled_image that
this accessor is accessing.

template <typename CoordT> DataT read(const CoordT& coords)
const

Reads and returns a sampled ele
ment of the sampled_image at the
coordinates specified by coords.
Permitted types for CoordT are
float when Dimensions == 1, float2
when Dimensions == 2 and float4
when Dimensions == 3.

For sampled_image_accessor, this
function may only be called from
within a command.

4.7.6.14.2. Read only sampled image accessors and implicit conversions

All specializations of sampled image accessors are read-only regardless of whether DataT is const quali
fied. There is an implicit conversion between the const qualified and non-const qualified specializations,
provided that all other template parameters are the same.

4.7.7. Address space classes

In SYCL, there are five different address spaces: global, local, constant, private and generic. In a SYCL
generic implementation, types are not affected by the address spaces. However, there are situations
where users need to explicitly carry address spaces in the type. For example:

• For performance tuning and genericness. Even if the platform supports the representation of the
generic address space, this may come at some performance sacrifice. In order to help the target com
piler, it can be useful to track specifically which address space a pointer is addressing.

• When linking SYCL kernels with SYCL backend-specific functions. In this case, it might be necessary
to specify the address space for any pointer parameters.

Direct declaration of pointers with address spaces is discouraged as the definition is implementation-
defined. Users must rely on the multi_ptr class to handle address space boundaries and interoperability.

4.7.7.1. Multi-pointer class

The multi-pointer class is the common interface for the explicit pointer classes, defined in Section 4.7.7.2.

There are situations where a user may want to make their type address space dependent. This allows
performing generic programming that depends on the address space associated with their data. An
example might be wrapping a pointer inside a class, where a user may need to template the class accord
ing to the address space of the pointer the class is initialized with. In this case, the multi_ptr class
enables users to do this in a portable and stable way.

The multi_ptr class exposes 3 flavors of the same interface. If the value of access::decorated is
access::decorated::no, the interface exposes pointers and references type that are not decorated by an
address space. If the value of access::decorated is access::decorated::yes, the interface exposes pointers
and references type that are decorated by an address space. The decoration is implementation depen
dent and relies on device compiler extensions. The decorated type may be distinct from the non-deco
rated one. For interoperability with the SYCL backend, users should rely on types exposed by the deco
rated version. If the value of access::decorated is access::decorated::legacy, the 1.2.1 interface is
exposed. This interface is deprecated.

4.7.6.14.2. Read only sampled image accessors and implicit conversions SYCL 2020 rev 9

212 | Chapter 4. SYCL programming interface

The template traits remove_decoration and type alias remove_decoration_t retrieve the non-decorated
pointer or reference from a decorated one. Using this template trait with a non-decorated type is safe
and returns the same type.

It is possible to use the void type for the multi_ptr class, but in that case some functionality is disabled.
multi_ptr<void> does not provide the reference or const_reference types, the access operators (opera
tor*(), operator->()), the arithmetic operators or prefetch member function. Conversions from multi
_ptr to multi_ptr<void> of the same address space are allowed, and will occur implicitly. Conversions
from multi_ptr<void> to any other multi_ptr type of the same address space are allowed, but must be
explicit. The same rules apply to multi_ptr<const void>.

An overview of the interface provided for the multi_ptr class follows.

 1 namespace sycl {
 2 namespace access {
 3
 4 enum class address_space : /* unspecified */ {
 5 global_space,
 6 local_space,
 7 constant_space, // Deprecated in SYCL 2020
 8 private_space,
 9 generic_space
 10 };
 11
 12 enum class decorated : /* unspecified */ {
 13 no,
 14 yes,
 15 legacy // Deprecated in SYCL 2020
 16 };
 17
 18 } // namespace access
 19
 20 template <typename T> struct remove_decoration {
 21 using type = /* ... */;
 22 };
 23
 24 template <typename T> using remove_decoration_t = remove_decoration<T>::type;
 25
 26 template <typename ElementType, access::address_space Space,
 27 access::decorated DecorateAddress = access::decorated::legacy>
 28 class multi_ptr {
 29 public:
 30 static constexpr bool is_decorated =
 31 DecorateAddress == access::decorated::yes;
 32 static constexpr access::address_space address_space = Space;
 33
 34 using value_type = ElementType;
 35 using pointer = std::conditional_t<is_decorated, __unspecified__*,
 36 std::add_pointer_t<value_type>>;
 37 using reference = std::conditional_t<is_decorated, __unspecified__&,
 38 std::add_lvalue_reference_t<value_type>>;
 39 using iterator_category = std::random_access_iterator_tag;
 40 using difference_type = std::ptrdiff_t;
 41
 42 static_assert(std::is_same_v<remove_decoration_t<pointer>,
 43 std::add_pointer_t<value_type>>);

SYCL 2020 rev 9 4.7.7.1. Multi-pointer class

Chapter 4. SYCL programming interface | 213

 44 static_assert(std::is_same_v<remove_decoration_t<reference>,
 45 std::add_lvalue_reference_t<value_type>>);
 46 // Legacy has a different interface.
 47 static_assert(DecorateAddress != access::decorated::legacy);
 48
 49 // Constructors
 50 multi_ptr();
 51 multi_ptr(const multi_ptr&);
 52 multi_ptr(multi_ptr&&);
 53 explicit multi_ptr(
 54 typename multi_ptr<ElementType, Space, access::decorated::yes>::pointer);
 55 multi_ptr(std::nullptr_t);
 56
 57 // Available only when:
 58 // (Space == access::address_space::global_space ||
 59 // Space == access::address_space::generic_space) &&
 60 // (std::is_same_v<std::remove_const_t<ElementType>, std::remove_const_t<AccDataT>>) &&
 61 // (std::is_const_v<ElementType> ||
 62 // !std::is_const_v<accessor<AccDataT, Dimensions, Mode, target::device,
 63 // IsPlaceholder>::value_type>)
 64 template <typename AccDataT, int Dimensions, access_mode Mode,
 65 access::placeholder IsPlaceholder>
 66 multi_ptr(
 67 accessor<AccDataT, Dimensions, Mode, target::device, IsPlaceholder>);
 68
 69 // Available only when:
 70 // (Space == access::address_space::local_space ||
 71 // Space == access::address_space::generic_space) &&
 72 // (std::is_same_v<std::remove_const_t<ElementType>, std::remove_const_t<AccDataT>>) &&
 73 // (std::is_const_v<ElementType> || !std::is_const_v<AccDataT>)
 74 template <typename AccDataT, int Dimensions>
 75 multi_ptr(local_accessor<AccDataT, Dimensions>);
 76
 77 // Deprecated
 78 // Available only when:
 79 // (Space == access::address_space::local_space ||
 80 // Space == access::address_space::generic_space) &&
 81 // (std::is_same_v<std::remove_const_t<ElementType>, std::remove_const_t<AccDataT>>) &&
 82 // (std::is_const_v<ElementType> || !std::is_const_v<AccDataT>)
 83 template <typename AccDataT, int Dimensions, access_mode Mode,
 84 access::placeholder IsPlaceholder>
 85 multi_ptr(
 86 accessor<AccDataT, Dimensions, Mode, target::local, IsPlaceholder>);
 87
 88 // Deprecated
 89 // Available only when:
 90 // Space == access::address_space::constant_space &&
 91 // (std::is_same_v<std::remove_const_t<ElementType>, std::remove_const_t<AccDataT>>) &&
 92 // (std::is_const_v<ElementType> || !std::is_const_v<AccDataT>)
 93 template <typename AccDataT, int Dimensions, access::placeholder IsPlaceholder>
 94 multi_ptr(
 95 accessor<AccDataT, Dimensions, access_mode::read, target::constant_buffer,
 IsPlaceholder>);
 96
 97 // Assignment and access operators
 98 multi_ptr& operator=(const multi_ptr&);

4.7.7.1. Multi-pointer class SYCL 2020 rev 9

214 | Chapter 4. SYCL programming interface

 99 multi_ptr& operator=(multi_ptr&&);
100 multi_ptr& operator=(std::nullptr_t);
101
102 // Available only when:
103 // (Space == access::address_space::generic_space &&
104 // AS != access::address_space::constant_space)
105 template <access::address_space AS, access::decorated IsDecorated>
106 multi_ptr& operator=(const multi_ptr<value_type, AS, IsDecorated>&);
107
108 // Available only when:
109 // (Space == access::address_space::generic_space &&
110 // AS != access::address_space::constant_space)
111 template <access::address_space AS, access::decorated IsDecorated>
112 multi_ptr& operator=(multi_ptr<value_type, AS, IsDecorated>&&);
113
114 reference operator[](std::ptrdiff_t) const;
115
116 reference operator*() const;
117 pointer operator->() const;
118
119 pointer get() const;
120 std::add_pointer_t<value_type> get_raw() const;
121 __unspecified__* get_decorated() const;
122
123 // Conversion to the underlying pointer type
124 // Deprecated, get() should be used instead.
125 operator pointer() const;
126
127 // Cast to private_ptr
128 // Available only when: (Space == access::address_space::generic_space)
129 template <access::decorated IsDecorated>
130 explicit operator multi_ptr<value_type, access::address_space::private_space,
131 IsDecorated>() const;
132
133 // Cast to private_ptr of const data
134 // Available only when: (Space == access::address_space::generic_space)
135 template <access::decorated IsDecorated>
136 explicit operator multi_ptr<const value_type, access::address_space::private_space,
137 IsDecorated>() const;
138
139 // Cast to global_ptr
140 // Available only when: (Space == access::address_space::generic_space)
141 template <access::decorated IsDecorated>
142 explicit operator multi_ptr<value_type, access::address_space::global_space,
143 IsDecorated>() const;
144
145 // Cast to global_ptr of const data
146 // Available only when: (Space == access::address_space::generic_space)
147 template <access::decorated IsDecorated>
148 explicit operator multi_ptr<const value_type, access::address_space::global_space,
149 IsDecorated>() const;
150
151 // Cast to local_ptr
152 // Available only when: (Space == access::address_space::generic_space)
153 template <access::decorated IsDecorated>
154 explicit operator multi_ptr<value_type, access::address_space::local_space,

SYCL 2020 rev 9 4.7.7.1. Multi-pointer class

Chapter 4. SYCL programming interface | 215

155 IsDecorated>() const;
156
157 // Cast to local_ptr of const data
158 // Available only when: (Space == access::address_space::generic_space)
159 template <access::decorated IsDecorated>
160 explicit operator multi_ptr<const value_type, access::address_space::local_space,
161 IsDecorated>() const;
162
163 // Implicit conversion to a multi_ptr<void>.
164 // Available only when: (!std::is_const_v<value_type>)
165 template <access::decorated IsDecorated>
166 operator multi_ptr<void, Space, IsDecorated>() const;
167
168 // Implicit conversion to a multi_ptr<const void>.
169 // Available only when: (std::is_const_v<value_type>)
170 template <access::decorated IsDecorated>
171 operator multi_ptr<const void, Space, IsDecorated>() const;
172
173 // Implicit conversion to multi_ptr<const value_type, Space>.
174 template <access::decorated IsDecorated>
175 operator multi_ptr<const value_type, Space, IsDecorated>() const;
176
177 // Implicit conversion to the non-decorated version of multi_ptr.
178 // Available only when: (is_decorated == true)
179 operator multi_ptr<value_type, Space, access::decorated::no>() const;
180
181 // Implicit conversion to the decorated version of multi_ptr.
182 // Available only when: (is_decorated == false)
183 operator multi_ptr<value_type, Space, access::decorated::yes>() const;
184
185 // Available only when: (Space == address_space::global_space)
186 void prefetch(size_t numElements) const;
187
188 // Arithmetic operators
189 friend multi_ptr& operator++(multi_ptr& mp) { /* ... */
190 }
191 friend multi_ptr operator++(multi_ptr& mp, int) { /* ... */
192 }
193 friend multi_ptr& operator--(multi_ptr& mp) { /* ... */
194 }
195 friend multi_ptr operator--(multi_ptr& mp, int) { /* ... */
196 }
197 friend multi_ptr& operator+=(multi_ptr& lhs, difference_type r) { /* ... */
198 }
199 friend multi_ptr& operator-=(multi_ptr& lhs, difference_type r) { /* ... */
200 }
201 friend multi_ptr operator+(const multi_ptr& lhs,
202 difference_type r) { /* ... */
203 }
204 friend multi_ptr operator-(const multi_ptr& lhs,
205 difference_type r) { /* ... */
206 }
207 friend reference operator*(const multi_ptr& lhs) { /* ... */
208 }
209
210 friend bool operator==(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */

4.7.7.1. Multi-pointer class SYCL 2020 rev 9

216 | Chapter 4. SYCL programming interface

211 }
212 friend bool operator!=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
213 }
214 friend bool operator<(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
215 }
216 friend bool operator>(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
217 }
218 friend bool operator<=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
219 }
220 friend bool operator>=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
221 }
222
223 friend bool operator==(const multi_ptr& lhs, std::nullptr_t) { /* ... */
224 }
225 friend bool operator!=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
226 }
227 friend bool operator<(const multi_ptr& lhs, std::nullptr_t) { /* ... */
228 }
229 friend bool operator>(const multi_ptr& lhs, std::nullptr_t) { /* ... */
230 }
231 friend bool operator<=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
232 }
233 friend bool operator>=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
234 }
235
236 friend bool operator==(std::nullptr_t, const multi_ptr& rhs) { /* ... */
237 }
238 friend bool operator!=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
239 }
240 friend bool operator<(std::nullptr_t, const multi_ptr& rhs) { /* ... */
241 }
242 friend bool operator>(std::nullptr_t, const multi_ptr& rhs) { /* ... */
243 }
244 friend bool operator<=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
245 }
246 friend bool operator>=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
247 }
248 };
249
250 // Specialization of multi_ptr for void and const void
251 // VoidType can be either void or const void
252 template <access::address_space Space, access::decorated DecorateAddress>
253 class multi_ptr<VoidType, Space, DecorateAddress> {
254 public:
255 static constexpr bool is_decorated =
256 DecorateAddress == access::decorated::yes;
257 static constexpr access::address_space address_space = Space;
258
259 using value_type = VoidType;
260 using pointer = std::conditional_t<is_decorated, __unspecified__*,
261 std::add_pointer_t<value_type>>;
262 using difference_type = std::ptrdiff_t;
263
264 static_assert(std::is_same_v<remove_decoration_t<pointer>,
265 std::add_pointer_t<value_type>>);
266 // Legacy has a different interface.

SYCL 2020 rev 9 4.7.7.1. Multi-pointer class

Chapter 4. SYCL programming interface | 217

267 static_assert(DecorateAddress != access::decorated::legacy);
268
269 // Constructors
270 multi_ptr();
271 multi_ptr(const multi_ptr&);
272 multi_ptr(multi_ptr&&);
273 explicit multi_ptr(
274 typename multi_ptr<VoidType, Space, access::decorated::yes>::pointer);
275 multi_ptr(std::nullptr_t);
276
277 // Available only when:
278 // (Space == access::address_space::global_space ||
279 // Space == access::address_space::generic_space) &&
280 // (std::is_const_v<VoidType> ||
281 // !std::is_const_v<accessor<ElementType, Dimensions, Mode, target::device,
282 // IsPlaceholder>::value_type>)
283 template <typename ElementType, int Dimensions, access_mode Mode,
284 access::placeholder IsPlaceholder>
285 multi_ptr(
286 accessor<ElementType, Dimensions, Mode, target::device, IsPlaceholder>);
287
288 // Available only when:
289 // (Space == access::address_space::local_space ||
290 // Space == access::address_space::generic_space) &&
291 // (std::is_const_v<VoidType> || !std::is_const_v<ElementType>)
292 template <typename ElementType, int Dimensions>
293 multi_ptr(local_accessor<ElementType, Dimensions>);
294
295 // Deprecated
296 // Available only when:
297 // (Space == access::address_space::local_space ||
298 // Space == access::address_space::generic_space) &&
299 // (std::is_const_v<VoidType> || !std::is_const_v<ElementType>)
300 template <typename ElementType, int Dimensions, access_mode Mode,
301 access::placeholder IsPlaceholder>
302 multi_ptr(
303 accessor<ElementType, Dimensions, Mode, target::local, IsPlaceholder>);
304
305 // Deprecated
306 // Available only when:
307 // Space == access::address_space::constant_space &&
308 // (std::is_const_v<VoidType> || !std::is_const_v<ElementType>)
309 template <typename ElementType, int Dimensions, access::placeholder IsPlaceholder>
310 multi_ptr(
311 accessor<ElementType, Dimensions, access_mode::read, target::constant_buffer,
 IsPlaceholder>);
312
313 // Assignment operators
314 multi_ptr& operator=(const multi_ptr&);
315 multi_ptr& operator=(multi_ptr&&);
316 multi_ptr& operator=(std::nullptr_t);
317
318 pointer get() const;
319
320 // Conversion to the underlying pointer type
321 operator pointer() const;

4.7.7.1. Multi-pointer class SYCL 2020 rev 9

218 | Chapter 4. SYCL programming interface

322
323 // Explicit conversion to a multi_ptr<ElementType>
324 // Available only when: (std::is_const_v<ElementType> || !std::is_const_v<VoidType>)
325 template <typename ElementType>
326 explicit operator multi_ptr<ElementType, Space, DecorateAddress>() const;
327
328 // Implicit conversion to the non-decorated version of multi_ptr.
329 // Available only when: (is_decorated == true)
330 operator multi_ptr<value_type, Space, access::decorated::no>() const;
331
332 // Implicit conversion to the decorated version of multi_ptr.
333 // Available only when: (is_decorated == false)
334 operator multi_ptr<value_type, Space, access::decorated::yes>() const;
335
336 // Implicit conversion to multi_ptr<const void, Space>
337 operator multi_ptr<const void, Space, DecorateAddress>() const;
338
339 friend bool operator==(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
340 }
341 friend bool operator!=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
342 }
343 friend bool operator<(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
344 }
345 friend bool operator>(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
346 }
347 friend bool operator<=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
348 }
349 friend bool operator>=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
350 }
351
352 friend bool operator==(const multi_ptr& lhs, std::nullptr_t) { /* ... */
353 }
354 friend bool operator!=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
355 }
356 friend bool operator<(const multi_ptr& lhs, std::nullptr_t) { /* ... */
357 }
358 friend bool operator>(const multi_ptr& lhs, std::nullptr_t) { /* ... */
359 }
360 friend bool operator<=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
361 }
362 friend bool operator>=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
363 }
364
365 friend bool operator==(std::nullptr_t, const multi_ptr& rhs) { /* ... */
366 }
367 friend bool operator!=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
368 }
369 friend bool operator<(std::nullptr_t, const multi_ptr& rhs) { /* ... */
370 }
371 friend bool operator>(std::nullptr_t, const multi_ptr& rhs) { /* ... */
372 }
373 friend bool operator<=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
374 }
375 friend bool operator>=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
376 }
377 };

SYCL 2020 rev 9 4.7.7.1. Multi-pointer class

Chapter 4. SYCL programming interface | 219

378
379 // Deprecated, address_space_cast should be used instead.
380 template <typename ElementType, access::address_space Space,
381 access::decorated DecorateAddress>
382 multi_ptr<ElementType, Space, DecorateAddress> make_ptr(ElementType*);
383
384 template <access::address_space Space, access::decorated DecorateAddress,
385 typename ElementType>
386 multi_ptr<ElementType, Space, DecorateAddress> address_space_cast(ElementType*);
387
388 // Deduction guides
389 template <typename T, int Dimensions, access::placeholder IsPlaceholder>
390 multi_ptr(accessor<T, Dimensions, access_mode::read, target::device, IsPlaceholder>)
391 -> multi_ptr<const T, access::address_space::global_space, access::decorated::no>;
392
393 template <typename T, int Dimensions, access::placeholder IsPlaceholder>
394 multi_ptr(accessor<T, Dimensions, access_mode::write, target::device, IsPlaceholder>)
395 -> multi_ptr<T, access::address_space::global_space, access::decorated::no>;
396
397 template <typename T, int Dimensions, access::placeholder IsPlaceholder>
398 multi_ptr(accessor<T, Dimensions, access_mode::read_write, target::device, IsPlaceholder>)
399 -> multi_ptr<T, access::address_space::global_space, access::decorated::no>;
400
401 template <typename T, int Dimensions, access::placeholder IsPlaceholder>
402 multi_ptr(accessor<T, Dimensions, access_mode::read, target::constant_buffer,
 IsPlaceholder>)
403 -> multi_ptr<const T, access::address_space::constant_space, access::decorated::no>;
404
405 template <typename T, int Dimensions, access_mode Mode, access::placeholder IsPlaceholder>
406 multi_ptr(accessor<T, Dimensions, Mode, target::local, IsPlaceholder>)
407 -> multi_ptr<T, access::address_space::local_space, access::decorated::no>;
408
409 template <typename T, int Dimensions>
410 multi_ptr(local_accessor<T, Dimensions>)
411 -> multi_ptr<T, access::address_space::local_space, access::decorated::no>;
412
413 } // namespace sycl

Table 89. Constructors of the SYCL multi_ptr class template

Constructor Description

multi_ptr()
Default constructor.

multi_ptr(const multi_ptr&)
Copy constructor.

multi_ptr(multi_ptr&&)
Move constructor.

explicit
multi_ptr(multi_ptr<ElementType, Space,
 access::decorated::yes>::pointer)

Constructor that takes as an argu
ment a decorated pointer.

4.7.7.1. Multi-pointer class SYCL 2020 rev 9

220 | Chapter 4. SYCL programming interface

Constructor Description

multi_ptr(std::nullptr_t)
Constructor from a nullptr.

template <typename AccDataT, int Dimensions,
 access_mode Mode,
 access::placeholder IsPlaceholder>
multi_ptr(accessor<AccDataT, Dimensions, Mode,
 target::device, IsPlaceholder>)

Available only when: (Space ==
access::address_space::global_
space || Space ==
access::address_space::generic_
space) && (std::is_void_v<Ele
mentType> ||
std::is_same_v<std::remove_con
st_t<ElementType>, std::remove_
const_t<AccDataT>>) && (std::is_
const_v<ElementType> ||
!std::is_const_v<accessor<Acc
DataT, Dimensions, Mode, tar
get::device, IsPlaceholder>::val
ue_type>).

Constructs a multi_ptr from an
accessor of target::device.

This constructor may only be
called from within a command.

template <typename AccDataT, int Dimensions>
multi_ptr(local_accessor<AccDataT, Dimensions>)

Available only when: (Space ==
access::address_space::local_
space || Space ==
access::address_space::generic_
space) && (std::is_void_v<Ele
mentType> ||
std::is_same_v<std::remove_con
st_t<ElementType>, std::remove_
const_t<AccDataT>>) && (std::is_
const_v<ElementType> ||
!std::is_const_v<AccDataT>).

Constructs a multi_ptr from a
local_accessor.

This constructor may only be
called from within a command.

SYCL 2020 rev 9 4.7.7.1. Multi-pointer class

Chapter 4. SYCL programming interface | 221

Constructor Description

template <typename AccDataT, int Dimensions,
 access_mode Mode,
 access::placeholder IsPlaceholder>
multi_ptr(accessor<AccDataT, Dimensions, Mode,
 target::local, IsPlaceholder>)

Deprecated in SYCL 2020. Use the
overload with local_accessor
instead.

Available only when: (Space ==
access::address_space::local_
space || Space ==
access::address_space::generic_
space) && (std::is_void_v<Ele
mentType> ||
std::is_same_v<std::remove_con
st_t<ElementType>, std::remove_
const_t<AccDataT>>) && (std::is_
const_v<ElementType> ||
!std::is_const_v<AccDataT>).

Constructs a multi_ptr from an
accessor of target::local.

This constructor may only be
called from within a command.

template <typename ElementType,
 access::address_space Space,
 access::decorated DecorateAddress>
multi_ptr<ElementType, Space, DecorateAddress>
make_ptr(ElementType* pointer)

Deprecated in SYCL 2020. Use
address_space_cast instead.

Global function to create a multi
_ptr instance depending on the
address space of the pointer argu
ment. An implementation must
return nullptr if the run-time
value of pointer is not compatible
with Space, and must issue a com
pile-time diagnostic if the deduced
address space is not compatible
with Space.

template <access::address_space Space,
 access::decorated DecorateAddress,
 typename ElementType>
multi_ptr<ElementType, Space, DecorateAddress>
address_space_cast(ElementType* pointer)

Global function to create a multi
_ptr instance from pointer, using
the address space and decoration
specified via the Space and Deco
rateAddress template arguments.

An implementation must return
nullptr if the run-time value of
pointer is not compatible with
Space, and must issue a compile-
time diagnostic if the deduced
address space for pointer is not
compatible with Space.

Table 90. Operators of multi_ptr class

Operators Description

multi_ptr& operator=(const multi_ptr&)
Copy assignment operator.

4.7.7.1. Multi-pointer class SYCL 2020 rev 9

222 | Chapter 4. SYCL programming interface

Operators Description

multi_ptr& operator=(multi_ptr&&)
Move assignment operator.

multi_ptr& operator=(std::nullptr_t)
Assigns nullptr to the multi_ptr.

template <access::address_space AS,
 access::decorated IsDecorated>
multi_ptr&
operator=(const multi_ptr<value_type, AS, IsDecorated>&)

Available only when: (Space ==
access::address_space::generic_
space && AS != access::address_
space::constant_space).

Assigns the value of the left hand
side multi_ptr into the generic_ptr.

template<access::address_space AS,
 access::decorated IsDecorated>
multi_ptr&
operator=(multi_ptr<value_type, AS, IsDecorated>&&)

Available only when: (Space ==
access::address_space::generic_
space && AS != access::address_
space::constant_space).

Move the value of the left hand
side multi_ptr into the generic_ptr.

reference operator[](std::ptrdiff_t i) const
Available only when:
(!std::is_void_v<value_type>).

Returns a reference to the i-th
pointed value. The value i can be
negative.

pointer operator->() const
Available only when:
(!std::is_void_v<value_type>).

Returns the underlying pointer.

reference operator*() const
Available only when:
(!std::is_void_v<value_type>).

Returns a reference to the pointed
value.

operator pointer() const
Implicit conversion to the underly
ing pointer type. Deprecated: The
member function get should be
used instead

template <access::decorated IsDecorated>
explicit
operator multi_ptr<value_type,
 access::address_space::private_space,
 IsDecorated>() const

Available only when: (Space ==
access::address_space::generic_
space).

Conversion from generic_ptr to
private_ptr. The result is unde
fined if the pointer does not
address the private address space.

SYCL 2020 rev 9 4.7.7.1. Multi-pointer class

Chapter 4. SYCL programming interface | 223

Operators Description

template <access::decorated IsDecorated>
explicit
operator multi_ptr<const value_type,
 access::address_space::private_space,
 IsDecorated>() const

Available only when: (Space ==
access::address_space::generic_
space).

Conversion from generic_ptr to
private_ptr of const data. The
result is undefined if the pointer
does not address the private
address space.

template <access::decorated IsDecorated>
explicit
operator multi_ptr<value_type,
 access::address_space::global_space,
 IsDecorated>() const

Available only when: (Space ==
access::address_space::generic_
space).

Conversion from generic_ptr to
global_ptr. The result is undefined
if the pointer does not address the
global address space.

template <access::decorated IsDecorated>
explicit
operator multi_ptr<const value_type,
 access::address_space::global_space,
 IsDecorated>() const

Available only when: (Space ==
access::address_space::generic_
space).

Conversion from generic_ptr to
global_ptr of const data. The result
is undefined if the pointer does not
address the global address space.

template <access::decorated IsDecorated>
explicit
operator multi_ptr<value_type,
 access::address_space::local_space,
 IsDecorated>() const

Available only when: (Space ==
access::address_space::generic_
space).

Conversion from generic_ptr to
local_ptr. The result is undefined
if the pointer does not address the
local address space.

template <access::decorated IsDecorated>
explicit
operator multi_ptr<const value_type,
 access::address_space::local_space,
 IsDecorated>() const

Available only when: (Space ==
access::address_space::generic_
space).

Conversion from generic_ptr to
local_ptr of const data. The result
is undefined if the pointer does not
address the local address space.

template <access::decorated IsDecorated>
operator multi_ptr<void, Space, IsDecorated>() const

Available only when:
(!std::is_void_v<value_type> &&
!std::is_const_v<value_type>).

Implicit conversion to a multi_ptr
of type void.

template <access::decorated IsDecorated>
operator multi_ptr<const void, Space, IsDecorated>() const

Available only when:
(!std::is_void_v<value_type> &&
std::is_const_v<value_type>).

Implicit conversion to a multi_ptr
of type const void.

4.7.7.1. Multi-pointer class SYCL 2020 rev 9

224 | Chapter 4. SYCL programming interface

Operators Description

template <access::decorated IsDecorated>
operator multi_ptr<const value_type, Space,
 IsDecorated>() const

Implicit conversion to a multi_ptr
of type const value_type.

operator multi_ptr<value_type, Space,
 access::decorated::no>() const

Available only when: (is_decorated
== true).

Implicit conversion to the equiva
lent multi_ptr object that does not
expose decorated pointers or refer
ences.

operator multi_ptr<value_type, Space,
 access::decorated::yes>() const

Available only when: (is_decorated
== false).

Implicit conversion to the equiva
lent multi_ptr object that exposes
decorated pointers and references.

Table 91. Member functions of multi_ptr class

Member function Description

pointer get() const
Returns the underlying pointer.
Whether the pointer is decorated
depends on the value of Deco
rateAddress.

__unspecified__* get_decorated() const
Returns the underlying pointer
decorated by the address space
that it addresses. Note that the sup
port involves implementation-
defined device compiler exten
sions.

std::add_pointer_t<value_type> get_raw() const
Returns the underlying pointer,
always undecorated.

void prefetch(size_t numElements) const
Available only when: Space ==
access::address_space::global_
space.

Prefetches a number of elements
specified by numElements into the
global memory cache. This opera
tion is an implementation-defined
optimization and does not effect
the functional behavior of the SYCL
kernel function.

Table 92. Hidden friend functions of the multi_ptr class

SYCL 2020 rev 9 4.7.7.1. Multi-pointer class

Chapter 4. SYCL programming interface | 225

Hidden friend function Description

reference operator*(const multi_ptr& mp)
Available only when:
(!std::is_void_v<ElementType>).

Operator that returns a reference
to the value_type of mp.

multi_ptr& operator++(multi_ptr& mp)
Available only when:
(!std::is_void_v<ElementType>).

Increments mp by 1 and returns mp.

multi_ptr operator++(multi_ptr& mp, int)
Available only when:
(!std::is_void_v<ElementType>).

Increments mp by 1 and returns a
new multi_ptr with the value of
the original mp.

multi_ptr& operator--(multi_ptr& mp)
Available only when:
(!std::is_void_v<ElementType>).

Decrements mp by 1 and returns mp.

multi_ptr operator--(multi_ptr& mp, int)
Available only when:
(!std::is_void_v<ElementType>).

Decrements mp by 1 and returns a
new multi_ptr with the value of
the original mp.

multi_ptr& operator+=(multi_ptr& lhs, difference_type r)
Available only when:
(!std::is_void_v<ElementType>).

Moves mp forward by r and returns
lhs.

multi_ptr& operator-=(multi_ptr& lhs, difference_type r)
Available only when:
(!std::is_void_v<ElementType>).

Moves mp backward by r and
returns lhs.

multi_ptr operator+(const multi_ptr& lhs, difference_type
r)

Available only when:
(!std::is_void_v<ElementType>).

Creates a new multi_ptr that points
r forward compared to lhs.

multi_ptr operator-(const multi_ptr& lhs, difference_type
r)

Available only when:
(!std::is_void_v<ElementType>).

Creates a new multi_ptr that points
r backward compared to lhs.

bool operator==(const multi_ptr& lhs, const multi_ptr& rhs)
Comparison operator == for multi
_ptr class.

bool operator!=(const multi_ptr& lhs, const multi_ptr& rhs)
Comparison operator != for multi
_ptr class.

4.7.7.1. Multi-pointer class SYCL 2020 rev 9

226 | Chapter 4. SYCL programming interface

Hidden friend function Description

bool operator<(const multi_ptr& lhs, const multi_ptr& rhs)
Comparison operator < for multi
_ptr class.

bool operator>(const multi_ptr& lhs, const multi_ptr& rhs)
Comparison operator > for multi
_ptr class.

bool operator<=(const multi_ptr& lhs, const multi_ptr& rhs)
Comparison operator <= for multi
_ptr class.

bool operator>=(const multi_ptr& lhs, const multi_ptr& rhs)
Comparison operator >= for multi
_ptr class.

bool operator==(const multi_ptr& lhs, std::nullptr_t)
Comparison operator == for multi
_ptr class with a std::nullptr_t.

bool operator!=(const multi_ptr& lhs, std::nullptr_t)
Comparison operator != for multi
_ptr class with a std::nullptr_t.

bool operator<(const multi_ptr& lhs, std::nullptr_t)
Comparison operator < for multi
_ptr class with a std::nullptr_t.

bool operator>(const multi_ptr& lhs, std::nullptr_t)
Comparison operator > for multi
_ptr class with a std::nullptr_t.

bool operator<=(const multi_ptr& lhs, std::nullptr_t)
Comparison operator <= for multi
_ptr class with a std::nullptr_t.

bool operator>=(const multi_ptr& lhs, std::nullptr_t)
Comparison operator >= for multi
_ptr class with a std::nullptr_t.

bool operator==(std::nullptr_t, const multi_ptr& rhs)
Comparison operator == for multi
_ptr class with a std::nullptr_t.

bool operator!=(std::nullptr_t, const multi_ptr& rhs)
Comparison operator != for multi
_ptr class with a std::nullptr_t.

bool operator<(std::nullptr_t, const multi_ptr& rhs)
Comparison operator < for multi
_ptr class with a std::nullptr_t.

bool operator>(std::nullptr_t, const multi_ptr& rhs)
Comparison operator > for multi
_ptr class with a std::nullptr_t.

bool operator<=(std::nullptr_t, const multi_ptr& rhs)
Comparison operator <= for multi
_ptr class with a std::nullptr_t.

bool operator>=(std::nullptr_t, const multi_ptr& rhs)
Comparison operator >= for multi
_ptr class with a std::nullptr_t.

The following is the overview of the legacy interface from 1.2.1 provided for the multi_ptr class.

 1 namespace sycl {
 2
 3 // Legacy interface, inherited from 1.2.1.
 4 // Deprecated.

SYCL 2020 rev 9 4.7.7.1. Multi-pointer class

Chapter 4. SYCL programming interface | 227

 5 template <typename ElementType, access::address_space Space>
 6 class [[deprecated]] multi_ptr<ElementType, Space, access::decorated::legacy> {
 7 public:
 8 using value_type = ElementType;
 9 using element_type = ElementType;
 10 using difference_type = std::ptrdiff_t;
 11
 12 // Implementation defined pointer and reference types that correspond to
 13 // SYCL/OpenCL interoperability types for OpenCL C functions.
 14 using pointer_t =
 15 multi_ptr<ElementType, Space, access::decorated::yes>::pointer;
 16 using const_pointer_t =
 17 multi_ptr<const ElementType, Space, access::decorated::yes>::pointer;
 18 using reference_t =
 19 multi_ptr<ElementType, Space, access::decorated::yes>::reference;
 20 using const_reference_t =
 21 multi_ptr<const ElementType, Space, access::decorated::yes>::reference;
 22
 23 static constexpr access::address_space address_space = Space;
 24
 25 // Constructors
 26 multi_ptr();
 27 multi_ptr(const multi_ptr&);
 28 multi_ptr(multi_ptr&&);
 29 multi_ptr(pointer_t);
 30 multi_ptr(ElementType*);
 31 multi_ptr(std::nullptr_t);
 32 ~multi_ptr();
 33
 34 // Assignment and access operators
 35 multi_ptr& operator=(const multi_ptr&);
 36 multi_ptr& operator=(multi_ptr&&);
 37 multi_ptr& operator=(pointer_t);
 38 multi_ptr& operator=(ElementType*);
 39 multi_ptr& operator=(std::nullptr_t);
 40 friend ElementType& operator*(const multi_ptr& mp) { /* ... */
 41 }
 42 ElementType* operator->() const;
 43
 44 // Available only when:
 45 // (Space == access::address_space::global_space ||
 46 // Space == access::address_space::generic_space) &&
 47 // (std::is_same_v<std::remove_const_t<ElementType>, std::remove_const_t<AccDataT>>) &&
 48 // (std::is_const_v<ElementType> ||
 49 // !std::is_const_v<accessor<AccDataT, Dimensions, Mode, target::device,
 50 // IsPlaceholder>::value_type>)
 51 template <int Dimensions, access_mode Mode, access::placeholder IsPlaceholder>
 52 multi_ptr(
 53 accessor<ElementType, Dimensions, Mode, target::device, IsPlaceholder>);
 54
 55 // Available only when:
 56 // (Space == access::address_space::local_space ||
 57 // Space == access::address_space::generic_space) &&
 58 // (std::is_same_v<std::remove_const_t<ElementType>, std::remove_const_t<AccDataT>>) &&
 59 // (std::is_const_v<ElementType> || !std::is_const_v<AccDataT>)
 60 template <int Dimensions, access_mode Mode, access::placeholder IsPlaceholder>

4.7.7.1. Multi-pointer class SYCL 2020 rev 9

228 | Chapter 4. SYCL programming interface

 61 multi_ptr(
 62 accessor<ElementType, Dimensions, Mode, target::local, IsPlaceholder>);
 63
 64 // Available only when:
 65 // (Space == access::address_space::local_space ||
 66 // Space == access::address_space::generic_space) &&
 67 // (std::is_same_v<std::remove_const_t<ElementType>, std::remove_const_t<AccDataT>>) &&
 68 // (std::is_const_v<ElementType> || !std::is_const_v<AccDataT>)
 69 template <typename AccDataT, int Dimensions>
 70 multi_ptr(local_accessor<AccDataT, Dimensions>);
 71
 72 // Only if Space == constant_space
 73 template <int Dimensions, access_mode Mode, access::placeholder IsPlaceholder>
 74 multi_ptr(accessor<ElementType, Dimensions, Mode, target::constant_buffer,
 75 IsPlaceholder>);
 76
 77 // Returns the underlying OpenCL C pointer
 78 pointer_t get() const;
 79
 80 std::add_pointer_t<value_type> get_raw() const;
 81
 82 pointer_t get_decorated() const;
 83
 84 // Implicit conversion to the underlying pointer type
 85 operator ElementType*() const;
 86
 87 // Implicit conversion to a multi_ptr<void>
 88 // Available only when ElementType is not const-qualified
 89 operator multi_ptr<void, Space, access::decorated::legacy>() const;
 90
 91 // Implicit conversion to a multi_ptr<const void>
 92 // Available only when ElementType is const-qualified
 93 operator multi_ptr<const void, Space, access::decorated::legacy>() const;
 94
 95 // Implicit conversion to multi_ptr<const ElementType, Space>
 96 operator multi_ptr<const ElementType, Space, access::decorated::legacy>()
 97 const;
 98
 99 // Arithmetic operators
100 friend multi_ptr& operator++(multi_ptr& mp) { /* ... */
101 }
102 friend multi_ptr operator++(multi_ptr& mp, int) { /* ... */
103 }
104 friend multi_ptr& operator--(multi_ptr& mp) { /* ... */
105 }
106 friend multi_ptr operator--(multi_ptr& mp, int) { /* ... */
107 }
108 friend multi_ptr& operator+=(multi_ptr& lhs, difference_type r) { /* ... */
109 }
110 friend multi_ptr& operator-=(multi_ptr& lhs, difference_type r) { /* ... */
111 }
112 friend multi_ptr operator+(const multi_ptr& lhs,
113 difference_type r) { /* ... */
114 }
115 friend multi_ptr operator-(const multi_ptr& lhs,
116 difference_type r) { /* ... */

SYCL 2020 rev 9 4.7.7.1. Multi-pointer class

Chapter 4. SYCL programming interface | 229

117 }
118
119 void prefetch(size_t numElements) const;
120
121 friend bool operator==(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
122 }
123 friend bool operator!=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
124 }
125 friend bool operator<(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
126 }
127 friend bool operator>(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
128 }
129 friend bool operator<=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
130 }
131 friend bool operator>=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
132 }
133
134 friend bool operator==(const multi_ptr& lhs, std::nullptr_t) { /* ... */
135 }
136 friend bool operator!=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
137 }
138 friend bool operator<(const multi_ptr& lhs, std::nullptr_t) { /* ... */
139 }
140 friend bool operator>(const multi_ptr& lhs, std::nullptr_t) { /* ... */
141 }
142 friend bool operator<=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
143 }
144 friend bool operator>=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
145 }
146
147 friend bool operator==(std::nullptr_t, const multi_ptr& rhs) { /* ... */
148 }
149 friend bool operator!=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
150 }
151 friend bool operator<(std::nullptr_t, const multi_ptr& rhs) { /* ... */
152 }
153 friend bool operator>(std::nullptr_t, const multi_ptr& rhs) { /* ... */
154 }
155 friend bool operator<=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
156 }
157 friend bool operator>=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
158 }
159 };
160
161 // Legacy interface, inherited from 1.2.1.
162 // Deprecated.
163 // Specialization of multi_ptr for void and const void
164 // VoidType can be either void or const void
165 template <access::address_space Space>
166 class [[deprecated]] multi_ptr<VoidType, Space, access::decorated::legacy> {
167 public:
168 using value_type = VoidType;
169 using element_type = VoidType;
170 using difference_type = std::ptrdiff_t;
171
172 // Implementation defined pointer types that correspond to

4.7.7.1. Multi-pointer class SYCL 2020 rev 9

230 | Chapter 4. SYCL programming interface

173 // SYCL/OpenCL interoperability types for OpenCL C functions
174 using pointer_t = multi_ptr<VoidType, Space, access::decorated::yes>::pointer;
175 using const_pointer_t =
176 multi_ptr<const VoidType, Space, access::decorated::yes>::pointer;
177
178 static constexpr access::address_space address_space = Space;
179
180 // Constructors
181 multi_ptr();
182 multi_ptr(const multi_ptr&);
183 multi_ptr(multi_ptr&&);
184 multi_ptr(pointer_t);
185 multi_ptr(VoidType*);
186 multi_ptr(std::nullptr_t);
187 ~multi_ptr();
188
189 // Assignment operators
190 multi_ptr& operator=(const multi_ptr&);
191 multi_ptr& operator=(multi_ptr&&);
192 multi_ptr& operator=(pointer_t);
193 multi_ptr& operator=(VoidType*);
194 multi_ptr& operator=(std::nullptr_t);
195
196 // Available only when:
197 // (Space == access::address_space::global_space ||
198 // Space == access::address_space::generic_space) &&
199 // (std::is_const_v<VoidType> ||
200 // !std::is_const_v<accessor<ElementType, Dimensions, Mode, target::device,
201 // IsPlaceholder>::value_type>)
202 template <typename ElementType, int Dimensions, access_mode Mode>
203 multi_ptr(accessor<ElementType, Dimensions, Mode, target::device>);
204
205 // Available only when:
206 // (Space == access::address_space::local_space ||
207 // Space == access::address_space::generic_space) &&
208 // (std::is_const_v<VoidType> || !std::is_const_v<ElementType>)
209 template <typename ElementType, int Dimensions, access_mode Mode>
210 multi_ptr(accessor<ElementType, Dimensions, Mode, target::local>);
211
212 // Available only when:
213 // (Space == access::address_space::local_space ||
214 // Space == access::address_space::generic_space) &&
215 // (std::is_const_v<VoidType> || !std::is_const_v<ElementType>)
216 template <typename AccDataT, int Dimensions>
217 multi_ptr(local_accessor<AccDataT, Dimensions>);
218
219 // Only if Space == access::address_space::constant_space
220 template <typename ElementType, int Dimensions, access_mode Mode>
221 multi_ptr(accessor<ElementType, Dimensions, Mode, target::constant_buffer>);
222
223 // Returns the underlying OpenCL C pointer
224 pointer_t get() const;
225
226 std::add_pointer_t<value_type> get_raw() const;
227
228 pointer_t get_decorated() const;

SYCL 2020 rev 9 4.7.7.1. Multi-pointer class

Chapter 4. SYCL programming interface | 231

229
230 // Implicit conversion to the underlying pointer type
231 operator VoidType*() const;
232
233 // Explicit conversion to a multi_ptr<ElementType>
234 // If VoidType is const, ElementType must be as well
235 template <typename ElementType>
236 explicit
237 operator multi_ptr<ElementType, Space, access::decorated::legacy>() const;
238
239 // Implicit conversion to multi_ptr<const void, Space>
240 operator multi_ptr<const void, Space, access::decorated::legacy>() const;
241
242 friend bool operator==(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
243 }
244 friend bool operator!=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
245 }
246 friend bool operator<(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
247 }
248 friend bool operator>(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
249 }
250 friend bool operator<=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
251 }
252 friend bool operator>=(const multi_ptr& lhs, const multi_ptr& rhs) { /* ... */
253 }
254
255 friend bool operator==(const multi_ptr& lhs, std::nullptr_t) { /* ... */
256 }
257 friend bool operator!=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
258 }
259 friend bool operator<(const multi_ptr& lhs, std::nullptr_t) { /* ... */
260 }
261 friend bool operator>(const multi_ptr& lhs, std::nullptr_t) { /* ... */
262 }
263 friend bool operator<=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
264 }
265 friend bool operator>=(const multi_ptr& lhs, std::nullptr_t) { /* ... */
266 }
267
268 friend bool operator==(std::nullptr_t, const multi_ptr& rhs) { /* ... */
269 }
270 friend bool operator!=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
271 }
272 friend bool operator<(std::nullptr_t, const multi_ptr& rhs) { /* ... */
273 }
274 friend bool operator>(std::nullptr_t, const multi_ptr& rhs) { /* ... */
275 }
276 friend bool operator<=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
277 }
278 friend bool operator>=(std::nullptr_t, const multi_ptr& rhs) { /* ... */
279 }
280 };
281
282 } // namespace sycl

4.7.7.1. Multi-pointer class SYCL 2020 rev 9

232 | Chapter 4. SYCL programming interface

4.7.7.2. Explicit pointer aliases

SYCL provides aliases to the multi_ptr class template (see Section 4.7.7.1) for each specialization of
access::address_space.

A synopsis of the SYCL multi_ptr class template aliases is provided below.

 1 namespace sycl {
 2
 3 template <typename ElementType, access::address_space Space,
 4 access::decorated IsDecorated>
 5 class multi_ptr;
 6
 7 // Template specialization aliases for different pointer address spaces
 8
 9 template <typename ElementType,
10 access::decorated IsDecorated = access::decorated::legacy>
11 using global_ptr =
12 multi_ptr<ElementType, access::address_space::global_space, IsDecorated>;
13
14 template <typename ElementType,
15 access::decorated IsDecorated = access::decorated::legacy>
16 using local_ptr =
17 multi_ptr<ElementType, access::address_space::local_space, IsDecorated>;
18
19 // Deprecated in SYCL 2020
20 template <typename ElementType>
21 using constant_ptr =
22 multi_ptr<ElementType, access::address_space::constant_space,
23 access::decorated::legacy>;
24
25 template <typename ElementType,
26 access::decorated IsDecorated = access::decorated::legacy>
27 using private_ptr =
28 multi_ptr<ElementType, access::address_space::private_space, IsDecorated>;
29
30 // Template specialization aliases for different pointer address spaces.
31 // The interface exposes non-decorated pointer while keeping the
32 // address space information internally.
33
34 template <typename ElementType>
35 using raw_global_ptr =
36 multi_ptr<ElementType, access::address_space::global_space,
37 access::decorated::no>;
38
39 template <typename ElementType>
40 using raw_local_ptr = multi_ptr<ElementType, access::address_space::local_space,
41 access::decorated::no>;
42
43 template <typename ElementType>
44 using raw_private_ptr =
45 multi_ptr<ElementType, access::address_space::private_space,
46 access::decorated::no>;
47
48 // Template specialization aliases for different pointer address spaces.
49 // The interface exposes decorated pointer.

SYCL 2020 rev 9 4.7.7.2. Explicit pointer aliases

Chapter 4. SYCL programming interface | 233

50
51 template <typename ElementType>
52 using decorated_global_ptr =
53 multi_ptr<ElementType, access::address_space::global_space,
54 access::decorated::yes>;
55
56 template <typename ElementType>
57 using decorated_local_ptr =
58 multi_ptr<ElementType, access::address_space::local_space,
59 access::decorated::yes>;
60
61 template <typename ElementType>
62 using decorated_private_ptr =
63 multi_ptr<ElementType, access::address_space::private_space,
64 access::decorated::yes>;
65
66 } // namespace sycl

Note that using global_ptr, local_ptr, constant_ptr or private_ptr without specifying the decoration is
deprecated. The default argument is provided for compatibility with 1.2.1.

4.7.8. Image samplers

The SYCL image_sampler struct contains a configuration for sampling a sampled_image. The members of
this struct are defined by the following tables.

 1 namespace sycl {
 2
 3 enum class addressing_mode : /* unspecified */ {
 4 mirrored_repeat,
 5 repeat,
 6 clamp_to_edge,
 7 clamp,
 8 none
 9 };
10
11 enum class filtering_mode : /* unspecified */ { nearest, linear };
12
13 enum class coordinate_normalization_mode : /* unspecified */ {
14 normalized,
15 unnormalized
16 };
17
18 struct image_sampler {
19 addressing_mode addressing;
20 coordinate_normalization_mode coordinate;
21 filtering_mode filtering;
22 };
23
24 } // namespace sycl

Table 93. Addressing modes description

4.7.8. Image samplers SYCL 2020 rev 9

234 | Chapter 4. SYCL programming interface

addressing_mode Description

mirrored_repeat
Out of range coordinates will be
flipped at every integer junction.
This addressing mode can only be
used with normalized coordinates.
If normalized coordinates are not
used, this addressing mode may
generate image coordinates that
are undefined.

repeat
Out of range image coordinates are
wrapped to the valid range. This
addressing mode can only be used
with normalized coordinates. If
normalized coordinates are not
used, this addressing mode may
generate image coordinates that
are undefined.

clamp_to_edge
Out of range image coordinates are
clamped to the extent.

clamp
Out of range image coordinates
will return a border color.

none
For this addressing mode the pro
grammer guarantees that the
image coordinates used to sample
elements of the image refer to a
location inside the image; other
wise the results are undefined.

Table 94. Filtering modes description

filtering_mode Description

nearest
Chooses a color of nearest pixel.

linear
Performs a linear sampling of adja
cent pixels.

Table 95. Coordinate normalization modes description

coordinate_normalization_mode Description

normalized
Normalizes image coordinates.

unnormalized
Does not normalize image coordi
nates.

4.8. Unified shared memory (USM)
This section describes properties and routines for pointer-based memory management interfaces in
SYCL. These routines augment, rather than replace, the buffer-based interfaces in SYCL.

SYCL 2020 rev 9 4.8. Unified shared memory (USM)

Chapter 4. SYCL programming interface | 235

Unified Shared Memory (USM) provides a pointer-based alternative to the buffer programming model.
USM enables:

• Easier integration into existing code bases by representing allocations as pointers rather than buffers,
with full support for pointer arithmetic into allocations.

• Fine-grain control over ownership and accessibility of allocations, to optimally choose between per
formance and programmer convenience.

• A simpler programming model, by automatically migrating some allocations between SYCL devices
and the host.

To show the differences with the example from Section 3.2, the following source code example shows
how shared memory can be used between host and device:

 1 #include <iostream>
 2 #include <sycl/sycl.hpp>
 3 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 4
 5 int main() {
 6 // Create a default queue to enqueue work to the default device
 7 queue myQueue;
 8
 9 // Allocate shared memory bound to the device and context associated to the
10 // queue Replacing malloc_shared with malloc_host would yield a correct
11 // program that allocated device-visible memory on the host.
12 int* data = sycl::malloc_shared<int>(1024, myQueue);
13
14 myQueue.parallel_for(1024, [=](id<1> idx) {
15 // Initialize each buffer element with its own rank number starting at 0
16 data[idx] = idx;
17 }); // End of the kernel function
18
19 // Explicitly wait for kernel execution since there is no accessor involved
20 myQueue.wait();
21
22 // Print result
23 for (int i = 0; i < 1024; i++)
24 std::cout << "data[" << i << "] = " << data[i] << std::endl;
25
26 return 0;
27 }

By comparison, the following source code example uses less capable device memory, which requires an
explicit copy between the device and the host:

 1 #include <iostream>
 2 #include <sycl/sycl.hpp>
 3 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 4
 5 int main() {
 6 // Create a default queue to enqueue work to the default device
 7 queue myQueue;
 8
 9 // Allocate shared memory bound to the device and context associated to the
10 // queue

4.8. Unified shared memory (USM) SYCL 2020 rev 9

236 | Chapter 4. SYCL programming interface

11 int* data = sycl::malloc_device<int>(1024, myQueue);
12
13 myQueue.parallel_for(1024, [=](id<1> idx) {
14 // Initialize each buffer element with its own rank number starting at 0
15 data[idx] = idx;
16 }); // End of the kernel function
17
18 // Explicitly wait for kernel execution since there is no accessor involved
19 myQueue.wait();
20
21 // Create an array to receive the device content
22 int hostData[1024];
23 // Receive the content from the device
24 myQueue.memcpy(hostData, data, 1024 * sizeof(int));
25 // Wait for the copy to complete
26 myQueue.wait();
27
28 // Print result
29 for (int i = 0; i < 1024; i++)
30 std::cout << "hostData[" << i << "] = " << hostData[i] << std::endl;
31
32 return 0;
33 }

4.8.1. Unified addressing

Unified Addressing guarantees that all devices will use a unified address space. Pointer values in the uni
fied address space will always refer to the same location in memory. The unified address space encom
passes the host and one or more devices. Note that this does not require addresses in the unified address
space to be accessible on all devices, just that pointer values will be consistent.

4.8.2. Kinds of unified shared memory

USM is a capability that, when available, provides the ability to create allocations that are visible to both
host and device(s). USM builds upon Unified Addressing to define a shared address space where pointer
values in this space always refer to the same location in memory. USM defines three types of memory
allocations described in Table 96.

Table 96. Type of USM allocations

USM allocation
type

Description

host Allocations in host memory that are accessible by a device

device Allocations in device memory that are not accessible by the host

shared Allocations in shared memory that are accessible by both host and device

The following enum is used to refer to the different types of allocations inside of a SYCL program:

 1 namespace sycl {
 2 namespace usm {
 3
 4 enum class alloc : /* unspecified */ {
 5 host,
 6 device,

SYCL 2020 rev 9 4.8.1. Unified addressing

Chapter 4. SYCL programming interface | 237

 7 shared,
 8 unknown
 9 };
10
11 }
12 }

USM is an optional feature which may not be supported by all devices, and devices that support USM
may not support all types of USM allocation. A SYCL application can use the device::has() function to
determine the level of USM support for a device. See Table 26 in Section 4.6.4.3 for more details.

The characteristics of USM allocations are summarized in Table 97.

Table 97. Characteristics of the different kinds of USM allocation

Allocation
Type

Initial Location Accessible By Migratable To

device device host No host No

device Yes device N/A

Another device Optional (P2P) Another device No

host host host Yes host N/A

Any device Yes device No

shared Unspecified host Yes host Yes

device Yes device Yes

Another device Optional Another device Optional

Each USM allocation has an associated SYCL context, and any access to that memory must use the same
context. Specifically, any SYCL kernel function that dereferences a pointer to a USM allocation must be
submitted to a queue that was constructed with the same context that was used to allocate that memory.
The explicit memory operation commands that take USM pointers have a similar restriction. (See Section
4.9.4.3 for details.) Violations of these requirements result in undefined behavior.

There are no similar restrictions for dereferencing a USM pointer in a host task. This is
legal regardless of which queue the host task was submitted to so long as the USM
pointer is accessible on the host.

Each type of USM allocation has different rules for where that memory is accessible. Attempting to
dereference a USM pointer on the host or on a device in violation of these rules results in undefined
behavior. Passing a USM pointer to one of the explicit memory functions where the pointer is not acces
sible to the device generally results in undefined behavior. See Section 4.9.4.3 for the exact rules.

Device allocations are used for explicitly managing device memory. Programmers directly allocate
device memory and explicitly copy data between host memory and a device allocation. Device alloca
tions are obtained through SYCL device USM allocation routines instead of system allocation routines
like std::malloc or C++ new. Device allocations are not accessible on the host, but the pointer values
remain consistent on account of Unified Addressing. The size of device allocations will be limited by the
amount of memory in a device. Support for device allocations on a specific device can be queried
through aspect::usm_device_allocations.

Device allocations must be explicitly copied between the host and a device. The member functions to
copy and initialize data are found in Table 28 and Table 132, and these functions may be used on device
allocations if a device supports aspect::usm_device_allocations.

4.8.2. Kinds of unified shared memory SYCL 2020 rev 9

238 | Chapter 4. SYCL programming interface

Host allocations allow devices to directly read and write host memory inside of a kernel. This can be use
ful for several reasons, such as when the overhead of moving a small amount of data is not worth paying
over the cost of a remote access or when the size of a data set exceeds the size of a device’s memory. Host
allocations must also be obtained using SYCL routines instead of system allocation routines. While a
device may remotely read and write a host allocation, the allocation does not migrate to the device - it
remains in host memory. Users should take care to properly synchronize access to host allocations
between host execution and kernels. The total size of host allocations will be limited by the amount of
pinnable-memory on the host on most systems. Support for host allocations on a specific device can be
queried through aspect::usm_host_allocations. Support for atomic modification of host allocations on a
specific device can be queried through aspect::usm_atomic_host_allocations.

Shared allocations implicitly share data between the host and devices. Data may move to where it is
being used without the programmer explicitly informing the runtime. It is up to the runtime and back
ends to make sure that a shared allocation is available where it is used. Shared allocations must also be
obtained using SYCL allocation routines instead of the system allocator. The maximum size of a shared
allocation on a specific device, and the total size of all shared allocations in a context, are implementa
tion-defined. Support for shared allocations on a specific device can be queried through
aspect::usm_shared_allocations.

Not all devices may support concurrent access of a shared allocation with the host. If a device does not
support this, host execution and device code must take turns accessing the allocation, so the host must
not access a shared allocation while a kernel is executing. Host access to a shared allocation which is
also accessed by an executing kernel on a device that does not support concurrent access results in
undefined behavior. If a device does support concurrent access, both the host and and the device may
atomically modify the same data inside an allocation. Allocations, or pieces of allocations, are now free
to migrate to different devices in the same context that also support this capability. Additionally, many
devices that support concurrent access may support a working set of shared allocations larger than
device memory. Users may query whether a device supports concurrent access with atomic modification
of shared allocations through the aspect aspect::usm_atomic_shared_allocations. See Table 26 in Section
4.6.4.3 for more details.

Performance hints for shared allocations may be specified by the user by enqueueing prefetch opera
tions on a device. These operations inform the SYCL runtime that the specified shared allocation is likely
to be accessed on the device in the future, and that it is free to migrate the allocation to the device. More
about prefetch is found in Table 29 and Table 132. If a device supports concurrent access to shared allo
cations, then prefetch operations may be overlapped with kernel execution.

Additionally, users may use the mem_advise member function to annotate shared allocations with advice.
Valid advice is defined by the device and its associated backend. See Table 29 and Table 132 for more
information.

In the most capable systems, users do not need to use SYCL USM allocation functions to create shared
allocations. The system allocator (malloc/new) may instead be used. Likewise, std::free and delete are
used instead of sycl::free. Note that host and device allocations are unaffected by this change and must
still be allocated using their respective USM functions in order to guarantee their behavior. Users may
query the device to determine if system allocations are supported for use on the device, through
aspect::usm_system_allocations.

4.8.3. USM allocations

USM provides several allocation functions. These functions accept a property_list parameter, which is
provided for future extensibility. The core SYCL specification does not yet define any USM allocation
properties.

Some of the allocation functions take an explicit alignment parameter. Like std::aligned_alloc, these
functions return nullptr if the alignment is not supported by the implementation. Some of the allocation
functions are templated on the allocated type T and some are not. The following table specifies the align

SYCL 2020 rev 9 4.8.3. USM allocations

Chapter 4. SYCL programming interface | 239

ment guarantees for each category.

Table 98. Alignment guarantees of USM allocation functions

Category Alignment guarantee

No alignment parameter
Not templated on allocation type

Pointer is suitably aligned for any object with funda
mental alignment whose size is less than or equal to the
requested allocation size.

No alignment parameter
Templated on allocation type T

Pointer is suitably aligned for an object of type T.

Alignment parameter alignment specified
Not templated on allocation type

Pointer is suitably aligned for any object with funda
mental alignment whose size is less than or equal to the
requested allocation size or it is aligned to the specified
alignment, whichever is greater.

Alignment parameter alignment specified
Templated on allocation type T

Pointer is suitably aligned for an object of type T or it is
aligned to the specified alignment, whichever is greater.

4.8.3.1. C++ allocator interface

SYCL defines an allocator class named usm_allocator that satisfies the C++ named requirement Allocator.
The AllocKind template parameter can be either usm::alloc::host or usm::alloc::shared, causing the allo
cator to make either host USM allocations or shared USM allocations.

There is no specialization for usm::alloc::device because an Allocator is required to
allocate memory that is accessible on the host.

The usm_allocator class has a template argument Alignment, which specifies the minimum alignment for
memory that it allocates. This alignment is used even if the allocator is rebound to a different type. Mem
ory allocated by this allocator is suitably aligned for objects of its underlying value_type or at the align
ment specified by Alignment, whichever is greater.

A synopsis of the usm_allocator class is provided below. The constructors are listed in Table 99.

 1 template <typename T, usm::alloc AllocKind, size_t Alignment = 0>
 2 class usm_allocator {
 3 public:
 4 using value_type = T;
 5 using propagate_on_container_copy_assignment = std::true_type;
 6 using propagate_on_container_move_assignment = std::true_type;
 7 using propagate_on_container_swap = std::true_type;
 8
 9 public:
10 template <typename U> struct rebind {
11 typedef usm_allocator<U, AllocKind, Alignment> other;
12 };
13
14 usm_allocator() = delete;
15 usm_allocator(const context& syclContext,
16 const device& syclDevice,
17 const property_list& propList = {});
18 usm_allocator(const queue& syclQueue,
19 const property_list& propList = {});
20 usm_allocator(const usm_allocator& other);
21 usm_allocator(usm_allocator&&) noexcept;
22 usm_allocator& operator=(const usm_allocator&);

4.8.3.1. C++ allocator interface SYCL 2020 rev 9

240 | Chapter 4. SYCL programming interface

23 usm_allocator& operator=(usm_allocator&&);
24
25 template <class U>
26 usm_allocator(usm_allocator<U, AllocKind, Alignment> const&) noexcept;
27
28 /// Allocate memory
29 T* allocate(size_t count);
30
31 /// Deallocate memory
32 void deallocate(T* Ptr, size_t count);
33
34 /// Equality Comparison
35 ///
36 /// Allocators only compare equal if they are of the same USM kind, alignment,
37 /// context, and device
38 template <class U, usm::alloc AllocKindU, size_t AlignmentU>
39 friend bool operator==(const usm_allocator<T, AllocKind, Alignment>&,
40 const usm_allocator<U, AllocKindU, AlignmentU>&);
41
42 /// Inequality Comparison
43 /// Allocators only compare unequal if they are not of the same USM kind, alignment,
44 /// context, or device
45 template <class U, usm::alloc AllocKindU, size_t AlignmentU>
46 friend bool operator!=(const usm_allocator<T, AllocKind, Alignment>&,
47 const usm_allocator<U, AllocKindU, AlignmentU>&);
48 };

Table 99. Constructors of the usm_allocator class

Constructor Description

usm_allocator(const context& syclContext, const device&
syclDevice,
 const property_list& propList = {})

Constructs a usm_allocator
instance that allocates USM for the
provided context and device.

If AllocKind is usm::alloc::host,
this constructor throws a synchro
nous exception with the errc::fea
ture_not_supported error code if no
device in syclContext has
aspect::usm_host_allocations. The
syclDevice is ignored for this allo
cation kind.

If AllocKind is usm::alloc::shared,
this constructor throws a synchro
nous exception with the errc::fea
ture_not_supported error code if
the syclDevice does not have
aspect::usm_shared_allocations.
The syclDevice must either be con
tained by syclContext or it must be
a descendent device of some
device that is contained by that
context, otherwise this constructor
throws a synchronous exception
with the errc::invalid error code.

SYCL 2020 rev 9 4.8.3.1. C++ allocator interface

Chapter 4. SYCL programming interface | 241

Constructor Description

usm_allocator(const queue& syclQueue, const property_list&
propList = {})

Simplified constructor form where
syclQueue provides the device and
context.

4.8.3.2. Device allocation functions

The functions in Table 100 allocate device USM. On success, these functions return a pointer to the newly
allocated memory, which must eventually be deallocated with sycl::free in order to avoid a memory
leak. If there are not enough resources to allocate the requested memory, these functions return nullptr.

When the allocation size is zero bytes (numBytes or count is zero), these functions behave in a manner
consistent with C++ std::malloc. The value returned is unspecified in this case, and the returned pointer
may not be used to access storage. If this pointer is not null, it must be passed to sycl::free to avoid a
memory leak.

Table 100. Device USM Allocation Functions

Function Description

void* sycl::malloc_device(size_t numBytes, const device&
syclDevice,
 const context& syclContext,
 const property_list& propList =
{})

Returns a pointer to the newly allo
cated memory, which is allocated
on syclDevice. The allocation size is
specified in bytes. Throws a syn
chronous exception with the
errc::feature_not_supported error
code if the syclDevice does not
have aspect::usm_device_alloca
tions. The syclDevice must either
be contained by syclContext or it
must be a descendent device of
some device that is contained by
that context, otherwise this func
tion throws a synchronous excep
tion with the errc::invalid error
code.

template <typename T>
T* sycl::malloc_device(size_t count, const device&
syclDevice,
 const context& syclContext,
 const property_list& propList = {})

Returns a pointer to the newly allo
cated memory, which is allocated
on syclDevice. The allocation size is
specified in number of elements of
type T. Throws a synchronous
exception with the errc::fea
ture_not_supported error code if
the syclDevice does not have
aspect::usm_device_allocations.
The syclDevice must either be con
tained by syclContext or it must be
a descendent device of some
device that is contained by that
context, otherwise this function
throws a synchronous exception
with the errc::invalid error code.

4.8.3.2. Device allocation functions SYCL 2020 rev 9

242 | Chapter 4. SYCL programming interface

Function Description

void* sycl::malloc_device(size_t numBytes, const queue&
syclQueue,
 const property_list& propList =
{})

Simplified form where syclQueue
provides the device and context.

template <typename T>
T* sycl::malloc_device(size_t count, const queue&
syclQueue,
 const property_list& propList = {})

Simplified form where syclQueue
provides the device and context.

void* sycl::aligned_alloc_device(size_t alignment, size_t
numBytes,
 const device& syclDevice,
 const context&
syclContext,
 const property_list&
propList = {})

Returns a pointer to the newly allo
cated memory, which is allocated
on syclDevice. The allocation is
specified in bytes and aligned
according to alignment. Throws a
synchronous exception with the
errc::feature_not_supported error
code if the syclDevice does not
have aspect::usm_device_alloca
tions. The syclDevice must either
be contained by syclContext or it
must be a descendent device of
some device that is contained by
that context, otherwise this func
tion throws a synchronous excep
tion with the errc::invalid error
code.

template <typename T>
T* sycl::aligned_alloc_device(size_t alignment, size_t
count,
 const device& syclDevice,
 const context& syclContext,
 const property_list& propList
= {})

Returns a pointer to the newly allo
cated memory, which is allocated
on syclDevice. The allocation is
specified in number of elements of
type T and aligned according to
alignment. Throws a synchronous
exception with the errc::fea
ture_not_supported error code if
the syclDevice does not have
aspect::usm_device_allocations.
The syclDevice must either be con
tained by syclContext or it must be
a descendent device of some
device that is contained by that
context, otherwise this function
throws a synchronous exception
with the errc::invalid error code.

void* sycl::aligned_alloc_device(size_t alignment, size_t
numBytes,
 const queue& syclQueue,
 const property_list&
propList = {})

Simplified form where syclQueue
provides the device and context.

SYCL 2020 rev 9 4.8.3.2. Device allocation functions

Chapter 4. SYCL programming interface | 243

Function Description

template <typename T>
T* sycl::aligned_alloc_device(size_t alignment, size_t
count,
 const queue& syclQueue,
 const property_list& propList
= {})

Simplified form where syclQueue
provides the device and context.

4.8.3.3. Host allocation functions

The functions in Table 101 allocate host USM. On success, these functions return a pointer to the newly
allocated memory, which must eventually be deallocated with sycl::free in order to avoid a memory
leak. If there are not enough resources to allocate the requested memory, these functions return nullptr.

When the allocation size is zero bytes (numBytes or count is zero), these functions behave in a manner
consistent with C++ std::malloc. The value returned is unspecified in this case, and the returned pointer
may not be used to access storage. If this pointer is not null, it must be passed to sycl::free to avoid a
memory leak.

Table 101. Host USM Allocation Functions

Function Description

void* sycl::malloc_host(size_t numBytes, const context&
syclContext,
 const property_list& propList = {})

Returns a pointer to the newly allo
cated memory. This allocation is
specified in bytes. Throws a syn
chronous exception with the
errc::feature_not_supported error
code if no device in syclContext
has aspect::usm_host_allocations.

template <typename T>
T* sycl::malloc_host(size_t count, const context&
syclContext,
 const property_list& propList = {})

Returns a pointer to the newly allo
cated memory. This allocation is
specified in number of elements of
type T. Throws a synchronous
exception with the errc::fea
ture_not_supported error code if no
device in syclContext has
aspect::usm_host_allocations.

void* sycl::malloc_host(size_t numBytes, const queue&
syclQueue,
 const property_list& propList = {})

Simplified form where syclQueue
provides the context.

template <typename T>
T* sycl::malloc_host(size_t count, const queue& syclQueue,
 const property_list& propList = {})

Simplified form where syclQueue
provides the context.

4.8.3.3. Host allocation functions SYCL 2020 rev 9

244 | Chapter 4. SYCL programming interface

Function Description

void* sycl::aligned_alloc_host(size_t alignment, size_t
numBytes,
 const context& syclContext,
 const property_list&
propList = {})

Returns a pointer to the newly allo
cated memory. This allocation is
specified in bytes and aligned
according to alignment. Throws a
synchronous exception with the
errc::feature_not_supported error
code if no device in syclContext
has aspect::usm_host_allocations.

template <typename T>
T* sycl::aligned_alloc_host(size_t alignment, size_t count,
 const context& syclContext,
 const property_list& propList =
{})

Returns a pointer to the newly allo
cated memory. This allocation is
specified in elements of type T and
aligned according to alignment.
Throws a synchronous exception
with the errc::feature_not_sup
ported error code if no device in
syclContext has
aspect::usm_host_allocations.

void* sycl::aligned_alloc_host(size_t alignment, size_t
numBytes,
 const queue& syclQueue,
 const property_list&
propList = {})

Simplified form where syclQueue
provides the context.

template <typename T>
T* sycl::aligned_alloc_host(size_t alignment, size_t count,
 const queue& syclQueue,
 const property_list&
propList = {})

Simplified form where syclQueue
provides the context.

4.8.3.4. Shared allocation functions

The functions in Table 102 allocate shared USM. On success, these functions return a pointer to the
newly allocated memory, which must eventually be deallocated with sycl::free in order to avoid a
memory leak. If there are not enough resources to allocate the requested memory, these functions
return nullptr.

When the allocation size is zero bytes (numBytes or count is zero), these functions behave in a manner
consistent with C++ std::malloc. The value returned is unspecified in this case, and the returned pointer
may not be used to access storage. If this pointer is not null, it must be passed to sycl::free to avoid a
memory leak.

Table 102. Shared USM Allocation Functions

SYCL 2020 rev 9 4.8.3.4. Shared allocation functions

Chapter 4. SYCL programming interface | 245

Function Description

void* sycl::malloc_shared(size_t numBytes, const device&
syclDevice,
 const context& syclContext,
 const property_list& propList =
{})

Returns a pointer to the newly allo
cated memory, which is associated
with syclDevice. This allocation is
specified in bytes. Throws a syn
chronous exception with the
errc::feature_not_supported error
code if the syclDevice does not
have aspect::usm_shared_alloca
tions. The syclDevice must either
be contained by syclContext or it
must be a descendent device of
some device that is contained by
that context, otherwise this func
tion throws a synchronous excep
tion with the errc::invalid error
code.

template <typename T>
T* sycl::malloc_shared(size_t count, const device&
syclDevice,
 const context& syclContext,
 const property_list& propList = {})

Returns a pointer to the newly allo
cated memory, which is associated
with syclDevice. This allocation is
specified in number of elements of
type T. Throws a synchronous
exception with the errc::fea
ture_not_supported error code if
the syclDevice does not have
aspect::usm_shared_allocations.
The syclDevice must either be con
tained by syclContext or it must be
a descendent device of some
device that is contained by that
context, otherwise this function
throws a synchronous exception
with the errc::invalid error code.

void* sycl::malloc_shared(size_t numBytes, const queue&
syclQueue,
 const property_list& propList =
{})

Simplified form where syclQueue
provides the device and context.

template <typename T>
T* sycl::malloc_shared(size_t count, const queue&
syclQueue,
 const property_list& propList = {})

Simplified form where syclQueue
provides the device and context.

4.8.3.4. Shared allocation functions SYCL 2020 rev 9

246 | Chapter 4. SYCL programming interface

Function Description

void* sycl::aligned_alloc_shared(size_t alignment, size_t
numBytes,
 const device& syclDevice,
 const context&
syclContext,
 const property_list&
propList = {})

Returns a pointer to the newly allo
cated memory, which is associated
with syclDevice. This allocation is
specified in bytes and aligned
according to alignment. Throws a
synchronous exception with the
errc::feature_not_supported error
code if the syclDevice does not
have aspect::usm_shared_alloca
tions. The syclDevice must either
be contained by syclContext or it
must be a descendent device of
some device that is contained by
that context, otherwise this func
tion throws a synchronous excep
tion with the errc::invalid error
code.

template <typename T>
T* sycl::aligned_alloc_shared(size_t alignment, size_t
count,
 const device& syclDevice,
 const context& syclContext,
 const property_list& propList
= {})

Returns a pointer to the newly allo
cated memory, which is associated
with syclDevice. This allocation is
specified in number of elements of
type T and aligned aligned accord
ing to alignment. Throws a synchro
nous exception with the errc::fea
ture_not_supported error code if
the syclDevice does not have
aspect::usm_shared_allocations.
The syclDevice must either be con
tained by syclContext or it must be
a descendent device of some
device that is contained by that
context, otherwise this function
throws a synchronous exception
with the errc::invalid error code.

void* sycl::aligned_alloc_shared(size_t alignment, size_t
numBytes,
 const queue& syclQueue,
 const property_list&
propList = {})

Simplified form where syclQueue
provides the device and context.

template <typename T>
T* sycl::aligned_alloc_shared(size_t alignment, size_t
count,
 const queue& syclQueue,
 const property_list& propList
= {})

Simplified form where syclQueue
provides the device and context.

4.8.3.5. Parameterized allocation functions

The functions in Table 103 take a kind parameter that specifies the type of USM to allocate. When kind is
usm::alloc::device, then the allocation device must have aspect::usm_device_allocations. When kind is

SYCL 2020 rev 9 4.8.3.5. Parameterized allocation functions

Chapter 4. SYCL programming interface | 247

usm::alloc::host, at least one device in the allocation context must have aspect::usm_host_allocations.
When kind is usm::alloc::shared, the allocation device must have aspect::usm_shared_allocations. If
these requirements are violated, the allocation function throws a synchronous exception with the
errc::feature_not_supported error code.

On success, these functions return a pointer to the newly allocated memory, which must eventually be
deallocated with sycl::free in order to avoid a memory leak. If there are not enough resources to allo
cate the requested memory, these functions return nullptr.

When the allocation size is zero bytes (numBytes or count is zero), these functions behave in a manner
consistent with C++ std::malloc. The value returned is unspecified in this case, and the returned pointer
may not be used to access storage. If this pointer is not null, it must be passed to sycl::free to avoid a
memory leak.

Table 103. Parameterized USM Allocation Functions

Function Description

void* sycl::malloc(size_t numBytes, const device&
syclDevice,
 const context& syclContext, usm::alloc
kind,
 const property_list& propList = {})

Returns a pointer to the newly allo
cated memory of type kind. This
allocation size is specified in bytes.
The syclDevice parameter is
ignored if kind is usm::alloc::host.
If kind is not usm::alloc::host,
syclDevice must either be con
tained by syclContext or it must be
a descendent device of some
device that is contained by that
context, otherwise this function
throws a synchronous exception
with the errc::invalid error code.

template <typename T>
T* sycl::malloc(size_t count, const device& syclDevice,
 const context& syclContext, usm::alloc
kind,
 const property_list& propList = {})

Returns a pointer to the newly allo
cated memory of type kind. This
allocation size is specified in num
ber of elements of type T. The
syclDevice parameter is ignored if
kind is usm::alloc::host. If kind is
not usm::alloc::host, syclDevice
must either be contained by
syclContext or it must be a descen
dent device of some device that is
contained by that context, other
wise this function throws a syn
chronous exception with the
errc::invalid error code.

void* sycl::malloc(size_t numBytes, const queue& syclQueue,
usm::alloc kind,
 const property_list& propList = {})

Simplified form where syclQueue
provides the context and any nec
essary device.

template <typename T>
T* sycl::malloc(size_t count, const queue& syclQueue, usm
::alloc kind,
 const property_list& propList = {})

Simplified form where syclQueue
provides the context and any nec
essary device.

4.8.3.5. Parameterized allocation functions SYCL 2020 rev 9

248 | Chapter 4. SYCL programming interface

Function Description

void* sycl::aligned_alloc(size_t alignment, size_t
numBytes,
 const device& syclDevice, const
context& syclContext,
 usm::alloc kind, const
property_list& propList = {})

Returns a pointer to the newly allo
cated memory of type kind. This
allocation is specified in bytes and
is aligned according to alignment.
The syclDevice parameter is
ignored if kind is usm::alloc::host.
If kind is not usm::alloc::host,
syclDevice must either be con
tained by syclContext or it must be
a descendent device of some
device that is contained by that
context, otherwise this function
throws a synchronous exception
with the errc::invalid error code.

template <typename T>
T* sycl::aligned_alloc(size_t alignment, size_t count,
const device& syclDevice,
 const context& syclContext, usm
::alloc kind,
 const property_list& propList = {})

Returns a pointer to the newly allo
cated memory of type kind. This
allocation is specified in number of
elements of type T and is aligned
according to alignment. The syclDe
vice parameter is ignored if kind is
usm::alloc::host. If kind is not
usm::alloc::host, syclDevice must
either be contained by syclContext
or it must be a descendent device
of some device that is contained by
that context, otherwise this func
tion throws a synchronous excep
tion with the errc::invalid error
code.

void* sycl::aligned_alloc(size_t alignment, size_t
numBytes,
 const queue& syclQueue, usm
::alloc kind,
 const property_list& propList =
{})

Simplified form where syclQueue
provides the context and any nec
essary device.

template <typename T>
T* sycl::aligned_alloc(size_t alignment, size_t count,
const queue& syclQueue,
 usm::alloc kind, const
property_list& propList = {})

Simplified form where syclQueue
provides the context and any nec
essary device.

4.8.3.6. Memory deallocation functions

Table 104. USM Deallocation Functions

SYCL 2020 rev 9 4.8.3.6. Memory deallocation functions

Chapter 4. SYCL programming interface | 249

Function Description

void sycl::free(void* ptr, const context& syclContext)
Frees an allocation. The memory
pointed to by ptr must have been
allocated using one of the USM
allocation routines or it must be a
null pointer. If ptr is not null, the
syclContext must be the same con
text that was used to allocate the
memory. If ptr is null, this function
has no effect. Otherwise, the mem
ory is freed without waiting for
commands operating on it to be
completed. If commands that use
this memory are in-progress or are
enqueued, the behavior is unde
fined.

void sycl::free(void* ptr, const queue& syclQueue)
Alternate form where syclQueue
provides the context.

4.8.4. Unified shared memory pointer queries

Since USM pointers look like raw C++ pointers, users cannot deduce what kind of USM allocation a given
pointer may be from examining its type. However, two functions are defined that let users query the
type of a USM allocation and, if applicable, the device on which it was allocated. These query functions
are only supported on the host.

Table 105. USM Pointer Query Functions

Function Description

usm::alloc get_pointer_type(const void* ptr, const context&
syclContext)

Returns the USM allocation type
for ptr if ptr falls inside a valid
USM allocation for the context
syclContext. Returns
usm::alloc::unknown if ptr does not
point within a valid USM allocation
from syclContext.

device get_pointer_device(const void* ptr, const context&
syclContext)

Returns the device associated with
the USM allocation. If ptr points
within a device USM allocation or a
shared USM allocation for the con
text syclContext, returns the same
device that was passed when allo
cating the memory. If ptr points
within a host USM allocation for
the context syclContext, returns
the first device in syclContext.
Throws a synchronous exception
with the errc::invalid error code
if ptr does not point within a valid
USM allocation from syclContext.

4.8.4. Unified shared memory pointer queries SYCL 2020 rev 9

250 | Chapter 4. SYCL programming interface

4.9. Expressing parallelism through kernels

4.9.1. Ranges and index space identifiers

The data parallelism of the SYCL kernel execution model requires instantiation of a parallel execution
over a range of iteration space coordinates. To achieve this, SYCL exposes types to define the range of
execution and to identify a given execution instance’s point in the iteration space.

The following types are defined: range, nd_range, id, item, h_item, nd_item and group.

When constructing multi-dimensional ids or ranges from integers, the elements are written such that the
right-most element varies fastest in a linearization of the multi-dimensional space (see Section 3.11.1).

Table 106. Summary of types used to identify points in an index space, and ranges over which those points can
vary

Type Description

id
A point within a range

range
Bounds over which an id may vary

item
Pairing of an id (specific point) and
the range that it is bounded by

nd_range
Encapsulates both global and local
(work-group size) ranges over
which work-item ids will vary

nd_item
Encapsulates two items, one for
global id and range, and one for
local id and range

h_item
Index point queries within hierar
chical parallelism (parallel_for_
work_item). Encapsulates physical
global and local ids and ranges, as
well as a logical local id and range
defined by hierarchical parallelism

group
Work-group queries within hierar
chical parallelism (parallel_for_
work_group), and exposes the par
allel_for_work_item construct that
identifies code to be executed by
each work-item. Encapsulates
work-group ids and ranges

4.9.1.1. range class

range<int Dimensions> is a 1D, 2D or 3D vector that defines the iteration domain of either a single work-
group in a parallel dispatch, or the overall Dimensions of the dispatch. It can be constructed from inte
gers.

The SYCL range class template provides the common by-value semantics (see Section 4.5.3).

A synopsis of the SYCL range class is provided below. The constructors, member functions and non-mem

SYCL 2020 rev 9 4.9. Expressing parallelism through kernels

Chapter 4. SYCL programming interface | 251

ber functions of the SYCL range class are listed in Table 107, Table 108 and Table 109 respectively. The
additional common special member functions and common member functions are listed in Section 4.5.3
in Table 9 and Table 10 respectively.

