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1 Setup

We repeat the setup in the main paper for completeness. Recall that {x;}1<i<y is a random sample
from the cumulative distribution function (hereafter CDF) F, supported on X = [z1,zy]. Note
that it is possible to have 1 = —oo and/or xy = co. We will assume both zp and xy are finite, to
facilitate discussion on boundary estimation issues.

Define the empirical distribution function (hereafter EDF)
_ 1
F(z) = g;nm < zl.

Note that in the main paper, we use F () to denote the above EDF We avoid such notation in
this Supplemental Appendix, and instead use F (+), because a (smoothed) CDF estimator can be
obtained from our local polynomial approach.

Given p € N, our local polynomial distribution estimator is defined as

Bufw) = arg, min, 3 (Fw) ~myfo: —'b) K (M)

where r,(u) = [1,u,u?, - ,uP] is a (one-dimensional) polynomial expansion; K is a kernel function

whose properties are to be specified later; h = h,, is a bandwidth sequence. The estimator, Bp(a?),
is motivated as a local Taylor series expansion, hence the target parameter is (i.e., the population

counterpart, assuming exists)

1 1 1 !
B,@) = @), FO@. - )]
Therefore, we also write
N 1 - 1 - 1 - !
Bula) = |yl yEO@) s S EP @)

or equivalently, Fév) = v!e;j,ép(x), provided that v < p, and e, is the (v+ 1)-th unit vector of RP+!.
(The subscript p is omitted in the main paper to economize notation.) We also use f = F @ to
denote the corresponding probability density function (hereafter PDF) for convenience.

The estimator has the following matrix form:

A I A L1, C[(mi—x\]

By(z) =H (EXhKhXh> (EXhKhY> ’ Xn = [( h ) ]1§i§n, 0<5<p

where K, is a diagonal matrix collecting {h 'K ((x; — x)/h)}1<i<n, and Y is a column vector
collecting { F(2;)}1<i<n. We also adopt the convention Kj,(u) = h~ K (u/h).

In this Supplemental Appendix, we use n to denote sample size, and limits are taken with n — oo,

unless otherwise specified. The standard Euclidean norm is denoted by | - |, and other norms will
be defined at their first appearances. Maximum and minimum of two real numbers a and b are
denoted by a Vb and a A b, respectively. For sequence of numbers (or random variables), a,, 3 by,

=p b, is used

~

implies lim sup,, |a, /by| is finite, and a,, < b,, implies both directions. The notation a,



to denote that |a,/by,| is asymptotically tight: limsup.;o, limsup,, Pllan/bs| > €] = 0. a, =p by
implies both a,, Zp b, and b, Zp a,. When b, is a sequence of nonnegative numbers, a,, = O(by,)
is sometimes used for a,, 3 by, so does a,, = Op(by,). For probabilistic convergence, we use —p for
convergence in probability and ~~ for weak convergence (convergence in distribution). Standard
normal distribution is denoted as N(0,1), with CDF ® and PDF ¢. Throughout, we use C to
denote generic constants which do not depend on sample size. The exact value can change given

the context.

1.1 Overview of Main Results

In this subsection, we give an overview of our results, including a (first order) mean squared error

(hereafter MSE) expansion, and asymptotic normality. Fix some v > 1 and p, we have the following:

(v v —v —v5 1
|0 (@) = F) (@)] = 0 (h”“ Bp.o(x) + W7 By o (2) + nh%le(ﬂﬂ)> :

The previous result gives MSE expansion for derivative estimators, 1 < v < p, but not for v = 0.
With v = 0, F(z) is essentially a smoothed EDF, which estimates the CDF F(z). Since F(z)
is y/n-estimable, one should be expected that the estimated distribution function will have very

different properties compared to the estimated derivatives. Indeed, we have

Fyfw) ~ Fla)| = 0 (hp+13p,0(x) + P28, o(x) + Tllvp,o(x)> :

There is another complication, however, when z is in the boundary region. For a drifting sequence
# in the boundary region, the EDF F (z) is “super-consistent” in the sense that it converges at
rate \/h/in The reason is that when z is near x or xy, F(z) is essentially estimating 0 or 1, and
the variance, F(x)(1 — F(z)) vanishes asymptotically, giving rise to the additional factor v/h. This
is shared by our estimator: for v = 0 and « in the boundary region, the CDF estimator Fp(a:) is
super-consistent, with V, o(z) < h.

Also note that for the MSE expansion, we provide not only the first order bias but also the second
order bias. The second order bias will be used for bandwidth selection, since it is well-known that
in some cases the first order bias can vanish. (More precisely, when x is an interior evaluation point
and p — v is even. See, for example, Fan and Gijbels 1996.)

The MSE expansion provides the rate of convergence of our estimator. The following shows that,
under suitable regularity conditions, they are also asymptotically normal. Again first consider
v > 1.

W(ﬁlgv)(m) _ F(U>(1’) _ hp"'l_”[)’p,v(z)) ~ N(O, Vp,v(il’))a

provided that the bandwidth is not too large, so that after scaling, the remaining bias does not
feature in first-order asymptotics. For v = 0, i.e. the smoothed EDF, we have

n

Vo(a) (Fp(m) — F(z) — hp+13p,0(m)) o /\/’(07 1)7



where we moved the variance V,o(z) as a scaling factor in the above display, to encompass the

situation where x lies near boundaries.

1.2 Some Matrices

In this subsection we collect some matrices which will be used throughout this Supplemental Ap-
pendix. They show up in asymptotic results as components of the (leading) bias and variance.
Note that x can be either a fixed point, or it can be a drifting sequence to capture the issue of
estimation and inference in boundary regions. For the latter case, x takes the form = = xy + ch or
x = xy — ch for some ¢ € [0, 1).

Define

Sp.z :/ " rp(w)rp(u) K (u)du, cpo =/ rp(w)u” K (u)du,
oL T,

—x

h h

Ty—x Ty—x

Lo = [ o @K@EEd, 1= [ "

h

rp(u)ry (u) K (u)du.