 1 namespace sycl {
 2 template <int Dimensions = 1> class range {
 3 public:
 4 static constexpr int dimensions = Dimensions;
 5
 6 range();
 7
 8 /* The following constructor is only available in the range class
 9 * specialization where: Dimensions==1 */
10 range(size_t dim0);
11 /* The following constructor is only available in the range class
12 * specialization where: Dimensions==2 */
13 range(size_t dim0, size_t dim1);
14 /* The following constructor is only available in the range class
15 * specialization where: Dimensions==3 */
16 range(size_t dim0, size_t dim1, size_t dim2);
17
18 /* -- common interface members -- */
19
20 size_t get(int dimension) const;
21 size_t& operator[](int dimension);
22 size_t operator[](int dimension) const;
23
24 size_t size() const;
25
26 // OP is: +, -, *, /, %, <<, >>, &, |, ^, &&, ||, <, >, <=, >=
27 friend range operatorOP(const range& lhs, const range& rhs) { /* ... */
28 }
29 friend range operatorOP(const range& lhs, const size_t& rhs) { /* ... */
30 }
31
32 // OP is: +=, -=, *=, /=, %=, <<=, >>=, &=, |=, ^=
33 friend range& operatorOP(range& lhs, const range& rhs) { /* ... */
34 }
35 friend range& operatorOP(range& lhs, const size_t& rhs) { /* ... */
36 }
37
38 // OP is: +, -, *, /, %, <<, >>, &, |, ^, &&, ||, <, >, <=, >=
39 friend range operatorOP(const size_t& lhs, const range& rhs) { /* ... */
40 }
41
42 // OP is unary +, -
43 friend range operatorOP(const range& rhs) { /* ... */
44 }
45
46 // OP is prefix ++, --
47 friend range& operatorOP(range& rhs) { /* ... */
48 }
49
50 // OP is postfix ++, --
51 friend range operatorOP(range& lhs, int) { /* ... */
52 }

4.9.1.1. range class SYCL 2020 rev 9

252 | Chapter 4. SYCL programming interface

53 };
54
55 // Deduction guides
56 range(size_t)->range<1>;
57 range(size_t, size_t)->range<2>;
58 range(size_t, size_t, size_t)->range<3>;
59
60 } // namespace sycl

Table 107. Constructors of the range class template

Constructor Description

range()
Construct a SYCL range with the
value 0 for each dimension.

range(size_t dim0)
Construct a 1D range with value
dim0. Only valid when the tem
plate parameter Dimensions is equal
to 1.

range(size_t dim0, size_t dim1)
Construct a 2D range with values
dim0 and dim1. Only valid when
the template parameter Dimensions
is equal to 2.

range(size_t dim0, size_t dim1, size_t dim2)
Construct a 3D range with values
dim0, dim1 and dim2. Only valid
when the template parameter
Dimensions is equal to 3.

Table 108. Member functions of the range class template

Member function Description

size_t get(int dimension) const
Return the value of the specified
dimension of the range.

size_t& operator[](int dimension)
Return the l-value of the specified
dimension of the range.

size_t operator[](int dimension) const
Return the value of the specified
dimension of the range.

size_t size() const
Return the size of the range com
puted as dimension0*…*dimen
sionN.

Table 109. Hidden friend functions of the SYCL range class template

SYCL 2020 rev 9 4.9.1.1. range class

Chapter 4. SYCL programming interface | 253

Hidden friend function Description

range operatorOP(const range& lhs, const range& rhs)
Where OP is: +, -, *, /, %, <<, >>, &, |,
^, &&, ||, <, >, <=, >=.

Constructs and returns a new
instance of the SYCL range class
template with the same dimension
ality as lhs range, where each ele
ment of the new SYCL range
instance is the result of an ele
ment-wise OP operator between
each element of lhs range and each
element of the rhs range. If the
operator returns a bool, the result
is the cast to size_t.

range operatorOP(const range& lhs, const size_t& rhs)
Where OP is: +, -, *, /, %, <<, >>, &, |,
^, &&, ||, <, >, <=, >=.

Constructs and returns a new
instance of the SYCL range class
template with the same dimension
ality as lhs range, where each ele
ment of the new SYCL range
instance is the result of an ele
ment-wise OP operator between
each element of this SYCL range
and the rhs size_t. If the operator
returns a bool, the result is the cast
to size_t.

range& operatorOP(range& lhs, const range& rhs)
Where OP is: +=, -=,*=, /=, %=, <<=,
>>=, &=, |=, ^=.

Assigns each element of lhs range
instance with the result of an ele
ment-wise OP operator between
each element of lhs range and each
element of the rhs range and
returns lhs range. If the operator
returns a bool, the result is the cast
to size_t.

range& operatorOP(range& lhs, const size_t& rhs)
Where OP is: +=, -=,*=, /=, %=, <<=,
>>=, &=, |=, ^=.

Assigns each element of lhs range
instance with the result of an ele
ment-wise OP operator between
each element of lhs range and the
rhs size_t and returns lhs range. If
the operator returns a bool, the
result is the cast to size_t.

4.9.1.1. range class SYCL 2020 rev 9

254 | Chapter 4. SYCL programming interface

Hidden friend function Description

range operatorOP(const size_t& lhs, const range& rhs)
Where OP is: +, -, *, /, %, <<, >>, &, |,
^, &&, ||, <, >, <=, >=.

Constructs and returns a new
instance of the SYCL range class
template with the same dimension
ality as the rhs SYCL range, where
each element of the new SYCL
range instance is the result of an
element-wise OP operator between
the lhs size_t and each element of
the rhs SYCL range. If the operator
returns a bool, the result is the cast
to size_t.

range operatorOP(const range& rhs)
Where OP is: unary +, unary -.

Constructs and returns a new
instance of the SYCL range class
template with the same dimension
ality as the rhs SYCL range, where
each element of the new SYCL
range instance is the result of an
element-wise OP operator on the
rhs SYCL range.

range& operatorOP(range& rhs)
Where OP is: prefix ++, prefix --.

Assigns each element of the rhs
range instance with the result of an
element-wise OP operator on each
element of the rhs range and
returns this range.

range operatorOP(range& lhs, int)
Where OP is: postfix ++, postfix --.

Make a copy of the lhs range.
Assigns each element of the lhs
range instance with the result of an
element-wise OP operator on each
element of the lhs range. Then
return the initial copy of the range.

4.9.1.2. nd_range class

 1 namespace sycl {
 2 template <int Dimensions = 1> class nd_range {
 3 public:
 4 static constexpr int dimensions = Dimensions;
 5
 6 /* -- common interface members -- */
 7
 8 // The offset is deprecated in SYCL 2020.
 9 nd_range(range<Dimensions> globalSize, range<Dimensions> localSize,
10 id<Dimensions> offset = id<Dimensions>());
11

SYCL 2020 rev 9 4.9.1.2. nd_range class

Chapter 4. SYCL programming interface | 255

12 range<Dimensions> get_global_range() const;
13 range<Dimensions> get_local_range() const;
14 range<Dimensions> get_group_range() const;
15 id<Dimensions> get_offset() const; // Deprecated in SYCL 2020.
16 };
17 } // namespace sycl

nd_range<int Dimensions> defines the iteration domain of both the work-groups and the overall dispatch.
To define this the nd_range comprises two ranges: the whole range over which the kernel is to be exe
cuted, and the range of each work group.

The SYCL nd_range class template provides the common by-value semantics (see Section 4.5.3).

A synopsis of the SYCL nd_range class is provided below. The constructors and member functions of the
SYCL nd_range class are listed in Table 110 and Table 111 respectively. The additional common special
member functions and common member functions are listed in Section 4.5.3 in Table 9 and Table 10
respectively.

Table 110. Constructors of the nd_range class

Constructor Description

nd_range<Dimensions>(
range<Dimensions> globalSize,
 range<Dimensions> localSize,
 id<Dimensions> offset = id<Dimensions>())

Construct an nd_range from the
local and global constituent ranges.
Supplying the option offset is dep
recated in SYCL 2020. If the offset is
not provided it will default to no
offset.

Table 111. Member functions for the nd_range class

Member function Description

range<Dimensions> get_global_range() const
Return the constituent global
range.

range<Dimensions> get_local_range() const
Return the constituent local range.

range<Dimensions> get_group_range() const
Return a range representing the
number of groups in each dimen
sion. This range would result from
globalSize/localSize as provided
on construction.

id<Dimensions> get_offset() const
 // Deprecated in SYCL 2020.

Deprecated in SYCL 2020. Return
the constituent offset.

4.9.1.3. id class

id<int Dimensions> is a vector of Dimensions that is used to represent an id into a global or local range. It
can be used as an index in an accessor of the same rank. The subscript operator (operator[](n)) returns
the component n as a size_t.

The SYCL id class template provides the common by-value semantics (see Section 4.5.3).

A synopsis of the SYCL id class is provided below. The constructors, member functions and non-member
functions of the SYCL id class are listed in Table 112, Table 113 and Table 114 respectively. The additional

4.9.1.3. id class SYCL 2020 rev 9

256 | Chapter 4. SYCL programming interface

common special member functions and common member functions are listed in Section 4.5.3 in Table 9
and Table 10 respectively.

 1 namespace sycl {
 2 template <int Dimensions = 1> class id {
 3 public:
 4 static constexpr int dimensions = Dimensions;
 5
 6 id();
 7
 8 /* The following constructor is only available in the id class
 9 * specialization where: Dimensions==1 */
10 id(size_t dim0);
11 /* The following constructor is only available in the id class
12 * specialization where: Dimensions==2 */
13 id(size_t dim0, size_t dim1);
14 /* The following constructor is only available in the id class
15 * specialization where: Dimensions==3 */
16 id(size_t dim0, size_t dim1, size_t dim2);
17
18 /* -- common interface members -- */
19
20 id(const range<Dimensions>& range);
21 id(const item<Dimensions>& item);
22
23 size_t get(int dimension) const;
24 size_t& operator[](int dimension);
25 size_t operator[](int dimension) const;
26
27 // only available if Dimensions == 1
28 operator size_t() const;
29
30 // OP is: +, -, *, /, %, <<, >>, &, |, ^, &&, ||, <, >, <=, >=
31 friend id operatorOP(const id& lhs, const id& rhs) { /* ... */
32 }
33 friend id operatorOP(const id& lhs, const size_t& rhs) { /* ... */
34 }
35
36 // OP is: +=, -=, *=, /=, %=, <<=, >>=, &=, |=, ^=
37 friend id& operatorOP(id& lhs, const id& rhs) { /* ... */
38 }
39 friend id& operatorOP(id& lhs, const size_t& rhs) { /* ... */
40 }
41
42 // OP is: +, -, *, /, %, <<, >>, &, |, ^, &&, ||, <, >, <=, >=
43 friend id operatorOP(const size_t& lhs, const id& rhs) { /* ... */
44 }
45
46 // OP is unary +, -
47 friend id operatorOP(const id& rhs) { /* ... */
48 }
49
50 // OP is prefix ++, --
51 friend id& operatorOP(id& rhs) { /* ... */
52 }
53

SYCL 2020 rev 9 4.9.1.3. id class

Chapter 4. SYCL programming interface | 257

54 // OP is postfix ++, --
55 friend id operatorOP(id& lhs, int) { /* ... */
56 }
57 };
58
59 // Deduction guides
60 id(size_t)->id<1>;
61 id(size_t, size_t)->id<2>;
62 id(size_t, size_t, size_t)->id<3>;
63
64 } // namespace sycl

Table 112. Constructors of the id class template

Constructor Description

id()
Construct a SYCL id with the value
0 for each dimension.

id(size_t dim0)
Construct a 1D id with value dim0.
Only valid when the template para
meter Dimensions is equal to 1.

id(size_t dim0, size_t dim1)
Construct a 2D id with values
dim0, dim1. Only valid when the
template parameter Dimensions is
equal to 2.

id(size_t dim0, size_t dim1, size_t dim2)
Construct a 3D id with values
dim0, dim1, dim2. Only valid when
the template parameter Dimensions
is equal to 3.

id(const range<Dimensions>& range)
Construct an id from the dimen
sions of range.

id(const item<Dimensions>& item)
Construct an id from
item.get_id().

Table 113. Member functions of the id class template

Member function Description

size_t get(int dimension) const
Return the value of the id for
dimension Dimension.

size_t& operator[](int dimension)
Return a reference to the
requested dimension of the id
object.

size_t operator[](int dimension) const
Return the value of the requested
dimension of the id object.

operator size_t() const
Available only when: Dimensions ==
1

Returns the same value as get(0).

Table 114. Hidden friend functions of the id class template

4.9.1.3. id class SYCL 2020 rev 9

258 | Chapter 4. SYCL programming interface

Hidden friend function Description

id operatorOP(const id& lhs, const id& rhs)
Where OP is: +, -, *, /, %, <<, >>, &, |,
^, &&, ||, <, >, <=, >=.

Constructs and returns a new
instance of the SYCL id class tem
plate with the same dimensionality
as lhs id, where each element of
the new SYCL id instance is the
result of an element-wise OP opera
tor between each element of lhs id
and each element of the rhs id. If
the operator returns a bool the
result is the cast to size_t.

id operatorOP(const id& lhs, const size_t& rhs)
Where OP is: +, -, *, /, %, <<, >>, &, |,
^, &&, ||, <, >, <=, >=.

Constructs and returns a new
instance of the SYCL id class tem
plate with the same dimensionality
as lhs id, where each element of
the new SYCL id instance is the
result of an element-wise OP opera
tor between each element of lhs id
and the rhs size_t. If the operator
returns a bool the result is the cast
to size_t.

id& operatorOP(id& lhs, const id& rhs)
Where OP is: +=, -=,*=, /=, %=, <<=,
>>=, &=, |=, ^=.

Assigns each element of lhs id
instance with the result of an ele
ment-wise OP operator between
each element of lhs id and each
element of the rhs id and returns
lhs id. If the operator returns a
bool the result is the cast to size_t.

id& operatorOP(id& lhs, const size_t& rhs)
Where OP is: +=, -=,*=, /=, %=, <<=,
>>=, &=, |=, ^=.

Assigns each element of lhs id
instance with the result of an ele
ment-wise OP operator between
each element of lhs id and the rhs
size_t and returns lhs id. If the
operator returns a bool the result
is the cast to size_t.

SYCL 2020 rev 9 4.9.1.3. id class

Chapter 4. SYCL programming interface | 259

Hidden friend function Description

id operatorOP(const size_t& lhs, const id& rhs)
Where OP is: +, -, *, /, %, <<, >>, &, |,
^, &&, ||, <, >, <=, >=.

Constructs and returns a new
instance of the SYCL id class tem
plate with the same dimensionality
as the rhs SYCL id, where each ele
ment of the new SYCL id instance
is the result of an element-wise OP
operator between the lhs size_t
and each element of the rhs SYCL
id. If the operator returns a bool
the result is the cast to size_t.

id operatorOP(const id& rhs)
Where OP is: unary +, unary -.

Constructs and returns a new
instance of the SYCL id class tem
plate with the same dimensionality
as the rhs SYCL id, where each ele
ment of the new SYCL id instance
is the result of an element-wise OP
operator on the rhs SYCL id.

id& operatorOP(id& rhs)
Where OP is: prefix ++, prefix --.

Assigns each element of the rhs id
instance with the result of an ele
ment-wise OP operator on each ele
ment of the rhs id and returns this
id.

id operatorOP(id& lhs, int)
Where OP is: postfix ++, postfix --.

Make a copy of the lhs id. Assigns
each element of the lhs id instance
with the result of an element-wise
OP operator on each element of the
lhs id. Then return the initial copy
of the id.

4.9.1.4. item class

item identifies an instance of the function object executing at each point in a range. It is passed to a par
allel_for call or returned by member functions of h_item. It encapsulates enough information to identify
the work-item’s range of possible values and its ID in that range. It can optionally carry the offset of the
range if provided to the parallel_for; note this is deprecated in SYCL 2020. Instances of the item class are
not user-constructible and are passed by the runtime to each instance of the function object.

The SYCL item class template provides the common by-value semantics (see Section 4.5.3).

A synopsis of the SYCL item class is provided below. The member functions of the SYCL item class are
listed in Table 113. The additional common special member functions and common member functions
are listed in Section 4.5.3 in Table 9 and Table 10 respectively.

 1 namespace sycl {
 2 template <int Dimensions = 1, bool WithOffset = true> class item {

4.9.1.4. item class SYCL 2020 rev 9

260 | Chapter 4. SYCL programming interface

 3 public:
 4 static constexpr int dimensions = Dimensions;
 5
 6 item() = delete;
 7
 8 /* -- common interface members -- */
 9
10 id<Dimensions> get_id() const;
11
12 size_t get_id(int dimension) const;
13
14 size_t operator[](int dimension) const;
15
16 range<Dimensions> get_range() const;
17
18 size_t get_range(int dimension) const;
19
20 // Deprecated in SYCL 2020.
21 // only available if WithOffset is true
22 id<Dimensions> get_offset() const;
23
24 // Deprecated in SYCL 2020.
25 // only available if WithOffset is false
26 operator item<Dimensions, true>() const;
27
28 // only available if Dimensions == 1
29 operator size_t() const;
30
31 size_t get_linear_id() const;
32 };
33 } // namespace sycl

Table 115. Member functions for the item class

Member function Description

id<Dimensions> get_id() const
Return the constituent id repre
senting the work-item’s position in
the iteration space.

size_t get_id(int dimension) const
Return the same value as
get_id()[dimension].

size_t operator[](int dimension) const
Return the same value as
get_id(dimension).

range<Dimensions> get_range() const
Returns a range representing the
dimensions of the range of possible
values of the item.

size_t get_range(int dimension) const
Return the same value as
get_range().get(dimension).

SYCL 2020 rev 9 4.9.1.4. item class

Chapter 4. SYCL programming interface | 261

Member function Description

id<Dimensions> get_offset() const
 // Deprecated in SYCL 2020.

Deprecated in SYCL 2020. Returns
an id representing the n-dimen
sional offset provided to the paral
lel_for and that is added by the
runtime to the global-ID of each
work-item, if this item represents a
global range. For an item con
verted from an item with no offset
this will always return an id of all
0 values.

This member function is only
available if WithOffset is true.

operator item<Dimensions, true>() const
 // Deprecated in SYCL 2020.

Deprecated in SYCL 2020.

Available only when: WithOffset ==
false

Returns an item representing the
same information as the object
holds but also includes the offset
set to 0. This conversion allow
users to seamlessly write code that
assumes an offset and still pro
vides an offset-less item.

operator size_t() const
Available only when: Dimensions ==
1

Returns the same value as
get_id(0).

size_t get_linear_id() const
Return the id as a linear index
value. Calculating a linear address
from the multi-dimensional index
follows Section 3.11.1.

4.9.1.5. nd_item class

nd_item<int Dimensions> identifies an instance of the function object executing at each point in an
nd_range<int Dimensions> passed to a parallel_for call. It encapsulates enough information to identify
the work-item's local and global ids, the work-group id and also provides access to the group and sub_
group classes. Instances of the nd_item<int Dimensions> class are not user-constructible and are passed by
the runtime to each instance of the function object.

The SYCL nd_item class template provides the common by-value semantics (see Section 4.5.3).

A synopsis of the SYCL nd_item class is provided below. The member functions of the SYCL nd_item class
are listed in Table 116. The additional common special member functions and common member func
tions are listed in Section 4.5.3 in Table 9 and Table 10 respectively.

 1 namespace sycl {
 2 template <int Dimensions = 1> class nd_item {
 3 public:
 4 static constexpr int dimensions = Dimensions;
 5

4.9.1.5. nd_item class SYCL 2020 rev 9

262 | Chapter 4. SYCL programming interface

 6 nd_item() = delete;
 7
 8 /* -- common interface members -- */
 9
 10 id<Dimensions> get_global_id() const;
 11
 12 size_t get_global_id(int dimension) const;
 13
 14 size_t get_global_linear_id() const;
 15
 16 id<Dimensions> get_local_id() const;
 17
 18 size_t get_local_id(int dimension) const;
 19
 20 size_t get_local_linear_id() const;
 21
 22 group<Dimensions> get_group() const;
 23
 24 sub_group get_sub_group() const;
 25
 26 size_t get_group(int dimension) const;
 27
 28 size_t get_group_linear_id() const;
 29
 30 range<Dimensions> get_group_range() const;
 31
 32 size_t get_group_range(int dimension) const;
 33
 34 range<Dimensions> get_global_range() const;
 35
 36 size_t get_global_range(int dimension) const;
 37
 38 range<Dimensions> get_local_range() const;
 39
 40 size_t get_local_range(int dimension) const;
 41
 42 // Deprecated in SYCL 2020.
 43 id<Dimensions> get_offset() const;
 44
 45 nd_range<Dimensions> get_nd_range() const;
 46
 47 // Deprecated in SYCL 2020.
 48 template <typename DataT>
 49 device_event async_work_group_copy(local_ptr<DataT> dest,
 50 global_ptr<DataT> src,
 51 size_t numElements) const;
 52
 53 // Deprecated in SYCL 2020.
 54 template <typename DataT>
 55 device_event async_work_group_copy(global_ptr<DataT> dest,
 56 local_ptr<DataT> src,
 57 size_t numElements) const;
 58
 59 // Deprecated in SYCL 2020.
 60 template <typename DataT>
 61 device_event async_work_group_copy(local_ptr<DataT> dest,

SYCL 2020 rev 9 4.9.1.5. nd_item class

Chapter 4. SYCL programming interface | 263

 62 global_ptr<DataT> src,
 63 size_t numElements,
 64 size_t srcStride) const;
 65
 66 // Deprecated in SYCL 2020.
 67 template <typename DataT>
 68 device_event async_work_group_copy(global_ptr<DataT> dest,
 69 local_ptr<DataT> src,
 70 size_t numElements,
 71 size_t destStride) const;
 72
 73 /* Available only when: (std::is_same_v<DestDataT,
 74 std::remove_const_t<SrcDataT>> == true) */
 75 template <typename DestDataT, typename SrcDataT>
 76 device_event async_work_group_copy(decorated_local_ptr<DestDataT> dest,
 77 decorated_global_ptr<SrcDataT> src,
 78 size_t numElements) const;
 79
 80 /* Available only when: (std::is_same_v<DestDataT,
 81 std::remove_const_t<SrcDataT>> == true) */
 82 template <typename DestDataT, typename SrcDataT>
 83 device_event async_work_group_copy(decorated_global_ptr<DestDataT> dest,
 84 decorated_local_ptr<SrcDataT> src,
 85 size_t numElements) const;
 86
 87 /* Available only when: (std::is_same_v<DestDataT,
 88 std::remove_const_t<SrcDataT>> == true) */
 89 template <typename DestDataT, typename SrcDataT>
 90 device_event async_work_group_copy(decorated_local_ptr<DestDataT> dest,
 91 decorated_global_ptr<SrcDataT> src,
 92 size_t numElements,
 93 size_t srcStride) const;
 94
 95 /* Available only when: (std::is_same_v<DestDataT,
 96 std::remove_const_t<SrcDataT>> == true) */
 97 template <typename DestDataT, typename SrcDataT>
 98 device_event async_work_group_copy(decorated_global_ptr<DestDataT> dest,
 99 decorated_local_ptr<SrcDataT> src,
100 size_t numElements,
101 size_t destStride) const;
102
103 template <typename... EventTN> void wait_for(EventTN... events) const;
104 };
105 } // namespace sycl

Table 116. Member functions for the nd_item class

Member function Description

id<Dimensions> get_global_id() const
Return the constituent global id
representing the work-item’s posi
tion in the global iteration space.

size_t get_global_id(int dimension) const
Return the constituent element of
the global id representing the
work-item’s position in the nd-
range in the given Dimension.

4.9.1.5. nd_item class SYCL 2020 rev 9

264 | Chapter 4. SYCL programming interface

Member function Description

size_t get_global_linear_id() const
Return the constituent global id as
a linear index value, representing
the work-item’s position in the
global iteration space. The linear
address is calculated from the
multi-dimensional index by first
subtracting the offset and then fol
lowing Section 3.11.1.

id<Dimensions> get_local_id() const
Return the constituent local id rep
resenting the work-item’s position
within the current work-group.

size_t get_local_id(int dimension) const
Return the constituent element of
the local id representing the work-
item’s position within the current
work-group in the given Dimension.

size_t get_local_linear_id() const
Return the constituent local id as a
linear index value, representing
the work-item’s position within the
current work-group. The linear
address is calculated from the
multi-dimensional index following
Section 3.11.1.

group<Dimensions> get_group() const
Return the constituent work-group,
group representing the work-
group's position within the overall
nd-range.

sub_group get_sub_group() const
Return a sub_group representing
the sub-group to which the work-
item belongs.

size_t get_group(int dimension) const
Return the constituent element of
the group id representing the
work-group’s position within the
overall nd_range in the given Dimen
sion.

size_t get_group_linear_id() const
Return the group id as a linear
index value. Calculating a linear
address from a multi-dimensional
index follows Section 3.11.1.

range<Dimensions> get_group_range() const
Returns the number of work-
groups in the iteration space.

size_t get_group_range(int dimension) const
Return the number of work-groups
for Dimension in the iteration space.

range<Dimensions> get_global_range() const
Returns a range representing the
dimensions of the global iteration
space.

size_t get_global_range(int dimension) const
Return the same value as get_glob
al_range().get(dimension).

SYCL 2020 rev 9 4.9.1.5. nd_item class

Chapter 4. SYCL programming interface | 265

Member function Description

range<Dimensions> get_local_range() const
Returns a range representing the
dimensions of the current work-
group.

size_t get_local_range(int dimension) const
Return the same value as get_lo
cal_range().get(dimension).

id<Dimensions> get_offset() const
 // Deprecated in SYCL 2020.

Deprecated in SYCL 2020. Returns
an id representing the n-dimen
sional offset provided to the con
structor of the nd_range and that is
added by the runtime to the global
id of each work-item.

nd_range<Dimensions> get_nd_range() const
Returns the nd_range of the current
execution.

template <typename DataT>
device_event async_work_group_copy(local_ptr<DataT> dest,
 global_ptr<DataT> src,
 size_t numElements)
const

Deprecated in SYCL 2020. Has the
same effect as the overload taking
decorated_local_ptr and decorat
ed_global_ptr except that the dest
and src parameters are multi_ptr
with access::decorated::legacy.

template <typename DataT>
device_event async_work_group_copy(global_ptr<DataT> dest,
 local_ptr<DataT> src,
 size_t numElements)
const

Deprecated in SYCL 2020. Has the
same effect as the overload taking
decorated_local_ptr and decorat
ed_global_ptr except that the dest
and src parameters are multi_ptr
with access::decorated::legacy.

template <typename DataT>
device_event async_work_group_copy(local_ptr<DataT> dest,
 global_ptr<DataT> src,
 size_t numElements,
size_t srcStride) const

Deprecated in SYCL 2020. Has the
same effect as the overload taking
decorated_local_ptr and decorat
ed_global_ptr except that the dest
and src parameters are multi_ptr
with access::decorated::legacy.

template <typename DataT>
device_event async_work_group_copy(global_ptr<DataT> dest,
 local_ptr<DataT> src,
 size_t numElements,
size_t destStride) const

Deprecated in SYCL 2020. Has the
same effect as the overload taking
decorated_local_ptr and decorat
ed_global_ptr except that the dest
and src parameters are multi_ptr
with access::decorated::legacy.

4.9.1.5. nd_item class SYCL 2020 rev 9

266 | Chapter 4. SYCL programming interface

Member function Description

template <typename DestDataT, typename SrcDataT>
device_event async_work_group_copy(decorated_local_ptr
<DestDataT> dest,
 decorated_global_ptr
<SrcDataT> src,
 size_t numElements)
const

Available only when:
(std::is_same_v<DestDataT,
std::remove_const_t<SrcDataT>> ==
true)

Permitted types for DataT are all
scalar and vector types. Asynchro
nously copies a number of ele
ments specified by numElements
from the source pointer src to des
tination pointer dest and returns a
SYCL device_event which can be
used to wait on the completion of
the copy.

template <typename DestDataT, typename SrcDataT>
device_event async_work_group_copy(decorated_global_ptr
<DestDataT> dest,
 decorated_local_ptr
<SrcDataT> src,
 size_t numElements)
const

Available only when:
(std::is_same_v<DestDataT,
std::remove_const_t<SrcDataT>> ==
true)

Permitted types for DataT are all
scalar and vector types. Asynchro
nously copies a number of ele
ments specified by numElements
from the source pointer src to des
tination pointer dest and returns a
SYCL device_event which can be
used to wait on the completion of
the copy.

template <typename DestDataT, typename SrcDataT>
device_event async_work_group_copy(decorated_local_ptr
<DestDataT> dest,
 decorated_global_ptr
<SrcDataT> src,
 size_t numElements,
size_t srcStride) const

Available only when:
(std::is_same_v<DestDataT,
std::remove_const_t<SrcDataT>> ==
true)

Permitted types for DataT are all
scalar and vector types. Asynchro
nously copies a number of ele
ments specified by numElements
from the source pointer src to des
tination pointer dest with a source
stride specified by srcStride and
returns a SYCL device_event which
can be used to wait on the comple
tion of the copy.

SYCL 2020 rev 9 4.9.1.5. nd_item class

Chapter 4. SYCL programming interface | 267

Member function Description

template <typename DestDataT, SrcDataT>
device_event async_work_group_copy(decorated_global_ptr
<DestDataT> dest,
 decorated_local_ptr
<SrcDataT> src,
 size_t numElements,
size_t destStride) const

Available only when:
(std::is_same_v<DestDataT,
std::remove_const_t<SrcDataT>> ==
true)

Permitted types for DataT are all
scalar and vector types. Asynchro
nously copies a number of ele
ments specified by numElements
from the source pointer src to des
tination pointer dest with a desti
nation stride specified by dest
Stride and returns a SYCL
device_event which can be used to
wait on the completion of the copy.

template <typename... EventTN> void wait_for(EventTN...
events) const

Permitted type for EventTN is
device_event. Waits for the asyn
chronous operations associated
with each device_event to com
plete.

4.9.1.6. h_item class

h_item<int Dimensions> identifies an instance of a group::parallel_for_work_item function object execut
ing at each point in a local range<int Dimensions> passed to a parallel_for_work_item call or to the corre
sponding parallel_for_work_group call if no range is passed to the parallel_for_work_item call. It encapsu
lates enough information to identify the work-item's local and global items according to the information
given to parallel_for_work_group (physical ids) as well as the work-item's logical local items in the logical
local range. All returned items objects are offset-less. Instances of the h_item<int Dimensions> class are
not user-constructible and are passed by the runtime to each instance of the function object.

The SYCL h_item class template provides the common by-value semantics (see Section 4.5.3).

A synopsis of the SYCL h_item class is provided below. The member functions of the SYCL h_item class are
listed in Table 117. The additional common special member functions and common member functions
are listed in Section 4.5.3 in Table 9 and Table 10 respectively.

 1 namespace sycl {
 2 template <int Dimensions> class h_item {
 3 public:
 4 static constexpr int dimensions = Dimensions;
 5
 6 h_item() = delete;
 7
 8 /* -- common interface members -- */
 9
10 item<Dimensions, false> get_global() const;
11
12 item<Dimensions, false> get_local() const;
13
14 item<Dimensions, false> get_logical_local() const;
15
16 item<Dimensions, false> get_physical_local() const;
17

4.9.1.6. h_item class SYCL 2020 rev 9

268 | Chapter 4. SYCL programming interface

18 range<Dimensions> get_global_range() const;
19
20 size_t get_global_range(int dimension) const;
21
22 id<Dimensions> get_global_id() const;
23
24 size_t get_global_id(int dimension) const;
25
26 range<Dimensions> get_local_range() const;
27
28 size_t get_local_range(int dimension) const;
29
30 id<Dimensions> get_local_id() const;
31
32 size_t get_local_id(int dimension) const;
33
34 range<Dimensions> get_logical_local_range() const;
35
36 size_t get_logical_local_range(int dimension) const;
37
38 id<Dimensions> get_logical_local_id() const;
39
40 size_t get_logical_local_id(int dimension) const;
41
42 range<Dimensions> get_physical_local_range() const;
43
44 size_t get_physical_local_range(int dimension) const;
45
46 id<Dimensions> get_physical_local_id() const;
47
48 size_t get_physical_local_id(int dimension) const;
49 };
50 } // namespace sycl

Table 117. Member functions for the h_item class

Member function Description

item<Dimensions, false> get_global() const
Return the constituent global item
representing the work-item’s posi
tion in the global iteration space as
provided upon kernel invocation.

item<Dimensions, false> get_local() const
Return the same value as get_logi
cal_local().

SYCL 2020 rev 9 4.9.1.6. h_item class

Chapter 4. SYCL programming interface | 269

Member function Description

item<Dimensions, false> get_logical_local() const
Return the constituent element of
the logical local item work-item’s
position in the local iteration space
as provided upon the invocation of
the group::parallel_for_work_item.

If the group::parallel_for_
work_item was called without any
logical local range then the mem
ber function returns the physical
local item.

A physical id can be computed
from a logical id by getting the
remainder of the integer division
of the logical id and the physical
range: get_logical_local().get() %
get_physical_local.get_range() ==
get_physical_local().get().

item<Dimensions, false> get_physical_local() const
Return the constituent element of
the physical local item work-item’s
position in the local iteration space
as provided (by the user or the
runtime) upon the kernel invoca
tion.

range<Dimensions> get_global_range() const
Return the same value as get_
global().get_range()

size_t get_global_range(int dimension) const
Return the same value as get_
global().get_range(dimension)

id<Dimensions> get_global_id() const
Return the same value as get_
global().get_id()

size_t get_global_id(int dimension) const
Return the same value as get_
global().get_id(dimension)

range<Dimensions> get_local_range() const
Return the same value as get_lo
cal().get_range()

size_t get_local_range(int dimension) const
Return the same value as get_lo
cal().get_range(dimension)

id<Dimensions> get_local_id() const
Return the same value as get_lo
cal().get_id()

size_t get_local_id(int dimension) const
Return the same value as get_lo
cal().get_id(dimension)

range<Dimensions> get_logical_local_range() const
Return the same value as get_logi
cal_local().get_range()

size_t get_logical_local_range(int dimension) const
Return the same value as get_logi
cal_local().get_range(dimension)

4.9.1.6. h_item class SYCL 2020 rev 9

270 | Chapter 4. SYCL programming interface

Member function Description

id<Dimensions> get_logical_local_id() const
Return the same value as get_logi
cal_local().get_id()

size_t get_logical_local_id(int dimension) const
Return the same value as get_logi
cal_local().get_id(dimension)

range<Dimensions> get_physical_local_range() const
Return the same value as get_phys
ical_local().get_range()

size_t get_physical_local_range(int dimension) const
Return the same value as get_phys
ical_local().get_range(dimension)

id<Dimensions> get_physical_local_id() const
Return the same value as get_phys
ical_local().get_id()

size_t get_physical_local_id(int dimension) const
Return the same value as get_phys
ical_local().get_id(dimension)

4.9.1.7. group class

The group<int Dimensions> encapsulates all functionality required to represent a particular work-group
within a parallel execution. It is not user-constructible.

The local range stored in the group class is provided either by the programmer, when it is passed as an
optional parameter to parallel_for_work_group, or by the runtime system when it selects the optimal
work-group size. This allows the developer to always know how many work-items are in each executing
work-group, even through the abstracted iteration range of the parallel_for_work_item loops.

The SYCL group class template provides the common by-value semantics (see Section 4.5.3).

A synopsis of the SYCL group class is provided below. The member functions of the SYCL group class are
listed in Table 118. The additional common special member functions and common member functions
are listed in Section 4.5.3 in Table 9 and Table 10 respectively.

 1 namespace sycl {
 2 template <int Dimensions = 1> class group {
 3 public:
 4 using id_type = id<Dimensions>;
 5 using range_type = range<Dimensions>;
 6 using linear_id_type = size_t;
 7 static constexpr int dimensions = Dimensions;
 8 static constexpr memory_scope fence_scope = memory_scope::work_group;
 9
 10 /* -- common interface members -- */
 11
 12 id<Dimensions> get_group_id() const;
 13
 14 size_t get_group_id(int dimension) const;
 15
 16 id<Dimensions> get_local_id() const;
 17
 18 size_t get_local_id(int dimension) const;
 19
 20 range<Dimensions> get_local_range() const;

SYCL 2020 rev 9 4.9.1.7. group class

Chapter 4. SYCL programming interface | 271

 21
 22 size_t get_local_range(int dimension) const;
 23
 24 range<Dimensions> get_group_range() const;
 25
 26 size_t get_group_range(int dimension) const;
 27
 28 range<Dimensions> get_max_local_range() const;
 29
 30 size_t operator[](int dimension) const;
 31
 32 size_t get_group_linear_id() const;
 33
 34 size_t get_local_linear_id() const;
 35
 36 size_t get_group_linear_range() const;
 37
 38 size_t get_local_linear_range() const;
 39
 40 bool leader() const;
 41
 42 template <typename WorkItemFunctionT>
 43 void parallel_for_work_item(const WorkItemFunctionT& func) const;
 44
 45 template <typename WorkItemFunctionT>
 46 void parallel_for_work_item(range<Dimensions> logicalRange,
 47 const WorkItemFunctionT& func) const;
 48
 49 // Deprecated in SYCL 2020.
 50 template <typename DataT>
 51 device_event async_work_group_copy(local_ptr<DataT> dest,
 52 global_ptr<DataT> src,
 53 size_t numElements) const;
 54
 55 // Deprecated in SYCL 2020.
 56 template <typename DataT>
 57 device_event async_work_group_copy(global_ptr<DataT> dest,
 58 local_ptr<DataT> src,
 59 size_t numElements) const;
 60
 61 // Deprecated in SYCL 2020.
 62 template <typename DataT>
 63 device_event async_work_group_copy(local_ptr<DataT> dest,
 64 global_ptr<DataT> src,
 65 size_t numElements,
 66 size_t srcStride) const;
 67
 68 // Deprecated in SYCL 2020.
 69 template <typename DataT>
 70 device_event async_work_group_copy(global_ptr<DataT> dest,
 71 local_ptr<DataT> src,
 72 size_t numElements,
 73 size_t destStride) const;
 74
 75 /* Available only when: (std::is_same_v<DestDataT,
 76 std::remove_const_t<SrcDataT>> == true) */

4.9.1.7. group class SYCL 2020 rev 9

272 | Chapter 4. SYCL programming interface

 77 template <typename DestDataT, typename SrcDataT>
 78 device_event async_work_group_copy(decorated_local_ptr<DestDataT> dest,
 79 decorated_global_ptr<SrcDataT> src,
 80 size_t numElements) const;
 81
 82 /* Available only when: (std::is_same_v<DestDataT,
 83 std::remove_const_t<SrcDataT>> == true) */
 84 template <typename DestDataT, typename SrcDataT>
 85 device_event async_work_group_copy(decorated_global_ptr<DestDataT> dest,
 86 decorated_local_ptr<SrcDataT> src,
 87 size_t numElements) const;
 88
 89 /* Available only when: (std::is_same_v<DestDataT,
 90 std::remove_const_t<SrcDataT>> == true) */
 91 template <typename DestDataT, typename SrcDataT>
 92 device_event async_work_group_copy(decorated_local_ptr<DestDataT> dest,
 93 decorated_global_ptr<SrcDataT> src,
 94 size_t numElements,
 95 size_t srcStride) const;
 96
 97 /* Available only when: (std::is_same_v<DestDataT,
 98 std::remove_const_t<SrcDataT>> == true) */
 99 template <typename DestDataT, typename SrcDataT>
100 device_event async_work_group_copy(decorated_global_ptr<DestDataT> dest,
101 decorated_local_ptr<SrcDataT> src,
102 size_t numElements,
103 size_t destStride) const;
104
105 template <typename... EventTN> void wait_for(EventTN... events) const;
106 };
107 } // namespace sycl

Table 118. Member functions for the group class

Member function Description

id<Dimensions> get_group_id() const
Return an id representing the
index of the work-group within the
global nd-range for every dimen
sion. Since the work-items in a
work-group have a defined posi
tion within the global nd-range, the
returned group id can be used
along with the local id to uniquely
identify the work-item in the
global nd-range.

size_t get_group_id(int dimension) const
Return the same value as get_
group_id()[dimension].

SYCL 2020 rev 9 4.9.1.7. group class

Chapter 4. SYCL programming interface | 273

Member function Description

id<Dimensions> get_local_id() const
Return a SYCL id representing the
calling work-item’s position within
the work-group.

It is undefined behavior for this
member function to be invoked
from within a parallel_for_
work_item context.

size_t get_local_id(int dimension) const
Return the same value as get_lo
cal_id()[dimension].

It is undefined behavior for this
member function to be invoked
from within a parallel_for_
work_item context.

range<Dimensions> get_local_range() const
Return a SYCL range representing
all dimensions of the local range.
This local range may have been
provided by the programmer, or
chosen by the SYCL runtime.

size_t get_local_range(int dimension) const
Return the same value as get_lo
cal_range()[dimension].

range<Dimensions> get_group_range() const
Return a range representing the
number of work-groups in the
nd_range.

size_t get_group_range(int dimension) const
Return the same value as get_
group_range()[dimension].

size_t operator[](int dimension) const
Return the same value as get_
group_id(dimension).

range<Dimensions> get_max_local_range() const
Return a range representing the
maximum number of work-items
in any work-group in the nd_range.

size_t get_group_linear_id() const
Get a linearized version of the
work-group id. Calculating a linear
work-group id from a multi-dimen
sional index follows Section 3.11.1.

size_t get_group_linear_range() const
Return the total number of work-
groups in the nd_range.

size_t get_local_linear_id() const
Get a linearized version of the call
ing work-item’s local id. Calculat
ing a linear local id from a multi-
dimensional index follows Section
3.11.1.

It is undefined behavior for this
member function to be invoked
from within a parallel_for_
work_item context.

4.9.1.7. group class SYCL 2020 rev 9

274 | Chapter 4. SYCL programming interface

Member function Description

size_t get_local_linear_range() const
Return the total number of work-
items in the work-group.

bool leader() const
Return true for exactly one work-
item in the work-group, if the call
ing work-item is the leader of the
work-group, and false for all other
work-items in the work-group.

The leader of the work-group is
determined during construction of
the work-group, and is invariant
for the lifetime of the work-group.
The leader of the work-group is
guaranteed to be the work-item
with a local id of 0.

template <typename WorkItemFunctionT>
void parallel_for_work_item(const WorkItemFunctionT& func)
const

Launch the work-items for this
work-group.

func is a function object type with a
public member function void
F::operator()(h_item<Dimensions>)
representing the work-item com
putation.

This member function can only be
invoked within a parallel_for_
work_group context. It is undefined
behavior for this member function
to be invoked from within the par
allel_for_work_group form that
does not define work-group size,
because then the number of work-
items that should execute the code
is not defined. It is expected that
this form of parallel_for_work_item
is invoked within the parallel_
for_work_group form that specifies
the size of a work-group.

SYCL 2020 rev 9 4.9.1.7. group class

Chapter 4. SYCL programming interface | 275

Member function Description

template <typename WorkItemFunctionT>
void parallel_for_work_item(range<Dimensions> logicalRange,
 const WorkItemFunctionT& func)
const

Launch the work-items for this
work-group using a logical local
range. The function object func is
executed as if the kernel were
invoked with logicalRange as the
local range. This new local range is
emulated and may not map one-to-
one with the physical range.

logicalRange is the new local range
to be used. This range can be
smaller or larger than the one used
to invoke the kernel. func is a func
tion object type with a public mem
ber function void F::opera
tor()(h_item<Dimensions>) repre
senting the work-item computa
tion.

Note that the logical range does not
need to be uniform across all
work-groups in a kernel. For exam
ple the logical range may depend
on a work-group varying query
(e.g. group::get_linear_id), such
that different work-groups in the
same kernel invocation execute
different logical range sizes.

This member function can only be
invoked within a parallel_for_
work_group context.

template <typename DataT>
device_event async_work_group_copy(local_ptr<DataT> dest,
 global_ptr<DataT> src,
 size_t numElements)
const

Deprecated in SYCL 2020. Has the
same effect as the overload taking
decorated_local_ptr and decorat
ed_global_ptr except that the dest
and src parameters are multi_ptr
with access::decorated::legacy.

template <typename DataT>
device_event async_work_group_copy(global_ptr<DataT> dest,
 local_ptr<DataT> src,
 size_t numElements)
const

Deprecated in SYCL 2020. Has the
same effect as the overload taking
decorated_local_ptr and decorat
ed_global_ptr except that the dest
and src parameters are multi_ptr
with access::decorated::legacy.

template <typename DataT>
device_event async_work_group_copy(local_ptr<DataT> dest,
 global_ptr<DataT> src,
 size_t numElements,
size_t srcStride) const

Deprecated in SYCL 2020. Has the
same effect as the overload taking
decorated_local_ptr and decorat
ed_global_ptr except that the dest
and src parameters are multi_ptr
with access::decorated::legacy.

4.9.1.7. group class SYCL 2020 rev 9

276 | Chapter 4. SYCL programming interface

Member function Description

template <typename DataT>
device_event async_work_group_copy(global_ptr<DataT> dest,
 local_ptr<DataT> src,
 size_t numElements,
size_t destStride) const

Deprecated in SYCL 2020. Has the
same effect as the overload taking
decorated_local_ptr and decorat
ed_global_ptr except that the dest
and src parameters are multi_ptr
with access::decorated::legacy.

template <typename DestDataT, typename SrcDataT>
device_event async_work_group_copy(decorated_global_ptr
<DestDataT> dest,
 decorated_local_ptr
<SrcDataT> src,
 size_t numElements)
const

Available only when:
(std::is_same_v<DestDataT,
std::remove_const_t<SrcDataT>> ==
true)

Permitted types for DataT are all
scalar and vector types. Asynchro
nously copies a number of ele
ments specified by numElements
from the source pointer src to des
tination pointer dest and returns a
SYCL device_event which can be
used to wait on the completion of
the copy.

template <typename DestDataT, typename SrcDataT>
device_event async_work_group_copy(decorated_local_ptr
<DestDataT> dest,
 decorated_global_ptr
<SrcDataT> src,
 size_t numElements,
size_t srcStride) const

Available only when:
(std::is_same_v<DestDataT,
std::remove_const_t<SrcDataT>> ==
true)

Permitted types for DataT are all
scalar and vector types. Asynchro
nously copies a number of ele
ments specified by numElements
from the source pointer src to des
tination pointer dest with a source
stride specified by srcStride and
returns a SYCL device_event which
can be used to wait on the comple
tion of the copy.

template <typename DestDataT, SrcDataT>
device_event async_work_group_copy(decorated_global_ptr
<DestDataT> dest,
 decorated_local_ptr
<SrcDataT> src,
 size_t numElements,
size_t destStride) const

Available only when:
(std::is_same_v<DestDataT,
std::remove_const_t<SrcDataT>> ==
true)

Permitted types for DataT are all
scalar and vector types. Asynchro
nously copies a number of ele
ments specified by numElements
from the source pointer src to des
tination pointer dest with a desti
nation stride specified by dest
Stride and returns a SYCL
device_event which can be used to
wait on the completion of the copy.

SYCL 2020 rev 9 4.9.1.7. group class

Chapter 4. SYCL programming interface | 277

Member function Description

template <typename... EventTN> void wait_for(EventTN...
events) const

Permitted type for EventTN is
device_event. Waits for the asyn
chronous operations associated
with each device_event to com
plete.

4.9.1.8. sub_group class

The sub_group class encapsulates all functionality required to represent a particular sub-group within a
parallel execution. It is not user-constructible.

The SYCL sub_group class provides the common by-value semantics (see Section 4.5.3).

A synopsis of the SYCL sub_group class is provided below. The member functions of the SYCL sub_group
class are listed in Table 119. The additional common special member functions and common member
functions are listed in Section 4.5.3 in Table 9 and Table 10 respectively.

 1 namespace sycl {
 2 class sub_group {
 3 public:
 4 using id_type = id<1>;
 5 using range_type = range<1>;
 6 using linear_id_type = uint32_t;
 7 static constexpr int dimensions = 1;
 8 static constexpr memory_scope fence_scope = memory_scope::sub_group;
 9
10 /* -- common interface members -- */
11
12 id<1> get_group_id() const;
13
14 id<1> get_local_id() const;
15
16 range<1> get_local_range() const;
17
18 range<1> get_group_range() const;
19
20 range<1> get_max_local_range() const;
21
22 uint32_t get_group_linear_id() const;
23
24 uint32_t get_local_linear_id() const;
25
26 uint32_t get_group_linear_range() const;
27
28 uint32_t get_local_linear_range() const;
29
30 bool leader() const;
31 };
32 } // namespace sycl

Table 119. Member functions for the sub_group class

4.9.1.8. sub_group class SYCL 2020 rev 9

278 | Chapter 4. SYCL programming interface

Member function Description

id<1> get_group_id() const
Return an id representing the
index of the sub-group within the
work-group. Since the work-items
that compose a sub-group are cho
sen in an implementation defined
way, the returned sub-group id
cannot be used to identify a partic
ular work-item in the global nd-
range. Rather, the returned sub-
group id is merely an abstract
identifier of the sub-group contain
ing this work-item.

id<1> get_local_id() const
Return a SYCL id representing the
calling work-item’s position within
the sub-group.

range<1> get_local_range() const
Return a range representing the
size of the sub-group. This size may
be less than the value returned by
get_max_local_range(), depending
on the position of the sub-group
within its parent work-group and
the manner in which sub-groups
are constructed by the implemen
tation.

range<1> get_group_range() const
Return a range representing the
number of sub-groups in the work-
group.

range<1> get_max_local_range() const
Return a range representing the
maximum number of work-items
permitted in a sub-group for the
executing kernel. This value may
have been chosen by the program
mer via an attribute, or chosen by
the device compiler.

uint32_t get_group_linear_id() const
Return the same value as get_
group_id()[0].

uint32_t get_group_linear_range() const
Return the same value as get_
group_range()[0].

uint32_t get_local_linear_id() const
Return the same value as get_lo
cal_id()[0].

uint32_t get_local_linear_range() const
Return the same value as get_lo
cal_range()[0].

SYCL 2020 rev 9 4.9.1.8. sub_group class

Chapter 4. SYCL programming interface | 279

Member function Description

bool leader() const
Return true for exactly one work-
item in the sub-group, if the calling
work-item is the leader of the sub-
group, and false for all other work-
items in the sub-group.

The leader of the sub-group is
determined during construction of
the sub-group, and is invariant for
the lifetime of the sub-group. The
leader of the sub-group is guaran
teed to be the work-item with a
local id of 0.

4.9.2. Reduction variables

All functionality related to reductions is captured by the reducer class and the reduction function.

The example below demonstrates how to write a reduction kernel that performs two reductions simulta
neously on the same input values, computing both the sum of all values in a buffer and the maximum
value in the buffer. For each reduction variable passed to parallel_for, a reference to a reducer object is
passed as a parameter to the kernel function in the same order.

 1 buffer<int> valuesBuf { 1024 };
 2 {
 3 // Initialize buffer on the host with 0, 1, 2, 3, ..., 1023
 4 host_accessor a { valuesBuf };
 5 std::iota(a.begin(), a.end(), 0);
 6 }
 7
 8 // Buffers with just 1 element to get the reduction results
 9 int sumResult = 0;
10 buffer<int> sumBuf { &sumResult, 1 };
11 int maxResult = 0;
12 buffer<int> maxBuf { &maxResult, 1 };
13
14 myQueue.submit([&](handler& cgh) {
15 // Input values to reductions are standard accessors
16 auto inputValues = valuesBuf.get_access<access_mode::read>(cgh);
17
18 // Create temporary objects describing variables with reduction semantics
19 auto sumReduction = reduction(sumBuf, cgh, plus<>());
20 auto maxReduction = reduction(maxBuf, cgh, maximum<>());
21
22 // parallel_for performs two reduction operations
23 // For each reduction variable, the implementation:
24 // - Creates a corresponding reducer
25 // - Passes a reference to the reducer to the lambda as a parameter
26 cgh.parallel_for(range<1> { 1024 }, sumReduction, maxReduction,
27 [=](id<1> idx, auto& sum, auto& max) {
28 // plus<>() corresponds to += operator, so sum can be
29 // updated via += or combine()
30 sum += inputValues[idx];
31

4.9.2. Reduction variables SYCL 2020 rev 9

280 | Chapter 4. SYCL programming interface

32 // maximum<>() has no shorthand operator, so max can only
33 // be updated via combine()
34 max.combine(inputValues[idx]);
35 });
36 });
37
38 // sumBuf and maxBuf contain the reduction results once the kernel completes
39 assert(maxBuf.get_host_access()[0] == 1023 &&
40 sumBuf.get_host_access()[0] == 523776);

Reductions are supported for all trivially copyable types (as defined by the C++ core language). If the
reduction operator is non-associative or non-commutative, the behavior of a reduction may be non-
deterministic. If multiple reductions reference the same reduction variable, or a reduction variable is
accessed directly during the lifetime of a reduction (e.g. via an accessor or USM pointer), the behavior is
undefined.

Some of the overloads for the reduction function take an identity value and some do not. An implemen
tation is required to compute a correct reduction even when the application does not specify an identity
value. However, the implementation may be more efficient when the identity value is either provided by
the application or is known by the implementation. For reductions using standard binary operators and
fundamental types (e.g. plus and arithmetic types), an implementation can determine the correct iden
tity value automatically in order to avoid performance penalties.

If an implementation can identify an identity value for a given combination of accumulator type and
function object type, the value is defined as a member of the known_identity trait class. Whether this
member value exists can be tested using the has_known_identity trait class.

 1 template <typename BinaryOperation, typename AccumulatorT>
 2 struct known_identity {
 3 static constexpr AccumulatorT value;
 4 };
 5
 6 template <typename BinaryOperation, typename AccumulatorT>
 7 inline constexpr AccumulatorT known_identity_v =
 8 known_identity<BinaryOperation, AccumulatorT>::value;
 9
10 template <typename BinaryOperation, typename AccumulatorT>
11 struct has_known_identity {
12 static constexpr bool value;
13 };
14
15 template <typename BinaryOperation, typename AccumulatorT>
16 inline constexpr bool has_known_identity_v =
17 has_known_identity<BinaryOperation, AccumulatorT>::value;

For each of the partial specializations listed in Table 120, known_identity exists and has the value shown.

Table 120. Known identities.

SYCL 2020 rev 9 4.9.2. Reduction variables

Chapter 4. SYCL programming interface | 281

Operator Available Only When Identity

sycl::plus std::is_arithmetic_v<AccumulatorT> ||
 std::is_same_v<std::remove_cv_t<AccumulatorT
>, sycl::half>

AccumulatorT{}

sycl::multiplies std::is_arithmetic_v<AccumulatorT> ||
 std::is_same_v<std::remove_cv_t<AccumulatorT
>, sycl::half>

AccumulatorT{1
}

sycl::bit_and std::is_integral_v<AccumulatorT> ~AccumulatorT{
}

sycl::bit_or std::is_integral_v<AccumulatorT> AccumulatorT{}

sycl::bit_xor std::is_integral_v<AccumulatorT> AccumulatorT{}

sycl::logical_and std::is_same_v<std::remove_cv_t<AccumulatorT>,
bool>

true

sycl::logical_or std::is_same_v<std::remove_cv_t<AccumulatorT>,
bool>

false

sycl::minimum std::is_integral_v<AccumulatorT> std::numeric_l
imits<Accumula
torT>::max()

sycl::minimum std::is_floating_point_v<AccumulatorT> ||
 std::is_same_v<std::remove_cv_t<AccumulatorT
>, sycl::half>

std::numeric_l
imits<Accumula
torT>::infinit
y()

sycl::maximum std::is_integral_v<AccumulatorT> std::numeric_l
imits<Accumula
torT>::lowest(
)

sycl::maximum std::is_floating_point_v<AccumulatorT> ||
 std::is_same_v<std::remove_cv_t<AccumulatorT
>, sycl::half>

-std
::numeric_limi
ts<Accumulator
T>::infinity()

The reduction interface is limited to reduction variables whose size can be determined at compile-time.

4.9.2. Reduction variables SYCL 2020 rev 9

282 | Chapter 4. SYCL programming interface

As such, buffer and USM pointer arguments are interpreted by the reduction interface as describing a
single variable. A reduction operation associated with a span represents an array reduction. An array
reduction of size N is functionally equivalent to specifying N independent scalar reductions. The combi
nation operations performed by an array reduction are limited to the extent of a USM allocation
described by a span, and access to elements outside of these regions results in undefined behavior.

Since a span is one-dimensional, there is currently no way to describe an array reduction
with more than one dimension. This is expected to change in a future version of the
SYCL specification, but depends on the introduction of a multi-dimensional span.

4.9.2.1. reduction interface

The reduction interface is used to attach reduction semantics to a variable, by specifying: the reduction
variable, the reduction operator and an optional identity value associated with the operator. The over
loads of the interface are described in Table 121. The return value of the reduction interface is an imple
mentation-defined object of unspecified type, which is interpreted by parallel_for to construct an
appropriate reducer type as detailed in Section 4.9.2.3.

An implementation may use an unspecified number of temporary variables inside of any reducer objects
it creates. If an identity value is supplied to a reduction, an implementation will use that value to initial
ize any such temporary variables.

Since the number of temporary variables is unspecified, supplying an identity value dif
ferent to the identity value associated with the reduction operator may lead to unex
pected results.

The initial value of the reduction variable is included in the reduction operation, unless the prop
erty::reduction::initialize_to_identity property was specified when the reduction interface was
invoked.

The reduction variable is updated so as to contain the result of the reduction when the kernel finishes
execution.

 1 template <typename BufferT, typename BinaryOperation>
 2 __unspecified__ reduction(BufferT vars, handler& cgh, BinaryOperation combiner,
 3 const property_list& propList = {});
 4
 5 template <typename T, typename BinaryOperation>
 6 __unspecified__ reduction(T* var, BinaryOperation combiner,
 7 const property_list& propList = {});
 8
 9 template <typename T, typename Extent, typename BinaryOperation>
10 __unspecified__ reduction(span<T, Extent> vars, BinaryOperation combiner,
11 const property_list& propList = {});
12
13 template <typename BufferT, typename BinaryOperation>
14 __unspecified__
15 reduction(BufferT vars, handler& cgh, const BufferT::value_type& identity,
16 BinaryOperation combiner, const property_list& propList = {});
17
18 template <typename T, typename BinaryOperation>
19 __unspecified__ reduction(T* var, const T& identity, BinaryOperation combiner,
20 const property_list& propList = {});
21
22 template <typename T, typename Extent, typename BinaryOperation>
23 __unspecified__ reduction(span<T, Extent> vars, const T& identity,

SYCL 2020 rev 9 4.9.2.1. reduction interface

Chapter 4. SYCL programming interface | 283

24 BinaryOperation combiner,
25 const property_list& propList = {});

Table 121. Overloads of the reduction interface

Function Description

reduction<BufferT, BinaryOperation>(BufferT vars, handler&
cgh,
 BinaryOperation
combiner,
 const property_list&
propList = {})

Construct an unspecified object
representing a reduction of the
variable(s) described by vars using
the combination operation speci
fied by combiner. Zero or more
properties can be provided via an
instance of property_list. Throws
an exception with the
errc::invalid error code if the
range of the vars buffer is not 1.

reduction<T, BinaryOperation>(T* var, BinaryOperation
combiner,
 const property_list& propList
= {})

Construct an unspecified object
representing a reduction of the
variable described by var using the
combination operation specified
by combiner. Zero or more proper
ties can be provided via an
instance of property_list.

reduction<T, BinaryOperation>(span<T, Extent> vars,
BinaryOperation combiner,
 const property_list& propList
= {})

Available only when Extent !=
sycl::dynamic_extent. Construct an
unspecified object representing a
reduction of the variable(s)
described by vars using the combi
nation operation specified by com
biner. Zero or more properties can
be provided via an instance of
property_list.

reduction<BufferT, BinaryOperation>(BufferT vars, handler&
cgh,
 const BufferT
::value_type& identity,
 BinaryOperation
combiner,
 const property_list&
propList = {})

Construct an unspecified object
representing a reduction of the
variable(s) described by vars using
the combination operation speci
fied by combiner. The value of iden
tity may be used by the implemen
tation to initialize an unspecified
number of temporary accumula
tion variables. Zero or more prop
erties can be provided via an
instance of property_list. Throws
an exception with the
errc::invalid error code if the
range of the vars buffer is not 1.

4.9.2.1. reduction interface SYCL 2020 rev 9

284 | Chapter 4. SYCL programming interface

Function Description

reduction<T, BinaryOperation>(T* var, const T& identity,
 BinaryOperation combiner,
 const property_list& propList
= {})

Construct an unspecified object
representing a reduction of the
variable described by var using the
combination operation specified
by combiner. The value of identity
may be used by the implementa
tion to initialize an unspecified
number of temporary accumula
tion variables. Zero or more prop
erties can be provided via an
instance of property_list.

reduction<T, BinaryOperation>(span<T, Extent> vars, const
T& identity,
 BinaryOperation combiner,
 const property_list& propList
= {})

Available only when Extent !=
sycl::dynamic_extent. Construct an
unspecified object representing a
reduction of the variable(s)
described by vars using the combi
nation operation specified by com
biner. The value of identity may be
used by the implementation to ini
tialize an unspecified number of
temporary accumulation variables.
Zero or more properties can be
provided via an instance of proper
ty_list.

4.9.2.2. Reduction properties

The properties that can be provided when using the reduction interface are described in Table 122.

Table 122. Properties supported by the reduction interface

Property Description

property::reduction::initialize_to_identity
The initialize_to_identity prop
erty adds the requirement that the
SYCL runtime must initialize the
reduction variable to the identity
value passed to the reduction
interface, or to the identity value
determined by the known_identity
trait if no identity value was speci
fied. If no identity value was speci
fied and an identity value cannot
be determined by the known_iden
tity trait, the compiler must raise
a diagnostic. When this property is
set, the original value of the reduc
tion variable is not included in the
reduction.

The constructors of the reduction property classes are listed in Table 123.

Table 123. Constructors of the reduction property classes

SYCL 2020 rev 9 4.9.2.2. Reduction properties

Chapter 4. SYCL programming interface | 285

Constructor Description

property::reduction::initialize_to_identity::initialize_to_
identity()

Constructs an initialize_to_iden
tity property instance.

4.9.2.3. reducer class

The reducer class defines the interface between a work-item and a reduction variable during the execu
tion of a SYCL kernel, restricting access to the underlying reduction variable. The intermediate values of
a reduction variable cannot be inspected during kernel execution, and the variable cannot be updated
using anything other than the reduction’s specified combination operation. The combination order of
different reducers is unspecified, as are when and how the value of each reducer is combined with the
original reduction variable.

To enable compile-time specialization of reduction algorithms, the implementation of the reducer class is
unspecified, except for the functions and operators defined in Table 125 and Table 126. As such, develop
ers should not specify the template arguments of a reducer directly, and should instead employ generic
programming techniques that allow kernel functions to accept a reference to a variable of any reducer
type. Kernels written as lambdas should employ auto& or auto&..., and kernels written as function
objects should employ template parameters or template parameter packs.

An implementation must guarantee that it is safe for multiple work-items in a kernel to call the combine
function of a reducer concurrently. An implementation is free to re-use reducer variables (e.g. across
work-groups scheduled to the same compute unit) if it can guarantee that it is safe to do so.

The type aliases and constant static members of the reducer class are listed in Table 124 and its member
functions are listed in Table 125. Additional shorthand operators may be made available for certain com
binations of reduction variable type and combination operation, as described in Table 126.

 1 // Exposition only
 2 template <typename T, typename BinaryOperation, int Dimensions,
 3 /* unspecified */>
 4 class reducer {
 5 public:
 6 using value_type = T;
 7 using binary_operation = BinaryOperation;
 8 static constexpr int dimensions = Dimensions;
 9
10 reducer(const reducer&) = delete;
11 reducer(reducer&&) = delete;
12 reducer& operator=(const reducer&) = delete;
13 reducer& operator=(reducer&&) = delete;
14
15 ~reducer();
16
17 /* Only available if Dimensions == 0 */
18 reducer& combine(const T& partial);
19
20 /* Only available if Dimensions > 0 */
21 __unspecified__ operator[](size_t index)
22
23 /* Only available if identity value is known */
24 T identity() const;
25
26 /* Only available if Dimensions == 0 and either

4.9.2.3. reducer class SYCL 2020 rev 9

286 | Chapter 4. SYCL programming interface

27 * BinaryOperation == plus<> or BinaryOperation == plus<T> */
28 friend reducer& operator+=(reducer&, const T&) { /* ... */
29 }
30
31 /* Only available if Dimensions == 0 and either
32 * BinaryOperation == multiplies<> or BinaryOperation == multiplies<T> */
33 friend reducer& operator*=(reducer&, const T&) { /* ... */
34 }
35
36 /* Only available if Dimensions == 0, T is an integral type and either
37 * BinaryOperation == bit_and<> or BinaryOperation == bit_and<T> */
38 friend reducer& operator&=(reducer&, const T&) { /* ... */
39 }
40
41 /* Only available if Dimensions == 0, T is an integral type and either
42 * BinaryOperation == bit_or<> or BinaryOperation == bit_or<T> */
43 friend reducer& operator|=(reducer&, const T&) { /* ... */
44 }
45
46 /* Only available if Dimensions == 0, T is an integral type and either
47 * BinaryOperation == bit_xor<> or BinaryOperation == bit_xor<T> */
48 friend reducer& operator^=(reducer&, const T&) { /* ... */
49 }
50
51 /* Only available if Dimensions == 0, T is an integral type, T is not bool and
52 * either BinaryOperation == plus<> or BinaryOperation == plus<T> */
53 friend reducer& operator++(reducer&) { /* ... */
54 }
55 };

Table 124. Member types and constants of the reducer class

Member Description

value_type
The data type of the reduction variable. If this
reducer object was created from a buffer type
BufferT, this type is BufferT::value_type. If this
reducer object was created from a USM pointer T*
or a span span<T, Extent>, this type is T.

binary_operation
The type of the combiner operator BinaryOperation
that was passed to the reduction function that cre
ated this reducer object.

static constexpr int dimensions
The number of dimensions of the reduction vari
able. If this reducer object was created from a
buffer or a USM pointer, the number of dimen
sions is 0. If this reducer object was created from a
span, the number of dimensions is 1.

Table 125. Member functions of the reducer class

SYCL 2020 rev 9 4.9.2.3. reducer class

Chapter 4. SYCL programming interface | 287

Member function Description

reducer& combine(const T& partial)
Available only when: Dimensions ==
0. Combine the value of partial
with the reduction variable associ
ated with this reducer. Returns
*this.

__unspecified__ operator[](size_t index)
Available only when: Dimensions >
0. Returns an instance of an unde
fined intermediate type represent
ing a reducer of the same type as
this reducer, with the dimensional
ity Dimensions-1 and containing an
implicit SYCL id with index Dimen
sions set to index. The intermediate
type returned must provide all
member functions and operators
defined by the reducer class that
are appropriate for the type it rep
resents (including this subscript
operator).

T identity() const
Return the identity value of the
combination operation associated
with this reducer. Only available if
the identity value is known to the
implementation.

Table 126. Hidden friend operators of the reducer class

Operator Description

reducer& operator+=(reducer& accum, const T& partial)
Equivalent to calling accum.com
bine(partial). Available only
when: Dimensions == 0 &&
(std::is_same_v<BinaryOperation,
plus<>> || std::is_same_v<Binary
Operation, plus<T>>).

reducer& operator*=(reducer& accum, const T& partial)
Equivalent to calling accum.com
bine(partial). Available only
when: Dimensions == 0 &&
(std::is_same_v<BinaryOperation,
multiplies<>> ||
std::is_same_v<BinaryOperation,
multiplies<T>>).

reducer& operator&=(reducer& accum, const T& partial)
Equivalent to calling accum.com
bine(partial). Available only
when: Dimensions == 0 && is_inte
gral_v<T> &&
(std::is_same_v<BinaryOperation,
bit_and<>> ||
std::is_same_v<BinaryOperation,
bit_and<T>>).

4.9.2.3. reducer class SYCL 2020 rev 9

288 | Chapter 4. SYCL programming interface

Operator Description

reducer& operator|=(reducer& accum, const T& partial)
Equivalent to calling accum.com
bine(partial). Available only
when: Dimensions == 0 && is_inte
gral_v<T> &&
(std::is_same_v<BinaryOperation,
bit_or<>> || std::is_same_v<Bina
ryOperation, bit_or<T>>).

reducer& operator^=(reducer& accum, const T& partial)
Equivalent to calling accum.com
bine(partial). Available only
when: Dimensions == 0 && is_inte
gral_v<T> &&
(std::is_same_v<BinaryOperation,
bit_xor<>> ||
std::is_same_v<BinaryOperation,
bit_xor<T>>).

reducer& operator++(reducer& accum)
Equivalent to calling accum.com
bine(1). Available only when:
Dimensions == 0 && std::is_inte
gral_v<T> && !std::is_same_v<T,
bool> && (std::is_same_v<Binary
Operation, plus<>> ||
std::is_same_v<BinaryOperation,
plus<T>>).

4.9.3. Command group scope

A command group scope, as defined in Section 3.7.1, may execute a single command such as invoking a
kernel, copying memory, or executing a host task. It is legal for a command group scope to statically con
tain more than one call to a command function, but any single execution of the command group func
tion object may execute no more than one command. If an application fails to do this, the function that
submits the command group function object (i.e., queue::submit) must throw a synchronous exception
with the errc::invalid error code. The statements that call commands together with the statements that
define the requirements for a kernel form the command group function object. The command group
function object takes as a parameter an instance of the command group handler class which encapsu
lates all the member functions executed in the command group scope. The member functions and
objects defined in this scope will define the requirements for the kernel execution or explicit memory
operation, and will be used by the SYCL runtime to evaluate if the operation is ready for execution. Host
code within a command group function object (typically setting up requirements) is executed once,
before the command group submit call returns. This abstraction of the kernel execution unifies the data
with its processing, and consequently allows more abstraction and flexibility in the parallel program
ming models that can be implemented on top of SYCL.

The command group function object and the handler class serve as an interface for the encapsulation of
command group scope. A SYCL kernel function is defined as a function object. All the device data
accesses are defined inside this group and any transfers are managed by the SYCL runtime. The rules for
the data transfers regarding device and host data accesses are better described in Section 4.7, where
buffers (Section 4.7.2) and accessor (Section 4.7.6) classes are described. The overall memory model of
the SYCL application is described in Section 3.8.1.

It is possible for a command group function object to fail to enqueue to a queue, or for it to fail to exe
cute correctly. A user can therefore supply a secondary queue when submitting a command group to the
primary queue. If the SYCL runtime fails to enqueue or execute a command group on a primary queue, it
can attempt to run the command group on the secondary queue. The circumstances in which it is, or is
not, possible for a SYCL runtime to fall-back from primary to secondary queue are unspecified in the
specification. Even if a command group is run on the secondary queue, the requirement that host code

SYCL 2020 rev 9 4.9.3. Command group scope

Chapter 4. SYCL programming interface | 289

within the command group is executed exactly once remains, regardless of whether the fallback queue
is used for execution.

The command group handler class provides the interface for all of the member functions that are able to
be executed inside the command group scope, and it is also provided as a scoped object to all of the data
access requests. The command group handler class provides the interface in which every command in
the command group scope will be submitted to a queue.

4.9.4. Command group handler class

A command group handler object can only be constructed by the SYCL runtime. All of the accessors
defined in command group scope take as a parameter an instance of the command group handler, and
all the kernel invocation functions are member functions of this class.

The constructors of the SYCL handler class are described in Table 127.

It is disallowed for an instance of the SYCL handler class to be moved or copied.

 1 namespace sycl {
 2
 3 class handler {
 4 private:
 5 // implementation defined constructor
 6 handler(___unspecified___);
 7
 8 public:
 9 template <typename DataT, int Dimensions, access_mode AccessMode,
 10 target AccessTarget, access::placeholder IsPlaceholder>
 11 void require(
 12 accessor<DataT, Dimensions, AccessMode, AccessTarget, IsPlaceholder> acc);
 13
 14 void depends_on(event depEvent);
 15
 16 void depends_on(const std::vector<event>& depEvents);
 17
 18 //----- Backend interoperability interface
 19 //
 20 template <typename T> void set_arg(int argIndex, T&& arg);
 21
 22 template <typename... Ts> void set_args(Ts&&... args);
 23
 24 //------ Kernel dispatch API
 25 //
 26 // Note: In all kernel dispatch functions, the template parameter
 27 // "typename KernelName" is optional.
 28 //
 29 template <typename KernelName, typename KernelType>
 30 void single_task(const KernelType& kernelFunc);
 31
 32 // Parameter pack acts as-if: Reductions&&... reductions, const KernelType
 33 // &kernelFunc
 34 template <typename KernelName, int Dimensions, typename... Rest>
 35 void parallel_for(range<Dimensions> numWorkItems, Rest&&... rest);
 36
 37 // Deprecated in SYCL 2020.
 38 template <typename KernelName, typename KernelType, int Dimensions>

4.9.4. Command group handler class SYCL 2020 rev 9

290 | Chapter 4. SYCL programming interface

 39 void parallel_for(range<Dimensions> numWorkItems,
 40 id<Dimensions> workItemOffset,
 41 const KernelType& kernelFunc);
 42
 43 // Parameter pack acts as-if: Reductions&&... reductions, const KernelType
 44 // &kernelFunc
 45 template <typename KernelName, int Dimensions, typename... Rest>
 46 void parallel_for(nd_range<Dimensions> executionRange, Rest&&... rest);
 47
 48 template <typename KernelName, typename WorkgroupFunctionType, int Dimensions>
 49 void parallel_for_work_group(range<Dimensions> numWorkGroups,
 50 const WorkgroupFunctionType& kernelFunc);
 51
 52 template <typename KernelName, typename WorkgroupFunctionType, int Dimensions>
 53 void parallel_for_work_group(range<Dimensions> numWorkGroups,
 54 range<Dimensions> workGroupSize,
 55 const WorkgroupFunctionType& kernelFunc);
 56
 57 void single_task(const kernel& kernelObject);
 58
 59 template <int Dimensions>
 60 void parallel_for(range<Dimensions> numWorkItems, const kernel& kernelObject);
 61
 62 template <int Dimensions>
 63 void parallel_for(nd_range<Dimensions> ndRange, const kernel& kernelObject);
 64
 65 //------ USM functions
 66 //
 67
 68 void memcpy(void* dest, const void* src, size_t numBytes);
 69
 70 template <typename T> void copy(const T* src, T* dest, size_t count);
 71
 72 void memset(void* ptr, int value, size_t numBytes);
 73
 74 template <typename T> void fill(void* ptr, const T& pattern, size_t count);
 75
 76 void prefetch(void* ptr, size_t numBytes);
 77
 78 void mem_advise(void* ptr, size_t numBytes, int advice);
 79
 80 //------ Explicit memory operation APIs
 81 //
 82 template <typename SrcT, int SrcDim, access_mode SrcMode, target SrcTgt,
 83 access::placeholder IsPlaceholder, typename DestT>
 84 void copy(accessor<SrcT, SrcDim, SrcMode, SrcTgt, IsPlaceholder> src,
 85 std::shared_ptr<DestT> dest);
 86
 87 template <typename SrcT, typename DestT, int DestDim, access_mode DestMode,
 88 target DestTgt, access::placeholder IsPlaceholder>
 89 void copy(std::shared_ptr<SrcT> src,
 90 accessor<DestT, DestDim, DestMode, DestTgt, IsPlaceholder> dest);
 91
 92 template <typename SrcT, int SrcDim, access_mode SrcMode, target SrcTgt,
 93 access::placeholder IsPlaceholder, typename DestT>
 94 void copy(accessor<SrcT, SrcDim, SrcMode, SrcTgt, IsPlaceholder> src,

SYCL 2020 rev 9 4.9.4. Command group handler class

Chapter 4. SYCL programming interface | 291

 95 DestT* dest);
 96
 97 template <typename SrcT, typename DestT, int DestDim, access_mode DestMode,
 98 target DestTgt, access::placeholder IsPlaceholder>
 99 void copy(const SrcT* src,
100 accessor<DestT, DestDim, DestMode, DestTgt, IsPlaceholder> dest);
101
102 template <typename SrcT, int SrcDim, access_mode SrcMode, target SrcTgt,
103 access::placeholder SrcIsPlaceholder, typename DestT, int DestDim,
104 access_mode DestMode, target DestTgt,
105 access::placeholder DestIsPlaceholder>
106 void
107 copy(accessor<SrcT, SrcDim, SrcMode, SrcTgt, SrcIsPlaceholder> src,
108 accessor<DestT, DestDim, DestMode, DestTgt, DestIsPlaceholder> dest);
109
110 template <typename T, int Dim, access_mode Mode, target Tgt,
111 access::placeholder IsPlaceholder>
112 void update_host(accessor<T, Dim, Mode, Tgt, IsPlaceholder> acc);
113
114 template <typename T, int Dim, access_mode Mode, target Tgt,
115 access::placeholder IsPlaceholder>
116 void fill(accessor<T, Dim, Mode, Tgt, IsPlaceholder> dest, const T& src);
117
118 void
119 use_kernel_bundle(const kernel_bundle<bundle_state::executable>& execBundle);
120
121 template <auto& SpecName>
122 void set_specialization_constant(
123 typename std::remove_reference_t<decltype(SpecName)>::value_type value);
124
125 template <auto& SpecName>
126 typename std::remove_reference_t<decltype(SpecName)>::value_type
127 get_specialization_constant();
128 };
129 } // namespace sycl

Table 127. Constructors of the handler class

Constructor Description

handler(___unspecified___)
Unspecified implementation-
defined constructor.

4.9.4.1. SYCL functions for adding requirements

When an accessor is created from a command group handler, a requirement is implicitly added to the
command group for the accessor’s data. However, this does not happen when creating a placeholder
accessor. In order to create a requirement for a placeholder accessor, code must call the han
dler::require() member function.

Note that the default constructed accessor is not a placeholder, so it may be passed to a SYCL kernel func
tion without calling handler::require(). However, this accessor also has no underlying memory object,
so such an accessor does not create any requirement for the command group, and attempting to access
data elements from it produces undefined behavior.

SYCL events may also be used to create requirements for a command group. Such requirements state
that the actions represented by the events must complete before the command group may execute. Such

4.9.4.1. SYCL functions for adding requirements SYCL 2020 rev 9

292 | Chapter 4. SYCL programming interface

requirements are added when code calls the handler::depends_on() member function.

Table 128. Member functions of the handler class

Member function Description

template <typename DataT, int Dimensions, access_mode
AccessMode,
 target AccessTarget, access::placeholder
IsPlaceholder>
void require(
 accessor<DataT, Dimensions, AccessMode, AccessTarget,
IsPlaceholder> acc)

Calling this function has no effect
unless acc is a placeholder acces
sor. When acc is a placeholder
accessor, this function adds a
requirement to the handler’s com
mand group for the memory object
represented by acc. If the accessor
has already been registered with
the command group, calling this
function has no effect.

void depends_on(event depEvent)
The command group now has a
requirement that the action repre
sented by depEvent must complete
before executing this command-
group’s action.

void depends_on(const std::vector<event>& depEvents)
The command group now has a
requirement that the actions rep
resented by each event in
depEvents must complete before
executing this command-group’s
action.

4.9.4.2. SYCL functions for invoking kernels

Kernels can be invoked as single tasks, basic data-parallel kernels, nd-range in work-groups, or hierar
chical parallelism.

Each function takes an optional kernel name template parameter. The user may optionally provide a
kernel name, otherwise an implementation-defined name will be generated for the kernel.

All the functions for invoking kernels are member functions of the command group handler class (Sec
tion 4.9.4), which is used to encapsulate all the member functions provided in a command group scope.
Table 129 lists all the members of the handler class related to the kernel invocation.

Table 129. Member functions of the handler class

Member function Description

template <typename T> void set_arg(int argIndex, T&& arg)
This function must only be used to
set arguments for a kernel that was
constructed using a backend spe
cific interoperability function or
for a device built-in kernel.
Attempting to use this function to
set arguments for other kernels
results in undefined behavior. The
precise semantics of this function
are defined by each SYCL backend
specification.

SYCL 2020 rev 9 4.9.4.2. SYCL functions for invoking kernels

Chapter 4. SYCL programming interface | 293

Member function Description

template <typename... Ts> void set_args(Ts&&... args)
Set all arguments for a given ker
nel, as if each argument in args
was passed to set_arg in the same
order and with an increasing index
starting at 0.

template <typename KernelName, typename KernelType>
void single_task(const KernelType& kernelFunc)

Defines and invokes a SYCL kernel
function as a lambda function or a
named function object type. Speci
fication of a kernel name (typename
KernelName), as described in Section
4.9.4.2, is optional. The callable
KernelType can optionally take a
kernel_handler in which case the
SYCL runtime will construct an
instance of kernel_handler and
pass it to KernelType.

template <typename KernelName, int Dimensions, typename...
Rest>
void parallel_for(range<Dimensions> numWorkItems, Rest&&...
rest)

Defines and invokes a SYCL kernel
function as a lambda function or a
named function object type, for the
specified range and given an item
or integral type (e.g int, size_t), if
range is 1-dimensional, for index
ing in the indexing space defined
by range. Generic kernel functions
are permitted, in that case the
argument type is an item. Specifica
tion of a kernel name (typename
KernelName), as described in Section
4.9.4.2, is optional. The rest para
meter pack consists of 0 or more
objects created by the reduction
function, followed by a callable.
For each object in rest, the kernel
function must take an additional
reference parameter correspond
ing to that object’s reducer type, in
the same order. The callable can
optionally take a kernel_handler as
its last parameter, in which case
the SYCL runtime will construct an
instance of kernel_handler and
pass it to the callable.

4.9.4.2. SYCL functions for invoking kernels SYCL 2020 rev 9

294 | Chapter 4. SYCL programming interface

Member function Description

template <typename KernelName, int Dimensions, typename...
Rest>
void parallel_for(range<Dimensions> numWorkItems, id
<Dimensions> workItemOffset,
 const KernelType& kernelFunc)
 // Deprecated in SYCL 2020.

Deprecated in SYCL 2020. Defines
and invokes a SYCL kernel function
as a lambda function or a named
function object type, for the speci
fied range and offset and given an
item or integral type (e.g int,
size_t), if range is 1-dimensional,
for indexing in the indexing space
defined by range. Generic kernel
functions are permitted, in that
case the argument type is an item.
Specification of a kernel name
(typename KernelName), as described
in Section 4.9.4.2, is optional. The
rest parameter pack consists of 0
or more objects created by the
reduction function, followed by a
callable. For each object in rest,
the kernel function must take an
additional reference parameter
corresponding to that object’s
reducer type, in the same order.
The callable can optionally take a
kernel_handler as its last parame
ter, in which case the SYCL run
time will construct an instance of
kernel_handler and pass it to the
callable.

SYCL 2020 rev 9 4.9.4.2. SYCL functions for invoking kernels

Chapter 4. SYCL programming interface | 295

Member function Description

template <typename KernelName, int Dimensions, typename...
Rest>
void parallel_for(nd_range<Dimensions> executionRange,
Rest&&... rest)

Defines and invokes a SYCL kernel
function as a lambda function or a
named function object type, for the
specified nd-range and given an
nd-item for indexing in the index
ing space defined by the nd-range.
Generic kernel functions are per
mitted, in that case the argument
type is an nd-item. Specification of
a kernel name (typename Kernel
Name), as described in Section
4.9.4.2, is optional. The rest para
meter pack consists of 0 or more
objects created by the reduction
function, followed by a callable.
For each object in rest, the kernel
function must take an additional
reference parameter correspond
ing to that object’s reducer type, in
the same order. The callable can
optionally take a kernel_handler as
its last parameter, in which case
the SYCL runtime will construct an
instance of kernel_handler and
pass it to the callable.

Throws an exception with the
errc::nd_range error code if the
global size defined in the associ
ated executionRange defines a non-
zero index space which is not
evenly divisible by the local size in
each dimension.

template <typename KernelName, typename
WorkgroupFunctionType, int Dimensions>
void parallel_for_work_group(range<Dimensions>
numWorkGroups,
 const WorkgroupFunctionType&
kernelFunc)

Defines and invokes a hierarchical
kernel as a lambda function or a
named function object type, encod
ing the body of each work-group to
launch. Generic kernel functions
are permitted, in that case the
argument type is a group. May con
tain multiple calls to parallel_
for_work_item(..) member func
tions representing the execution
on each work-item. Launches num_
work_groups work-groups of run
time-defined size. Described in
detail in Section 4.9.4.2. The
callable WorkgroupFunctionType can
optionally take a kernel_handler as
its last parameter, in which case
the SYCL runtime will construct an
instance of kernel_handler and
pass it to WorkgroupFunctionType.

4.9.4.2. SYCL functions for invoking kernels SYCL 2020 rev 9

296 | Chapter 4. SYCL programming interface

Member function Description

template <typename KernelName, typename
WorkgroupFunctionType, int Dimensions>
void parallel_for_work_group(range<Dimensions>
numWorkGroups,
 range<Dimensions>
workGroupSize,
 const WorkgroupFunctionType&
kernelFunc)

Defines and invokes a hierarchical
kernel as a lambda function or a
named function object type, encod
ing the body of each work-group to
launch. Generic kernel functions
are permitted, in that case the
argument type is a group. May con
tain multiple calls to parallel_
for_work_item member functions
representing the execution on each
work-item. Launches num_work_
groups work-groups of work_group_
size work-items each. Described in
detail in Section 4.9.4.2. The
callable WorkgroupFunctionType can
optionally take a kernel_handler as
its last parameter, in which case
the SYCL runtime will construct an
instance of kernel_handler and
pass it to WorkgroupFunctionType.

void single_task(const kernel& kernelObject)
This function must only be used to
invoke a kernel that was con
structed using a backend specific
interoperability function or to
invoke a device built-in kernel.
Attempting to use this function to
invoke other kernels throws a syn
chronous exception with the
errc::invalid error code. The pre
cise semantics of this function are
defined by each SYCL backend
specification, but the intent is that
the kernel should execute exactly
once.

This invocation function ignores
any kernel_bundle that was bound
to this command group handler via
handler::use_kernel_bundle() and
instead implicitly uses the kernel
bundle that contains the kernelOb
ject. Throws an exception with the
errc::kernel_not_supported error
code if the kernelObject is not com
patible with either the device asso
ciated with the primary queue of
the command group or with the
device associated with the sec
ondary queue (if specified).

SYCL 2020 rev 9 4.9.4.2. SYCL functions for invoking kernels

Chapter 4. SYCL programming interface | 297

Member function Description

template <int Dimensions>
void parallel_for(range<Dimensions> numWorkItems, const
kernel& kernelObject)

This function must only be used to
invoke a kernel that was con
structed using a backend specific
interoperability function or to
invoke a device built-in kernel.
Attempting to use this function to
invoke other kernels throws a syn
chronous exception with the
errc::invalid error code. The pre
cise semantics of this function are
defined by each SYCL backend
specification, but the intent is that
the kernel should be invoked for
the specified range of index values.

This invocation function ignores
any kernel_bundle that was bound
to this command group handler via
handler::use_kernel_bundle() and
instead implicitly uses the kernel
bundle that contains the kernelOb
ject. Throws an exception with the
errc::kernel_not_supported error
code if the kernelObject is not com
patible with either the device asso
ciated with the primary queue of
the command group or with the
device associated with the sec
ondary queue (if specified).

4.9.4.2. SYCL functions for invoking kernels SYCL 2020 rev 9

298 | Chapter 4. SYCL programming interface

Member function Description

template <int Dimensions>
void parallel_for(nd_range<Dimensions> executionRange,
 const kernel& kernelObject)

This function must only be used to
invoke a kernel that was con
structed using a backend specific
interoperability function or to
invoke a device built-in kernel.
Attempting to use this function to
invoke other kernels throws a syn
chronous exception with the
errc::invalid error code. The pre
cise semantics of this function are
defined by each SYCL backend
specification, but the intent is that
the kernel should be invoked for
the specified executionRange.

Throws an exception with the
errc::nd_range error code if the
global size defined in the associ
ated executionRange defines a non-
zero index space which is not
evenly divisible by the local size in
each dimension.

This invocation function ignores
any kernel_bundle that was bound
to this command group handler via
handler::use_kernel_bundle() and
instead implicitly uses the kernel
bundle that contains the kernelOb
ject. Throws an exception with the
errc::kernel_not_supported error
code if the kernelObject is not com
patible with either the device asso
ciated with the primary queue of
the command group or with the
device associated with the sec
ondary queue (if specified).

4.9.4.2.1. single_task invoke

SYCL provides a simple interface to enqueue a kernel that will be sequentially executed on a device.
Only one instance of the kernel will be executed. This interface is useful as a primitive for more compli
cated parallel algorithms, as it can easily create a chain of sequential tasks on a SYCL device with each of
them managing its own data transfers.

This function can only be called inside a command group using the handler object created by the run
time. Any accessors that are used in a kernel should be defined inside the same command group.

Local accessors are disallowed for single task invocations.

1 myQueue.submit([&](handler& cgh) {
2 cgh.single_task(
3 [=] () {
4 // [kernel code]

SYCL 2020 rev 9 4.9.4.2.1. single_task invoke

Chapter 4. SYCL programming interface | 299

5 }));
6 });

For single tasks, the kernel member function takes no parameters, as there is no need for index space
classes in a unary index space.

A kernel_handler can optionally be passed as a parameter to the SYCL kernel function that is invoked by
single_task for the purpose explained in Section 4.9.5.3.

1 myQueue.submit([&](handler& cgh) {
2 cgh.single_task(
3 [=] (kernel_handler kh) {
4 // [kernel code]
5 }));
6 });

4.9.4.2.2. parallel_for invoke

The parallel_for member function of the SYCL handler class provides an interface to define and invoke a
SYCL kernel function in a command group, to execute in parallel execution over a 3 dimensional index
space. There are three overloads of the parallel_for member function which provide variations of this
interface, each with a different level of complexity and providing a different set of features.

For the simplest case, users need only provide the global range (the total number of work-items in the
index space) via a SYCL range parameter. In this case the function object that represents the SYCL kernel
function must take one of: 1) a single SYCL item parameter, 2) a single generic parameter (template para
meter or auto) that will be treated as an item parameter, 3) any other type implicitly converted from
SYCL item, representing the currently executing work-item within the range specified by the range para
meter.

Case 3) above allows the kernel function to take an argument of type id because item is
implicitly convertible to id. It also allows a 1-D kernel function to take an integral argu
ment (e.g. int or size_t) because a 1-D item is implicitly convertible to these types.
Finally, it allows the kernel function to take a user-defined argument type that can be
constructed from item, enabling users to layer their own abstractions on top of SYCL.

The execution of the kernel function is the same whether the parameter to the SYCL kernel function is a
SYCL id or a SYCL item. What differs is the functionality that is available to the SYCL kernel function via
the respective interfaces.

Below is an example of invoking a SYCL kernel function with parallel_for using a lambda function, and
passing a SYCL id parameter. In this case, only the global id is available. This variant of parallel_for is
designed for when it is not necessary to query the global range of the index space being executed across.

1 myQueue.submit([&](handler& cgh) {
2 accessor acc { myBuffer, cgh, write_only };
3
4 cgh.parallel_for(range<1>(numWorkItems),
5 [=](id<1> index) { acc[index] = 42.0f; });
6 });

Below is an example of invoking a SYCL kernel function with parallel_for using a lambda function and
passing a SYCL item parameter. In this case, both the global id and global range are queryable. This vari
ant of parallel_for is designed for when it is necessary to query the global range of the index space

4.9.4.2.2. parallel_for invoke SYCL 2020 rev 9

300 | Chapter 4. SYCL programming interface

being executed across.

1 myQueue.submit([&](handler& cgh) {
2 accessor acc { myBuffer, cgh, write_only };
3
4 cgh.parallel_for(range<1>(numWorkItems), [=](item<1> item) {
5 // kernel argument type is item
6 size_t index = item.get_linear_id();
7 acc[index] = index;
8 });
9 });

Below is an example of invoking a SYCL kernel function with parallel_for using a lambda function and
passing auto parameter, treated as item. In this case, both the global id and global range are queryable.
The same effect can be achieved using class with templatized operator(). This variant of parallel_for is
designed for when it is necessary to query the global range within which the global id will vary.

1 myQueue.submit([&](handler& cgh) {
2 auto acc = myBuffer.get_access<access_mode::write>(cgh);
3
4 cgh.parallel_for(range<1>(numWorkItems), [=](auto item) {
5 // kernel argument type is auto treated as an item
6 size_t index = item.get_linear_id();
7 acc[index] = index;
8 });
9 });

Below is an example of invoking a SYCL kernel function with parallel_for using a lambda function and
passing an integral type parameter. This example is only valid when calling parallel_for with range<1>.
In this case only the global id is available. This variant of parallel_for is designed for when it is not nec
essary to query the global range of the index space being executed across.

1 myQueue.submit([&](handler& cgh) {
2 auto acc = myBuffer.get_access<access_mode::write>(cgh);
3
4 cgh.parallel_for(range<1>(numWorkItems), [=](size_t index) {
5 // kernel argument type is size_t
6 acc[index] = index;
7 });
8 });

The parallel_for overload without an offset can be called with either a number or a braced-init-list
with 1-3 elements. In that case the following calls are equivalent:

• parallel_for(N, some_kernel) has same effect as parallel_for(range<1>(N), some_kernel)

• parallel_for({N}, some_kernel) has same effect as parallel_for(range<1>(N), some_kernel)

• parallel_for({N1, N2}, some_kernel) has same effect as parallel_for(range<2>(N1, N2), some_kernel)

• parallel_for({N1, N2, N3}, some_kernel) has same effect as parallel_for(range<3>(N1, N2, N3),
some_kernel)

Below is an example of invoking parallel_for with a number instead of an explicit range object.

SYCL 2020 rev 9 4.9.4.2.2. parallel_for invoke

Chapter 4. SYCL programming interface | 301

1 myQueue.submit([&](handler& cgh) {
2 auto acc = myBuffer.get_access<access_mode::write>(cgh);
3
4 // parallel_for may be called with number (with numWorkItems)
5 cgh.parallel_for(numWorkItems, [=](auto item) {
6 size_t index = item.get_linear_id();
7 acc[index] = index;
8 });
9 });

For SYCL kernel functions invoked via the above described overload of the parallel_for member func
tion, it is disallowed to use local accessors or to use a work-group barrier.

The following two examples show how a kernel function object can be launched over a 3D grid, with 3
elements in each dimension. In the first case work-item ids range from 0 to 2 inclusive, and in the second
case work-item ids run from 1 to 3.

 1 myQueue.submit([&](handler& cgh) {
 2 cgh.parallel_for(range<3>(3, 3, 3), // global range
 3 [=](item<3> it) {
 4 //[kernel code]
 5 });
 6 });
 7
 8 // This form of parallel_for with the "offset" parameter is deprecated in SYCL
 9 // 2020
10 myQueue.submit([&](handler& cgh) {
11 cgh.parallel_for(range<3>(3, 3, 3), // global range
12 id<3>(1, 1, 1), // offset
13 [=](item<3> it) {
14 //[kernel code]
15 });
16 });

The last case of a parallel_for invocation enables low-level functionality of work-items and work-
groups. This becomes valuable when an execution requires groups of work-items to coordinate with one
another. These are exposed in SYCL through parallel_for (nd_range,...) and the nd_item class. In this
case, the developer needs to define the nd_range that the kernel will execute on in order to have fine
grained control of the enqueuing of the kernel. This variation of parallel_for expects an nd_range, specify
ing both local and global ranges, defining the global number of work-items and the number in each
cooperating work-group. The function object that represents the SYCL kernel function must take one of:
1) a single SYCL nd_item parameter, 2) a single generic parameter (template parameter or auto) that will
be treated as an nd_item parameter, 3) any other type converted from SYCL nd_item, representing the cur
rently executing work-item within the range specified by the nd_range parameter. The nd_item parameter
makes all information about the work-item and its position in the range available, and provides access to
functions enabling the use of a work-group barrier.

Case 3) above includes user-defined types that can be constructed from nd_item, enabling
users to layer their own abstractions on top of SYCL.

The following example shows how sixty-four work-items may be launched in a three-dimensional grid
with four in each dimension, and divided into eight work-groups. Each group of work-items uses a work-
group barrier for coordination.

4.9.4.2.2. parallel_for invoke SYCL 2020 rev 9

302 | Chapter 4. SYCL programming interface

1 myQueue.submit([&](handler& cgh) {
2 cgh.parallel_for(nd_range<3>(range<3>(4, 4, 4), range<3>(2, 2, 2)),
3 [=](nd_item<3> item) {
4 //[kernel code]
5 group_barrier(item.get_group());
6 //[kernel code]
7 });
8 });

In all of these cases the underlying nd-range will be created and the kernel defined as a function object
will be created and enqueued as part of the command group scope.

Some forms of parallel_for accept an offset parameter of type id<Dimensions>, where the number of
dimensions of the id is the same as the number of dimensions of the range that determines the iteration
space. These forms of parallel_for execute the same number of iterations as the form with no offset. The
difference is that the id or item parameter passed to the kernel function has the value of offset implicitly
added. This offset parameter is deprecated in SYCL 2020.

An offset can also be passed to the forms of parallel_for that accept an nd_range via the third parameter
to the nd_range constructor. These forms of parallel_for also execute the same number of iterations as if
no offset was specified. The difference is that the nd_item parameter passed to the kernel function has
the value of the offset implicitly added to the constituent global id. This offset parameter is deprecated in
SYCL 2020.

A kernel_handler can optionally be passed as a parameter to the SYCL kernel function that is invoked by
both variants of parallel_for.

 1 myQueue.submit([&](handler& cgh) {
 2 cgh.parallel_for(range<3>(3, 3, 3), // global range
 3 [=](item<3> it, kernel_handler kh) {
 4 //[kernel code]
 5 });
 6 });
 7
 8 // This form of parallel_for with the "offset" parameter is deprecated in SYCL
 9 // 2020
10 myQueue.submit([&](handler& cgh) {
11 cgh.parallel_for(range<3>(3, 3, 3), // global range
12 id<3>(1, 1, 1), // offset
13 [=](item<3> it, kernel_handler kh) {
14 //[kernel code]
15 });
16 });

4.9.4.2.3. Parallel for hierarchical invoke

The hierarchical parallel kernel execution interface provides the same functionality as is available from
the nd-range interface, but exposed differently. To execute the same sixty-four work-items in eight work-
groups that we saw in a previous example, we execute an outer parallel_for_work_group call to create
the groups. The member function handler::parallel_for_work_group is parameterized by the number of
work-groups, such that the size of each group is chosen by the runtime, or by the number of work-
groups and number of work-items for users who need more control.

The body of the outer parallel_for_work_group call consists of a lambda function or function object. The
body of this function object contains code that is executed only once for the entire work-group. If the

SYCL 2020 rev 9 4.9.4.2.3. Parallel for hierarchical invoke

Chapter 4. SYCL programming interface | 303

code has no side-effects and the compiler heuristic suggests that it is more efficient to do so, this code
will be executed for each work-item.

Within this region any variable declared will have the semantics of local memory, shared between all
work-items in the work-group. If the device compiler can prove that an array of such variables is
accessed only by a single work-item throughout the lifetime of the work-group, for example if access is
derived from the id of the work-item with no transformation, then it can allocate the data in private
memory or registers instead.

To guarantee use of private per-work-item memory, the private_memory class can be used to wrap the
data. This class simply constructs private data for a given group across the entire group. The id of the
current work-item is passed to any access to grab the correct data.

The private_memory class has the following interface:

 1 namespace sycl {
 2 template <typename T, int Dimensions = 1> class private_memory {
 3 public:
 4 // Construct based directly off the number of work-items
 5 private_memory(const group<Dimensions>&);
 6
 7 // Access the instance for the current work-item
 8 T& operator()(const h_item<Dimensions>& id);
 9 };
10 } // namespace sycl

Table 130. Constructor of the private_memory class

Constructor Description

private_memory(const group<Dimensions>&)
Place an object of type T in the
underlying private memory of
each work-items. The type T must
be default constructible. The
underlying constructor will be
called for each work-item.

Table 131. Member functions of the private_memory class

Member functions Description

T& operator()(const h_item<Dimensions>& id)
Retrieve a reference to the object
for the work-items.

Private memory is allocated per underlying work-item, not per iteration of the parallel_for_work_item
loop. The number of instances of a private memory object is only under direct control if a work-group
size is passed to the parallel_for_work_group call. If the underlying work-group size is chosen by the run
time, the number of private memory instances is opaque to the program. Explicit private memory decla
rations should therefore be used with care and with a full understanding of which instances of a paral
lel_for_work_item loop will share the same underlying variable.

Also within the lambda body can be a sequence of calls to parallel_for_work_item. No work-item can
begin executing a parallel_for_work_item until all work-items in the group have completed executing the
previous parallel_for_work_item. As a result the pair of parallel_for_work_item calls in the code below is
equivalent to the parallel execution with a work-group barrier in the earlier example.

 1 myQueue.submit([&](handler& cgh) {

4.9.4.2.3. Parallel for hierarchical invoke SYCL 2020 rev 9

304 | Chapter 4. SYCL programming interface

 2 // Issue 8 work-groups of 8 work-items each
 3 cgh.parallel_for_work_group(
 4 range<3>(2, 2, 2), range<3>(2, 2, 2), [=](group<3> myGroup) {
 5 //[workgroup code]
 6 int myLocal; // this variable is shared between workitems
 7 // this variable will be instantiated for each work-item separately
 8 private_memory<int> myPrivate(myGroup);
 9
10 // Issue parallel work-items. The number issued per work-group is
11 // determined by the work-group size range of parallel_for_work_group.
12 // In this case, 8 work-items will execute the parallel_for_work_item
13 // body for each of the 8 work-groups, resulting in 64 executions
14 // globally/total.
15 myGroup.parallel_for_work_item([&](h_item<3> myItem) {
16 //[work-item code]
17 myPrivate(myItem) = 0;
18 });
19
20 // Implicit work-group barrier
21
22 // Carry private value across loops
23 myGroup.parallel_for_work_item([&](h_item<3> myItem) {
24 //[work-item code]
25 output[myItem.get_global_id()] = myPrivate(myItem);
26 });
27 //[workgroup code]
28 });
29 });

It is valid to use more flexible dimensions of the work-item loops. In the following example we issue 8
work-groups but let the runtime choose their size, by not passing a work-group size to the parallel_for_
work_group call. The parallel_for_work_item loops may also vary in size, with their execution ranges
unrelated to the dimensions of the work-group, and the compiler generating an appropriate iteration
space to fill the gap. In this case, the h_item provides access to local ids and ranges that reflect both ker
nel and parallel_for_work_item invocation ranges.

 1 myQueue.submit([&](handler& cgh) {
 2 // Issue 8 work-groups. The work-group size is chosen by the runtime because
 3 // unspecified
 4 cgh.parallel_for_work_group(range<3>(2, 2, 2), [=](group<3> myGroup) {
 5 // Launch a set of work-items for each work-group. The number of work-items
 6 // is chosen by the runtime because the work-group size was not specified to
 7 // parallel_for_work_group and a logical range is not specified to
 8 // parallel_for_work_item.
 9 myGroup.parallel_for_work_item([=](h_item<3> myItem) {
10 //[work-item code]
11 });
12
13 // Implicit work-group barrier
14
15 // Launch 512 logical work-items that will be executed by the underlying
16 // work-group size chosen by the runtime. myItem allows the logical and
17 // physical work-item IDs to be queried. 512 logical work-items will
18 // execute for each work-group, and the parallel_for body will therefore be
19 // executed 8*512 = 4096 times globally/total.

SYCL 2020 rev 9 4.9.4.2.3. Parallel for hierarchical invoke

Chapter 4. SYCL programming interface | 305

20 myGroup.parallel_for_work_item(range<3>(8, 8, 8), [=](h_item<3> myItem) {
21 //[work-item code]
22 });
23 //[workgroup code]
24 });
25 });

This interface offers a more intuitive way for tiling parallel programming paradigms. In summary, the
hierarchical model allows a developer to distinguish the execution at work-group level and at work-item
level using the parallel_for_work_group and the nested parallel_for_work_item functions. It also provides
this visibility to the compiler without the need for difficult loop fission such that host execution may be
more efficient.

A kernel_handler can optionally be passed as a parameter to the SYCL kernel function that is invoked by
any variant of parallel_for_work_group.

 1 myQueue.submit([&](handler& cgh) {
 2 // Issue 8 work-groups of 8 work-items each
 3 cgh.parallel_for_work_group(
 4 range<3>(2, 2, 2), range<3>(2, 2, 2),
 5 [=](group<3> myGroup, kernel_handler kh) {
 6 //[workgroup code]
 7 int myLocal; // this variable is shared between workitems
 8 // this variable will be instantiated for each work-item separately
 9 private_memory<int> myPrivate(myGroup);
10
11 // Issue parallel work-items. The number issued per work-group is
12 // determined by the work-group size range of parallel_for_work_group.
13 // In this case, 8 work-items will execute the parallel_for_work_item
14 // body for each of the 8 work-groups, resulting in 64 executions
15 // globally/total.
16 myGroup.parallel_for_work_item([&](h_item<3> myItem) {
17 //[work-item code]
18 myPrivate(myItem) = 0;
19 });
20
21 // Implicit work-group barrier
22
23 // Carry private value across loops
24 myGroup.parallel_for_work_item([&](h_item<3> myItem) {
25 //[work-item code]
26 output[myItem.get_global_id()] = myPrivate(myItem);
27 });
28 //[workgroup code]
29 });
30 });

4.9.4.3. SYCL functions for explicit memory operations

In addition to kernels, command group objects can also be used to perform manual operations on host
and device memory by using the copy API of the command group handler. Manual copy operations can
be seen as specialized kernels executing on the device, except that typically this operations will be imple
mented using a host API that exists as part of a backend (e.g, OpenCL enqueue copy operations).

These explicit copy operations have a source and a destination. When an accessor is the source of the

4.9.4.3. SYCL functions for explicit memory operations SYCL 2020 rev 9

306 | Chapter 4. SYCL programming interface

operation, the destination can be a host pointer or another accessor. The source accessor must have
either access_mode::read or access_mode::read_write access mode. When an accessor is the destination of
the explicit copy operation, the source can be a host pointer or another accessor. The destination acces
sor must have either access_mode::write, access_mode::read_write, access_mode::discard_write or
access_mode::discard_read_write access mode.

When an accessor is used as a parameter to one of these explicit copy operations, the target must be
either target::device or target::constant_buffer.

When accessors are both the source and the destination, the operation is executed on objects controlled
by the SYCL runtime. The SYCL runtime is allowed to not perform an explicit in-copy operation if a dif
ferent path to update the data is available according to the SYCL application memory model.

The most recent copy of the memory object may reside on any context controlled by the SYCL runtime,
or on the host in a pointer controlled by the SYCL runtime. The SYCL runtime will ensure that data is
copied to the destination once the command group has completed execution.

Whenever a host pointer is used as either the source or the destination of these explicit memory opera
tions, it is the responsibility of the user for that pointer to have at least as much memory allocated as the
accessor is giving access to, e.g: if an accessor accesses a range of 10 elements of int type, the host
pointer must at least have 10 * sizeof(int) bytes of memory allocated.

A special case is the update_host member function. This member function only requires an accessor, and
instructs the runtime to update the internal copy of the data in the host, if any. This is particularly useful
when used in conjunction with the buffer constructor overloads which accept mutex objects.

Table 132 describes the interface for the explicit copy operations.

Table 132. Member functions of the handler class

Member function Description

template <typename SrcT, int SrcDims, access_mode SrcMode,
target SrcTgt,
 typename DestT, access::placeholder
IsPlaceholder>
void copy(accessor<SrcT, SrcDims, SrcMode, SrcTgt,
IsPlaceholder> src,
 std::shared_ptr<DestT> dest)

Copies the contents of the memory
object accessed by src into the
memory pointed to by dest. dest
must be a host pointer and must
have at least as many bytes as the
range accessed by src. The type
DestT must be device copyable.

template <typename SrcT, typename DestT, int DestDims,
access_mode DestMode,
 target DestTgt, access::placeholder
IsPlaceholder>
void copy(std::shared_ptr<SrcT> src,
 accessor<DestT, DestDims, DestMode, DestTgt,
IsPlaceholder> dest)

Copies the contents of the memory
pointed to by src into the memory
object accessed by dest. src must
be a host pointer and must have at
least as many bytes as the range
accessed by dest. The type SrcT
must be device copyable.

template <typename SrcT, int SrcDims, access_mode SrcMode,
target SrcTgt,
 typename DestT, access::placeholder
IsPlaceholder>
void copy(accessor<SrcT, SrcDims, SrcMode, SrcTgt,
IsPlaceholder> src,
 DestT* dest)

Copies the contents of the memory
object accessed by src into the
memory pointed to by dest. dest
must be a host pointer and must
have at least as many bytes as the
range accessed by src. The type
DestT must be device copyable.

SYCL 2020 rev 9 4.9.4.3. SYCL functions for explicit memory operations

Chapter 4. SYCL programming interface | 307

Member function Description

template <typename SrcT, typename DestT, int DestDims,
access_mode DestMode,
 target DestTgt, access::placeholder
IsPlaceholder>
void copy(const SrcT* src,
 accessor<DestT, DestDims, DestMode, DestTgt,
IsPlaceholder> dest)

Copies the contents of the memory
pointed to by src into the memory
object accessed by dest. src must
be a host pointer and must have at
least as many bytes as the range
accessed by dest. The type SrcT
must be device copyable.

template <typename SrcT, int SrcDims, access_mode SrcMode,
target SrcTgt,
 access::placeholder IsSrcPlaceholder, typename
DestT, int DestDims,
 access_mode DestMode, target DestTgt,
 access::placeholder IsDestPlaceholder>
void copy(accessor<SrcT, SrcDims, SrcMode, SrcTgt,
IsSrcPlaceholder> src,
 accessor<DestT, DestDims, DestMode, DestTgt,
IsDestPlaceholder> dest)

Copies the contents of the memory
object accessed by src into the
memory object accessed by dest.
The size of the src accessor deter
mines the number of bytes that are
copied, and dest must have at least
this many bytes. If the size of dest
is too small, the implementation
throws a synchronous exception
with the errc::invalid error code.

template <typename T, int Dims, access_mode Mode, target
Tgt,
 access::placeholder IsPlaceholder>
void update_host(accessor<T, Dims, Mode, Tgt,
IsPlaceholder> acc)

The contents of the memory object
accessed via acc on the host are
guaranteed to be up-to-date after
this command group object execu
tion is complete.

template <typename T, int Dims, access_mode Mode, target
Tgt,
 access::placeholder IsPlaceholder>
void fill(accessor<T, Dims, Mode, Tgt, IsPlaceholder> dest,
const T& src)

Replicates the value of src into the
memory object accessed by dest.

void memcpy(void* dest, const void* src, size_t numBytes)
Copies numBytes of data from the
pointer src to the pointer dest. The
dest and src parameters must each
either be a host pointer or a
pointer within a USM allocation
that is accessible on the handler’s
device. If a pointer is to a USM allo
cation, that allocation must have
been created from the same con
text as the handler’s queue. For
more detail on USM, please see Sec
tion 4.8.

4.9.4.3. SYCL functions for explicit memory operations SYCL 2020 rev 9

308 | Chapter 4. SYCL programming interface

Member function Description

template <typename T> void copy(const T* src, T* dest,
size_t count)

Copies count elements of type T
from the pointer src to the pointer
dest. The dest and src parameters
must each either be a host pointer
or a pointer within a USM alloca
tion that is accessible on the han
dler’s device. If a pointer is to a
USM allocation, that allocation
must have been created from the
same context as the handler’s
queue. For more detail on USM,
please see Section 4.8.

The type T must be device copy
able.

void memset(void* ptr, int value, size_t numBytes)
Fills numBytes bytes of memory
beginning at address ptr with
value. The ptr must point within a
USM allocation from the same con
text as the handler’s queue, and
the pointer must be accessible
from the queue’s device. Note that
value is interpreted as an unsigned
char. For more detail on USM,
please see Section 4.8.

template <typename T> void fill(void* ptr, const T&
pattern, size_t count)

Replicates the provided pattern
into the memory at address ptr.
The ptr must point within a USM
allocation from the same context
as the handler’s queue, and the
pointer must be accessible from
the queue’s device. The pattern is
filled count times. For more detail
on USM, please see Section 4.8.

The type T must be device copy
able.

void prefetch(void* ptr, size_t numBytes)
Enqueues a prefetch of num_bytes
of data starting at address ptr. The
ptr must point within a USM allo
cation from the same context as
the handler’s queue, and the
pointer must be accessible from
the queue’s device. For more detail
on USM, please see Section 4.8.

SYCL 2020 rev 9 4.9.4.3. SYCL functions for explicit memory operations

Chapter 4. SYCL programming interface | 309

Member function Description

void mem_advise(void* ptr, size_t numBytes, int advice)
Enqueues a command that pro
vides information to the imple
mentation about a region of USM
starting at ptr and extending for
numBytes bytes. The ptr must point
within a USM allocation from the
same context as the handler’s
queue, and the pointer must be
accessible from the queue’s device.
The values for advice are vendor-
or backend-specific, with the
exception of the value 0 which
reverts the advice for ptr to the
default behavior. For more detail
on USM, please see Section 4.8.

The listing below illustrates how to use explicit copy operations in SYCL. The example copies half of the
contents of a std::vector into the device, leaving the rest of the contents of the buffer on the device
unchanged.

 1 const size_t nElems = 10u;
 2
 3 // Create a vector and fill it with values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 4 std::vector<int> v { nElems };
 5 std::iota(std::begin(v), std::end(v), 0);
 6
 7 // Create a buffer with no associated user storage
 8 sycl::buffer<int, 1> b { range<1>(nElems) };
 9
10 // Create a queue
11 queue myQueue;
12
13 myQueue.submit([&](handler& cgh) {
14 // Retrieve a ranged write accessor to a global buffer with access to the
15 // first half of the buffer
16 accessor acc { b, cgh, range<1>(nElems / 2), id<1>(0), write_only };
17 // Copy the first five elements of the vector into the buffer associated with
18 // the accessor
19 cgh.copy(v.data(), acc);
20 });

4.9.4.4. Functions for using a kernel bundle

1 void use_kernel_bundle(
2 const kernel_bundle<bundle_state::executable>& execBundle);

Effects: The command group associated with the handler will use device images of the kernel_bundle
execBundle in any of its kernel invocation commands. If the kernel_bundle contains multiple device
images that are compatible with the device to which the kernel is submitted, then the device image cho
sen is implementation-defined.

If the command group attempts to invoke a kernel that is not contained by a compatible device image in

4.9.4.4. Functions for using a kernel bundle SYCL 2020 rev 9

310 | Chapter 4. SYCL programming interface

execBundle, the kernel invocation command throws a synchronous exception with the errc::kernel_not_
supported error code. If the command group has a secondary queue, then the execBundle must contain a
kernel that is compatible with both the primary queue’s device and the secondary queue’s device, other
wise the kernel invocation command throws this exception.

Since the handler method for setting specialization constants is incompatible with the kernel bundle
method, applications should not call this function if handler::set_specialization_constant() has been
previously called for this same command group.

Throws:

• An exception with the errc::invalid error code if the context associated with the command group
handler via its associated primary queue or the context associated with the secondary queue (if pro
vided) is different from the context associated with the kernel bundle specified by execBundle.

• An exception with the errc::invalid error code if handler::set_specialization_constant() has been
called for this command group.

4.9.5. Specialization constants

Device code can make use of specialization constants which represent constants whose values can be set
dynamically during execution of the SYCL application. The values of these constants are fixed when a
SYCL kernel function is invoked, and they do not change during the execution of the kernel. However,
the application is able to set a new value for a specialization constant each time a kernel is invoked, so
the values can be tuned differently for each invocation.

There are two methods for an application to use specialization constants, one method requires creating
a kernel_bundle object and the other does not. The syntax for both methods is mostly the same. Both
methods declare specialization constants in the same way, and kernels read their values in the same
way. The main difference is whether their values are set via handler::set_specialization_constant() or
via kernel_bundle::set_specialization_constant(). These two methods are incompatible with one
another, so they may not both be used by the same command group.

Implementations that support online compilation of kernel bundles will likely imple
ment both methods of specialization constants using kernel bundles. Therefore, applica
tions should expect that there is some overhead associated with invoking a kernel with
new values for its specialization constants. A typical implementation records the values
of specialization constants set via handler::set_specialization_constant() and remem
bers these values until a kernel is invoked (e.g. via parallel_for()). At this point, the
implementation determines the bundle that contains the invoked kernel. If that bundle
has already been compiled for the handler’s device and compiled with the correct values
for the specialization constants, the kernel is scheduled for invocation. Otherwise, the
implementation compiles the bundle before scheduling the kernel for invocation. There
fore, applications that frequently change the values of specialization constants may see
an overhead associated with recompilation of the kernel’s bundle.

4.9.5.1. Declaring a specialization constant

Specialization constants must be declared using the specialization_id class with the following restric
tions:

• the template parameter T must be a device copyable type;

• the specialization_id variable must be declared as constexpr;

• the specialization_id variable must be declared in either namespace scope or in class scope;

• if the specialization_id variable is declared in class scope, it must have public accessibility when ref
erenced from namespace scope;

SYCL 2020 rev 9 4.9.5. Specialization constants

Chapter 4. SYCL programming interface | 311

• the specialization_id variable may not be shadowed by another identifier X which has the same
name and is declared in an inline namespace, such that the specialization_id variable is no longer
accessible after the declaration of X;

• if the specialization_id variable is declared in a namespace, none of the enclosing namespace names
N may be shadowed by another identifier X which has the same name as N and is declared in an inline
namespace, such that N is no longer accessible after the declaration of X.

The expectation is that some implementations may conceptually insert code at the end
of a translation unit which references each specialization_id variable that is declared in
that translation unit. The restrictions listed above make this possible by ensuring that
these variables are accessible at the end of the translation unit.

The following example illustrates some of these restrictions:

 1 #include <sycl/sycl.hpp>
 2 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 3
 4 struct Compound {
 5 int i;
 6 float f;
 7 };
 8
 9 constexpr specialization_id<int> a { 1 }; // OK
10 constexpr specialization_id<Compound> b { 2, 3.14 }; // OK
11 inline constexpr specialization_id<int> c { 3 }; // OK
12 static constexpr specialization_id<int> d { 4 }; // OK
13 specialization_id<int> e { 5 }; // ILLEGAL: not constexpr
14
15 struct Bar {
16 static constexpr specialization_id<int> f { 6 }; // OK
17 };
18 struct Baz {
19 struct Inner {
20 static constexpr specialization_id<int> g { 7 }; // OK
21 };
22 };
23 class Boo {
24 static constexpr specialization_id<int> h { 8 }; // ILLEGAL: not public member
25 };
26
27 void Func() {
28 static constexpr specialization_id<int> i { 9 }; // ILLEGAL: not at namespace
29 // or class scope
30 /* ... */
31 }
32
33 constexpr specialization_id<int> same_name { 10 }; // OK
34 namespace foo {
35 constexpr specialization_id<int> same_name { 11 }; // OK
36 }
37 namespace {
38 constexpr specialization_id<int> same_name { 12 }; // OK
39 }
40 inline namespace other {
41 int same_name; // ILLEGAL: shadows "specialization_id" variable with same name in

4.9.5.1. Declaring a specialization constant SYCL 2020 rev 9

312 | Chapter 4. SYCL programming interface

42 // enclosing namespace scope
43 }
44 inline namespace other2 {
45 namespace foo { // ILLEGAL: namespace name shadows "::foo" namespace which contains
46 // "specialization_id" variable.
47 } // namespace foo
48 } // namespace

A synopsis of this class is shown below.

 1 namespace sycl {
 2
 3 template <typename T> class specialization_id {
 4 public:
 5 using value_type = T;
 6
 7 template <class... Args> explicit constexpr specialization_id(Args&&... args);
 8
 9 specialization_id(const specialization_id& rhs) = delete;
10 specialization_id(specialization_id&& rhs) = delete;
11 specialization_id& operator=(const specialization_id& rhs) = delete;
12 specialization_id& operator=(specialization_id&& rhs) = delete;
13 };
14
15 } // namespace sycl

4.9.5.1.1. Constructors

template <class... Args> explicit constexpr specialization_id(Args&&... args);

Constraints: Available only when std::is_constructible_v<T, Args...> evaluates to true.

Effects: Constructs a specialization_id containing an instance of T initialized with args..., which repre
sents the specialization constant’s default value.

4.9.5.1.2. Special member functions

specialization_id(const specialization_id& rhs) = delete; // (1)
specialization_id(specialization_id&& rhs) = delete; // (2)
specialization_id& operator=(const specialization_id& rhs) = delete; // (3)
specialization_id& operator=(specialization_id&& rhs) = delete; // (4)

1. Deleted copy constructor.

2. Deleted move constructor.

3. Deleted copy assignment operator.

4. Deleted move assignment operator.

4.9.5.2. Setting and getting the value of a specialization constant

If the application uses specialization constants without creating a kernel_bundle object, it can set and get
their values from command group scope by calling member functions of the handler class. These mem
ber functions have a template parameter SpecName whose value must be a reference to a variable of type

SYCL 2020 rev 9 4.9.5.1.1. Constructors

Chapter 4. SYCL programming interface | 313

specialization_id, which defines the type and default value of the specialization constant.

When not using a kernel bundle, the value of a specialization constant that is used in a kernel invoked
from a command group is affected by calls to set its value from that same command group, but it is not
affected by calls from other command groups even if those calls are from another invocation of the
same command group function object.

template <auto& SpecName>
void set_specialization_constant(
 typename std::remove_reference_t<decltype(SpecName)>::value_type value);

Effects: Sets the value of the specialization constant whose address is SpecName for this handler’s com
mand group. If the specialization constant’s value was previously set in this same command group, the
value is overwritten.

This function may be called even if the specialization constant SpecName isn’t used by the kernel that is
invoked by this handler’s command group. Doing so has no effect on the invoked kernel.

Throws:

• An exception with the errc::invalid error code if a kernel bundle has been bound to the handler via
use_kernel_bundle().

template <auto& SpecName>
typename std::remove_reference_t<decltype(SpecName)>::value_type
get_specialization_constant();

Returns: The value of the specialization constant whose address is SpecName for this handler’s command
group. If the value was previously set in this handler’s command group, that value is returned. Other
wise, the specialization constant’s default value is returned.

Throws:

• An exception with the errc::invalid error code if a kernel bundle has been bound to the handler via
use_kernel_bundle().

4.9.5.3. Reading the value of a specialization constant from device code

In order to read the value of a specialization constant from device code, the SYCL kernel function must
be declared to take an object of type kernel_handler as its last parameter. The SYCL runtime constructs
this object, which has a member function for reading the specialization constant’s value. A synopsis of
this class is shown below.

 1 namespace sycl {
 2
 3 class kernel_handler {
 4 public:
 5 template <auto& SpecName>
 6 typename std::remove_reference_t<decltype(SpecName)>::value_type
 7 get_specialization_constant();
 8 };
 9
10 } // namespace sycl

4.9.5.3. Reading the value of a specialization constant from device code SYCL 2020 rev 9

314 | Chapter 4. SYCL programming interface

4.9.5.3.1. Member functions

1 template<auto& SpecName>
2 typename std::remove_reference_t<decltype(SpecName)>::value_type
3 get_specialization_constant();

Returns: The value of the specialization constant whose address is SpecName. For a kernel invoked from a
command group that was not bound to a kernel bundle, the value is the same as what would have been
returned if handler::get_specialization_constant() was called immediately before invoking the kernel.
For a kernel invoked from a command group that was bound to a kernel bundle, the value is the same as
what would be returned if kernel_bundle::get_specialization_constant() was called on the bound bun
dle.

4.9.5.4. Example usage

The following example performs a convolution and uses specialization constants to set the values of the
coefficients.

 1 #include <sycl/sycl.hpp>
 2 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 3
 4 using coeff_t = std::array<std::array<float, 3>, 3>;
 5
 6 // Read coefficients from somewhere.
 7 coeff_t get_coefficients();
 8
 9 // Identify the specialization constant.
10 constexpr specialization_id<coeff_t> coeff_id;
11
12 void do_conv(buffer<float, 2> in, buffer<float, 2> out) {
13 queue myQueue;
14
15 myQueue.submit([&](handler& cgh) {
16 accessor in_acc { in, cgh, read_only };
17 accessor out_acc { out, cgh, write_only };
18
19 // Set the coefficient of the convolution as constant.
20 // This will build a specific kernel the coefficient available as literals.
21 cgh.set_specialization_constant<coeff_id>(get_coefficients());
22
23 cgh.parallel_for<class Convolution>(in.get_range(), [=](item<2> item_id,
24 kernel_handler h) {
25 float acc = 0;
26 coeff_t coeff = h.get_specialization_constant<coeff_id>();
27 for (int i = -1; i <= 1; i++) {
28 if (item_id[0] + i < 0 || item_id[0] + i >= in_acc.get_range()[0])
29 continue;
30 for (int j = -1; j <= 1; j++) {
31 if (item_id[1] + j < 0 || item_id[1] + j >= in_acc.get_range()[1])
32 continue;
33 // The underlying JIT can see all the values of the array returned
34 // by coeff.get().
35 acc += coeff[i + 1][j + 1] * in_acc[item_id[0] + i][item_id[1] + j];
36 }
37 }

SYCL 2020 rev 9 4.9.5.3.1. Member functions

Chapter 4. SYCL programming interface | 315

38 out_acc[item_id] = acc;
39 });
40 });
41
42 myQueue.wait();
43 }

4.10. Host tasks

4.10.1. Overview

A host task is a native C++ callable which is scheduled by the SYCL runtime. A host task is submitted to a
queue via a command group by a host task command.

When a host task command is submitted to a queue it is scheduled based on its data dependencies with
other commands including kernel invocation commands and asynchronous copies, resolving any requi
sites created by accessors attached to the command group as defined in Section 3.8.1.

Since a host task is invoked directly by the SYCL runtime rather than being compiled as a SYCL kernel
function, it does not have the same restrictions as a SYCL kernel function, and can therefore contain any
arbitrary C++ code.

Capturing accessors in a host task is allowed, however, capturing or using any other SYCL class that has
reference semantics (see Section 4.5.2) is undefined behavior.

A host task can be enqueued on any queue and the callable will be invoked directly by the SYCL runtime,
regardless of which device the queue is associated with.

A host task is enqueued on a queue via the host_task member function of the handler class. The event
returned by the submission of the associated command group enters the completed state (corresponding
to a status of info::event_command_status::complete) once the invocation of the provided C++ callable has
returned. Any uncaught exception thrown during the execution of a host task will be turned into an
asynchronous error that can be handled as described in Section 4.13.1.1.

A host task can optionally be used to interoperate with the native backend objects associated with the
queue executing the host task, the context that the queue is associated with, the device that the queue is
associated with and the accessors that have been captured in the callable, via an optional interop_handle
parameter.

This allows host tasks to be used for two purposes: either as a task which can perform arbitrary C++ code
within the scheduling of the SYCL runtime or as a task which can perform interoperability at a point
within the scheduling of the SYCL runtime.

For the former use case, construct a buffer accessor with target::host_task or an image accessor with
image_target::host_task. This makes the buffer or image available on the host during execution of the
host task.

For the latter case, construct a buffer accessor with target::device or target::constant_buffer, or con
struct an image accessor with image_target::device. This makes the buffer or image available on the
device that is associated with the queue used to submit the host task, so that it can be accessed via inter
operability member functions provided by the interop_handle class.

Local accessors cannot be used within a host task.

If a C++ lambda is passed to a host task, the lambda may capture by reference or by
value. Since the host task callable executes asynchronously, care must be taken to ensure
that lifetimes of objects captured by reference by a host task lambda last at least until

4.10. Host tasks SYCL 2020 rev 9

316 | Chapter 4. SYCL programming interface

the host task completes.

 1 namespace sycl {
 2
 3 class interop_handle {
 4 private:
 5 interop_handle(__unspecified__);
 6
 7 public:
 8 interop_handle() = delete;
 9
10 backend get_backend() const noexcept;
11
12 template <backend Backend, typename DataT, int Dims, access_mode AccessMode,
13 target AccessTarget, access::placeholder isPlaceholder>
14 backend_return_t<Backend, buffer<DataT, Dims>>
15 get_native_mem(const accessor<DataT, Dims, AccessMode, AccessTarget,
16 isPlaceholder>& bufferAccessor) const;
17
18 template <backend Backend, typename DataT, int Dims, access_mode AccMode>
19 backend_return_t<Backend, unsampled_image<Dims>> get_native_mem(
20 const unsampled_image_accessor<DataT, Dims, AccMode,
21 image_target::device>& imageAcc) const;
22
23 template <backend Backend, typename DataT, int Dims>
24 backend_return_t<Backend, sampled_image<Dims>> get_native_mem(
25 const sampled_image_accessor<DataT, Dims, image_target::device>& imageAcc)
26 const;
27
28 template <backend Backend>
29 backend_return_t<Backend, queue> get_native_queue() const;
30
31 template <backend Backend>
32 backend_return_t<Backend, device> get_native_device() const;
33
34 template <backend Backend>
35 backend_return_t<Backend, context> get_native_context() const;
36 };
37
38 class handler {
39 public:
40 // ...
41
42 template <typename T>
43 void host_task(T&& hostTaskCallable);
44
45 // ...
46 };
47
48 } // namespace sycl

4.10.2. Class interop_handle

The interop_handle class is an abstraction over the queue which is being used to invoke the host task and

SYCL 2020 rev 9 4.10.2. Class interop_handle

Chapter 4. SYCL programming interface | 317

its associated device and context. It also represents the state of the SYCL runtime dependency model at
the point the host task is invoked.

The interop_handle class provides access to the native backend object associated with the queue, device,
context and any buffers or images that are captured in the callable being invoked in order to allow a
host task to be used for interoperability purposes.

An interop_handle cannot be constructed by user-code, only by the SYCL runtime.

1 class interop_handle;

4.10.2.1. Constructors

1 private:
2 interop_handle(__unspecified__); // (1)
3
4 public:
5 interop_handle() = delete; // (2)

1. Private implementation-defined constructor with unspecified arguments so that the SYCL runtime
can construct a interop_handle.

2. Explicitly deleted default constructor.

4.10.2.2. Member functions

1 backend get_backend() const noexcept;

1. Returns: Returns a backend identifying the SYCL backend associated with the queue associated with
this interop_handle.

4.10.2.3. Template member functions get_native_*

 1 // SPDX-License-Identifier: MIT
 2
 3 template <backend Backend, typename DataT, int Dims, access_mode AccMode,
 4 target AccTarget, access::placeholder IsPlaceholder>
 5 backend_return_t<Backend, buffer<DataT, Dims>>
 6 get_native_mem(const accessor<DataT, Dims, AccMode, AccTarget, // (1)
 7 IsPlaceholder>& bufferAcc) const;
 8
 9 template <backend Backend, typename DataT, int Dims, access_mode AccMode>
10 backend_return_t<Backend, unsampled_image<Dims>> get_native_mem(// (2)
11 const unsampled_image_accessor<DataT, Dims, AccMode, image_target::device>&
12 imageAcc) const;
13
14 template <backend Backend, typename DataT, int Dims>
15 backend_return_t<Backend, sampled_image<Dims>> get_native_mem(// (3)
16 const sampled_image_accessor<DataT, Dims, image_target::device>& imageAcc)
17 const;
18
19 template <backend Backend>
20 backend_return_t<Backend, queue> get_native_queue() const; // (4)

4.10.2.1. Constructors SYCL 2020 rev 9

318 | Chapter 4. SYCL programming interface

21
22 template <backend Backend>
23 backend_return_t<Backend, device> get_native_device() const; // (5)
24
25 template <backend Backend>
26 backend_return_t<Backend, context> get_native_context() const; // (6)

1. Constraints: Available only if the optional interoperability function get_native taking a buffer is avail
able and if accTarget is target::device.

Returns: The native backend object associated with the underlying buffer of accessor bufferAcc. The
native backend object returned must be in a state where it represents the memory in its current state
within the SYCL runtime dependency model and is capable of being used in a way appropriate for the
associated SYCL backend. It is undefined behavior to use the native backend object outside of the
scope of the host task.

Throws: An exception with the errc::invalid error code if the accessor bufferAcc was not registered
with the command group which contained the host task. Must throw an exception with the
errc::backend_mismatch error code if Backend != get_backend().

2. Constraints: Available only if the optional interoperability function get_native taking an unsam
pled_image is available.

Returns: The native backend object associated with with the underlying unsampled_image of accessor
imageAcc. The native backend object returned must be in a state where it represents the memory in its
current state within the SYCL runtime dependency model and is capable of being used in a way
appropriate for the associated SYCL backend. It is undefined behavior to use the native backend
object outside of the scope of the host task.

Throws: An exception with the errc::invalid error code if the accessor imageAcc was not registered
with the command group which contained the host task.

3. Constraints: Available only if the optional interoperability function get_native taking an sampled_im
age is available.

Returns: The native backend object associated with with the underlying sampled_image of accessor
imageAcc. The native backend object returned must be in a state where it represents the memory in its
current state within the SYCL runtime dependency model and is capable of being used in a way
appropriate for the associated SYCL backend. It is undefined behavior to use the native backend
object outside of the scope of the host task.

Throws: An exception with the errc::invalid error code if the accessor imageAcc was not registered
with the command group which contained the host task. Must throw an exception with the
errc::backend_mismatch error code if Backend != get_backend().

4. Constraints: Available only if the optional interoperability function get_native taking a queue is avail
able.

Returns: The native backend object associated with the queue that the host task was submitted to. If
the command group was submitted with a secondary queue and the fall-back was triggered, the
queue that is associated with the interop_handle must be the fall-back queue. The native backend
object returned must be in a state where it is capable of being used in a way appropriate for the asso
ciated SYCL backend. It is undefined behavior to use the native backend object outside of the scope of
the host task.

Throws: Must throw an exception with the errc::backend_mismatch error code if Backend != get_back
end().

SYCL 2020 rev 9 4.10.2.3. Template member functions get_native_*

Chapter 4. SYCL programming interface | 319

5. Constraints: Available only if the optional interoperability function get_native taking a device is avail
able.

Returns: The native backend object associated with the device that is associated with the queue that
the host task was submitted to. The native backend object returned must be in a state where it is
capable of being used in a way appropriate for the associated SYCL backend. It is undefined behavior
to use the native backend object outside of the scope of the host task.

Throws: Must throw an exception with the errc::backend_mismatch error code if Backend != get_back
end().

6. Constraints: Available only if the optional interoperability function get_native taking a context is
available.

Returns: The native backend object associated with the context that is associated with the queue that
the host task was submitted to. The native backend object returned must be in a state where it is
capable of being used in a way appropriate for the associated SYCL backend. It is undefined behavior
to use the native backend object outside of the scope of the host task.

Throws: Must throw an exception with the errc::backend_mismatch error code if Backend != get_back
end().

4.10.3. Additions to the handler class

This section describes member functions in the command group handler class that are used with host
tasks.

1 class handler {
2 public:
3 // ...
4
5 template <typename T>
6 void host_task(T&& hostTaskCallable); // (1)
7
8 // ...
9 };

1. Effects: Enqueues an implementation-defined command to the SYCL runtime to invoke host
TaskCallable exactly once. The scheduling of the invocation of hostTaskCallable in relation to other
commands enqueued to the SYCL runtime must be in accordance with the dependency model
described in Section 3.8.1. Initializes an interop_handle object and passes it to hostTaskCallable when
it is invoked if std::is_invocable_v<T, interop_handle> evaluates to true, otherwise invokes host
TaskCallable as a nullary function.

4.11. Kernel bundles
Kernel bundles provide several features to a SYCL application. For implementations that support an
online compiler, they provide fine grained control over the online compilation of device code. For exam
ple, an application can use a kernel bundle to compile its kernels at a specific time during the applica
tion’s execution (such as during its initialization), rather than relying on the implementation’s default
behavior (which may not compile kernels until they are submitted).

Kernel bundles also provide a way for the application to set the values of specialization constants in
many kernels before any of them are submitted to a device, which could potentially be more efficient in
some cases.

4.10.3. Additions to the handler class SYCL 2020 rev 9

320 | Chapter 4. SYCL programming interface

Kernel bundles provide a way for the application to introspect its kernels. For example, an application
can use a bundle to query a kernel’s work-group size when it is run on a specific device.

Finally, kernel bundles provide an extension point to interoperate with backend and device specific fea
tures. Some examples of this include invocation of device specific built-in kernels, online compilation of
kernel code with vendor specific options, or interoperation with kernels created with backend APIs.

4.11.1. Overview

A kernel bundle is a high-level abstraction which represents a set of kernels that are associated with a
context and can be executed on a number of devices, where each device is associated with that same
context. Depending on how a bundle is obtained, it could represent all of the SYCL kernel functions in
the SYCL application, or a certain subset of them.

A kernel bundle is composed of one or more device images, where each device image is an indivisible
unit of compilation and/or linking. When the SYCL runtime compiles or links one of the kernels repre
sented by the device image, it must also compile or link any other kernels the device image represents.
Once a device image is compiled and linked, any of the other kernels which that device image represents
may be invoked without further compilation or linking.

Each SYCL kernel function a bundle represents must reside in at least one of the bundle’s device images.
However, it is not necessary for each device image to contain all of the kernel functions that the bundle
represents. The granularity in which kernel functions are grouped into device images is an implementa
tion detail.

To illustrate the intent of device images, a hypothetical implementation could represent
an application’s kernel functions in both the SPIR-V format and also in a native device
code format. The implementation’s ahead-of-time compiler in this example produces
device images with native code for certain devices and also produces SPIR-V device
images for use with other devices. Note that in such an implementation, a particular ker
nel function could be represented in more than one device image.

An implementation could choose to have all kernel functions from all translation units
grouped together in a single device image, to have each kernel function represented in
its own device image, or to group kernel functions in some other way.

Each device associated with a kernel bundle must have at least one compatible device image, meaning
that the implementation can either invoke the image’s kernel functions directly on the device or that the
implementation can translate the device image into a format that allows it to invoke the kernel func
tions.

An outcome of this definition is that each kernel function in a bundle must be invocable on at least one
of the devices associated with the bundle. However, it is not necessary for every kernel function in the
bundle to be invocable on every associated device.

One common reason why a kernel function might not be invocable on every device asso
ciated with a bundle is if the kernel uses optional device features. It’s possible that these
features are available to only some devices in the bundle.

The use of optional device features could affect how the implementation groups kernels
into device images, depending on how these features are represented. For example, con
sider an implementation where the optional feature is represented in SPIR-V but transla
tion of that SPIR-V into native code will fail if the target device does not support the fea
ture. In such an implementation, kernels that use optional features should not be
grouped into the same device image as kernels that do not use these features. Since a
device image is an indivisible unit of compilation, doing so would cause a compilation
failure if a kernel K1 is invoked on a device D1 if K1 happened to reside in the same

SYCL 2020 rev 9 4.11.1. Overview

Chapter 4. SYCL programming interface | 321

device image as another kernel K2 that used a feature which is not supported on device
D1.

See Section 5.7 for more about optional device features.

A SYCL application can obtain a kernel bundle by calling one of the overloads of the get_kernel_bundle()
free function. Certain backends may provide additional mechanisms for obtaining bundles with other
representations. If this is supported, the backend specification document will describe the details.

Once a kernel bundle has been obtained there are a number of free functions for performing compila
tion, linking and joining. Once a bundle is compiled and linked, the application can invoke kernels from
the bundle by calling handler::use_kernel_bundle() as described in Section 4.9.4.4.

4.11.2. Synopsis

 1 namespace sycl {
 2
 3 enum class bundle_state : /* unspecified */ { input, object, executable };
 4
 5 class kernel_id { /* ... */
 6 };
 7
 8 template <bundle_state State> class kernel_bundle { /* ... */
 9 };
 10
 11 template <typename KernelName> kernel_id get_kernel_id();
 12
 13 std::vector<kernel_id> get_kernel_ids();
 14
 15 template <bundle_state State>
 16 kernel_bundle<State> get_kernel_bundle(const context& ctxt);
 17
 18 template <bundle_state State>
 19 kernel_bundle<State> get_kernel_bundle(const context& ctxt,
 20 const std::vector<kernel_id>& kernelIds);
 21
 22 template <typename KernelName, bundle_state State>
 23 kernel_bundle<State> get_kernel_bundle(const context& ctxt);
 24
 25 template <bundle_state State>
 26 kernel_bundle<State> get_kernel_bundle(const context& ctxt,
 27 const std::vector<device>& devs);
 28
 29 template <bundle_state State>
 30 kernel_bundle<State> get_kernel_bundle(const context& ctxt,
 31 const std::vector<device>& devs,
 32 const std::vector<kernel_id>& kernelIds);
 33
 34 template <typename KernelName, bundle_state State>
 35 kernel_bundle<State> get_kernel_bundle(const context& ctxt,
 36 const std::vector<device>& devs);
 37
 38 template <bundle_state State, typename Selector>
 39 kernel_bundle<State> get_kernel_bundle(const context& ctxt, Selector selector);
 40
 41 template <bundle_state State, typename Selector>

4.11.2. Synopsis SYCL 2020 rev 9

322 | Chapter 4. SYCL programming interface

 42 kernel_bundle<State> get_kernel_bundle(const context& ctxt,
 43 const std::vector<device>& devs,
 44 Selector selector);
 45
 46 template <bundle_state State> bool has_kernel_bundle(const context& ctxt);
 47
 48 template <bundle_state State>
 49 bool has_kernel_bundle(const context& ctxt,
 50 const std::vector<kernel_id>& kernelIds);
 51
 52 template <typename KernelName, bundle_state State>
 53 bool has_kernel_bundle(const context& ctxt);
 54
 55 template <bundle_state State>
 56 bool has_kernel_bundle(const context& ctxt, const std::vector<device>& devs);
 57
 58 template <bundle_state State>
 59 bool has_kernel_bundle(const context& ctxt, const std::vector<device>& devs,
 60 const std::vector<kernel_id>& kernelIds);
 61
 62 template <typename KernelName, bundle_state State>
 63 bool has_kernel_bundle(const context& ctxt, const std::vector<device>& devs);
 64
 65 bool is_compatible(const std::vector<kernel_id>& kernelIds, const device& dev);
 66
 67 template <typename KernelName> bool is_compatible(const device& dev);
 68
 69 template <bundle_state State>
 70 kernel_bundle<State> join(const std::vector<kernel_bundle<State>>& bundles);
 71
 72 kernel_bundle<bundle_state::object>
 73 compile(const kernel_bundle<bundle_state::input>& inputBundle,
 74 const property_list& propList = {});
 75
 76 kernel_bundle<bundle_state::object>
 77 compile(const kernel_bundle<bundle_state::input>& inputBundle,
 78 const std::vector<device>& devs, const property_list& propList = {});
 79
 80 kernel_bundle<bundle_state::executable>
 81 link(const kernel_bundle<bundle_state::object>& objectBundle,
 82 const property_list& propList = {});
 83
 84 kernel_bundle<bundle_state::executable>
 85 link(const std::vector<kernel_bundle<bundle_state::object>>& objectBundles,
 86 const property_list& propList = {});
 87
 88 kernel_bundle<bundle_state::executable>
 89 link(const kernel_bundle<bundle_state::object>& objectBundle,
 90 const std::vector<device>& devs, const property_list& propList = {});
 91
 92 kernel_bundle<bundle_state::executable>
 93 link(const std::vector<kernel_bundle<bundle_state::object>>& objectBundles,
 94 const std::vector<device>& devs, const property_list& propList = {});
 95
 96 kernel_bundle<bundle_state::executable>
 97 build(const kernel_bundle<bundle_state::input>& inputBundle,

SYCL 2020 rev 9 4.11.2. Synopsis

Chapter 4. SYCL programming interface | 323

 98 const property_list& propList = {});
 99
100 kernel_bundle<bundle_state::executable>
101 build(const kernel_bundle<bundle_state::input>& inputBundle,
102 const std::vector<device>& devs, const property_list& propList = {});
103
104 } // namespace sycl

4.11.3. Fixed-function built-in kernels

SYCL allows a SYCL backend to expose fixed functionality as non-programmable built-in kernels. The
availability and behavior of these built-in kernels are backend specific and are not required to follow
the SYCL execution and memory models. However, the basic interface is common to all backends.

4.11.4. Bundle states

A kernel bundle can be in one of three different bundle states which are represented by an enum class
called bundle_state. Table 133 describes the semantics of these three states.

The states form a progression. A bundle in bundle_state::input can be translated into bundle_s
tate::object by online compilation of the bundle. A bundle in bundle_state::object can be translated
into bundle_state::executable by online linking.

Each implementation is free to define the "online compilation" and "online linking" oper
ations as it sees fit, so long as this progression of bundle states is preserved and so long
as the bundles in each state behave as specified.

There is no requirement that an implementation must expose kernels in bundle_state::input or
bundle_state::object. In fact, an implementation could expose some kernels in these states but not oth
ers. For example, this behavior could be controlled by implementation specific options to the ahead-of-
time compiler. Kernels that are not exposed in these states cannot be online compiled or online linked
by the application.

All kernels defined in the SYCL application, however, must be exposed in bundle_state::executable
because this is the only state that allows a kernel to be invoked on a device. Device built-in kernels are
also exposed in bundle_state::executable.

If an application exposes a bundle in bundle_state::input for a device D, then the implementation must
also provide an online compiler for device D. Therefore, an application need not explicitly test for
aspect::online_compiler if it successfully obtains a bundle in bundle_state::input for that device. Like
wise, an implementation must provide an online linker for device D if it exposes a bundle in bundle_s
tate::object for device D.

Table 133. Enumeration of possible bundle states

Bundle State Description

bundle_state::input
The device images in the kernel bundle have a format that must be
compiled and linked before their kernels can be invoked. For
example, an implementation could use this state for device images
that are stored in an intermediate language format or for device
images that are stored as source code strings.

bundle_state::object
The device images in the kernel bundle have a format that must be
linked before their kernels can be invoked.

4.11.3. Fixed-function built-in kernels SYCL 2020 rev 9

324 | Chapter 4. SYCL programming interface

Bundle State Description

bundle_state::executable
The device images in the kernel bundle are in a format that allows
them to be invoked on a device. For example, an implementation
could use this state for device images that have been compiled into
the device’s native code.

4.11.5. Kernel identifiers

Some of the functions related to kernel bundles take an input parameter of type kernel_id which identi
fies a kernel. A synopsis of the kernel_id class is shown below along with a description of its member
functions. Additionally, this class provides the common special member functions and common member
functions that are listed in Section 4.5.2 in Table 7 and Table 8, respectively.

As with all SYCL objects that have the common reference semantics, kernel identifiers are equality com
parable. Two kernel_id objects compare equal if and only if they refer to the same application kernel or
to the same device built-in kernel.

There is no public default constructor for this class.

 1 namespace sycl {
 2
 3 class kernel_id {
 4 public:
 5 kernel_id() = delete;
 6
 7 const char* get_name() const noexcept;
 8 };
 9
10 } // namespace sycl

const char* get_name() const noexcept;

Returns: An implementation-defined null-terminated string containing the name of the kernel. There is
no guarantee that this name is unique amongst all the kernels, nor is there a guarantee that the name is
stable from one run of the application to another. The lifetime of the memory containing the name is
unspecified.

In practice, the lifetime of the memory containing the name will typically extend until
the application terminates, unless the kernel associated with the name comes from a
dynamic library. In this case, the lifetime of the memory may end if the dynamic library
is unloaded.

4.11.6. Obtaining a kernel identifier

An application can obtain an identifier for a kernel that is defined in the application by calling one of the
following free functions, or it may obtain an identifier for a device’s built-in kernels by querying the
device with info::device::built_in_kernel_ids.

template <typename KernelName> kernel_id get_kernel_id();

Preconditions: The template parameter KernelName must be the type kernel name of a kernel that is
defined in the SYCL application. Since lambda functions have no standard type name, kernels defined as

SYCL 2020 rev 9 4.11.5. Kernel identifiers

Chapter 4. SYCL programming interface | 325

lambda functions must specify a KernelName in their kernel invocation command in order to obtain their
identifier via this function. Applications which call get_kernel_id() for a KernelName that is not defined
are ill formed, and the implementation must issue a diagnostic in this case.

Returns: The identifier of the kernel associated with KernelName.

std::vector<kernel_id> get_kernel_ids();

Returns: A vector with the identifiers for all kernels defined in the SYCL application. This does not
include identifiers for any device built-in kernels.

4.11.7. Obtaining a kernel bundle

A SYCL application can obtain a kernel bundle by calling one of the overloads of the free function get_k
ernel_bundle(). The implementation may return a bundle that consists of device images that were cre
ated by the ahead-of-time compiler, or it may call the online compiler or linker to create the bundle’s
device images in the requested state. A bundle may also contain device images that represent a device’s
built-in kernels.

When get_kernel_bundle() is used to obtain a kernel bundle in bundle_state::object or bundle_s
tate::executable, any specialization constants in the bundle will have their default values.

template <bundle_state State>
kernel_bundle<State> get_kernel_bundle(const context& ctxt,
 const std::vector<device>& devs);

Returns: A kernel bundle in state State which contains all of the kernels in the application which are
compatible with at least one of the devices in devs. This does not include any device built-in kernels. The
bundle’s set of associated devices is devs (with any duplicate devices removed).

Since the implementation may not represent all kernels in bundle_state::input or bundle_state::object,
calling this function with one of those states may return a bundle that is missing some of the applica
tion’s kernels.

Throws:

• An exception with the errc::invalid error code if any of the devices in devs is not one of devices con
tained by the context ctxt or is not a descendent device of some device in ctxt.

• An exception with the errc::invalid error code if the devs vector is empty.

• An exception with the errc::invalid error code if State is bundle_state::input and any device in devs
does not have aspect::online_compiler.

• An exception with the errc::invalid error code if State is bundle_state::object and any device in devs
does not have aspect::online_linker.

• An exception with the errc::build error code if State is bundle_state::object or bundle_state::exe
cutable, if the implementation needs to perform an online compile or link, and if the online compile
or link fails.

template <bundle_state State>
kernel_bundle<State> get_kernel_bundle(const context& ctxt,
 const std::vector<device>& devs,
 const std::vector<kernel_id>& kernelIds);

4.11.7. Obtaining a kernel bundle SYCL 2020 rev 9

326 | Chapter 4. SYCL programming interface

Returns: A kernel bundle in state State which contains all of the device images that are compatible with
at least one of the devices in devs, further filtered to contain only those device images that contain at
least one of the kernels with the given identifiers. These identifiers may represent kernels that are
defined in the application, device built-in kernels, or a mixture of the two. Since the device images may
group many kernels together, the returned bundle may contain additional kernels beyond those that are
requested in kernelIds. The bundle’s set of associated devices is devs (with duplicate devices removed).

Since the implementation may not represent all kernels in bundle_state::input or bundle_state::object,
calling this function with one of those states may return a bundle that is missing some of the kernels in
kernelIds. The application can test for this via kernel_bundle::has_kernel().

Throws:

• An exception with the errc::invalid error code if any of the kernels identified by kernelIds are
incompatible with all devices in devs.

• An exception with the errc::invalid error code if any of the devices in devs is not one of devices con
tained by the context ctxt or is not a descendent device of some device in ctxt.

• An exception with the errc::invalid error code if the devs vector is empty.

• An exception with the errc::invalid error code if State is bundle_state::input and any device in devs
does not have aspect::online_compiler.

• An exception with the errc::invalid error code if State is bundle_state::object and any device in devs
does not have aspect::online_linker.

• An exception with the errc::build error code if State is bundle_state::object or bundle_state::exe
cutable, if the implementation needs to perform an online compile or link, and if the online compile
or link fails.

template <bundle_state State, typename Selector>
kernel_bundle<State> get_kernel_bundle(const context& ctxt,
 const std::vector<device>& devs,
 Selector selector);

Preconditions: The selector must be a unary predicate whose return value is convertible to bool and
whose parameter is const device_image<State>&.

Effects: The predicate function selector is called once for every device image in the application of state
State which is compatible with at least one of the devices in devs. The function’s return value determines
whether a device image is included in the new kernel bundle. The selector is called only for device
images that contain kernels defined in the application, not for device images that contain device built-in
kernels.

Returns: A kernel bundle in state State which contains all of the device images for which the selector
returns true. The bundle’s set of associated devices is devs (with duplicate devices removed).

Throws:

• An exception with the errc::invalid error code if any of the devices in devs is not one of devices con
tained by the context ctxt or is not a descendent device of some device in ctxt.

• An exception with the errc::invalid error code if the devs vector is empty.

• An exception with the errc::invalid error code if State is bundle_state::input and any device in devs
does not have aspect::online_compiler.

• An exception with the errc::invalid error code if State is bundle_state::object and any device in devs
does not have aspect::online_linker.

SYCL 2020 rev 9 4.11.7. Obtaining a kernel bundle

Chapter 4. SYCL programming interface | 327

This function is intended to be used in conjunction with backend specific APIs that allow
the application to choose device images based on backend specific criteria.

This function does not call the online compiler or linker to translate device images into
state State. If the application wants to select specific device images and also compile or
link them into the desired state, it can do this by calling compile() or link() and then
optionally joining several bundles together with join().

template <bundle_state State> // (1)
kernel_bundle<State> get_kernel_bundle(const context& ctxt);

template <bundle_state State> // (2)
kernel_bundle<State> get_kernel_bundle(const context& ctxt,
 const std::vector<kernel_id>& kernelIds);

template <bundle_state State, typename Selector> // (3)
kernel_bundle<State> get_kernel_bundle(const context& ctxt, Selector selector);

1. Equivalent to get_kernel_bundle<State>(ctxt, ctxt.get_devices()).

2. Equivalent to get_kernel_bundle<State>(ctxt, ctxt.get_devices(), kernelIds).

3. Equivalent to get_kernel_bundle<State>(ctxt, ctxt.get_devices(), selector).

template <typename KernelName, bundle_state State> // (1)
kernel_bundle<State> get_kernel_bundle(const context& ctxt);

template <typename KernelName, bundle_state State> // (2)
kernel_bundle<State> get_kernel_bundle(const context& ctxt,
 const std::vector<device>& devs);

Preconditions: The template parameter KernelName must be the type kernel name of a kernel that is
defined in the SYCL application. Since lambda functions have no standard type name, kernels defined as
lambda functions must specify a KernelName in their kernel invocation command in order to use these
functions. Applications which call these functions for a KernelName that is not defined are ill formed, and
the implementation must issue a diagnostic in this case.

1. Equivalent to get_kernel_bundle<State>(ctxt, ctxt.get_devices(), {get_kernel_id<KernelName>()}).

2. Equivalent to get_kernel_bundle<State>(ctxt, devs, {get_kernel_id<KernelName>()}).

4.11.8. Querying if a kernel bundle exists

Most overloads of get_kernel_bundle() have a matching overload of the free function has_kernel_bun
dle() which checks to see if a kernel bundle with the requested characteristics exists.

template <bundle_state State>
bool has_kernel_bundle(const context& ctxt, const std::vector<device>& devs);

Returns: true only if all of the following are true:

• The application defines at least one kernel that is compatible with at least one of the devices in devs,
and that kernel can be represented in a device image of state State.

• If State is bundle_state::input, all devices in devs have aspect::online_compiler.

4.11.8. Querying if a kernel bundle exists SYCL 2020 rev 9

328 | Chapter 4. SYCL programming interface

• If State is bundle_state::object, all devices in devs have aspect::online_linker.

Throws:

• An exception with the errc::invalid error code if any of the devices in devs is not one of devices con
tained by the context ctxt or is not a descendent device of some device in ctxt.

• An exception with the errc::invalid error code if the devs vector is empty.

template <bundle_state State>
bool has_kernel_bundle(const context& ctxt, const std::vector<device>& devs,
 const std::vector<kernel_id>& kernelIds);

Returns: true only if all of the following are true:

• Each of the kernels in kernelIds can be represented in a device image of state State.

• Each of the kernels in kernelIds is compatible with at least one of the devices in devs.

• If State is bundle_state::input, all devices in devs have aspect::online_compiler.

• If State is bundle_state::object, all devices in devs have aspect::online_linker.

Throws:

• An exception with the errc::invalid error code if any of the devices in devs is not one of devices con
tained by the context ctxt or is not a descendent device of some device in ctxt.

• An exception with the errc::invalid error code if the devs vector is empty.

template <bundle_state State> // (1)
bool has_kernel_bundle(const context& ctxt);

template <bundle_state State> // (2)
bool has_kernel_bundle(const context& ctxt,
 const std::vector<kernel_id>& kernelIds);

1. Equivalent to has_kernel_bundle(ctxt, ctxt.get_devices()).

2. Equivalent to has_kernel_bundle<State>(ctxt, ctxt.get_devices(), kernelIds).

template <typename KernelName, bundle_state State> // (1)
bool has_kernel_bundle(const context& ctxt);

template <typename KernelName, bundle_state State> // (2)
bool has_kernel_bundle(const context& ctxt, const std::vector<device>& devs);

Preconditions: The template parameter KernelName must be the type kernel name of a kernel that is
defined in the SYCL application. Since lambda functions have no standard type name, kernels defined as
lambda functions must specify a KernelName in their kernel invocation command in order to use these
functions. Applications which call these functions for a KernelName that is not defined are ill formed, and
the implementation must issue a diagnostic in this case.

1. Equivalent to has_kernel_bundle<State>(ctxt, {get_kernel_id<KernelName>()}).

2. Equivalent to has_kernel_bundle<State>(ctxt, devs, {get_kernel_id<KernelName>()}).

SYCL 2020 rev 9 4.11.8. Querying if a kernel bundle exists

Chapter 4. SYCL programming interface | 329

4.11.9. Querying if a kernel is compatible with a device

The following free functions allow an application to test whether a particular kernel is compatible with a
device. A kernel that is defined in the application is compatible with a device unless:

• It uses optional features which are not supported on the device, as described in Section 5.7; or

• It is decorated with a [[sycl::device_has()]] C++ attribute that lists an aspect that is not supported by
the device, as described in Section 5.8.1; or

• The translation unit containing the kernel was compiled in a compilation environment that does not
support the device. Each implementation defines the specific criteria for which devices are supported
in its compilation environment. For example, this might be dependent on options passed to the com
piler.

A device built-in kernel is only compatible with the device for which it is built-in.

bool is_compatible(const std::vector<kernel_id>& kernelIds, const device& dev);

Returns: true if all of the kernels identified by kernelIds are compatible with the device dev.

template <typename KernelName> bool is_compatible(const device& dev);

Preconditions: The template parameter KernelName must be the type kernel name of a kernel that is
defined in the SYCL application. Since lambda functions have no standard type name, kernels defined as
lambda functions must specify a KernelName in their kernel invocation command in order to use this
function. Applications which call this function for a KernelName that is not defined are ill formed, and the
implementation must issue a diagnostic in this case.

Equivalent to is_compatible<State>({get_kernel_id<KernelName>()}, dev).

4.11.10. Joining kernel bundles

Two or more kernel bundles of the same state may be joined together into a single composite bundle.
Joining bundles together is not the same as online compiling or linking because it produces a new bun
dle in the same state as its inputs. Rather, joining creates the union of all the devices images from the
input bundles, eliminates duplicate copies of the same device image, and creates a new bundle from the
result.

template <bundle_state State>
kernel_bundle<State> join(const std::vector<kernel_bundle<State>>& bundles);

Returns: A new kernel bundle that contains a copy of all the device images in the input bundles with
duplicates removed. The new bundle has the same associated context and the same set of associated
devices as those in bundles.

Throws:

• An exception with the errc::invalid error code if the bundles in bundles do not all have the same
associated context or do not all have the same set of associated devices.

4.11.11. Online compiling and linking

If the implementation provides an online compiler or linker, a SYCL application can use the free func
tions defined in this section to transform a kernel bundle from bundle_state::input into a bundle of state

4.11.9. Querying if a kernel is compatible with a device SYCL 2020 rev 9

330 | Chapter 4. SYCL programming interface

bundle_state::object or to transform a bundle from bundle_state::object into a bundle of state
bundle_state::executable.

An application can query whether the implementation provides an online compiler or linker by query
ing a device for aspect::online_compiler or aspect::online_linker.

All of the functions in this section accept a property_list parameter, which can affect the semantics of
the compilation or linking operation. The core SYCL specification does not currently define any such
properties, but vendors may specify these properties as an extension.

kernel_bundle<bundle_state::object>
compile(const kernel_bundle<bundle_state::input>& inputBundle,
 const std::vector<device>& devs, const property_list& propList = {});

Effects: The device images from inputBundle are translated into one or more new device images of state
bundle_state::object, and a new kernel bundle is created to contain these new device images. The new
bundle represents all of the kernels in inputBundles that are compatible with at least one of the devices
in devs. Any remaining kernels (those that are not compatible with any of the devices devs) are not com
piled and not represented in the new kernel bundle.

The new bundle has the same associated context as inputBundle, and the new bundle’s set of associated
devices is devs (with duplicate devices removed).

Returns: The new kernel bundle.

Throws:

• An exception with the errc::invalid error code if any of the devices in devs are not in the set of asso
ciated devices for inputBundle (as defined by kernel_bundle::get_devices()) or if the devs vector is
empty.

• An exception with the errc::build error code if the online compile operation fails.

kernel_bundle<bundle_state::executable>
link(const std::vector<kernel_bundle<bundle_state::object>>& objectBundles,
 const std::vector<device>& devs, const property_list& propList = {});

Effects: Duplicate device images from objectBundles are eliminated as though they were joined via
join(), then the remaining device images are translated into one or more new device images of state
bundle_state::executable, and a new kernel bundle is created to contain these new device images. The
new bundle represents all of the kernels in objectBundles that are compatible with at least one of the
devices in devs. Any remaining kernels (those that are not compatible with any of the devices in devs) are
not linked and not represented in the new bundle.

The new bundle has the same associated context as those in objectBundles, and the new bundle’s set of
associated devices is devs (with duplicate devices removed).

Returns: The new kernel bundle.

Throws:

• An exception with the errc::invalid error code if the bundles in objectBundles do not all have the
same associated context.

• An exception with the errc::invalid error code if any of the devices in devs are not in the set of asso
ciated devices for any of the bundles in objectBundles (as defined by kernel_bundle::get_devices()) or
if the devs vector is empty.

SYCL 2020 rev 9 4.11.11. Online compiling and linking

Chapter 4. SYCL programming interface | 331

• An exception with the errc::build error code if the online link operation fails.

kernel_bundle<bundle_state::executable>
build(const kernel_bundle<bundle_state::input>& inputBundle,
 const std::vector<device>& devs, const property_list& propList = {});

Effects: This function performs both an online compile and link operation, translating a kernel bundle of
state bundle_state::input into a bundle of state bundle_state::executable. The device images from input
Bundle are translated into one or more new device images of state bundle_state::executable, and a new
bundle is created to contain these new device images. The new bundle represents all of the kernels in
inputBundle that are compatible with at least one of the devices in devs. Any remaining kernels (those
that are not compatible with any of the devices devs) are not compiled or linked and are not represented
in the new bundle.

The new bundle has the same associated context as inputBundle, and the new bundle’s set of associated
devices is devs (with duplicate devices removed).

Returns: The new kernel bundle.

Throws:

• An exception with the errc::invalid error code if any of the devices in devs are not in the set of asso
ciated devices for inputBundle (as defined by kernel_bundle::get_devices()) or if the devs vector is
empty.

• An exception with the errc::build error code if the online compile or link operations fail.

kernel_bundle<bundle_state::object> // (1)
compile(const kernel_bundle<bundle_state::input>& inputBundle,
 const property_list& propList = {});

kernel_bundle<bundle_state::executable> // (2)
link(const kernel_bundle<bundle_state::object>& objectBundle,
 const std::vector<device>& devs, const property_list& propList = {});

kernel_bundle<bundle_state::executable> // (3)
link(const std::vector<kernel_bundle<bundle_state::object>>& objectBundles,
 const property_list& propList = {});

kernel_bundle<bundle_state::executable> // (4)
link(const kernel_bundle<bundle_state::object>& objectBundle,
 const property_list& propList = {});

kernel_bundle<bundle_state::executable> // (5)
build(const kernel_bundle<bundle_state::input>& inputBundle,
 const property_list& propList = {});

1. Equivalent to compile(inputBundle, inputBundle.get_devices(), propList).

2. Equivalent to link({objectBundle}, devs, propList).

3. Equivalent to link(objectBundles, devs, propList), where devs is the intersection of associated
devices in common for all bundles in objectBundles.

4. Equivalent to link({objectBundle}, objectBundle.get_devices(), propList).

5. Equivalent to build(inputBundle, inputBundle.get_devices(), propList).

4.11.11. Online compiling and linking SYCL 2020 rev 9

332 | Chapter 4. SYCL programming interface

4.11.12. The kernel_bundle class

A synopsis of the kernel_bundle class is shown below. Additionally, this class provides the common spe
cial member functions and common member functions that are listed in Section 4.5.2 in Table 7 and Ta
ble 8, respectively.

As with all SYCL objects that have the common reference semantics, kernel bundles are equality compa
rable. Two bundles of the same bundle state are considered to be equal if they are associated with the
same context, have the same set of associated devices, and contain the same set of device images.

There is no public default constructor for this class.

 1 namespace sycl {
 2
 3 class kernel { /* ... */
 4 };
 5
 6 template <bundle_state State> class kernel_bundle {
 7 public:
 8 using device_image_iterator = __unspecified__;
 9
10 kernel_bundle() = delete;
11
12 bool empty() const noexcept;
13
14 backend get_backend() const noexcept;
15
16 context get_context() const noexcept;
17
18 std::vector<device> get_devices() const noexcept;
19
20 bool has_kernel(const kernel_id& kernelId) const noexcept;
21
22 bool has_kernel(const kernel_id& kernelId, const device& dev) const noexcept;
23
24 template <typename KernelName> bool has_kernel() const noexcept;
25
26 template <typename KernelName>
27 bool has_kernel(const device& dev) const noexcept;
28
29 std::vector<kernel_id> get_kernel_ids() const;
30
31 /* Available only when: (State == bundle_state::executable) */
32 kernel get_kernel(const kernel_id& kernelId) const;
33
34 /* Available only when: (State == bundle_state::executable) */
35 template <typename KernelName> kernel get_kernel() const;
36
37 bool contains_specialization_constants() const noexcept;
38
39 bool native_specialization_constant() const noexcept;
40
41 template <auto& SpecName> bool has_specialization_constant() const noexcept;
42
43 /* Available only when: (State == bundle_state::input) */
44 template <auto& SpecName>

SYCL 2020 rev 9 4.11.12. The kernel_bundle class

Chapter 4. SYCL programming interface | 333

45 void set_specialization_constant(
46 typename std::remove_reference_t<decltype(SpecName)>::value_type value);
47
48 template <auto& SpecName>
49 typename std::remove_reference_t<decltype(SpecName)>::value_type
50 get_specialization_constant() const;
51
52 device_image_iterator begin() const;
53
54 device_image_iterator end() const;
55 };
56
57 } // namespace sycl

4.11.12.1. Queries

The following member functions provide various queries for a kernel bundle.

bool empty() const noexcept;

Returns: true only if the kernel bundle contains no device images.

backend get_backend() const noexcept;

Returns: The backend that is associated with the kernel bundle.

context get_context() const noexcept;

Returns: The context that is associated with the kernel bundle.

std::vector<device> get_devices() const noexcept;

Returns: The set of devices that is associated with the kernel bundle.

bool has_kernel(const kernel_id& kernelId) const noexcept; // (1)
bool has_kernel(const kernel_id& kernelId,
 const device& dev) const noexcept; // (2)

1. Returns: true only if the kernel bundle contains the kernel identified by kernelId.

2. Returns: true only if the kernel bundle contains the kernel identified by kernelId and if that kernel is
compatible with the device dev.

template <typename KernelName> bool has_kernel() const noexcept; // (1)

template <typename KernelName>
bool has_kernel(const device& dev) const noexcept; // (2)

Preconditions: The template parameter KernelName must be the type kernel name of a kernel that is
defined in the SYCL application. Since lambda functions have no standard type name, kernels defined as

4.11.12.1. Queries SYCL 2020 rev 9

334 | Chapter 4. SYCL programming interface

lambda functions must specify a KernelName in their kernel invocation command in order to use these
functions. Applications which call these functions for a KernelName that is not defined are ill formed, and
the implementation must issue a diagnostic in this case.