Later we will assume that the kernel function K is supported on [—1, 1], hence with a shrinking

bandwidth sequence h | 0, the region of integration in the above display can be replaced by

x (zp. —x)/h  (zy—x)/h
x interior -1 +1
x = x1, + ch in lower boundary —c +1
x = xy — ch in upper boundary -1 +c

Since we do not allow z1 = xy, no drifting sequence x can be in both lower and upper boundary

regions, at least in large samples.

2 Large Sample Properties

2.1 Assumptions

In this section we give assumptions, preliminary lemmas and our main results. Other assumptions
specific to certain results will be given in corresponding sections.

Let O be a connected subset of R with nonempty interior, C*(O) denotes functions that are
at least s-times continuously differentiable in the interior of O, and that the derivatives can be

continuously extended to the boundary of O.

Assumption 1 (DGP).
{ziti1<i<n is a random sample from distribution F', supported on X = [z, xy]. Further, F' € C**(X)
for some ap > 1, and f(x) = FM(x) > 0 for all z € X.

Assumption 2 (Kernel).
The kernel function K(-) is nonnegative, symmetric, and belongs to C°([—~1,1]). Further, it inte-
grates to one: [p K(u)du = 1.



2.2 Preliminary Lemmas

We first consider the object X’hKhXh /n

Lemma 1. Assume Assumptions 1 and 2 hold, h — 0 and nh — oco. Then
%x;Khxh = f(@)Syp.e +0(1) + s (1/Vh)

Lemma 1 shows that the matrix X} KX} /n is asymptotically invertible. Also note that this
result covers both interior and boundary evaluation point z, and depending on the nature of x, the
exact form of S, differs.

With simple algebra, one has

-1

Byl = py0) =1 (1x00X0) (XK (Y - XB,(0) )

and the following gives a further decomposition of the “numerator.”

EXGKL(Y = XB,(0)) = 3wy (B0 ) (Pwn) ol — ) B, (0)) K — )

= %er (%) (F(:cz) —rp(z; — x)'ﬂp(a:))Kh(mi — )

+ /’ rp(u) (F(m + hu) — F(z + hu))K(u)f(ac + hu)du

xzy—x
h

+ % er (xz }: :C) (F(l’z) - F(ﬂCi))Kh(Jii —x)— /u rp(u) (F(x + hu) — F(z + hu))K(u)f(a: + hu)du.

The first part represents the smoothing bias, and the second part can be analyzed as a sample
average. The real challenge comes from the third term, which can have a nonnegligible (first order)

contribution. We further decompose it as
erp it F(x;) — F(xs) Kh(:c,-fx):%er e 1[z; < ;] — F(a;) | Kn(zi — x)
n < h n? o= h

- Lzrp(xi;x) (1_F(xi))m(xi—x)+$ > rp(:ci;:c) (n[xj Sxi]—F(xi))Kh(xi_g;),

2
1,5517#]

As a result,

=3 n (B (Pl = ralas = 28, (@) Ko — 2)

= 2 0m (M) (PG — o= )8, Ko =0 (smoothing bias Bs)
[ ey (P ) — Pt 1) K10 o+ P (lnear variance L)
> (B0 (1 F@a) Kl — ) (leavesin bias Bu)
T () (i e et

e (55 (1l < o) (s - ] }. (quadsatic vasiance )




To provide intuition for the above decomposition, the smoothing bias is a typical feature of non-
parametric estimators; leave-in bias arises since each observation is used twice, in constructing the
EDF F and as a design point (that is, F has to be evaluated at x;); and a second order U-statistic
shows up because the “dependent variable,” Y, is estimated, which leads to double summation.

We first analyze the bias terms.

Lemma 2. Assume Assumptions 1 and 2 hold with o, > p+ 1, h — 0 and nh — co. Then
Bs = hp“%%,z + O]P(hp+1)a B = Op (nil) :

By imposing additional smoothness, it is also possible to characterize the next term in the
smoothing bias, which has order h?T2. We report the higher order bias in a later section as it is
used for bandwidth selection.

Next we consider the “influence function” part, L. This term is crucial in the sense that (under
suitable conditions so that R becomes negligible) it determines the asymptotic variance of our

estimator, and with correct scaling, it is asymptotically normally distributed.

Lemma 3. Assume Assumptions 1and 2 hold with a; > 2, h — 0 and nh — co. Define the scaling

matrix
- diag{l, h71/2, h=Y2 hil/z} x interior,
N = {diag{h1/2, h71/2, h71/2, el h71/2} x boundary,
then
VAN, [f@)8y0] T N0, Vy0),
with

F(z)(1 - F(z))eoes + f(z)(I — eoe))Sy2TpSy 5 (I — eoel) = interior
(z) (S
S

(z ( ;}cl"p,zsz;i + cepey — (e1ey + eoe’l)) x = xy — ch.

_ —1 —1 /
Vp,z = »DpaSph + ceoep) x =z + ch

f(z)
f(z)

The scaling matrix depends on whether the evaluation point is located in the interior or boundary,
which is a unique feature of our estimator. To see the intuition, consider an interior point z, and
recall that the first element of Bp(x) is the smoothed EDF, which is y/n-estimable. Therefore, the
property of Fp(ac) is very different from those of the estimated density and higher order derivatives.

When z is either in the lower or upper boundary region, Fp(l') essentially estimates 0 or 1,
respectively, hence it is super-consistent in the sense that it converges even faster than 1/y/n. In
this case, the leading 1/+/n-variance vanishes, and higher order residual noise dominates, which
makes Fp(a:) no longer independent of the estimated density and derivatives, justifying the formula
of boundary evaluation points.

Finally we consider the second order U-statistic component.



Lemma 4. Assume Assumptions 1 and 2 hold, h — 0 and nh — oo. Then

VIR] = 2 f(@)F(x)(1 ~ F(@))Tye + O(n ).

In particular, when x is in the boundary region, the above has order O(n=2).

2.3 Main Results

In this section we provide two main results, one on asymptotic normality, and the other on standard

error.