1. Returns: true only if the kernel bundle contains the kernel identified by KernelName.

2. Returns: true only if the kernel bundle contains the kernel identified by KernelName and if that kernel
is compatible with the device dev.

std::vector<kernel_id> get_kernel_ids() const;

Returns: A vector of the identifiers for all kernels that are contained in the kernel bundle.

kernel get_kernel(const kernel_id& kernelId) const;

Preconditions: This member function is only available if the kernel bundle’s state is bundle_state::exe
cutable.

Returns: A kernel object representing the kernel identified by kernelId, which resides in the bundle.

Throws:

• An exception with the errc::invalid error code if the kernel bundle does not contain the kernel iden
tified by kernelId.

template <typename KernelName> kernel get_kernel() const;

Preconditions: This member function is only available if the kernel bundle’s state is bundle_state::exe
cutable. The template parameter KernelName must be the type kernel name of a kernel that is defined in
the SYCL application. Since lambda functions have no standard type name, kernels defined as lambda
functions must specify a KernelName in their kernel invocation command in order to use this function.
Applications which call this function for a KernelName that is not defined are ill formed, and the imple
mentation must issue a diagnostic in this case.

Returns: A kernel object representing the kernel identified by KernelName, which resides in the bundle.

Throws:

• An exception with the errc::invalid error code if the kernel bundle does not contain the kernel iden
tified by KernelName.

4.11.12.2. Specialization constant support

The following member functions allow an application to manipulate specialization constants that are
used in the device images of a kernel bundle. Applications can set the value of specialization constants in
a kernel bundle whose state is bundle_state::input and then online compile that bundle into bundle_s
tate::object or bundle_state::executable. The value of the specialization constants then become fixed in
the compiled bundle and cannot be changed. Specialization constants that have not had their values set
by the time the bundle is compiled take their default values.

It is expected that many implementations will use an intermediate language representa
tion for a bundle in state bundle_state::input such as SPIR-V, and the intermediate lan
guage will have native support for specialization constants. However, implementations
that do not have such native support must still support specialization constants in some
other way.

SYCL 2020 rev 9 4.11.12.2. Specialization constant support

Chapter 4. SYCL programming interface | 335

bool contains_specialization_constants() const noexcept;

Returns: true only if the kernel bundle contains at least one device image which uses a specialization
constant.

bool native_specialization_constant() const noexcept;

Returns: true only if the kernel bundle contains at least one device image which uses a specialization
constant and all specialization constants used in all of the bundle’s device images are native specializa
tion constants.

template <auto& SpecName> bool has_specialization_constant() const noexcept;

Returns: true if any device image in the kernel bundle uses the specialization constant whose address is
SpecName.

template <auto& SpecName>
void set_specialization_constant(
 typename std::remove_reference_t<decltype(SpecName)>::value_type value);

Preconditions: This member function is only available if the kernel bundle’s state is bundle_state::input.

Effects: Sets the value of the specialization constant whose address is SpecName for this bundle. If the spe
cialization constant’s value was previously set in this bundle, the value is overwritten.

The new value applies to all device images in the bundle. It is allowed to set the value of a specialization
constant even if no device image in the bundle uses it; doing so has no effect on the execution of kernels
from that bundle.

template <auto& SpecName>
typename std::remove_reference_t<decltype(SpecName)>::value_type
get_specialization_constant() const;

Returns: The value of the specialization constant whose address is SpecName for this kernel bundle. The
value returned is as follows:

• If the value of this specialization constant was previously set in this bundle, that value is returned.
Otherwise,

• If this bundle is the result of compiling, linking or joining another bundle and this specialization con
stant was set in that other bundle prior to compiling, linking or joining; then that value is returned.
Otherwise,

• The specialization constant’s default value is returned.

4.11.12.3. Device image support

The following member type and functions allow iteration over the device images contained by the ker
nel bundle.

using device_image_iterator = __unspecified__;

4.11.12.3. Device image support SYCL 2020 rev 9

336 | Chapter 4. SYCL programming interface

An iterator type that satisfies the C++ requirements of LegacyForwardIterator. The iterator’s referenced
type is const device_image<State>, where State is the same state as the containing kernel_bundle.

device_image_iterator begin() const; // (1)
device_image_iterator end() const; // (2)

1. Returns: An iterator to the first device image contained by the kernel bundle.

2. Returns: An iterator to one past the last device image contained by the kernel bundle.

4.11.13. The kernel class

A synopsis of the kernel class is shown below. Additionally, this class provides the common special mem
ber functions and common member functions that are listed in Section 4.5.2 in Table 7 and Table 8,
respectively.

There is no public default constructor for this class.

 1 namespace sycl {
 2
 3 class kernel {
 4 public:
 5 kernel() = delete;
 6
 7 backend get_backend() const noexcept;
 8
 9 context get_context() const;
10
11 kernel_bundle<bundle_state::executable> get_kernel_bundle() const;
12
13 template <typename Param> typename Param::return_type get_info() const;
14
15 template <typename Param>
16 typename Param::return_type get_info(const device& dev) const;
17
18 template <typename Param>
19 typename Param::return_type get_backend_info() const;
20 };
21
22 } // namespace sycl

4.11.13.1. Queries

The following member functions provide various queries for a kernel.

backend get_backend() const noexcept;

Returns: The backend associated with this kernel.

context get_context() const;

Returns: The context associated with this kernel.

SYCL 2020 rev 9 4.11.13. The kernel class

Chapter 4. SYCL programming interface | 337

kernel_bundle<bundle_state::executable> get_kernel_bundle() const;

Returns: The kernel bundle that contains this kernel.

template <typename Param> typename Param::return_type get_info() const;

Preconditions: The Param must be one of the info::kernel descriptors defined in Table 134, and the type
alias Param::return_type must be defined in accordance with that table.

Returns: Information about the kernel that is not specific to the device on which it is invoked.

template <typename Param>
typename Param::return_type get_info(const device& dev) const;

Preconditions: The Param must be one of the info::kernel_device_specific descriptors defined in Table
135, and the type alias Param::return_type must be defined in accordance with that table.

Returns: Information about the kernel that applies when the kernel is invoked on the device dev.

Throws:

• An exception with the errc::invalid error code if the kernel is not compatible with device dev (as
defined by is_compatible()).

template <typename Param> typename Param::return_type get_backend_info() const;

Preconditions: The Param must be one of a descriptor defined by a SYCL backend specification.

Returns: Backend specific information about the kernel that is not specific to the device on which it is
invoked.

Throws:

• An exception with the errc::backend_mismatch error code if the SYCL backend that corresponds with
Param is different from the SYCL backend that is associated with this kernel bundle.

4.11.13.2. Kernel information descriptors

A kernel can be queried for information using the get_info() member function, specifying one of the
info parameters in info::kernel. All info parameters in info::kernel are specified in Table 134 and the
synopsis for info::kernel is described in Section A.5.

Table 134. Kernel class information descriptors

4.11.13.2. Kernel information descriptors SYCL 2020 rev 9

338 | Chapter 4. SYCL programming interface

Kernel Descriptors Return type Description

info::kernel::num_args
uint32_t This descriptor may only be used to query a

kernel that resides in a kernel bundle that
was constructed using a backend specific
interoperability function or to query a
device built-in kernel, and the semantics of
this descriptor are defined by each SYCL
backend specification.

Attempting to use this descriptor for other
kernels throws an exception with the
errc::invalid error code.

info::kernel::attributes
std::string Return any attributes specified on a kernel

function (as defined in Section 5.8).

A kernel can also be queried for device specific information using the get_info() member function, spec
ifying one of the info parameters in info::kernel_device_specific. All info parameters in info::ker
nel_device_specific are specified in Table 135. The synopsis for info::kernel_device_specific is
described in Section A.5.

Table 135. Device-specific kernel information descriptors

Device-specific Kernel Information
Descriptors

Return type Description

info::kernel_device_specific::g
lobal_work_size

range<3> This descriptor may only be used if the
device type is device_type::custom or if the
kernel is a built-in kernel. The exact seman
tics of this descriptor are defined by each
SYCL backend specification, but the intent is
to return the kernel’s maximum global work
size.

Attempting to use this descriptor for other
devices or kernels throws an exception with
the errc::invalid error code.

info::kernel_device_specific::w
ork_group_size

size_t Returns the maximum number of work-
items in a work-group that can be used to
execute this kernel on the given device. This
value will always be less than or equal to the
value returned from info::device::max_
work_group_size.

info::kernel_device_specific::c
ompile_work_group_size

range<3> Returns the work-group size specified by the
device compiler if applicable, otherwise
returns {0,0,0}.

info::kernel_device_specific::p
referred_work_group_size_multip
le

size_t Returns a value, of which work-group size is
preferred to be a multiple, for executing a
kernel on a particular device. This is a per
formance hint. The value must be less than
or equal to that returned by info::ker
nel_device_specific::work_group_size.

SYCL 2020 rev 9 4.11.13.2. Kernel information descriptors

Chapter 4. SYCL programming interface | 339

Device-specific Kernel Information
Descriptors

Return type Description

info::kernel_device_specific::p
rivate_mem_size

size_t Returns the minimum amount of private
memory, in bytes, used by each work-item in
the kernel. This value may include any pri
vate memory needed by an implementation
to execute the kernel, including that used by
the language built-ins and variables
declared inside the kernel in the private
address space.

info::kernel_device_specific::m
ax_num_sub_groups

uint32_t Returns the maximum number of sub-
groups for this kernel.

info::kernel_device_specific::c
ompile_num_sub_groups

uint32_t Returns the number of sub-groups specified
by the kernel, or 0 (if not specified).

info::kernel_device_specific::m
ax_sub_group_size

uint32_t Returns the maximum sub-group size for
this kernel.

info::kernel_device_specific::c
ompile_sub_group_size

uint32_t Returns the required sub-group size speci
fied by the kernel, or 0 (if not specified).

4.11.14. The device_image class

A synopsis of the device_image class is shown below. Additionally, this class provides the common special
member functions and common member functions that are listed in Section 4.5.2 in Table 7 and Table 8,
respectively.

 1 namespace sycl {
 2
 3 template <bundle_state State> class device_image {
 4 public:
 5 device_image() = delete;
 6
 7 bool has_kernel(const kernel_id& kernelId) const noexcept;
 8
 9 bool has_kernel(const kernel_id& kernelId, const device& dev) const noexcept;
10 };
11
12 } // namespace sycl

There is no public constructor for this class.

bool has_kernel(const kernel_id& kernelId) const noexcept; // (1)
bool has_kernel(const kernel_id& kernelId,
 const device& dev) const noexcept; // (2)

1. Returns: true only if the device image contains the kernel identified by kernelId.

4.11.14. The device_image class SYCL 2020 rev 9

340 | Chapter 4. SYCL programming interface

2. Returns: true only if the device image contains the kernel identified by kernelId and if that kernel is
compatible with the device dev.

4.11.15. Example usage

This section provides some examples showing typical use cases for kernel bundles. These examples are
intended to clarify the definition of the kernel bundle interfaces, but the content of this section is non-
normative.

4.11.15.1. Controlling the timing of online compilation

In some cases an application may want to pre-compile its kernels before submitting them to a device.
This gives the application control over when the overhead of online compilation happens, rather than
relying on the default behavior (which may cause the online compilation to happen at the point when
the kernel is submitted to a device). The following example shows how this can be achieved.

 1 #include <sycl/sycl.hpp>
 2 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 3
 4 int main() {
 5 queue myQueue;
 6 auto myContext = myQueue.get_context();
 7
 8 // This call to get_kernel_bundle() forces an online compilation of all the
 9 // application's kernels for the device in "myContext", unless those kernels
10 // were already compiled for that device by the ahead-of-time compiler.
11 auto myBundle = get_kernel_bundle<bundle_state::executable>(myContext);
12
13 myQueue.submit([&](handler& cgh) {
14 // Calling use_kernel_bundle() causes the parallel_for() below to use the
15 // pre-compiled kernel from "myBundle".
16 cgh.use_kernel_bundle(myBundle);
17
18 cgh.parallel_for(range { 1024 }, ([=](item index) {
19 // kernel code
20 }));
21 });
22
23 myQueue.wait();
24 }

4.11.15.2. Specialization constants

An application can use a kernel bundle to set the values of specialization constants in several kernels
before any of them are submitted for execution.

 1 #include <sycl/sycl.hpp>
 2 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 3
 4 // Forward declare names for our two kernels.
 5 class MyKernel1;
 6 class MyKernel2;
 7
 8 extern int get_width();
 9 extern int get_height();

SYCL 2020 rev 9 4.11.15. Example usage

Chapter 4. SYCL programming interface | 341

10
11 // Declare specialization constants used in our kernels.
12 constexpr specialization_id<int> width;
13 constexpr specialization_id<int> height;
14
15 int main() {
16 queue myQueue;
17 auto myContext = myQueue.get_context();
18
19 // Get the identifiers for our kernels, then get an input kernel bundle that
20 // contains our two kernels.
21 auto kernelIds = { get_kernel_id<MyKernel1>(), get_kernel_id<MyKernel2>() };
22 auto inputBundle =
23 get_kernel_bundle<bundle_state::input>(myContext, kernelIds);
24
25 // Set the values of the specialization constants.
26 inputBundle.set_specialization_constant<width>(get_width());
27 inputBundle.set_specialization_constant<height>(get_height());
28
29 // Build the kernel bundle into an executable form. The values of the
30 // specialization constants are compiled in.
31 auto exeBundle = build(inputBundle);
32
33 myQueue.submit([&](handler& cgh) {
34 // Use the kernel bundle we built in this command group.
35 cgh.use_kernel_bundle(exeBundle);
36 cgh.parallel_for<MyKernel1>(
37 range { 1024 }, ([=](item index, kernel_handler kh) {
38 // Read the value of the specialization constant.
39 int w = kh.get_specialization_constant<width>();
40 // ...
41 }));
42 });
43
44 myQueue.submit([&](handler& cgh) {
45 // This command group uses the same kernel bundle.
46 cgh.use_kernel_bundle(exeBundle);
47 cgh.parallel_for<MyKernel2>(
48 range { 1024 }, ([=](item index, kernel_handler kh) {
49 int h = kh.get_specialization_constant<height>();
50 // ...
51 }));
52 });
53
54 myQueue.wait();
55 }

4.11.15.3. Kernel introspection

Applications can use kernel bundles to introspect its kernels and use that information to tune the argu
ments passed when invoking it.

 1 #include <sycl/sycl.hpp>
 2 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 3

4.11.15.3. Kernel introspection SYCL 2020 rev 9

342 | Chapter 4. SYCL programming interface

 4 class MyKernel; // Forward declare the name of our kernel.
 5
 6 int main() {
 7 size_t N = 1024;
 8 queue myQueue;
 9 auto myContext = myQueue.get_context();
10 auto myDev = myQueue.get_device();
11
12 // Get an executable kernel bundle containing our kernel.
13 kernel_id kernelId = get_kernel_id<MyKernel>();
14 auto myBundle =
15 get_kernel_bundle<bundle_state::executable>(myContext, { kernelId });
16
17 // Get the kernel's maximum work-group size when running on our device.
18 kernel myKernel = myBundle.get_kernel(kernelId);
19 size_t maxWgSize =
20 myKernel.get_info<info::kernel_device_specific::work_group_size>(myDev);
21
22 // Compute a good ND-range to use for iteration in the kernel
23 // based on the maximum work-group size.
24 std::array<size_t, 11> divisors = { 1024, 512, 256, 128, 64, 32,
25 16, 8, 4, 2, 1 };
26 size_t wgSize = *std::find_if(divisors.begin(), divisors.end(),
27 [=](auto d) { return (d <= maxWgSize); });
28 nd_range myRange { range { N }, range { wgSize } };
29
30 myQueue.submit([&](handler& cgh) {
31 // Use the kernel bundle we queried, so we are sure the queried work-group
32 // size matches the kernel we run.
33 cgh.use_kernel_bundle(myBundle);
34 cgh.parallel_for<MyKernel>(myRange, ([=](nd_item<1> index) {
35 // kernel code
36 }));
37 });
38
39 myQueue.wait();
40 }

4.11.15.4. Invoking a device built-in kernel

An application can use kernel bundles to invoke a device’s built-in kernels.

 1 #include <sycl/sycl.hpp>
 2 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 3
 4 int main() {
 5 queue myQueue;
 6 auto myContext = myQueue.get_context();
 7 auto myDevice = myQueue.get_device();
 8
 9 const std::vector<kernel_id> builtinKernelIds =
10 myDevice.get_info<info::device::built_in_kernel_ids>();
11
12 // Get an executable kernel_bundle containing all the built-in kernels
13 // supported by the device.

SYCL 2020 rev 9 4.11.15.4. Invoking a device built-in kernel

Chapter 4. SYCL programming interface | 343

14 kernel_bundle<bundle_state::executable> myBundle =
15 get_kernel_bundle(myContext, { myDevice }, builtinKernelIds);
16
17 // Retrieve a kernel object that can be used to query for more information
18 // about the built-in kernel or to submit it to a command group. We assume
19 // here that the device supports at least one built-in kernel.
20 kernel builtinKernel = myBundle.get_kernel(builtinKernelIds[0]);
21
22 // Submit the built-in kernel.
23 myQueue.submit([&](handler& cgh) {
24 // Setting the arguments depends on the backend and the exact kernel used.
25 cgh.set_args(...);
26 cgh.parallel_for(range { 1024 }, builtinKernel);
27 });
28
29 myQueue.wait();
30 }

4.12. Defining kernels
In SYCL, functions that are executed on a SYCL device are referred to as SYCL kernel functions. A kernel
containing such a SYCL kernel function is enqueued on a device queue in order to be executed on that
particular device.

The return type of the SYCL kernel function is void, and all memory accesses between host and device
are through accessors or through USM pointers.

There are two ways of defining kernels: as named function objects or as lambda functions. A backend
may also provide interoperability interfaces for defining kernels.

4.12.1. Defining kernels as named function objects

A kernel can be defined as a named function object type. These function objects provide the same func
tionality as any C++ function object, with the restriction that they need to follow SYCL rules to be device
copyable. The kernel function can be templated via templating the kernel function object type. For
details on restrictions for kernel naming, please refer to Section 5.2.

The operator() member function must be const-qualified, and it may take different parameters depend
ing on the data accesses defined for the specific kernel. If the operator() function writes to any of the
member variables, the behavior is undefined.

The following example defines a SYCL kernel function, RandomFiller, which initializes a buffer with a
random number. The random number is generated during the construction of the function object while
processing the command group. The operator() member function of the function object receives an item
object. This member function will be called for each work-item of the execution range. The value of the
random number will be assigned to each element of the buffer. In this case, the accessor and the scalar
random number are members of the function object and therefore will be arguments to the device ker
nel. Usual restrictions of passing arguments to kernels apply.

 1 class RandomFiller {
 2 public:
 3 RandomFiller(accessor<int> ptr)
 4 : ptr_ { ptr } {
 5 std::random_device hwRand;
 6 std::uniform_int_distribution<> r { 1, 100 };

4.12. Defining kernels SYCL 2020 rev 9

344 | Chapter 4. SYCL programming interface

 7 randomNum_ = r(hwRand);
 8 }
 9 void operator()(item<1> item) const { ptr_[item.get_id()] = get_random(); }
10 int get_random() const { return randomNum_; }
11
12 private:
13 accessor<int> ptr_;
14 int randomNum_;
15 };
16
17 void workFunction(buffer<int, 1>& b, queue& q, const range<1> r) {
18 q.submit([&](handler& cgh) {
19 accessor ptr { b, cgh };
20 RandomFiller filler { ptr };
21
22 cgh.parallel_for(r, filler);
23 });
24 }

4.12.2. Defining kernels as lambda functions

In C++, function objects can be defined using lambda functions. Kernels may be defined as lambda func
tions in SYCL. The name of a lambda function in SYCL may optionally be specified by passing it as a tem
plate parameter to the invoking member function, and in that case, the lambda name is a C++ typename
which must be forward declarable at namespace scope. If the lambda function relies on template argu
ments, then if specified, the name of the lambda function must contain those template arguments which
must also be forward declarable at namespace scope. The class used for the name of a lambda function
is only used for naming purposes and is not required to be defined. For details on restrictions for kernel
naming, please refer to Section 5.2.

The kernel function for the lambda function is the lambda function itself. The kernel lambda must use
copy for all of its captures (i.e. [=]), and the lambda must not use the mutable specifier.

 1 // Explicit kernel names can be optionally forward declared at namespace scope
 2 class MyKernel;
 3
 4 myQueue.submit([&](handler& h) {
 5 // Explicitly name kernel with previously forward declared type
 6 h.single_task<MyKernel>([=] {
 7 // [kernel code]
 8 });
 9
10 // Explicitly name kernel without forward declaring type at
11 // namespace scope. Must still be forward declarable at
12 // namespace scope, even if not declared at that scope
13 h.single_task<class MyOtherKernel>([=] {
14 // [kernel code]
15 });
16 });

Explicit lambda naming is shown in the following code example, including an illegal case that uses a
class within the kernel name which is not forward declarable (std::complex).

 1 // Explicit kernel names can be optionally forward declared at namespace scope

SYCL 2020 rev 9 4.12.2. Defining kernels as lambda functions

Chapter 4. SYCL programming interface | 345

 2 class MyForwardDeclName;
 3
 4 template <typename T> class MyTemplatedKernelName;
 5
 6 // Define and launch templated kernel
 7 template <typename T> void templatedFunction() {
 8 queue myQueue;
 9
10 // Launch A: No explicit kernel name
11 myQueue.submit([&](handler& h) {
12 h.single_task([=] {
13 // [kernel code that depends on type T]
14 });
15 });
16
17 // Launch B: Name the kernel when invoking (this is optional)
18 myQueue.submit([&](handler& h) {
19 h.single_task<MyTemplatedKernelName<T>>([=] {
20 // The provided kernel name (MyTemplatedKernelName<T>) depends on T
21 // because the kernel does. T must also be forward declarable at
22 // namespace scope.
23
24 // [kernel code that depends on type T]
25 });
26 });
27 }
28
29 int main() {
30 queue myQueue;
31
32 myQueue.submit([&](handler& h) {
33 // Declare MyKernel within this kernel invocation. Legal because
34 // forward declaration at namespace scope is optional
35 h.single_task<class MyKernel>([=] {
36 // [kernel code]
37 });
38 });
39
40 myQueue.submit([&](handler& h) {
41 // Use kernel name that was forward declared at namespace scope
42 h.single_task<MyForwardDeclName>([=] {
43 // [kernel code]
44 });
45 });
46
47 templatedFunction<int>(); // OK
48
49 templatedFunction<std::complex<float>>(); // Launch A is OK, Launch B illegal
50 // because std::complex is not forward declarable according to C++, and was
51 // used in an explicit kernel name which must be forward declarable.
52 }

4.12.3. is_device_copyable type trait

namespace sycl {

4.12.3. is_device_copyable type trait SYCL 2020 rev 9

346 | Chapter 4. SYCL programming interface

 template<typename T>
 struct is_device_copyable;

 template<typename T>
 inline constexpr bool is_device_copyable_v = is_device_copyable<T>::value;
};

is_device_copyable is a user specializable class template to indicate that a type T is device copyable.

• is_device_copyable must meet the Cpp17UnaryTrait requirements.

• If is_device_copyable is specialized such that is_device_copyable_v<T> == true on a T that does not sat
isfy all the requirements of a device copyable type, the results are unspecified.

If the application defines a type UDT that satisfies the requirements of a device copyable type (as defined
in Section 3.13.1) but the type is not implicitly device copyable as defined in that section, then the appli
cation must provide a specialization of is_device_copyable that derives from std:true_type in order to
use that type in a context that requires a device copyable type. Such a specialization can be declared like
this:

template<>
struct sycl::is_device_copyable<UDT> : std::true_type {};

It is legal to provide this specialization even if the implementation does not define SYCL_DEVICE_COPYABLE
to 1, but the type cannot be used as a device copyable type in that case and the specialization is ignored.

4.12.4. Rules for parameter passing to kernels

A SYCL application passes parameters to a kernel in different ways depending on whether the kernel is a
named function object or a lambda function. If the kernel is a named function object, the operator()
member function (or other member functions that it calls) may reference member variables inside the
same named function object. Any such member variables become parameters to the kernel. If the kernel
is a lambda function, any variables captured by the lambda become parameters to the kernel.

Regardless of how the parameter is passed, the following rules define the allowable types for a kernel
parameter:

• Any device copyable type is a legal parameter type.

• The following SYCL types are legal parameter types:

◦ accessor when templated with target::device;

◦ accessor when templated with any of the deprecated parameters: target::global_buffer, tar
get::constant_buffer, or target::local;

◦ local_accessor;

◦ unsampled_image_accessor when templated with image_target::device;

◦ sampled_image_accessor when templated with image_target::device;

◦ stream;

◦ id;

◦ range;

◦ marray<T, NumElements> when T is device copyable;

◦ vec<T, NumElements>.

• An array of element types T is a legal parameter type if T is a legal parameter type.

SYCL 2020 rev 9 4.12.4. Rules for parameter passing to kernels

Chapter 4. SYCL programming interface | 347

• A class type S with a non-static member variable of type T is a legal parameter type if T is a legal para
meter type and if S would otherwise be a legal parameter type aside from this member variable.

• A class type S with a non-virtual base class of type T is a legal parameter type if T is a legal parameter
type and if S would otherwise be a legal parameter type aside from this base class.

Pointer types are trivially copyable, so they may be passed as kernel parameters. How
ever, only the pointer value itself is passed to the kernel. Dereferencing the pointer on
the kernel results in undefined behavior unless the pointer points to an address within a
USM memory region that is accessible on the device.

Reference types are not trivially copyable, so they may not be passed as kernel parame
ters.

The reducer class is a special type of kernel parameter which is passed to a kernel in a
different way. Section 4.9.2 describes how this parameter type is used.

4.13. Error handling

4.13.1. Error handling rules

Error handling in a SYCL application (host code) uses C++ exceptions. If an error occurs, it will be thrown
by the API function call and may be caught by the user through standard C++ exception handling mecha
nisms.

SYCL applications are asynchronous in the sense that host and device code executions are decoupled
from one another except at specific points. For example, device code executions often begin when
dependencies in the SYCL task graph are satisfied, which occurs asynchronously from host code execu
tion. As a result of this the errors that occur on a device cannot be thrown directly from a host API call,
because the call enqueueing a device action has typically already returned by the time that the error
occurs. Such errors are not detected until the error-causing task executes or tries to execute, and we
refer to these as asynchronous errors.

4.13.1.1. Asynchronous error handler

The queue and context classes can optionally take an asynchronous handler object async_handler on
construction, which is a callable such as a function class or lambda, with an exception_list as a parame
ter. Invocation of an async_handler may be triggered by the queue member functions queue::wait
_and_throw() or queue::throw_asynchronous(), by the event member function event::wait_and_throw(), or
automatically on destruction of a queue or context that contains unconsumed asynchronous errors.
When invoked, an async_handler is called and receives an exception_list argument containing a list of
exception objects representing any unconsumed asynchronous errors associated with the queue or con
text.

When an asynchronous error instance has been passed to an async_handler, then that instance of the
error has been consumed for handling and is not reported on any subsequent invocations of the
async_handler.

The async_handler may be a named function object type, a lambda function or a std::function. The
exception_list object passed to the async_handler is constructed by the SYCL runtime.

4.13.1.2. Behavior without an async handler

If an asynchronous error occurs in a queue or context that has no user-supplied asynchronous error
handler object async_handler, then an implementation-defined default async_handler is called to handle
the error in the same situations that a user-supplied async_handler would be, as defined in Section

4.13. Error handling SYCL 2020 rev 9

348 | Chapter 4. SYCL programming interface

4.13.1.1. The default async_handler must in some way report all errors passed to it, when possible, and
must then invoke std::terminate or equivalent.

4.13.1.3. Priorities of async handlers

If the SYCL runtime can associate an asynchronous error with a specific queue, then:

• If the queue was constructed with an async_handler, that handler is invoked to handle the error.

• Otherwise if the context enclosed by the queue was constructed with an async_handler, that handler
is invoked to handle the error.

• Otherwise when no handler was passed to either queue or context on construction, then a default
handler is invoked to handle the error, as described by Section 4.13.1.2.

• All handler invocations in this list occur at times as defined by Section 4.13.1.1.

If the SYCL runtime cannot associate an asynchronous error with a specific queue, then:

• If the context in which the error occurred was constructed with an async_handler, then that handler
is invoked to handle the error.

• Otherwise when no handler was passed to the associated context on construction, then a default han
dler is invoked to handle the error, as described by Section 4.13.1.2.

• All handler invocations in this list occur at times as defined by Section 4.13.1.1.

4.13.1.4. Asynchronous errors with a secondary queue

If an asynchronous error occurs when running or enqueuing a command group which has a secondary
queue specified, then the command group may be enqueued to the secondary queue instead of the pri
mary queue. The error handling in this case is also configured using the async_handler provided for
both queues. If there is no async_handler given on any of the queues, then the asynchronous error han
dling proceeds through the contexts associated with the queues, and if they were also constructed with
out async_handlers, then the default handler will be used. If the primary queue fails and there is an
async_handler given at this queue’s construction, which populates the exception_list parameter, then
any errors will be added and can be thrown whenever the user chooses to handle those exceptions.
Since there were errors on the primary queue and a secondary queue was given, then the execution of
the kernel is re-scheduled to the secondary queue and any error reporting for the kernel execution on
that queue is done through that queue, in the same way as described above. The secondary queue may
fail as well, and the errors will be thrown if there is an async_handler and either wait_and_throw() or
throw() are called on that queue. If no async_handler was specified, then the one associated with the
queue’s context will be used and if the context was also constructed without an async_handler, then the
default handler will be used. The command group function object event returned by that function will
be relevant to the queue where the kernel has been enqueued.

Below is an example of catching a SYCL exception and printing out the error message.

1 void catch_any_errors(sycl::context const& ctx) {
2 try {
3 do_something_to_invoke_error(ctx);
4 } catch (sycl::exception const& e) {
5 std::cerr << e.what();
6 }
7 }

Below is an example of catching a SYCL exception with the errc::invalid error code and printing out the
error message.

SYCL 2020 rev 9 4.13.1.3. Priorities of async handlers

Chapter 4. SYCL programming interface | 349

 1 void catch_invalid_errors(sycl::context const& ctx) {
 2 try {
 3 do_something_to_invoke_error(ctx);
 4 } catch (sycl::exception const& e) {
 5 if (e.code() == sycl::errc::invalid) {
 6 std::cerr << "Invalid error: " << e.what();
 7 } else {
 8 throw;
 9 }
10 }
11 }

4.13.2. Exception class interface

 1 namespace sycl {
 2
 3 using async_handler = std::function<void(sycl::exception_list)>;
 4
 5 class exception : public virtual std::exception {
 6 public:
 7 exception(std::error_code ec, const std::string& what_arg);
 8 exception(std::error_code ec, const char* what_arg);
 9 exception(std::error_code ec);
10 exception(int ev, const std::error_category& ecat,
11 const std::string& what_arg);
12 exception(int ev, const std::error_category& ecat, const char* what_arg);
13 exception(int ev, const std::error_category& ecat);
14
15 exception(context ctx, std::error_code ec, const std::string& what_arg);
16 exception(context ctx, std::error_code ec, const char* what_arg);
17 exception(context ctx, std::error_code ec);
18 exception(context ctx, int ev, const std::error_category& ecat,
19 const std::string& what_arg);
20 exception(context ctx, int ev, const std::error_category& ecat,
21 const char* what_arg);
22 exception(context ctx, int ev, const std::error_category& ecat);
23
24 const std::error_code& code() const noexcept;
25 const std::error_category& category() const noexcept;
26
27 const char* what() const;
28
29 bool has_context() const noexcept;
30 context get_context() const;
31 };
32
33 class exception_list {
34 // Used as a container for a list of asynchronous exceptions
35 public:
36 using value_type = std::exception_ptr;
37 using reference = value_type&;
38 using const_reference = const value_type&;
39 using size_type = std::size_t;
40 using iterator = /*unspecified*/;

4.13.2. Exception class interface SYCL 2020 rev 9

350 | Chapter 4. SYCL programming interface

41 using const_iterator = /*unspecified*/;
42
43 size_type size() const;
44 iterator begin() const; // first asynchronous exception
45 iterator end() const; // refer to past-the-end last asynchronous exception
46 };
47
48 enum class errc : /* unspecified */ {
49 success = 0,
50 runtime,
51 kernel,
52 accessor,
53 nd_range,
54 event,
55 kernel_argument,
56 build,
57 invalid,
58 memory_allocation,
59 platform,
60 profiling,
61 feature_not_supported,
62 kernel_not_supported,
63 backend_mismatch
64 };
65
66 std::error_code make_error_code(errc e) noexcept;
67
68 const std::error_category& sycl_category() noexcept;
69
70 } // namespace sycl
71
72 namespace std {
73
74 template <> struct is_error_code_enum</* see below */> : true_type {};
75
76 } // namespace std

The SYCL exception_list class is also available in order to provide a list of synchronous and asynchro
nous exceptions.

Errors can occur both in the SYCL library and SYCL host side, or may come directly from a SYCL back
end. The member functions on these exceptions provide the corresponding information. SYCL backends
can provide additional exception class objects as long as they derive from sycl::exception object, or any
of its derived classes.

A specialization of std::is_error_code_enum must be defined for sycl::errc that inherits from
std::true_type.

Table 136. Member functions of the SYCL exception class

Member function Description

exception(std::error_code ec, const std::string& what_arg)
Constructs an exception. The string
returned by what() is guaranteed to
contain what_arg as a substring.

SYCL 2020 rev 9 4.13.2. Exception class interface

Chapter 4. SYCL programming interface | 351

Member function Description

exception(std::error_code ec, const char* what_arg)
Constructs an exception. The string
returned by what() is guaranteed to
contain what_arg as a substring.

exception(std::error_code ec)
Constructs an exception.

exception(int ev, const std::error_category& ecat, const
std::string& what_arg)

Constructs an exception with the
error code ev and the underlying
error category ecat. The string
returned by what() is guaranteed to
contain what_arg as a substring.

exception(int ev, const std::error_category& ecat, const
char* what_arg)

Constructs an exception with the
error code ev and the underlying
error category ecat. The string
returned by what() is guaranteed to
contain what_arg as a substring.

exception(int ev, const std::error_category& ecat)
Constructs an exception with the
error code ev and the underlying
error category ecat.

exception(context ctx, std::error_code ec, const std
::string& what_arg)

Constructs an exception with an
associated SYCL context ctx. The
string returned by what() is guar
anteed to contain what_arg as a
substring.

exception(context ctx, std::error_code ec, const char*
what_arg)

Constructs an exception with an
associated SYCL context ctx. The
string returned by what() is guar
anteed to contain what_arg as a
substring.

exception(context ctx, std::error_code ec)
Constructs an exception with an
associated SYCL context ctx.

exception(context ctx, int ev, const std::error_category&
ecat,
 const std::string& what_arg)

Constructs an exception with an
associated SYCL context ctx, the
error code ev and the underlying
error category ecat. The string
returned by what() is guaranteed to
contain what_arg as a substring.

exception(context ctx, int ev, const std::error_category&
ecat,
 const char* what_arg)

Constructs an exception with an
associated SYCL context ctx, the
error code ev and the underlying
error category ecat. The string
returned by what() is guaranteed to
contain what_arg as a substring.

exception(context ctx, int ev, const std::error_category&
ecat)

Constructs an exception with an
associated SYCL context ctx, the
error code ev and the underlying
error category ecat.

4.13.2. Exception class interface SYCL 2020 rev 9

352 | Chapter 4. SYCL programming interface

Member function Description

const std::error_code& code() const noexcept
Returns the error code stored
inside the exception.

const std::error_category& category() const noexcept
Returns the error category of the
error code stored inside the excep
tion.

const char* what() const
Returns an implementation-
defined non-null constant C-style
string that describes the error that
triggered the exception.

bool has_context() const noexcept
Returns true if this SYCL exception
has an associated SYCL context and
false if it does not.

context get_context() const
Returns the SYCL context that is
associated with this SYCL exception
if one is available. Must throw an
exception with the errc::invalid
error code if this SYCL exception
does not have a SYCL context.

Table 137. Member functions of the exception_list

Member function Description

size_t size() const
Returns the size of the list

iterator begin() const
Returns an iterator to the begin
ning of the list of asynchronous
exceptions.

iterator end() const
Returns an iterator to the end of
the list of asynchronous excep
tions.

Table 138. Values of the SYCL errc enum

Standard SYCL Error Codes Description

success
The implementation never throws
an exception with this error code,
but it is defined to ensure that no
other error code has the value
zero. An application can construct
an std::error_code with this code
to indicate "not an error".

runtime
Generic runtime error.

kernel
Error that occurred before or
while enqueuing the SYCL kernel.

nd_range
Error regarding the SYCL nd_range
specified for the SYCL kernel

SYCL 2020 rev 9 4.13.2. Exception class interface

Chapter 4. SYCL programming interface | 353

Standard SYCL Error Codes Description

accessor
Error regarding the SYCL accessor
objects defined.

event
Error regarding associated SYCL
event objects.

kernel_argument
The application has passed an
invalid argument to a SYCL kernel
function. This includes captured
variables if the SYCL kernel func
tion is a lambda function.

build
Error from an online compile or
link operation when compiling,
linking, or building a kernel bun
dle for a device.

invalid
A catchall error which is used
when the application passes an
invalid value as a parameter to a
SYCL API function or calls a SYCL
API function in some invalid way.

memory_allocation
Error on memory allocation on the
SYCL device for a SYCL kernel.

platform
The SYCL platform will trigger this
exception on error.

profiling
The SYCL runtime will trigger this
error if there is an error when pro
filing info is enabled.

feature_not_supported
Exception thrown when host code
uses an optional feature that is not
supported by a device.

kernel_not_supported
Exception thrown when a kernel
uses an optional feature that is not
supported on the device to which it
is enqueued. This exception is also
thrown if a command group is
bound to a kernel bundle, and the
bundle does not contain the kernel
invoked by the command group.

backend_mismatch
The application has called a back
end interoperability function with
mismatched backend information.
For example, requesting informa
tion specific to backend A from a
SYCL object that comes from back
end B causes this error.

Table 139. SYCL error code helper functions

4.13.2. Exception class interface SYCL 2020 rev 9

354 | Chapter 4. SYCL programming interface

SYCL Error Code Helpers Description

const std::error_category& sycl_category() noexcept;
Obtains a reference to the static
error category object for SYCL
errors. This object overrides the
virtual function error_cate
gory::name() to return a pointer to
the string "sycl". When the imple
mentation throws an sycl::excep
tion object ex with this category,
the error code value contained by
the exception (ex.code().value())
is one of the enumerated values in
sycl::errc.

std::error_code make_error_code(errc e) noexcept;
Constructs an error code using e
and sycl_category().

4.14. Data types
SYCL as a C++ programming model supports the C++ core language data types, and it also provides the
ability for all SYCL applications to be executed on SYCL compatible devices. The scalar and vector data
types that are supported by the SYCL system are defined below. More details about the SYCL device com
piler support for fundamental and backend interoperability types are found in Section 5.5.

4.14.1. Scalar data types

The fundamental C++ data types which are supported in SYCL are described in Table 172. Note these
types are fundamental and therefore do not exist within the sycl namespace.

Additional scalar data types which are supported by SYCL within the sycl namespace are described in
Table 140.

Table 140. Additional scalar data types supported by SYCL

Scalar data type Description

byte
An unsigned 8-bit integer. This is
deprecated in SYCL 2020 since
C++17 std::byte can be used
instead.

half
A 16-bit floating-point. The half
data type must conform to the IEEE
754-2008 half precision storage for
mat. This type is only supported on
devices that have aspect::fp16.
std::numeric_limits must be spe
cialized for the half data type.

4.14.2. Vector types

SYCL provides a cross-platform class template that works efficiently on SYCL devices as well as in host
C++ code. This type allows sharing of vectors between the host and its SYCL devices. The vector supports
member functions that allow construction of a new vector from a swizzled set of component elements.

The vec class is templated on its number of elements and its element type. The number of elements para

SYCL 2020 rev 9 4.14. Data types

Chapter 4. SYCL programming interface | 355

meter, NumElements, can be one of: 1, 2, 3, 4, 8 or 16. Any other value shall produce a compilation fail
ure. The element type parameter, DataT, must be one of the basic scalar types supported in device code.

The SYCL vec class template provides interoperability with the underlying vector type defined by vec
tor_t which is available only when compiled for the device. The SYCL vec class can be constructed from
an instance of vector_t and can implicitly convert to an instance of vector_t in order to support interop
erability with native SYCL backend functions from a SYCL kernel function.

An instance of the SYCL vec class template can also be implicitly converted to an instance of the data
type when the number of elements is 1 in order to allow single element vectors and scalars to be con
vertible with each other.

4.14.2.1. Vec interface

The constructors, member functions and non-member functions of the SYCL vec class template are listed
in Table 141, Table 142 and Table 143 respectively.

 1 namespace sycl {
 2
 3 enum class rounding_mode : /* unspecified */ { automatic, rte, rtz, rtp, rtn };
 4
 5 struct elem {
 6 static constexpr int x = 0;
 7 static constexpr int y = 1;
 8 static constexpr int z = 2;
 9 static constexpr int w = 3;
 10 static constexpr int r = 0;
 11 static constexpr int g = 1;
 12 static constexpr int b = 2;
 13 static constexpr int a = 3;
 14 static constexpr int s0 = 0;
 15 static constexpr int s1 = 1;
 16 static constexpr int s2 = 2;
 17 static constexpr int s3 = 3;
 18 static constexpr int s4 = 4;
 19 static constexpr int s5 = 5;
 20 static constexpr int s6 = 6;
 21 static constexpr int s7 = 7;
 22 static constexpr int s8 = 8;
 23 static constexpr int s9 = 9;
 24 static constexpr int sA = 10;
 25 static constexpr int sB = 11;
 26 static constexpr int sC = 12;
 27 static constexpr int sD = 13;
 28 static constexpr int sE = 14;
 29 static constexpr int sF = 15;
 30 };
 31
 32 template <typename DataT, int NumElements> class vec {
 33 public:
 34 using element_type = DataT;
 35 using value_type = DataT;
 36
 37 #ifdef __SYCL_DEVICE_ONLY__
 38 using vector_t = __unspecified__;
 39 #endif

4.14.2.1. Vec interface SYCL 2020 rev 9

356 | Chapter 4. SYCL programming interface

 40
 41 vec();
 42
 43 explicit constexpr vec(const DataT& arg);
 44
 45 template <typename... ArgTN> constexpr vec(const ArgTN&... args);
 46
 47 constexpr vec(const vec<DataT, NumElements>& rhs);
 48
 49 #ifdef __SYCL_DEVICE_ONLY__
 50 vec(vector_t nativeVector);
 51
 52 operator vector_t() const;
 53 #endif
 54
 55 // Available only when: NumElements == 1
 56 operator DataT() const;
 57
 58 static constexpr size_t byte_size() noexcept;
 59
 60 static constexpr size_t size() noexcept;
 61
 62 // Deprecated
 63 size_t get_size() const;
 64
 65 // Deprecated
 66 size_t get_count() const;
 67
 68 template <typename ConvertT,
 69 rounding_mode RoundingMode = rounding_mode::automatic>
 70 vec<ConvertT, NumElements> convert() const;
 71
 72 template <typename AsT> AsT as() const;
 73
 74 // Available on when the number of swizzleIndexes template parameters is
 75 // 1, 2, 3, 4, 8, or 16.
 76 // Available only when each of the swizzleIndexes template parameters is
 77 // greater or equal to 0 and less than NumElements.
 78 template <int... swizzleIndexes> __writeable_swizzle__ swizzle();
 79 template <int... swizzleIndexes> __const_swizzle__ swizzle() const;
 80
 81 // Available only when NumElements <= 4.
 82 // XYZW_ACCESS is: x, y, z, w, subject to NumElements.
 83 __writeable_swizzle__ XYZW_ACCESS();
 84 __const_swizzle__ XYZW_ACCESS() const;
 85
 86 // Available only NumElements == 4.
 87 // RGBA_ACCESS is: r, g, b, a.
 88 __writeable_swizzle__ RGBA_ACCESS();
 89 __const_swizzle__ RGBA_ACCESS() const;
 90
 91 // INDEX_ACCESS is: s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA, sB, sC, sD,
 92 // sE, sF, subject to NumElements.
 93 __writeable_swizzle__ INDEX_ACCESS();
 94 __const_swizzle__ INDEX_ACCESS() const;
 95

SYCL 2020 rev 9 4.14.2.1. Vec interface

Chapter 4. SYCL programming interface | 357

 96 #ifdef SYCL_SIMPLE_SWIZZLES
 97 // Available only when NumElements <= 4.
 98 // XYZW_SWIZZLE is all permutations with repetition of: x, y, z, w, subject to
 99 // NumElements.
100 __writeable_swizzle__ XYZW_SWIZZLE();
101 __const_swizzle__ XYZW_SWIZZLE() const;
102
103 // Available only when NumElements == 4.
104 // RGBA_SWIZZLE is all permutations with repetition of: r, g, b, a.
105 __writeable_swizzle__ RGBA_SWIZZLE();
106 __const_swizzle__ RGBA_SWIZZLE() const;
107
108 #endif // #ifdef SYCL_SIMPLE_SWIZZLES
109
110 // Available only when: NumElements > 1.
111 __writeable_swizzle__ lo();
112 __const_swizzle__ lo() const;
113
114 __writeable_swizzle__ hi();
115 __const_swizzle__ hi() const;
116
117 __writeable_swizzle__ odd();
118 __const_swizzle__ odd() const;
119
120 __writeable_swizzle__ even();
121 __const_swizzle__ even() const;
122
123 // load and store member functions
124 template <access::address_space AddressSpace, access::decorated IsDecorated>
125 void load(size_t offset,
126 multi_ptr<const DataT, AddressSpace, IsDecorated> ptr);
127
128 void load(size_t offset, const DataT* ptr);
129
130 template <access::address_space AddressSpace, access::decorated IsDecorated>
131 void store(size_t offset,
132 multi_ptr<DataT, AddressSpace, IsDecorated> ptr) const;
133
134 void store(size_t offset, DataT* ptr) const;
135
136 // subscript operator
137 DataT& operator[](int index);
138 const DataT& operator[](int index) const;
139
140 vec& operator=(const vec& rhs);
141 vec& operator=(const DataT& rhs);
142
143 // OP is: +, -, *, /, %
144 /* If OP is %, available only when: DataT != float && DataT != double
145 && DataT != half. */
146 friend vec operatorOP(const vec& lhs, const vec& rhs);
147 friend vec operatorOP(const vec& lhs, const DataT& rhs);
148 friend vec operatorOP(const DataT& lhs, const vec& rhs);
149
150 // OP is: +=, -=, *=, /=, %=
151 /* If OP is %=, available only when: DataT != float && DataT != double

4.14.2.1. Vec interface SYCL 2020 rev 9

358 | Chapter 4. SYCL programming interface

152 && DataT != half. */
153 friend vec& operatorOP(vec& lhs, const vec& rhs);
154 friend vec& operatorOP(vec& lhs, const DataT& rhs);
155
156 // OP is prefix ++, --
157 // Available only when: DataT != bool
158 friend vec& operatorOP(vec& rhs);
159
160 // OP is postfix ++, --
161 // Available only when: DataT != bool
162 friend vec operatorOP(vec& lhs, int);
163
164 // OP is unary +, -
165 friend vec operatorOP(const vec& rhs);
166
167 // OP is: &, |, ^
168 /* Available only when: DataT != float && DataT != double && DataT != half. */
169 friend vec operatorOP(const vec& lhs, const vec& rhs);
170 friend vec operatorOP(const vec& lhs, const DataT& rhs);
171 friend vec operatorOP(const DataT& lhs, const vec& rhs);
172
173 // OP is: &=, |=, ^=
174 /* Available only when: DataT != float && DataT != double && DataT != half. */
175 friend vec& operatorOP(vec& lhs, const vec& rhs);
176 friend vec& operatorOP(vec& lhs, const DataT& rhs);
177
178 // OP is: <<, >>
179 /* Available only when: DataT != float && DataT != double && DataT != half. */
180 friend vec operatorOP(const vec& lhs, const vec& rhs);
181 friend vec operatorOP(const vec& lhs, const DataT& rhs);
182 friend vec operatorOP(const DataT& lhs, const vec& rhs);
183
184 // OP is: <<=, >>=
185 /* Available only when: DataT != float && DataT != double && DataT != half. */
186 friend vec& operatorOP(vec& lhs, const vec& rhs);
187 friend vec& operatorOP(vec& lhs, const DataT& rhs);
188
189 // OP is: &&, ||
190 friend vec<RET, NumElements> operatorOP(const vec& lhs, const vec& rhs);
191 friend vec<RET, NumElements> operatorOP(const vec& lhs, const DataT& rhs);
192 friend vec<RET, NumElements> operatorOP(const DataT& lhs, const vec& rhs);
193
194 // OP is: ==, !=, <, >, <=, >=
195 friend vec<RET, NumElements> operatorOP(const vec& lhs, const vec& rhs);
196 friend vec<RET, NumElements> operatorOP(const vec& lhs, const DataT& rhs);
197 friend vec<RET, NumElements> operatorOP(const DataT& lhs, const vec& rhs);
198
199 /* Available only when: DataT != float && DataT != double && DataT != half. */
200 friend vec operator~(const vec& v);
201
202 friend vec<RET, NumElements> operator!(const vec& v);
203 };
204
205 // Deduction guides
206 // Available only when: (std::is_same_v<T, U> && ...)
207 template <class T, class... U> vec(T, U...) -> vec<T, sizeof...(U) + 1>;

SYCL 2020 rev 9 4.14.2.1. Vec interface

Chapter 4. SYCL programming interface | 359

208
209 } // namespace sycl

Table 141. Constructors of the SYCL vec class template

Constructor Description

vec()
Default construct a vector with ele
ment type DataT and with NumEle
ments dimensions by default con
struction of each of its elements.

explicit constexpr vec(const DataT& arg)
Construct a vector of element type
DataT and NumElements dimensions
by setting each value to arg by
assignment.

template <typename... ArgTN> constexpr vec(const ArgTN&...
args)

Construct a SYCL vec instance from
any combination of scalar and
SYCL vec parameters of the same
element type, providing the total
number of elements for all para
meters sum to NumElements of this
vec specialization.

constexpr vec(const vec<DataT, NumElements>& rhs)
Construct a vector of element type
DataT and number of elements
NumElements by copy from another
similar vector.

vec(vector_t nativeVector)
Available only when: compiled for
the device.

Constructs a SYCL vec instance
from an instance of the underlying
backend-native vector type defined
by vector_t.

Table 142. Member functions for the SYCL vec class template

Member function Description

operator vector_t() const
Available only when: compiled for
the device.

Converts this SYCL vec instance to
the underlying backend-native vec
tor type defined by vector_t.

4.14.2.1. Vec interface SYCL 2020 rev 9

360 | Chapter 4. SYCL programming interface

Member function Description

operator DataT() const
Available only when: NumElements
== 1.

Converts this SYCL vec instance to
an instance of DataT with the value
of the single element in this SYCL
vec instance.

The SYCL vec instance shall be
implicitly convertible to the same
data types, to which DataT is implic
itly convertible. Note that conver
sion operator shall not be tem
plated to allow standard conver
sion sequence for implicit conver
sion.

static constexpr size_t size() noexcept
Returns the number of elements of
this SYCL vec.

size_t get_count() const
Returns the same value as size().
Deprecated.

static constexpr size_t byte_size() noexcept
Returns the size of this SYCL vec in
bytes.

3-element vector size matches 4-
element vector size to provide
interoperability with OpenCL vec
tor types. The same rule applies to
vector alignment as described in
Section 4.14.2.6.

size_t get_size() const
Returns the same value as byte_
size(). Deprecated.

template <typename ConvertT,
 rounding_mode RoundingMode = rounding_mode
::automatic>
vec<ConvertT, NumElements> convert() const

Converts this SYCL vec to a SYCL
vec of a different element type
specified by ConvertT using the
rounding mode specified by Round
ingMode. The new SYCL vec type
must have the same number of ele
ments as this SYCL vec. The differ
ent rounding modes are described
in Table 144.

template <typename asT> asT as() const
Bitwise reinterprets this SYCL vec
as a SYCL vec of a different element
type and number of elements spec
ified by asT. The new SYCL vec type
must have the same storage size in
bytes as this SYCL vec, and the size
of the elements in the new SYCL
vec (NumElements * sizeof(DataT))
must be the same as the size of the
elements in this SYCL vec.

SYCL 2020 rev 9 4.14.2.1. Vec interface

Chapter 4. SYCL programming interface | 361

Member function Description

template <int... swizzleIndexes> __writeable_swizzle__
swizzle()
template <int... swizzleIndexes> __const_swizzle__
swizzle() const

Available only when: The number
of swizzleIndexes template para
meters is 1, 2, 3, 4, 8, or 16. Avail
able only when: Each of the swiz
zleIndexes template parameters is
greater or equal to 0 and less than
NumElements.

Return an instance of the imple
mentation-defined __write
able_swizzle__ or __const_swiz
zle__ class representing a swizzled
view of the vector as described in
Section 4.14.2.4. The swizzleIndexes
argument pack specifies the ele
ments in the swizzle.

__writeable_swizzle__ XYZW_ACCESS()
__const_swizzle__ XYZW_ACCESS() const

Available only when: NumElements
<= 4.

Return an instance of the imple
mentation-defined __write
able_swizzle__ or __const_swiz
zle__ class representing a swizzled
view of the vector as described in
Section 4.14.2.4.

Where XYZW_ACCESS is: x for NumEle
ments == 1, x, y for NumElements ==
2, x, y, z for NumElements == 3 and
x, y, z, w for NumElements == 4.

__writeable_swizzle__ RGBA_ACCESS()
__const_swizzle__ RGBA_ACCESS() const

Available only when: NumElements
== 4.

Return an instance of the imple
mentation-defined __write
able_swizzle__ or __const_swiz
zle__ class representing a swizzled
view of the vector as described in
Section 4.14.2.4.

Where RGBA_ACCESS is: r, g, b, a.

4.14.2.1. Vec interface SYCL 2020 rev 9

362 | Chapter 4. SYCL programming interface

Member function Description

__writeable_swizzle__ INDEX_ACCESS()
__const_swizzle__ INDEX_ACCESS() const

Return an instance of the imple
mentation-defined __write
able_swizzle__ or __const_swiz
zle__ class representing a swizzled
view of the vector as described in
Section 4.14.2.4.

Where INDEX_ACCESS is: s0 for
NumElements == 1, s0, s1 for
NumElements == 2, s0, s1, s2 for
NumElements == 3, s0, s1, s2, s3
for NumElements == 4, s0, s1, s2,
s3, s4, s5, s6, s7, s8 for NumEle
ments == 8 and s0, s1, s2, s3, s4,
s5, s6, s7, s8, s9, sA, sB, sC,
sD, sE, sF for NumElements == 16.

__writeable_swizzle__ XYZW_SWIZZLE()
__const_swizzle__ XYZW_SWIZZLE() const

Available only when: NumElements
<= 4, and when the macro
SYCL_SIMPLE_SWIZZLES is defined
before including <sycl/sycl.hpp>.

Return an instance of the imple
mentation-defined __write
able_swizzle__ or __const_swiz
zle__ class representing a swizzled
view of the vector as described in
Section 4.14.2.4.

Where XYZW_SWIZZLE is all per
mutations with repetition, of any
subset with length greater than 1,
of x, y for NumElements == 2, x, y,
z for NumElements == 3 and x, y, z,
w for NumElements == 4. For exam
ple a four element vec provides
permutations including xzyw, xyyy
and xz.

SYCL 2020 rev 9 4.14.2.1. Vec interface

Chapter 4. SYCL programming interface | 363

Member function Description

__writeable_swizzle__ RGBA_SWIZZLE()
__const_swizzle__ RGBA_SWIZZLE() const

Available only when: NumElements
== 4, and when the macro
SYCL_SIMPLE_SWIZZLES is defined
before including <sycl/sycl.hpp>.

Return an instance of the imple
mentation-defined __write
able_swizzle__ or __const_swiz
zle__ class representing a swizzled
view of the vector as described in
Section 4.14.2.4.

Where RGBA_SWIZZLE is all per
mutations with repetition, of any
subset with length greater than 1,
of r, g, b, a. For example a four
element vec provides permutations
including rbga, rggg and rb.

__writeable_swizzle__ lo()
__const_swizzle__ lo() const

Available only when: NumElements >
1.

Return an instance of the imple
mentation-defined __write
able_swizzle__ or __const_swiz
zle__ class representing a swizzled
view of the vector as described in
Section 4.14.2.4. The swizzle con
sists of the lower half of the ele
ments in the vector. When NumEle
ments == 3, the vector is treated as
though NumElements == 4 with the
fourth element undefined.

__writeable_swizzle__ hi()
__const_swizzle__ hi() const

Available only when: NumElements >
1.

Return an instance of the imple
mentation-defined __write
able_swizzle__ or __const_swiz
zle__ class representing a swizzled
view of the vector as described in
Section 4.14.2.4. The swizzle con
sists of the upper half of the ele
ments in the vector. When NumEle
ments == 3, the vector is treated as
though NumElements == 4 with the
fourth element undefined.

4.14.2.1. Vec interface SYCL 2020 rev 9

364 | Chapter 4. SYCL programming interface

Member function Description

__writeable_swizzle__ odd()
__const_swizzle__ odd() const

Available only when: NumElements >
1.

Return an instance of the imple
mentation-defined __write
able_swizzle__ or __const_swiz
zle__ class representing a swizzled
view of the vector as described in
Section 4.14.2.4. The swizzle con
sists of the elements in the vector
with an odd numbered index.
When NumElements == 3, the vector
is treated as though NumElements ==
4 with the fourth element unde
fined.

__writeable_swizzle__ even()
__const_swizzle__ even() const

Available only when: NumElements >
1.

Return an instance of the imple
mentation-defined __write
able_swizzle__ or __const_swiz
zle__ class representing a swizzled
view of the vector as described in
Section 4.14.2.4. The swizzle con
sists of the elements in the vector
with an even numbered index.
When NumElements == 3, the vector
is treated as though NumElements ==
4 with the fourth element unde
fined.

template <access::address_space AddressSpace,
 access::decorated IsDecorated>
void load(
 size_t offset,
 multi_ptr<const DataT, AddressSpace, IsDecorated> ptr)

void load(size_t offset, const DataT* ptr)

Loads NumElements elements into
the components of this SYCL vec.
These elements are loaded from
consecutive addresses, where the
starting address is computed by
adding offset * NumElements *
sizeof(DataT) bytes to the address
specified by the ptr. The ptr must
be aligned to alignof(DataT).

template <access::address_space AddressSpace,
 access::decorated IsDecorated>
void store(
 size_t offset,
 multi_ptr<DataT, AddressSpace, IsDecorated> ptr) const

void store(size_t offset, DataT* ptr) const

Stores NumElements components of
this SYCL vec into consecutive
addresses, with the starting
address determined by adding off
set * NumElements * sizeof(DataT)
to the address specified by the ptr.
The ptr must be aligned to alig
nof(DataT).

DataT& operator[](int index)
Returns a reference to the element
stored within this SYCL vec at the
index specified by index.

SYCL 2020 rev 9 4.14.2.1. Vec interface

Chapter 4. SYCL programming interface | 365

Member function Description

const DataT& operator[](int index) const
Returns a const reference to the
element stored within this SYCL
vec at the index specified by index.

vec& operator=(const vec& rhs)
Assign each element of the rhs
SYCL vec to each element of this
SYCL vec and return a reference to
this SYCL vec.

vec& operator=(const DataT& rhs)
Assign the rhs scalar to each ele
ment of this SYCL vec and return a
reference to this SYCL vec.

Table 143. Hidden friend functions of the vec class template

Hidden friend function Description

vec operatorOP(const vec& lhs, const vec& rhs)
If OP is %, available only when:
DataT != float && DataT != double
&& DataT != half.

Construct a new instance of the
SYCL vec class template with the
same template parameters as lhs
vec with each element of the new
SYCL vec instance the result of an
element-wise OP arithmetic opera
tion between each element of lhs
vec and each element of the rhs
SYCL vec.

Where OP is: +, -, *, /, %.

vec operatorOP(const vec& lhs, const DataT& rhs)
If OP is %, available only when:
DataT != float && DataT != double
&& DataT != half.

Construct a new instance of the
SYCL vec class template with the
same template parameters as lhs
vec with each element of the new
SYCL vec instance the result of an
element-wise OP arithmetic opera
tion between each element of lhs
vec and the rhs scalar.

Where OP is: +, -, *, /, %.

4.14.2.1. Vec interface SYCL 2020 rev 9

366 | Chapter 4. SYCL programming interface

Hidden friend function Description

vec operatorOP(const DataT& lhs, const vec& rhs)
If OP is %, available only when:
DataT != float && DataT != double
&& DataT != half.

Construct a new instance of the
SYCL vec class template with the
same template parameters as the
rhs SYCL vec with each element of
the new SYCL vec instance the
result of an element-wise OP arith
metic operation between the lhs
scalar and each element of the rhs
SYCL vec.

Where OP is: +, -, *, /, %.

vec& operatorOP(vec& lhs, const vec& rhs)
If OP is %=, available only when:
DataT != float && DataT != double
&& DataT != half.

Perform an in-place element-wise
OP arithmetic operation between
each element of lhs vec and each
element of the rhs SYCL vec and
return lhs vec.

Where OP is: +=, -=, *=, /=, %=.

vec& operatorOP(vec& lhs, const DataT& rhs)
If OP is %=, available only when:
DataT != float && DataT != double
&& DataT != half.

Perform an in-place element-wise
OP arithmetic operation between
each element of lhs vec and rhs
scalar and return lhs vec.

Where OP is: +=, -=, *=, /=, %=.

vec& operatorOP(vec& v)
Available only when: DataT !=
bool.

Perform an in-place element-wise
OP prefix arithmetic operation on
each element of v and return v.

Where OP is: ++, --.

vec operatorOP(vec& v, int)
Available only when: DataT !=
bool.

Perform an in-place element-wise
OP postfix arithmetic operation on
each element of v and return a
copy of v before the operation is
performed.

Where OP is: ++, --.

SYCL 2020 rev 9 4.14.2.1. Vec interface

Chapter 4. SYCL programming interface | 367

Hidden friend function Description

vec operatorOP(const vec& v)
Construct a new instance of the
SYCL vec class template with the
same template parameters as this
SYCL vec with each element of the
new SYCL vec instance the result of
an element-wise OP unary arith
metic operation on each element of
this SYCL vec.

Where OP is: +, -.

vec operatorOP(const vec& lhs, const vec& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL vec class template with the
same template parameters as lhs
vec with each element of the new
SYCL vec instance the result of an
element-wise OP bitwise operation
between each element of lhs vec
and each element of the rhs SYCL
vec.

Where OP is: &, |, ^.

vec operatorOP(const vec& lhs, const DataT& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL vec class template with the
same template parameters as lhs
vec with each element of the new
SYCL vec instance the result of an
element-wise OP bitwise operation
between each element of lhs vec
and the rhs scalar.

Where OP is: &, |, ^.

vec operatorOP(const DataT& lhs, const vec& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL vec class template with the
same template parameters as the
rhs SYCL vec with each element of
the new SYCL vec instance the
result of an element-wise OP bit
wise operation between the lhs
scalar and each element of the rhs
SYCL vec.

Where OP is: &, |, ^.

4.14.2.1. Vec interface SYCL 2020 rev 9

368 | Chapter 4. SYCL programming interface

Hidden friend function Description

vec& operatorOP(vec& lhs, const vec& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Perform an in-place element-wise
OP bitwise operation between each
element of lhs vec and the rhs SYCL
vec and return lhs vec.

Where OP is: &=, |=, ^=.

vec& operatorOP(vec& lhs, const DataT& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Perform an in-place element-wise
OP bitwise operation between each
element of lhs vec and the rhs
scalar and return a lhs vec.

Where OP is: &=, |=, ^=.

vec operatorOP(const vec& lhs, const vec& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL vec class template with the
same template parameters as lhs
vec with each element of the new
SYCL vec instance the result of an
element-wise OP bitshift operation
between each element of lhs vec
and each element of the rhs SYCL
vec. If OP is >>, DataT is a signed type
and lhs vec has a negative value
any vacated bits viewed as an
unsigned integer must be assigned
the value 1, otherwise any vacated
bits viewed as an unsigned integer
must be assigned the value 0.

Where OP is: <<, >>.

SYCL 2020 rev 9 4.14.2.1. Vec interface

Chapter 4. SYCL programming interface | 369

Hidden friend function Description

vec operatorOP(const vec& lhs, const DataT& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL vec class template with the
same template parameters as lhs
vec with each element of the new
SYCL vec instance the result of an
element-wise OP bitshift operation
between each element of lhs vec
and the rhs scalar. If OP is >>, DataT
is a signed type and lhs vec has a
negative value any vacated bits
viewed as an unsigned integer
must be assigned the value 1, oth
erwise any vacated bits viewed as
an unsigned integer must be
assigned the value 0.

Where OP is: <<, >>.

vec operatorOP(const DataT& lhs, const vec& rhs)
Construct a new instance of the
SYCL vec class template with the
same template parameters as the
rhs SYCL vec with each element of
the new SYCL vec instance the
result of an element-wise OP bit
shift operation between the lhs
scalar and each element of the rhs
SYCL vec. If OP is >>, DataT is a
signed type and this SYCL vec has a
negative value any vacated bits
viewed as an unsigned integer
must be assigned the value 1, oth
erwise any vacated bits viewed as
an unsigned integer must be
assigned the value 0.

Where OP is: <<, >>.

4.14.2.1. Vec interface SYCL 2020 rev 9

370 | Chapter 4. SYCL programming interface

Hidden friend function Description

vec& operatorOP(vec& lhs, const vec& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Perform an in-place element-wise
OP bitshift operation between each
element of lhs vec and the rhs SYCL
vec and returns lhs vec. If OP is >>=,
DataT is a signed type and lhs vec
has a negative value any vacated
bits viewed as an unsigned integer
must be assigned the value 1, oth
erwise any vacated bits viewed as
an unsigned integer must be
assigned the value 0.

Where OP is: <<=, >>=.

vec& operatorOP(vec& lhs, const DataT& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Perform an in-place element-wise
OP bitshift operation between each
element of lhs vec and the rhs
scalar and returns a reference to
this SYCL vec. If OP is >>=, DataT is a
signed type and lhs vec has a nega
tive value any vacated bits viewed
as an unsigned integer must be
assigned the value 1, otherwise any
vacated bits viewed as an unsigned
integer must be assigned the value
0.

Where OP is: <<=, >>=.

SYCL 2020 rev 9 4.14.2.1. Vec interface

Chapter 4. SYCL programming interface | 371

Hidden friend function Description

vec<RET, NumElements> operatorOP(const vec& lhs, const vec&
rhs)

Construct a new instance of the
SYCL vec class template with the
same template parameters as lhs
vec with each element of the new
SYCL vec instance the result of an
element-wise OP logical operation
between each element of lhs vec
and each element of the rhs SYCL
vec.

The DataT template parameter of
the constructed SYCL vec, RET,
varies depending on the DataT tem
plate parameter of this SYCL vec.
For a SYCL vec with DataT of type
int8_t or uint8_t RET must be
int8_t. For a SYCL vec with DataT of
type int16_t, uint16_t or half RET
must be int16_t. For a SYCL vec
with DataT of type int32_t, uint32_t
or float RET must be int32_t. For a
SYCL vec with DataT of type int64_t,
uint64_t or double RET must be
int64_t.

Where OP is: &&, ||.

vec<RET, NumElements> operatorOP(const vec& lhs, const
DataT& rhs)

Construct a new instance of the
SYCL vec class template with the
same template parameters as this
SYCL vec with each element of the
new SYCL vec instance the result of
an element-wise OP logical opera
tion between each element of lhs
vec and the rhs scalar.

The DataT template parameter of
the constructed SYCL vec, RET,
varies depending on the DataT tem
plate parameter of this SYCL vec.
For a SYCL vec with DataT of type
int8_t or uint8_t RET must be
int8_t. For a SYCL vec with DataT of
type int16_t, uint16_t or half RET
must be int16_t. For a SYCL vec
with DataT of type int32_t, uint32_t
or float RET must be int32_t. For a
SYCL vec with DataT of type int64_t,
uint64_t or double RET must be uin
t64_t.

Where OP is: &&, ||.

4.14.2.1. Vec interface SYCL 2020 rev 9

372 | Chapter 4. SYCL programming interface

Hidden friend function Description

vec<RET, NumElements> operatorOP(const DataT& lhs, const
vec& rhs)

Construct a new instance of the
SYCL vec class template with the
same template parameters as the
rhs SYCL vec with each element of
the new SYCL vec instance the
result of an element-wise OP logical
operation between the lhs scalar
and each element of the rhs SYCL
vec.

The DataT template parameter of
the constructed SYCL vec, RET,
varies depending on the DataT tem
plate parameter of this SYCL vec.
For a SYCL vec with DataT of type
int8_t or uint8_t RET must be
int8_t. For a SYCL vec with DataT of
type int16_t, uint16_t or half RET
must be int16_t. For a SYCL vec
with DataT of type int32_t, uint32_t
or float RET must be int32_t. For a
SYCL vec with DataT of type int64_t,
uint64_t or double RET must be
int64_t.

Where OP is: &&, ||.

SYCL 2020 rev 9 4.14.2.1. Vec interface

Chapter 4. SYCL programming interface | 373

Hidden friend function Description

vec<RET, NumElements> operatorOP(const vec& lhs, const vec&
rhs)

Construct a new instance of the
SYCL vec class template with the
element type RET with each ele
ment of the new SYCL vec instance
the result of an element-wise OP
relational operation between each
element of lhs vec and each ele
ment of the rhs SYCL vec. Each ele
ment of the SYCL vec that is
returned must be -1 if the opera
tion results in true and 0 if the
operation results in false. The ==,
<, >, <= and >= operations result in
false if either the lhs element or
the rhs element is a NaN. The !=
operation results in true if either
the lhs element or the rhs element
is a NaN.

The DataT template parameter of
the constructed SYCL vec, RET,
varies depending on the DataT tem
plate parameter of this SYCL vec.
For a SYCL vec with DataT of type
int8_t or uint8_t RET must be
int8_t. For a SYCL vec with DataT of
type int16_t, uint16_t or half RET
must be int16_t. For a SYCL vec
with DataT of type int32_t, uint32_t
or float RET must be int32_t. For a
SYCL vec with DataT of type int64_t,
uint64_t or double RET must be uin
t64_t.

Where OP is: ==, !=, <, >, <=, >=.

4.14.2.1. Vec interface SYCL 2020 rev 9

374 | Chapter 4. SYCL programming interface

Hidden friend function Description

vec<RET, NumElements> operatorOP(const vec& lhs, const
DataT& rhs)

Construct a new instance of the
SYCL vec class template with the
DataT parameter of RET with each
element of the new SYCL vec
instance the result of an element-
wise OP relational operation
between each element of lhs vec
and the rhs scalar. Each element of
the SYCL vec that is returned must
be -1 if the operation results in
true and 0 if the operation results
in false. The ==, <, >, <= and >=
operations result in false if either
the lhs element or the rhs is a NaN.
The != operation results in true if
either the lhs element or the rhs is
a NaN.

The DataT template parameter of
the constructed SYCL vec, RET,
varies depending on the DataT tem
plate parameter of this SYCL vec.
For a SYCL vec with DataT of type
int8_t or uint8_t RET must be
int8_t. For a SYCL vec with DataT of
type int16_t, uint16_t or half RET
must be int16_t. For a SYCL vec
with DataT of type int32_t, uint32_t
or float RET must be int32_t. For a
SYCL vec with DataT of type int64_t,
uint64_t or double RET must be uin
t64_t.

Where OP is: ==, !=, <, >, <=, >=.

SYCL 2020 rev 9 4.14.2.1. Vec interface

Chapter 4. SYCL programming interface | 375

Hidden friend function Description

vec<RET, NumElements> operatorOP(const DataT& lhs, const
vec& rhs)

Construct a new instance of the
SYCL vec class template with the
element type RET with each ele
ment of the new SYCL vec instance
the result of an element-wise OP
relational operation between the
lhs scalar and each element of the
rhs SYCL vec. Each element of the
SYCL vec that is returned must be
-1 if the operation results in true
and 0 if the operation results in
false. The ==, <, >, <= and >= opera
tions result in false if either the
lhs or the rhs element is a NaN.
The != operation results in true if
either the lhs or the rhs element is
a NaN.

The DataT template parameter of
the constructed SYCL vec, RET,
varies depending on the DataT tem
plate parameter of this SYCL vec.
For a SYCL vec with DataT of type
int8_t or uint8_t RET must be
int8_t. For a SYCL vec with DataT of
type int16_t, uint16_t or half RET
must be int16_t. For a SYCL vec
with DataT of type int32_t, uint32_t
or float RET must be int32_t. For a
SYCL vec with DataT of type int64_t,
uint64_t or double RET must be
int64_t.

Where OP is: ==, !=, <, >, <=, >=.

vec operator~(const vec& v)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL vec class template with the
same template parameters as v vec
with each element of the new SYCL
vec instance the result of an ele
ment-wise bitwise NOT operation
on each element of v vec.

4.14.2.1. Vec interface SYCL 2020 rev 9

376 | Chapter 4. SYCL programming interface

Hidden friend function Description

vec<RET, NumElements> operator!(const vec& v)
Construct a new instance of the
SYCL vec class template with the
same template parameters as v vec
with each element of the new SYCL
vec instance the result of an ele
ment-wise logical NOT operation
on each element of v vec. Each ele
ment of the SYCL vec that is
returned must be -1 if the opera
tion results in true and 0 if the
operation results in false or this
SYCL vec is a NaN.

The DataT template parameter of
the constructed SYCL vec, RET,
varies depending on the DataT tem
plate parameter of this SYCL vec.
For a SYCL vec with DataT of type
int8_t or uint8_t RET must be
int8_t. For a SYCL vec with DataT of
type int16_t, uint16_t or half RET
must be int16_t. For a SYCL vec
with DataT of type int32_t, uint32_t
or float RET must be int32_t. For a
SYCL vec with DataT of type int64_t,
uint64_t or double RET must be
int64_t.

4.14.2.2. Aliases

The SYCL programming API provides all permutations of the type alias:

using <type><elems> = vec<<storage-type>, <elems>>

where <elems> is 2, 3, 4, 8 and 16, and pairings of <type> and <storage-type> for integral types are char and
int8_t, uchar and uint8_t, short and int16_t, ushort and uint16_t, int and int32_t, uint and uint32_t, long
and int64_t, ulong and uint64_t, and for floating point types are both half, float and double.

For example uint4 is the alias to vec<uint32_t, 4> and float16 is the alias to vec<float, 16>.

4.14.2.3. Swizzles

Swizzle operations can be performed in two ways. Firstly by calling the swizzle member function tem
plate, which takes a variadic number of integer template arguments between 0 and NumElements-1, speci
fying swizzle indexes. Secondly by calling one of the simple swizzle member functions defined in Table
142 as XYZW_SWIZZLE and RGBA_SWIZZLE. Note that the simple swizzle functions are only available for up to
4 element vectors and are only available when the macro SYCL_SIMPLE_SWIZZLES is defined before includ
ing <sycl/sycl.hpp>.

In both cases the return value is an instance of either the __writeable_swizzle__ or the __const_swizzle__
class template. These classes have an implementation-defined name, and they represent a view of the
original vec object with the swizzle operation applied. The __writeable_swizzle__ class represents a
writeable view of the vec object, while the __const_swizzle__ class represents a read-only view. Since the
swizzle operation may result in a different number of elements, these views may represent a different
number of elements than the original vec object.

SYCL 2020 rev 9 4.14.2.2. Aliases

Chapter 4. SYCL programming interface | 377

Both the swizzle member function template and the simple swizzle member functions allow swizzle
indexes to be repeated.

A series of static constexpr values are provided within the elem struct to allow specifying named swizzle
indexes when calling the swizzle member function template.

4.14.2.4. The swizzled vector classes

The __writeable_swizzle__ and __const_swizzle__ classes are each views over a vec object which cap
tures the effects of a swizzle operation without actually performing that operation. The tables below
define the interfaces to these classes, but in general __writeable_swizzle__ supports the same interface
as vec, while __const_swizzle__ supports only the non-mutating operations of vec. Member functions and
operators that read elements from these views return elements from the underlying vec as translated by
the captured swizzle operation. Member functions and operators that modify elements of these views
modify corresponding elements of the underlying vec as translated by the captured swizzle operation.
The following example illustrates this behavior:

 1 #include <sycl/sycl.hpp>
 2 using namespace sycl; // (optional) avoids need for "sycl::" before SYCL names
 3
 4 int main() {
 5 vec v{5, 6, 7, 8};
 6 vec<int, 2> slice = v.swizzle<2,1>(); // slice has the value {7,6}
 7 slice = v.swizzle<2,2>(); // slice is now {7,7}
 8 int i = v.swizzle<2,1>()[1]; // i has the value 6
 9 v.swizzle<2>() = 0; // v is now {5,6,0,8}
10 v.swizzle<1>()++; // v is now {5,7,0,8}
11 v.swizzle<2,3>(); // Has no effect because result of swizzle is
12 // neither read nor modified
13 }

Synopses of the __writeable_swizzle__ and __const_swizzle__ classes are shown below. The member type
aliases are described in Section 4.14.2.4.1, the constructors are described in Section 4.14.2.4.2, the mem
ber functions are described in Section 4.14.2.4.4, and the hidden friend functions are described in Sec
tion 4.14.2.4.5.

The __writeable_swizzle__ and __const_swizzle__ classes are not user constructible.

The __writeable_swizzle__ and __const_swizzle__ types are class templates, but the template parameters
are unspecified. The description below describes the member functions and hidden friend functions
using two exposition-only private members named DataT and NumElements. The type alias DataT repre
sents the element type of the underlying vec. The constant NumElements represents the number of ele
ments in the result of the swizzle operation, which could be different from the number of elements in
the underlying vec.

When the string __writeable_swizzle__ or __const_swizzle__ is used inside the class definition in the syn
opses below, it refers to the instantiation with the same set of template parameters as the enclosing class.
This is consistent with C++ syntax. When the string __writeable_swizzle__</*unspecified*/> or __con
st_swizzle__</*unspecified*/> is used inside the class definition, it refers to a possibly different instanti
ation of the __writeable_swizzle__ or __const_swizzle__ class.

Although the synopses below illustrate __writeable_swizzle__ and __const_swizzle__ as two separate
classes, this is exposition only. An implementation could instead implement a single combined class with
additional constraints on the member functions.

 1 namespace /*unspecified*/ {

4.14.2.4. The swizzled vector classes SYCL 2020 rev 9

378 | Chapter 4. SYCL programming interface

 2
 3 template </*unspecified*/>
 4 class __writeable_swizzle__ {
 5 private:
 6 // The "DataT" and "NumElements" members are exposition-only
 7 using DataT = /* element type of the underlying vec */;
 8 static constexpr int NumElements = /* number of elements produced by the swizzle */;
 9
10 public:
11 // Public members as defined in the tables below
12 // Hidden friend functions as defined in the table below
13 };
14
15 template </*unspecified*/>
16 class __const_swizzle__ {
17 private:
18 // The "DataT" and "NumElements" members are exposition-only
19 using DataT = /* element type of the underlying vec */;
20 static constexpr int NumElements = /* number of elements produced by the swizzle */;
21
22 public:
23 // Public members as defined in the tables below
24 // Hidden friend functions as defined in the table below
25 };
26
27 } // namespace

4.14.2.4.1. Member type aliases for the swizzled vector class templates

using element_type = DataT
using value_type = DataT

Each of these type aliases tells the type of an element in the underlying vec.

#ifdef __SYCL_DEVICE_ONLY__
using vector_t = /*unspecified*/
#endif

This type alias is available only in device code. The vector_t type represents a native vector type of
NumElements elements where each element’s type is DataT.

4.14.2.4.2. Constructors for the swizzled vector class templates

SYCL 2020 rev 9 4.14.2.4.1. Member type aliases for the swizzled vector class templates

Chapter 4. SYCL programming interface | 379

__writeable_swizzle__() = delete
__writeable_swizzle__(const __writeable_swizzle__&) = delete

__const_swizzle__() = delete
__const_swizzle__(const __const_swizzle__&) = delete

__const_swizzle__& operator=(const __const_swizzle__&) = delete

The default constructor and copy constructor are deleted.

The copy assignment operator for __const_swizzle__ is deleted.

4.14.2.4.3. Destructors for the swizzled vector class templates

~__writeable_swizzle__()
~__const_swizzle__()

The destructors have no visible effect.

4.14.2.4.4. Member functions for the swizzled vector class templates

#ifdef __SYCL_DEVICE_ONLY__
operator vector_t() const
#endif

operator DataT() const
static constexpr size_t byte_size() noexcept
static constexpr size_t size() noexcept

size_t get_size() const // Deprecated
size_t get_count() const // Deprecated

template <typename ConvertT,
 rounding_mode RoundingMode = rounding_mode::automatic>
vec<ConvertT, NumElements> convert() const

template <typename asT> asT as() const

template <access::address_space AddressSpace, access::decorated IsDecorated>
void store(size_t offset, multi_ptr<DataT, AddressSpace, IsDecorated> ptr) const

Availability: These functions are available in both __writeable_swizzle__ and __const_swizzle__.

Constraints: These functions have the same constraints as the equivalent member functions of the vec
class.

Effects: The effect of these functions is the same as if they were called on a temporary vec object that con
tains the result of the captured swizzle operation.

4.14.2.4.3. Destructors for the swizzled vector class templates SYCL 2020 rev 9

380 | Chapter 4. SYCL programming interface

operator vec<DataT, NumElements>() const

Availability: These functions are available in both __writeable_swizzle__ and __const_swizzle__.

Constraints: Available only when NumElements > 1.

Returns: A new vec object that contains the result of the captured swizzle operation.

template <int... swizzleIndexes> __writeable_swizzle__</*unspecified*/> swizzle() const (1)

__writeable_swizzle__</*unspecified*/> XYZW_ACCESS() const (2)
__writeable_swizzle__</*unspecified*/> RGBA_ACCESS() const (3)
__writeable_swizzle__</*unspecified*/> INDEX_ACCESS() const (4)

#ifdef SYCL_SIMPLE_SWIZZLES
__writeable_swizzle__</*unspecified*/> XYZW_SWIZZLE() const (5)
__writeable_swizzle__</*unspecified*/> RGBA_SWIZZLE() const (6)
#endif

__writeable_swizzle__</*unspecified*/> lo() const (7)
__writeable_swizzle__</*unspecified*/> hi() const (8)
__writeable_swizzle__</*unspecified*/> odd() const (9)
__writeable_swizzle__</*unspecified*/> even() const (10)

template <int... swizzleIndexes> __const_swizzle__</*unspecified*/> swizzle() const (11)

__const_swizzle__</*unspecified*/> XYZW_ACCESS() const (12)
__const_swizzle__</*unspecified*/> RGBA_ACCESS() const (13)
__const_swizzle__</*unspecified*/> INDEX_ACCESS() const (14)

#ifdef SYCL_SIMPLE_SWIZZLES
__const_swizzle__</*unspecified*/> XYZW_SWIZZLE() const (15)
__const_swizzle__</*unspecified*/> RGBA_SWIZZLE() const (16)
#endif

__const_swizzle__</*unspecified*/> lo() const (17)
__const_swizzle__</*unspecified*/> hi() const (18)
__const_swizzle__</*unspecified*/> odd() const (19)
__const_swizzle__</*unspecified*/> even() const (20)

Availability: Functions (1) - (10) are available only in __writeable_swizzle__. Functions (11) - (20) are
available only in __const_swizzle__.

Constraints: These functions have the same constraints as the equivalent member functions of the vec
class.

Returns: A new view of the underlying vec object, where the view represents the composition of two
swizzle operations. The first is the swizzle operation represented by the __writeable_swizzle__ or __con
st_swizzle__ view. The second is the swizzle operation defined by the member function. The indices
used by the second swizzle are the indices produced by the first swizzle. For example, if the second swiz
zle references the first element, this means the element of the underlying vec that corresponds to the

SYCL 2020 rev 9 4.14.2.4.4. Member functions for the swizzled vector class templates

Chapter 4. SYCL programming interface | 381

first element produced by the first swizzle.

template <access::address_space AddressSpace, access::decorated IsDecorated>
void load(size_t offset, multi_ptr<const DataT, AddressSpace, IsDecorated> ptr) const

Availability: Available only in __writeable_swizzle__.

Constraints: Available only when the __writeable_swizzle__ view does not contain any repeated ele
ments.

Effects: Loads values from memory into elements of the underlying vec object. A total of NumElements val
ues are loaded from memory, starting at the the address ptr + offset*sizeof(DataT). The first value
from memory is written to the element in vec that corresponds to the first element of the swizzle opera
tion. The second value from memory is written to the element in vec that corresponds to the second ele
ment of the swizzle operation, etc.

DataT& operator[](int index) const (1)
const DataT& operator[](int index) const (2)

Availability: Functions (1) is available only in __writeable_swizzle__. Functions (2) is available only in
__const_swizzle__.

Returns: A reference to the element of the underlying vec object that corresponds to the position index of
the swizzle operation.

template</*unspecified*/>
const __writeable_swizzle__&
operator=(const __writeable_swizzle__</*unspecified*/>& rhs) const

template</*unspecified*/>
const __writeable_swizzle__&
operator=(const __const_swizzle__</*unspecified*/>& rhs) const

Availability: Available only in __writeable_swizzle__.

Constraints: Available only when all of the following conditions are met:

• The element data type of rhs is the same as DataT;

• The number of elements in the rhs view is equal to NumElements; and

• The __writeable_swizzle__ view (i.e. the left hand side of the assignment) does not contain any
repeated elements.

Effects: Assigns elements from the right hand side __writeable_swizzle__ or __const_swizzle__ view to
elements of the left hand side __writeable_swizzle__ view. The value corresponding to the first element
of the rhs swizzle operation is assigned to the element of the underlying vec object that corresponds to
the first element of the left hand side swizzle operation, etc.

Returns: A reference to the left hand side __writeable_swizzle__ view.

4.14.2.4.4. Member functions for the swizzled vector class templates SYCL 2020 rev 9

382 | Chapter 4. SYCL programming interface

const __writeable_swizzle__& operator=(const DataT& rhs) const

Availability: Available only in __writeable_swizzle__.

Constraints: Available only when the __writeable_swizzle__ view does not contain any repeated ele
ments.

Effects: Assigns the value rhs to those elements of the underlying vec object that have corresponding ele
ments in the __writeable_swizzle__ view. Elements in the underlying vec object that do not have ele
ments in the __writeable_swizzle__ view are not assigned.

Returns: A reference to the __writeable_swizzle__ view.

const __writeable_swizzle__& operator=(const vec<DataT, NumElements>& rhs) const

Availability: Available only in __writeable_swizzle__.

Constraints: Available only when the __writeable_swizzle__ view does not contain any repeated ele
ments.

Effects: Assigns elements from rhs to elements of the vec object that underlies this __writeable_swizzle__
view. The first element of rhs is assigned to the element of the underlying vec object that corresponds to
the first element of the swizzle operation, etc.

Returns: A reference to the __writeable_swizzle__ view.

4.14.2.4.5. Hidden friend functions of the swizzled vector class templates

SYCL 2020 rev 9 4.14.2.4.5. Hidden friend functions of the swizzled vector class templates

Chapter 4. SYCL programming interface | 383

template</*unspecified*/> (1)
friend vec<DataT, NumElements>
operatorOP(const __writeable_swizzle__& lhs,
 const __writeable_swizzle__</*unspecified*/>& rhs)

template</*unspecified*/> (2)
friend vec<DataT, NumElements>
operatorOP(const __writeable_swizzle__& lhs,
 const __const_swizzle__</*unspecified*/>& rhs)

template</*unspecified*/> (3)
friend vec<DataT, NumElements>
operatorOP(const __const_swizzle__</*unspecified*/>& lhs,
 const __writeable_swizzle__& rhs)

template</*unspecified*/> (4)
friend vec<DataT, NumElements>
operatorOP(const __const_swizzle__& lhs, const __const_swizzle__</*unspecified*/>& rhs)

friend vec<DataT, NumElements> (5)
operatorOP(const vec<DataT, NumElements>& lhs, const __writeable_swizzle__& rhs)

friend vec<DataT, NumElements> (6)
operatorOP(const vec<DataT, NumElements>& lhs, const __const_swizzle__& rhs)

friend vec<DataT, NumElements> (7)
operatorOP(const __writeable_swizzle__& lhs, const vec<DataT, NumElements>& rhs)

friend vec<DataT, NumElements> (8)
operatorOP(const __const_swizzle__& lhs, const vec<DataT, NumElements>& rhs)

friend vec<DataT, NumElements> (9)
operatorOP(const __writeable_swizzle__& lhs, const DataT& rhs)

friend vec<DataT, NumElements> (10)
operatorOP(const __const_swizzle__& lhs, const DataT& rhs)

friend vec<DataT, NumElements> (11)
operatorOP(const DataT& lhs, const __writeable_swizzle__& rhs)

friend vec<DataT, NumElements> (12)
operatorOP(const DataT& lhs, const __const_swizzle__& rhs)

Where OP is: +, -, *, /, %, &, |, ^, <<, >>.

Availability: Overloads (1), (2), (3), (5), (7), (9), and (11) are hidden friends of __writeable_swizzle__. Over
loads (4), (6), (8), (10), and (12) are hidden friends of __const_swizzle__.

Constraints: If OP is one of the following: %, &, |, ^, <<, >>; available only when: DataT != float && DataT !=
double && DataT != half.

In addition, overloads (1) - (4) are available only when the element data type of lhs is the same as the ele
ment data type of rhs and when the number of elements in the lhs view is equal to the number of ele
ments in the rhs view.

4.14.2.4.5. Hidden friend functions of the swizzled vector class templates SYCL 2020 rev 9

384 | Chapter 4. SYCL programming interface

Effects: These functions behave as though the swizzle operation represented by each __writeable_swiz
zle__ or __const_swizzle__ parameter was first evaluated into a temporary vec object, and then opera
torOP was called with the temporary vec object.

Returns: A new vec object that represents the result of the operation.

template</*unspecified*/> (1)
friend const __writeable_swizzle__&
operatorOP(const __writeable_swizzle__& lhs,
 const __writeable_swizzle__</*unspecified*/>& rhs)

template</*unspecified*/> (2)
friend const __writeable_swizzle__&
operatorOP(const __writeable_swizzle__& lhs,
 const __const_swizzle__</*unspecified*/>& rhs)

friend const __writeable_swizzle__& (3)
operatorOP(const __writeable_swizzle__& lhs, const vec<DataT, NumElements>& rhs)

friend const __writeable_swizzle__& (4)
operatorOP(const __writeable_swizzle__& lhs, const DataT& rhs)

Where OP is: +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=.

Availability: These are hidden friend functions only in __writeable_swizzle__.

Constraints: Available only when the left hand side __writeable_swizzle__ view does not contain any
repeated elements.

If OP is one of the following: %=, &=, |=, ^=, <<=, >>=; available only when: DataT != float && DataT != dou
ble && DataT != half.

In addition, overloads (1) and (2) are available only when the element data type of lhs is the same as the
element data type of rhs and when the number of elements in the lhs view is equal to the number of ele
ments in the rhs view.

Effects: These functions operate as follow.

A left hand side value is computed from lhs by applying the swizzle operation on the underlying vec
object. If the rhs is a __writeable_swizzle__ view, the right hand side value is computed the same way.
Otherwise, the right hand side value is the same as rhs.

The non-assignment part of the operation is performed on these two values, producing a result. This
result is assigned to lhs as follows.

The first element of the result is assigned to the vec element that corresponds to the first element of the
left-hand-side swizzle. The second element of the result is assigned to the vec element that corresponds
to the second element of the left-hand-side swizzle, etc.

Returns: A reference to the lhs.

friend const __writeable_swizzle__& operatorOP(const __writeable_swizzle__& sv)

SYCL 2020 rev 9 4.14.2.4.5. Hidden friend functions of the swizzled vector class templates

Chapter 4. SYCL programming interface | 385

Where OP is: ++, --.

Availability: These are hidden friend functions only in __writeable_swizzle__.

Constraints: Available only when the __writeable_swizzle__ view does not contain any repeated ele
ments. Available only when DataT is not bool.

Effects: Perform an in-place element-wise OP prefix arithmetic operation on those elements of the vec
object that have corresponding elements in the sv view. Elements in the underlying vec object that do
not have elements in the sv view are not modified.

Returns: A reference to the sv view.

friend vec<DataT, NumElements> operatorOP(const __writeable_swizzle__& sv, int)

Where OP is: ++, --.

Availability: These are hidden friend functions only in __writeable_swizzle__.

Constraints: Available only when the __writeable_swizzle__ view does not contain any repeated ele
ments. Available only when DataT is not bool.

Effects: Perform an in-place element-wise OP postfix arithmetic operation on those elements of the vec
object that have corresponding elements in the sv view. Elements in the underlying vec object that do
not have elements in the sv view are not modified.

Returns: A new vec object that represents the elements of sv after the swizzle operation is applied and
before the postfix arithmetic operation is applied.

friend vec<DataT, NumElements> operatorOP(const __writeable_swizzle__& sv) (1)
friend vec<DataT, NumElements> operatorOP(const __const_swizzle__& sv) (2)

Where OP is: +, -.

Availability: Functions (1) are hidden friends in __writeable_swizzle__. Functions (2) are hidden friends
in __const_swizzle__.

Effects: These functions behave as though the swizzle operation represented by the sv parameter was
first evaluated into a temporary vec object, and then operatorOP was applied to the temporary vec object.

Returns: A vec object that represents the result of the operation.

4.14.2.4.5. Hidden friend functions of the swizzled vector class templates SYCL 2020 rev 9

386 | Chapter 4. SYCL programming interface

template</*unspecified*/> (1)
friend vec<RET, NumElements>
operatorOP(const __writeable_swizzle__& lhs,
 const __writeable_swizzle__</*unspecified*/>& rhs)

template</*unspecified*/> (2)
friend vec<RET, NumElements>
operatorOP(const __writeable_swizzle__& lhs,
 const __const_swizzle__</*unspecified*/>& rhs)

template</*unspecified*/> (3)
friend vec<RET, NumElements>
operatorOP(const __const_swizzle__</*unspecified*/>& lhs,
 const __writeable_swizzle__& rhs)

template</*unspecified*/> (4)
friend vec<RET, NumElements>
operatorOP(const __const_swizzle__& lhs, const __const_swizzle__</*unspecified*/>& rhs)

friend vec<RET, NumElements> (5)
operatorOP(const vec<DataT, NumElements>& lhs, const __writeable_swizzle__& rhs)

friend vec<RET, NumElements> (6)
operatorOP(const vec<DataT, NumElements>& lhs, const __const_swizzle__& rhs)

friend vec<RET, NumElements> (7)
operatorOP(const __writeable_swizzle__& lhs, const vec<DataT, NumElements>& rhs)

friend vec<RET, NumElements> (8)
operatorOP(const __const_swizzle__& lhs, const vec<DataT, NumElements>& rhs)

friend vec<RET, NumElements> (9)
operatorOP(const __writeable_swizzle__& lhs, const DataT& rhs)

friend vec<RET, NumElements> (10)
operatorOP(const __const_swizzle__& lhs, const DataT& rhs)

friend vec<RET, NumElements> (11)
operatorOP(const DataT& lhs, const __writeable_swizzle__& rhs)

friend vec<RET, NumElements> (12)
operatorOP(const DataT& lhs, const __const_swizzle__& rhs)

Where OP is: &&, ||, ==, !=, <, >, <=, >=.

Availability: Overloads (1), (2), (3), (5), (7), (9), and (11) are hidden friends of __writeable_swizzle__. Over
loads (4), (6), (8), (10), and (12) are hidden friends of __const_swizzle__.

Constraints: Overloads (1) - (4) are available only when the element data type of lhs is the same as the
element data type of rhs and when the number of elements in the lhs view is equal to the number of ele
ments in the rhs view.

Effects: These functions behave as though the swizzle operation represented by each __writeable_swiz
zle__ or __const_swizzle__ parameter was first evaluated into a temporary vec object, and then opera
torOP was called with the temporary vec object.

SYCL 2020 rev 9 4.14.2.4.5. Hidden friend functions of the swizzled vector class templates

Chapter 4. SYCL programming interface | 387

Returns: A vec object that represents the result of the operation.

friend vec<DataT, NumElements> operator~(const __writeable_swizzle__& sv) (1)
friend vec<DataT, NumElements> operator~(const __const_swizzle__& sv) (2)

friend vec<RET, NumElements> operator!(const __writeable_swizzle__& sv) (3)
friend vec<RET, NumElements> operator!(const __const_swizzle__& sv) (4)

Availability: Overloads (1) and (3) are hidden friends of __writeable_swizzle__. Overloads (2) and (4) are
hidden friends of __const_swizzle__.

Constraints: Overloads (1) - (2) are available only when: DataT != float && DataT != double && DataT !=
half.

Effects: These functions behave as though the swizzle operation represented by the __writeable_swiz
zle__ or __const_swizzle__ parameter was first evaluated into a temporary vec object, and then the bit
wise or logical NOT operation was applied to the temporary vec object.

Returns: A vec object that represents the result of the operation.

4.14.2.5. Rounding modes

The various rounding modes that can be used in the as member function template are described in Table
144.

Table 144. Rounding modes for the SYCL vec class template

Rounding mode Description

automatic
Default rounding mode for the
SYCL vec class element type. rtz
(round toward zero) for integer
types and rte (round to nearest
even) for floating-point types.

rte
Round to nearest even.

rtz
Round toward zero.

rtp
Round toward positive infinity.

rtn
Round toward negative infinity.

4.14.2.6. Memory layout and alignment

The elements of an instance of the SYCL vec class template are stored in memory sequentially and con
tiguously and are aligned to the size of the element type in bytes multiplied by the number of elements:

The exception to this is when the number of element is three in which case the SYCL vec is aligned to the
size of the element type in bytes multiplied by four:

4.14.2.5. Rounding modes SYCL 2020 rev 9

388 | Chapter 4. SYCL programming interface

This is true for both host and device code in order to allow for instances of the vec class template to be
passed to SYCL kernel functions.

In no case, however, is the alignment guaranteed to be greater than 64 bytes.

The alignment guarantee is limited to 64 bytes because some host compilers (e.g. on
Microsoft Windows) limit the maximum alignment of function parameters to this value.

4.14.2.7. Performance note

The usage of the subscript operator[] may not be efficient on some devices.

4.14.3. Math array types

SYCL provides an marray<typename DataT, std::size_t NumElements> class template to represent a con
tiguous fixed-size container. This type allows sharing of containers between the host and its SYCL
devices.

The marray class is templated on its element type and number of elements. The number of elements para
meter, NumElements, is a positive value of the std::size_t type. The element type parameter, DataT, must
be a numeric type as it is defined by C++ standard.

An instance of the marray class template can also be implicitly converted to an instance of the data type
when the number of elements is 1 in order to allow single element arrays and scalars to be convertible
with each other.

Logical and comparison operators for marray class template return marray<bool, NumElements>.

4.14.3.1. Math array interface

The constructors, member functions and non-member functions of the SYCL marray class template are
listed in Table 145, Table 146 and Table 147 respectively.

 1 namespace sycl {
 2
 3 template <typename DataT, std::size_t NumElements> class marray {
 4 public:
 5 using value_type = DataT;
 6 using reference = DataT&;
 7 using const_reference = const DataT&;
 8 using iterator = DataT*;
 9 using const_iterator = const DataT*;
 10
 11 marray();
 12
 13 explicit constexpr marray(const DataT& arg);
 14
 15 template <typename... ArgTN> constexpr marray(const ArgTN&... args);
 16
 17 constexpr marray(const marray<DataT, NumElements>& rhs);
 18 constexpr marray(marray<DataT, NumElements>&& rhs);
 19
 20 // Available only when: NumElements == 1
 21 operator DataT() const;
 22

SYCL 2020 rev 9 4.14.2.7. Performance note

Chapter 4. SYCL programming interface | 389

 23 static constexpr std::size_t size() noexcept;
 24
 25 // subscript operator
 26 reference operator[](std::size_t index);
 27 const_reference operator[](std::size_t index) const;
 28
 29 marray& operator=(const marray<DataT, NumElements>& rhs);
 30 marray& operator=(const DataT& rhs);
 31
 32 // iterator functions
 33 iterator begin();
 34 const_iterator begin() const;
 35
 36 iterator end();
 37 const_iterator end() const;
 38
 39 // OP is: +, -, *, /, %
 40 /* If OP is %, available only when: DataT != float && DataT != double && DataT
 41 * != half. */
 42 friend marray operatorOP(const marray& lhs, const marray& rhs) { /* ... */
 43 }
 44 friend marray operatorOP(const marray& lhs, const DataT& rhs) { /* ... */
 45 }
 46
 47 // OP is: +=, -=, *=, /=, %=
 48 /* If OP is %=, available only when: DataT != float && DataT != double &&
 49 * DataT != half. */
 50 friend marray& operatorOP(marray& lhs, const marray& rhs) { /* ... */
 51 }
 52 friend marray& operatorOP(marray& lhs, const DataT& rhs) { /* ... */
 53 }
 54
 55 // OP is prefix ++, --
 56 friend marray& operatorOP(marray& v) { /* ... */
 57 }
 58
 59 // OP is postfix ++, --
 60 friend marray operatorOP(marray& v, int) { /* ... */
 61 }
 62
 63 // OP is unary +, -
 64 friend marray operatorOP(marray& v) { /* ... */
 65 }
 66
 67 // OP is: &, |, ^
 68 /* Available only when: DataT != float && DataT != double && DataT != half. */
 69 friend marray operatorOP(const marray& lhs, const marray& rhs) { /* ... */
 70 }
 71 friend marray operatorOP(const marray& lhs, const DataT& rhs) { /* ... */
 72 }
 73
 74 // OP is: &=, |=, ^=
 75 /* Available only when: DataT != float && DataT != double && DataT != half. */
 76 friend marray& operatorOP(marray& lhs, const marray& rhs) { /* ... */
 77 }
 78 friend marray& operatorOP(marray& lhs, const DataT& rhs) { /* ... */

4.14.3.1. Math array interface SYCL 2020 rev 9

390 | Chapter 4. SYCL programming interface

 79 }
 80
 81 // OP is: &&, ||
 82 friend marray<bool, NumElements> operatorOP(const marray& lhs,
 83 const marray& rhs) {
 84 /* ... */ }
 85 friend marray<bool, NumElements> operatorOP(const marray& lhs,
 86 const DataT& rhs) {
 87 /* ... */ }
 88
 89 // OP is: <<, >>
 90 /* Available only when: DataT != float && DataT != double && DataT != half.
 91 */
 92 friend marray operatorOP(const marray& lhs, const marray& rhs) { /* ... */
 93 }
 94 friend marray operatorOP(const marray& lhs, const DataT& rhs) { /* ... */
 95 }
 96
 97 // OP is: <<=, >>=
 98 /* Available only when: DataT != float && DataT != double && DataT != half.
 99 */
100 friend marray& operatorOP(marray& lhs, const marray& rhs) { /* ... */
101 }
102 friend marray& operatorOP(marray& lhs, const DataT& rhs) { /* ... */
103 }
104
105 // OP is: ==, !=, <, >, <=, >=
106 friend marray<bool, NumElements> operatorOP(const marray& lhs,
107 const marray& rhs) {
108 /* ... */ }
109 friend marray<bool, NumElements> operatorOP(const marray& lhs,
110 const DataT& rhs) {
111 /* ... */ }
112
113 /* Available only when: DataT != float && DataT != double && DataT != half.
114 */
115 friend marray operator~(const marray& v) { /* ... */
116 }
117
118 // OP is: +, -, *, /, %
119 /* operator% is only available when: DataT != float && DataT != double &&
120 * DataT != half. */
121 friend marray operatorOP(const DataT& lhs, const marray& rhs) { /* ... */
122 }
123
124 // OP is: &, |, ^
125 /* Available only when: DataT != float && DataT != double
126 && DataT != half. */
127 friend marray operatorOP(const DataT& lhs, const marray& rhs) { /* ... */
128 }
129
130 // OP is: &&, ||
131 friend marray<bool, NumElements> operatorOP(const DataT& lhs,
132 const marray& rhs) {
133 /* ... */ }
134

SYCL 2020 rev 9 4.14.3.1. Math array interface

Chapter 4. SYCL programming interface | 391

135 // OP is: <<, >>
136 /* Available only when: DataT != float && DataT != double && DataT != half.
137 */
138 friend marray operatorOP(const DataT& lhs, const marray& rhs) { /* ... */
139 }
140
141 // OP is: ==, !=, <, >, <=, >=
142 friend marray<bool, NumElements> operatorOP(const DataT& lhs,
143 const marray& rhs) {
144 /* ... */ }
145
146 friend marray<bool, NumElements> operator!(const marray& v) { /* ... */
147 }
148 };
149
150 } // namespace sycl

Table 145. Constructors of the SYCL marray class template

Constructor Description

marray()
Default construct an array with
element type DataT and with
NumElements dimensions by default
construction of each of its ele
ments.

explicit constexpr marray(const DataT& arg)
Construct an array of element type
DataT and NumElements dimensions
by setting each value to arg by
assignment.

template <typename... ArgTN> constexpr marray(const ArgTN
&... args)

Construct a SYCL marray instance
from any combination of scalar
and SYCL marray parameters of the
same element type, providing the
total number of elements for all
parameters sum to NumElements of
this marray specialization.

constexpr marray(const marray<DataT, NumElements>& rhs)
Construct an array of element type
DataT and number of elements
NumElements by copy from another
similar vector.

constexpr marray(marray<DataT, NumElements>&& rhs)
Construct an array of element type
DataT and number of elements
NumElements by moving from
another similar vector.

Table 146. Member functions for the SYCL marray class template

4.14.3.1. Math array interface SYCL 2020 rev 9

392 | Chapter 4. SYCL programming interface

Member function Description

operator DataT() const
Available only when: NumElements
== 1.

Converts this SYCL marray instance
to an instance of DataT with the
value of the single element in this
SYCL marray instance.

The SYCL marray instance shall be
implicitly convertible to the same
data types, to which DataT is implic
itly convertible. Note that conver
sion operator shall not be tem
plated to allow standard conver
sion sequence for implicit conver
sion.

static constexpr std::size_t size() noexcept
Returns the size of this SYCL marray
in bytes.

DataT& operator[](std::size_t index)
Returns a reference to the element
stored within this SYCL marray at
the index specified by index.

const DataT& operator[](std::size_t index) const
Returns a const reference to the
element stored within this SYCL
marray at the index specified by
index.

marray& operator=(const marray& rhs)
Assign each element of the rhs
SYCL marray to each element of this
SYCL marray and return a reference
to this SYCL marray.

marray& operator=(const DataT& rhs)
Assign each element of the rhs
scalar to each element of this SYCL
marray and return a reference to
this SYCL marray.

iterator begin()
Returns an iterator referring to the
first element stored within the mar
ray.

const_iterator begin() const
Returns a const iterator referring
to the first element stored within
the marray.

iterator end()
Returns an iterator referring to the
one past the last element stored
within the marray.

const_iterator end() const
Returns a const iterator referring
to the one past the last element
stored within the marray.

Table 147. Hidden friend functions of the marray class template

SYCL 2020 rev 9 4.14.3.1. Math array interface

Chapter 4. SYCL programming interface | 393

Hidden friend function Description

marray operatorOP(const marray& lhs, const marray& rhs)
If OP is %, available only when:
DataT != float && DataT != double
&& DataT != half.

Construct a new instance of the
SYCL marray class template with the
same template parameters as lhs
marray with each element of the
new SYCL marray instance the
result of an element-wise OP arith
metic operation between each ele
ment of lhs marray and each ele
ment of the rhs SYCL marray.

Where OP is: +, -, *, /, %.

marray operatorOP(const marray& lhs, const DataT& rhs)
If OP is %, available only when:
DataT != float && DataT != double
&& DataT != half.

Construct a new instance of the
SYCL marray class template with the
same template parameters as lhs
marray with each element of the
new SYCL marray instance the
result of an element-wise OP arith
metic operation between each ele
ment of lhs marray and the rhs
scalar.

Where OP is: +, -, *, /, %.

marray& operatorOP(marray& lhs, const marray& rhs)
If OP is %=, available only when:
DataT != float && DataT != double
&& DataT != half.

Perform an in-place element-wise
OP arithmetic operation between
each element of lhs marray and
each element of the rhs SYCL mar
ray and return lhs marray.

Where OP is: +=, -=, *=, /=, %=.

marray& operatorOP(marray& lhs, const DataT& rhs)
If OP is %=, available only when:
DataT != float && DataT != double
&& DataT != half.

Perform an in-place element-wise
OP arithmetic operation between
each element of lhs marray and rhs
scalar and return lhs marray.

Where OP is: +=, -=, *=, /=, %=.

4.14.3.1. Math array interface SYCL 2020 rev 9

394 | Chapter 4. SYCL programming interface

Hidden friend function Description

marray& operatorOP(marray& v)
Perform an in-place element-wise
OP prefix arithmetic operation on
each element of v marray, assigning
the result of each element to the
corresponding element of v marray
and return v marray.

Where OP is: ++, --.

marray operatorOP(marray& v, int)
Perform an in-place element-wise
OP postfix arithmetic operation on
each element of v marray, assigning
the result of each element to the
corresponding element of v marray
and returns a copy of v marray
before the operation is performed.

Where OP is: ++, --.

marray operatorOP(marray& v)
Construct a new instance of the
SYCL marray class template with the
same template parameters as this
SYCL marray with each element of
the new SYCL marray instance the
result of an element-wise OP unary
arithmetic operation on each ele
ment of this SYCL marray.

Where OP is: +, -.

marray operatorOP(const marray& lhs, const marray& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL marray class template with the
same template parameters as lhs
marray with each element of the
new SYCL marray instance the
result of an element-wise OP bit
wise operation between each ele
ment of lhs marray and each ele
ment of the rhs SYCL marray.

Where OP is: &, |, ^.

SYCL 2020 rev 9 4.14.3.1. Math array interface

Chapter 4. SYCL programming interface | 395

Hidden friend function Description

marray operatorOP(const marray& lhs, const DataT& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL marray class template with the
same template parameters as lhs
marray with each element of the
new SYCL marray instance the
result of an element-wise OP bit
wise operation between each ele
ment of lhs marray and the rhs
scalar.

Where OP is: &, |, ^.

marray& operatorOP(marray& lhs, const marray& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Perform an in-place element-wise
OP bitwise operation between each
element of lhs marray and the rhs
SYCL marray and return lhs marray.

Where OP is: &=, |=, ^=.

marray& operatorOP(marray& lhs, const DataT& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Perform an in-place element-wise
OP bitwise operation between each
element of lhs marray and the rhs
scalar and return a lhs marray.

Where OP is: &=, |=, ^=.

marray<bool, NumElements> operatorOP(const marray& lhs,
const marray& rhs)

Construct a new instance of the
marray class template with DataT =
bool and same NumElements as lhs
marray with each element of the
new marray instance the result of
an element-wise OP logical opera
tion between each element of lhs
marray and each element of the rhs
marray.

Where OP is: &&, ||.

4.14.3.1. Math array interface SYCL 2020 rev 9

396 | Chapter 4. SYCL programming interface

Hidden friend function Description

marray<bool, NumElements> operatorOP(const marray& lhs,
const DataT& rhs)

Construct a new instance of the
marray class template with DataT =
bool and same NumElements as lhs
marray with each element of the
new marray instance the result of
an element-wise OP logical opera
tion between each element of lhs
marray and the rhs scalar.

Where OP is: &&, ||.

marray operatorOP(const marray& lhs, const marray& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL marray class template with the
same template parameters as lhs
marray with each element of the
new SYCL marray instance the
result of an element-wise OP bit
shift operation between each ele
ment of lhs marray and each ele
ment of the rhs SYCL marray. If OP is
>>, DataT is a signed type and lhs
marray has a negative value any
vacated bits viewed as an unsigned
integer must be assigned the value
1, otherwise any vacated bits
viewed as an unsigned integer
must be assigned the value 0.

Where OP is: <<, >>.

marray operatorOP(const marray& lhs, const DataT& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL marray class template with the
same template parameters as lhs
marray with each element of the
new SYCL marray instance the
result of an element-wise OP bit
shift operation between each ele
ment of lhs marray and the rhs
scalar. If OP is >>, DataT is a signed
type and lhs marray has a negative
value any vacated bits viewed as
an unsigned integer must be
assigned the value 1, otherwise any
vacated bits viewed as an unsigned
integer must be assigned the value
0.

Where OP is: <<, >>.

SYCL 2020 rev 9 4.14.3.1. Math array interface

Chapter 4. SYCL programming interface | 397

Hidden friend function Description

marray& operatorOP(marray& lhs, const marray& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Perform an in-place element-wise
OP bitshift operation between each
element of lhs marray and the rhs
SYCL marray and returns lhs marray.
If OP is >>=, DataT is a signed type
and lhs marray has a negative value
any vacated bits viewed as an
unsigned integer must be assigned
the value 1, otherwise any vacated
bits viewed as an unsigned integer
must be assigned the value 0.

Where OP is: <<=, >>=.

marray& operatorOP(marray& lhs, const DataT& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Perform an in-place element-wise
OP bitshift operation between each
element of lhs marray and the rhs
scalar and returns a reference to
this SYCL marray. If OP is >>=, DataT
is a signed type and lhs marray has
a negative value any vacated bits
viewed as an unsigned integer
must be assigned the value 1, oth
erwise any vacated bits viewed as
an unsigned integer must be
assigned the value 0.

Where OP is: <<=, >>=.

marray<bool, NumElements> operatorOP(const marray& lhs,
const marray& rhs)

Construct a new instance of the
marray class template with DataT =
bool and same NumElements as lhs
marray with each element of the
new marray instance is the result of
an element-wise OP relational oper
ation between each element of lhs
marray and each element of the rhs
marray. The ==, <, >, <= and >= opera
tions result in false if either the
lhs element or the rhs element is a
NaN. The != operation results in
true if either the lhs element or the
rhs element is a NaN.

Where OP is: ==, !=, <, >, <=, >=.

4.14.3.1. Math array interface SYCL 2020 rev 9

398 | Chapter 4. SYCL programming interface

Hidden friend function Description

marray<bool, NumElements> operatorOP(const marray& lhs,
const DataT& rhs)

Construct a new instance of the
marray class template with DataT =
bool and same NumElements as lhs
marray with each element of the
new marray instance the result of
an element-wise OP relational oper
ation between each element of lhs
marray and the rhs scalar. The ==, <,
>, <= and >= operations result in
false if either the lhs element or
the rhs is a NaN. The != operation
results in true if either the lhs ele
ment or the rhs is a NaN.

Where OP is: ==, !=, <, >, <=, >=.

marray operatorOP(const DataT& lhs, const marray& rhs)
If OP is %, available only when:
DataT != float && DataT != double
&& DataT != half.

Construct a new instance of the
SYCL marray class template with the
same template parameters as the
rhs SYCL marray with each element
of the new SYCL marray instance
the result of an element-wise OP
arithmetic operation between the
lhs scalar and each element of the
rhs SYCL marray.

Where OP is: +, -, *, /, %.

marray operatorOP(const DataT& lhs, const marray& rhs)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL marray class template with the
same template parameters as the
rhs SYCL marray with each element
of the new SYCL marray instance
the result of an element-wise OP
bitwise operation between the lhs
scalar and each element of the rhs
SYCL marray.

Where OP is: &, |, ^.

SYCL 2020 rev 9 4.14.3.1. Math array interface

Chapter 4. SYCL programming interface | 399

Hidden friend function Description

marray<bool, NumElements> operatorOP(const DataT& lhs,
const marray& rhs)

Construct a new instance of the
marray class template with DataT =
bool and same NumElements as rhs
marray with each element of the
new marray instance the result of
an element-wise OP logical opera
tion between the lhs scalar and
each element of the rhs marray.

Where OP is: &&, ||.

marray operatorOP(const DataT& lhs, const marray& rhs)
Construct a new instance of the
SYCL marray class template with the
same template parameters as the
rhs SYCL marray with each element
of the new SYCL marray instance
the result of an element-wise OP
bitshift operation between the lhs
scalar and each element of the rhs
SYCL marray. If OP is >>, DataT is a
signed type and this SYCL marray
has a negative value any vacated
bits viewed as an unsigned integer
must be assigned the value 1, oth
erwise any vacated bits viewed as
an unsigned integer must be
assigned the value 0.

Where OP is: <<, >>.

marray<bool, NumElements> operatorOP(const DataT& lhs,
const marray& rhs)

Construct a new instance of the
marray class template with DataT =
bool and same NumElements as rhs
marray with each element of the
new SYCL marray instance the
result of an element-wise OP rela
tional operation between the lhs
scalar and each element of the rhs
marray. The ==, <, >, <= and >= opera
tions result in false if either the
lhs or the rhs element is a NaN.
The != operation results in true if
either the lhs or the rhs element is
a NaN.

Where OP is: ==, !=, <, >, <=, >=.

4.14.3.1. Math array interface SYCL 2020 rev 9

400 | Chapter 4. SYCL programming interface

Hidden friend function Description

marray& operator~(const marray& v)
Available only when: DataT !=
float && DataT != double && DataT
!= half.

Construct a new instance of the
SYCL marray class template with the
same template parameters as v
marray with each element of the
new SYCL marray instance the
result of an element-wise OP bit
wise operation on each element of
v marray.

marray<bool, NumElements> operator!(const marray& v)
Construct a new instance of the
marray class template with DataT =
bool and same NumElements as v
marray with each element of the
new marray instance the result of
an element-wise logical ! operation
on each element of v marray.

4.14.3.2. Aliases

The SYCL programming API provides all permutations of the type alias:

using m<type><elems> = marray<<storage-type>, <elems>>

where <elems> is 2, 3, 4, 8 and 16, and pairings of <type> and <storage-type> for integral types are char and
int8_t, uchar and uint8_t, short and int16_t, ushort and uint16_t, int and int32_t, uint and uint32_t, long
and int64_t, ulong and uint64_t, for floating point types are both half, float and double, and for boolean
type bool.

For example muint4 is the alias to marray<uint32_t, 4> and mfloat16 is the alias to marray<float, 16>.

4.14.3.3. Memory layout and alignment

The elements of an instance of the marray class template as if stored in std::array<DataT, NumElements>.

4.15. Synchronization and atomics
The available features are:

• Accessor classes: Accessor classes specify acquisition and release of buffer and image data structures
to provide points at which a SYCL runtime must guarantee memory consistency.

• Atomic operations: SYCL devices support a restricted subset of C++ atomics and SYCL uses the library
syntax from the next C++ specification to make this available.

• Fences: Fence primitives are made available to order loads and stores. They are exposed through the
atomic_fence function. Fences can have acquire semantics, release semantics or both.

• Barriers: Barrier primitives are made available as a coordination mechanism for work-items within
individual groups. They are exposed through the group_barrier function.

• Hierarchical parallel dispatch: In the hierarchical parallelism model of describing computations,
work-items within a work-group may coordinate via multiple instances of the parallel_for_work_item
function call, rather than through the use of explicit work-group barrier operations.

• Device event: they are used inside SYCL kernel functions to wait for asynchronous operations within

SYCL 2020 rev 9 4.14.3.2. Aliases

Chapter 4. SYCL programming interface | 401

a SYCL kernel function to complete.

4.15.1. Barriers and fences

A group barrier or mem-fence provides memory ordering semantics over both the local address space
and global address space. A mem-fence provides control over the re-ordering of memory load and store
operations, subject to the associated memory order and memory scope, when paired with synchroniza
tion through an atomic object.

1 namespace sycl {
2
3 void atomic_fence(memory_order order, memory_scope scope);
4
5 } // namespace sycl

The effects of a call to atomic_fence depend on the value of the order parameter:

• memory_order::relaxed: No effect

• memory_order::acquire: Acquire fence

• memory_order::release: Release fence

• memory_order::acq_rel: Both an acquire fence and a release fence

• memory_order::seq_cst: A sequentially consistent acquire and release fence

A group barrier acts as both an acquire fence and a release fence: all work-items in the group execute a
release fence prior to signaling arrival at the barrier, and all work-items in the group execute an acquire
fence afterwards. A group barrier provides implicit atomic synchronization as if through an internal
atomic object, such that the acquire and release fences associated with the barrier synchronize with
each other, without an explicit atomic operation being required on an atomic object to synchronize the
fences.

4.15.2. device_event class

The SYCL device_event class encapsulates a single SYCL device event which is available only within SYCL
kernel functions and can be used to wait for asynchronous operations within a SYCL kernel function to
complete.

All member functions of the device_event class must not throw a SYCL exception.

A synopsis of the SYCL device_event class is provided below. The constructors and member functions of
the SYCL device_event class are listed in Table 149 and Table 148 respectively.

1 namespace sycl {
2 class device_event {
3
4 device_event(__unspecified__);
5
6 public:
7 void wait() noexcept;
8 };
9 } // namespace sycl

Table 148. Member functions of the SYCL device_event class

4.15.1. Barriers and fences SYCL 2020 rev 9

402 | Chapter 4. SYCL programming interface

Member function Description

void wait() noexcept
Waits for the asynchronous opera
tion associated with this SYCL
device_event to complete.

Table 149. Constructors of the device_event class

Constructor Description

device_event(___unspecified___)
Unspecified implementation-
defined constructor.

4.15.3. Atomic references

The sycl::atomic_ref class provides the ability to perform atomic operations in device code with a syn
tax similar to the C++ standard std::atomic_ref. The sycl::atomic_ref class must not be used in host
code.

Unlike std::atomic_ref, sycl::atomic_ref does not provide a default memory ordering for its operations.
Instead, the application must specify a default ordering via the DefaultOrder template parameter. This
ordering is used as a default for most of the atomic operations, but most member functions also provide
an optional parameter that allows the application to override this default. The set of supported order
ings is specific to a device, but every device is guaranteed to support at least memory_order::relaxed. If the
default order is set to memory_order::relaxed, all memory order arguments default to memo
ry_order::relaxed. If the default order is set to memory_order::acq_rel, memory order arguments default
to memory_order::acquire for load operations, memory_order::release for store operations and memo
ry_order::acq_rel for read-modify-write operations. If the default order is set to memory_order::seq_cst,
all memory order arguments default to memory_order::seq_cst.

The sycl::atomic_ref class has a template parameter DefaultScope, which allows the application to
define a default memory scope for the atomic operations. Most member functions also provide an
optional parameter that allows the application to override this default.

The sycl::atomic_ref class also has a template parameter AddressSpace, which allows the application to
make an assertion about the address space of the object of type T that it references. The default value for
this parameter is access::address_space::generic_space, which indicates that the object could be in
either the global or local address spaces. If the application knows the address space, it can set this tem
plate parameter to either access::address_space::global_space or access::address_space::local_space as
an assertion to the implementation. Specifying the address space via this template parameter may allow
the implementation to perform certain optimizations. Specifying an address space that does not match
the object’s actual address space results in undefined behavior.

The template parameter T must be one of the following types:

• int,

• unsigned int,

• long,

• unsigned long,

• long long,

• unsigned long long,

• float, or

• double.

In addition, the type T must satisfy one of the following conditions:

SYCL 2020 rev 9 4.15.3. Atomic references

Chapter 4. SYCL programming interface | 403

• sizeof(T) == 4, or

• sizeof(T) == 8 and the code containing this atomic_ref was submitted to a device that has
aspect::atomic64.

For floating-point types, the member functions of the atomic_ref class may be emulated, and they may
use a different floating-point environment from those defined by info::device::single_fp_config and
info::device::double_fp_config (i.e. floating-point atomics may use different rounding modes and may
have different exception behavior).

The atomic types are defined as follows.

 1 namespace sycl {
 2
 3 // Exposition only
 4 template <memory_order ReadModifyWriteOrder> struct memory_order_traits;
 5
 6 template <> struct memory_order_traits<memory_order::relaxed> {
 7 static constexpr memory_order read_order = memory_order::relaxed;
 8 static constexpr memory_order write_order = memory_order::relaxed;
 9 };
 10
 11 template <> struct memory_order_traits<memory_order::acq_rel> {
 12 static constexpr memory_order read_order = memory_order::acquire;
 13 static constexpr memory_order write_order = memory_order::release;
 14 };
 15
 16 template <> struct memory_order_traits<memory_order::seq_cst> {
 17 static constexpr memory_order read_order = memory_order::seq_cst;
 18 static constexpr memory_order write_order = memory_order::seq_cst;
 19 };
 20
 21 template <typename T, memory_order DefaultOrder, memory_scope DefaultScope,
 22 access::address_space AddressSpace = access::address_space::generic_space>
 23 class atomic_ref {
 24 public:
 25 using value_type = T;
 26 static constexpr size_t required_alignment = /* implementation-defined */;
 27 static constexpr bool is_always_lock_free = /* implementation-defined */;
 28 static constexpr memory_order default_read_order =
 29 memory_order_traits<DefaultOrder>::read_order;
 30 static constexpr memory_order default_write_order =
 31 memory_order_traits<DefaultOrder>::write_order;
 32 static constexpr memory_order default_read_modify_write_order = DefaultOrder;
 33 static constexpr memory_scope default_scope = DefaultScope;
 34
 35 bool is_lock_free() const noexcept;
 36
 37 explicit atomic_ref(T&);
 38 atomic_ref(const atomic_ref&) noexcept;
 39 atomic_ref& operator=(const atomic_ref&) = delete;
 40
 41 void store(T operand, memory_order order = default_write_order,
 42 memory_scope scope = default_scope) const noexcept;
 43
 44 T operator=(T desired) const noexcept;
 45

4.15.3. Atomic references SYCL 2020 rev 9

404 | Chapter 4. SYCL programming interface

 46 T load(memory_order order = default_read_order,
 47 memory_scope scope = default_scope) const noexcept;
 48
 49 operator T() const noexcept;
 50
 51 T exchange(T operand, memory_order order = default_read_modify_write_order,
 52 memory_scope scope = default_scope) const noexcept;
 53
 54 bool compare_exchange_weak(T& expected, T desired, memory_order success,
 55 memory_order failure,
 56 memory_scope scope = default_scope) const noexcept;
 57
 58 bool
 59 compare_exchange_weak(T& expected, T desired,
 60 memory_order order = default_read_modify_write_order,
 61 memory_scope scope = default_scope) const noexcept;
 62
 63 bool
 64 compare_exchange_strong(T& expected, T desired, memory_order success,
 65 memory_order failure,
 66 memory_scope scope = default_scope) const noexcept;
 67
 68 bool
 69 compare_exchange_strong(T& expected, T desired,
 70 memory_order order = default_read_modify_write_order,
 71 memory_scope scope = default_scope) const noexcept;
 72 };
 73
 74 // Partial specialization for integral types
 75 template <memory_order DefaultOrder, memory_scope DefaultScope,
 76 access::address_space AddressSpace = access::address_space::generic_space>
 77 class atomic_ref<Integral, DefaultOrder, DefaultScope, AddressSpace> {
 78
 79 /* All other members from atomic_ref<T> are available */
 80
 81 using difference_type = value_type;
 82
 83 Integral fetch_add(Integral operand,
 84 memory_order order = default_read_modify_write_order,
 85 memory_scope scope = default_scope) const noexcept;
 86
 87 Integral fetch_sub(Integral operand,
 88 memory_order order = default_read_modify_write_order,
 89 memory_scope scope = default_scope) const noexcept;
 90
 91 Integral fetch_and(Integral operand,
 92 memory_order order = default_read_modify_write_order,
 93 memory_scope scope = default_scope) const noexcept;
 94
 95 Integral fetch_or(Integral operand,
 96 memory_order order = default_read_modify_write_order,
 97 memory_scope scope = default_scope) const noexcept;
 98
 99 Integral fetch_xor(Integral operand,
100 memory_order order = default_read_modify_write_order,
101 memory_scope scope = default_scope) const noexcept;

SYCL 2020 rev 9 4.15.3. Atomic references

Chapter 4. SYCL programming interface | 405

102
103 Integral fetch_min(Integral operand,
104 memory_order order = default_read_modify_write_order,
105 memory_scope scope = default_scope) const noexcept;
106
107 Integral fetch_max(Integral operand,
108 memory_order order = default_read_modify_write_order,
109 memory_scope scope = default_scope) const noexcept;
110
111 Integral operator++(int) const noexcept;
112 Integral operator--(int) const noexcept;
113 Integral operator++() const noexcept;
114 Integral operator--() const noexcept;
115 Integral operator+=(Integral) const noexcept;
116 Integral operator-=(Integral) const noexcept;
117 Integral operator&=(Integral) const noexcept;
118 Integral operator|=(Integral) const noexcept;
119 Integral operator^=(Integral) const noexcept;
120 };
121
122 // Partial specialization for floating-point types
123 template <memory_order DefaultOrder, memory_scope DefaultScope,
124 access::address_space AddressSpace = access::address_space::generic_space>
125 class atomic_ref<Floating, DefaultOrder, DefaultScope, AddressSpace> {
126
127 /* All other members from atomic_ref<T> are available */
128
129 using difference_type = value_type;
130
131 Floating fetch_add(Floating operand,
132 memory_order order = default_read_modify_write_order,
133 memory_scope scope = default_scope) const noexcept;
134
135 Floating fetch_sub(Floating operand,
136 memory_order order = default_read_modify_write_order,
137 memory_scope scope = default_scope) const noexcept;
138
139 Floating fetch_min(Floating operand,
140 memory_order order = default_read_modify_write_order,
141 memory_scope scope = default_scope) const noexcept;
142
143 Floating fetch_max(Floating operand,
144 memory_order order = default_read_modify_write_order,
145 memory_scope scope = default_scope) const noexcept;
146
147 Floating operator+=(Floating) const noexcept;
148 Floating operator-=(Floating) const noexcept;
149 };
150
151 // Partial specialization for pointers
152 template <typename T, memory_order DefaultOrder, memory_scope DefaultScope,
153 access::address_space AddressSpace = access::address_space::generic_space>
154 class atomic_ref<T*, DefaultOrder, DefaultScope, AddressSpace> {
155
156 using value_type = T*;
157 using difference_type = ptrdiff_t;

4.15.3. Atomic references SYCL 2020 rev 9

406 | Chapter 4. SYCL programming interface

158 static constexpr size_t required_alignment = /* implementation-defined */;
159 static constexpr bool is_always_lock_free = /* implementation-defined */;
160 static constexpr memory_order default_read_order =
161 memory_order_traits<DefaultOrder>::read_order;
162 static constexpr memory_order default_write_order =
163 memory_order_traits<DefaultOrder>::write_order;
164 static constexpr memory_order default_read_modify_write_order = DefaultOrder;
165 static constexpr memory_scope default_scope = DefaultScope;
166
167 bool is_lock_free() const noexcept;
168
169 explicit atomic_ref(T*&);
170 atomic_ref(const atomic_ref&) noexcept;
171 atomic_ref& operator=(const atomic_ref&) = delete;
172
173 void store(T* operand, memory_order order = default_write_order,
174 memory_scope scope = default_scope) const noexcept;
175
176 T* operator=(T* desired) const noexcept;
177
178 T* load(memory_order order = default_read_order,
179 memory_scope scope = default_scope) const noexcept;
180
181 operator T*() const noexcept;
182
183 T* exchange(T* operand, memory_order order = default_read_modify_write_order,
184 memory_scope scope = default_scope) const noexcept;
185
186 bool compare_exchange_weak(T*& expected, T* desired, memory_order success,
187 memory_order failure,
188 memory_scope scope = default_scope) const noexcept;
189
190 bool
191 compare_exchange_weak(T*& expected, T* desired,
192 memory_order order = default_read_modify_write_order,
193 memory_scope scope = default_scope) const noexcept;
194
195 bool
196 compare_exchange_strong(T*& expected, T* desired, memory_order success,
197 memory_order failure,
198 memory_scope scope = default_scope) const noexcept;
199
200 bool
201 compare_exchange_strong(T*& expected, T* desired,
202 memory_order order = default_read_modify_write_order,
203 memory_scope scope = default_scope) const noexcept;
204
205 T* fetch_add(difference_type,
206 memory_order order = default_read_modify_write_order,
207 memory_scope scope = default_scope) const noexcept;
208
209 T* fetch_sub(difference_type,
210 memory_order order = default_read_modify_write_order,
211 memory_scope scope = default_scope) const noexcept;
212
213 T* operator++(int) const noexcept;

SYCL 2020 rev 9 4.15.3. Atomic references

Chapter 4. SYCL programming interface | 407

214 T* operator--(int) const noexcept;
215 T* operator++() const noexcept;
216 T* operator--() const noexcept;
217 T* operator+=(difference_type) const noexcept;
218 T* operator-=(difference_type) const noexcept;
219 };
220
221 } // namespace sycl

The constructors and member functions for instances of the SYCL atomic_ref class using any compatible
type are listed in Table 150 and Table 151 respectively. Additional member functions for integral, float
ing-point and pointer types are listed in Table 152, Table 153 and Table 154 respectively.

The static member required_alignment describes the minimum required alignment in bytes of an object
that can be referenced by an atomic_ref<T>, which must be at least alignof(T).

The static member is_always_lock_free is true if all atomic operations for type T are always lock-free. A
SYCL implementation is not guaranteed to support atomic operations that are not lock-free.

The static members default_read_order, default_write_order and default_read_modify_write_order reflect
the default memory order values for each type of atomic operation, consistent with the DefaultOrder
template.

The atomic operations and member functions behave as described in the C++ specification, barring the
restrictions discussed above.

Care must be taken when using atomics for work-item coordination, because work-items
are not required to provide stronger than weakly parallel forward progress guarantees.
Operations that block a work-item, such as continuously checking the value of an atomic
variable until some condition holds, or using atomic operations that are not lock-free,
may prevent overall progress.

Table 150. Constructors of the SYCL atomic_ref class template

Constructor Description

atomic_ref(T& ref)
Constructs an instance of SYCL
atomic_ref which is associated with
the reference ref.

Table 151. Member functions available on any object of type atomic_ref<T>

Member function Description

bool is_lock_free() const
Return true if the atomic opera
tions provided by this atomic_ref
are lock-free.

void store(T operand, memory_order order =
default_write_order,
 memory_scope scope = default_scope) const

Atomically stores operand to the
object referenced by this atom
ic_ref. The memory order of this
atomic operation must be memo
ry_order::relaxed, memo
ry_order::release or memo
ry_order::seq_cst. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

4.15.3. Atomic references SYCL 2020 rev 9

408 | Chapter 4. SYCL programming interface

Member function Description

T operator=(T desired) const
Equivalent to store(desired).
Returns desired.

T load(memory_order order = default_read_order,
memory_scope scope =
 default_scope) const

Atomically loads the value of the
object referenced by this atom
ic_ref. The memory order of this
atomic operation must be memo
ry_order::relaxed, memo
ry_order::acquire, or memo
ry_order::seq_cst. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

operator T() const
Equivalent to load().

T exchange(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically replaces the value of
the object referenced by this atom
ic_ref with value operand and
returns the original value of the
referenced object. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

bool compare_exchange_weak(T& expected, T desired,
memory_order success,
 memory_order failure,
 memory_scope scope =
default_scope) const

Atomically compares the value of
the object referenced by this atom
ic_ref against the value of
expected. If the values are equal,
attempts to replace the value of the
referenced object with the value of
desired; otherwise assigns the orig
inal value of the referenced object
to expected.

Returns true if the comparison
operation and replacement opera
tion were successful. The failure
memory order of this atomic oper
ation must be memo
ry_order::relaxed, memo
ry_order::acquire or memo
ry_order::seq_cst.

This function is only supported for
64-bit data types on devices that
have aspect::atomic64.

bool compare_exchange_weak(T& expected, T desired,
 memory_order order =
default_read_modify_write_order,
 memory_scope scope =
default_scope) const

Equivalent to compare_ex
change_weak(expected, desired,
order, order, scope).

SYCL 2020 rev 9 4.15.3. Atomic references

Chapter 4. SYCL programming interface | 409

Member function Description

bool compare_exchange_strong(T& expected, T desired,
memory_order success,
 memory_order failure,
 memory_scope scope =
default_scope) const

Atomically compares the value of
the object referenced by this atom
ic_ref against the value of
expected. If the values are equal,
replaces the value of the refer
enced object with the value of
desired; otherwise assigns the orig
inal value of the referenced object
to expected.

Returns true if the comparison
operation was successful. The
failure memory order of this
atomic operation must be memo
ry_order::relaxed, memo
ry_order::acquire or memo
ry_order::seq_cst.

This function is only supported for
64-bit data types on devices that
have aspect::atomic64.

bool compare_exchange_strong(
 T& expected, T desired,
 memory_order order = default_read_modify_write_order)
const

Equivalent to compare_ex
change_strong(expected, desired,
order, order, scope).

Table 152. Additional member functions available on an object of type atomic_ref<T> for integral T

Member function Description

T fetch_add(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically adds operand to the
value of the object referenced by
this atomic_ref and assigns the
result to the value of the refer
enced object. Returns the original
value of the referenced object. This
function is only supported for 64-
bit data types on devices that have
aspect::atomic64.

T operator+=(T operand) const
Equivalent to fetch_add(operand) +
operand.

T operator++(int) const
Equivalent to fetch_add(1).

T operator++() const
Equivalent to fetch_add(1) + 1.

4.15.3. Atomic references SYCL 2020 rev 9

410 | Chapter 4. SYCL programming interface

Member function Description

T fetch_sub(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically subtracts operand from
the value of the object referenced
by this atomic_ref and assigns the
result to the value of the refer
enced object. Returns the original
value of the referenced object. This
function is only supported for 64-
bit data types on devices that have
aspect::atomic64.

T operator-=(T operand) const
Equivalent to fetch_sub(operand) -
operand.

T operator--(int) const
Equivalent to fetch_sub(1).

T operator--() const
Equivalent to fetch_sub(1) - 1.

T fetch_and(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically performs a bitwise AND
between operand and the value of
the object referenced by this atom
ic_ref, and assigns the result to the
value of the referenced object.
Returns the original value of the
referenced object. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

T operator&=(T operand) const
Equivalent to fetch_and(operand) &
operand.

T fetch_or(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically performs a bitwise OR
between operand and the value of
the object referenced by this atom
ic_ref, and assigns the result to the
value of the referenced object.
Returns the original value of the
referenced object. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

T operator|=(T operand) const
Equivalent to fetch_or(operand) |
operand.

SYCL 2020 rev 9 4.15.3. Atomic references

Chapter 4. SYCL programming interface | 411

Member function Description

T fetch_xor(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically performs a bitwise XOR
between operand and the value of
the object referenced by this atom
ic_ref, and assigns the result to the
value of the referenced object.
Returns the original value of the
referenced object. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

T operator^=(T operand) const
Equivalent to fetch_xor(operand) ^
operand.

T fetch_min(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically computes the minimum
of operand and the value of the
object referenced by this atom
ic_ref, and assigns the result to the
value of the referenced object.
Returns the original value of the
referenced object. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

T fetch_max(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically computes the maxi
mum of operand and the value of
the object referenced by this atom
ic_ref, and assigns the result to the
value of the referenced object.
Returns the original value of the
referenced object. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

Table 153. Additional member functions available on an object of type atomic_ref<T> for floating-point T

Member function Description

T fetch_add(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically adds operand to the
value of the object referenced by
this atomic_ref and assigns the
result to the value of the refer
enced object. Returns the original
value of the referenced object. This
function is only supported for 64-
bit data types on devices that have
aspect::atomic64.

T operator+=(T operand) const
Equivalent to fetch_add(operand) +
operand.

4.15.3. Atomic references SYCL 2020 rev 9

412 | Chapter 4. SYCL programming interface

Member function Description

T fetch_sub(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically subtracts operand from
the value of the object referenced
by this atomic_ref and assigns the
result to the value of the refer
enced object. Returns the original
value of the referenced object. This
function is only supported for 64-
bit data types on devices that have
aspect::atomic64.

T operator-=(T operand) const
Equivalent to fetch_sub(operand) -
operand.

T fetch_min(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically computes the minimum
of operand and the value of the
object referenced by this atom
ic_ref, and assigns the result to the
value of the referenced object.
Returns the original value of the
referenced object. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

T fetch_max(T operand, memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically computes the maxi
mum of operand and the value of
the object referenced by this atom
ic_ref, and assigns the result to the
value of the referenced object.
Returns the original value of the
referenced object. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

Table 154. Additional member functions available on an object of type atomic_ref<T*>

Member function Description

T* fetch_add(ptrdiff_t operand,
 memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically adds operand to the
value of the object referenced by
this atomic_ref and assigns the
result to the value of the refer
enced object. Returns the original
value of the referenced object. This
function is only supported for 64-
bit pointers on devices that have
aspect::atomic64.

T* operator+=(ptrdiff_t operand) const
Equivalent to fetch_add(operand) +
operand.

T* operator++(int) const
Equivalent to fetch_add(1).

SYCL 2020 rev 9 4.15.3. Atomic references

Chapter 4. SYCL programming interface | 413

Member function Description

T* operator++() const
Equivalent to fetch_add(1) + 1.

T* fetch_sub(ptrdiff_t operand,
 memory_order order =
default_read_modify_write_order,
 memory_scope scope = default_scope) const

Atomically subtracts operand from
the value of the object referenced
by this atomic_ref and assigns the
result to the value of the refer
enced object. Returns the original
value of the referenced object. This
function is only supported for 64-
bit pointers on devices that have
aspect::atomic64.

T* operator-=(ptrdiff_t operand) const
Equivalent to fetch_sub(operand) -
operand.

T* operator--(int) const
Equivalent to fetch_sub(1).

T* operator--() const
Equivalent to fetch_sub(1) - 1.

4.15.4. Atomic types (deprecated)

The atomic types and operations on atomic types provided by SYCL 1.2.1 are deprecated in SYCL 2020,
and will be removed in a future version of SYCL.

The constructors and member functions for the sycl::atomic class are listed in Table 155 and Table 156
respectively.

 1 namespace sycl {
 2
 3 /* Deprecated in SYCL 2020 */
 4 template <typename T, access::address_space AddressSpace =
 5 access::address_space::global_space>
 6 class atomic {
 7 public:
 8 template <typename PointerT, access::decorated IsDecorated>
 9 atomic(multi_ptr<PointerT, AddressSpace, IsDecorated> ptr);
10
11 void store(T operand, memory_order memoryOrder = memory_order::relaxed);
12
13 T load(memory_order memoryOrder = memory_order::relaxed) const;
14
15 T exchange(T operand, memory_order memoryOrder = memory_order::relaxed);
16
17 /* Available only when: T != float */
18 bool compare_exchange_strong(
19 T& expected, T desired,
20 memory_order successMemoryOrder = memory_order::relaxed,
21 memory_order failMemoryOrder = memory_order::relaxed);
22
23 /* Available only when: T != float */
24 T fetch_add(T operand, memory_order memoryOrder = memory_order::relaxed);

4.15.4. Atomic types (deprecated) SYCL 2020 rev 9

414 | Chapter 4. SYCL programming interface

25
26 /* Available only when: T != float */
27 T fetch_sub(T operand, memory_order memoryOrder = memory_order::relaxed);
28
29 /* Available only when: T != float */
30 T fetch_and(T operand, memory_order memoryOrder = memory_order::relaxed);
31
32 /* Available only when: T != float */
33 T fetch_or(T operand, memory_order memoryOrder = memory_order::relaxed);
34
35 /* Available only when: T != float */
36 T fetch_xor(T operand, memory_order memoryOrder = memory_order::relaxed);
37
38 /* Available only when: T != float */
39 T fetch_min(T operand, memory_order memoryOrder = memory_order::relaxed);
40
41 /* Available only when: T != float */
42 T fetch_max(T operand, memory_order memoryOrder = memory_order::relaxed);
43 };
44
45 } // namespace sycl

The global functions are as follows and described in Table 157.

 1 namespace sycl {
 2 /* Deprecated in SYCL 2020 */
 3 template <typename T, access::address_space AddressSpace>
 4 void atomic_store(atomic<T, AddressSpace> object, T operand,
 5 memory_order memoryOrder = memory_order::relaxed);
 6
 7 /* Deprecated in SYCL 2020 */
 8 template <typename T, access::address_space AddressSpace>
 9 T atomic_load(atomic<T, AddressSpace> object,
10 memory_order memoryOrder = memory_order::relaxed);
11
12 /* Deprecated in SYCL 2020 */
13 template <typename T, access::address_space AddressSpace>
14 T atomic_exchange(atomic<T, AddressSpace> object, T operand,
15 memory_order memoryOrder = memory_order::relaxed);
16
17 /* Deprecated in SYCL 2020 */
18 template <typename T, access::address_space AddressSpace>
19 bool atomic_compare_exchange_strong(
20 atomic<T, AddressSpace> object, T& expected, T desired,
21 memory_order successMemoryOrder = memory_order::relaxed,
22 memory_order failMemoryOrder = memory_order::relaxed);
23
24 /* Deprecated in SYCL 2020 */
25 template <typename T, access::address_space AddressSpace>
26 T atomic_fetch_add(atomic<T, AddressSpace> object, T operand,
27 memory_order memoryOrder = memory_order::relaxed);
28
29 /* Deprecated in SYCL 2020 */
30 template <typename T, access::address_space AddressSpace>
31 T atomic_fetch_sub(atomic<T, AddressSpace> object, T operand,

SYCL 2020 rev 9 4.15.4. Atomic types (deprecated)

Chapter 4. SYCL programming interface | 415

32 memory_order memoryOrder = memory_order::relaxed);
33
34 /* Deprecated in SYCL 2020 */
35 template <typename T, access::address_space AddressSpace>
36 T atomic_fetch_and(atomic<T, AddressSpace> object, T operand,
37 memory_order memoryOrder = memory_order::relaxed);
38
39 /* Deprecated in SYCL 2020 */
40 template <typename T, access::address_space AddressSpace>
41 T atomic_fetch_or(atomic<T, AddressSpace> object, T operand,
42 memory_order memoryOrder = memory_order::relaxed);
43
44 /* Deprecated in SYCL 2020 */
45 template <typename T, access::address_space AddressSpace>
46 T atomic_fetch_xor(atomic<T, AddressSpace> object, T operand,
47 memory_order memoryOrder = memory_order::relaxed);
48
49 /* Deprecated in SYCL 2020 */
50 template <typename T, access::address_space AddressSpace>
51 T atomic_fetch_min(atomic<T, AddressSpace> object, T operand,
52 memory_order memoryOrder = memory_order::relaxed);
53
54 /* Deprecated in SYCL 2020 */
55 template <typename T, access::address_space AddressSpace>
56 T atomic_fetch_max(atomic<T, AddressSpace> object, T operand,
57 memory_order memoryOrder = memory_order::relaxed);
58 } // namespace sycl

Table 155. Constructors of the sycl::atomic class template

Constructor Description

template <typename pointerT> atomic(multi_ptr<pointerT,
AddressSpace> ptr)

Deprecated in SYCL 2020.

Permitted data types for pointerT
are any valid scalar data type
which is the same size in bytes as T.
Constructs an instance of SYCL
atomic which is associated with the
pointer ptr, converted to a pointer
of data type T.

Table 156. Member functions available on an object of type sycl::atomic<T>

Member function Description

void store(T operand, memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Atomically stores the value operand
at the address of the multi_ptr
associated with this SYCL atomic.
The memory order of this atomic
operation must be memo
ry_order::relaxed. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

4.15.4. Atomic types (deprecated) SYCL 2020 rev 9

416 | Chapter 4. SYCL programming interface

Member function Description

T load(memory_order memoryOrder = memory_order::relaxed)
const

Deprecated in SYCL 2020.

Atomically loads the value at the
address of the multi_ptr associated
with this SYCL atomic. Returns the
value at the address of the multi
_ptr associated with this SYCL
atomic before the call. The memory
order of this atomic operation
must be memory_order::relaxed.
This function is only supported for
64-bit data types on devices that
have aspect::atomic64.

T exchange(T operand, memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Atomically replaces the value at
the address of the multi_ptr associ
ated with this SYCL atomic with
value operand and returns the
value at the address of the multi
_ptr associated with this SYCL
atomic before the call. The memory
order of this atomic operation
must be memory_order::relaxed.
This function is only supported for
64-bit data types on devices that
have aspect::atomic64.

bool compare_exchange_strong(
 T& expected, T desired,
 memory_order successMemoryOrder = memory_order::
relaxed,
 memory_order failMemoryOrder = memory_order::relaxed)

Deprecated in SYCL 2020.

Available only when: T != float.

Atomically compares the value at
the address of the multi_ptr associ
ated with this SYCL atomic against
the value of expected. If the values
are equal, replaces value at
address of the multi_ptr associated
with this SYCL atomic with the
value of desired; otherwise assigns
the original value at the address of
the multi_ptr associated with this
SYCL atomic to expected. Returns
true if the comparison operation
was successful. The memory order
of this atomic operation must be
memory_order::relaxed for both suc
cess and fail. This function is only
supported for 64-bit data types on
devices that have aspect::atomic64.

SYCL 2020 rev 9 4.15.4. Atomic types (deprecated)

Chapter 4. SYCL programming interface | 417

Member function Description

T fetch_add(T operand, memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Available only when: T != float.

Atomically adds the value operand
to the value at the address of the
multi_ptr associated with this SYCL
atomic and assigns the result to the
value at the address of the multi
_ptr associated with this SYCL
atomic. Returns the value at the
address of the multi_ptr associated
with this SYCL atomic before the
call. The memory order of this
atomic operation must be memo
ry_order::relaxed. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

T fetch_sub(T operand, memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Available only when: T != float.

Atomically subtracts the value
operand to the value at the address
of the multi_ptr associated with
this SYCL atomic and assigns the
result to the value at the address of
the multi_ptr associated with this
SYCL atomic. Returns the value at
the address of the multi_ptr associ
ated with this SYCL atomic before
the call. The memory order of this
atomic operation must be memo
ry_order::relaxed. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

4.15.4. Atomic types (deprecated) SYCL 2020 rev 9

418 | Chapter 4. SYCL programming interface

Member function Description

T fetch_and(T operand, memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Available only when: T != float.

Atomically performs a bitwise AND
between the value operand and the
value at the address of the multi
_ptr associated with this SYCL
atomic and assigns the result to the
value at the address of the multi
_ptr associated with this SYCL
atomic. Returns the value at the
address of the multi_ptr associated
with this SYCL atomic before the
call. The memory order of this
atomic operation must be memo
ry_order::relaxed. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

T fetch_or(T operand, memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Available only when: T != float.

Atomically performs a bitwise OR
between the value operand and the
value at the address of the multi
_ptr associated with this SYCL
atomic and assigns the result to the
value at the address of the multi
_ptr associated with this SYCL
atomic. Returns the value at the
address of the multi_ptr associated
with this SYCL atomic before the
call. The memory order of this
atomic operation must be memo
ry_order::relaxed. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

SYCL 2020 rev 9 4.15.4. Atomic types (deprecated)

Chapter 4. SYCL programming interface | 419

Member function Description

T fetch_xor(T operand, memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Available only when: T != float.

Atomically performs a bitwise XOR
between the value operand and the
value at the address of the multi
_ptr associated with this SYCL
atomic and assigns the result to the
value at the address of the multi
_ptr associated with this SYCL
atomic. Returns the value at the
address of the multi_ptr associated
with this SYCL atomic before the
call. The memory order of this
atomic operation must be memo
ry_order::relaxed. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

T fetch_min(T operand, memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Available only when: T != float.

Atomically computes the minimum
of the value operand and the value
at the address of the multi_ptr
associated with this SYCL atomic
and assigns the result to the value
at the address of the multi_ptr
associated with this SYCL atomic.
Returns the value at the address of
the multi_ptr associated with this
SYCL atomic before the call. The
memory order of this atomic oper
ation must be memo
ry_order::relaxed. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

4.15.4. Atomic types (deprecated) SYCL 2020 rev 9

420 | Chapter 4. SYCL programming interface

Member function Description

T fetch_max(T operand, memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Available only when: T != float.

Atomically computes the maxi
mum of the value operand and the
value at the address of the multi
_ptr associated with this SYCL
atomic and assigns the result to the
value at the address of the multi
_ptr associated with this SYCL
atomic. Returns the value at the
address of the multi_ptr associated
with this SYCL atomic before the
call. The memory order of this
atomic operation must be memo
ry_order::relaxed. This function is
only supported for 64-bit data
types on devices that have
aspect::atomic64.

Table 157. Global functions available on atomic types

Functions Description

template <typename T, access::address_space AddressSpace>
T atomic_load(atomic<T, AddressSpace> object,
 memory_order memoryOrder = memory_order
::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling
object.load(memoryOrder).

template <typename T, access::address_space AddressSpace>
void atomic_store(atomic<T, AddressSpace> object, T
operand,
 memory_order memoryOrder = memory_order
::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling
object.store(operand, memory
Order).

template <typename T, access::address_space AddressSpace>
T atomic_exchange(atomic<T, AddressSpace> object, T
operand,
 memory_order memoryOrder = memory_order
::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling
object.exchange(operand, memory
Order).

template <typename T, access::address_space AddressSpace>
bool atomic_compare_exchange_strong(
 atomic<T, AddressSpace> object, T& expected, T desired,
 memory_order successMemoryOrder = memory_order::relaxed
memory_order
 failMemoryOrder = memory_order::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling object.com
pare_exchange_strong(expected,
desired, successMemoryOrder,
failMemoryOrders).

SYCL 2020 rev 9 4.15.4. Atomic types (deprecated)

Chapter 4. SYCL programming interface | 421

Functions Description

template <typename T, access::address_space AddressSpace>
T atomic_fetch_add(atomic<T, AddressSpace> object, T
operand,
 memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling
object.fetch_add(operand, memory
Order).

template <typename T, access::address_space AddressSpace>
T atomic_fetch_sub(atomic<T, AddressSpace> object, T
operand,
 memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling
object.fetch_sub(operand, memory
Order).

template <typename T, access::address_space AddressSpace>
T atomic_fetch_and(atomic<T> operand, T object,
 memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling
object.fetch_add(operand, memory
Order).

template <typename T, access::address_space AddressSpace>
T atomic_fetch_or(atomic<T, AddressSpace> object, T
operand,
 memory_order memoryOrder = memory_order
::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling
object.fetch_or(operand, memory
Order).

template <typename T, access::address_space AddressSpace>
T atomic_fetch_xor(atomic<T, AddressSpace> object, T
operand,
 memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling
object.fetch_xor(operand, memory
Order).

template <typename T, access::address_space AddressSpace>
T atomic_fetch_min(atomic<T, AddressSpace> object, T
operand,
 memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling
object.fetch_min(operand, memory
Order).

template <typename T, access::address_space AddressSpace>
T atomic_fetch_max(atomic<T, AddressSpace> object, T
operand,
 memory_order memoryOrder =
memory_order::relaxed)

Deprecated in SYCL 2020.

Equivalent to calling
object.fetch_max(operand, memory
Order).

4.15.5. Interaction with host code

When a kernel runs on a device that has either aspect::usm_atomic_host_allocations or
aspect::usm_atomic_shared_allocations, the device code and the host code can concurrently access the
same memory. This has a ramification on the atomic operations because it is possible for device code
and host code to perform atomic operations on the same object M in this shared memory. It also has a

4.15.5. Interaction with host code SYCL 2020 rev 9

422 | Chapter 4. SYCL programming interface

ramification on the fence operations because the C++ core language defines the semantics of these fence
operations in relation to atomic operations on some shared object M. The following paragraphs specify
the guarantees that the SYCL implementation provides when the application performs atomic or fence
operations in device code using the memory scope memory_scope::system.

Atomic operations in device code using sycl::atomic_ref on an object M are guaranteed to be atomic
with respect to atomic operations in host code using std::atomic_ref on that same object M.

Fence operations in device code using sycl::atomic_fence synchronize with fence operations in host
code using std::atomic_thread_fence if the fence operations shared the same atomic object M and follow
the rules for fence synchronization defined in the C++ core language.

Fence operations in device code using sycl::atomic_fence synchronize with atomic operations in host
code using std::atomic_ref if the operations share the same atomic object M and follow the rules for
fence synchronization defined in the C++ core language.

Atomic operations in device code using sycl::atomic_ref synchronize with fence operations in host code
using std::atomic_thread_fence if the operations share the same atomic object M and follow the rules for
fence synchronization defined in the C++ core language.

4.16. Stream class
The SYCL stream class is a buffered output stream that allows outputting the values of built-in, vector and
SYCL types to the console. The implementation of how values are streamed to the console is left as an
implementation detail.

The way in which values are output by an instance of the SYCL stream class can also be altered using a
range of manipulators.

There are two limits that are relevant for the stream class. The totalBufferSize limit specifies the maxi
mum size of the overall character stream that can be output during a kernel invocation, and the
workItemBufferSize limit specifies the maximum size of the character stream that can be output within a
work-item before a flush must be performed. Both of these limits are specified in bytes. The totalBuffer
Size limit must be sufficient to contain the characters output by all stream statements during execution
of a kernel invocation (the aggregate of outputs from all work-items), and the workItemBufferSize limit
must be sufficient to contain the characters output within a work-item between stream flush operations.

If the totalBufferSize or workItemBufferSize limits are exceeded, it is implementation-defined whether
the streamed characters exceeding the limit are output, or silently ignored/discarded, and if output it is
implementation-defined whether those extra characters exceeding the workItemBufferSize limit count
toward the totalBufferSize limit. Regardless of this implementation defined behavior of output exceed
ing the limits, no undefined or erroneous behavior is permitted of an implementation when the limits
are exceeded. Unused characters within workItemBufferSize (any portion of the workItemBufferSize
capacity that has not been used at the time of a stream flush) do not count toward the totalBufferSize
limit, in that only characters flushed count toward the totalBufferSize limit.

The SYCL stream class provides the common reference semantics (see Section 4.5.2).

4.16.1. Stream class interface

The constructors and member functions of the SYCL stream class are listed in Table 160, Table 161, and
Table 162 respectively. The additional common special member functions and common member func
tions are listed in Table 7 and Table 8, respectively.

The operand types that are supported by the SYCL stream class operator<<() operator are listed in Table
158.

SYCL 2020 rev 9 4.16. Stream class

Chapter 4. SYCL programming interface | 423

The manipulators that are supported by the SYCL stream class operator<<() operator are listed in Table
159.

 1 namespace sycl {
 2
 3 enum class stream_manipulator : /* unspecified */ {
 4 flush,
 5 dec,
 6 hex,
 7 oct,
 8 noshowbase,
 9 showbase,
10 noshowpos,
11 showpos,
12 endl,
13 fixed,
14 scientific,
15 hexfloat,
16 defaultfloat
17 };
18
19 const stream_manipulator flush = stream_manipulator::flush;
20
21 const stream_manipulator dec = stream_manipulator::dec;
22
23 const stream_manipulator hex = stream_manipulator::hex;
24
25 const stream_manipulator oct = stream_manipulator::oct;
26
27 const stream_manipulator noshowbase = stream_manipulator::noshowbase;
28
29 const stream_manipulator showbase = stream_manipulator::showbase;
30
31 const stream_manipulator noshowpos = stream_manipulator::noshowpos;
32
33 const stream_manipulator showpos = stream_manipulator::showpos;
34
35 const stream_manipulator endl = stream_manipulator::endl;
36
37 const stream_manipulator fixed = stream_manipulator::fixed;
38
39 const stream_manipulator scientific = stream_manipulator::scientific;
40
41 const stream_manipulator hexfloat = stream_manipulator::hexfloat;
42
43 const stream_manipulator defaultfloat = stream_manipulator::defaultfloat;
44
45 __precision_manipulator__ setprecision(int precision);
46
47 __width_manipulator__ setw(int width);
48
49 class stream {
50 public:
51 stream(size_t totalBufferSize, size_t workItemBufferSize,
52 handler& cgh, const property_list& propList = {});
53

4.16.1. Stream class interface SYCL 2020 rev 9

424 | Chapter 4. SYCL programming interface

54 /* -- common interface members -- */
55
56 /* -- property interface members -- */
57
58 size_t size() const noexcept;
59
60 // Deprecated
61 size_t get_size() const;
62
63 size_t get_work_item_buffer_size() const;
64
65 /* get_max_statement_size() has the same functionality as
66 get_work_item_buffer_size(), and is provided for backward compatibility.
67 get_max_statement_size() is a deprecated query. */
68 size_t get_max_statement_size() const;
69 };
70
71 template <typename T> const stream& operator<<(const stream& os, const T& rhs);
72
73 } // namespace sycl

Table 158. Operand types supported by the stream class

Stream operand type Description

char, signed char, unsigned char, int, unsigned int, short,
unsigned short,
long int, unsigned long int, long long int, unsigned long
long int

Outputs the value as a stream of
characters.

float, double, half
Outputs the value according to the
precision of the current statement
as a stream of characters.

char*, const char*
Outputs the string.

T*, const T*, multi_ptr
Outputs the address of the pointer
as a stream of characters.

vec
Outputs the value of each compo
nent of the vector as a stream of
characters.

id, range, item, nd_item, group, nd_range, h_item
Outputs the value of each compo
nent of each id or range as a
stream of characters.

Table 159. Manipulators supported by the stream class

SYCL 2020 rev 9 4.16.1. Stream class interface

Chapter 4. SYCL programming interface | 425

Stream manipulator Description

flush
Triggers a flush operation, which
copies the contents of the work-
item stream buffer to the global
stream buffer, and then empties
the work-item stream buffer. After
a flush, the full workItemBufferSize
is available again for subsequent
streaming within the work-item.

endl
Outputs a new-line character and
then triggers a flush operation.

dec
Outputs any subsequent values in
the current statement in decimal
base.

hex
Outputs any subsequent values in
the current statement in hexadeci
mal base.

oct
Outputs any subsequent values in
the current statement in octal base.

noshowbase
Outputs any subsequent values
without the base prefix.

showbase
Outputs any subsequent values
with the base prefix.

noshowpos
Outputs any subsequent values
without a plus sign if the value is
positive.

showpos
Outputs any subsequent values
with a plus sign if the value is posi
tive.

setw(int)
Sets the field width of any subse
quent values in the current state
ment.

setprecision(int)
Sets the precision of any subse
quent values in the current state
ment.

fixed
Outputs any subsequent floating-
point values in the current state
ment in fixed notation.

scientific
Outputs any subsequent floating-
point values in the current state
ment in scientific notation.

hexfloat
Outputs any subsequent floating-
point values in the current state
ment in hexadecimal notation.

4.16.1. Stream class interface SYCL 2020 rev 9

426 | Chapter 4. SYCL programming interface

Stream manipulator Description

defaultfloat
Outputs any subsequent floating-
point values in the current state
ment in the default notation.

Table 160. Constructors of the stream class

Constructor Description

stream(size_t totalBufferSize, size_t workItemBufferSize,
handler& cgh,
 const property_list& propList = {})

Constructs a SYCL stream instance
associated with the command
group specified by cgh, with a max
imum buffer size in bytes per ker
nel invocation specified by the
parameter totalBufferSize, and a
maximum stream size that can be
buffered by a work-item between
stream flushes specified by the
parameter workItemBufferSize.
Zero or more properties can be
provided to the constructed SYCL
stream via an instance of proper
ty_list.

Table 161. Member functions of the stream class

Member function Description

size_t size() const noexcept
Returns the total buffer size, in
bytes.

size_t get_size() const
Returns the same value as size().
Deprecated.

size_t get_work_item_buffer_size() const
Returns the buffer size per work-
item, in bytes.

size_t get_max_statement_size() const
Deprecated query with same func
tionality as get_work_item_buffer_
size().

Table 162. Global functions of the stream class

Global function Description

template <typename T> const stream& operator<<(const
stream& os, const T& rhs)

Outputs any valid values (see Table
158) as a stream of characters and
applies any valid manipulator (see
Table 159) to the current stream.

4.16.2. Output

An instance of the SYCL stream class is required to output everything that is streamed to it via the opera
tor<<() operator before a flush operation (that doesn’t exceed the workItemBufferSize or totalBufferSize
limits) within a SYCL kernel function by the time that the event associated with a command group sub
mission enters the completed state. The point at which the flush operation is performed is implementa
tion-defined.

SYCL 2020 rev 9 4.16.2. Output

Chapter 4. SYCL programming interface | 427

The SYCL stream class is required to output the content of each stream, between flushes (up to workItem
BufferSize), without mixing with content from the same stream in other work-items. There are no other
output order guarantees between work-items or between streams. The stream flush operation therefore
delimits the unit of output that is guaranteed to be displayed without mixing with other work-items,
with respect to a single stream.

4.16.3. Implicit flush

There is guaranteed to be an implicit flush of each stream used by a kernel, at the end of kernel execu
tion, from the perspective of each work-item. There is also an implicit flush when the endl stream
manipulator is executed. No other implicit flushes are permitted in an implementation.

4.16.4. Performance note

The usage of the stream class is designed for debugging purposes and is therefore not recommended for
performance critical applications.

4.17. SYCL built-in functions for SYCL host and device
SYCL kernels may execute on any SYCL device, which requires the functions used in the kernels to be
compiled and linked for both device and host. In the SYCL programming model, the built-ins are avail
able for the entire SYCL application within the sycl namespace, although their semantics may be differ
ent. This section follows the OpenCL 1.2 specification document ch. 6.12 - except that for SYCL, all func
tions are located within the sycl namespace - and describes the behavior of these functions for SYCL
host and device. The expected precision and any other semantic requirements are defined in the back
end specification.

The SYCL built-in functions are available throughout the SYCL application, and depending on where they
execute, they are either implemented using their host implementation or the device implementation.
The SYCL system guarantees that all of the built-in functions fulfill the same requirements for both host
and device.

4.17.1. Function objects

SYCL provides a number of function objects in the sycl namespace on host and device. All function
objects obey C++ conversion and promotion rules. Each function object is additionally specialized for
void as a transparent function object that deduces its parameter types and return type.

 1 namespace sycl {
 2
 3 template <typename T = void> struct plus {
 4 T operator()(const T& x, const T& y) const;
 5 };
 6
 7 template <typename T = void> struct multiplies {
 8 T operator()(const T& x, const T& y) const;
 9 };
10
11 template <typename T = void> struct bit_and {
12 T operator()(const T& x, const T& y) const;
13 };
14
15 template <typename T = void> struct bit_or {
16 T operator()(const T& x, const T& y) const;
17 };

4.16.3. Implicit flush SYCL 2020 rev 9

428 | Chapter 4. SYCL programming interface

18
19 template <typename T = void> struct bit_xor {
20 T operator()(const T& x, const T& y) const;
21 };
22
23 template <typename T = void> struct logical_and {
24 T operator()(const T& x, const T& y) const;
25 };
26
27 template <typename T = void> struct logical_or {
28 T operator()(const T& x, const T& y) const;
29 };
30
31 template <typename T = void> struct minimum {
32 T operator()(const T& x, const T& y) const;
33 };
34
35 template <typename T = void> struct maximum {
36 T operator()(const T& x, const T& y) const;
37 };
38
39 } // namespace sycl

Table 163. Member functions for the plus function object

Member function Description

T operator()(const T& x, const T& y) const
Returns the sum of its arguments,
equivalent to x + y.

Table 164. Member functions for the multiplies function object

Member function Description

T operator()(const T& x, const T& y) const
Returns the product of its argu
ments, equivalent to x * y.