Theorem 1 (Asymptotic Normality). Assume Assumptions 1 and 2 hold with o, > p+ 1 for
some integer p > 0. Further h — 0, nh?> — oo and nh**t = O(1). Then

VaRE (B (@) = FO (@) = i (@)) ~ N (0, V@), 1<v<p,

n A~
m (Fp(.’l}) — F([I:) — hp+1Bp’0(l')) ~ N(O, 1)
P,
The constants are
F(erl)(m) A
1 \Y
Bp,w(z) = v! mE) €,5,,2Cp,x,
and
(1) f(z)e,S, L) 2SS, hew 1<v<p
V() = F(z)(1 — F(x)) v =0, x interior

hf(z) (eGS;;Fp,ZS;;eo +c) v=0, x =z + ch or xy — ch.

Remark 1 (On nh?’*! = O(1)). This condition ensures that higher order bias, after scaling, is
asymptotically negligible. I

Remark 2 (On nh? — o). This condition ensures that the second order U-statistic, R, has
smaller order compared to L. Note that this condition can be dropped for boundary x or when the

parameter of interest is the CDF ﬁ'p. I

Now we provide a standard error, which is also boundary adaptive. Given the formula in Theorem
1, it is possible to estimate the asymptotic variance by plugging in unknown quantities regarding
the data generating process. For example consider V,;(z) for the estimated density. Assume
the researcher knows the location of the boundary x1 and zy, the matrices S, , and I', ; can be
constructed with numerical integration, since they are related to features of the kernel function,
not the data generating process. The unknown density f(x) can also be replaced by its estimate,
as long as p > 1.

Another approach is to utilize the decomposition of the estimator, in particular the L term. To



introduce our variance estimator, we make the following definitions.

S0 I, L () () Bt

f‘p,z = % er (xjh_ x) rp (xkh_ CC)/Kh(arj —z)Kn(zK — m)(ll[xl <z — F‘(mj)) (It[xl < x| — F(xk))
ik

Following is the main result regarding variance estimation. It is automatic and fully-adaptive, in

the sense that no knowledge about the boundary location is needed.

Theorem 2 (Variance Estimation).
Assume Assumptions 1 and 2 hold with o, > p+ 1 for some integer p > 0. Further h — 0,
nh? — oo and nh**' = O(1). Then

Vow(2) = (11)2e,NLS, LT, .S, A NLe, =5 Vpo(2).

Define the standard error as

then

Gpo(z) ™ (ng>(x) — F®(g) - hP“*“B,,,U(a:)) - N(o, 1).

3 Bandwidth Selection

In this section we consider the problem of constructing MSE-optimal bandwidth for our local
polynomial regression-based distribution estimators. We focus exclusively on the case v > 1, hence
the object of interest will be either the density function or derivatives thereof. Valid bandwidth
choice for the distribution function Fp(x) is also an interesting topic, but difficulty arises since it is
estimated at the parametric rate. We will briefly mention MSE expansion of the estimated CDF
at the end.

3.1 For Density and Derivatives Estimates (v > 1)

Consider some 1 < v < p, the following lemma gives finer characterization of the bias.

Lemma 5. Assume Assumptions 1 and 2 hold with ap > p+2, h — 0 and nh3 — oco. Then the
. . ~(v) .
leading bias of Fy /' (x) is

F(p-ﬁ-l)(w)
(p+1)!

Fo+2(z) P+ () FO) (g) rq-1x
P2 "+l f@) )U!evsp’sz’I}'

The above lemma is a refinement of Lemma 1 and 2, and characterizes the higher-order bias. To

W By (z) = AP0 { veuSpacps + <

see its necessity, we note that when p — v is even and z is an interior evaluation point, the leading

bias is zero. This is because €, S, glccp,x is zero, which is explained in Fan and Gijbels (1996). Except

for rare cases such as F®t1(z) = 0 or F*+2) () = 0, we have



Order of bias: hPT17VB, ,(z) =

p—wvodd even
r interior | APHL=V  ppF2v

boundary | APtl—v  pptl-v

Note that for boundary evaluation points, the leading bias never vanishes.

The leading variance is also characterized by Theorem 1, and we reproduce it here:

1 1

—a— Vpu(2) = R T

nh2v—1 (U!)Qf(w)eQS;in,zS;iev-

The MSE-optimal bandwidth is defined as a minimizer of the following

. 1 —2v
hpw(z) = arg min vayv(m) + PR ()]

Given the discussion we had earlier on the bias, it is easy to see that the MSE-optimal bandwidth

has the following asymptotic order:

Order of MSE-optimal bandwidth: Ay, ,(x) <

p—vodd even
T T

x interior | n  2»+1 n 2p+3
_ 1 _ 1
boundary | n 2+ n 2r+l

Again only the case where p — v is even and z is interior needs special attention.

There are two notions of bandwidth consistency. Let h be some non-stochastic bandwidth se-
quence, and h be an estimated bandwidth. Then h is consistent in rate if h < h (in most cases it
is even true that h/h —p C € (0,00)). And h is consistent in rate and constant if h/h —p 1.

To construct consistent bandwidth, either rate consistent or consistent in both rate and constant,
we need estimates of both the bias and variance. The variance part is relatively easy, as we have
already demonstrated in Theorem 2:

P2t &p,v(-’ﬂ)2

Vp,v(m)

where ¢ is some preliminary bandwidth used to construct 6, ,(x).

—P 1,

To introduce our bias estimate, first assume there are consistent estimators for F®+1(z) and
F@®+2) (), denoted by @1 (z) and F®+2) (). They can be obtained, for example, using our local
polynomial regression-based approach, or can be constructed with some reference model (such as
the normal distribution). The critical step is to obtain consistent estimators of the matrices, which

are given in the following lemma.

Lemma 6. Assume Assumptions 1 and 2 hold, £ — 0 and nf — oco. Then

Sgc\w _ <7112i:r1’ (ng—x) v (wizx)lKe(xi _x)> <,1LZ (flfig_x)l”‘i’l . (ng—m) Ko(w: _I)>




Note that we used different notation, £, as it corresponds to a preliminary bandwidth. Define

Fpt1) x) — ﬁ(p+2)(m)

PV B, () = RPN 2l Sy tep s + h——
o) R R N )]

v!e;S;Eé\p,z} ,
and assume that ) ,(z) is constructed using the preliminary bandwidth ¢. Then

. . 621;71 R 9w s
iy, () = arg min [W%u(w)z + R Bp,v(x)ﬂ :

We make some remarks here.