Table 165. Member functions for the bit_and function object

Member function Description

T operator()(const T& x, const T& y) const
Returns the bitwise AND of its
arguments, equivalent to x & y.

Table 166. Member functions for the bit_or function object

Member function Description

T operator()(const T& x, const T& y) const
Returns the bitwise OR of its argu
ments, equivalent to x | y.

Table 167. Member functions for the bit_xor function object

Member function Description

T operator()(const T& x, const T& y) const
Returns the bitwise XOR of its
arguments, equivalent to x ^ y.

Table 168. Member functions for the logical_and function object

SYCL 2020 rev 9 4.17.1. Function objects

Chapter 4. SYCL programming interface | 429

Member function Description

T operator()(const T& x, const T& y) const
Returns the logical AND of its argu
ments, equivalent to x && y.

Table 169. Member functions for the logical_or function object

Member function Description

T operator()(const T& x, const T& y) const
Returns the logical OR of its argu
ments, equivalent to x || y.

Table 170. Member functions for the minimum function object

Member function Description

T operator()(const T& x, const T& y) const
Returns the smaller value. Returns
the first argument when the argu
ments are equivalent.

Table 171. Member functions for the maximum function object

Member function Description

T operator()(const T& x, const T& y) const
Returns the larger value. Returns
the first argument when the argu
ments are equivalent.

4.17.2. Group functions

SYCL provides a number of functions that expose functionality tied to groups of work-items (such as
group barriers and collective operations). These group functions act as synchronization points and must
be encountered in converged control flow by all work-items in the group.

The behavior of every group function is as follows:

• Each work-item in the group arrives at the synchronization point associated with the group function,
then blocks until any operation(s) specified by the group function have completed.

• Once all work-items in the group have arrived, an unspecified subset of those work-items cooperate
to execute any operation(s) specified by the group function.

• When the set of cooperating work-items have completed execution of all operation(s) specified by the
group function, all work-items blocked on the synchronization point associated with the group func
tion are unblocked.

The completion of the operation(s) specified by the group function happens before the returns from all
calls that were unblocked.

The behavior of group functions is analogous to the behavior of the C++20 std::bar
rier::arrive_and_wait function, for an implementation-defined barrier object with an
expected count equal to the number of work-items in the group. Any operation(s) per
formed by the group function behave as if they were defined in the barrier’s completion
function and were invoked as part of the barrier’s phase completion step.

If one work-item in a group calls a group function, then all work-items in that group must call exactly
the same function under the same set of conditions --- calling the same function under different condi
tions (e.g. in different iterations of a loop, or different branches of a conditional statement) results in
undefined behavior. Additionally, restrictions may be placed on the arguments passed to each function
in order to ensure that all work-items in the group agree on the operation that is being performed. Any

4.17.2. Group functions SYCL 2020 rev 9

430 | Chapter 4. SYCL programming interface

such restrictions on the arguments passed to a function are defined within the descriptions of those
functions. Violating these restrictions results in undefined behavior.

All group functions are supported for the fundamental scalar types supported by SYCL (see Table 172)
and instances of the SYCL vec and marray classes.

Using a group function inside of a kernel may introduce additional limits on the resources available to
user code inside the same kernel. The behavior of these limits is implementation-defined, but must be
reflected by calls to kernel querying functions (such as kernel::get_info) as described in Section
4.11.13.1.

It is undefined behavior for any group function to be invoked within a parallel_for_work_group or paral
lel_for_work_item context.

4.17.2.1. Group type trait

1 namespace sycl {
2 template <class T> struct is_group;
3
4 template <class T> inline constexpr bool is_group_v = is_group<T>::value;
5 } // namespace sycl

The is_group type trait is used to determine which types of groups are supported by group functions, and
to control when group functions participate in overload resolution.

is_group<T> inherits from std::true_type if T is the type of a standard SYCL group (group or sub_group)
and it inherits from std::false_type otherwise. A SYCL implementation may introduce additional spe
cializations of is_group<T> for implementation-defined group types, if the interface of those types sup
ports all member functions and static members common to the group and sub_group classes.

4.17.2.2. group_broadcast

The group_broadcast function communicates a value held by one work-item to all other work-items in the
group.

1 template <typename Group, typename T> T group_broadcast(Group g, T x); // (1)
2
3 template <typename Group, typename T>
4 T group_broadcast(Group g, T x, Group::linear_id_type local_linear_id); // (2)
5
6 template <typename Group, typename T>
7 T group_broadcast(Group g, T x, Group::id_type local_id); // (3)

1. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true and T is a trivially copy
able type.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the broadcast operation.

Synchronization: The call to this function in each work-item happens before the broadcast operation
begins execution. The completion of the broadcast operation happens before any work-item blocking
on the same synchronization point is unblocked.

Returns: The value of x from the work-item with the smallest linear id within group g.

2. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true and T is a trivially copy

SYCL 2020 rev 9 4.17.2.1. Group type trait

Chapter 4. SYCL programming interface | 431

able type.

Preconditions: local_linear_id must be the same for all work-items in the group and must be in the
range [0, get_local_linear_range()).

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the broadcast operation.

Synchronization: The call to this function in each work-item happens before the broadcast operation
begins execution. The completion of the broadcast operation happens before any work-item blocking
on the same synchronization point is unblocked.

Returns: The value of x from the work-item with the specified linear id within group g.

3. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true and T is a trivially copy
able type.

Preconditions: local_id must be the same for all work-items in the group, and its dimensionality must
match the dimensionality of the group. The value of local_id in each dimension must be greater than
or equal to 0 and less than the value of get_local_range() in the same dimension.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the broadcast operation.

Synchronization: The call to this function in each work-item happens before the broadcast operation
begins execution. The completion of the broadcast operation happens before any work-item blocking
on the same synchronization point is unblocked.

Returns: The value of x from the work-item with the specified id within group g.

4.17.2.3. group_barrier

The group_barrier function is a coordination mechanism for all work-items in a group.

1 template <typename Group>
2 void group_barrier(Group g,
3 memory_scope scope = Group::fence_scope); // (1)

1. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true.

Effects: Blocks until all work-items in group g have reached this synchronization point.

Synchronization: The call to group_barrier in each work-item happens before any work-item blocking
on the same synchronization point is unblocked. Synchronization operations used in an implementa
tion of group_barrier must respect the memory scope specified by the scope parameter, which
defaults to the narrowest scope including all work-items in group g (as reported by Group::fence_s
cope).

4.17.3. Group algorithms library

SYCL provides an algorithms library based on the functions described in Section 28 of the C++17 specifi
cation. The first argument to each function is a group, and data ranges can be described using pointers,
iterators or instances of the multi_ptr class. The functions defined in this section are free functions avail
able in the sycl namespace.

Any restrictions from the standard algorithms library apply. Some of the functions in the SYCL algo
rithms library introduce additional restrictions in order to maximize portability across different devices
and to minimize the chances of encountering unexpected behavior.

4.17.2.3. group_barrier SYCL 2020 rev 9

432 | Chapter 4. SYCL programming interface

All algorithms are supported for the fundamental scalar types supported by SYCL (see Table 172) and
instances of the SYCL vec and marray classes.

The group argument to a SYCL algorithm denotes that it should be performed collaboratively by the
work-items in the specified group. All algorithms act as group functions (as defined in Section 4.17.2),
inheriting all restrictions of group functions. Unless the description of a function says otherwise, how
the elements of a range are processed by the work-items in a group is undefined.

SYCL provides separate functions for algorithms which use the work-items in a group to execute an
operation over a range of iterators and algorithms which are applied to data held directly by the work-
items in a group. An example of the usage of these functions is given below:

 1 buffer<int> inputBuf { 1024 };
 2 buffer<int> outputBuf { 2 };
 3 {
 4 // Initialize buffer on the host with 0, 1, 2, 3, ..., 1023
 5 host_accessor a { inputBuf };
 6 std::iota(a.begin(), a.end(), 0);
 7 }
 8
 9 myQueue.submit([&](handler& cgh) {
10 accessor inputValues { inputBuf, cgh, read_only };
11 accessor outputValues { outputBuf, cgh, write_only, no_init };
12
13 cgh.parallel_for(nd_range<1>(range<1>(16), range<1>(16)), [=](nd_item<1> it) {
14 // Apply a group algorithm to any number of values, described by an iterator
15 // range. The work-group reduces all inputValues and each work-item works on
16 // part of the range.
17 int* first = inputValues.get_pointer();
18 int* last = first + 1024;
19 int sum = joint_reduce(it.get_group(), first, last, plus<>());
20 outputValues[0] = sum;
21
22 // Apply a group algorithm to a set of values held directly by work-items.
23 // The work-group reduces a number of values equal to the size of the group
24 // and each work-item provides one value.
25 int partial_sum = reduce_over_group(
26 it.get_group(), inputValues[it.get_global_linear_id()], plus<>());
27 outputValues[1] = partial_sum;
28 });
29 });
30
31 host_accessor a { outputBuf };
32 assert(a[0] == 523776 && a[1] == 120);

4.17.3.1. any_of, all_of and none_of

The any_of, all_of and none_of functions from standard C++ test whether Boolean conditions hold for
any of, all of or none of the values in a range, respectively.

SYCL provides two sets of similar algorithms:

1. joint_any_of, joint_all_of and joint_none_of use the work-items in a group to execute the corre
sponding algorithm in parallel.

2. any_of_group, all_of_group and none_of_group test Boolean conditions applied to data held directly by

SYCL 2020 rev 9 4.17.3.1. any_of, all_of and none_of

Chapter 4. SYCL programming interface | 433

the work-items in a group.

1 template <typename Group, typename Ptr, typename Predicate>
2 bool joint_any_of(Group g, Ptr first, Ptr last, Predicate pred); // (1)
3
4 template <typename Group, typename T, typename Predicate>
5 bool any_of_group(Group g, T x, Predicate pred); // (2)
6
7 template <typename Group> bool any_of_group(Group g, bool pred); // (3)

1. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true and Ptr is a pointer.

Preconditions: first and last must be the same for all work-items in group g, and pred must be an
immutable callable with the same type and state for all work-items in group g.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: true if pred returns true when applied to the result of dereferencing any iterator in the range
[first, last).

2. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true.

Preconditions: pred must be an immutable callable with the same type and state for all work-items in
group g.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: true if pred(x) returns true for any work-item in group g.

3. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: true if pred is true for any work-item in group g.

1 template <typename Group, typename Ptr, typename Predicate>
2 bool joint_all_of(Group g, Ptr first, Ptr last, Predicate pred); // (1)
3
4 template <typename Group, typename T, typename Predicate>
5 bool all_of_group(Group g, T x, Predicate pred); // (2)
6
7 template <typename Group> bool all_of_group(Group g, bool pred); // (3)

4.17.3.1. any_of, all_of and none_of SYCL 2020 rev 9

434 | Chapter 4. SYCL programming interface

1. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true and Ptr is a pointer.

Preconditions: first and last must be the same for all work-items in group g, and pred must be an
immutable callable with the same type and state for all work-items in group g.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: true if pred returns true when applied to the result of dereferencing all iterators in the range
[first, last).

2. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true.

Preconditions: pred must be an immutable callable with the same type and state for all work-items in
group g.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: true if pred(x) returns true for all work-items in group g.

3. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: true if pred is true for all work-items in group g.

1 template <typename Group, typename Ptr, typename Predicate>
2 bool joint_none_of(Group g, Ptr first, Ptr last, Predicate pred); // (1)
3
4 template <typename Group, typename T, typename Predicate>
5 bool none_of_group(Group g, T x, Predicate pred); // (2)
6
7 template <typename Group> bool none_of_group(Group g, bool pred); // (3)

1. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true and Ptr is a pointer.

Preconditions: first and last must be the same for all work-items in group g, and pred must be an
immutable callable with the same type and state for all work-items in group g.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

SYCL 2020 rev 9 4.17.3.1. any_of, all_of and none_of

Chapter 4. SYCL programming interface | 435

Returns: true if pred returns false when applied to the result of dereferencing all iterators in the
range [first, last).

2. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true.

Preconditions: pred must be an immutable callable with the same type and state for all work-items in
group g.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: true if pred(x) returns false for all work-items in group g.

3. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: true if pred is false for all work-items in group g.

4.17.3.2. shift_left and shift_right

The shift_left and shift_right functions from standard C++ move values in a range down (to the left) or
up (to the right) respectively.

SYCL provides similar algorithms compatible with the sub_group class:

1. shift_group_left and shift_group_right move values held by the work-items in a group directly to
another work-item in group g, by shifting values a fixed number of work-items to the left or right.

1 template <typename Group, typename T>
2 T shift_group_left(Group g, T x, Group::linear_id_type delta = 1); // (1)
3
4 template <typename Group, typename T>
5 T shift_group_right(Group g, T x, Group::linear_id_type delta = 1); // (2)

1. Constraints: Available only if std::is_same_v<std::decay_t<Group>, sub_group> is true and T is a triv
ially copyable type.

Preconditions: delta must be the same for all work-items in the group.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: the value of x from the work-item whose group local id (id) is delta larger than that of the
calling work-item. id + delta may be greater than or equal to the group’s linear size, but the value
returned in this case is unspecified.

4.17.3.2. shift_left and shift_right SYCL 2020 rev 9

436 | Chapter 4. SYCL programming interface

2. Constraints: Available only if std::is_same_v<std::decay_t<Group>, sub_group> is true and T is a triv
ially copyable type.

Preconditions: delta must be the same for all work-items in the group.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: the value of x from the work-item whose group local id (id) is delta smaller than that of the
calling work-item. id - delta may be less than 0, but the value returned in this case is unspecified.

4.17.3.3. permute

SYCL provides an algorithm to permute the values held by work-items in a sub-group:

1. permute_group_by_xor permutes values by exchanging values held by pairs of work-items identified by
computing the bitwise exclusive OR of the work-item id and some fixed mask.

1 template <typename Group, typename T>
2 T permute_group_by_xor(Group g, T x, Group::linear_id_type mask); // (1)

1. Constraints: Available only if std::is_same_v<std::decay_t<Group>, sub_group> is true and T is a triv
ially copyable type.

Preconditions: mask must be the same for all work-items in the group.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: the value of x from the work-item whose group local id is equal to the bitwise exclusive OR
of the calling work-item’s group local id and mask. The result of the exclusive OR may be greater than
or equal to the group’s linear size, but the value returned in this case is unspecified.

4.17.3.4. select

SYCL provides an algorithm to directly exchange the values held by work-items in a sub-group:

1. select_from_group allows work-items to obtain a copy of a value held by any other work-item in group
g.

1 template <typename Group, typename T>
2 T select_from_group(Group g, T x, Group::id_type remote_local_id); // (1)

1. Constraints: Available only if std::is_same_v<std::decay_t<Group>, sub_group> is true and T is a triv
ially copyable type.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

SYCL 2020 rev 9 4.17.3.3. permute

Chapter 4. SYCL programming interface | 437

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: the value of x from the work-item with the group local id specified by remote_local_id. The
value of remote_local_id may be outside of the group, but the value returned in this case is unspeci
fied.

4.17.3.5. reduce

The reduce function from standard C++ combines the values in a range in an unspecified order using a
binary operator.

SYCL provides two similar algorithms that compute the same generalized sum as defined by standard
C++:

1. joint_reduce uses the work-items in a group to execute a reduce operation in parallel.

2. reduce_over_group combines values held directly by the work-items in a group.

The result of a call to these functions is non-deterministic if the binary operator is not commutative and
associative. Only the binary operators defined in Section 4.17.1 are supported by the reduce functions in
SYCL 2020, but the standard C++ syntax is used for forward compatibility with future SYCL versions.

 1 template <typename Group, typename Ptr, typename BinaryOperation>
 2 std::iterator_traits<Ptr>::value_type
 3 joint_reduce(Group g, Ptr first, Ptr last, BinaryOperation binary_op); // (1)
 4
 5 template <typename Group, typename Ptr, typename T, typename BinaryOperation>
 6 T joint_reduce(Group g, Ptr first, Ptr last, T init,
 7 BinaryOperation binary_op); // (2)
 8
 9 template <typename Group, typename T, typename BinaryOperation>
10 T reduce_over_group(Group g, T x, BinaryOperation binary_op); // (3)
11
12 template <typename Group, typename V, typename T, typename BinaryOperation>
13 T reduce_over_group(Group g, V x, T init, BinaryOperation binary_op); // (4)

1. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, Ptr is a pointer to a fun
damental type, and BinaryOperation is a SYCL function object type.

Mandates: binary_op(*first, *first) must return a value of type std::iterator_traits<Ptr>::value_
type.

Preconditions: first, last and the type of binary_op must be the same for all work-items in group g.
binary_op must be an instance of a SYCL function object.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: The result of combining the values resulting from dereferencing all iterators in the range
[first, last) using the operator binary_op, where the values are combined according to the general
ized sum defined in standard C++.

4.17.3.5. reduce SYCL 2020 rev 9

438 | Chapter 4. SYCL programming interface

2. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, Ptr is a pointer to a fun
damental type, T is a fundamental type, and BinaryOperation is a SYCL function object type.

Mandates: binary_op(init, *first) must return a value of type T.

Preconditions: first, last, init and the type of binary_op must be the same for all work-items in group
g. binary_op must be an instance of a SYCL function object.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: The result of combining the values resulting from dereferencing all iterators in the range
[first, last) and the initial value init using the operator binary_op, where the values are combined
according to the generalized sum defined in standard C++.

3. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, T is a fundamental type
and BinaryOperation is a SYCL function object type.

Mandates: binary_op(x, x) must return a value of type T.

Preconditions: binary_op must be an instance of a SYCL function object.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: The result of combining all the values of x specified by each work-item in group g using the
operator binary_op, where the values are combined according to the generalized sum defined in stan
dard C++.

4. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, V and T are fundamental
types, and BinaryOperation is a SYCL function object type.

Mandates: binary_op(init, x) must return a value of type T.

Preconditions: binary_op must be an instance of a SYCL function object.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: The result of combining all the values of x specified by each work-item in group g and the
initial value init using the operator binary_op, where the values are combined according to the gen
eralized sum defined in standard C++.

4.17.3.6. exclusive_scan and inclusive_scan

The exclusive_scan and inclusive_scan functions in standard C++ compute a prefix sum using a binary
operator. For a scan of elements [x0, …, xn], the i th result in an exclusive scan is the generalized noncom
mutative sum of all elements preceding xi (excluding xi itself), whereas the i th result in an inclusive scan

SYCL 2020 rev 9 4.17.3.6. exclusive_scan and inclusive_scan

Chapter 4. SYCL programming interface | 439

is the generalized noncommutative sum of all elements preceding xi (including xi itself).

SYCL provides two similar sets of algorithms that compute the same prefix sums using the generalized
noncommutative sum as defined by standard C++:

1. joint_exclusive_scan and joint_inclusive_scan use the work-items in a group to execute the corre
sponding algorithm in parallel, and intermediate partial prefix sums are written to memory as in
standard C++.

2. exclusive_scan_over_group and inclusive_scan_over_group perform a scan over values held directly by
the work-items in a group, and the result returned to each work-item represents a partial prefix sum.

The result of a call to a scan is non-deterministic if the binary operator is not associative. Only the binary
operators defined in Section 4.17.1 are supported by the scan functions in SYCL 2020, but the standard
C++ syntax is used for forward compatibility with future SYCL versions.

 1 template <typename Group, typename InPtr, typename OutPtr,
 2 typename BinaryOperation>
 3 OutPtr joint_exclusive_scan(Group g, InPtr first, InPtr last, OutPtr result,
 4 BinaryOperation binary_op); // (1)
 5
 6 template <typename Group, typename InPtr, typename OutPtr, typename T,
 7 typename BinaryOperation>
 8 OutPtr joint_exclusive_scan(Group g, InPtr first, InPtr last, OutPtr result,
 9 T init, BinaryOperation binary_op); // (2)
10
11 template <typename Group, typename T, typename BinaryOperation>
12 T exclusive_scan_over_group(Group g, T x, BinaryOperation binary_op); // (3)
13
14 template <typename Group, typename V, typename T, typename BinaryOperation>
15 T exclusive_scan_over_group(Group g, V x, T init,
16 BinaryOperation binary_op); // (4)

1. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, InPtr and OutPtr are
pointers to fundamental types, and BinaryOperation is a SYCL function object type.

Mandates: binary_op(*first, *first) must return a value of type std::iterator_traits<OutPtr>::val
ue_type.

Preconditions: first, last, result and the type of binary_op must be the same for all work-items in
group g. binary_op must be an instance of a SYCL function object.

 Note that first may be equal to result.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

The value written to result + i is the exclusive scan of the values resulting from dereferencing the
first i values in the range [first, last) and the identity value of binary_op (as identified by
sycl::known_identity), using the operator binary_op. The scan is computed using a generalized non
commutative sum as defined in standard C++.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: A pointer to the end of the output range.

4.17.3.6. exclusive_scan and inclusive_scan SYCL 2020 rev 9

440 | Chapter 4. SYCL programming interface

2. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, InPtr and OutPtr are
pointers to fundamental types, T is a fundamental type, and BinaryOperation is a SYCL function object
type.

Mandates: binary_op(init, *first) must return a value of type T.

Preconditions: first, last, result, init and the type of binary_op must be the same for all work-items
in group g. binary_op must be an instance of a SYCL function object.

 Note that first may be equal to result.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

The value written to result + i is the exclusive scan of the values resulting from dereferencing the
first i values in the range [first, last) and an initial value specified by init, using the operator bina
ry_op. The scan is computed using a generalized noncommutative sum as defined in standard C++.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: A pointer to the end of the output range.

3. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, T is a fundamental type,
and BinaryOperation is a SYCL function object type.

Mandates: binary_op(x, x) must return a value of type T.

Preconditions: binary_op must be an instance of a SYCL function object.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: The value returned on work-item i is the exclusive scan of the first i values in group g and
the identity value of binary_op (as identified by sycl::known_identity), using the operator binary_op.
The scan is computed using a generalized noncommutative sum as defined in standard C++. For
multi-dimensional groups, the order of work-items in group g is determined by their linear id.

4. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, V and T are fundamental
types, and BinaryOperation is a SYCL function object type.

Mandates: binary_op(init, x) must return a value of type T.

Preconditions: binary_op must be an instance of a SYCL function object.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: The value returned on work-item i is the exclusive scan of the first i values in group g and an
initial value specified by init, using the operator binary_op. The scan is computed using a generalized
noncommutative sum as defined in standard C++. For multi-dimensional groups, the order of work-

SYCL 2020 rev 9 4.17.3.6. exclusive_scan and inclusive_scan

Chapter 4. SYCL programming interface | 441

items in group g is determined by their linear id.

 1 template <typename Group, typename InPtr, typename OutPtr,
 2 typename BinaryOperation>
 3 OutPtr joint_inclusive_scan(Group g, InPtr first, InPtr last, OutPtr result,
 4 BinaryOperation binary_op); // (1)
 5
 6 template <typename Group, typename InPtr, typename OutPtr, typename T,
 7 typename BinaryOperation>
 8 OutPtr joint_inclusive_scan(Group g, InPtr first, InPtr last, OutPtr result,
 9 BinaryOperation binary_op, T init); // (2)
10
11 template <typename Group, typename T, typename BinaryOperation>
12 T inclusive_scan_over_group(Group g, T x, BinaryOperation binary_op); // (3)
13
14 template <typename Group, typename V, typename T, typename BinaryOperation>
15 T inclusive_scan_over_group(Group g, V x, BinaryOperation binary_op,
16 T init); // (4)

1. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, InPtr and OutPtr are
pointers to fundamental types, and BinaryOperation is a SYCL function object type.

Mandates: binary_op(*first, *first) must return a value of type std::iterator_traits<OutPtr>::val
ue_type.

Preconditions: first, last, result and the type of binary_op must be the same for all work-items in
group g. binary_op must be an instance of a SYCL function object.

 Note that first may be equal to result.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

The value written to result + i is the inclusive scan of the values resulting from dereferencing the
first i values in the range [first, last), using the operator binary_op. The scan is computed using a
generalized noncommutative sum as defined in standard C++.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: A pointer to the end of the output range.

2. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, InPtr and OutPtr are
pointers to fundamental types, BinaryOperation is a SYCL function object type, and T is a fundamental
type.

Mandates: binary_op(init, *first) must return a value of type T.

Preconditions: first, last, result, init and the type of binary_op must be the same for all work-items
in group g. binary_op must be an instance of a SYCL function object.

 Note that first may be equal to result.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

4.17.3.6. exclusive_scan and inclusive_scan SYCL 2020 rev 9

442 | Chapter 4. SYCL programming interface

The value written to result + i is the inclusive scan of the values resulting from dereferencing the
first i values in the range [first, last) and an initial value specified by init, using the operator bina
ry_op. The scan is computed using a generalized noncommutative sum as defined in standard C++.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: A pointer to the end of the output range.

3. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, T is a fundamental type,
and BinaryOperation is a SYCL function object type.

Mandates: binary_op(x, x) must return a value of type T.

Preconditions: binary_op must be an instance of a SYCL function object.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: The value returned on work-item i is the inclusive scan of the first i values in group g, using
the operator binary_op. The scan is computed using a generalized noncommutative sum as defined in
standard C++. For multi-dimensional groups, the order of work-items in group g is determined by
their linear id.

4. Constraints: Available only if sycl::is_group_v<std::decay_t<Group>> is true, V is a fundamental type,
BinaryOperation is a SYCL function object type, and T is a fundamental type.

Mandates: binary_op(init, x) must return a value of type T.

Preconditions: binary_op must be an instance of a SYCL function object.

Effects: Blocks until all work-items in group g have reached this synchronization point, then executes
the algorithm.

Synchronization: The call to this function in each work-item happens before the algorithm begins exe
cution. The completion of the algorithm happens before any work-item blocking on the same syn
chronization point is unblocked.

Returns: The value returned on work-item i is the inclusive scan of the first i values in group g and an
initial value specified by init, using the operator binary_op. The scan is computed using a generalized
noncommutative sum as defined in standard C++. For multi-dimensional groups, the order of work-
items in group g is determined by their linear id.

4.17.4. Math functions

This section describes the math functions that are available in the sycl namespace in both host and
device code.

The function descriptions in this section use the term writeable address space to represent the following
address spaces:

• access::address_space::global_space

• access::address_space::local_space

• access::address_space::private_space

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 443

• access::address_space::generic_space

The descriptions in this section use the type name __swizzle__ to refer to the classes defined in Section
4.14.2.4. This type can be any instantiation of the class templates named __writeable_swizzle__ or __con
st_swizzle__ in that section, so long as the instantiation satisfies the constraints listed in the function’s
description.

acos

float acos(float x) (1)
double acos(double x) (2)
half acos(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ acos(NonScalar x)

Overloads (1) - (3):

Returns: The inverse cosine of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the inverse cosine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

acosh

float acosh(float x) (1)
double acosh(double x) (2)
half acosh(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ acosh(NonScalar x)

Overloads (1) - (3):

Returns: The inverse hyperbolic cosine of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the inverse hyperbolic cosine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the

4.17.4. Math functions SYCL 2020 rev 9

444 | Chapter 4. SYCL programming interface

corresponding vec.

acospi

float acospi(float x) (1)
double acospi(double x) (2)
half acospi(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ acospi(NonScalar x)

Overloads (1) - (3):

Returns: The value acos(x) / π.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value acos(x[i]) / π.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

asin

float asin(float x) (1)
double asin(double x) (2)
half asin(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ asin(NonScalar x)

Overloads (1) - (3):

Returns: The inverse sine of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the inverse sine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 445

asinh

float asinh(float x) (1)
double asinh(double x) (2)
half asinh(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ asinh(NonScalar x)

Overloads (1) - (3):

Returns: The inverse hyperbolic sine of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the inverse hyperbolic sine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

asinpi

float asinpi(float x) (1)
double asinpi(double x) (2)
half asinpi(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ asinpi(NonScalar x)

Overloads (1) - (3):

Returns: The value asin(x) / π.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value asin(x[i]) / π.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

atan

float atan(float y_over_x) (1)
double atan(double y_over_x) (2)
half atan(half y_over_x) (3)

4.17.4. Math functions SYCL 2020 rev 9

446 | Chapter 4. SYCL programming interface

template<typename NonScalar> (4)
/*return-type*/ atan(NonScalar y_over_x)

Overloads (1) - (3):

Returns: The inverse tangent of the input.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of the input, the inverse tangent of the element.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

atan2

float atan2(float y, float x) (1)
double atan2(double y, double x) (2)
half atan2(half y, half x) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ atan2(NonScalar1 y, NonScalar2 x)

Overloads (1) - (3):

Returns: The arc tangent of y / x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the arc tangent of y[i] / x[i].

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

atanh

float atanh(float x) (1)
double atanh(double x) (2)

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 447

half atanh(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ atanh(NonScalar x)

Overloads (1) - (3):

Returns: The hyperbolic inverse tangent of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the hyperbolic inverse tangent of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

atanpi

float atanpi(float x) (1)
double atanpi(double x) (2)
half atanpi(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ atanpi(NonScalar x)

Overloads (1) - (3):

Returns: The value atan(x) / π.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value atan(x[i]) / π.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

atan2pi

float atan2pi(float y, float x) (1)
double atan2pi(double y, double x) (2)
half atan2pi(half y, half x) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ atan2pi(NonScalar1 y, NonScalar2 x)

4.17.4. Math functions SYCL 2020 rev 9

448 | Chapter 4. SYCL programming interface

Overloads (1) - (3):

Returns: The value atan2(y, x) / π.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the value atan2(y[i], x[i]) / π.

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

cbrt

float cbrt(float x) (1)
double cbrt(double x) (2)
half cbrt(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ cbrt(NonScalar x)

Overloads (1) - (3):

Returns: The cube-root of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the cube-root of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

ceil

float ceil(float x) (1)
double ceil(double x) (2)
half ceil(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ ceil(NonScalar x)

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 449

Overloads (1) - (3):

Returns: The value x rounded to an integral value using the round to positive infinity rounding mode.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value x[i] rounded to an integral value using the round to positive
infinity rounding mode.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

copysign

float copysign(float x, float y) (1)
double copysign(double x, double y) (2)
half copysign(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ copysign(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value of x with its sign changed to match the sign of y.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the value of x[i] with its sign changed to match the sign of y[i].

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

cos

float cos(float x) (1)
double cos(double x) (2)
half cos(half x) (3)

template<typename NonScalar> (4)

4.17.4. Math functions SYCL 2020 rev 9

450 | Chapter 4. SYCL programming interface

/*return-type*/ cos(NonScalar x)

Overloads (1) - (3):

Returns: The cosine of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the cosine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

cosh

float cosh(float x) (1)
double cosh(double x) (2)
half cosh(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ cosh(NonScalar x)

Overloads (1) - (3):

Returns: The hyperbolic cosine of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the hyperbolic cosine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

cospi

float cospi(float x) (1)
double cospi(double x) (2)
half cospi(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ cospi(NonScalar x)

Overloads (1) - (3):

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 451

Returns: The value cos(π * x).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value cos(π * x[i]).

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

erfc

float erfc(float x) (1)
double erfc(double x) (2)
half erfc(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ erfc(NonScalar x)

Overloads (1) - (3):

Returns: The complementary error function of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the complementary error function of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

erf

float erf(float x) (1)
double erf(double x) (2)
half erf(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ erf(NonScalar x)

Overloads (1) - (3):

Returns: The error function of x (encountered in integrating the normal distribution).

Overload (4):

Constraints: Available only if all of the following conditions are met:

4.17.4. Math functions SYCL 2020 rev 9

452 | Chapter 4. SYCL programming interface

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the error function of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

exp

float exp(float x) (1)
double exp(double x) (2)
half exp(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ exp(NonScalar x)

Overloads (1) - (3):

Returns: The base-e exponential of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the base-e exponential of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

exp2

float exp2(float x) (1)
double exp2(double x) (2)
half exp2(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ exp2(NonScalar x)

Overloads (1) - (3):

Returns: The base-2 exponential of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the base-2 exponential of x[i].

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 453

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

exp10

float exp10(float x) (1)
double exp10(double x) (2)
half exp10(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ exp10(NonScalar x)

Overloads (1) - (3):

Returns: The base-10 exponential of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the base-10 exponential of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

expm1

float expm1(float x) (1)
double expm1(double x) (2)
half expm1(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ expm1(NonScalar x)

Overloads (1) - (3):

Returns: The value ex-1.0.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value ex[i]-1.0.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

4.17.4. Math functions SYCL 2020 rev 9

454 | Chapter 4. SYCL programming interface

fabs

float fabs(float x) (1)
double fabs(double x) (2)
half fabs(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ fabs(NonScalar x)

Overloads (1) - (3):

Returns: The absolute value of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the absolute value of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

fdim

float fdim(float x, float y) (1)
double fdim(double x, double y) (2)
half fdim(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ fdim(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value x - y if x > y, otherwise +0.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the value x[i] - y[i] if x[i] > y[i], otherwise +0.

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 455

floor

float floor(float x) (1)
double floor(double x) (2)
half floor(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ floor(NonScalar x)

Overloads (1) - (3):

Returns: The value x rounded to an integral value using the round to negative infinity rounding mode.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value x[i] rounded to an integral value using the round to negative
infinity rounding mode.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

fma

float fma(float a, float b, float c) (1)
double fma(double a, double b, double c) (2)
half fma(half a, half b, half c) (3)

template<typename NonScalar1, typename NonScalar2, typename NonScalar3> (4)
/*return-type*/ fma(NonScalar1 a, NonScalar2 b, NonScalar3 c)

Overloads (1) - (3):

Returns: The correctly rounded floating-point representation of the sum of c with the infinitely precise
product of a and b. Rounding of intermediate products shall not occur. Edge case behavior is per the
IEEE 754-2008 standard.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1, NonScalar2, and NonScalar3:

◦ NonScalar1, NonScalar2, and NonScalar3 are each marray; or

◦ NonScalar1, NonScalar2, and NonScalar3 are any combination of vec and the __swizzle__ type;

• NonScalar1, NonScalar2, and NonScalar3 have the same number of elements;

• NonScalar1, NonScalar2, and NonScalar3 have the same element type; and

• The element type of NonScalar1, NonScalar2, and NonScalar3 is float, double, or half.

Returns: For each element of a, b, and c; the correctly rounded floating-point representation of the sum
of c[i] with the infinitely precise product of a[i] and b[i]. Rounding of intermediate products shall not

4.17.4. Math functions SYCL 2020 rev 9

456 | Chapter 4. SYCL programming interface

occur. Edge case behavior is per the IEEE 754-2008 standard.

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

fmax

float fmax(float x, float y) (1)
double fmax(double x, double y) (2)
half fmax(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ fmax(NonScalar1 x, NonScalar2 y)

template<typename NonScalar> (5)
/*return-type*/ fmax(NonScalar x, NonScalar::value_type y)

Overloads (1) - (3):

Returns: y if x < y, otherwise x. If one argument is a NaN, returns the other argument. If both arguments
are NaNs, returns a NaN.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the value y[i] if x[i] < y[i], otherwise x[i]. If one element is a
NaN, the result is the other element. If both elements are NaNs, the result is NaN.

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

Overload (5):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value y if x[i] < y, otherwise x[i]. If one value is a NaN, the result is
the other value. If both value are NaNs, the result is a NaN.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 457

fmin

float fmin(float x, float y) (1)
double fmin(double x, double y) (2)
half fmin(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ fmin(NonScalar1 x, NonScalar2 y)

template<typename NonScalar> (5)
/*return-type*/ fmin(NonScalar x, NonScalar::value_type y)

Overloads (1) - (3):

Returns: y if y < x, otherwise x. If one argument is a NaN, returns the other argument. If both arguments
are NaNs, returns a NaN.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the value y[i] if y[i] < x[i], otherwise x[i]. If one element is a
NaN, the result is the other element. If both elements are NaNs, the result is NaN.

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

Overload (5):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value y if y < x[i], otherwise x[i]. If one value is a NaN, the result is
the other value. If both value are NaNs, the result is a NaN.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

fmod

float fmod(float x, float y) (1)
double fmod(double x, double y) (2)
half fmod(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)

4.17.4. Math functions SYCL 2020 rev 9

458 | Chapter 4. SYCL programming interface

/*return-type*/ fmod(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value x - y * trunc(x/y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the value x[i] - y[i] * trunc(x[i]/y[i]).

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

fract

template<typename Ptr> (1)
float fract(float x, Ptr iptr)

template<typename Ptr> (2)
double fract(double x, Ptr iptr)

template<typename Ptr> (3)
half fract(half x, Ptr iptr)

template<typename NonScalar, typename Ptr> (4)
/*return-type*/ fract(NonScalar x, Ptr iptr)

Overloads (1) - (3):

Constraints: Available only if Ptr is one of the following:

• A C++ cv-unqualified pointer to the same type as x; or

• A multi_ptr with ElementType equal to the same type as x and with Space equal to one of the writeable
address spaces as defined above.

Effects: Writes the value floor(x) to iptr.

Returns: The value fmin(x - floor(x), nextafter(T{1.0}, T{0.0})), where T is the type of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type with element type float, double, or half;

• Ptr is one of the following:

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 459

◦ A C++ cv-unqualified pointer to NonScalar, unless NonScalar is the __swizzle__ type, in which case it
is a cv-unqualified pointer to the corresponding vec; or

◦ A multi_ptr where:

▪ The ElementType is equal to NonScalar, unless NonScalar is the __swizzle__ type, in which case the
ElementType is the corresponding vec; and

▪ The Space is equal to one of the writeable address spaces as defined above.

Effects: Writes the value floor(x) to iptr.

Returns: For each element of x, the value fmin(x[i] - floor(x[i]), nextafter(T{1.0}, T{0.0})), where T
is the element type of x.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

frexp

template<typename Ptr> (1)
float frexp(float x, Ptr exp)

template<typename Ptr> (2)
double frexp(double x, Ptr exp)

template<typename Ptr> (3)
half frexp(half x, Ptr exp)

template<typename NonScalar, typename Ptr> (4)
/*return-type*/ frexp(NonScalar x, Ptr exp)

Overloads (1) - (3):

Constraints: Available only if Ptr is one of the following:

• A C++ cv-unqualified pointer to int; or

• A multi_ptr with ElementType of int and with Space equal to one of the writeable address spaces as
defined above.

Effects: Extracts the mantissa and exponent from x. The mantissa is a floating point number whose mag
nitude is in the interval [0.5, 1) or 0. The extracted mantissa and exponent are such that mantissa * 2exp

equals x. The exponent is written to exp.

Returns: The mantissa of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type with element type float, double, or half;

• Ptr is one of the following:

◦ (If NonScalar is marray): A C++ cv-unqualified pointer to marray of int with the same number of ele
ments as NonScalar; or

◦ (If NonScalar is vec or the __swizzle__ type): A C++ cv-unqualified pointer to vec of int32_t with the
same number of elements as NonScalar; or

4.17.4. Math functions SYCL 2020 rev 9

460 | Chapter 4. SYCL programming interface

◦ (If NonScalar is marray): A multi_ptr whose Space is equal to one of the writeable address spaces as
defined above and whose ElementType is marray of int with the same number of elements as Non
Scalar; or

◦ (If NonScalar is vec or the __swizzle__ type): A multi_ptr whose Space is equal to one of the write
able address spaces as defined above and whose ElementType is vec of int32_t with the same num
ber of elements as NonScalar.

Effects: Extracts the mantissa and exponent from each element of x. Each mantissa is a floating point
number whose magnitude is in the interval [0.5, 1) or 0. Each extracted mantissa and exponent are such
that mantissa * 2exp equals x[i]. The exponent of each element of x is written to exp.

Returns: For each element of x, the mantissa of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

hypot

float hypot(float x, float y) (1)
double hypot(double x, double y) (2)
half hypot(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ hypot(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value of the square root of x2 + y2 without undue overflow or underflow.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the value of the square root of x[i]2 + y[i]2 without undue overflow
or underflow.

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

ilogb

int ilogb(float x) (1)
int ilogb(double x) (2)
int ilogb(half x) (3)

template<typename NonScalar> (4)

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 461

/*return-type*/ ilogb(NonScalar x)

Overloads (1) - (3):

Returns: Compute the integral part of logr|x| and return the result as an integer, where r is the value
returned by std::numeric_limits<decltype(x)>::radix.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, compute the integral part of logr|x[i]| and return the result as an integer,
where r is the value returned by std::numeric_limits<NonScalar::value_type)>::radix.

The return type depends on NonScalar. If NonScalar is marray, the return type is marray of int with the
same number of element as NonScalar. If NonScalar is vec or the __swizzle__ type, the return type is vec of
int32_t with the same number of elements as NonScalar.

ldexp

float ldexp(float x, int k) (1)
double ldexp(double x, int k) (2)
half ldexp(half x, int k) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ ldexp(NonScalar1 x, NonScalar2 k)

template<typename NonScalar> (5)
/*return-type*/ ldexp(NonScalar x, int k)

Overloads (1) - (3):

Returns: The value x multiplied by 2k.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar1 is marray, vec, or the __swizzle__ type;

• The element type of NonScalar1 is float, double, or half;

• If NonScalar1 is marray, NonScalar2 is marray of int with the same number of elements as NonScalar1;
and

• If NonScalar1 is vec or the __swizzle__ type, NonScalar2 is vec or the __swizzle__ type of int32_t with
the same number of elements as NonScalar1.

Returns: For each element of x and k, the value x[i] multiplied by 2k[i].

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

Overload (5):

Constraints: Available only if all of the following conditions are met:

4.17.4. Math functions SYCL 2020 rev 9

462 | Chapter 4. SYCL programming interface

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type of NonScalar is float, double, or half.

Returns: For each element of x, the value x[i] multiplied by 2k.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

lgamma

float lgamma(float x) (1)
double lgamma(double x) (2)
half lgamma(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ lgamma(NonScalar x)

Overloads (1) - (3):

Returns: The natural logarithm of the absolute value of the gamma function of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the natural logarithm of the absolute value of the gamma function of
x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

lgamma_r

template<typename Ptr> (1)
float lgamma_r(float x, Ptr signp)

template<typename Ptr> (2)
double lgamma_r(double x, Ptr signp)

template<typename Ptr> (3)
half lgamma_r(half x, Ptr signp)

template<typename NonScalar, typename Ptr> (4)
/*return-type*/ lgamma_r(NonScalar x, Ptr signp)

Overloads (1) - (3):

Constraints: Available only if Ptr is one of the following:

• A C++ cv-unqualified pointer to int; or

• A multi_ptr with ElementType of int and with Space equal to one of the writeable address spaces as

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 463

defined above.

Effects: Writes the sign of the gamma function of x to signp.

Returns: The natural logarithm of the absolute value of the gamma function of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type with element type float, double, or half;

• Ptr is one of the following:

◦ (If NonScalar is marray): A C++ cv-unqualified pointer to marray of int with the same number of ele
ments as NonScalar; or

◦ (If NonScalar is vec or the __swizzle__ type): A C++ cv-unqualified pointer to vec of int32_t with the
same number of elements as NonScalar; or

◦ (If NonScalar is marray): A multi_ptr whose Space is equal to one of the writeable address spaces as
defined above and whose ElementType is marray of int with the same number of elements as Non
Scalar; or

◦ (If NonScalar is vec or the __swizzle__ type): A multi_ptr whose Space is equal to one of the write
able address spaces as defined above and whose ElementType is vec of int32_t with the same num
ber of elements as NonScalar.

Effects: Computes the gamma function for each element of x and writes the sign for each of these values
to signp.

Returns: For each element of x, the natural logarithm of the absolute value of the gamma function of
x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

log

float log(float x) (1)
double log(double x) (2)
half log(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ log(NonScalar x)

Overloads (1) - (3):

Returns: The natural logarithm of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the natural logarithm of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the

4.17.4. Math functions SYCL 2020 rev 9

464 | Chapter 4. SYCL programming interface

corresponding vec.

log2

float log2(float x) (1)
double log2(double x) (2)
half log2(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ log2(NonScalar x)

Overloads (1) - (3):

Returns: The base 2 logarithm of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the base 2 logarithm of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

log10

float log10(float x) (1)
double log10(double x) (2)
half log10(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ log10(NonScalar x)

Overloads (1) - (3):

Returns: The base 10 logarithm of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the base 10 logarithm of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 465

log1p

float log1p(float x) (1)
double log1p(double x) (2)
half log1p(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ log1p(NonScalar x)

Overloads (1) - (3):

Returns: The value log(1.0 + x).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value log(1.0 + x[i]).

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

logb

float logb(float x) (1)
double logb(double x) (2)
half logb(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ logb(NonScalar x)

Overloads (1) - (3):

Returns: The integral part of logr|x|, where r is the value returned by std::numeric_lim
its<decltype(x)>::radix.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the integral part of logr|x[i]|, where r is the value returned by
std::numeric_limits<NonScalar::value_type>::radix.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

mad

float mad(float a, float b, float c) (1)

4.17.4. Math functions SYCL 2020 rev 9

466 | Chapter 4. SYCL programming interface

double mad(double a, double b, double c) (2)
half mad(half a, half b, half c) (3)

template<typename NonScalar1, typename NonScalar2, typename NonScalar3> (4)
/*return-type*/ mad(NonScalar1 a, NonScalar2 b, NonScalar3 c)

Overloads (1) - (3):

Effects: Computes the approximate value of a * b + c. Whether or how the product of a * b is rounded
and how supernormal or subnormal intermediate products are handled is not defined. The mad function
is intended to be used where speed is preferred over accuracy.

Returns: The approximate value of a * b + c.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1, NonScalar2, and NonScalar3:

◦ NonScalar1, NonScalar2, and NonScalar3 are each marray; or

◦ NonScalar1, NonScalar2, and NonScalar3 are any combination of vec and the __swizzle__ type;

• NonScalar1, NonScalar2, and NonScalar3 have the same number of elements;

• NonScalar1, NonScalar2, and NonScalar3 have the same element type; and

• The element type of NonScalar1, NonScalar2, and NonScalar3 is float, double, or half.

Returns: For each element of a, b, and c; the The approximate value of a[i] * b[i] + c[i].

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

maxmag

float maxmag(float x, float y) (1)
double maxmag(double x, double y) (2)
half maxmag(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ maxmag(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value x if |x| > |y|, y if |y| > |x|, otherwise fmax(x, y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 467

Returns: For each element of x and y, the value x[i] if |x[i]| > |y[i]|, y[i] if |y[i]| > |x[i]|, otherwise
fmax(x[i], y[i]).

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

minmag

float minmag(float x, float y) (1)
double minmag(double x, double y) (2)
half minmag(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ minmag(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value x if |x| < |y|, y if |y| < |x|, otherwise fmin(x, y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the value x[i] if |x[i]| < |y[i]|, y[i] if |y[i]| < |x[i]|, otherwise
fmin(x[i], y[i]).

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

modf

template<typename Ptr> (1)
float modf(float x, Ptr iptr)

template<typename Ptr> (2)
double modf(double x, Ptr iptr)

template<typename Ptr> (3)
half modf(half x, Ptr iptr)

template<typename NonScalar, typename Ptr> (4)
/*return-type*/ modf(NonScalar x, Ptr iptr)

Overloads (1) - (3):

Constraints: Available only if Ptr is one of the following:

4.17.4. Math functions SYCL 2020 rev 9

468 | Chapter 4. SYCL programming interface

• A C++ cv-unqualified pointer to the same type as x; or

• A multi_ptr with ElementType equal to the same type as x and with Space equal to one of the writeable
address spaces as defined above.

Effects: The modf function breaks the argument x into integral and fractional parts, each of which has the
same sign as the argument. It stores the integral part to the object pointed to by iptr.

Returns: The fractional part of the argument x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type with element type float, double, or half;

• Ptr is one of the following:

◦ A C++ cv-unqualified pointer to NonScalar, unless NonScalar is the __swizzle__ type, in which case it
is a cv-unqualified pointer to the corresponding vec; or

◦ A multi_ptr where:

▪ The ElementType is equal to NonScalar, unless NonScalar is the __swizzle__ type, in which case the
ElementType is the corresponding vec; and

▪ The Space is equal to one of the writeable address spaces as defined above.

Effects: The modf function breaks each element of the argument x into integral and fractional parts, each
of which has the same sign as the element. It stores the integral parts of each element to the object
pointed to by iptr.

Returns: The fractional parts of each element of the argument x.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

nan

float nan(uint32_t nancode) (1)
double nan(uint64_t nancode) (2)
half nan(uint16_t nancode) (3)

template<typename NonScalar> (4)
/*return-type*/ nan(NonScalar nancode)

Overloads (1) - (3):

Returns: A quiet NaN. The nancode may be placed in the significand of the resulting NaN.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is uint32_t, uint64_t, or uint16_t.

Returns: A quiet NaN for each element of nancode. Each nancode[i] may be placed in the significand of
the resulting NaN.

The return type depends on NonScalar:

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 469

NonScalar Return Type

marray<uint32_t, N> marray<float, N>

marray<uint64_t, N> marray<double, N>

marray<uint16_t, N> marray<half, N>

vec<uint32_t, N>
__swizzle__ that is convertible to vec<uint32_t, N>

vec<float, N>

vec<uint64_t, N>
__swizzle__ that is convertible to vec<uint64_t, N>

vec<double, N>

vec<uint16_t, N>
__swizzle__ that is convertible to vec<uint16_t, N>

vec<half, N>

nextafter

float nextafter(float x, float y) (1)
double nextafter(double x, double y) (2)
half nextafter(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ nextafter(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The next representable floating-point value following x in the direction of y. Thus, if y is less
than x, nextafter returns the largest representable floating-point number less than x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the next representable floating-point value following x[i] in the
direction of y[i].

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

pow

float pow(float x, float y) (1)
double pow(double x, double y) (2)
half pow(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)

4.17.4. Math functions SYCL 2020 rev 9

470 | Chapter 4. SYCL programming interface

/*return-type*/ pow(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value of x raised to the power y.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the value of x[i] raised to the power y[i].

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

pown

float pown(float x, int y) (1)
double pown(double x, int y) (2)
half pown(half x, int y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ pown(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value of x raised to the power y.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar1 is marray, vec, or the __swizzle__ type;

• The element type of NonScalar1 is float, double, or half;

• If NonScalar1 is marray, NonScalar2 is marray of int with the same number of elements as NonScalar1;
and

• If NonScalar1 is vec or the __swizzle__ type, NonScalar2 is vec or the __swizzle__ type of int32_t with
the same number of elements as NonScalar1.

Returns: For each element of x and y, the value of x[i] raised to the power y[i].

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 471

powr

float powr(float x, float y) (1)
double powr(double x, double y) (2)
half powr(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ powr(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Preconditions: The value of x must be greater than or equal to zero.

Returns: The value of x raised to the power y.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Preconditions: Each element of x must be greater than or equal to zero.

Returns: For each element of x and y, the value of x[i] raised to the power y[i].

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

remainder

float remainder(float x, float y) (1)
double remainder(double x, double y) (2)
half remainder(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ remainder(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value r such that r = x - n*y, where n is the integer nearest the exact value of x/y. If there
are two integers closest to x/y, n shall be the even one. If r is zero, it is given the same sign as x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

4.17.4. Math functions SYCL 2020 rev 9

472 | Chapter 4. SYCL programming interface

• NonScalar1 and NonScalar2 have the same number of elements;

• NonScalar1 and NonScalar2 have the same element type; and

• The element type of NonScalar1 and NonScalar2 is float, double, or half.

Returns: For each element of x and y, the value r such that r = x[i] - n*y[i], where n is the integer near
est the exact value of x[i]/y[i]. If there are two integers closest to x[i]/y[i], n shall be the even one. If r
is zero, it is given the same sign as x[i].

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

remquo

template<typename Ptr> (1)
float remquo(float x, float y, Ptr quo)

template<typename Ptr> (2)
double remquo(double x, double y, Ptr quo)

template<typename Ptr> (3)
half remquo(half x, half y, Ptr quo)

template<typename NonScalar1, typename NonScalar2, typename Ptr> (4)
/*return-type*/ remquo(NonScalar1 x, NonScalar2 y, Ptr quo)

Overloads (1) - (3):

Constraints: Available only if Ptr is one of the following:

• A C++ cv-unqualified pointer to int; or

• A multi_ptr with ElementType of int and with Space equal to one of the writeable address spaces as
defined above.

Effects: Computes the value r such that r = x - k*y, where k is the integer nearest the exact value of x/y.
If there are two integers closest to x/y, k shall be the even one. If r is zero, it is given the same sign as x.
This is the same value that is returned by the remainder function. The remquo function also calculates the
lower seven bits of the integral quotient x/y and gives that value the same sign as x/y. It stores this
signed value to the object pointed to by quo.

Returns: The value r defined above.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• Ptr is one of the following:

◦ (If NonScalar1 is marray): A C++ cv-unqualified pointer to marray of int with the same number of ele
ments as NonScalar1; or

◦ (If NonScalar1 is vec or the __swizzle__ type): A C++ cv-unqualified pointer to vec of int32_t with
the same number of elements as NonScalar1; or

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 473

◦ (If NonScalar1 is marray): A multi_ptr whose Space is equal to one of the writeable address spaces as
defined above and whose ElementType is marray of int with the same number of elements as Non
Scalar1; or

◦ (If NonScalar1 is vec or the __swizzle__ type): A multi_ptr whose Space is equal to one of the write
able address spaces as defined above and whose ElementType is vec of int32_t with the same num
ber of elements as NonScalar1.

Effects: Computes the value r for each element of x and y such that r = x[i] - k*y[i], where k is the inte
ger nearest the exact value of x[i]/y[i]. If there are two integers closest to x[i]/y[i], k shall be the even
one. If r is zero, it is given the same sign as x[i]. This is the same value that is returned by the remainder
function. The remquo function also calculates the lower seven bits of the integral quotient x[i]/y[i] and
gives that value the same sign as x[i]/y[i]. It stores these signed values to the object pointed to by quo.

Returns: The values of r defined above.

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

rint

float rint(float x) (1)
double rint(double x) (2)
half rint(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ rint(NonScalar x)

Overloads (1) - (3):

Returns: The value x rounded to an integral value (using round to nearest even rounding mode) in float
ing-point format. Refer to section 7.1 of the OpenCL 1.2 specification document for a description of the
rounding modes.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value x[i] rounded to an integral value (using round to nearest even
rounding mode) in floating-point format.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

rootn

float rootn(float x, int y) (1)
double rootn(double x, int y) (2)
half rootn(half x, int y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ rootn(NonScalar1 x, NonScalar2 y)

4.17.4. Math functions SYCL 2020 rev 9

474 | Chapter 4. SYCL programming interface

Overloads (1) - (3):

Returns: The value of x raised to the power 1/y.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar1 is marray, vec, or the __swizzle__ type;

• The element type of NonScalar1 is float, double, or half;

• If NonScalar1 is marray, NonScalar2 is marray of int with the same number of elements as NonScalar1;
and

• If NonScalar1 is vec or the __swizzle__ type, NonScalar2 is vec or the __swizzle__ type of int32_t with
the same number of elements as NonScalar1.

Returns: For each element of x and y, the value of x[i] raised to the power 1/y[i].

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

round

float round(float x) (1)
double round(double x) (2)
half round(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ round(NonScalar x)

Overloads (1) - (3):

Returns: The integral value nearest to x rounding halfway cases away from zero, regardless of the cur
rent rounding direction.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the integral value nearest to x[i] rounding halfway cases away from
zero, regardless of the current rounding direction.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

rsqrt

float rsqrt(float x) (1)
double rsqrt(double x) (2)
half rsqrt(half x) (3)

template<typename NonScalar> (4)

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 475

/*return-type*/ rsqrt(NonScalar x)

Overloads (1) - (3):

Returns: The inverse square root of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the inverse square root of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

sin

float sin(float x) (1)
double sin(double x) (2)
half sin(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ sin(NonScalar x)

Overloads (1) - (3):

Returns: The sine of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the sine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

sincos

template<typename Ptr> (1)
float sincos(float x, Ptr cosval)

template<typename Ptr> (2)
double sincos(double x, Ptr cosval)

template<typename Ptr> (3)
half sincos(half x, Ptr cosval)

template<typename NonScalar, typename Ptr> (4)

4.17.4. Math functions SYCL 2020 rev 9

476 | Chapter 4. SYCL programming interface

/*return-type*/ sincos(NonScalar x, Ptr cosval)

Overloads (1) - (3):

Constraints: Available only if Ptr is one of the following:

• A C++ cv-unqualified pointer to the same type as x; or

• A multi_ptr with ElementType equal to the same type as x and with Space equal to one of the writeable
address spaces as defined above.

Effects: Compute the sine and cosine of x. The computed cosine is written to cosval.

Returns: The sine of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type with element type float, double, or half;

• Ptr is one of the following:

◦ A C++ cv-unqualified pointer to NonScalar, unless NonScalar is the __swizzle__ type, in which case it
is a cv-unqualified pointer to the corresponding vec; or

◦ A multi_ptr where:

▪ The ElementType is equal to NonScalar, unless NonScalar is the __swizzle__ type, in which case the
ElementType is the corresponding vec; and

▪ The Space is equal to one of the writeable address spaces as defined above.

Effects: Compute the sine and cosine of each element of x. The computed cosine values are written to
cosval.

Returns: The sine of each element of x.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

sinh

float sinh(float x) (1)
double sinh(double x) (2)
half sinh(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ sinh(NonScalar x)

Overloads (1) - (3):

Returns: The hyperbolic sine of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 477

Returns: For each element of x, the hyperbolic sine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

sinpi

float sinpi(float x) (1)
double sinpi(double x) (2)
half sinpi(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ sinpi(NonScalar x)

Overloads (1) - (3):

Returns: The value sin(π * x).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value sin(π * x[i]).

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

sqrt

float sqrt(float x) (1)
double sqrt(double x) (2)
half sqrt(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ sqrt(NonScalar x)

Overloads (1) - (3):

Returns: The square root of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the square root of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

4.17.4. Math functions SYCL 2020 rev 9

478 | Chapter 4. SYCL programming interface

tan

float tan(float x) (1)
double tan(double x) (2)
half tan(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ tan(NonScalar x)

Overloads (1) - (3):

Returns: The tangent of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the tangent of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

tanh

float tanh(float x) (1)
double tanh(double x) (2)
half tanh(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ tanh(NonScalar x)

Overloads (1) - (3):

Returns: The hyperbolic tangent of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the hyperbolic tangent of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

tanpi

float tanpi(float x) (1)
double tanpi(double x) (2)

SYCL 2020 rev 9 4.17.4. Math functions

Chapter 4. SYCL programming interface | 479

half tanpi(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ tanpi(NonScalar x)

Overloads (1) - (3):

Returns: The value tan(π * x).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value tan(π * x[i]).

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

tgamma

float tgamma(float x) (1)
double tgamma(double x) (2)
half tgamma(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ tgamma(NonScalar x)

Overloads (1) - (3):

Returns: The gamma function of x.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the gamma function of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

trunc

float trunc(float x) (1)
double trunc(double x) (2)
half trunc(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ trunc(NonScalar x)

4.17.4. Math functions SYCL 2020 rev 9

480 | Chapter 4. SYCL programming interface

Overloads (1) - (3):

Returns: The value x rounded to an integral value using the round to zero rounding mode.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: For each element of x, the value x[i] rounded to an integral value using the round to zero
rounding mode.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

4.17.5. Native precision math functions

This section describes the native precision math functions that are available in the sycl::native name
space in both host and device code.

The precision requirements and the set of legal input values for these functions are defined in the back
end specification. The intent is that these functions might make use of native device functionality which
has better performance than their counterparts in Section 4.17.4, but they may sacrifice accuracy or
limit the set of legal input values.

The descriptions in this section use the type name __swizzle__ to refer to the classes defined in Section
4.14.2.4. This type can be any instantiation of the class templates named __writeable_swizzle__ or __con
st_swizzle__ in that section, so long as the instantiation satisfies the constraints listed in the function’s
description.

native::cos

float cos(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ cos(NonScalar x)

Overload (1):

Returns: The cosine of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the cosine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

SYCL 2020 rev 9 4.17.5. Native precision math functions

Chapter 4. SYCL programming interface | 481

native::divide

float divide(float x, float y) (1)

template<typename NonScalar1, typename NonScalar2> (2)
/*return-type*/ divide(NonScalar1 x, NonScalar2 y)

Overload (1):

Returns: The value x / y.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x and y, the value x[i] / y[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::exp

float exp(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ exp(NonScalar x)

Overload (1):

Returns: The base-e exponential of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the base-e exponential of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::exp2

float exp2(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ exp2(NonScalar x)

Overload (1):

4.17.5. Native precision math functions SYCL 2020 rev 9

482 | Chapter 4. SYCL programming interface

Returns: The base-2 exponential of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the base-2 exponential of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::exp10

float exp10(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ exp10(NonScalar x)

Overload (1):

Returns: The base-10 exponential of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the base-10 exponential of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::log

float log(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ log(NonScalar x)

Overload (1):

Returns: The natural logarithm of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

SYCL 2020 rev 9 4.17.5. Native precision math functions

Chapter 4. SYCL programming interface | 483

Returns: For each element of x, the natural logarithm of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::log2

float log2(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ log2(NonScalar x)

Overload (1):

Returns: The base 2 logarithm of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the base 2 logarithm of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::log10

float log10(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ log10(NonScalar x)

Overload (1):

Returns: The base 10 logarithm of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the base 10 logarithm of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::powr

float powr(float x, float y) (1)

4.17.5. Native precision math functions SYCL 2020 rev 9

484 | Chapter 4. SYCL programming interface

template<typename NonScalar1, typename NonScalar2> (2)
/*return-type*/ powr(NonScalar1 x, NonScalar2 y)

Overload (1):

Preconditions: The value of x must be greater than or equal to zero.

Returns: The value of x raised to the power y.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Preconditions: Each element of x must be greater than or equal to zero.

Returns: For each element of x and y, the value of x[i] raised to the power y[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::recip

float recip(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ recip(NonScalar x)

Overload (1):

Returns: The reciprocal of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the reciprocal of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::rsqrt

float rsqrt(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ rsqrt(NonScalar x)

Overload (1):

SYCL 2020 rev 9 4.17.5. Native precision math functions

Chapter 4. SYCL programming interface | 485

Returns: The inverse square root of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the inverse square root of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::sin

float sin(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ sin(NonScalar x)

Overload (1):

Returns: The sine of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the sine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::sqrt

float sqrt(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ sqrt(NonScalar x)

Overload (1):

Returns: The square root of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

4.17.5. Native precision math functions SYCL 2020 rev 9

486 | Chapter 4. SYCL programming interface

Returns: For each element of x, the square root of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

native::tan

float tan(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ tan(NonScalar x)

Overload (1):

Returns: The tangent of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the tangent of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

4.17.6. Half precision math functions

This section describes the half precision math functions that are available in the sycl::half_precision
namespace in both host and device code.

The precision requirements for these functions are defined in the backend specification. The intent is
that these functions have higher performance than their counterparts in Section 4.17.4, but they have
lower accuracy.

The descriptions in this section use the type name __swizzle__ to refer to the classes defined in Section
4.14.2.4. This type can be any instantiation of the class templates named __writeable_swizzle__ or __con
st_swizzle__ in that section, so long as the instantiation satisfies the constraints listed in the function’s
description.

half_precision::cos

float cos(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ cos(NonScalar x)

Overload (1):

Preconditions: The value of x must be in the range [-216, +216].

SYCL 2020 rev 9 4.17.6. Half precision math functions

Chapter 4. SYCL programming interface | 487

Returns: The cosine of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Preconditions: The value of each element of x must be in the range [-216, +216].

Returns: For each element of x, the cosine of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::divide

float divide(float x, float y) (1)

template<typename NonScalar1, typename NonScalar2> (2)
/*return-type*/ divide(NonScalar1 x, NonScalar2 y)

Overload (1):

Returns: The value x / y.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x and y, the value x[i] / y[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::exp

float exp(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ exp(NonScalar x)

Overload (1):

Returns: The base-e exponential of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

4.17.6. Half precision math functions SYCL 2020 rev 9

488 | Chapter 4. SYCL programming interface

• The element type is float.

Returns: For each element of x, the base-e exponential of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::exp2

float exp2(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ exp2(NonScalar x)

Overload (1):

Returns: The base-2 exponential of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the base-2 exponential of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::exp10

float exp10(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ exp10(NonScalar x)

Overload (1):

Returns: The base-10 exponential of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the base-10 exponential of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

SYCL 2020 rev 9 4.17.6. Half precision math functions

Chapter 4. SYCL programming interface | 489

half_precision::log

float log(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ log(NonScalar x)

Overload (1):

Returns: The natural logarithm of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the natural logarithm of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::log2

float log2(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ log2(NonScalar x)

Overload (1):

Returns: The base 2 logarithm of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the base 2 logarithm of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::log10

float log10(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ log10(NonScalar x)

Overload (1):

4.17.6. Half precision math functions SYCL 2020 rev 9

490 | Chapter 4. SYCL programming interface

Returns: The base 10 logarithm of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the base 10 logarithm of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::powr

float powr(float x, float y) (1)

template<typename NonScalar1, typename NonScalar2> (2)
/*return-type*/ powr(NonScalar1 x, NonScalar2 y)

Overload (1):

Preconditions: The value of x must be greater than or equal to zero.

Returns: The value of x raised to the power y.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Preconditions: Each element of x must be greater than or equal to zero.

Returns: For each element of x and y, the value of x[i] raised to the power y[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::recip

float recip(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ recip(NonScalar x)

Overload (1):

Returns: The reciprocal of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

SYCL 2020 rev 9 4.17.6. Half precision math functions

Chapter 4. SYCL programming interface | 491

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the reciprocal of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::rsqrt

float rsqrt(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ rsqrt(NonScalar x)

Overload (1):

Returns: The inverse square root of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the inverse square root of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::sin

float sin(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ sin(NonScalar x)

Overload (1):

Preconditions: The value of x must be in the range [-216, +216].

Returns: The sine of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Preconditions: The value of each element of x must be in the range [-216, +216].

Returns: For each element of x, the sine of x[i].

4.17.6. Half precision math functions SYCL 2020 rev 9

492 | Chapter 4. SYCL programming interface

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::sqrt

float sqrt(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ sqrt(NonScalar x)

Overload (1):

Returns: The square root of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Returns: For each element of x, the square root of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

half_precision::tan

float tan(float x) (1)

template<typename NonScalar> (2)
/*return-type*/ tan(NonScalar x)

Overload (1):

Preconditions: The value of x must be in the range [-216, +216].

Returns: The tangent of x.

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float.

Preconditions: The value of each element of x must be in the range [-216, +216].

Returns: For each element of x, the tangent of x[i].

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

SYCL 2020 rev 9 4.17.6. Half precision math functions

Chapter 4. SYCL programming interface | 493

4.17.7. Integer functions

This section describes the integer math functions that are available in the sycl namespace in both host
and device code.

The descriptions in this section use the type name __swizzle__ to refer to the classes defined in Section
4.14.2.4. This type can be any instantiation of the class templates named __writeable_swizzle__ or __con
st_swizzle__ in that section, so long as the instantiation satisfies the constraints listed in the function’s
description.

The function descriptions in this section also use the term generic integer type to represent the following
types:

• char

• signed char

• short

• int

• long

• long long

• unsigned char

• unsigned short

• unsigned int

• unsigned long

• unsigned long long

• marray<char, N>

• marray<signed char, N>

• marray<short, N>

• marray<int, N>

• marray<long, N>

• marray<long long, N>

• marray<unsigned char, N>

• marray<unsigned short, N>

• marray<unsigned int, N>

• marray<unsigned long, N>

• marray<unsigned long long, N>

• vec<int8_t, N>

• vec<int16_t, N>

• vec<int32_t, N>

• vec<int64_t, N>

• vec<uint8_t, N>

• vec<uint16_t, N>

• vec<uint32_t, N>

• vec<uint64_t, N>

• __swizzle__ that is convertible to vec<int8_t, N>

• __swizzle__ that is convertible to vec<int16_t, N>

4.17.7. Integer functions SYCL 2020 rev 9

494 | Chapter 4. SYCL programming interface

• __swizzle__ that is convertible to vec<int32_t, N>

• __swizzle__ that is convertible to vec<int64_t, N>

• __swizzle__ that is convertible to vec<uint8_t, N>

• __swizzle__ that is convertible to vec<uint16_t, N>

• __swizzle__ that is convertible to vec<uint32_t, N>

• __swizzle__ that is convertible to vec<uint64_t, N>

abs

template<typename GenInt>
/*return-type*/ abs(GenInt x)

Constraints: Available only if GenInt is a generic integer type as defined above.

Returns: When the input is a scalar, returns |x|. Otherwise, returns |x[i]| for each element of x. The
behavior is undefined if the result cannot be represented by the return type.

The return type is GenInt unless GenInt is the __swizzle__ type, in which case the return type is the corre
sponding vec.

abs_diff

template<typename GenInt1, typename GenInt2>
/*return-type*/ abs_diff(GenInt1 x, GenInt2 y)

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 must be the same as GenInt1; and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Returns: When the inputs are scalars, returns |x - y|. Otherwise, returns |x[i] - y[i]| for each element of
x and y. The subtraction is done without modulo overflow. The behavior is undefined if the result cannot
be represented by the return type.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

add_sat

template<typename GenInt1, typename GenInt2>
/*return-type*/ add_sat(GenInt1 x, GenInt2 y)

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 must be the same as GenInt1; and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 must also be vec or the __swizzle__ type, and

SYCL 2020 rev 9 4.17.7. Integer functions

Chapter 4. SYCL programming interface | 495

both must have the same element type and the same number of elements.

Returns: When the inputs are scalars, returns x + y. Otherwise, returns x[i] + y[i] for each element of x
and y. The addition operation saturates the result.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

hadd

template<typename GenInt1, typename GenInt2>
/*return-type*/ hadd(GenInt1 x, GenInt2 y)

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 must be the same as GenInt1; and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Returns: When the inputs are scalars, returns (x + y) >> 1. Otherwise, returns (x[i] + y[i]) >> 1 for
each element of x and y. The intermediate sum does not modulo overflow.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

rhadd

template<typename GenInt1, typename GenInt2>
/*return-type*/ rhadd(GenInt1 x, GenInt2 y)

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 must be the same as GenInt1; and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Returns: When the inputs are scalars, returns (x + y + 1) >> 1. Otherwise, returns (x[i] + y[i] + 1) >>
1 for each element of x and y. The intermediate sum does not modulo overflow.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

clamp

template<typename GenInt1, typename GenInt2, typename GenInt3> (1)
/*return-type*/ clamp(GenInt1 x, GenInt2 minval, GenInt3 maxval)

template<typename NonScalar> (2)
/*return-type*/ clamp(NonScalar x, NonScalar::value_type minval,

4.17.7. Integer functions SYCL 2020 rev 9

496 | Chapter 4. SYCL programming interface

 NonScalar::value_type maxval)

Overload (1):

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 and GenInt3 must be the same as GenInt1;
and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 and GenInt3 must also be vec or the __swizzle__
type, and all three must have the same element type and the same number of elements.

Preconditions: If the inputs are scalars, the value of minval must be less than or equal to the value of max
val. If the inputs are not scalars, each minval must be less than or equal to the corresponding maxval
value.

Returns: When the inputs are scalars, returns min(max(x, minval), maxval). Otherwise, returns
min(max(x[i], minval[i]), maxval[i]) for each element of x, minval, and maxval.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

Overload (2):

Constraints: Available only if NonScalar is marray, vec, or the __swizzle__ type and is a generic integer type
as defined above.

Preconditions: The value of minval must be less than or equal to the value of maxval.

Returns: min(max(x[i], minval), maxval) for each element of x.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

clz

template<typename GenInt>
/*return-type*/ clz(GenInt x)

Constraints: Available only if GenInt is a generic integer type as defined above.

Returns: When the input is a scalar, returns the number of leading 0-bits in x, starting at the most signifi
cant bit position. Otherwise, returns the number of leading 0-bits in each element of x. When a value is 0,
the computed count is the size in bits of that value.

The return type is GenInt unless GenInt is the __swizzle__ type, in which case the return type is the corre
sponding vec.

ctz

template<typename GenInt>
/*return-type*/ ctz(GenInt x)

Constraints: Available only if GenInt is a generic integer type as defined above.

SYCL 2020 rev 9 4.17.7. Integer functions

Chapter 4. SYCL programming interface | 497

Returns: When the input is a scalar, returns the number of trailing 0-bits in x. Otherwise, returns the
number of trailing 0-bits in each element of x. When a value is 0, the computed count is the size in bits of
that value.

The return type is GenInt unless GenInt is the __swizzle__ type, in which case the return type is the corre
sponding vec.

mad_hi

template<typename GenInt1, typename GenInt2, typename GenInt3>
/*return-type*/ mad_hi(GenInt1 a, GenInt2 b, GenInt3 c)

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 and GenInt3 must be the same as GenInt1;
and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 and GenInt3 must also be vec or the __swizzle__
type, and all three must have the same element type and the same number of elements.

Returns: When the inputs are scalars, returns mul_hi(a, b)+c. Otherwise, returns mul_hi(a[i],
b[i])+c[i] for each element of a, b, and c.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

mad_sat

template<typename GenInt1, typename GenInt2, typename GenInt3>
/*return-type*/ mad_sat(GenInt1 a, GenInt2 b, GenInt3 c)

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 and GenInt3 must be the same as GenInt1;
and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 and GenInt3 must also be vec or the __swizzle__
type, and all three must have the same element type and the same number of elements.

Returns: When the inputs are scalars, returns a * b + c. Otherwise, returns a[i] * b[i] + c[i] for each
element of a, b, and c. The operation saturates the result.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

max

template<typename GenInt1, typename GenInt2> (1)
/*return-type*/ max(GenInt1 x, GenInt2 y)

template<typename NonScalar> (2)

4.17.7. Integer functions SYCL 2020 rev 9

498 | Chapter 4. SYCL programming interface

/*return-type*/ max(NonScalar x, NonScalar::value_type y)

Overload (1):

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 must be the same as GenInt1; and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Returns: When the inputs are scalars, returns y if x < y otherwise x. When the inputs are not scalars,
returns y[i] if x[i] < y[i] otherwise x[i] for each element of x and y.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

Overload (2):

Constraints: Available only if NonScalar is marray, vec, or the __swizzle__ type and is a generic integer type
as defined above.

Returns: y if x[i] < y otherwise x[i] for each element of x.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

min

template<typename GenInt1, typename GenInt2> (1)
/*return-type*/ min(GenInt1 x, GenInt2 y)

template<typename NonScalar> (2)
/*return-type*/ min(NonScalar x, NonScalar::value_type y)

Overload (1):

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 must be the same as GenInt1; and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Returns: When the inputs are scalars, returns y if y < x otherwise x. When the inputs are not scalars,
returns y[i] if y[i] < x[i] otherwise x[i] for each element of x and y.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

Overload (2):

Constraints: Available only if NonScalar is marray, vec, or the __swizzle__ type and is a generic integer type
as defined above.

Returns: y if y < x[i] otherwise x[i] for each element of x.

SYCL 2020 rev 9 4.17.7. Integer functions

Chapter 4. SYCL programming interface | 499

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

mul_hi

template<typename GenInt1, typename GenInt2>
/*return-type*/ mul_hi(GenInt1 x, GenInt2 y)

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 must be the same as GenInt1; and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Effects: Computes x * y and returns the high half of the product of x and y.

Returns: When the inputs are scalars, returns the high half of the product of x * y. Otherwise, returns
the high half of the product of x[i] * y[i] for each element of x and y.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

rotate

template<typename GenInt1, typename GenInt2>
/*return-type*/ rotate(GenInt1 v, GenInt2 count)

Constraints: Available only if all of the following conditions are met:

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 must be the same as GenInt1; and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Effects: For each element in v, the bits are shifted left by the number of bits given by the corresponding
element in count (subject to usual shift modulo rules described in the OpenCL 1.2 specification section
6.3). Bits shifted off the left side of the element are shifted back in from the right.

Returns: When the inputs are scalars, the result of rotating v by count as described above. Otherwise, the
result of rotating v[i] by count[i] for each element of v and count.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

sub_sat

template<typename GenInt1, typename GenInt2>
/*return-type*/ sub_sat(GenInt1 x, GenInt2 y)

Constraints: Available only if all of the following conditions are met:

4.17.7. Integer functions SYCL 2020 rev 9

500 | Chapter 4. SYCL programming interface

• GenInt1 is a generic integer type as defined above;

• If GenInt1 is not vec or the __swizzle__ type, then GenInt2 must be the same as GenInt1; and

• If GenInt1 is vec or the __swizzle__ type, then GenInt2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Returns: When the inputs are scalars, returns x - y. Otherwise, returns x[i] - y[i] for each element of x
and y. The subtraction operation saturates the result.

The return type is GenInt1 unless GenInt1 is the __swizzle__ type, in which case the return type is the cor
responding vec.

upsample

template<typename UInt8Bit1, typename UInt8Bit2>
/*return-type*/ upsample(UInt8Bit1 hi, UInt8Bit2 lo)

Constraints: Available only if one of the following conditions is met:

• UInt8Bit1 and UInt8Bit2 are both uint8_t;

• UInt8Bit1 and UInt8Bit2 are both marray with element type uint8_t and the same number of elements;
or

• UInt8Bit1 and UInt8Bit2 are any combination of vec or the __swizzle__ type with element type uint8_t
and the same number of elements.

Returns: When the inputs are scalars, returns ((uint16_t)hi << 8) | lo. Otherwise, returns ((uin
t16_t)hi[i] << 8) | lo[i] for each element of hi and lo.

The return type is uint16_t when the inputs are scalar. When the inputs are marray, the return type is
marray with element type uint16_t and the same number of elements as the inputs. Otherwise, the return
type is vec with element type uint16_t and the same number of elements as the inputs.

upsample

template<typename Int8Bit, typename UInt8Bit>
/*return-type*/ upsample(Int8Bit hi, UInt8Bit lo)

Constraints: Available only if one of the following conditions is met:

• Int8Bit is int8_t and UInt8Bit is uint8_t;

• Int8Bit is marray with element type int8_t and UInt8Bit is marray with element type uint8_t and both
have the same number of elements; or

• Int8Bit is vec or the __swizzle__ type with element type int8_t and UInt8Bit is vec or the __swizzle__
type with element type uint8_t and both have the same number of elements.

Returns: When the inputs are scalars, returns ((int16_t)hi << 8) | lo. Otherwise, returns
((int16_t)hi[i] << 8) | lo[i] for each element of hi and lo.

The return type is int16_t when the inputs are scalar. When the inputs are marray, the return type is mar
ray with element type int16_t and the same number of elements as the inputs. Otherwise, the return
type is vec with element type int16_t and the same number of elements as the inputs.

SYCL 2020 rev 9 4.17.7. Integer functions

Chapter 4. SYCL programming interface | 501

upsample

template<typename UInt16Bit1, typename UInt16Bit2>
/*return-type*/ upsample(UInt16Bit1 hi, UInt16Bit2 lo)

Constraints: Available only if one of the following conditions is met:

• UInt16Bit1 and UInt16Bit2 are both uint16_t;

• UInt16Bit1 and UInt16Bit2 are both marray with element type uint16_t and the same number of ele
ments; or

• UInt16Bit1 and UInt16Bit2 are any combination of vec or the __swizzle__ type with element type uin
t16_t and the same number of elements.

Returns: When the inputs are scalars, returns ((uint32_t)hi << 16) | lo. Otherwise, returns ((uin
t32_t)hi[i] << 16) | lo[i] for each element of hi and lo.

The return type is uint32_t when the inputs are scalar. When the inputs are marray, the return type is
marray with element type uint32_t and the same number of elements as the inputs. Otherwise, the return
type is vec with element type uint32_t and the same number of elements as the inputs.

upsample

template<typename Int16Bit, typename UInt16Bit>
/*return-type*/ upsample(Int16Bit hi, UInt16Bit lo)

Constraints: Available only if one of the following conditions is met:

• Int16Bit is int16_t and UInt16Bit is uint16_t;

• Int16Bit is marray with element type int16_t and UInt16Bit is marray with element type uint16_t and
both have the same number of elements; or

• Int16Bit is vec or the __swizzle__ type with element type int16_t and UInt16Bit is vec or the __swiz
zle__ type with element type uint16_t and both have the same number of elements.

Returns: When the inputs are scalars, returns ((int32_t)hi << 16) | lo. Otherwise, returns
((int32_t)hi[i] << 16) | lo[i] for each element of hi and lo.

The return type is int32_t when the inputs are scalar. When the inputs are marray, the return type is mar
ray with element type int32_t and the same number of elements as the inputs. Otherwise, the return
type is vec with element type int32_t and the same number of elements as the inputs.

upsample

template<typename UInt32Bit1, typename UInt32Bit2>
/*return-type*/ upsample(UInt32Bit1 hi, UInt32Bit2 lo)

Constraints: Available only if one of the following conditions is met:

• UInt32Bit1 and UInt32Bit2 are both uint32_t;

• UInt32Bit1 and UInt32Bit2 are both marray with element type uint32_t and the same number of ele
ments; or

• UInt32Bit1 and UInt32Bit2 are any combination of vec or the __swizzle__ type with element type uin

4.17.7. Integer functions SYCL 2020 rev 9

502 | Chapter 4. SYCL programming interface

t32_t and the same number of elements.

Returns: When the inputs are scalars, returns ((uint64_t)hi << 32) | lo. Otherwise, returns ((uin
t64_t)hi[i] << 32) | lo[i] for each element of hi and lo.

The return type is uint64_t when the inputs are scalar. When the inputs are marray, the return type is
marray with element type uint64_t and the same number of elements as the inputs. Otherwise, the return
type is vec with element type uint64_t and the same number of elements as the inputs.

upsample

template<typename Int32Bit, typename UInt32Bit>
/*return-type*/ upsample(Int32Bit hi, UInt32Bit lo)

Constraints: Available only if one of the following conditions is met:

• Int32Bit is int32_t and UInt32Bit is uint32_t;

• Int32Bit is marray with element type int32_t and UInt32Bit is marray with element type uint32_t and
both have the same number of elements; or

• Int32Bit is vec or the __swizzle__ type with element type int32_t and UInt32Bit is vec or the __swiz
zle__ type with element type uint32_t and both have the same number of elements.

Returns: When the inputs are scalars, returns ((int64_t)hi << 32) | lo. Otherwise, returns
((int64_t)hi[i] << 32) | lo[i] for each element of hi and lo.

The return type is int64_t when the inputs are scalar. When the inputs are marray, the return type is mar
ray with element type int64_t and the same number of elements as the inputs. Otherwise, the return
type is vec with element type int64_t and the same number of elements as the inputs.

popcount

template<typename GenInt>
/*return-type*/ popcount(GenInt x)

Constraints: Available only if GenInt is a generic integer type as defined above.

Returns: When the input is a scalar, returns the number of non-zero bits in x. Otherwise, returns the
number of non-zero bits in x[i] for each element of x.

The return type is GenInt unless GenInt is the __swizzle__ type, in which case the return type is the corre
sponding vec.

mad24

template<typename Int32Bit1, typename Int32Bit2, typename Int32Bit3>
/*return-type*/ mad24(Int32Bit1 x, Int32Bit2 y, Int32Bit3 z)

Constraints: Available only if all of the following conditions are met:

• Int32Bit1 is one of the following types:

◦ int32_t

SYCL 2020 rev 9 4.17.7. Integer functions

Chapter 4. SYCL programming interface | 503

◦ uint32_t

◦ marray<int32_t, N>

◦ marray<uint32_t, N>

◦ vec<int32_t, N>

◦ vec<uint32_t, N>

◦ __swizzle__ that is convertible to vec<int32_t, N>

◦ __swizzle__ that is convertible to vec<uint32_t, N>

• If Int32Bit1 is not vec or the __swizzle__ type, then Int32Bit2 and Int32Bit must be the same as
Int32Bit1; and

• If Int32Bit1 is vec or the __swizzle__ type, then Int32Bit2 and Int32Bit3 must also be vec or the
__swizzle__ type, and all three must have the same element type and the same number of elements.