Remark 3 (Preliminary bandwidth ¢). The optimization argument h enters the RHS of the
previous display in three places. First it is part of the variance component, by 1/h?'~1. Second it
shows as a multiplicative factor of the bias component, h??~2'*2, Finally within the definition of
l”;’pﬂ, (z), there is another multiplicative h, in front of the higher order bias.

The preliminary bandwidth ¢, serves a different role. It is used to estimate the variance and

—

bias components. Of course one can use different preliminary bandwidths for 6, ,(z), Sp, icp,x and

Sp€p: ||

Remark 4 (Consistent bias estimator). The bias estimator we proposed, h?~T1B,,(z), is
consistent in rate for the true leading bias, but not necessarily in constant. Compare l';’pw(a:) and
B,(x), it is easily seen that the term involving F®P+1) (2) F®)(z)/ f(z) is not captured. To capture
this term, we need one additional nonparametric estimator for F(?)(z). This is indeed feasible, and

one can employ our local polynomial regression-based estimator for this purpose. I

Theorem 3 (Consistent bandwidth). Let 1 < v < p. Assume the preliminary bandwidth ¢

is chosen such that nh?'=16,,(2)?/Vyu(x) —p 1, S;;};cp,x —p S;}Ecp@, and S;,iép@ —p S;;ép’m.

Under the conditions of Lemma 1 and Theorem 2:

o [f either x is in boundary regions or p — v is odd, let F(pﬂ)(x) be consistent for F®PT1) £ 0.
Then

ilpyv(x)
hp,w ()

—P 1.

o If x is in interior and p — v s even, let FP+2) (x) be consistent for F(P+2) % 0. Further
assume nh® — 0 and hy,(z) is well-defined. Then
h ()

P,
hpyﬂ(:l?) —p C € (0, OO)



3.2 For CDF Estimate (v = 0)

In this subsection we mention briefly how to choose bandwidth for the CDF estimate, Féo) (x) =

F,(x). We assume z is in interior. Previous discussions on bias remains to apply:

F(p“)(x) _ F(p+2)(a:) F<p+1>(as) F<2)(x) _
p+1 _ 1p+1 / 1 ’ 1~
h BPaO(x) =h { (p T 1)| eOSpyl‘CPaI +h ( (p 4 2)| + (p 4 1)| f(iU) ) eOSpﬁxcpyz} ’

which means the bias of F},(z) has order kPt if either z is boundary or p is odd, and h?*2 otherwise.
Difficulty arises since the CDF estimator has leading variance of order

_ 1[z interior] + h

Vp,o0() n

)

which cannot be used for bandwidth selection, because the above is proportional to the bandwidth
(i.e., there is no bias-variance trade-off).

The trick is to use a higher order variance term. Recall that the local polynomial regression-
based estimator is essentially a second order U-statistic, which is then decomposed into two terms,
a linear term L and a quadratic term R, where the latter is a degenerate second-order U-statistic.
The variance of the quadratic term R has been ignored so far, as it is negligible compared to the
variance of the linear term. For the CDF estimator, however, it is the variance of this quadratic
term that leads to a bias-variance trade-off. The exact form of this variance is given in Lemma 4.
With this additional variance term included, we have (with some abuse of notation)

1[z interior] + h n 1[z interior] + h

Vr.o(@) = n n2h

Provided «x is an interior point, the additional variance term increases as the bandwidth shrinks.
As a result, a MSE-optimal bandwidth for Fp(:c) is well-defined, and estimating this bandwidth is

also straightforward.

Order of MSE-optimal bandwidth: A, o(z) <

p — v odd even
: : ) )
x interior n 2t n 2rts

boundary | undefined undefined

What if z is in a boundary region? Then the MSE-optimal bandwidth for Fp(:z:) is not well defined.
The leading variance now takes the form h/n+1/n?, which is proportional to the bandwidth. (This
is not surprising, since for boundary x the CDF is known, and a very small bandwidth gives a
super-consistent estimator.). Although MSE-optimal bandwidth for Fp(x) is not well-defined for
boundary =z, it is still feasible to minimize the empirical MSE. To see how this works, one first
estimate the bias term and variance term with some preliminary bandwidth ¢, leading to B’pp (x)
and 1A/p70(a;). Then the MSE-optimal bandwidth can be constructed by minimizing the empirical
MSE. Under regularity conditions, B’p,o(af;) will converge to some nonzero constant, while, if z is
boundary, f)pp(:z:) has order ¢, the same as the preliminary bandwidth. Then the MSE-optimal

bandwidth constructed in this way will have the following order:

10



Order of estimated MSE-optimal bandwidth: h,,¢(z) =<

p — v odd even
_ 2 _ 2
x interior n 2r+3 n 2r+5

boundary (n2/£)*T1+3 (nQ/g)*Qpﬁ

Note that the preliminary bandwidth enters the rate of lAzpp (z) for boundary z, because it determines
the rate at which the variance estimator Vp,o(:v) vanishes. Although this estimated bandwidth is
not consistent for any well-defined object, it can be useful in practice, and it reflects the fact that
for boundary x it is appropriate to use bandwidth shrinks fast when the object of interest is the
CDF

4 Application to Manipulation Testing

We devote this section to density discontinuity (manipulation) tests in regression discontinuity
designs. Assume there is a natural (and known) partition of the support X = [z1, zy] = [21,7) U
[Z,zy] = X_ U X4, and the regularity conditions we imposed so far are satisfied on each of the
partitions, X_ and X,. To be precise, assume the distribution F' is continuously differentiable to a
certain order on each of the partitions, but the derivatives are not necessarily continuous across the
cutoff Z. In this case consistent estimates of the densities (and derivatives thereof) require fitting
local polynomials separately on each sides of Z. Alternatively, one can use the joint estimation

framework introduced below.