Preconditions: If the inputs are signed scalars, the values of x and y must be in the range [-223, 223-1]. If the
inputs are unsigned scalars, the values of x and y must be in the range [0, 224-1]. If the inputs are not
scalars, each element of x and y must be in these ranges.

Returns: When the inputs are scalars, returns x * y + z. Otherwise, returns x[i] * y[i] + z[i] for each
element of x, y, and z.

The return type is Int32Bit1 unless Int32Bit1 is the __swizzle__ type, in which case the return type is the
corresponding vec.

mul24

template<typename Int32Bit1, typename Int32Bit2>
/*return-type*/ mul24(Int32Bit1 x, Int32Bit2 y)

Constraints: Available only if all of the following conditions are met:

• Int32Bit1 is one of the following types:

◦ int32_t

◦ uint32_t

◦ marray<int32_t, N>

◦ marray<uint32_t, N>

◦ vec<int32_t, N>

◦ vec<uint32_t, N>

◦ __swizzle__ that is convertible to vec<int32_t, N>

◦ __swizzle__ that is convertible to vec<uint32_t, N>

• If Int32Bit1 is not vec or the __swizzle__ type, then Int32Bit2 must be the same as Int32Bit1; and

• If Int32Bit1 is vec or the __swizzle__ type, then Int32Bit2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Preconditions: If the inputs are signed scalars, the values of x and y must be in the range [-223, 223-1]. If the
inputs are unsigned scalars, the values of x and y must be in the range [0, 224-1]. If the inputs are not
scalars, each element of x and y must be in these ranges.

Returns: When the inputs are scalars, returns x * y. Otherwise, returns x[i] * y[i] for each element of x
and y.

4.17.7. Integer functions SYCL 2020 rev 9

504 | Chapter 4. SYCL programming interface

The return type is Int32Bit1 unless Int32Bit1 is the __swizzle__ type, in which case the return type is the
corresponding vec.

4.17.8. Common functions

This section describes the common functions that are available in the sycl namespace in both host and
device code.

The descriptions in this section use the type name __swizzle__ to refer to the classes defined in Section
4.14.2.4. This type can be any instantiation of the class templates named __writeable_swizzle__ or __con
st_swizzle__ in that section, so long as the instantiation satisfies the constraints listed in the function’s
description.

The function descriptions in this section also use the term generic floating point type to represent the fol
lowing types:

• float

• double

• half

• marray<float, N>

• marray<double, N>

• marray<half, N>

• vec<float, N>

• vec<double, N>

• vec<half, N>

• __swizzle__ that is convertible to vec<float, N>

• __swizzle__ that is convertible to vec<double, N>

• __swizzle__ that is convertible to vec<half, N>

clamp

template<typename GenFloat1, typename GenFloat2, typename GenFloat3> (1)
/*return-type*/ clamp(GenFloat1 x, GenFloat2 minval, GenFloat3 maxval)

template<typename NonScalar> (2)
/*return-type*/ clamp(NonScalar x, NonScalar::value_type minval,
 NonScalar::value_type maxval)

Overload (1):

Constraints: Available only if all of the following conditions are met:

• GenFloat1 is a generic floating point type as defined above;

• If GenFloat1 is not vec or the __swizzle__ type, then GenFloat2 and GenFloat3 must be the same as Gen
Float1; and

• If GenFloat1 is vec or the __swizzle__ type, then GenFloat2 and GenFloat3 must also be vec or the
__swizzle__ type, and all three must have the same element type and the same number of elements.

Preconditions: If the inputs are scalars, the value of minval must be less than or equal to the value of max

SYCL 2020 rev 9 4.17.8. Common functions

Chapter 4. SYCL programming interface | 505

val. If the inputs are not scalars, each element of minval must be less than or equal to the corresponding
element of maxval.

Returns: When the inputs are scalars, returns fmin(fmax(x, minval), maxval). Otherwise, returns
fmin(fmax(x[i], minval[i]), maxval[i]) for each element of x, minval, and maxval.

The return type is GenFloat1 unless GenFloat1 is the __swizzle__ type, in which case the return type is the
corresponding vec.

Overload (2):

Constraints: Available only if NonScalar is marray, vec, or the __swizzle__ type and is a generic floating
point type as defined above.

Preconditions: The value of minval must be less than or equal to the value of maxval.

Returns: fmin(fmax(x[i], minval), maxval) for each element of x.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

degrees

template<typename GenFloat>
/*return-type*/ degrees(GenFloat radians)

Constraints: Available only if GenFloat is a generic floating point type as defined above.

Effects: Converts radians to degrees.

Returns: When the inputs are scalars, returns (180 / π) * radians. Otherwise, returns (180 / π) * radi
ans[i] for each element of radians.

The return type is GenFloat unless GenFloat is the __swizzle__ type, in which case the return type is the
corresponding vec.

max

template<typename GenFloat1, typename GenFloat2> (1)
/*return-type*/ max(GenFloat1 x, GenFloat2 y)

template<typename NonScalar> (2)
/*return-type*/ max(NonScalar x, NonScalar::value_type y)

Overload (1):

Constraints: Available only if all of the following conditions are met:

• GenFloat1 is a generic floating point type as defined above;

• If GenFloat1 is not vec or the __swizzle__ type, then GenFloat2 must be the same as GenFloat1; and

• If GenFloat1 is vec or the __swizzle__ type, then GenFloat2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Preconditions: When the inputs are scalars, x and y must not be infinite or NaN. When the inputs are not
scalars, no element of x or y may be infinite or NaN.

4.17.8. Common functions SYCL 2020 rev 9

506 | Chapter 4. SYCL programming interface

Returns: When the inputs are scalars, returns y if x < y otherwise x. When the inputs are not scalars,
returns y[i] if x[i] < y[i] otherwise x[i] for each element of x and y.

The return type is GenFloat1 unless GenFloat1 is the __swizzle__ type, in which case the return type is the
corresponding vec.

Overload (2):

Constraints: Available only if NonScalar is marray, vec, or the __swizzle__ type and is a generic floating
point type as defined above.

Preconditions: No element of x may be infinite or NaN. The value of y must not be infinite or NaN.

Returns: y if x[i] < y otherwise x[i] for each element of x.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

min

template<typename GenFloat1, typename GenFloat2> (1)
/*return-type*/ min(GenFloat1 x, GenFloat2 y)

template<typename NonScalar> (2)
/*return-type*/ min(NonScalar x, NonScalar::value_type y)

Overload (1):

Constraints: Available only if all of the following conditions are met:

• GenFloat1 is a generic floating point type as defined above;

• If GenFloat1 is not vec or the __swizzle__ type, then GenFloat2 must be the same as GenFloat1; and

• If GenFloat1 is vec or the __swizzle__ type, then GenFloat2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Preconditions: When the inputs are scalars, x and y must not be infinite or NaN. When the inputs are not
scalars, no element of x or y may be infinite or NaN.

Returns: When the inputs are scalars, returns y if y < x otherwise x. When the inputs are not scalars,
returns y[i] if y[i] < x[i] otherwise x[i] for each element of x and y.

The return type is GenFloat1 unless GenFloat1 is the __swizzle__ type, in which case the return type is the
corresponding vec.

Overload (2):

Constraints: Available only if NonScalar is marray, vec, or the __swizzle__ type and is a generic floating
point type as defined above.

Preconditions: No element of x may be infinite or NaN. The value of y must not be infinite or NaN.

Returns: y if y < x[i] otherwise x[i] for each element of x.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

SYCL 2020 rev 9 4.17.8. Common functions

Chapter 4. SYCL programming interface | 507

mix

template<typename GenFloat1, typename GenFloat2, typename GenFloat3> (1)
/*return-type*/ mix(GenFloat1 x, GenFloat2 y, GenFloat3 a)

template<typename NonScalar1, typename NonScalar2> (2)
/*return-type*/ mix(NonScalar1 x, NonScalar2 y, NonScalar1::value_type a)

Overload (1):

Constraints: Available only if all of the following conditions are met:

• GenFloat1 is a generic floating point type as defined above;

• If GenFloat1 is not vec or the __swizzle__ type, then GenFloat2 and GenFloat3 must be the same as Gen
Float1; and

• If GenFloat1 is vec or the __swizzle__ type, then GenFloat2 and GenFloat3 must also be vec or the
__swizzle__ type, and all three must have the same element type and the same number of elements.

Preconditions: If the inputs are scalars, the value of a must be in the range [0.0, 1.0]. If the inputs are not
scalars, each element of a must be in the range [0.0, 1.0].

Returns: The linear blend of x and y. When the inputs are scalars, returns x + (y - x) * a. Otherwise,
returns x[i] + (y[i] - x[i]) * a[i] for each element of x, y, and a.

The return type is GenFloat1 unless GenFloat1 is the __swizzle__ type, in which case the return type is the
corresponding vec.

Overload (2):

Constraints: Available only if NonScalar is marray, vec, or the __swizzle__ type and is a generic floating
point type as defined above.

Preconditions: The value of a must be in the range [0.0, 1.0].

Returns: The linear blend of x and y, computed as x[i] + (y[i] - x[i]) * a for each element of x and y.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

radians

template<typename GenFloat>
/*return-type*/ radians(GenFloat degrees)

Constraints: Available only if GenFloat is a generic floating point type as defined above.

Effects: Converts degrees to radians.

Returns: When the inputs are scalars, returns (π / 180) * degrees. Otherwise, returns (π / 180) *
degrees[i] for each element of degrees.

The return type is GenFloat unless GenFloat is the __swizzle__ type, in which case the return type is the
corresponding vec.

4.17.8. Common functions SYCL 2020 rev 9

508 | Chapter 4. SYCL programming interface

step

template<typename GenFloat1, typename GenFloat2> (1)
/*return-type*/ step(GenFloat1 edge, GenFloat2 x)

template<typename NonScalar> (2)
/*return-type*/ step(NonScalar::value_type edge, NonScalar x)

Overload (1):

Constraints: Available only if all of the following conditions are met:

• GenFloat1 is a generic floating point type as defined above;

• If GenFloat1 is not vec or the __swizzle__ type, then GenFloat2 must be the same as GenFloat1; and

• If GenFloat1 is vec or the __swizzle__ type, then GenFloat2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Returns: When the inputs are scalars, returns the value (x < edge) ? 0.0 : 1.0. When the inputs are not
scalars, returns the value (x[i] < edge[i]) ? 0.0 : 1.0 for each element of x and edge.

The return type is GenFloat1 unless GenFloat1 is the __swizzle__ type, in which case the return type is the
corresponding vec.

Overload (2):

Constraints: Available only if NonScalar is marray, vec, or the __swizzle__ type and is a generic floating
point type as defined above.

Returns: The value (x[i] < edge) ? 0.0 : 1.0 for each element of x.

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

smoothstep

template<typename GenFloat1, typename GenFloat2, typename GenFloat3> (1)
/*return-type*/ smoothstep(GenFloat1 edge0, GenFloat2 edge1, GenFloat3 x)

template<typename NonScalar> (2)
/*return-type*/ smoothstep(NonScalar::value_type edge0, NonScalar::value_type edge1,
 NonScalar x)

Overload (1):

Constraints: Available only if all of the following conditions are met:

• GenFloat1 is a generic floating point type as defined above;

• If GenFloat1 is not vec or the __swizzle__ type, then GenFloat2 and GenFloat3 must be the same as Gen
Float1; and

• If GenFloat1 is vec or the __swizzle__ type, then GenFloat2 and GenFloat3 must also be vec or the
__swizzle__ type, and all three must have the same element type and the same number of elements.

Preconditions: If the inputs are scalar, edge0 must be less than edge1 and none of edge0, edge1, or x may be
NaN. If the inputs are not scalar, each element of edge0 must be less than the corresponding element of
edge1 and no element of edge0, edge1, or x may be NaN.

SYCL 2020 rev 9 4.17.8. Common functions

Chapter 4. SYCL programming interface | 509

Returns: When the inputs are scalars, returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs smooth
Hermite interpolation between 0 and 1 when edge0 < x < edge1. This is useful in cases where you would
want a threshold function with a smooth transition. This is equivalent to:

GenFloat1 t;
t = clamp((x - edge0) / (edge1 - edge0), 0, 1);
return t * t * (3 - 2 * t);

When the inputs are not scalars, returns the following value for each element of edge0, edge1, and x:

GenFloat1::value_type t;
t = clamp((x[i] - edge0[i]) / (edge1[i] - edge0[i]), 0, 1);
return t * t * (3 - 2 * t);

The return type is GenFloat1 unless GenFloat1 is the __swizzle__ type, in which case the return type is the
corresponding vec.

Overload (2):

Constraints: Available only if NonScalar is marray, vec, or the __swizzle__ type and is a generic floating
point type as defined above.

Preconditions: The value of edge0 must be less than edge1 and neither edge0 nor edge1 may be NaN. No
element of x may be NaN.

Returns: The following value for each element of x:

NonScalar::value_type t;
t = clamp((x[i] - edge0) / (edge1 - edge0), 0, 1);
return t * t * (3 - 2 * t);

The return type is NonScalar unless NonScalar is the __swizzle__ type, in which case the return type is the
corresponding vec.

sign

template<typename GenFloat>
/*return-type*/ sign(GenFloat x)

Constraints: Available only if GenFloat is a generic floating point type as defined above.

Returns: When the input is scalar, returns 1.0 if x > 0, -0.0 if x == -0.0, +0.0 if x == +0.0, -1.0 if x < 0, or
0.0 if x is a NaN. When the input is not scalar, returns these values for each element of x.

The return type is GenFloat unless GenFloat is the __swizzle__ type, in which case the return type is the
corresponding vec.

4.17.9. Geometric functions

This section describes the geometric functions that are available in the sycl namespace in both host and
device code.

4.17.9. Geometric functions SYCL 2020 rev 9

510 | Chapter 4. SYCL programming interface

The descriptions in this section use the type name __swizzle__ to refer to the classes defined in Section
4.14.2.4. This type can be any instantiation of the class templates named __writeable_swizzle__ or __con
st_swizzle__ in that section, so long as the instantiation satisfies the constraints listed in the function’s
description.

The function descriptions in this section also use two terms that refer to a specific list of types. The term
generic geometric type represents the following types:

• float

• double

• half

• marray<float, N>, where N is 2, 3, or 4

• marray<double, N>, where N is 2, 3, or 4

• marray<half, N>, where N is 2, 3, or 4

• vec<float, N>, where N is 2, 3, or 4

• vec<double, N>, where N is 2, 3, or 4

• vec<half, N>, where N is 2, 3, or 4

• __swizzle__ that is convertible to vec<float, N>, where N is 2, 3, or 4

• __swizzle__ that is convertible to vec<double, N>, where N is 2, 3, or 4

• __swizzle__ that is convertible to vec<half, N>, where N is 2, 3, or 4

The term float geometric type represents these types:

• float

• marray<float, N>, where N is 2, 3, or 4

• vec<float, N>, where N is 2, 3, or 4

• __swizzle__ that is convertible to vec<float, N>, where N is 2, 3, or 4

cross

template<typename Geo3or4Float1, typename Geo3or4Float2>
/*return-type*/ cross(Geo3or4Float1 p0, Geo3or4Float2 p1)

Constraints: Available only if all of the following conditions are met:

• Geo3or4Float1 is one of the following types:

◦ marray<float, 3>

◦ marray<double, 3>

◦ marray<half, 3>

◦ marray<float, 4>

◦ marray<double, 4>

◦ marray<half, 4>

◦ vec<float, 3>

◦ vec<double, 3>

◦ vec<half, 3>

◦ vec<float, 4>

SYCL 2020 rev 9 4.17.9. Geometric functions

Chapter 4. SYCL programming interface | 511

◦ vec<double, 4>

◦ vec<half, 4>

◦ __swizzle__ that is convertible to vec<float, 3>

◦ __swizzle__ that is convertible to vec<double, 3>

◦ __swizzle__ that is convertible to vec<half, 3>

◦ __swizzle__ that is convertible to vec<float, 4>

◦ __swizzle__ that is convertible to vec<double, 4>

◦ __swizzle__ that is convertible to vec<half, 4>

• If Geo3or4Float1 is marray, then Geo3or4Float2 must be the same as Geo3or4Float1; and

• If Geo3or4Float1 is vec or the __swizzle__ type, then Geo3or4Float2 must also be vec or the __swizzle__
type, and both must have the same element type and the same number of elements.

Returns: The cross product of first 3 components of p0 and p1. When the inputs have 4 components, the
4th component of the result is 0.0.

The return type is Geo3or4Float1 unless Geo3or4Float1 is the __swizzle__ type, in which case the return
type is the corresponding vec.

dot

template<typename GeoFloat1, typename GeoFloat2>
/*return-type*/ dot(GeoFloat1 p0, GeoFloat2 p1)

Constraints: Available only if all of the following conditions are met:

• GeoFloat1 is a generic geometric type as defined above;

• If GeoFloat1 is not vec or the __swizzle__ type, then GeoFloat2 must be the same as GeoFloat1; and

• If GeoFloat1 is vec or the __swizzle__ type, then GeoFloat2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Returns: The dot product of p0 and p1.

The return type is GeoFloat1 if the input types are scalar. Otherwise, the return type is GeoFloat1::val
ue_type.

distance

template<typename GeoFloat1, typename GeoFloat2>
/*return-type*/ distance(GeoFloat1 p0, GeoFloat2 p1)

Constraints: Available only if all of the following conditions are met:

• GeoFloat1 is a generic geometric type as defined above;

• If GeoFloat1 is not vec or the __swizzle__ type, then GeoFloat2 must be the same as GeoFloat1; and

• If GeoFloat1 is vec or the __swizzle__ type, then GeoFloat2 must also be vec or the __swizzle__ type, and
both must have the same element type and the same number of elements.

Returns: The distance between p0 and p1. This is calculated as length(p0 - p1).

4.17.9. Geometric functions SYCL 2020 rev 9

512 | Chapter 4. SYCL programming interface

The return type is GeoFloat1 if the input types are scalar. Otherwise, the return type is GeoFloat1::val
ue_type.

length

template<typename GeoFloat>
/*return-type*/ length(GeoFloat p)

Constraints: Available only if GeoFloat is a generic geometric type as defined above.

Returns: The length of vector p, i.e., sqrt(pow(p[0],2) + pow(p[1],2) + ...).

The return type is GeoFloat if the input type is scalar. Otherwise, the return type is GeoFloat::value_type.

normalize

template<typename GeoFloat>
/*return-type*/ normalize(GeoFloat p)

Constraints: Available only if GeoFloat is a generic geometric type as defined above.

Returns: A vector in the same direction as p but with a length of 1.

The return type is GeoFloat unless GeoFloat is the __swizzle__ type, in which case the return type is the
corresponding vec.

fast_distance

template<typename GeoFloat1, typename GeoFloat2>
/*return-type*/ fast_distance(GeoFloat1 p0, GeoFloat2 p1)

Constraints: Available only if all of the following conditions are met:

• GeoFloat1 is a float geometric type as defined above;

• If GeoFloat1 is not vec or the __swizzle__ type, then GeoFloat2 must be the same as GeoFloat1; and

• If GeoFloat1 is vec or the __swizzle__ type, then GeoFloat2 must also be vec or the __swizzle__ type, and
both must have the same number of elements.

Returns: The value fast_length(p0 - p1).

The return type is GeoFloat1 if the input type is scalar. Otherwise, the return type is GeoFloat1::value_
type.

fast_length

template<typename GeoFloat>
/*return-type*/ fast_length(GeoFloat p)

Constraints: Available only if GeoFloat is a float geometric type as defined above.

SYCL 2020 rev 9 4.17.9. Geometric functions

Chapter 4. SYCL programming interface | 513

Returns: The length of vector p computed as: half_precision::sqrt(pow(p[0],2) + pow(p[1],2) + ...).

The return type is GeoFloat if the input type is scalar. Otherwise, the return type is GeoFloat::value_type.

fast_normalize

template<typename GeoFloat>
/*return-type*/ fast_normalize(GeoFloat p)

Constraints: Available only if GeoFloat is a float geometric type as defined above.

Returns: A vector in the same direction as p but with a length of 1 computed as p * half_preci
sion::rsqrt(pow(p[0],2) + pow(p[1],2) + ...).

The result shall be within 8192 ulps error from the infinitely precise result of

if (all(p == 0.0f))
 result = p;
else
 result = p / sqrt(pow(p[0], 2) + pow(p[1], 2) + ...);

with the following exceptions:

1. If the sum of squares is greater than FLT_MAX then the value of the floating-point values in the result
vector are undefined.

2. If the sum of squares is less than FLT_MIN then the implementation may return back p.

The return type is GeoFloat unless GeoFloat is the __swizzle__ type, in which case the return type is the
corresponding vec.

4.17.10. Relational functions

This section describes the relational functions that are available in the sycl namespace in both host and
device code. These functions perform various relational comparisons on vec, marray, and scalar types.

The comparisons performed by isequal, isgreater, isgreaterequal, isless, islessequal, and islessgreater
are false when one or both operands are NaN. The comparison performed by isnotequal is true when
one or both operands are NaN.

The descriptions in this section use the type name __swizzle__ to refer to the classes defined in Section
4.14.2.4. This type can be any instantiation of the class templates named __writeable_swizzle__ or __con
st_swizzle__ in that section, so long as the instantiation satisfies the constraints listed in the function’s
description.

The function descriptions in this section also use two terms that refer to a specific list of types. The term
generic scalar type represents the following types:

• char

• signed char

• short

• int

• long

4.17.10. Relational functions SYCL 2020 rev 9

514 | Chapter 4. SYCL programming interface

• long long

• unsigned char

• unsigned short

• unsigned int

• unsigned long

• unsigned long long

• float

• double

• half

The term vector element type represents these types:

• int8_t

• int16_t

• int32_t

• int64_t

• uint8_t

• uint16_t

• uint32_t

• uint64_t

• float

• double

• half

isequal

bool isequal(float x, float y) (1)
bool isequal(double x, double y) (2)
bool isequal(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ isequal(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value (x == y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements and the same element type; and

• The element type is float, double, or half.

SYCL 2020 rev 9 4.17.10. Relational functions

Chapter 4. SYCL programming interface | 515

Returns: If NonScalar1 is marray, the value (x[i] == y[i]) for each element of x and y. If NonScalar1 is vec
or the __swizzle__ type, returns the value ((x[i] == y[i]) ? -1 : 0) for each element of x and y.

The return type depends on NonScalar1:

NonScalar1 Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

isnotequal

bool isnotequal(float x, float y) (1)
bool isnotequal(double x, double y) (2)
bool isnotequal(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ isnotequal(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value (x != y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements and the same element type; and

• The element type is float, double, or half.

Returns: If NonScalar1 is marray, the value (x[i] != y[i]) for each element of x and y. If NonScalar1 is vec
or the __swizzle__ type, returns the value ((x[i] != y[i]) ? -1 : 0) for each element of x and y.

The return type depends on NonScalar1:

NonScalar1 Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

4.17.10. Relational functions SYCL 2020 rev 9

516 | Chapter 4. SYCL programming interface

NonScalar1 Return Type

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

isgreater

bool isgreater(float x, float y) (1)
bool isgreater(double x, double y) (2)
bool isgreater(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ isgreater(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value (x > y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements and the same element type; and

• The element type is float, double, or half.

Returns: If NonScalar1 is marray, the value (x[i] > y[i]) for each element of x and y. If NonScalar1 is vec or
the __swizzle__ type, returns the value ((x[i] > y[i]) ? -1 : 0) for each element of x and y.

The return type depends on NonScalar1:

NonScalar1 Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

isgreaterequal

bool isgreaterequal(float x, float y) (1)
bool isgreaterequal(double x, double y) (2)
bool isgreaterequal(half x, half y) (3)

SYCL 2020 rev 9 4.17.10. Relational functions

Chapter 4. SYCL programming interface | 517

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ isgreaterequal(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value (x >= y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements and the same element type; and

• The element type is float, double, or half.

Returns: If NonScalar1 is marray, the value (x[i] >= y[i]) for each element of x and y. If NonScalar1 is vec
or the __swizzle__ type, returns the value ((x[i] >= y[i]) ? -1 : 0) for each element of x and y.

The return type depends on NonScalar1:

NonScalar1 Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

isless

bool isless(float x, float y) (1)
bool isless(double x, double y) (2)
bool isless(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ isless(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value (x < y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

4.17.10. Relational functions SYCL 2020 rev 9

518 | Chapter 4. SYCL programming interface

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements and the same element type; and

• The element type is float, double, or half.

Returns: If NonScalar1 is marray, the value (x[i] < y[i]) for each element of x and y. If NonScalar1 is vec or
the __swizzle__ type, returns the value ((x[i] < y[i]) ? -1 : 0) for each element of x and y.

The return type depends on NonScalar1:

NonScalar1 Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

islessequal

bool islessequal(float x, float y) (1)
bool islessequal(double x, double y) (2)
bool islessequal(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ islessequal(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value (x <= y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements and the same element type; and

• The element type is float, double, or half.

Returns: If NonScalar1 is marray, the value (x[i] <= y[i]) for each element of x and y. If NonScalar1 is vec
or the __swizzle__ type, returns the value ((x[i] <= y[i]) ? -1 : 0) for each element of x and y.

The return type depends on NonScalar1:

SYCL 2020 rev 9 4.17.10. Relational functions

Chapter 4. SYCL programming interface | 519

NonScalar1 Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

islessgreater

bool islessgreater(float x, float y) (1)
bool islessgreater(double x, double y) (2)
bool islessgreater(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ islessgreater(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Returns: The value (x < y) || (x > y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements and the same element type; and

• The element type is float, double, or half.

Returns: If NonScalar1 is marray, the value (x[i] < y[i] || x[i] > y[i]) for each element of x and y. If
NonScalar1 is vec or the __swizzle__ type, returns the value ((x[i] < y[i] || x[i] > y[i]) ? -1 : 0) for
each element of x and y.

The return type depends on NonScalar1:

NonScalar1 Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

4.17.10. Relational functions SYCL 2020 rev 9

520 | Chapter 4. SYCL programming interface

isfinite

bool isfinite(float x) (1)
bool isfinite(double x) (2)
bool isfinite(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ isfinite(NonScalar x)

Overloads (1) - (3):

Returns: The value true only if x has finite value.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: If NonScalar is marray, returns true for each element of x only if x[i] is a finite value. If NonScalar
is vec or the __swizzle__ type, returns -1 for each element of x if x[i] is a finite value and returns 0 other
wise.

The return type depends on NonScalar:

NonScalar Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

isinf

bool isinf(float x) (1)
bool isinf(double x) (2)
bool isinf(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ isinf(NonScalar x)

Overloads (1) - (3):

Returns: The value true only if x has an infinity value (either positive or negative).

Overload (4):

SYCL 2020 rev 9 4.17.10. Relational functions

Chapter 4. SYCL programming interface | 521

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: If NonScalar is marray, returns true for each element of x only if x[i] has an infinity value. If Non
Scalar is vec or the __swizzle__ type, returns -1 for each element of x if x[i] has an infinity value and
returns 0 otherwise.

The return type depends on NonScalar:

NonScalar Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

isnan

bool isnan(float x) (1)
bool isnan(double x) (2)
bool isnan(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ isnan(NonScalar x)

Overloads (1) - (3):

Returns: The value true only if x has a NaN value.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: If NonScalar is marray, returns true for each element of x only if x[i] has a NaN value. If Non
Scalar is vec or the __swizzle__ type, returns -1 for each element of x if x[i] has a NaN value and returns
0 otherwise.

The return type depends on NonScalar:

NonScalar Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

4.17.10. Relational functions SYCL 2020 rev 9

522 | Chapter 4. SYCL programming interface

NonScalar Return Type

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

isnormal

bool isnormal(float x) (1)
bool isnormal(double x) (2)
bool isnormal(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ isnormal(NonScalar x)

Overloads (1) - (3):

Returns: The value true only if x has a normal value.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: If NonScalar is marray, returns true for each element of x only if x[i] has a normal value. If Non
Scalar is vec or the __swizzle__ type, returns -1 for each element of x if x[i] has a normal value and
returns 0 otherwise.

The return type depends on NonScalar:

NonScalar Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

isordered

bool isordered(float x, float y) (1)
bool isordered(double x, double y) (2)
bool isordered(half x, half y) (3)

SYCL 2020 rev 9 4.17.10. Relational functions

Chapter 4. SYCL programming interface | 523

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ isordered(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Effects: Tests if x and y are ordered.

Returns: The value isequal(x, x) && isequal(y, y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements and the same element type; and

• The element type is float, double, or half.

Effects: Tests if each element of x and y are ordered.

Returns: If NonScalar1 is marray, the value isequal(x[i], x[i]) && isequal(y[i], y[i]) for each element
of x and y. If NonScalar1 is vec or the __swizzle__ type, returns the value ((isequal(x[i], x[i]) && ise
qual(y[i], y[i]) ? -1 : 0) for each element of x and y.

The return type depends on NonScalar1:

NonScalar1 Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

isunordered

bool isunordered(float x, float y) (1)
bool isunordered(double x, double y) (2)
bool isunordered(half x, half y) (3)

template<typename NonScalar1, typename NonScalar2> (4)
/*return-type*/ isunordered(NonScalar1 x, NonScalar2 y)

Overloads (1) - (3):

Effects: Tests if x and y are unordered.

4.17.10. Relational functions SYCL 2020 rev 9

524 | Chapter 4. SYCL programming interface

Returns: The value isnan(x) || isnan(y).

Overload (4):

Constraints: Available only if all of the following conditions are met:

• One of the following conditions must hold for NonScalar1 and NonScalar2:

◦ Both NonScalar1 and NonScalar2 are marray; or

◦ NonScalar1 and NonScalar2 are any combination of vec and the __swizzle__ type;

• NonScalar1 and NonScalar2 have the same number of elements and the same element type; and

• The element type is float, double, or half.

Effects: Tests if each element of x and y are unordered.

Returns: If NonScalar1 is marray, the value isnan(x[i]) || isnan(y[i]) for each element of x and y. If Non
Scalar1 is vec or the __swizzle__ type, returns the value ((isnan(x[i]) || isnan(y[i]) ? -1 : 0) for each
element of x and y.

The return type depends on NonScalar1:

NonScalar1 Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

signbit

bool signbit(float x) (1)
bool signbit(double x) (2)
bool signbit(half x) (3)

template<typename NonScalar> (4)
/*return-type*/ signbit(NonScalar x)

Overloads (1) - (3):

Returns: The value true only if the sign bit of x is set.

Overload (4):

Constraints: Available only if all of the following conditions are met:

• NonScalar is marray, vec, or the __swizzle__ type; and

• The element type is float, double, or half.

Returns: If NonScalar is marray, returns true for each element of x only if the sign bit of x[i] is set. If Non
Scalar is vec or the __swizzle__ type, returns -1 for each element of x if the sign bit of x[i] is set and

SYCL 2020 rev 9 4.17.10. Relational functions

Chapter 4. SYCL programming interface | 525

returns 0 otherwise.

The return type depends on NonScalar:

NonScalar Return Type

marray<float, N>
marray<double, N>
marray<half, N>

marray<bool, N>

vec<float, N>
__swizzle__ that is convertible to vec<float, N>

vec<int32_t, N>

vec<double, N>
__swizzle__ that is convertible to vec<double, N>

vec<int64_t, N>

vec<half, N>
__swizzle__ that is convertible to vec<half, N>

vec<int16_t, N>

any

template<typename GenInt> (1)
/*return-type*/ any(GenInt x)

template<typename GenInt> (2) /* deprecated */
bool any(GenInt x)

Overload (1):

Constraints: Available only if GenInt is one of the following types:

• marray<bool, N>

• vec<int8_t, N>

• vec<int16_t, N>

• vec<int32_t, N>

• vec<int64_t, N>

• __swizzle__ that is convertible to vec<int8_t, N>

• __swizzle__ that is convertible to vec<int16_t, N>

• __swizzle__ that is convertible to vec<int32_t, N>

• __swizzle__ that is convertible to vec<int64_t, N>

Returns: When x is marray, returns a Boolean telling whether any element of x is true. When x is vec or
the __swizzle__ type, returns the value 1 if any element in x has its most significant bit set, otherwise
returns the value 0.

The return type is bool if GenInt is marray. Otherwise, the return type is int.

Overload (2):

This overload is deprecated in SYCL 2020.

Constraints: Available only if GenInt is one of the following types:

• signed char

• short

4.17.10. Relational functions SYCL 2020 rev 9

526 | Chapter 4. SYCL programming interface

• int

• long

• long long

• marray<signed char, N>

• marray<short, N>

• marray<int, N>

• marray<long, N>

• marray<long long, N>

Returns: When x is a scalar, returns a Boolean telling whether the most significant bit of x is set. When x
is marray, returns a Boolean telling whether the most significant bit of any element in x is set.

all

template<typename GenInt> (1)
/*return-type*/ all(GenInt x)

template<typename GenInt> (2) /* deprecated */
bool all(GenInt x)

Overload (1):

Constraints: Available only if GenInt is one of the following types:

• marray<bool, N>

• vec<int8_t, N>

• vec<int16_t, N>

• vec<int32_t, N>

• vec<int64_t, N>

• __swizzle__ that is convertible to vec<int8_t, N>

• __swizzle__ that is convertible to vec<int16_t, N>

• __swizzle__ that is convertible to vec<int32_t, N>

• __swizzle__ that is convertible to vec<int64_t, N>

Returns: When x is marray, returns a Boolean telling whether all elements of x are true. When x is vec or
the __swizzle__ type, returns the value 1 if all elements in x have their most significant bit set, otherwise
returns the value 0.

The return type is bool if GenInt is marray. Otherwise, the return type is int.

Overload (2):

This overload is deprecated in SYCL 2020.

Constraints: Available only if GenInt is one of the following types:

• signed char

• short

• int

SYCL 2020 rev 9 4.17.10. Relational functions

Chapter 4. SYCL programming interface | 527

• long

• long long

• marray<signed char, N>

• marray<short, N>

• marray<int, N>

• marray<long, N>

• marray<long long, N>

Returns: When x is a scalar, returns a Boolean telling whether the most significant bit of x is set. When x
is marray, returns a Boolean telling whether the most significant bit of all elements in x are set.

bitselect

template<typename GenType1, typename GenType2, typename GenType3>
/*return-type*/ bitselect(GenType1 a, GenType2 b, GenType3 c)

Constraints: Available only if all of the following conditions are met:

• GenType1 is one of the following types:

◦ One of the generic scalar types as defined above;

◦ marray<T, N>, where T is one of the generic scalar types;

◦ vec<T, N>, where T is one of the vector element types as defined above; or

◦ __swizzle__ that is convertible to vec<T, N>, where T is one of the vector element types;

• If GenType1 is not vec or the __swizzle__ type, then GenType2 and GenType3 must be the same as Gen
Type1; and

• If GenType1 is vec or the __swizzle__ type, then GenType2 and GenType3 must also be vec or the __swiz
zle__ type, and all three must have the same element type and the same number of elements.

Returns: When the input parameters are scalars, returns a result where each bit of the result is the cor
responding bit of a if the corresponding bit of c is 0. Otherwise it is the corresponding bit of b.

When the input parameters are not scalars, returns a result for each element where each bit of the
result for element i is the corresponding bit of a[i] if the corresponding bit of c[i] is 0. Otherwise it is
the corresponding bit of b[i].

The return type is GenType1 unless GenType1 is the __swizzle__ type, in which case the return type is the
corresponding vec.

select

template<typename Scalar> (1)
Scalar select(Scalar a, Scalar b, bool c)

template<typename NonScalar1, typename NonScalar2, typename NonScalar3> (2)
/*return-type*/ select(NonScalar1 a, NonScalar2 b, NonScalar3 c)

Overload (1):

Constraints: Available only if Scalar is one of the generic scalar types as defined above.

4.17.10. Relational functions SYCL 2020 rev 9

528 | Chapter 4. SYCL programming interface

Returns: The value (c ? b : a).

Overload (2):

Constraints: Available only if all of the following conditions are met:

• NonScalar1 is one of the following types:

◦ marray<T, N>, where T is one of the generic scalar types as defined above;

◦ vec<T, N>, where T is one of the vector element types as defined above; or

◦ __swizzle__ that is convertible to vec<T, N>, where T is one of the vector element types;

• If NonScalar1 is marray, then:

◦ NonScalar2 must be the same as NonScalar1; and

◦ NonScalar3 must be marray with element type bool and the same number of elements as NonScalar1;

• If NonScalar1 is vec or the __swizzle__ type, then:

◦ NonScalar2 must also be vec or the __swizzle__ type, and both must have the same element type
and the same number of elements; and

◦ NonScalar3 must be vec or the __swizzle__ type with the same number of elements as NonScalar1.
The element type of NonScalar3 must be a signed or unsigned integer with the same number of bits
as the element type of NonScalar1.

Returns: If NonScalar1 is marray, return the value (c[i] ? b[i] : a[i]) for each element of a, b, and c.

If NonScalar1 is vec or the __swizzle__ type, returns the value ((MSB of c[i] is set) ? b[i] : a[i]) for
each element of a, b, and c.

The return type is NonScalar1 unless NonScalar1 is the __swizzle__ type, in which case the return type is
the corresponding vec.

SYCL 2020 rev 9 4.17.10. Relational functions

Chapter 4. SYCL programming interface | 529

Chapter 5. SYCL Device Compiler
This section specifies the requirements of the SYCL device compiler. Most features described in this sec
tion relate to underlying SYCL backend capabilities of target devices and limiting the requirements of
device code to ensure portability.

5.1. Offline compilation of SYCL source files
There are two alternatives for a SYCL device compiler: a single-source device compiler and a device com
piler that supports the technique of SMCP.

A SYCL device compiler takes in a C++ source file, extracts only the SYCL kernels and outputs the device
code in a form that can be enqueued from host code by the associated SYCL runtime. How the SYCL run
time invokes the kernels is implementation-defined, but a typical approach is for a device compiler to
produce a header file with the compiled kernel contained within it. By providing a command-line option
to the host compiler, it would cause the implementation’s SYCL header files to #include the generated
header file. The SYCL specification has been written to allow this as an implementation approach in
order to allow SMCP. However, any of the mechanisms needed from the SYCL compiler, the SYCL run
time and build system are implementation-defined, as they can vary depending on the platform and
approach.

A SYCL single-source device compiler takes in a C++ source file and compiles both host and device code
at the same time. This specification specifies how a SYCL single-source device compiler sees and outputs
device code for kernels, but does not specify the host compilation.

5.2. Naming of kernels
SYCL kernels are extracted from C++ source files and stored in an implementation-defined format. In the
case of the shared-source compilation model, the kernels have to be uniquely identified by both host and
device compiler. This is required in order for the host runtime to be able to load the kernel by using a
backend-specific host runtime interface.

From this requirement the following rules apply for naming the kernels:

• The kernel name is a C++ typename.

• The kernel name must be forward declarable at namespace scope (including global namespace
scope) and may not be forward declared other than at namespace scope. If it isn’t forward declared
but is specified as a template argument in a kernel invoking interface, as described in Section 4.9.4.2,
then it may not conflict with a name in any enclosing namespace scope.

The requirement that a kernel name be forward declarable makes some types for kernel
names illegal, such as anything declared in the std namespace (adding a declaration to
namespace std leads to undefined behavior).

• If the kernel is defined as a named function object type, the name can be the typename of the func
tion object as long as it is either declared at namespace scope, or does not conflict with any name in
an enclosing namespace scope.

• If the kernel is defined as a lambda, a typename can optionally be provided to the kernel invoking
interface as described in Section 4.9.4.2, so that the developer can control the kernel name for pur
poses such as debugging or referring to the kernel when applying build options.

• If a kernel function relies on template parameters, then those template parameters must be con
tained by the kernel name. If such a kernel name is specified as a template argument in a kernel
invoking interface, then the template parameters on which the kernel depends must be forward
declarable at namespace scope.

5.1. Offline compilation of SYCL source files SYCL 2020 rev 9

530 | Chapter 5. SYCL Device Compiler

In both single-source and shared-source implementations, a device compiler should detect the kernel
invocations (e.g. parallel_for<kernelname>) in the source code and compile the enclosed kernels, storing
them with their associated type name.

The format of the kernel and the compilation techniques are details of an implementation and not speci
fied. The interface between the compiler and the runtime for extracting and executing SYCL kernels on
the device is a detail of an implementation and not specified.

5.3. Compilation of functions
The SYCL device compiler parses an entire C++ source file supplied by the user, including any header
files referenced via #include directives. From this source file, the SYCL device compiler must compile
kernels for the device, as well as any functions that the kernels call.

The device compiler identifies kernels by looking for calls to Kernel invocation commands such as paral
lel_for. One of the parameters is a function object which is known as a SYCL kernel function, and this
function must always return void. Any function called by the SYCL kernel function is also compiled for
the device, and these functions together with the SYCL kernel functions are known as device functions.
The device compiler searches recursively for any functions called from a device function, and these
functions are also compiled for the device and known as device functions.

To illustrate, the following source code shows three functions and a kernel invoke with comments
explaining which functions need to be compiled for the device.

 1 void f(handler& cgh) {
 2 // Function "f" is not compiled for device
 3
 4 cgh.single_task([=] {
 5 // This code is compiled for device
 6 g(); // This line forces "g" to be compiled for device
 7 });
 8 }
 9
10 void g() {
11 // Called from kernel, so "g" is compiled for device
12 }
13
14 void h() {
15 // Not called from a device function, so not compiled for device
16 }

In order for the SYCL device compiler to correctly compile device functions, all functions in the source
file, whether device functions or not, must be syntactically correct functions according to this specifica
tion. A syntactically correct function adheres to at least the minimum required C++ version defined in
Section 3.9.1.

5.4. Language restrictions for device functions
Device functions must abide by certain restrictions. The full set of C++ features are not available to these
functions. Following is a list of these restrictions:

• Pointers and objects containing pointers may be shared. However, when a pointer is passed between
SYCL devices or between the host and a SYCL device, dereferencing that pointer on the device pro
duces undefined behavior unless the device supports USM and the pointer is an address within a
USM memory region (see Section 4.8).

SYCL 2020 rev 9 5.3. Compilation of functions

Chapter 5. SYCL Device Compiler | 531

• Memory storage allocation is not allowed in kernels. All memory allocation for the device is done on
the host using accessor classes or using USM as explained in Section 4.8. Consequently, the default
allocation operator new overloads that allocate storage are disallowed in a SYCL kernel. The place
ment new operator and any user-defined overloads that do not allocate storage are permitted.

• Kernel functions must always have a void return type. A kernel lambda trailing-return-type that is
not void is therefore illegal, as is a return statement (that would return from the kernel function) with
an expression that does not convert to void.

• The odr-use of polymorphic classes and classes with virtual inheritance is allowed. However, no vir
tual member functions are allowed to be called in a device function.

• No function pointers or references are allowed to be called in a device function.

• RTTI is disabled inside device functions.

• No variadic functions are allowed to be called in a device function.

• Exception-handling cannot be used inside a device function. noexcept is allowed.

• Recursion is not allowed in a device function.

• Variables with thread storage duration (thread_local storage class specifier) are not allowed to be
odr-used in a device function.

• Variables with static storage duration that are odr-used inside a device function, must be either const
or constexpr, and must also be either zero-initialized or constant-initialized.

Amongst other things, this restriction makes it illegal for a device function to access a
global variable that isn’t const or constexpr.

• The rules for kernels apply to both the kernel function objects themselves and all functions, opera
tors, member functions, constructors and destructors called by the kernel. This means that kernels
can only use library functions that have been adapted to work with SYCL. Implementations are not
required to support any library routines in kernels beyond those explicitly mentioned as usable in
kernels in this spec. Developers should refer to the SYCL built-in functions in Section 4.17 to find func
tions that are specified to be usable in kernels.

• Interacting with a special SYCL runtime class (e.g. SYCL accessor or stream) that is stored within a C++
union is undefined behavior.

• Any variable or function that is odr-used from a device function must be defined in the same transla
tion unit as that use. However, a function may be defined in another translation unit if the implemen
tation defines the SYCL_EXTERNAL macro as described in Section 5.10.1.

5.5. Built-in scalar data types
In a SYCL device compiler, the device definition of all standard C++ fundamental types from Table 172
must match the host definition of those types, in both size and alignment. A device compiler may have
this preconfigured so that it can match them based on the definitions of those types on the platform, or
there may be a necessity for a device compiler command-line option to ensure the types are the same.

The standard C++ fixed width types, e.g. int8_t, int16_t, int32_t,int64_t, should have the same size as
defined by the C++ standard for host and device.

Table 172. Fundamental data types supported by SYCL

5.5. Built-in scalar data types SYCL 2020 rev 9

532 | Chapter 5. SYCL Device Compiler

Fundamental data type Description

bool
A conditional data type which can
be either true or false. The value
true expands to the integer con
stant 1 and the value false expands
to the integer constant 0.

char
A signed or unsigned 8-bit integer,
as defined by the C++ core lan
guage

signed char
A signed 8-bit integer, as defined
by the C++ core language

unsigned char
An unsigned 8-bit integer, as
defined by the C++ core language

short int
A signed integer of at least 16-bits,
as defined by the C++ core lan
guage

unsigned short int
An unsigned integer of at least 16-
bits, as defined by the C++ core lan
guage

int
A signed integer of at least 16-bits,
as defined by the C++ core lan
guage

unsigned int
An unsigned integer of at least 16-
bits, as defined by the C++ core lan
guage

long int
A signed integer of at least 32-bits,
as defined by the C++ core lan
guage

unsigned long int
An unsigned integer of at least 32-
bits, as defined by the C++ core lan
guage

long long int
An integer of at least 64-bits, as
defined by the C++ core language

unsigned long long int
An unsigned integer of at least 64-
bits, as defined by the C++ core lan
guage

float
A 32-bit floating-point. The float
data type must conform to the IEEE
754 single precision storage for
mat.

double
A 64-bit floating-point. The double
data type must conform to the IEEE
754 double precision storage for
mat. This type is only supported on
devices that have aspect::fp64.

SYCL 2020 rev 9 5.5. Built-in scalar data types

Chapter 5. SYCL Device Compiler | 533

5.6. Preprocessor directives and macros
The standard C++ preprocessing directives and macros are supported. The following preprocessor
macros must be defined by all conformant implementations:

• SYCL_LANGUAGE_VERSION substitutes an integer reflecting the version number and revision of the SYCL
language being supported by the implementation. The version of SYCL defined in this document will
have SYCL_LANGUAGE_VERSION substitute the integer 2020, composed with the general SYCL version fol
lowed by 2 digits representing the revision number;

• SYCL_DEVICE_COPYABLE is defined to 1 if the implementation supports explicitly specified device copy
able types as described in Section 3.13.1. Otherwise, the implementation’s definition of device copy
able falls back to C++ trivially copyable and sycl::is_device_copyable is ignored;

• __SYCL_DEVICE_ONLY__ is defined to 1 if the source file is being compiled with a SYCL device compiler
which does not produce host binary;

• __SYCL_SINGLE_SOURCE__ is defined to 1 if the source file is being compiled with a SYCL single-source
compiler which produces host as well as device binary;

• SYCL_FEATURE_SET_FULL is defined to 1 if the SYCL implementation supports the full feature set and is
not defined otherwise. For more details see Appendix B;

• SYCL_FEATURE_SET_REDUCED is defined to 1 if the SYCL implementation supports the reduced feature set
and not the full feature set, otherwise it is not defined. For more details see Appendix B;

• SYCL_EXTERNAL is an optional macro which enables external linkage of SYCL functions and member
functions to be included in a SYCL kernel. The macro is only defined if the implementation supports
external linkage. For more details see Section 5.10.1.

In addition, for each SYCL backend supported, the preprocessor macros described in Section 4.1 must be
defined by all conformant implementations.

5.7. Optional kernel features
A number of kernel features defined by this SYCL specification are optional; they may be supported on
some devices but not on other devices. As described in Section 4.6.4.3, an application can test whether a
device supports these features by testing whether the device has an associated aspect. The following
aspects are those that correspond to optional kernel features:

• fp16

• fp64

• atomic64

In addition, the following C++ attributes from Section 5.8.1 also correspond to optional kernel features
because they force the kernel to be compiled in a way that might not run on all devices:

• reqd_work_group_size()

• reqd_sub_group_size()

In order to guarantee source code portability of SYCL applications that use optional kernel features, all
SYCL implementations must be able to compile device code that uses these optional features regardless
of whether the implementation supports the features on any of its devices.

Of course, applications that make use of optional kernel features should ensure that a kernel using such
a feature is submitted only to a device that supports the feature. If the application submits a command
group using a secondary queue, then any kernel submitted from the command group should use only
features that are supported by both the primary queue’s device and the secondary queue’s device. If an
application fails to do this, the implementation must throw a synchronous exception with the errc::ker

5.6. Preprocessor directives and macros SYCL 2020 rev 9

534 | Chapter 5. SYCL Device Compiler

nel_not_supported error code from the kernel invocation command (e.g. parallel_for()).

It is legal for a SYCL application to define several kernels in the same translation unit even if they use
different optional features, as shown in the following example:

 1 queue q1(dev1);
 2 if (dev1.has(aspect::fp16)) {
 3 q1.submit([&](handler& cgh) {
 4 cgh.parallel_for<KernelA>(range { N }, [=](id i) {
 5 half fpShort = 1.0;
 6 /* ... */
 7 });
 8 });
 9 }
10
11 queue q2(dev2);
12 if (dev2.has(aspect::atomic64)) {
13 q2.submit([&](handler& cgh) {
14 cgh.parallel_for<KernelB>(range { N }, [=](id i) {
15 /* ... */
16 sycl::atomic_ref longAtomic(longValue);
17 longAtomic.fetch_add(1);
18 });
19 });
20 }

An implementation may not raise a compile time diagnostic or a run time exception merely due to spec
ulative compilation of a kernel for a device when the application does not actually submit the kernel to
that device. To illustrate using the example above, assume that device dev1 does not have aspect::atom
ic64 and device dev2 does not have aspect::fp16. An implementation cannot raise a diagnostic due to
compilation of KernelA for device dev2 or for compilation of KernelB for device dev1 because the applica
tion does not submit these kernels to those devices.

It is expected that this requirement will have an impact on the way an implementation
bundles kernels into device images. For example, naively bundling KernelA and KernelB
into the same device image could run afoul of this requirement if the implementation
compiles the entire device image when KernelA is submitted to device dev1.

5.8. Attributes for device code
C++ attributes may be used to decorate kernels and device functions in order to influence the code gen
erated by the device compiler. These attributes are all defined in the [[sycl::]] namespace.

If one of the attributes defined in this section is applied to a kernel or device function, it must be applied
to the first declaration of that kernel or device function in the translation unit. Programs which fail to do
this are ill formed and the compiler must issue a diagnostic. Redeclarations of the kernel or device func
tion in the same translation unit may optionally have the same attribute applied (so long as the attribute
arguments are the same between the declarations), but this is not required. The attribute remains in
effect regardless of whether it appears in the redeclaration.

Unless an attribute’s description specifically allows it, a kernel or device function may not be declared
with the more than one instance of the same attribute unless all instances have the same attribute argu
ments. The compiler must issue a diagnostic for programs which violate this requirement. When two or
more instances of the same attribute appear on the declaration of a kernel or device function, the effect
is as though a single instance appeared (assuming that all instances have the same attribute arguments).

SYCL 2020 rev 9 5.8. Attributes for device code

Chapter 5. SYCL Device Compiler | 535

If a kernel or device function is declared with an attribute in one translation unit and the same kernel or
device function is declared without the same attribute (and its same attribute arguments) in another
translation unit, the program is ill formed and no diagnostic is required.

If any of these attributes are applied to a device function that is also compiled for the host, they have no
effect when the function is compiled for the host.

Applying these attributes to any language construct other than those specified in this section has imple
mentation-defined effect.

5.8.1. Kernel attributes

The attributes listed in Table 173 have a different position depending on whether the kernel is defined as
a lambda function or as a named function object. If the kernel is a named function object, the attribute is
applied to the declarator-id in the function declaration. However, if the kernel is a lambda function, the
attribute is applied to the lambda declarator.

The reason for the different positions is because the C++ core language does not cur
rently define a position for attributes to appertain to the lambda’s corresponding func
tion operator or operator template, only to the corresponding type of the function opera
tor or operator template. This is expected to be remedied in a future version of the C++
core language specification.

The example below demonstrates these attribute positions using the [[sycl::reqd_work_group_size(16)]]
attribute. Note that the C++ core language allows two possible positions for kernels that are defined as a
named function object.

 1 // Kernel defined as a lambda
 2 myQueue.submit([&](handler& h) {
 3 h.parallel_for(range<1>(16),
 4 [=](item<1> it) [[sycl::reqd_work_group_size(16)]] {
 5 //[kernel code]
 6 });
 7 });
 8
 9 // Kernel defined as a named function object
10 class KernelFunctor1 {
11 public:
12 [[sycl::reqd_work_group_size(16)]] void operator()(item<1> it) const {
13 //[kernel code]
14 };
15 };
16
17 // Kernel defined as a named function object
18 class KernelFunctor2 {
19 public:
20 void operator() [[sycl::reqd_work_group_size(16)]] (item<1> it) const {
21 //[kernel code]
22 };
23 };

Table 173. Attributes for kernel functions

5.8.1. Kernel attributes SYCL 2020 rev 9

536 | Chapter 5. SYCL Device Compiler

SYCL attribute Description

reqd_work_group_size(dim0)
reqd_work_group_size(dim0, dim1)
reqd_work_group_size(dim0, dim1, dim2)

Indicates that the kernel must be
launched with the specified work-
group size. The number of argu
ments must match the dimension
ality of the work-group used to
invoke the kernel, and the order of
the arguments matches the order
of the dimension extents to the
range constructor. Each argument
must be an integral constant
expression.

Kernels that are decorated with
this attribute may not call func
tions that are defined in another
translation unit via the SYCL_EXTER
NAL macro.

Each device may have limitations
on the work-group sizes that it sup
ports. If a kernel is decorated with
this attribute and then submitted
to a device that does not support
the work-group size, the imple
mentation must throw a synchro
nous exception with the errc::ker
nel_not_supported error code. If the
kernel is submitted to a device that
does support the work-group size,
but the application provides an
nd_range that does not match the
size from the attribute, then the
implementation must throw a syn
chronous exception with the
errc::nd_range error code.

work_group_size_hint(dim0)
work_group_size_hint(dim0, dim1)
work_group_size_hint(dim0, dim1, dim2)

Provides a hint to the compiler
about the work-group size most
likely to be used when launching
the kernel at runtime. The number
of arguments must match the
dimensionality of the work-group
used to invoke the kernel, and the
order of the arguments matches
the order of the dimension extents
to the range constructor. Each argu
ment must be an integral constant
expression. The effect of this
attribute, if any, is implementation-
defined.

SYCL 2020 rev 9 5.8.1. Kernel attributes

Chapter 5. SYCL Device Compiler | 537

SYCL attribute Description

vec_type_hint(<type>)
Hint to the compiler on the vector
computational width of of the ker
nel. The argument must be one of
the vector types defined in Section
4.14.2. The effect of this attribute, if
any, is implementation-defined.

This attribute is deprecated (avail
able for use, but will likely be
removed in a future version of the
specification and is not recom
mended for use in new code).

reqd_sub_group_size(size)
Indicates that the kernel must be
compiled and executed with the
specified sub-group size. The argu
ment to the attribute must be an
integral constant expression.

Kernels that are decorated with
this attribute may not call func
tions that are defined in another
translation unit via the SYCL_EXTER
NAL macro.

Each device supports only certain
sub-group sizes as defined by
info::device::sub_group_sizes. In
addition, some device features may
be incompatible with certain sub-
group sizes. If a kernel is decorated
with this attribute and then sub
mitted to a device that does not
support the sub-group size or if the
kernel uses a feature that the
device does not support with this
sub-group size, the implementation
must throw a synchronous excep
tion with the errc::kernel_not_
supported error code.

5.8.1. Kernel attributes SYCL 2020 rev 9

538 | Chapter 5. SYCL Device Compiler

SYCL attribute Description

device_has(aspect, ...)
This attribute may be used to deco
rate either the declaration of a ker
nel function that is defined in the
current translation unit or to deco
rate the declaration of a non-ker
nel device function. The following
description applies when the
attribute decorates a kernel func
tion.

The parameter list to the
sycl::device_has() attribute con
sists of zero or more integral con
stant expressions, where each inte
ger is interpreted as one of the
enumerated values in the
sycl::aspect enumeration type.

Specifying this attribute on a ker
nel has two effects. First, it causes
the kernel invocation command to
throw a synchronous exception
with the errc::kernel_not_sup
ported error code if the kernel is
submitted to a device that does not
have one of the listed aspects. (This
includes the device associated with
the secondary queue if the kernel
is submitted from a command
group that has a secondary queue.)
Second, it causes the compiler to
issue a diagnostic if the kernel (or
any of the functions it calls) uses
an optional feature that is associ
ated with an aspect that is not
listed in the attribute.

The value of each parameter to this
attribute must be equal to one of
the values in the sycl::aspect enu
meration type (including any
extended values the implementa
tion may provide). If it does not,
the program is ill formed and the
compiler must issue a diagnostic.

See below for an example of this
attribute.

Example of the sycl::device_has() attribute

 1 class KernelFunctor {
 2 public:
 3 [[sycl::device_has(aspect::fp16)]] void operator()(item<1> it) const {
 4 foo();

SYCL 2020 rev 9 5.8.1. Kernel attributes

Chapter 5. SYCL Device Compiler | 539

 5 bar();
 6 };
 7
 8 private:
 9 void foo() const {
10 half fp = 1.0; // No compiler diagnostic here
11 }
12
13 void bar() const {
14 sycl::atomic_ref longAtomic(longValue);
15 longAtomic.fetchAdd(1); // ERROR: Compiler issues diagnostic because
16 // "aspect::atomic64" missing from "device_has()"
17 }
18 };
19
20 // Using "sycl::device_has()" does not provide any guarantee that the device
21 // actually supports the required features. Therefore, the host code should
22 // still check the device's aspects before submitting the kernel.
23 if (myQueue.get_device().has(aspect::fp16)) {
24 myQueue.submit(
25 [&](handler& h) { h.parallel_for(range { 16 }, KernelFunctor {}); });
26 }

5.8.2. Device function attributes

The attributes in Table 174 are applied to the declaration of a non-kernel device function. The position of
the attribute is the same as for the kernel function attributes defined above in Section 5.8.1.

Table 174. Attributes for non-kernel device functions

5.8.2. Device function attributes SYCL 2020 rev 9

540 | Chapter 5. SYCL Device Compiler

SYCL attribute Description

device_has(aspect, ...)
This attribute may be used to deco
rate either the declaration of a ker
nel function that is defined in the
current translation unit or to deco
rate the declaration of a non-ker
nel device function. The following
description applies when the
attribute decorates a non-kernel
device function declaration.

The syntax of this attribute’s para
meter list is the same as the syntax
for the form of sycl::device_has()
that is specified on a kernel func
tion (see Table 173).

This attribute is required when a
non-kernel device function that
uses optional device features is
called in one translation unit and
defined in another translation unit
via the SYCL_EXTERNAL macro.

When this attribute appears in a
translation unit that calls the deco
rated device function, it is an asser
tion that the device function uses
optional features that correspond
to the aspects listed in the
attribute. The program is ill
formed if the called device func
tion uses optional features that do
not correspond to any of the
aspects listed in the attribute, or if
the function uses optional features
and the attribute is not specified.
No diagnostic is required in this
case.

When this attribute appears in a
translation unit that defines the
decorated device function, it
causes the compiler to issue a diag
nostic if the device function (or any
of the functions it calls) uses an
optional feature that is associated
with an aspect that is not listed in
the attribute.

5.9. Address-space deduction
C++ has no type-level support to represent address spaces. As a consequence, the SYCL generic program
ming model does not directly affect the C++ type of unannotated pointers and references.

SYCL 2020 rev 9 5.9. Address-space deduction

Chapter 5. SYCL Device Compiler | 541

Source level guarantees about address spaces in the SYCL generic programming model can only be
achieved using pointer classes (instances of multi_ptr), which are regular classes that represent pointers
to data stored in the corresponding address spaces.

In SYCL, the address space of pointer and references are derived from:

• Accessors that give access to shared data. They can be bound to a memory object in a command
group and passed into a kernel. Accessors are used in scheduling of kernels to define ordering. Acces
sors to buffers have a compile-time address space based on their access mode.

• Explicit pointer classes (e.g. global_ptr) holds a pointer which is known to be addressing the address
space represented by the access::address_space. This allows the compiler to determine whether the
pointer references global, local, constant or private memory and generate code accordingly.

• Raw C++ pointer and reference types (e.g. int*) are allowed within SYCL kernels. They can be con
structed from the address of local variables, explicit pointer classes, or accessors.

5.9.1. Address space assignment

In order to understand where data lives, the device compiler is expected to assign address spaces while
lowering types for the underlying target based on the context. Depending on the SYCL backends and
mode, address space deducing rules differ slightly.

If the target of the SYCL backend can represent the generic address space, then the "common address
space deduction rules" in Section 5.9.2 and the "generic as default address space rules" in Section 5.9.3
apply. If the target of the SYCL backend cannot represent the generic address space, then the "common
address space deduction rules" in Section 5.9.2 and the "inferred address space rules" in Section 5.9.4
apply.

SYCL address space does not affect the type, address space shall be understood as mem
ory segment in which data is allocated. For instance, if int i; is allocated to the global
address space, then decltype(&i) shall evaluate to int*.

5.9.2. Common address space deduction rules

The variable declarations get assigned to an address space depending on their scope and storage class:

• Namespace scope

◦ If the type is const, the declaration is assigned to an implementation-defined address space. If the
target of the SYCL backend can represent the generic address space, then the assigned address
space must be compatible with the generic address space.

Namespace scope non-const declarations cannot be used within a kernel, as restricted in
Section 5.4. This means that non-const global variables cannot be accessed by any device
kernel or code called by the device kernel.

• Block scope and function parameter scope

◦ Declarations with static storage duration are treated the same way as variables in namespace
scope

◦ Otherwise the declaration is assigned to the local address space if declared in a hierarchical con
text

◦ Otherwise the declaration is assigned to the private address space

• Class scope

◦ Static data members are treated the same way as for variable in namespace scope

5.9.1. Address space assignment SYCL 2020 rev 9

542 | Chapter 5. SYCL Device Compiler

If a prvalue-to-xvalue conversion happens as part of an initialization expression, then the result is
assigned to the same address space as the entity being initialized. Otherwise, if the conversion happens
in a block scope or function parameter scope, the result is assigned to the local address space if it hap
pens in a hierarchical context otherwise it is assigned to the private address space. It the prvalue-to-
xvalue conversion happens in another scope, the result is assigned in the same way as declaration in
namespace scope.

5.9.3. Generic as default address space

For SYCL backends that can represent the generic address space (see Section 5.9.1), unannotated pointers
and references are considered to be pointing to the generic address space.

5.9.4. Inferred address space

Note for this version

The address space deduction feature described next is inherited from the SYCL 1.2.1
specifications. This section will be changed in a future version to better align with addi
tion of generic address space and generic as default address space.

For SYCL backends that cannot represent the generic address space (see Section 5.9.1), inside kernels the
SYCL device compiler will need to auto-deduce the memory region of unannotated pointer and reference
types during the lowering of types from C++ to the underlying representation.

If a kernel function or device function contains a pointer or reference type, then the address space
deduction must be attempted using the following rules:

• If an explicit pointer class is converted into a C++ pointer value, then the C++ pointer value will point
to same address space as the one represented by the explicit pointer class.

• If a variable is declared as a pointer type, but initialized in its declaration to a pointer value with an
already-deduced address space, then that variable will have the same address space as its initializer.

• If a function parameter is declared as a pointer type, and the argument is a pointer value with a
deduced address space, then the function will be compiled as if the parameter had the same address
space as its argument. It is legal for a function to be called in different places with different address
spaces for its arguments: in this case the function is said to be “duplicated” and compiled multiple
times. Each duplicated instance of the function must compile legally in order to have defined behav
ior.

• If a function return type is declared as a pointer type and return statements use address space
deduced expressions, then the function will be compiled as if the return type had the same address
space. To compile legally, all return expressions must deduce to the same address space.

• The rules for pointer types also apply to reference types. i.e. a reference variable takes its address
space from its initializer. A function with a reference parameter takes its address space from its argu
ment.

• If no other rule above can be applied to a declaration of a pointer, then it is assumed to be in the pri
vate address space.

It is illegal to assign a pointer value addressing one address space to a pointer variable addressing a dif
ferent address space.

5.10. SYCL offline linking

5.10.1. SYCL functions and member functions linkage

By default, any function that is odr-used from a device function must be defined in the same translation

SYCL 2020 rev 9 5.9.3. Generic as default address space

Chapter 5. SYCL Device Compiler | 543

unit as that use. However, this restriction is relaxed if both of the following conditions are met:

• The implementation defines the SYCL_EXTERNAL macro;

• The translation unit that calls the function declares the function with SYCL_EXTERNAL as described
below.

When a function is declared with SYCL_EXTERNAL, that macro must be used on the first declaration of that
function in the translation unit. Redeclarations of the function in the same translation unit may option
ally use SYCL_EXTERNAL, but this is not required.

When a function is declared with SYCL_EXTERNAL, that function must also be defined in some translation
unit, where the function is declared with SYCL_EXTERNAL.

A function may only be declared with SYCL_EXTERNAL if it has external linkage by normal C++ rules.

A function declared with SYCL_EXTERNAL may be called from both host and device code. The macro has no
effect when the function is called from host code.

In order to declare a function with SYCL_EXTERNAL, the macro name SYCL_EXTERNAL must appear before the
function declaration. If the function is also decorated with C++ attributes that appear before the declara
tion, the SYCL_EXTERNAL may appear before, after, or between these attributes. The following example
demonstrates the use of SYCL_EXTERNAL.

 1 #include <sycl/sycl.hpp>
 2
 3 SYCL_EXTERNAL void Foo();
 4
 5 SYCL_EXTERNAL void Bar() { /* ... */
 6 }
 7
 8 SYCL_EXTERNAL extern void Baz();
 9
10 [[nodiscard]] SYCL_EXTERNAL void Important();
11
12 SYCL_EXTERNAL [[nodiscard]] void AlsoImportant();

Functions that are declared using SYCL_EXTERNAL have the following additional restrictions beyond those
imposed on other device functions:

• If the SYCL backend does not support the generic address space then the function cannot use raw
pointers as parameter or return types. Explicit pointer classes must be used instead;

• The function cannot call group::parallel_for_work_item;

• The function cannot be called from a parallel_for_work_group scope.

5.10.1. SYCL functions and member functions linkage SYCL 2020 rev 9

544 | Chapter 5. SYCL Device Compiler

Chapter 6. SYCL Extensions
This chapter describes the mechanism by which the core SYCL specification can be extended. Some parts
of this chapter are requirements that all implementations must follow if they extend the core SYCL speci
fication, while other parts of the chapter are merely guidelines. Unless a requirement is specifically
stated as normative, all content in this chapter is a non-normative guideline.

An extension can be either of two flavors: an extension ratified by the Khronos SYCL group or a vendor
supplied extension. In both cases, an extension is an optional feature set which an implementation need
not implement in order to be conformant with the core SYCL specification.

Vendors may choose to define extensions in order to expose custom features or to gather feedback on an
API that is not yet ready for inclusion in the core SYCL specification. Once a vendor extension has stabi
lized, the vendor is encouraged to promote it to a future version of the core SYCL specification or to a
ratified Khronos extension. Thus, vendor extensions can be viewed as a pipeline of features for consider
ation in future SYCL versions.

The Khronos SYCL group may define extensions for features that are not yet ready for the core SYCL
specification but are implemented by more than one vendor. These extensions also may be considered
for inclusion in a future version of the core SYCL specification.

This chapter does not describe any particular extension to SYCL. Rather, it describes the mechanism for
defining an extension. Each extension is defined by its own separate document. If an extension is rati
fied by the Khronos SYCL group, that group will release a document describing the extension. If a vendor
defines an extension, the vendor is responsible for releasing its documentation.

6.1. Definition of an extension
An extension can take many possible forms. Some examples include:

• adding new types or free functions to the SYCL runtime;

• modifying existing SYCL classes, structs, or enumeration types by adding new members, member
functions, or enumerated values;

• adding new overloads for existing free functions or member functions;

• defining new specializations for existing SYCL templates;

• adding new C++ attributes;

• adding new predefined macros;

• adding new keywords to the language;

• adding a new backend.

An extension may also broaden the definition of existing functions defined in the core SYCL specification
by defining semantics for cases that are left unspecified by the core SYCL specification.

6.2. Requirements for an extension
This section is normative. All vendors which provide an extension must abide by the requirements
described here.

An extension may not change the definition of existing functions defined by the core SYCL specification
in a way that changes their specified behavior. Also, an extension may not remove any feature defined
by the core SYCL specification.

The vendor must choose at least one <vendorstring> which uniquely identifies the vendor’s SYCL imple

SYCL 2020 rev 9 6.1. Definition of an extension

Chapter 6. SYCL Extensions | 545

mentation. The Khronos SYCL group does not provide any registry of the strings, so each vendor is
responsible for choosing its own. One way to choose a unique string is to use the vendor’s company
name or a marketing name that is associated with the vendor’s implementation. Ultimately, it is each
vendor’s responsibility to choose a string that is unique. The strings "khr" and "KHR" are reserved for
the Khronos SYCL group for its own extensions, so vendors may not use these as a <vendorstring>.

The implementation must predefine at least one macro of the form SYCL_IMPLEMENTATION_<vendorstring>
which allows applications to test whether they are being compiled with that vendor’s implementation.
For example, the Acme vendor could predefine a macro whose name is SYCL_IMPLEMENTATION_ACME.

6.3. Guidelines for portable extensions
Vendors who want to ensure that their extension does not collide with other vendors' extensions or with
future versions of the core SYCL specification should follow the additional rules specified in this section.
However, this is not a requirement for conformance.

6.3.1. Extension namespace

If an extension adds new types or free functions, it should avoid adding these directly in the sycl::
namespace since future versions of the core SYCL specification may also add new identifiers in this
namespace. The namespace sycl::ext::<vendorstring> is reserved for use by extensions. For example,
the Acme vendor could define extended types and free functions in the namespace sycl::ext::acme, and
this would guarantee that they will not collide with definitions in other vendors' extensions or with
future versions of the core SYCL specification.

6.3.2. Names for extensions to existing classes or enumerations

An extension may add new members or member functions to existing SYCL classes or new values to
existing SYCL enumeration types. To ensure these extensions do not collide, vendors are encouraged to
name them with the prefix ext_<vendorstring>_. For example, the Acme vendor could add a new mem
ber function to the sycl::device class named device::ext_acme_fancy() or a new value to the
sycl::aspect enumeration named aspect::ext_acme_fancier.

In some cases, an extension does not have the freedom to choose a specific function name. For example,
this could happen if the extension adds a new constructor overload for an existing SYCL class. In cases
like this, the extension should ensure that one of the function parameters has a type that is defined in
the extension’s namespace. For example, the Acme vendor could add a new constructor for sycl::con
text with the signature context(ext::acme::frobber&).

A similar situation can occur if an existing SYCL template is specialized with an extended enumerated
value. Obviously, the extension cannot rename the template in this case. Instead, it is sufficient that the
template is specialized with an extended enumerated value, and this guarantees that the extended spe
cialization will not collide.

Vendors are encouraged to use the ext_<vendorstring>_ prefix form when possible for
additions to existing SYCL classes because this form makes the extension’s vendor name
apparent. People reading application code will immediately know that a member func
tion is an extension, and they will immediately know which vendor’s documentation to
consult.

6.3.3. Feature test macros

Vendors are encouraged to group a related set of extensions together into a "feature" and to predefine a
feature-test macro when the implementation supports the extensions in that feature. The feature-test
macro should have the following form to ensure it is unique: SYCL_EXT_<vendorstring>_<featurename>. For

6.3. Guidelines for portable extensions SYCL 2020 rev 9

546 | Chapter 6. SYCL Extensions

example, the Acme vendor might define a feature-test macro named SYCL_EXT_ACME_FANCYFEATURE. This
allows applications to protect code using the extension with #ifdef, so that the code is skipped when
compiled with an implementation that doesn’t support the feature.

Since the interface to an extension might change from one release to another, vendors are also encour
aged to predefine the macro’s value to the version of the extension. Vendors should use a numerical
value that monotonically increases for each revision of the extension API.

Of course, an extension may also predefine other macros. In order to ensure that these macro names do
not collide with other extensions or future versions of the core SYCL specification, the name should start
with the prefix SYCL_EXT_<vendorstring> or SYCL_IMPLEMENTATION_<vendorstring>.

6.3.4. Attribute namespace

An extension may define new C++ attributes. The attribute namespace sycl:: is reserved for the core
SYCL specification, so vendors should choose a different namespace for any attributes they add.

6.3.5. Include file paths

An extension may define new #include files under the "sycl" path. The path prefix "sycl/ext/<ven
dorstring>" is reserved for this purpose. For example, the Acme vendor could add a header file
"sycl/ext/acme/fancy.h" and be guaranteed that it would not conflict with other extensions or with
future versions of the core SYCL specification.

6.3.6. Optional kernel features

An extension may also add new optional kernel features — features which are supported on some
devices but not on others. Vendors are encouraged to follow the same mechanism outlined in Section
5.7. Therefore, an extended optional kernel feature should have a matching extension to the
sycl::aspect enumerated type.

6.3.7. Adding a backend

An extension may also add a new backend. If it does, the naming of the backend APIs follows the normal
guidelines for extensions and also follows the naming pattern for backends that are defined in the core
SYCL specification. To illustrate:

• The extension should add a new value to the sycl::backend enumeration type using a naming scheme
like ext_<vendorstring>_<backendname>. For example, if the Acme vendor adds a backend named "foo",
it would add an enumerated value named sycl::backend::ext_acme_foo.

• The extension should define the backend’s interop API in a namespace named sycl::ext::<ven
dorstring>::<backendname>. For our hypothetical Acme example, this would be a namespace named
sycl::ext::acme::foo.

• If the backend interop API is available through a separate header file, that header should be named
"sycl/ext/<vendorstring>/backend/<backendname>.hpp". For our hypothetical Acme example this would
be "sycl/ext/acme/backend/foo.hpp".

• The extension should predefine a macro for the backend when it is "active". The name of this macro
should be SYCL_EXT_<vendorstring>_BACKEND_<backendname>. For our hypothetical Acme example this
would be SYCL_EXT_ACME_BACKEND_FOO.

SYCL 2020 rev 9 6.3.4. Attribute namespace

Chapter 6. SYCL Extensions | 547

Appendix A: Information descriptors
This appendix contains the definitions of all the SYCL information descriptors introduced in Chapter 4.

A.1. Platform information descriptors
The following interface includes all the information descriptors for the platform class as described in Ta
ble 18.

 1 namespace sycl {
 2 namespace info {
 3 namespace platform {
 4
 5 struct profile;
 6 struct version;
 7 struct name;
 8 struct vendor;
 9 struct extensions; // Deprecated
10
11 } // namespace platform
12 } // namespace info
13 } // namespace sycl

A.2. Context information descriptors
The following interface includes all the information descriptors for the context class as described in Ta
ble 21.

 1 namespace sycl {
 2 namespace info {
 3 namespace context {
 4
 5 struct platform;
 6 struct devices;
 7 struct atomic_memory_order_capabilities;
 8 struct atomic_fence_order_capabilities;
 9 struct atomic_memory_scope_capabilities;
10 struct atomic_fence_scope_capabilities;
11
12 } // namespace context
13 } // namespace info
14 } // namespace sycl

A.3. Device information descriptors
The following interface includes all the information descriptors for the device class as described in Table
25.

 1 namespace sycl {
 2 namespace info {
 3 namespace device {

A.1. Platform information descriptors SYCL 2020 rev 9

548 | Appendix A: Information descriptors

 4
 5 struct device_type;
 6 struct vendor_id;
 7 struct max_compute_units;
 8 struct max_work_item_dimensions;
 9 template <int Dimensions = 3> struct max_work_item_sizes;
 10 struct max_work_group_size;
 11 struct preferred_vector_width_char;
 12 struct preferred_vector_width_short;
 13 struct preferred_vector_width_int;
 14 struct preferred_vector_width_long;
 15 struct preferred_vector_width_float;
 16 struct preferred_vector_width_double;
 17 struct preferred_vector_width_half;
 18 struct native_vector_width_char;
 19 struct native_vector_width_short;
 20 struct native_vector_width_int;
 21 struct native_vector_width_long;
 22 struct native_vector_width_float;
 23 struct native_vector_width_double;
 24 struct native_vector_width_half;
 25 struct max_clock_frequency;
 26 struct address_bits;
 27 struct max_mem_alloc_size;
 28 struct image_support; // Deprecated
 29 struct max_read_image_args;
 30 struct max_write_image_args;
 31 struct image2d_max_height;
 32 struct image2d_max_width;
 33 struct image3d_max_height;
 34 struct image3d_max_width;
 35 struct image3d_max_depth;
 36 struct image_max_buffer_size;
 37 struct max_samplers;
 38 struct max_parameter_size;
 39 struct mem_base_addr_align;
 40 struct half_fp_config;
 41 struct single_fp_config;
 42 struct double_fp_config;
 43 struct global_mem_cache_type;
 44 struct global_mem_cache_line_size;
 45 struct global_mem_cache_size;
 46 struct global_mem_size;
 47 struct max_constant_buffer_size; // Deprecated
 48 struct max_constant_args; // Deprecated
 49 struct local_mem_type;
 50 struct local_mem_size;
 51 struct error_correction_support;
 52 struct host_unified_memory;
 53 struct atomic_memory_order_capabilities;
 54 struct atomic_fence_order_capabilities;
 55 struct atomic_memory_scope_capabilities;
 56 struct atomic_fence_scope_capabilities;
 57 struct profiling_timer_resolution;
 58 struct is_endian_little;
 59 struct is_available;

SYCL 2020 rev 9 A.3. Device information descriptors

Appendix A: Information descriptors | 549

 60 struct is_compiler_available; // Deprecated
 61 struct is_linker_available; // Deprecated
 62 struct execution_capabilities;
 63 struct queue_profiling; // Deprecated
 64 struct built_in_kernels; // Deprecated
 65 struct built_in_kernel_ids;
 66 struct platform;
 67 struct name;
 68 struct vendor;
 69 struct driver_version;
 70 struct profile;
 71 struct version;
 72 struct backend_version;
 73 struct aspects;
 74 struct extensions; // Deprecated
 75 struct printf_buffer_size;
 76 struct preferred_interop_user_sync;
 77 struct parent_device;
 78 struct partition_max_sub_devices;
 79 struct partition_properties;
 80 struct partition_affinity_domains;
 81 struct partition_type_property;
 82 struct partition_type_affinity_domain;
 83
 84 } // namespace device
 85
 86 enum class device_type : /* unspecified */ {
 87 cpu, // Maps to OpenCL CL_DEVICE_TYPE_CPU
 88 gpu, // Maps to OpenCL CL_DEVICE_TYPE_GPU
 89 accelerator, // Maps to OpenCL CL_DEVICE_TYPE_ACCELERATOR
 90 custom, // Maps to OpenCL CL_DEVICE_TYPE_CUSTOM
 91 automatic, // Maps to OpenCL CL_DEVICE_TYPE_DEFAULT
 92 host,
 93 all // Maps to OpenCL CL_DEVICE_TYPE_ALL
 94 };
 95
 96 enum class partition_property : /* unspecified */ {
 97 no_partition,
 98 partition_equally,
 99 partition_by_counts,
100 partition_by_affinity_domain
101 };
102
103 enum class partition_affinity_domain : /* unspecified */ {
104 not_applicable,
105 numa,
106 L4_cache,
107 L3_cache,
108 L2_cache,
109 L1_cache,
110 next_partitionable
111 };
112
113 enum class local_mem_type : /* unspecified */ { none, local, global };
114
115 enum class fp_config : /* unspecified */ {

A.3. Device information descriptors SYCL 2020 rev 9

550 | Appendix A: Information descriptors

116 denorm,
117 inf_nan,
118 round_to_nearest,
119 round_to_zero,
120 round_to_inf,
121 fma,
122 correctly_rounded_divide_sqrt,
123 soft_float
124 };
125
126 enum class global_mem_cache_type : /* unspecified */ {
127 none,
128 read_only,
129 read_write
130 };
131
132 enum class execution_capability : /* unspecified */ {
133 exec_kernel,
134 exec_native_kernel
135 };
136
137 } // namespace info
138 } // namespace sycl

A.4. Queue information descriptors
The following interface includes all the information descriptors for the queue class as described in Table
30.

 1 namespace sycl {
 2 namespace info {
 3 namespace queue {
 4
 5 struct context;
 6 struct device;
 7
 8 } // namespace queue
 9 } // namespace info
10 } // namespace sycl

A.5. Kernel information descriptors
The following interface includes all the information descriptors that apply to kernels as described in Ta
ble 134.

 1 namespace sycl {
 2 namespace info {
 3 namespace kernel {
 4
 5 struct num_args;
 6 struct attributes;
 7
 8 } // namespace kernel

SYCL 2020 rev 9 A.4. Queue information descriptors

Appendix A: Information descriptors | 551

 9
10 namespace kernel_device_specific {
11
12 struct global_work_size;
13 struct work_group_size;
14 struct compile_work_group_size;
15 struct preferred_work_group_size_multiple;
16 struct private_mem_size;
17 struct max_num_sub_groups;
18 struct compile_num_sub_groups;
19 struct max_sub_group_size;
20 struct compile_sub_group_size;
21
22 } // namespace kernel_device_specific
23
24 } // namespace info
25 } // namespace sycl

A.6. Event information descriptors
The following interface includes all the information descriptors for the event class as described in Table
35 and Table 37.

 1 namespace sycl {
 2 namespace info {
 3 namespace event {
 4
 5 struct command_execution_status;
 6
 7 } // namespace event
 8
 9 enum class event_command_status : /* unspecified */ {
10 submitted,
11 running,
12 complete
13 };
14
15 namespace event_profiling {
16
17 struct command_submit;
18 struct command_start;
19 struct command_end;
20
21 } // namespace event_profiling
22 } // namespace info
23 } // namespace sycl

A.6. Event information descriptors SYCL 2020 rev 9

552 | Appendix A: Information descriptors

Appendix B: Feature sets
As of SYCL 2020 there are now two distinct feature sets which a SYCL implementation can conform to, in
order to better fit the requirements of different domains, such as embedded, mobile, and safety critical,
which may have limitations because of the toolchains used.

A SYCL implementation can choose to conform to either the full feature set or the reduced feature set.

B.1. Full feature set
The full feature set includes all features specified in the core SYCL specification with no exceptions.

B.2. Reduced feature set
The reduced feature set makes certain features optional or restricted to specific forms. The following list
defines all the differences between the reduced feature set and the full feature set.

1. Un-named SYCL kernel functions: SYCL kernel functions which are defined using a lambda expres
sion and therefore have no standard name are required to be provided a name via the kernel name
template parameter of kernel invocation functions such as parallel_for. This overrides the core SYCL
specification rules for SYCL kernel function naming as specified in Section 4.9.4.2.

2. Address space mode: The address space assignment mode used in the reduced feature set is not
required to be generic address space, regardless of SYCL backend in use. Instead the inferred address
space mode may always be used.

3. Declarations: In addition to the requirements specified in Section 5.9.2, the reduced feature set does
not require support for odr-use inside device functions of variables declared const or constexpr with
static storage duration.

B.3. Compatibility
In order to avoid introducing any kind of divergence the reduced and full feature sets are defined such
that the full feature set is a subsumption of the reduced feature set. This means that any applications
which are developed for the reduced feature set will be compatible with both a SYCL reduced implemen
tation and a SYCL full implementation.

B.4. Conformance
One of the reasons for having this be defined in the specification is that hardware vendors which wish
to support SYCL on their platform(s) want to be able to demonstrate their support for it by passing con
formance. However, if passing conformance means adopting features which they do not believe to be
necessary at an additional development effort then this may deter them.