4.1 Unrestricted Model
By an unrestricted model with cutoff Z, we consider the following polynomial basis r,
rp(u) = [1{u<0} ulucoy -+ uwliu<oy ‘ Liuzoy ul{uzoy - “pl{uzo}]l € R

The following two vectors will arise later, which we give the definition here:

rp =1 u w0 0]', rep@=[0 0 0 1 up}'.
Also we define the vectors to extract the corresponding derivatives

Iopyo = [eo,, e, -+ e, ey ey - ep,+] .

With the above definition, the estimator at the cutoff is!

Bp(i) =arg min (F(mz) —rp(z; — Q_,’)’b)QKh({Ei —I).

beER2P+2 —
1

We assume the same bandwidth is used below and above the cutoff to avoid cumbersome notation.

Generalizing to using different bandwidths is straightforward. Other notations (for example X and

'The EDF is defined with the whole sample as before: Fi(u) =n~' 3", 1[z; < u].
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X},) are redefined similarly, with the scaling matrix H adjusted so that H™'r,(u) = rp(h~1u) is

always true. we denote the estimates by
B (z-) =vle), _B,(z),  E(z+) =vle), ,B,(T).

Remark 5 (Separate estimation). An alternative implementation is to apply our local polynomial-
based estimator separately to the two samples, one with observations below the cutoff, and the other
with observations above the cutoff. To be precise, let F__(-) and F, (-) be the empirical distribution
functions constructed by the two samples. That is,

Fa)=1 Y ipi<a,  F@=1 Y 1@<ad,

it x;<T it X, >T

where n_ and n, denote the size of the two samples, respectively. The the local polynomial
approach, applied to F_(-) and F (-) separately, will yield two sets of estimates, which we denote
by Fé@(a‘c) and FIEUJZ(:E) To see the relation between joint and separate estimations, we note the

following (which can be easily seen using least squares algebra)

~ _ n A~ N B n . n_
v="0 p—(2) = n_pr(x—), p+(T) = EFp(ﬂH-) T,

A(v)__nA,U_ A(v)__nAv_
v>1 o (T) = — 1§ )(m—), o(T) = o P )($+)

The difference comes from the fact that by separate estimation, one obtains estimates of the con-
ditional CDF and the derivatives. I

In the following lemmas, we will give asymptotic results for the joint estimation problem. Proofs

are omitted.
Lemma 7. Let Assumptions of Lemma 1 hold separately on X_ and Xy, then
1 _ _
~XGKLXn = f(5-)S-p + F@+)Ss + o(h) + O]p(l/\/nh),
where
0 1
S= [ vl s Kadu Sip= [ rp@r, )/ Kde
0
Again we decompose the estimator into four terms, namely BLI, BS, L and R.

Lemma 8. Let Assumptions of Lemma 2 hold separately on X_ and Xy, then

5, ot [PV @0) f@-) D (@) f () p1 3 = 0s (1
Be i (G e S e et Bum0r (),

where

0 1
cp= / WK (w)du, ey = / W () K ()
0

-1
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Lemma 9. Let Assumptions of Lemma 3 hold separately on X_ and X4, then

Y {\/%(el,+ - el,,)' (f(;z«+)s+,p + f(zf)s,m) _111} = f(@—)e}._ ST T ,S” er

+ f(@+)el + ST LT+ pSTher s +O(h),

Note that the above gives the asymptotic variance of the difference f(z4) — f(z—), and the
variance takes an additive form. This is not surprising, since the two density estimates, f (z+) and
f (z—), rely on distinctive subsamples, meaning that they are asymptotically independent.

Finally the order of R can also be established.

Lemma 10. Let Assumptions of Lemma 4 hold separately on X_ and Xy, then

- 1

Now we state the main result concerning the manipulation testing. Let Sp@ and f‘p’f be con-

structed as in Section 2.3, and

Corollary 1. Assume Assumptions 1 and 2 hold separately on X_ and X with o, > p+ 1 for
some integer p > 1. Further, n - h®> — oo and n - h*P71 — 0. Then under the null hypothesis

Ho : f(z+) = f(z—),

nflhvp,l(j)
As a result, under the alternative hypothesis Hy : f(Z+) # f(z—),

Jim P[|Tp(h)] 2 ®1ayo] = 1.
Here ®1_, /9 is the (1 — a/2)-quantile of the standard normal distribution.

Remark 6 (Separate estimation). Recall that it is possible to implement our local polynomial
estimator separately for the two subsamples, below and above the cutoff Z. Let fp,,(f) and fp’Jr (7)
be the two density estimates, and V,1 _(Z) and V,14(Z) be the associated variance estimates.

Then the test statistic is equivalently:
2 fot (B) = 5 fo- (@)

Tp(h) = '
V2 (5000 @+ 200 0)
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4.2 Restricted Model

In the previous subsection, we gave a test procedure on the discontinuity of the density by esti-
mating on the two sides of the cutoff separately. This procedure is flexible and requires minimum
assumptions. There are ways, however, to improve the power of the test when the densities are
estimated with additional assumptions on the smoothness of the CDF

In a restricted model, the polynomial basis is re-defined as
rp(u) = [1 ul(u <0) wl(u>0) w* u® - up]l € RPT?,

and the estimator in the fully restricted model is

B@ =@ fa-) fah @ - &

p!

@) (=] _ 3 ) .
» (x)] =arg max, ) (F(asl) —rp(x; — T) b) Kp(x; — 7).
Again the notations (for example X and Xj) are redefined similarly, with the scaling matrix H
adjusted to ensure H™'r,(u) = r,p(h~'u). Here E,(Z) is the estimated CDF and %Fp@) (Z), -+,
%F;p ) (z) are the estimated higher order derivatives, which we assume are all continuous at z,
while f,(Z—) and f,(Z+) are the estimated densities on the two sides of z. Therefore we call
the above model restricted, since it only allows discontinuity of the first derivative of F' (i.e. the
density) but not the other derivatives.

With the modification of the polynomial basis, all other matrices in the previous subsection are

redefined similarly, and

I = [e e e e e ]
p+2 0 1,— 1,4+ 2 D .
(p+2)x (p+2)

where the subscripts indicate the corresponding derivatives to extract. Moreover
r_,p(u):[l u 0 u® . up], r+7p(u):[1 0 u u? .- up].

Lemma 11. Let Assumptions of Lemma 1 hold with the exception that f may be discontinuous

across T, then
%x;LKhxh = {f(—)S_p + F(Z1)Ss 0} + O (h) + Op(1/Vnh),
where

0 1
S ,= / ooy K(dy,  Si,= / ro () p () K (u)du.

-1

Again we decompose the estimator into four terms, Br1, Bs, L and f{, which correspond to

leave-in bias, smoothing bias, linear variance and quadratic variance, respectively.

Lemma 12. Let Assumptions of Lemma 2 hold with the exception that f may be discontinuous

across T, then

1

Bo et [FTROE, IR A e, Bu=o0: (L), @

CES A )]
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where

0 1

cjp:/ uPMr ,(u) K (u)du, c+7p:/ uP My, (w) K (u)du.
-1 0

Lemma 13. Let Assumptions of Lemma 3 hold with the exception that f may be discontinuous

across T, then

—1

v { %(el,+ - 91,7)/(f(ff+)s+,p + f(f—)sap) f*]

= (e1,y —e1,) (f(@H)Stp + f(Z-)S_ ) (f(Z+)°T 1
+ f(@=)* WDy ,O) (f(Z+)S4p + f(2—)S—p) (€14 —e1,—) + O(h),

Again we can show that the quadratic part is negligible.

Lemma 14. Let Assumptions of Lemma 4 hold with the exception that f may not be continuous

R 1

Now we state the main result concerning the manipulation testing. Let Sp@ and f‘p@ be con-

across T, then

structed as in Section 2.3, and

Vpi(®) = 7(e1,+ —e1,-)'Sp Ty sSpa(er, —er,-).

S =

Corollary 2. Assume Assumptions 1 and 2 hold separately on X_ and X with o, > p+ 1 for
some integer p > 1. Further, n - h?> — oo and n - h*?*1 — 0. Then under the null hypothesis

Ho : f(z+) = f(z—),

Tp(h) _ fp(‘%"') — fp(j_) w_/\/’(07 1)'

Tlhvpyl(j)
As a result, under the alternative hypothesis Hy : f(z+4) # f(z—),

lim BTy (h)] > @1 o] = 1.
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Here ®1_, /9 is the (1 — a/2)-quantile of the standard normal distribution.

5 Other Standard Error Estimators

The standard error 6;,,(x) (see Theorem 2) is fully automatic and adapts to both interior and

boundary regions. In this section we consider two other ways to construct a standard error.

5.1 Plug-in Standard Error
Take v > 1. Then the asymptotic variance of FISU) (x) takes the following form:
Voo(@) = (v)*f(2)€,8, 25 Sy zeo.
One way of constructing estimate of the above quantity is to plug-in a consistent estimator of f(z),
which is simply the estimated density. Hence we can use

V() = (v!)pr(x)e;S;)ale‘p,zS;alvev.

The next question is how S, ; and I', , should be constructed. Note that they are related to the
kernel, evaluation point x and the bandwidth h, but not the data generating process. Therefore

the three matrices can be constructed by either analytical integration or numerical method.

5.2 Jackknife-based Standard Error

The standard error ), () is obtained by inspecting the asymptotic linear representation. It is fully
automatic and adapts to both interior and boundaries. In this part, we present another standard
error which resembles 6, ,(x), albeit with a different motivation.

Recall that [ip(:z‘) is essentially a second order U-statistic, and the following expansion is justified:

%x;Kh (Y — X8, ()

_1 rp (z; _ I) (F(ml) —rp(zi — m)/ﬁp(x)) Ky (z; — x)

= % rp (xz;x) (ni P (]l(mj <) —rp(wi — x)'ﬂp(x))) Kp(z; —z) + Op (%)

s 3 (B0) (1 <00 ol — 0) By (o)) K — )+ 00 (1),

n

where the remainder represents leave-in bias. Note that the above could be written as a U-statistic,
and to apply the Hoeffding decomposition, define

r; — &

Ui a) = rp (P57) (Ras < 0 = vyl — 2)'B,(2)) Kn(a: — )

+r, (ij . x) (]l(g:z <xy) —rp(zy — x)/ﬂp(m))Kh(xj -2
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which is symmetric in its two arguments. Then

%X?LKh (Y = XB,(x)) = E[U(zi, z;)] + % Z <U1($i) — E[U(zi, z;)] )

-1
* <Z> MXZ;] (U(wz‘,fﬂj) — Ui(wi) — Us(z;) + E[U(wi, ;)] >
Here Uy (z;) = E[U(x;,x;)| zi]. The second line in the above display is the analogue of L, which
contributes to the leading variance, and the third line is negligible. The new standard error, we

call the jackknife-based standard error, is given by the following:

. 1 a1 ot g
0-1(7{’11()) (1") = (U!)\/nhZU e{USPV;I‘pvzspP’L‘eU?

with
’ 1 1 /
pe = 2 no1 2~ Tiy T n_1 2~ Tiy T 9 2 Tiy Tj 9 2. Ti, T R
i Jii#i Jii#i 53177 6,5317]
and

Ui, zy) =1, (“F) (L S @) = (@i — 2)' B, (@) ) Kn (s — 2)

L5 — x) (]l(xz <zj) - I‘p(irj - W)/BP($)>Kh(xj - o)

o

The name jackknife comes from the fact that we use leave-one-out “estimator” for Uy (z;): with z;
fixed,

[19 1 - bl
— Z U(zi, ;) —p Ui(xi)”.
i

Under the same conditions specified in Theorem 2, one can show that the jackknife-based standard

error is consistent.

6 Simulation Study

6.1 DGP 1: Truncated Normal Distribution

In this subsection, we conduct simulation study based on truncated normal distribution. To be
more specific, the underlying distribution of x; is the standard normal distribution truncated below
at —0.8. Therefore,

D)~ B(08) oo

Glo) =F@) = "5 o8 =

and zero otherwise. Equivalently, z; has Lebesgue density ®™)(z)/(1 — ®(—0.8)) on [—0.8, oc].
In this simulation study, the target parameter is the density function evaluated at various points.
Note that both the variance and the bias of our estimator depend on the evaluation point, and

in particular, the magnitude of the bias depends on higher order derivatives of the distribution
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function.