Each feature set has its own route for passing conformance allowing adopters of SYCL to specify the fea
ture set they wish to test conformance against. The conformance test suite would then alter or disable
the tests within the test suite according to how the feature sets are differentiated above.

SYCL 2020 rev 9 B.1. Full feature set

Appendix B: Feature sets | 553

Appendix C: OpenCL backend specification
This chapter describes how the SYCL general programming model is mapped on top of OpenCL, and how
the SYCL generic interoperability interface must be implemented by vendors providing SYCL for OpenCL
implementations to ensure SYCL applications written for the OpenCL backend are interoperable.

C.1. SYCL application interoperability native backend
objects
For each SYCL runtime class which supports SYCL application interoperability, specializations of back
end_traits::input_type and backend_traits::return_type must be defined as the type of SYCL application
interoperability native backend object associated with SyclType for the SYCL backend.

The types of the native backend objects for SYCL application interoperability are described in Table 179.

C.2. Kernel function interoperability native backend
objects
For each SYCL runtime class which supports kernel function interoperability, a specialization of back
end_traits::return_type must be defined as the type of kernel function interoperability native backend
object associated with SyclType for the SYCL backend.

The types of the native backend objects for kernel function interoperability are described in Table 175.

Table 175. Types of native backend objects kernel function interoperability

SyclType backend_return_t<backend::opencl,
SyclType>

accessor<T, Dims, Mode, target::device> __global T*

accessor<T, Dims, Mode, target::constant_buffer> __constant T*

accessor<T, Dims, Mode, target::local> __local T*

local_accessor<T, Dims> __local T*

sampled_image_accessor<T, 1, Mode, image_target::device> sampler_1dimage_pair_t

sampled_image_accessor<T, 2, Mode, image_target::device> sampler_2dimage_pair_t

sampled_image_accessor<T, 3, Mode, image_target::device> sampler_3dimage_pair_t

unsampled_image_accessor<T, 1, Mode, image_target::device> image1d_t

unsampled_image_accessor<T, 2, Mode, image_target::device> image2d_t

unsampled_image_accessor<T, 3, Mode, image_target::device> image3d_t

stream __global cl_char*

device_event event_t

The sampler_1dimage_pair_t, sampler_1dimage_pair_t and sampler_1dimage_pair_t types must be imple
mented as described below.

 1 struct sampler_1dimage_pair_t {
 2 sampler_t sampler;
 3 image1d_t image;
 4 }
 5
 6 struct sampler_2dimage_pair_t {
 7 sampler_t sampler;

C.1. SYCL application interoperability native backend objects SYCL 2020 rev 9

554 | Appendix C: OpenCL backend specification

 8 image2d_t image;
 9 }
10
11 struct sampler_3dimage_pair_t {
12 sampler_t sampler;
13 image3d_t image;
14 }

C.3. Destruction of interop constructed objects with
reference semantics
On destruction of the last copy of an instance of a SYCL class which is specified to have reference seman
tics as described in Section 4.5.2 that was constructed using one of the SYCL backend interoperability
make_* functions specified in Section 4.5.1.3 additional lifetime related operations may be performed
which are required for the underlying native backend object.

The additional behavior performed by the OpenCL SYCL backend for each SYCL class is described in Ta
ble 176.

Table 176. Destructor behavior of interop constructed objects with reference semantics

SYCL object Destructor behavior

accessor No additional behavior is performed.

buffer clReleaseMemObject will be called on the native cl_mem object provided
during construction.

context clReleaseContext will be called on the native cl_context object provided
during construction.

device clReleaseDevice will be called on the native cl_device object provided
during construction.

event clReleaseEvent will be called on the native cl_event object provided dur
ing construction.

kernel clReleaseKernel will be called on the native cl_kernel objects provided
during construction.

kernel_bundle clReleaseProgram will be called on the native cl_program objects pro
vided during construction.

platform No additional behavior is performed.

queue clReleaseCommandQueue will be called on the native cl_command_queue
object provided during construction.

sampled_image clReleaseMemObject will be called on the native cl_mem object provided
during construction.

unsampled_image clReleaseMemObject will be called on the native cl_mem object provided
during construction.

C.4. SYCL for OpenCL framework
The SYCL framework allows applications to use a host and one or more OpenCL devices as a single het
erogeneous parallel computer system. The framework contains the following components:

• SYCL C++ template library: The template library provides a set of C++ templates and classes which

SYCL 2020 rev 9 C.3. Destruction of interop constructed objects with reference semantics

Appendix C: OpenCL backend specification | 555

provide the programming model to the user. It enables the creation of runtime classes such as SYCL
queues, buffers and images, as well as access to some underlying OpenCL runtime object, such as
contexts, platforms, devices and program objects.

• SYCL runtime: The SYCL runtime interfaces with the underlying OpenCL implementations and han
dles scheduling of commands in queues, moving of data between host and devices, manages contexts,
programs, kernel compilation and memory management.

• OpenCL Implementation(s): The SYCL system assumes the existence of one or more OpenCL imple
mentations available on the host machine.

• SYCL device compilers: The SYCL device compilers compile SYCL C++ kernels into a format which can
be executed on an OpenCL device at runtime. There may be more than one SYCL device compiler in a
SYCL implementation. The format of the compiled SYCL kernels is not defined. A SYCL device com
piler may, or may not, also compile the host parts of the program.

The OpenCL backend is enabled using the sycl::backend::opencl value of enum class backend. That
means that when the OpenCL backend is active, the value of sycl::is_backend_active<sycl::back
end::opencl>::value will be true.

C.5. Mapping of SYCL programming model on top of
OpenCL
The SYCL programming model was originally designed as a high-level model for the OpenCL API, hence
the mapping of SYCL on the OpenCL API is mostly straightforward.

When the OpenCL backend is active on a SYCL application, all visible OpenCL platforms are exported as
SYCL platforms.

When a SYCL implementation executes kernels on an OpenCL device, it achieves this by enqueuing
OpenCL commands to execute computations on the processing elements within a device. The processing
elements within an OpenCL compute unit may execute a single stream of instructions as ALUs within a
SIMD unit (which execute in lockstep with a single stream of instructions), as independent SPMD units
(where each PE maintains its own program counter) or as some combination of the two.

C.5.1. Backend specific information descriptors

Some of the SYCL information descriptors are backend-defined. For the OpenCL backend these informa
tion descriptors map directly to OpenCL properties as described in the table below:

Table 177. Mapping of SYCL information
descriptors to OpenCL properties

SYCL OpenCL

info::plat
form::version

CL_PLATFORM_VER
SION

info::device::ver
sion

CL_DEVICE_VERSION

C.5.2. OpenCL memory model

The memory model for SYCL devices running on OpenCL platforms follows the memory model of the
OpenCL version they conform to.

In addition to global memory , local memory and private memory memory, the OpenCL backend permits
the use of constant memory space in SYCL:

• Constant-memory is a region of memory that remains constant during the execution of a kernel. A

C.5. Mapping of SYCL programming model on top of OpenCL SYCL 2020 rev 9

556 | Appendix C: OpenCL backend specification

pointer to the generic address space cannot represent an address to this memory region.

Work-items executing in a kernel have access to four distinct memory regions, with the mapping
between SYCL and OpenCL described in Table 178.

Table 178. Mapping of SYCL memory regions
into OpenCL memory regions

SYCL OpenCL

Global Global memory

Constant Constant memory

Local Local memory

Private Private memory

C.5.3. OpenCL interface for buffer command accessors

The enumerator target::constant_buffer is deprecated, but will remain a part of the OpenCL backend as
an extension. This enables SYCL kernel functions to access the contents of a buffer through the OpenCL
device’s constant memory.

C.5.4. OpenCL resources managed by SYCL application

In OpenCL, a developer must create a context to be able to execute commands on a device. Creating a
context involves choosing a platform and a list of devices. In SYCL, contexts, platforms and devices all
exist, but the user can choose whether to specify them or have the SYCL implementation create them
automatically. The minimum required object for submitting work to devices in SYCL is the queue, which
contains references to a platform, device and context internally.

The resources managed by SYCL are:

1. Platforms: all features of OpenCL are implemented by platforms. A platform can be viewed as a given
hardware vendor’s runtime and the devices accessible through it. Some devices will only be accessi
ble to one vendor’s runtime and hence multiple platforms may be present. SYCL manages the differ
ent platforms for the user. In SYCL, a platform resource is accessible through a sycl::platform object.

2. Contexts: any OpenCL resource that is acquired by the user is attached to a context. A context con
tains a collection of devices that the host can use and manages memory objects that can be shared
between the devices. Data movement between devices within a context may be efficient and hidden
by the underlying OpenCL runtime while data movement between contexts may involve the host. A
given context can only wrap devices owned by a single platform. In SYCL, a context resource is acces
sible through a sycl::context object.

3. Devices: platforms provide one or more devices for executing kernels. In SYCL, a device is accessible
through a sycl::device object.

4. Kernel bundles: OpenCL objects that store implementation data for the SYCL kernels. These objects
are only required for advanced use in SYCL and are encapsulated in the sycl::kernel_bundle class.

5. Queues: SYCL kernels execute in command queues. The user must create a queue, which references
an associated context, platform and device. The context, platform and device may be chosen automat
ically, or specified by the user. In SYCL, command queues are accessible through sycl::queue objects.

C.6. Interoperability with the OpenCL API
The OpenCL backend for SYCL ensures maximum compatibility between SYCL and OpenCL kernels and
API. This includes supporting devices with different capabilities and support for different versions of the
OpenCL C language, in addition to supporting SYCL kernels written in C++.

SYCL 2020 rev 9 C.5.3. OpenCL interface for buffer command accessors

Appendix C: OpenCL backend specification | 557

SYCL runtime classes which encapsulate an OpenCL opaque type such as SYCL context or SYCL queue
must provide an interoperability constructor taking an instance of the OpenCL opaque type. When the
OpenCL object supports reference counting, these constructors must retain that instance to increase the
reference count of the OpenCL resource. Likewise, the destructor for the SYCL runtime classes which
encapsulate a reference counted OpenCL opaque type must release that instance to decrease the refer
ence count of the OpenCL resource. Since the OpenCL platform_id is not reference counted, the encapsu
lating SYCL platform class neither retains nor releases this OpenCL resource.

Note that an instance of a SYCL runtime class which encapsulates an OpenCL opaque type can encapsu
late any number of instances of the OpenCL type, unless it was constructed via the interoperability con
structor, in which case it can encapsulate only a single instance of the OpenCL type.

The lifetime of a SYCL runtime class that encapsulates an OpenCL opaque type and the instance of that
opaque type retrieved via the get_native() free function are not tied in either direction given correct
usage of OpenCL reference counting. For example if a user were to retrieve a cl_command_queue instance
from a SYCL queue instance and then immediately destroy the SYCL queue instance, the cl_command_queue
instance is still valid. Or if a user were to construct a SYCL queue instance from a cl_command_queue
instance and then immediately release the cl_command_queue instance, the SYCL queue instance is still
valid.

Note that a SYCL runtime class that encapsulates an OpenCL opaque type is not responsible for any
incorrect use of OpenCL reference counting outside of the SYCL runtime. For example if a user were to
retrieve a cl_command_queue instance from a SYCL queue instance and then release the cl_command_queue
instance more than once without any prior retain then the SYCL queue instance that the cl_command_queue
instance was retrieved from is now undefined.

Note that an instance of the SYCL buffer or SYCL image class templates constructed via the interoperabil
ity constructor is free to copy from the cl_mem into another memory allocation within the SYCL runtime
to achieve normal SYCL semantics, for as long as the SYCL buffer or SYCL image instance is alive.

Table 179 relates SYCL objects to their OpenCL native type in the SYCL application.

Table 179. List of native types per SYCL object in the OpenCL backend

SyclType backend_in
put_t<back
end::opencl,
SyclType>

backend_re
turn_t<back
end::opencl,
SyclType>

Description

platform
cl_platfor
m_id

cl_platfor
m_id

A SYCL platform object encapsulates an OpenCL plat
form ID.

device
cl_device_id cl_device_id A SYCL device object encapsulates an OpenCL device ID.

context
cl_context cl_context A SYCL context object encapsulates an OpenCL context

object.

queue
cl_com
mand_queue

cl_com
mand_queue

A SYCL queue object encapsulates an OpenCL queue
object.

kernel
cl_kernel cl_kernel A SYCL kernel object encapsulates an OpenCL kernel

object.

C.6. Interoperability with the OpenCL API SYCL 2020 rev 9

558 | Appendix C: OpenCL backend specification

SyclType backend_in
put_t<back
end::opencl,
SyclType>

backend_re
turn_t<back
end::opencl,
SyclType>

Description

template
<bundle_s
tate
State>
kernel_bu
ndle<Stat
e>

cl_program std::vec
tor<cl_pro
gram>

A SYCL kernel bundle can encapsulate one or more
OpenCL program objects. It can also encapsulate one or
more OpenCL kernel objects which can be retrieved
using the appropriate kernel object.

event
std::vec
tor<cl_event>

std::vec
tor<cl_event>

A SYCL event can encapsulate one or multiple OpenCL
events, representing a number of dependencies in the
same or different contexts, that must be satisfied for the
SYCL event to be complete.

buffer
cl_mem std::vec

tor<cl_mem>
SYCL buffers containing OpenCL memory objects can
handle multiple cl_mem objects in the same or different
context. The interoperability interface will return a list
of active buffers in the SYCL runtime.

sampled_i
mage

cl_mem std::vec
tor<cl_mem>

SYCL sampled images containing OpenCL image objects
can handle multiple underlying cl_mem objects at the
same time in the same or different OpenCL contexts.
The interoperability interface will return a list of active
images in the SYCL runtime.

unsampled
_image

cl_mem std::vec
tor<cl_mem>

SYCL unsampled images containing OpenCL image
objects can handle multiple underlying cl_mem objects at
the same time in the same or different OpenCL contexts.
The interoperability interface will return a list of active
images in the SYCL runtime.

Inside the SYCL kernel, the SYCL API offers interoperability with OpenCL device types. Table 180
describes the mapping of kernel types.

Table 180. List of native types per SYCL object on kernel code

SYCL kernel native types in OpenCL Description

multi_ptr::get_decorated()
Returns a pointer in the OpenCL
address space corresponding to the
type of multi pointer object

When a buffer or image is allocated on more than one OpenCL device, if these devices are on separate
contexts then multiple cl_mem objects may be allocated for the memory object, depending on whether the
object has actively been used on these devices yet or not.

The OpenCL C function qualifier __kernel and the access qualifiers: __read_only, __write_only and
__read_write are not exposed in SYCL via keywords, but are instead encapsulated in SYCL’s parameter
passing system inside accessors. Users wishing to achieve the OpenCL equivalent of these qualifiers in
SYCL should instead use SYCL accessors with equivalent semantics.

Any OpenCL C function included in a pre-built OpenCL library can be defined as an extern "C" function
and the OpenCL program has to be linked against any SYCL program that contains kernels using the
external function. In this case, the data types used have to comply with the interoperability aliases
defined in Table 182.

SYCL 2020 rev 9 C.6. Interoperability with the OpenCL API

Appendix C: OpenCL backend specification | 559

C.7. Programming interface
The following section describes the OpenCL-specific API.

C.7.1. Construct SYCL objects from OpenCL ones

The OpenCL backend provides the following specializations of the make_{sycl_class} template functions
which are defined in Section 4.5.1.3. These functions are in the sycl namespace.

OpenCL interoperability function Description

context make_context(const
cl_context& clContext,
 const
async_handler& asyncHandler = {})

Constructs a SYCL context instance from an OpenCL cl_con
text in accordance with the requirements described in Sec
tion 4.5.1.

event make_event(const std::
vector<cl_event>& clEvents,
 const context&
syclContext)

Constructs a SYCL event instance from a vector of OpenCL
cl_event objects in accordance with the requirements
described in Section 4.5.1.

device make_device(const
cl_device_id& clDeviceId)

Constructs a SYCL device instance from an OpenCL cl_de
vice_id in accordance with the requirements described in
Section 4.5.1.

platform make_platform(const
cl_platform_id& clPlatformId)

Constructs a SYCL platform instance from an OpenCL cl_
platform_id in accordance with the requirements described
in Section 4.5.1.

queue make_queue(const
cl_command_queue& clQueue, const
context& syclContext,
 const
async_handler& asyncHandler = {})

Constructs a SYCL queue instance with an optional async_han
dler from an OpenCL cl_command_queue in accordance with
the requirements described in Section 4.5.1.

template <typename T, int
Dimensions = 1,
 typename AllocatorT =
buffer_allocator<std::remove_const
_t<T>>>
buffer<T, Dimensions, AllocatorT>
make_buffer(const cl_mem&
clMemObject,

const context& syclContext,

event availableEvent)

Available only when: Dimensions == 1.

Constructs a SYCL buffer instance from an OpenCL cl_mem in
accordance with the requirements described in Section 4.5.1.
The instance of the SYCL buffer class template being con
structed must wait for the SYCL event parameter, avail
ableEvent to signal that the cl_mem instance is ready to be
used. The SYCL context parameter syclContext is the context
associated with the memory object.

C.7. Programming interface SYCL 2020 rev 9

560 | Appendix C: OpenCL backend specification

OpenCL interoperability function Description

template <typename T, int
Dimensions = 1,
 typename AllocatorT =
buffer_allocator<std::remove_const
_t<T>>>
buffer<T, Dimensions, AllocatorT>
make_buffer(const cl_mem&
clMemObject,

const context& syclContext)

Available only when: Dimensions == 1.

Constructs a SYCL buffer instance from an OpenCL cl_mem in
accordance with the requirements described in Section 4.5.1.

template <int Dimensions = 1,
typename AllocatorT =
image_allocator>
sampled_image<Dimensions,
AllocatorT>
make_sampled_image(const cl_mem&
clMemObject, const context&
syclContext,
 image_sampler
syclImageSampler, event
availableEvent)

Constructs a SYCL sampled_image instance from an OpenCL
cl_mem in accordance with the requirements described in Sec
tion 4.5.1. The instance of the SYCL image class template being
constructed must wait for the SYCL event parameter, avail
ableEvent to signal that the cl_mem instance is ready to be
used. The SYCL context parameter syclContext is the context
associated with the memory object.

template <int Dimensions = 1,
typename AllocatorT =
image_allocator>
sampled_image<Dimensions,
AllocatorT>
make_sampled_image(const cl_mem&
clMemObject, const context&
syclContext,
 image_sampler
syclImageSampler)

Constructs a SYCL sampled_image instance from an OpenCL
cl_mem in accordance with the requirements described in Sec
tion 4.5.1. The SYCL context parameter syclContext is the con
text associated with the memory object.

template <int Dimensions = 1,
typename AllocatorT =
image_allocator>
unsampled_image<Dimensions,
AllocatorT>
make_unsampled_image(const cl_mem&
clMemObject, const context&
syclContext,
 event
availableEvent)

Constructs a SYCL unsampled_image instance from an OpenCL
cl_mem in accordance with the requirements described in Sec
tion 4.5.1. The instance of the SYCL image class template being
constructed must wait for the SYCL event parameter, avail
ableEvent to signal that the cl_mem instance is ready to be
used. The SYCL context parameter syclContext is the context
associated with the memory object.

SYCL 2020 rev 9 C.7.1. Construct SYCL objects from OpenCL ones

Appendix C: OpenCL backend specification | 561

OpenCL interoperability function Description

template <int Dimensions = 1,
typename AllocatorT =
image_allocator>
unsampled_image<Dimensions,
AllocatorT>
make_unsampled_image(const cl_mem&
clMemObject, const context&
syclContext)

Constructs a SYCL unsampled_image instance from an OpenCL
cl_mem in accordance with the requirements described in Sec
tion 4.5.1.

kernel make_kernel(const
cl_kernel& clKernel, const
context& syclContext);

Constructs a SYCL kernel instance from an OpenCL kernel
object.

template <bundle_state State>
kernel_bundle<State>
make_kernel_bundle(const
cl_program& clProgram,

const context& syclContext)

Constructs a SYCL kernel_bundle instance from an OpenCL
cl_program for the devices in syclContext in accordance with
the requirements described in Section 4.5.1. The SYCL context
must represent the same underlying OpenCL context associ
ated with the OpenCL program object.

The state specifies the expected kernel_bundle state. The
mapping between the kernel_bundle state and OpenCL pro
gram state (CL_PROGRAM_BINARY_TYPE) is as follows:

• bundle_state::input - CL_PROGRAM_BINARY_TYPE_NONE

• bundle_state::object - CL_PROGRAM_BINARY_TYPE_COM
PILED_OBJECT or CL_PROGRAM_BINARY_TYPE_INTERMEDIATE or
CL_PROGRAM_BINARY_TYPE_LIBRARY.

• bundle_state::executable - CL_PROGRAM_BINARY_TYPE_EXE
CUTABLE

If the internal state of the OpenCL program doesn’t match
state, the kernel bundle will be compiled and linked as nec
essary. If the OpenCL program is already an executable
binary, but the specified state is not bundle_state::exe
cutable, an exception with the errc::invalid error code is
thrown. If the specified state is bundle_state::input, but the
OpenCL program already has a binary associated with it, an
exception with the errc::invalid error code is thrown.

Throws an exception with the errc::invalid error code if any
error is produced by the SYCL backend.

C.7.2. Extension query

Platforms and devices with an OpenCL backend may support extensions. For convenience, the exten
sions supported by a platform or device can be queried through the following functions provided in the
sycl::opencl namespace.

C.7.2. Extension query SYCL 2020 rev 9

562 | Appendix C: OpenCL backend specification

Extension query Description

bool has_extension(const
sycl::platform& syclPlatform,
 const
std::string& extension)

Returns true if the OpenCL platform associated with syclPlatform
supports the extension identified by extension, otherwise it
returns false. If syclPlatform.get_backend() != sycl::back
end::opencl an exception with the errc::backend_mismatch error
code is thrown.

bool has_extension(const
sycl::device& syclDevice,
const std::string& extension)

Returns true if the OpenCL device associated with syclDevice sup
ports the extension identified by extension, otherwise it returns
false. If syclDevice.get_backend() != sycl::backend::opencl an
exception with the errc::backend_mismatch error code is thrown.

C.7.3. Reference counting

Most OpenCL objects are reference counted. The SYCL general programming model doesn’t require that
native objects are reference counted. However, for convenience, the following function is provided in
the sycl::opencl namespace.

Reference counting Description

template <typename openCLT>
cl_uint get_reference_count
(openCLT obj)

Returns the reference count of the given object

C.7.4. Errors and limitations

If there is an OpenCL error associated with an exception triggered, then the OpenCL error code can be
obtained by the free function cl_int sycl::opencl::get_error_code(sycl::exception&). In the case where
there is no OpenCL error associated with the exception triggered, the OpenCL error code will be CL_SUC
CESS.

C.7.5. Interoperability with kernel bundles

In OpenCL any kernel function that is enqueued over an nd-range is represented by a cl_kernel and
must be compiled and linked via a cl_program using clBuildProgram, clCompileProgram and clLinkProgram.

For OpenCL SYCL backend this detail is abstracted away by kernel bundles and a kernel_bundle object
containing all SYCL kernel functions is retrieved by calling the free function get_kernel_bundle.

The OpenCL SYCL backend specification provides additional free functions which provide convenience
functions for constructing kernel bundles from OpenCL specific objects.

 1 namespace sycl::opencl {
 2
 3 template <bundle_state State>
 4 kernel_bundle<State> create_bundle(const context& ctxt,
 5 const std::vector<device>& devs,
 6 const std::vector<cl_program>& clPrograms);
 7
 8 kernel_bundle<bundle_state::executable>
 9 create_bundle(const context& ctxt, const std::vector<device>& devs,
10 const std::vector<cl_kernel>& clKernels);

SYCL 2020 rev 9 C.7.3. Reference counting

Appendix C: OpenCL backend specification | 563

11
12 } // namespace sycl::opencl

1 template <bundle_state State>
2 kernel_bundle<State> create_bundle(const context& ctxt,
3 const std::vector<device>& devs,
4 const std::vector<cl_program>& clPrograms)

1. Preconditions: The context specified by ctxt must be associated with the OpenCL SYCL backend. All
devices in devs must be associated with ctxt. All OpenCL programs in clPrograms must be associated
with ctxt.

Effects: Constructs a kernel bundle in the specified bundle_state from the provided list of OpenCL pro
grams and associated with the context specified by syclContext by invoking the necessary OpenCL
APIs. Follows the same rules as calling make_kernel_bundle on a single OpenCL program, except that
the rules apply to all OpenCL programs in clPrograms. Multiple programs will be linked together into
a single one if required by the requested State. The constructed kernel_bundle will retain all provided
OpenCL programs and will also release them on destruction.

Throws: An exception with the errc::build error code if any error is produced by invoking the
OpenCL APIs.

1 kernel_bundle<bundle_state::executable>
2 create_bundle(const context& ctxt, const std::vector<device>& devs,
3 const std::vector<cl_kernel>& clKernels)

1. Preconditions: The context specified by ctxt must be associated with the OpenCL SYCL backend. All
devices in devs must be associated with ctxt. All OpenCL kernels in clKernels must be associated with
ctxt.

Effects: Constructs an executable kernel bundle from the provided list of OpenCL kernels and associ
ated with the context specified by syclContext by invoking the necessary OpenCL APIs. cl_kernel
objects might be associated with different cl_program objects, the kernel bundle will encapsulate all of
them.

Throws: An exception with the errc::build error code if any error is produced by invoking the
OpenCL APIs.

C.7.6. Interoperability with kernels

A kernel_bundle object contains one or multiple OpenCL programs and one or multiple OpenCL kernels.
Calling kernel_bundle::get_kernel returns a kernel object which can be invoked by any of kernel invoca
tion commands such as parallel_for which take a kernel but not SYCL kernel function.

Calling make_kernel must trigger a call to clRetainKernel and the resulting kernel object must call clRe
leaseKernel on destruction.

It is also possible to construct a kernel bundle from previously created OpenCL cl_kernel objects by call
ing the free function create_bundle as described in Section C.7.5.

The kernel arguments for the OpenCL C kernel kernel can either be set prior to creating the kernel object
or by calling set_arg or set_args member functions of the handler class.

If kernel arguments are set prior to creating the kernel object the SYCL runtime is not responsible for
managing the data of these arguments.

C.7.6. Interoperability with kernels SYCL 2020 rev 9

564 | Appendix C: OpenCL backend specification

C.7.7. OpenCL kernel conventions and SYCL

OpenCL and SYCL use opposite conventions for the unit stride dimension. SYCL aligns with C++ conven
tions, which is important to understand from a performance perspective when porting code to SYCL. The
unit stride dimension, at least for data, is implicit in the linearization equations in SYCL (Section 3.11.1)
and OpenCL. SYCL aligns with C++ array subscript ordering arr[a][b][c], in that range constructor
dimension ordering used to launch a kernel (e.g. range<3> R{a,b,c}) and range and ID queries within a
kernel, are ordered in the same way as the C++ multi-dimensional subscript operators (unit stride on the
right).

When specifying a range as the global or local size in a parallel_for that invokes an OpenCL interop ker
nel (through cl_kernel interop), the highest dimension of the range in SYCL will map to the lowest
dimension within the OpenCL kernel. That statement applies to both an underlying enqueue operation
such as clEnqueueNDRangeKernel in OpenCL, and also ID and size queries within the OpenCL kernel. For
example, a 3D global range specified in SYCL as:

range<3> R { r0, r1, r2 };

maps to an clEnqueueNDRangeKernel global_work_size argument of:

size_t cl_interop_range[3] = { r2, r1, r0 };

Likewise, a 2D global range specified in SYCL as:

range<2> R { r0, r1 };

maps to an clEnqueueNDRangeKernel global_work_size argument of:

size_t cl_interop_range[2] = { r1, r0 };

The mapping of highest dimension in SYCL to lowest dimension in OpenCL applies to all operations
where a multi-dimensional construct must be mapped, such as when mapping SYCL explicit memory
operations to OpenCL APIs like clEnqueueCopyBufferRect.

Work-item and work-group ID and range queries have the same reversed convention for unit stride
dimension between SYCL and OpenCL. For example, with three, two, or one dimensional SYCL global
ranges, OpenCL and SYCL kernel code queries relate to the range as shown in Table 181. The "SYCL ker
nel query" column applies for SYCL-defined kernels, and the "OpenCL kernel query" column applies for
kernels defined through OpenCL interop.

Table 181. Example range mapping from SYCL enqueued three dimensional global range to OpenCL and SYCL
queries

SYCL kernel query OpenCL kernel
query

Returned Value

With enqueued 3D SYCL global range of range<3> R{r0,r1,r2}

nd_item::get_global_range(0) / item::get_range(0) get_global_size(2) r0

nd_item::get_global_range(1) / item::get_range(1) get_global_size(1) r1

nd_item::get_global_range(2) / item::get_range(2) get_global_size(0) r2

nd_item::get_global_id(0) / item::get_id(0) get_global_id(2) Value in range
0..(r0-1)}

SYCL 2020 rev 9 C.7.7. OpenCL kernel conventions and SYCL

Appendix C: OpenCL backend specification | 565

SYCL kernel query OpenCL kernel
query

Returned Value

nd_item::get_global_id(1) / item::get_id(1) get_global_id(1) Value in range
0..(r1-1)}

nd_item::get_global_id(2) / item::get_id(2) get_global_id(0) Value in range
0..(r2-1)}

With enqueued 2D SYCL global range of range<2> R{r0,r1}

nd_item::get_global_range(0) / item::get_range(0) get_global_size(1) r0

nd_item::get_global_range(1) / item::get_range(1) get_global_size(0) r1

nd_item::get_global_id(0) / item::get_id(0) get_global_id(1) Value in range
0..(r0-1)}

nd_item::get_global_id(1) / item::get_id(1) get_global_id(0) Value in range
0..(r1-1)}

With enqueued 1D SYCL global range of range<1> R{r0}

nd_item::get_global_range(0) / item::get_range(0) get_global_size(0) r0

nd_item::get_global_id(0) / item::get_id(0) get_global_id(0) Value in range
0..(r0-1)}

C.7.8. Data types

The OpenCL C language standard Section 6.11 defines its own built-in scalar data types, and these have
additional requirements in terms of size and signedness on top of what is guaranteed by ISO C++. For the
purpose of interoperability and portability, SYCL defines a set of aliases to C++ types within the
sycl::opencl namespace using the cl_ prefix. These aliases are described in Table 182.

Table 182. Scalar data type aliases supported by SYCL OpenCL backend

Scalar data type alias Description

cl_bool
Alias to a conditional data type which can be either true or false. The value
true expands to the integer constant 1 and the value false expands to the
integer constant 0.

cl_char
Alias to a signed 8-bit integer, as defined by the C++ core language.

cl_uchar
Alias to an unsigned 8-bit integer, as defined by the C++ core language.

cl_short
Alias to a signed 16-bit integer, as defined by the C++ core language.

cl_ushort
Alias to an unsigned 16-bit integer, as defined by the C++ core language.

cl_int
Alias to a signed 32-bit integer, as defined by the C++ core language.

cl_uint
Alias to an unsigned 32-bit integer, as defined by the C++ core language.

C.7.8. Data types SYCL 2020 rev 9

566 | Appendix C: OpenCL backend specification

Scalar data type alias Description

cl_long
Alias to a signed 64-bit integer, as defined by the C++ core language.

cl_ulong
Alias to an unsigned 64-bit integer, as defined by the C++ core language.

cl_float
Alias to a 32-bit floating-point. The float data type must conform to the IEEE
754 single precision storage format.

cl_double
Alias to a 64-bit floating-point. The double data type must conform to the
IEEE 754 double precision storage format.

cl_half
Alias to a 16-bit floating-point. The half data type must conform to the IEEE
754-2008 half precision storage format. Kernels using this type are only sup
ported on devices that have aspect::fp16, as described in Section 5.7.

C.8. Preprocessor directives and macros
• SYCL_BACKEND_OPENCL substitutes to 1 if the OpenCL SYCL backend is active while building the SYCL

application.

C.8.1. Offline linking with OpenCL C libraries

SYCL supports linking SYCL kernel functions with OpenCL C libraries during offline compilation or dur
ing online compilation by the SYCL runtime within a SYCL application.

Linking with OpenCL C kernel functions offline is an optional feature and is unspecified. Linking with
OpenCL C kernel functions online is performed by using the SYCL kernel_bundle class to compile and link
an OpenCL C source; using the compile_with_source or build_with_source member functions.

OpenCL C functions that are linked with, using either offline or online compilation, must be declared as
extern "C" function declarations. The function parameters of these function declarations must be
defined as the OpenCL C interoperability aliases; pointer of the multi_ptr class template, vector_t of the
vec class template and scalar data type aliases described in Table 182.

C.9. SYCL support of non-core OpenCL features
In addition to the OpenCL core features, SYCL also provides support for OpenCL extensions which pro
vide features in OpenCL via khr extensions.

Some extensions are natively supported within the SYCL interface, however some can only be used via
the OpenCL interoperability interface. The SYCL interface required for native extensions must be avail
able. However if the respective extension is not supported by the executing SYCL device, the SYCL run
time must throw an exception with the errc::feature_not_supported or errc::kernel_not_supported error
codes.

The OpenCL backend exposes some khr extensions to SYCL applications through the sycl::aspect enu
merated type. Therefore, applications can query for the existence of these khr extensions by calling the
device::has() or platform::has() member functions.

All OpenCL extensions are available through the OpenCL interoperability interface, but some can also be
used through core SYCL APIs. Table 183 shows which these are. Table 183 also shows the mapping from
each OpenCL extension name to its associated SYCL device aspect when one is available.

Table 183. SYCL support for OpenCL 1.2 extensions

SYCL 2020 rev 9 C.8. Preprocessor directives and macros

Appendix C: OpenCL backend specification | 567

SYCL Aspect OpenCL Extension Core SYCL API

aspect::atomic64 cl_khr_int64_base_atomics Yes

aspect::atomic64 cl_khr_int64_extended_atomics Yes

aspect::fp16 cl_khr_fp16 Yes

- cl_khr_3d_image_writes Yes

- cl_khr_gl_sharing No

- cl_apple_gl_sharing No

- cl_khr_d3d10_sharing No

- cl_khr_d3d11_sharing No

- cl_khr_dx9_media_sharing No

C.9.1. Half precision floating-point

The half scalar data type: half and the half vector data types: half1, half2, half3, half4, half8 and half16
must be available at compile-time. However a kernel using these types is only supported on devices that
have aspect::fp16, as described in Section 5.7.

The conversion rules for half precision types follow the same rules as in the OpenCL 1.2 extensions spec
ification par. 9.5.1.

The math functions for half precision types follow the same rules as in the OpenCL 1.2 extensions speci
fication par. 9.5.2, 9.5.3, 9.5.4, 9.5.5. The allowed error in ULP(Unit in the Last Place) is less than 8192,
corresponding to Table 6.9 of the OpenCL 1.2 specification.

C.9.2. Writing to 3D image memory objects

The unsampled_image_accessor class in SYCL supports member functions for writing 3D image memory
objects, but this functionality is only allowed on a device if the extension cl_khr_3d_image_writes is sup
ported on that device.

C.9.3. Interoperability with OpenGL

Interoperability between SYCL and OpenGL is not directly provided by the SYCL interface, however can
be achieved via the SYCL OpenCL interoperability interface.

C.10. Correspondence of some OpenCL features to SYCL
This section describes the correspondence between some OpenCL features and features in the core SYCL
specification that provide similar functionality. All content in this section is non-normative.

C.10.1. Work-item functions

The OpenCL 1.2 specification document ch. 6.12.1 in Table 6.7 defines work-item functions that tell vari
ous information about the currently executing work-item in an OpenCL kernel. SYCL provides equiva
lent functionality through the item and group classes that are defined in Section 4.9.1.4, Section 4.9.1.5
and Section 4.9.1.7.

C.10.2. Vector data load and store functions

The functionality from the OpenCL functions as defined in the OpenCL 1.2 specification document par.
6.12.7 is available in SYCL through the vec class in Section 4.14.2.

C.9.1. Half precision floating-point SYCL 2020 rev 9

568 | Appendix C: OpenCL backend specification

C.10.3. Synchronization functions

In SYCL the OpenCL synchronization functions are available through the nd_item class (Section 4.9.1.5),
as they are applied to work-items for local or global address spaces. Please see Table 116.

C.10.4. printf function

The functionality of the printf function is covered by the stream class (Section 4.16), which has the capa
bility to print to standard output all of the SYCL classes and primitives, and covers the capabilities
defined in the OpenCL 1.2 specification document par. 6.12.13.

C.11. Precision of built-in math functions
When the SYCL built-in functions defined in sections Section 4.17.4 through Section 4.17.10 are called
from a kernel running on the OpenCL backend, their precision is the same as the corresponding OpenCL
functions as specified for the OpenCL profile. See ch. 6.12.2 through ch. 6.12.6 of the OpenCL 1.2 specifi
cation for the definition of these corresponding OpenCL functions.

SYCL 2020 rev 9 C.10.3. Synchronization functions

Appendix C: OpenCL backend specification | 569

Appendix D: What has changed from previous
versions

D.1. What has changed from SYCL 1.2.1 to SYCL 2020
The SYCL runtime moved from namespace cl::sycl provided by #include <CL/sycl.hpp> to namespace
sycl provided by #include <sycl/sycl.hpp> as explained in Section 4.3. The old header file is still avail
able for compatibility with SYCL 1.2.1 applications.

The SYCL specification is now based on the core language of C++17, as described in Section 3.9.1. Fea
tures of C++17 are now enabled within the specification, such as deduction guides for class template
argument deduction.

Naming of lambda functions passed to kernel invocations is now optional.

Changes to buffers, images and accessors:

• The image class has been removed. There are now new classes unsampled_image and sampled_image
which represent sampled and unsampled images. The sampler class has been removed and replaced
with the new image_sampler structure.

• Support for image arrays has been removed.

• The type name access::target has been deprecated and replaced with the type target.

• The type name access::mode has been deprecated and replaced with the type access_mode.

• The name of the accessor target target::global_buffer has been deprecated and replaced with tar
get::device.

• Support for the accessor target target::host_buffer has been deprecated. There is now a new acces
sor class host_accessor which provides equivalent functionality.

• The buffer member functions which return an accessor of type target::host_buffer have been depre
cated. A new member function get_host_access() has been added which returns a host_accessor.

• The buffer class has a new variadic overload of the get_access() member function which allows con
struction of an accessor with various parameters.

• Support for the accessor target target::local has been deprecated. There is now a new accessor class
local_accessor which provides equivalent functionality.

• Support for the accessor targets target::image and target::host_image have been removed. There are
now new accessor classes for sampled and unsampled images: sampled_image_accessor, host_sam
pled_image_accessor, unsampled_image_accessor and host_unsampled_image_accessor.

• A new accessor target target::host_task has been added, which allows access to a buffer from a host
task.

• Support for the accessor modes access_mode::discard_write and access_mode::discard_read_write has
been deprecated. Accessors can now be constructed with a property list, and the new property prop
erty::no_init provides equivalent functionality.

• Support for the accessor mode access_mode::atomic and the member functions that return an instance
of the atomic class have been deprecated in favor of using the new atomic_ref class instead.

• Support for the accessor template parameter isPlaceholder has been deprecated, and the value of this
parameter no longer has any bearing on whether the accessor is a placeholder. The enumerated type
access::placeholder is also deprecated. A placeholder accessor can now be constructed by calling the
appropriate constructor, without regard to the template parameter.

• The return type of accessor::is_placeholder() is no longer constexpr.

D.1. What has changed from SYCL 1.2.1 to SYCL 2020 SYCL 2020 rev 9

570 | Appendix D: What has changed from previous versions

• The member function handler::require() may now be called on any accessor with target tar
get::device, target::constant_buffer or target::host_task, regardless of whether it is a placeholder.

• New accessor constructors have been added which take a type tag parameter, which allows the class
template parameters to be inferred via C++ class template argument deduction (CTAD).

• The buffer member function get_access() now has a default value for the target template parameter,
so it is no longer necessary to provide any template parameters in order to get a access_mode::read
_write accessor.

• The accessor template parameters Dimensions and AccessMode now have default values, so the only
required template parameter is DataT. Moreover, the default access mode is either access_mode::read
_write or access_mode::read, depending on the constness of the DataT type. This makes it possible to
declare a read-only accessor by simply using a const qualified type.

• Implicit conversions have been added between the two forms of read-only accessor (one form has
const DataT and access_mode::read and the other has non-const DataT and access_mode::read). There is
also an implicit conversion from a read-write accessor to either of the read-only forms.

• Member functions of accessor which return a reference to an element have been changed to return a
const reference for read-only accessors. The get_pointer() member function has also been changed to
return a const pointer for read-only accessors. The value_type and reference member types of acces
sor have been changed to be const types for read-only accessors.

• The accessor class now meets the C++ requirement of ReversibleContainer. This includes (but is not
limited to) returning begin and end iterators, specifying a default constructible accessor that can be
passed to a kernel but not dereferenced, and making them equality comparable.

• Many of the accessor member functions have been marked noexcept.

• A ranged accessor is no longer allowed to read elements that are outside of its range; attempting to do
so produces undefined behavior.

• The semantics of the subscript operator have been changed for a ranged accessor which has an off
set. Calling operator[](0) now returns a reference to the first element in the range, rather than a ref
erence to the first element in the underlying buffer.

• The behavior of buffers and accessors with a zero-sized range has been clarified.

Constant memory no longer appears in the SYCL device memory model in SYCL 2020.

The C++ attributes that decorate kernels are now better described, and their position has changed so that
they are applied directly to the kernel function. (Previously, they were applied to a device function that
the kernel calls, and the implementation needed to propagate the information up to the enclosing ker
nel.) The old C++ attribute form is no longer included in the SYCL specification.

Changes to the built-in functions specified in Section 4.17:

• The specification no longer uses pseudo "generic type names" to describe these functions, and it now
lists the exact synopsis for each function.

• The return type of the integer abs and abs_diff functions has changed. The return type is now the
same as the input type, matching the C++ std::abs function.

• The geometric functions specified in Section 4.17.9 now support the half data type.

• The ctz function was added to Section 4.17.7.

• The specification of clz was clarified for the case when the input is zero.

The classes vector_class, string_class, function_class, mutex_class, shared_ptr_class, weak_ptr_class,
hash_class and exception_ptr_class have been removed from the API and the standard classes std::vec
tor, std::string, std::function, std::mutex, std::shared_ptr, std::weak_ptr, std::hash and std::excep
tion_ptr are used instead.

The specific sycl::buffer API taking std::unique_ptr has been removed. The behavior is the same as in

SYCL 2020 rev 9 D.1. What has changed from SYCL 1.2.1 to SYCL 2020

Appendix D: What has changed from previous versions | 571

SYCL 1.2.1 but with a simplified API. Since there is still the API taking std::shared_ptr and there is an
implicit conversion from a std::unique_ptr prvalue to a std::shared_ptr, the API can still be used as
before with a std::unique_ptr to give away memory ownership.

Offsets to parallel_for, nd_range, nd_item and item classes have been deprecated. As such, the parallel
iteration spaces all begin at (0,0,0) and developers are now required to handle any offset arithmetic
themselves. The behavior of nd_item.get_global_linear_id() and nd_item.get_local_linear_id() has
been clarified accordingly.

Unified Shared Memory (USM), in Section 4.8, has been added as a pointer-based strategy for data man
agement. It defines several types of allocations with various accessibility rules for host and devices. USM
is meant to complement buffers, not replace them.

The queue class received a new property that requires in-order semantics for a queue where operations
are executed in the order in which they are submitted.

The queue class received several new member functions to invoke kernels directly on a queue objects
instead of inside a command group handler in the submit member function.

The queue constructor overloads that accept both a context and a device parameter have been broadened
to allow the device to be either a device that is in the context or a descendent device of a device that is in
the context.

The program class has been removed and replaced with a new class kernel_bundle, which provides similar
functionality in a type-safe and thread-safe way. The kernel class has changed, and some member func
tions have been removed.

Support has been added for specialization-constants, which allow a SYCL kernel function to use constant
variables whose values aren’t known until the kernel is invoked. A SYCL kernel function can now take
an optional parameter of type kernel_handler, which allows the kernel to read the values of specializa
tion-constants.

The constructors for SYCL context and queue are made explicit to prevent ambiguities in the selected
constructor resulting from implicit type conversion.

The requirement for C++ standard layout for data shared between host and devices has been relaxed.
SYCL now requires data shared between host and devices to be device copyable as defined Section
3.13.1.

The concept of a group of work-items was generalized to include work-groups and sub-groups. A work-
group is represented by the sycl::group class as in SYCL 1.2.1, and a sub-group is represented by the new
sycl::sub_group class.

The host_task member function for the queue has been introduced for en-queueing host tasks on a queue
to schedule the SYCL runtime to invoke native C++ functions, conforming to the SYCL memory model.
Host-tasks also support interoperability with the native SYCL backend objects associated at that point in
the DAG using the optional interop_handle class.

A library of algorithms based on the C++17 algorithms library was introduced in Section 4.17.3. These
algorithms provide a simple way for developers to apply common parallel algorithms using the work-
items of a group.

The definition of the sycl::group class was modified to support the new group functions in Section
4.17.2. New member types and variables were added to enable generic programming, and member func
tions were updated to encapsulate all functionality tied to work-groups in the sycl::group class. See Ta
ble 118 for details.

The barrier and mem_fence member functions of the nd_item class have been removed. The barrier mem
ber function has been replaced by the group_barrier() function, which can be used to block work-items

D.1. What has changed from SYCL 1.2.1 to SYCL 2020 SYCL 2020 rev 9

572 | Appendix D: What has changed from previous versions

in either work-groups or sub-groups until all work-items in the group arrive at the barrier. The
mem_fence member function has been replaced by the atomic_fence function, which is more closely
aligned with std::atomic_thread_fence and offers control over memory ordering and scope.

Changes in the SYCL vec class described in Section 4.14.2:

• operator[] was added;

• unary operator+() and operator-() were added;

The device selection now relies on a simpler API based on ranking functions used as device selectors
described in Section 4.6.1.1.

A new device selector utility has been added to Section 4.6.1.1, the aspect_selector, which returns a
selector object that only selects devices that have all the requested aspects.

The device query info::fp_config::correctly_rounded_divide_sqrt has been deprecated.

A new reduction library consisting of the reduction function and reducer class was introduced to simplify
the expression of variables with reduction semantics in SYCL kernels. See Section 4.9.2.

The atomic class from SYCL 1.2.1 was deprecated in favor of a new atomic_ref interface.

The SYCL exception class hierarchy has been condensed into a single exception type: exception. excep
tion now derives from std::exception. The variety of errors are now provided via error codes, which
aligns with the C++ error code mechanism.

The new error code mechanism now also generalizes the previous get_cl_code interface to provide a
generic interface way for querying backend-specific error codes.

Default asynchronous error handling behavior is now defined, so that asynchronous errors will cause
abnormal program termination even if a user-defined asynchronous handler function is not defined.
This prevents asynchronous errors from being silently lost during early stages of application develop
ment.

Kernel invocation functions, such as parallel_for, now take kernel functions by const reference. Kernel
functions must now have a const-qualified operator(), and are allowed to be copied zero or more times
by an implementation. These clarifications allow implementations to have flexibility for specific devices,
and define what users should expect with kernel functors. Specifically, kernel functors can not be
marked as mutable, and sharing of data between work-items should not be attempted through state
stored within a kernel functor.

A new concept called device aspects has been added, which tells the set of optional features a device sup
ports. This new mechanism replaces the has_extension() function and some uses of get_info().

There is a new Chapter 6 which describes how extensions to the SYCL language can be added by vendors
and by the Khronos Group.

A queue constructor has been added that takes both a device and context, to simplify interfacing with
libraries.

The parallel_for interface has been simplified in some forms to accept a braced initializer list in place of
a range, and to always take item arguments. Kernel invocation functions have also been modified to
accept generic lambda expressions. Implicit conversions from one-dimensional item and one-dimen
sional id to scalar types have been defined. All of these modifications lead to simpler SYCL code in com
mon use cases.

The behaviour of executing a kernel over a range or nd_range with index space of zero has been clarified.

Some device-specific queries have been renamed to more clearly be “device-specific kernel” get_info

SYCL 2020 rev 9 D.1. What has changed from SYCL 1.2.1 to SYCL 2020

Appendix D: What has changed from previous versions | 573

queries (info::kernel_device_specific) instead of “work-group” (get_workgroup_info) and sub-group
(get_sub_group_info) queries.

A new math array type marray has been defined to begin disambiguation of the multiple possible inter
pretations of how sycl::vec should be interpreted and implemented.

Changes in SYCL address spaces:

• the address space meaning has been significantly improved;

• the generic address space was introduced;

• the constant address space was deprecated;

• behavior of unannotated pointer/reference (raw pointer/reference) is now dependent on the compila
tion mode. The compiler can either interpret unannotated pointer/reference has addressing the
generic address space or to be deduced;

• some ambiguities in the address space deduction were clarified. Notably that deduced type does not
affect the user-provided type.

Changes in multi_ptr interface:

• addition of access::address_space::generic_space to represent the generic address space;

• deprecation of access::address_space::constant_space;

• an extra template parameter to allow to select a flavor of the multi_ptr interface. There are now 3 dif
ferent interfaces:

◦ interface exposing undecorated types. Returned pointer and reference are not annotated by an
address space;

◦ interface exposing decorated types. Returned pointer and reference are annotated by an address
space;

◦ legacy 1.2.1 interface (deprecated).

• deprecation of the 1.2.1 interface;

• deprecation of constant_ptr;

• global_ptr, local_ptr and private_ptr alias take the new extra parameter;

• addition of the address_space_cast free function to cast undecorated pointer to multi_ptr;

• addition of construction/conversion operator for the generic address space;

• removal of the constructor and assignment operator taking an unannotated pointer;

• implicit conversion to a pointer is now deprecated. get should be used instead;

• the return type of the member function get now depends on the selected interface.

• addition of the member function get_raw which returns the underlying pointer as an unannotated
pointer;

• addition of the member function get_decorated which returns the underlying pointer as an annotated
pointer;

• addition of the subscript operator providing random access.

The cl::sycl::byte has been deprecated and now the C++17 std::byte should be used instead.

A SYCL implementation is no longer required to provide a host device. Instead, an implementation is
only required to provide at least one device. Implementations are still allowed to provide devices that
are implemented on the host, but it is no longer required. The specification no longer defines any special
semantics for a "host device" and APIs specific to the host device have been removed.

The default constructors for the device and platform classes have been changed to construct a copy of the

D.1. What has changed from SYCL 1.2.1 to SYCL 2020 SYCL 2020 rev 9

574 | Appendix D: What has changed from previous versions

default device and a copy of the platform containing the default device. Previously, they returned a copy
of the host device and a copy of the platform containing the host device. The default constructor for the
event class has also been changed to construct an event that comes from a default-constructed queue. Pre
viously, it constructed an event that used the host backend.

Explicit copy functions of the handler class have also been introduced to the queue class as shortcuts for
the handler ones. This is enabled by the improved placeholder accessors to help reduce code verbosity
in certain cases because the shortcut functions implicitly create a command group and call han
dler::require.

Information query descriptors have been changed to structures under namespaces named accordingly.
param_traits has been removed and the return type of an information query is now contained in the
descriptor. The sycl::info::device::max_work_item_sizes is now a template that takes a dimension para
meter corresponding to the number of dimensions of the work-item size maxima.

Changes to retrieving size information:

• all get_size() member functions have been deprecated and replaced with byte_size(), which is
marked noexcept;

• all get_count() member functions have been deprecated and replaced with size(), which is marked
noexcept;

• in the vec class the functions byte_size() and size() are now static member functions;

• in the stream class get_size() has been deprecated in favor of size(), whereas stream::byte_size() is
not available;

• accessors for sampled and unsampled images only define size() and not byte_size().

The device descriptors info::device::max_constant_buffer_size and info::device::max_constant_args are
deprecated in SYCL 2020.

The buffer_allocator is now templated on the data type and follows the C++ named requirement Alloca
tor.

The SYCL id and range have now unary + and - operations, prefix ++ and -- operations, postfix ++ and --
operations which were forgotten in SYCL 1.2.1.

In SYCL 1.2.1, the handler::copy() overload with two accessor parameters did not clearly specify which
accessor’s size determines the amount of memory that is copied. The spec now clarifies that the src
accessor’s size is used.

SYCL 2020 rev 9 D.1. What has changed from SYCL 1.2.1 to SYCL 2020

Appendix D: What has changed from previous versions | 575

Appendix E: References
International Organization for Standardization (ISO). “Programming Languages — C++”. ISO/IEC
14882:2017, 2017.

International Organization for Standardization (ISO). Accepted resolution to C++ Standard Core Lan
guage Defect Report DR2325. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0593r6.html .

Khronos OpenCL Working Group. The OpenCL Extension Specification, Version 1.2.25 (2/13/18).
http://www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf .

Khronos OpenCL Working Group. The OpenCL Specification, Version 1.2.19 (11/14/12).
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf .

Khronos OpenCL Working Group. The OpenCL Specification, Version 2.0.29 (July 21, 2015).
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf .

International Organization for Standardization (ISO). " Programming Languages — C++, Langages de
programmation — C++ ", International Standard ISO/IEC 14882:2020(E), Sixth edition 2020-12, 2020.

SYCL 2020 rev 9

576 | Appendix E: References

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0593r6.html
http://www.khronos.org/registry/cl/specs/opencl-1.2-extensions.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf

Glossary
accessor

An accessor is a class which allows a command to access data managed by a buffer or image class or
allows a SYCL kernel function to access local memory on a device. Accessors are also used to express
the dependencies among the different command groups. For the full description please refer to Sec
tion 4.7.6

application scope
The application scope starts with the construction first SYCL runtime class object and finishes with the
destruction of the last one. Application refers to the C++ SYCL application and not the SYCL runtime.

aspect
A characteristic of a device which determines whether it supports some optional feature. Aspects are
always boolean, so a device either has or does not have an aspect.

asynchronous error
A SYCL asynchronous error is an error occurring after the host API call invoking the error causing
action has returned, such that the error cannot be thrown as a typical C++ exception from a host API
call. Such errors are typically generated from device kernel invocations which are executed when
SYCL task graph dependencies are satisfied, which occur asynchronously from host code execution.
For the full description and associated asynchronous error handling mechanisms, please refer to Sec
tion 4.13.

async_handler
An asynchronous error handler object is a function class instance providing necessary code for han
dling all the asynchronous errors triggered from the execution of command groups on a queue,
within a context or an associated event. For the full description please refer to Section 4.13.2.

barrier
A barrier may refer to either a command queue barrier used for host-device coordination, or a group
barrier used to coordinate work-items in a kernel.

blocking accessor
A blocking accessor is an accessor which provides immediate access and continues to provide access
until it is destroyed. For the full description please refer to Section 4.7.6

buffer
The buffer class manages data for the SYCL C++ host application and the SYCL device kernels. The
buffer class may acquire ownership of some host pointers passed to its constructors according to the
constructor kind.

The buffer class, together with the accessor class, is responsible for tracking memory transfers and
guaranteeing data consistency among the different kernels. The SYCL runtime manages the memory
allocations on both the host and the device within the lifetime of the buffer object. For the full descrip
tion please refer to Section 4.7.2.

bundle state
A SYCL bundle state represents the state of a kernel bundle and therefore its capabilities in the SYCL
programming API. Possible states are input, object or executable.

command
A request to execute work that is submitted to a queue such as the invocation of a SYCL kernel func
tion, the invocation of a host task or an asynchronous copy.

SYCL 2020 rev 9

Glossary | 577

command group
In SYCL, the operations required to process data on a device are represented using a command group
function object. Each command group function object is given a unique command group handler
object to perform all the necessary work required to correctly process data on a device using a kernel.
In this way, the group of commands for transferring and processing data is enqueued as a command
group on a device for execution. A command group is submitted atomically to a SYCL queue.

command group function object
A type which is callable with operator() that takes a reference to a command group handler, that
defines a command group which can be submitted by a queue. The function object can be a named
type, lambda function or std::function.

command group handler
The command group handler class provides the interface for the commands that can be executed
inside the command group scope. It is provided as a scoped object to all of the data access requests
within the command group scope. For the full description please refer to Section 4.9.4.

command group scope
The command group scope is the function scope defined by the command group function object. The
command group command group handler object lifetime is restricted to the command group scope.
For more details see Section 4.9.3.

command queue barrier
The sycl::queue::wait() and sycl::queue::wait_and_throw() functions block the calling thread until
the execution of a command group function object completes.

constant memory
A region of memory that remains constant during the execution of a kernel. The SYCL runtime allo
cates and initializes memory objects placed into constant memory.

context
A context represents the runtime data structures and state required by a SYCL backend API to interact
with a group of devices associated with a platform. The context is defined as the sycl::context class,
for further details please see Section 4.6.3.

control flow
When all work-items in a group are executing the same sequence of statements, they are said to be
executing under converged control flow. Control flow diverges when different work-items in a group
execute a different sequence of statements, typically as a result of evaluating conditions differently
(e.g. in selection statements or loops).

core SYCL specification
The text of the SYCL language specification (this document), excluding the text of any backend specifi
cations and excluding the text for any extensions.

descendent device
The descendent devices of device D include all of the sub-devices of D, all of the sub-devices of those
devices, etc.

device
A SYCL device is an abstraction of a piece of hardware that can execute SYCL kernels.

device compiler
A SYCL device compiler is a compiler that produces device binaries from a valid SYCL application. For
the full description please refer to Chapter 5.

SYCL 2020 rev 9

578 | Glossary

device copyable
Data that is shared between the host and the devices must generally have a type that abides by the
restrictions listed in Section 3.13.1 for a device copyable type.

device function
A device function is any function in a SYCL application that can be run on a device. This includes SYCL
kernel functions and, recursively, functions they call.

device image
A device image is a representation of one or more kernels in an implementation-defined format. A
device image could be a compiled version of the kernels in an intermediate language representation
which needs to be translated at runtime into a form that can be invoked on a device, it could be a
compiled version of the kernels in a native code format that is ready to be invoked without further
translation, or it could be a source code representation which needs to be compiled before it can be
invoked. Other representations are possible too.

device selector
A way to select a device used in various places. This is a callable object taking a device reference and
returning an integer rank. One of the device with the highest non-negative value is selected. See Sec
tion 4.6.1.1 for more details.

event
A SYCL object that represents the status of an operation that is being executed by the SYCL runtime.

executable
A state which a kernel bundle can be in, representing SYCL kernel functions as an executable.

generic memory
Generic memory is a virtual memory region which can represent global memory, local memory and
private memory region.

global id
As in OpenCL, a global ID is used to uniquely identify a work-item and is derived from the number of
global work-items specified when executing a kernel. A global ID is a one, two or three-dimensional
value that starts at 0 per dimension.

global memory
Global memory is a memory region accessible to all work-items executing on a device.

group
A group of work-items within the index space of a SYCL kernel execution, such as a work-group or
sub-group.

group barrier
A coordination mechanism for all work-items of a group. See the definition of the group_barrier func
tion.

h-item
A unique identifier representing a single work-item within the index space of a SYCL kernel hierarchi
cal execution. Can be one, two or three dimensional. In the SYCL interface a h-item is represented by
the h_item class (see Section 4.9.1.6).

host
Host is the system that executes the C++ application including the SYCL API.

SYCL 2020 rev 9

Glossary | 579

host pointer
A pointer to memory on the host. Cannot be accessed directly from a device.

host task
A command which invokes a native C++ callable, scheduled conforming to SYCL dependency rules.

host task command
A type of command that can be used inside a command group in order to schedule a native C++ func
tion.

id
It is a unique identifier of an item in an index space. It can be one, two or three dimensional index
space, since the SYCL kernel execution model is an nd-range. It is one of the index space classes. For
the full description please refer to Section 4.9.1.3.

image
Images in SYCL, like buffers, are abstractions of multidimensional structured arrays. Image can refer
to unsampled_image and sampled_image. For the full description please refer to Section 4.7.3.

implementation-defined
Behavior that is explicitly allowed to vary between conforming implementations of SYCL. A SYCL
implementer is required to document the implementation-defined behavior.

index space classes
Like in OpenCL, the kernel execution model defines an nd-range index space. The SYCL runtime class
that defines an nd-range is the sycl::nd_range, which takes as input the sizes of global and local work-
items, represented using the sycl::range class. The kernel library classes for indexing in the defined
nd-range are the following classes:

• sycl::id : The basic index class representing an id;

• sycl::item : The item index class that contains the global id and local id;

• sycl::nd_item : The nd-item index class that contains the global id, local id and the work-group id;

• sycl::group : The group class that contains the work-group id and the member functions on a
work-group.

input
A state which a kernel bundle can be in, representing SYCL kernel functions as a source or intermedi
ate representation

item
An item id is an interface used to retrieve the global id, work-group id and local id. For further details
see Section 4.9.1.4.

kernel
A kernel represents a SYCL kernel function that has been compiled for a device, including all of the
device functions it calls. A kernel is implicitly created when a SYCL kernel function is submitted to a
device via a kernel invocation command. However, a kernel can also be created manually by pre-com
piling a kernel bundle (see Section 4.11).

kernel bundle
A kernel bundle is a collection of device images that are associated with the same context and with a
set of devices. Kernel bundles have one of three states: input, object or executable. Kernel bundles in
the executable state are ready to be invoked on a device, whereas bundles in the other states need to
be translated into the executable state before they can be invoked.

SYCL 2020 rev 9

580 | Glossary

kernel handler
A representation of a SYCL kernel function being invoked that is available to the kernel scope.

kernel invocation command
A type of command that can be used inside a command group in order to schedule a SYCL kernel
function, includes single_task, all variants of parallel_for and parallel_for_workgroup.

kernel name
A kernel name is a class type that is used to assign a name to the kernel function, used to link the host
system with the kernel object output by the device compiler. For details on naming kernels please see
Section 5.2.

kernel scope
The function scope of the operator() on a SYCL kernel function. Note that any function or member
function called from the kernel is also compiled in kernel scope. The kernel scope allows C++ language
extensions as well as restrictions to reflect the capabilities of devices. The extensions and restrictions
are defined in the SYCL device compiler specification.

local id
A unique identifier of a work-item among other work-items of a work-group.

local memory
Local memory is a memory region associated with a work-group and accessible only by work-items in
that work-group.

native backend object
An opaque object defined by a specific backend that represents a high-level SYCL object on said back
end. There is no guarantee of having native backend objects for all SYCL types.

native-specialization constant
A specialization constant in a device image whose value can be used by an online compiler as an
immediate value during the compilation.

nd-item
A unique identifier representing a single work-item and work-group within the index space of a SYCL
kernel execution. Can be one, two or three dimensional. In the SYCL interface an nd-item is repre
sented by the nd_item class (see Section 4.9.1.5).

nd-range
A representation of the index space of a SYCL kernel execution, the distribution of work-items within
into work-groups. Contains a range specifying the number of global work-items, a range specifying
the number of local work-items and a id specifying the global offset. Can be one, two or three dimen
sional. The minimum size of range within the nd-range is 0 per dimension; where any dimension is
set to zero, the index space in all dimensions will be zero. In the SYCL interface an nd-range is repre
sented by the nd_range class (see Section 4.9.1.2).

mem-fence
A memory fence provides control over re-ordering of memory load and store operations when cou
pled with an atomic operation. See the definition of the sycl::atomic_fence function.

object
A state which a kernel bundle can be in, representing SYCL kernel functions as a non-executable
object.

platform
A collection of devices managed by a single backend.

SYCL 2020 rev 9

Glossary | 581

private memory
A region of memory private to a work-item. Variables defined in one work-item’s private memory are
not visible to another work-item. The sycl::private_memory class provides access to the work-item’s
private memory for the hierarchical API as it is described in Section 4.9.4.2.3.

queue
A SYCL command queue is an object that holds command groups to be executed on a SYCL device.
SYCL provides a heterogeneous platform integration using device queue, which is the minimum
requirement for a SYCL application to run on a SYCL device. For the full description please refer to
Section 4.6.5.

range
A representation of a number of work-items or work-groups within the index space of a SYCL kernel
execution. Can be one, two or three dimensional. In the SYCL interface a range is represented by the
range class (see Section 4.9.1.1).

ranged accessor
A ranged accessor is a host or buffer accessor that was constructed with a non-zero offset into the
data buffer or with an access range smaller than the range of the data buffer, or both. Please refer to
Section 4.7.6.8 for more info.

reduction
An operation that produces a single value by combining multiple values in an unspecified order using
a binary operator. If the operator is non-associative or non-commutative, the behavior of a reduction
may be non-deterministic.

root device
A device that is not a sub-device. The function device::get_devices() returns a vector of all the root
devices.

rule of five
For a given class, if at least one of the copy constructor, move constructor, copy assignment operator,
move assignment operator or destructor is explicitly declared, all of them should be explicitly
declared.

rule of zero
For a given class, if the copy constructor, move constructor, copy assignment operator, move assign
ment operator and destructor would all be inlined, public and defaulted, none of them should be
explicitly declared.

SMCP
The single-source multiple compiler-passes (SMCP) technique allows a single-source file to be parsed
by multiple compilers for building native programs per compilation target. For example, a standard
C++ CPU compiler for targeting host will parse the SYCL file to create the C++ SYCL application which
offloads parts of the computation to other devices. A SYCL device compiler will parse the same source
file and target only SYCL kernels. For the full description please refer to Section 3.12.1. See SSCP for
another approach.

specialization constant
A constant variable where the value is not known until compilation of the SYCL kernel function.

specialization id
An identifier which represents a reference to a specialization constant both in the SYCL application
for setting the value prior to the compilation of a kernel bundle and in a SYCL kernel function for
retrieving the value during invocation.

SYCL 2020 rev 9

582 | Glossary

SSCP
The single-source single compiler-pass (SSCP) technique allows a single-source file to be parsed only
once by a single compiler. For example, the SYCL compiler will parse the SYCL file once. Then, from
this single intermediate representation, for each kind of device architecture a compilation flow will
generate the binary for each kernel and another compilation flow will generate the host code of the
C++ SYCL application. For the full description please refer to Section 3.12.2. See SMCP for another
approach.

string kernel name
The name of a SYCL kernel function in string form, this can be the name of a kernel function created
via interop or a string form of a type kernel name.

sub-group
The SYCL sub-group (sycl::sub_group class) is a representation of a collection of related work-items
within a work-group. For further details for the sycl::sub_group class see Section 4.9.1.8.

sub-group barrier
A group barrier for all work-items in a sub-group.

sub-group mem-fence
A mem-fence for all work-items in a sub-group.

SYCL application
A SYCL application is a C++ application which uses the SYCL programming model in order to execute
kernels on devices.

SYCL backend
An implementation of the SYCL programming model using an heterogeneous programming API. A
SYCL backend exposes one or multiple SYCL platforms. For example, the OpenCL backend, via the ICD
loader, can expose multiple OpenCL platforms.

SYCL backend API
The exposed API for writing SYCL code against a given SYCL backend.

SYCL C++ template library
The template library is a set of C++ templated classes which provide the programming interface to the
SYCL developer.

SYCL file
A SYCL C++ source file that contains SYCL API calls.

SYCL kernel function
A type which is callable with operator() that takes an id, item, nd-item or work-group, and an optional
kernel_handler as its last parameter. This type can be passed to kernel enqueue member functions of
the command group handler. A SYCL kernel function defines an entry point to a kernel. The function
object can be a named device copyable type or lambda function.

SYCL runtime
A SYCL runtime is an implementation of the SYCL API specification. The SYCL runtime manages the
different platforms, devices, contexts as well as memory handling of data between host and SYCL
backend contexts to enable semantically correct execution of SYCL programs.

type kernel name
The name of a SYCL kernel function in type form, this can be either a kernel name provided to a ker
nel invocation command or the type of a function object use as a SYCL kernel function.

SYCL 2020 rev 9

Glossary | 583

USM
Unified Shared Memory (USM) provides a pointer-based alternative to the buffer programming
model. USM enables:

• easier integration into existing code bases by representing allocations as pointers rather than
buffers, with full support for pointer arithmetic into allocations;

• fine-grain control over ownership and accessibility of allocations, to optimally choose between
performance and programmer convenience;

• a simpler programming model, by automatically migrating some allocations between SYCL devices
and the host.

See Section 4.8

work-group
The SYCL work-group (sycl::group class) is a representation of a collection of related work-items that
execute on a single compute unit. The work-items in the group execute the same kernel-instance and
share local memory and work-group functions. For further details for the sycl::group class see Sec
tion 4.9.1.7.

work-group barrier
A group barrier for all work-items in a work-group.

work-group mem-fence
A mem-fence for all work-items in a work-group.

work-group id
As in OpenCL, SYCL kernels execute in work-groups. The group ID is the ID of the work-group that a
work-item is executing within. A group ID is an one, two or three dimensional value that starts at 0
per dimension.

work-group range
A group range is the size of the work-group for every dimension.

work-item
The SYCL work-item is a representation of a work-item among a collection of parallel executions of a
kernel invoked on a device by a command. A work-item is executed by one or more processing ele
ments as part of a work-group executing on a compute unit. A work-item is distinguished from other
work-items by its global id or the combination of its work-group id and its local id within a work-
group.

SYCL 2020 rev 9

584 | Glossary

	SYCL™ 2020 Specification (revision 9)
	Table of Contents
	Chapter 1. Acknowledgements
	Chapter 2. Introduction
	Chapter 3. SYCL architecture
	3.1. Overview
	3.2. Anatomy of a SYCL application
	3.3. Normative references
	3.4. Non-normative notes and examples
	3.5. The SYCL platform model
	3.6. The SYCL backend model
	3.6.1. Platform mixed version support

	3.7. SYCL execution model
	3.7.1. SYCL application execution model
	3.7.1.1. Backend resources managed by the SYCL application
	3.7.1.2. SYCL command groups and execution order
	3.7.1.3. Controlling execution order with events

	3.7.2. SYCL kernel execution model
	3.7.2.1. Basic kernels
	3.7.2.2. ND-range kernels
	3.7.2.3. Backend-specific kernels

	3.8. Memory model
	3.8.1. SYCL application memory model
	3.8.2. SYCL device memory model
	3.8.2.1. Access to memory

	3.8.3. SYCL memory consistency model
	3.8.3.1. Memory ordering
	3.8.3.2. Memory scope
	3.8.3.3. Atomic operations
	3.8.3.4. Forward progress

	3.9. The SYCL programming model
	3.9.1. Minimum version of C++
	3.9.2. Alignment with future versions of C++
	3.9.3. Basic data parallel kernels
	3.9.4. Work-group data parallel kernels
	3.9.5. Hierarchical data parallel kernels
	3.9.6. Kernels that are not launched over parallel instances
	3.9.7. Pre-defined kernels
	3.9.8. Coordination and Synchronization
	3.9.8.1. Host-Device Coordination
	3.9.8.2. Work-item Coordination

	3.9.9. Error handling
	3.9.10. Fallback mechanism
	3.9.11. Scheduling of kernels and data movement
	3.9.12. Managing object lifetimes
	3.9.13. Device discovery and selection
	3.9.14. Interfacing with the SYCL backend API

	3.10. Memory objects
	3.11. Multi-dimensional objects and linearization
	3.11.1. Linearization
	3.11.2. Multi-dimensional subscript operators

	3.12. Implementation options
	3.12.1. Single source multiple compiler passes
	3.12.2. Single source single compiler pass
	3.12.3. Library-only implementation

	3.13. Language restrictions in kernels
	3.13.1. Device copyable

	3.14. Endianness support
	3.15. Example SYCL application

	Chapter 4. SYCL programming interface
	4.1. Backends
	4.1.1. Backend macros

	4.2. Generic vs non-generic SYCL
	4.3. Header files and namespaces
	4.4. Class availability
	4.5. Common interface
	4.5.1. Backend interoperability
	4.5.1.1. Type traits backend_traits
	4.5.1.2. Template function get_native
	4.5.1.3. Template functions make_*

	4.5.2. Common reference semantics
	4.5.3. Common by-value semantics
	4.5.4. Properties
	4.5.4.1. Properties interface

	4.6. SYCL runtime classes
	4.6.1. Device selection
	4.6.1.1. Device selector

	4.6.2. Platform class
	4.6.2.1. Platform interface
	4.6.2.2. Platform information descriptors

	4.6.3. Context class
	4.6.3.1. Context interface
	4.6.3.2. Context information descriptors
	4.6.3.3. Context properties

	4.6.4. Device class
	4.6.4.1. Device interface
	4.6.4.2. Device information descriptors
	4.6.4.3. Device aspects

	4.6.5. Queue class
	4.6.5.1. Queue interface
	4.6.5.2. Queue shortcut functions
	4.6.5.3. Queue information descriptors
	4.6.5.4. Queue properties
	4.6.5.5. Queue error handling

	4.6.6. Event class
	4.6.6.1. Event information and profiling descriptors

	4.7. Data access and storage in SYCL
	4.7.1. Host allocation
	4.7.1.1. Default allocators

	4.7.2. Buffers
	4.7.2.1. Buffer interface
	4.7.2.2. Buffer properties
	4.7.2.3. Buffer destruction rules

	4.7.3. Images
	4.7.3.1. Unsampled image interface
	4.7.3.2. Sampled image interface
	4.7.3.3. Image properties
	4.7.3.4. Image destruction rules

	4.7.4. Sharing host memory with the SYCL data management classes
	4.7.4.1. Default behavior
	4.7.4.2. SYCL ownership of the host memory
	4.7.4.3. Shared SYCL ownership of the host memory

	4.7.5. Synchronization primitives
	4.7.6. Accessors
	4.7.6.1. Data type
	4.7.6.2. Access modes
	4.7.6.3. Deduction tags
	4.7.6.4. Properties
	4.7.6.5. Read only accessors
	4.7.6.6. Accessing elements of an accessor
	4.7.6.7. Container interface
	4.7.6.8. Ranged accessors
	4.7.6.9. Buffer accessor for commands
	4.7.6.9.1. Interface for buffer command accessors
	4.7.6.9.2. Deduction tags for buffer command accessors
	4.7.6.9.3. Read only buffer command accessors and implicit conversions
	4.7.6.9.4. Deprecated features of the accessor class
	4.7.6.9.4.1. Aliased names
	4.7.6.9.4.2. Discard access modes
	4.7.6.9.4.3. Placeholder template parameter
	4.7.6.9.4.4. Additional member functions for target::device specialization
	4.7.6.9.4.5. Accessor specialization with target::constant_buffer
	4.7.6.9.4.6. Accessor specialization with target::host_buffer
	4.7.6.9.4.7. Accessor specialization with target::local
	4.7.6.9.4.8. Common members for deprecated accessors
	4.7.6.9.4.9. Accessor specialization with access_mode::atomic

	4.7.6.10. Buffer accessor for host code
	4.7.6.10.1. Interface for buffer host accessors
	4.7.6.10.2. Deduction tags for buffer host accessors
	4.7.6.10.3. Read only buffer host accessors and implicit conversions

	4.7.6.11. Local accessor
	4.7.6.11.1. Interface for local accessors
	4.7.6.11.2. Read only local accessors and implicit conversions

	4.7.6.12. Common members for buffer and local accessors
	4.7.6.13. Unsampled image accessors
	4.7.6.13.1. Interface for unsampled image accessors
	4.7.6.13.2. Read only unsampled image accessors and implicit conversions

	4.7.6.14. Sampled image accessors
	4.7.6.14.1. Interface for sampled image accessors
	4.7.6.14.2. Read only sampled image accessors and implicit conversions

	4.7.7. Address space classes
	4.7.7.1. Multi-pointer class
	4.7.7.2. Explicit pointer aliases

	4.7.8. Image samplers

	4.8. Unified shared memory (USM)
	4.8.1. Unified addressing
	4.8.2. Kinds of unified shared memory
	4.8.3. USM allocations
	4.8.3.1. C++ allocator interface
	4.8.3.2. Device allocation functions
	4.8.3.3. Host allocation functions
	4.8.3.4. Shared allocation functions
	4.8.3.5. Parameterized allocation functions
	4.8.3.6. Memory deallocation functions

	4.8.4. Unified shared memory pointer queries

	4.9. Expressing parallelism through kernels
	4.9.1. Ranges and index space identifiers
	4.9.1.1. range class
	4.9.1.2. nd_range class
	4.9.1.3. id class
	4.9.1.4. item class
	4.9.1.5. nd_item class
	4.9.1.6. h_item class
	4.9.1.7. group class
	4.9.1.8. sub_group class

	4.9.2. Reduction variables
	4.9.2.1. reduction interface
	4.9.2.2. Reduction properties
	4.9.2.3. reducer class

	4.9.3. Command group scope
	4.9.4. Command group handler class
	4.9.4.1. SYCL functions for adding requirements
	4.9.4.2. SYCL functions for invoking kernels
	4.9.4.2.1. single_task invoke
	4.9.4.2.2. parallel_for invoke
	4.9.4.2.3. Parallel for hierarchical invoke

	4.9.4.3. SYCL functions for explicit memory operations
	4.9.4.4. Functions for using a kernel bundle

	4.9.5. Specialization constants
	4.9.5.1. Declaring a specialization constant
	4.9.5.1.1. Constructors
	4.9.5.1.2. Special member functions

	4.9.5.2. Setting and getting the value of a specialization constant
	4.9.5.3. Reading the value of a specialization constant from device code
	4.9.5.3.1. Member functions

	4.9.5.4. Example usage

	4.10. Host tasks
	4.10.1. Overview
	4.10.2. Class interop_handle
	4.10.2.1. Constructors
	4.10.2.2. Member functions
	4.10.2.3. Template member functions get_native_*

	4.10.3. Additions to the handler class

	4.11. Kernel bundles
	4.11.1. Overview
	4.11.2. Synopsis
	4.11.3. Fixed-function built-in kernels
	4.11.4. Bundle states
	4.11.5. Kernel identifiers
	4.11.6. Obtaining a kernel identifier
	4.11.7. Obtaining a kernel bundle
	4.11.8. Querying if a kernel bundle exists
	4.11.9. Querying if a kernel is compatible with a device
	4.11.10. Joining kernel bundles
	4.11.11. Online compiling and linking
	4.11.12. The kernel_bundle class
	4.11.12.1. Queries
	4.11.12.2. Specialization constant support
	4.11.12.3. Device image support

	4.11.13. The kernel class
	4.11.13.1. Queries
	4.11.13.2. Kernel information descriptors

	4.11.14. The device_image class
	4.11.15. Example usage
	4.11.15.1. Controlling the timing of online compilation
	4.11.15.2. Specialization constants
	4.11.15.3. Kernel introspection
	4.11.15.4. Invoking a device built-in kernel

	4.12. Defining kernels
	4.12.1. Defining kernels as named function objects
	4.12.2. Defining kernels as lambda functions
	4.12.3. is_device_copyable type trait
	4.12.4. Rules for parameter passing to kernels

	4.13. Error handling
	4.13.1. Error handling rules
	4.13.1.1. Asynchronous error handler
	4.13.1.2. Behavior without an async handler
	4.13.1.3. Priorities of async handlers
	4.13.1.4. Asynchronous errors with a secondary queue

	4.13.2. Exception class interface

	4.14. Data types
	4.14.1. Scalar data types
	4.14.2. Vector types
	4.14.2.1. Vec interface
	4.14.2.2. Aliases
	4.14.2.3. Swizzles
	4.14.2.4. The swizzled vector classes
	4.14.2.4.1. Member type aliases for the swizzled vector class templates
	4.14.2.4.2. Constructors for the swizzled vector class templates
	4.14.2.4.3. Destructors for the swizzled vector class templates
	4.14.2.4.4. Member functions for the swizzled vector class templates
	4.14.2.4.5. Hidden friend functions of the swizzled vector class templates

	4.14.2.5. Rounding modes
	4.14.2.6. Memory layout and alignment
	4.14.2.7. Performance note

	4.14.3. Math array types
	4.14.3.1. Math array interface
	4.14.3.2. Aliases
	4.14.3.3. Memory layout and alignment

	4.15. Synchronization and atomics
	4.15.1. Barriers and fences
	4.15.2. device_event class
	4.15.3. Atomic references
	4.15.4. Atomic types (deprecated)
	4.15.5. Interaction with host code

	4.16. Stream class
	4.16.1. Stream class interface
	4.16.2. Output
	4.16.3. Implicit flush
	4.16.4. Performance note

	4.17. SYCL built-in functions for SYCL host and device
	4.17.1. Function objects
	4.17.2. Group functions
	4.17.2.1. Group type trait
	4.17.2.2. group_broadcast
	4.17.2.3. group_barrier

	4.17.3. Group algorithms library
	4.17.3.1. any_of, all_of and none_of
	4.17.3.2. shift_left and shift_right
	4.17.3.3. permute
	4.17.3.4. select
	4.17.3.5. reduce
	4.17.3.6. exclusive_scan and inclusive_scan

	4.17.4. Math functions
	4.17.5. Native precision math functions
	4.17.6. Half precision math functions
	4.17.7. Integer functions
	4.17.8. Common functions
	4.17.9. Geometric functions
	4.17.10. Relational functions

	Chapter 5. SYCL Device Compiler
	5.1. Offline compilation of SYCL source files
	5.2. Naming of kernels
	5.3. Compilation of functions
	5.4. Language restrictions for device functions
	5.5. Built-in scalar data types
	5.6. Preprocessor directives and macros
	5.7. Optional kernel features
	5.8. Attributes for device code
	5.8.1. Kernel attributes
	5.8.2. Device function attributes

	5.9. Address-space deduction
	5.9.1. Address space assignment
	5.9.2. Common address space deduction rules
	5.9.3. Generic as default address space
	5.9.4. Inferred address space

	5.10. SYCL offline linking
	5.10.1. SYCL functions and member functions linkage

	Chapter 6. SYCL Extensions
	6.1. Definition of an extension
	6.2. Requirements for an extension
	6.3. Guidelines for portable extensions
	6.3.1. Extension namespace
	6.3.2. Names for extensions to existing classes or enumerations
	6.3.3. Feature test macros
	6.3.4. Attribute namespace
	6.3.5. Include file paths
	6.3.6. Optional kernel features
	6.3.7. Adding a backend

	Appendix A: Information descriptors
	A.1. Platform information descriptors
	A.2. Context information descriptors
	A.3. Device information descriptors
	A.4. Queue information descriptors
	A.5. Kernel information descriptors
	A.6. Event information descriptors

	Appendix B: Feature sets
	B.1. Full feature set
	B.2. Reduced feature set
	B.3. Compatibility
	B.4. Conformance

	Appendix C: OpenCL backend specification
	C.1. SYCL application interoperability native backend objects
	C.2. Kernel function interoperability native backend objects
	C.3. Destruction of interop constructed objects with reference semantics
	C.4. SYCL for OpenCL framework
	C.5. Mapping of SYCL programming model on top of OpenCL
	C.5.1. Backend specific information descriptors
	C.5.2. OpenCL memory model
	C.5.3. OpenCL interface for buffer command accessors
	C.5.4. OpenCL resources managed by SYCL application

	C.6. Interoperability with the OpenCL API
	C.7. Programming interface
	C.7.1. Construct SYCL objects from OpenCL ones
	C.7.2. Extension query
	C.7.3. Reference counting
	C.7.4. Errors and limitations
	C.7.5. Interoperability with kernel bundles
	C.7.6. Interoperability with kernels
	C.7.7. OpenCL kernel conventions and SYCL
	C.7.8. Data types

	C.8. Preprocessor directives and macros
	C.8.1. Offline linking with OpenCL C libraries

	C.9. SYCL support of non-core OpenCL features
	C.9.1. Half precision floating-point
	C.9.2. Writing to 3D image memory objects
	C.9.3. Interoperability with OpenGL

	C.10. Correspondence of some OpenCL features to SYCL
	C.10.1. Work-item functions
	C.10.2. Vector data load and store functions
	C.10.3. Synchronization functions
	C.10.4. printf function

	C.11. Precision of built-in math functions

	Appendix D: What has changed from previous versions
	D.1. What has changed from SYCL 1.2.1 to SYCL 2020

	Appendix E: References
	Glossary