1. FEwvaluation point. We estimate the density at = € {—0.8, —0.5, 0.5, 1.5}. Note that —0.8 is
the boundary point, where classical density estimators such as the kernel density estimator
has high bias. The point —0.5, given our bandwidth choice, is fairly close to the boundary,
hence should be understood as in the lower boundary region. The two points 0.5 and 1.5 are
interior, but the curvature of the normal density is quite different at those two points, and

we expect to see the estimators having different bias behaviors.

2. Polynomial order. We consider p € {2,3}. For density estimation using our estimators, p = 2
should be the default choice, since it corresponds to estimating conditional mean with local
linear regression. Such choice is also recommended by Fan and Gijbels (1996), according to
which one should always choose p —s =2 —1 =1 to be an odd number. We include p = 3

for completeness.

3. Kernel function. For local polynomial regression, the choice of kernel function is usually not

very important. We use the triangular kernel k(u) = (1 — |u|) V 0.

4. Sample size. The sample size used consists of n € {1000, 2000}. For most empirical studies
employing nonparametric density estimation, the sample size is well above 1000, hence n =

2000 is more representative.

Overall, we have 4 x 2 x 2 = 16 designs, and for each design, we conduct 5000 Monte Carlo
repetitions.

We consider a grid of bandwidth choices, which correspond to multiples of the MSE-optimal
bandwidth, ranging from 0.1hyse to 2huse. We also consider the estimated bandwidth. The MSE-
optimal bandwidth, hysg, is chosen by minimizing the asymptotic mean squared error, using the
true underlying distribution.

For each design, we report the empirical bias of the estimator, E[f,(z) — f(x)], under bias. And
empirical standard deviations, V/2[ fp(x)], and empirical root-MSE, under sd and /mse, respec-
tively. For the standard errors constructed from the variance estimators, we report theTempirical
average under mean, which should be compared to sd. We also report the empirical rejection rate of
t-statistics at 5% nominal level, under size. The t-statistic is (f,(x) — Ef,(z))/se, which is exactly

centered, hence rejection rate thereof is a measure of accuracy of normal approximation.

6.2 DGP 2: Exponential Distribution

In this subsection, we conduct simulation study based on exponential distribution. To be more
specific, the underlying distribution of z; is F/(x) = 1 — e~*. Equivalently, z; has Lebesgue density
e % for x > 0.

In this simulation study, the target parameter is the density function evaluated at various points.

Note that both the variance and the bias of our estimator depend on the evaluation point, and
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in particular, the magnitude of the bias depends on higher order derivatives of the distribution

function.

1. Ewaluation point. We estimate the density at € {0, 1, 1.5}. Note that 0 is the boundary
point, where classical density estimators such as the kernel density estimator has high bias.

The two points 1 and 1.5 are interior.

2. Polynomial order. We consider p € {2,3}. For density estimation using our estimators, p = 2
should be the default choice, since it corresponds to estimating conditional mean with local
linear regression. Such choice is also recommended by Fan and Gijbels (1996), according to
which one should always choose p —s =2 —1 =1 to be an odd number. We include p = 3

for completeness.

3. Kernel function. For local polynomial regression, the choice of kernel function is usually not

very important. We use the triangular kernel k(u) = (1 — |u|) V 0.

4. Sample size. The sample size used consists of n € {1000, 2000}. For most empirical studies
employing nonparametric density estimation, the sample size is well above 1000, hence n =

2000 is more representative.

Overall, we have 3 x 2 x 2 = 12 designs, and for each design, we conduct 5000 Monte Carlo
repetitions.

We consider a grid of bandwidth choices, which correspond to multiples of the MSE-optimal
bandwidth, ranging from 0.1hyse to 2huse. We also consider the estimated bandwidth. The MSE-
optimal bandwidth, hAysg, is chosen by minimizing the asymptotic mean squared error, using the
true underlying distribution.

For each design, we report the empirical bias of the estimator, E[f,(z) — f(x)], under bias. And
empirical standard deviations, V/2| fp(x)], and empirical root-MSE, under sd and /mse, respec-
tively. For the standard errors constructed from the variance estimators, we report theTempirical
average under mean, which should be compared to sd. We also report the empirical rejection rate of
t-statistics at 5% nominal level, under size. The t-statistic is (f,(x) — Ef,(x))/se, which is exactly

centered, hence rejection rate thereof is a measure of accuracy of normal approximation.

References
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7 Proof

7.1 Proof of Lemma 1

Proof. A generic element of the matrix %X;Khxh takes the form:
1 1 /x; —x\°¢ T, — T
S K ( ) . 0<s<2p
n Z h ( h ) h =5=4p

Then we compute the expectation:

1 1 /x; —x\$ T, — T
By () K (55)
) (5
oy—a oy—u
h

- /;U % (u;x)sK (“;x) f(u)du = /; v° K (v) f(z 4 vh)dv I/ v K (v) f(x + vh)do,

xp—x
h

=25 () k()]

hence for x in the interior,

E [:L > (B K (B x)} - f(a:)/Rrp(v)rp(v)'K(v)dv +o(1),

k3

and for x =z + ch with ¢ € [0, 1],

B304 () K (5] = e [ e ot

and for x = zy — ch with ¢ € [0, 1],

E %Z% (B) K (B0 = f(xu)/; £ (0)rp () K (v)dv + of1),

provided that F € C'.
The variance satisfies

provided that F € C*.

7.2 Proof of Lemma 2

Proof. First consider the smoothing bias. The leading term can be easily obtain by taking expectation together with
Taylor expansion of F' to power p + 1. The variance of this term has order n=*h = h?P™2 which gives the residual

estimate op(hPT1) since it is assumed that nh — oco.

Next for the leave-in bias, note that it has expectation of order n ™', and variance of order n~2h™!, hence overall

this term of order Op(n™").
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7.3 Proof of Lemma 3

Proof. We first compute the variance. Note that

zy—x

/IL " rp (u) (F(:c—i—hu) — F(w+hu)>K(u)f(x+hu)du

—x

Ty—x

= [0 e (Ll <2 bl = P+ b)) K () (o + hudu,

h

and

/TL : rp (u) (Il[;zcZ <z+hu]—F(z+ hu))K(u)f(:r + hu)du:|

_ //;L v, (1)t (0) K () K@) f(x + hu) f(z + ho)

X [/ Lt <z+hu]— Flz+hu) (1t <z + hv] — F(z + hv))f(t)dt] dudv

Ty—x
- // Y, ()t (0) K(w)K (0)f (2 + hu) f(z + ho) (F(x + h(uAv)) — F(z + hu)F(z + hv))dudv. (1)
zL
We first consider the interior case, where the above reduces to:

mterlor

/ / r, (u)rp (V) K(u)K(v) f(x)2(F(x) - F(m)2)dudv
+ h//R(u Av)ry (u) Ty (v) K (u)K (v) f(z)*dudv
[ oy (s ) K@K )70 Fa)dudo
+h / /]R (u+v)rp (w) 1 (v) K (u)K (0) f(2)FP (2) (F(z) - F(x)2)dudv +o(h)

= f@(F(@) = F(@)’)Spwe0€tSp.a
~ hf(2)°F(2)S,
+hf(@)F? (2)(F(@) = F()’)Spa(ereh + eoel)Sp.
+ hf(x)’Tpe + o(h).

z(erel +epel)Sy..

For z = a1 4+ hc with ¢ € [0,1) in the lower boundary region,
lowcr boundary
= h// uAv+c)rp (u)ry (v Y K(u)K (U)f(mL)Sdudv +o(h) = hf(acL)3 (I‘p,m + cSp,meoeBSp,x) + o(h).
Finally, we have

= h// wAv—c)ry (u)r, (v) K(u)K ) f(zy)>dudo — h//R(u + v —2¢)rp (u) rp (v) K (u)K(v) f(zv)dudv + o(h)
= hf(2v)*f(z0) (Tp,e + cSp,c€0€0Sp,c — Sp.a(€1€) + €0e})Sp.z) + o(h).

With the above results, it is easy to verify the variance formula, provided that we can show the asymptotic normality.
We first consider the interior case, and verify the Lindeberg condition on the fourth moment. Let o € RP™ be an
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arbitrary nonzero vector, then

zy—x
h

ZE (\}ﬁa/Nx(f(JC)Sp@)_l va rp (u) (]l[xl <z+hu]—F(z+ hu))K(u)f(x + hu)du)

h

Ty—x

%]E (a/Nz(f(x)Spyz)l / rp (u) (IL [; <z + hu] — F(z + hu))K(u)f(x + hu)du)

T, —x
h

ST (@088 e ) () )

j=1,2,3,4
/

(]l[t <z+huj]— F(z+ hUj))f(t)dt:| duidusdusduy

j=1,2,3,4
C ’ -1 1
< —=- H (a No(f(2)Sp,z)” rp (uy) K(uj))f(x)dulduzdugdu4 +0 )
n A j=1,2,3,4 n
where A = [#-=, %]4 C R*. The first term in the above display is asymptotically negligible, since it is takes

the form C - (a’Nyep)*/n where the constant C' depends on the DGP, and is finite. The order of the next term is
1/(nh), which comes from multiplying n~*, h~2 (from the scaling matrix N,), and h (from linearization), hence is
also negligible.

Under the assumption that nh — oo, the Lindeberg condition is verified for interior case. The same logic applies to
the boundary case, whose proof is easier than the interior case, since the leading term in the calculation is identically
zero for x in either the lower or upper boundary. |

7.4 Proof of Lemma 4

Proof. For R, we rewrite it as a second order degenerate U-statistic:
R 1 N
R=— > Uy
,5;4<J

where

U, =r, (‘r;x) (]1[1’]- <z - F(x,-))Kh(xi —2) 41, (

—E [rp (m}:m) (]l[a:j <] — F(xz))Kh(xL — ) mj] —-E [rp (%) (]l[xl <z — F(xj)>Kh(xj — )

To compute the leading term, it suffices to consider

oR {rp (B e (B “’) ([z; < 2] — F(w:))? Kn(zi — x)2]

h
=2E |:I'p (%;x) r, (sz ]Z CU)I (F(xz) — F(x’b)z)Kh(:L‘z _ x)Q]
= % /::h: rp (v) ) (V) (F($ + hv) — F(x + hv)Q)K(U)Qf(m + hv)dv
= % /ij};m r, (v) 1y (V) (F(JJ) — F(:E)2)K(v)2f(x)dv +0(1)
2

—interior Ef(x) [F(.CU) - F($)2:| TPvZ + 0(1)7
—boundary 0(1)7

which closes the proof. [

7.5 Proof of Theorem 1

Proof. This follows from previous lemmas. |
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7.6 Proof of Theorem 2

Proof. First we note that the second half of the theorem follows from the first half and the asymptotic normality

result of Theorem 1, hence it suffices to prove the first half, i.e. the consistency of Vp,, ().
The analysis of this estimator is quite involved, since it takes the form of a third order V-statistic. Moreover, since
the empirical d.f. F' is involved in the formula, a full expansion leads to a fifth order V-statistic. However, some

simple tricks will greatly simplify the problem.
We first split I', » into four terms, respectively

Ep,am =3 Z ( ) rp, (mk _ I)/Kh(ac]- —z)Kp(zp — z)(1]z; < zj] — F(;r])) (]l[ml < xp] — F(ZIZ’k))

h
~ 1 P
Ep,z,Q _ = r, (I] T

) (F5)
Sy = = rp(xj ‘x)r,, (xkh‘””) Kn(z; — @) Kn(zr — 2) (1z; < ;] —F(xj)) (F(mk)—ﬁ’(xk))
) (P5)

n3 £ h
i,7,k
o 1 Tj—x Tr —x\’ ~ ~
EZ;Z( LB ry (B0) Kles — o) Kn(an — o) (Flz)) = Flay) (Flo) = Fan)
7,

Leaving ﬁ)p,zJ for a while, since it is the key component in this variance estimator. We first consider N S;}cﬁ]p@A S;},;NI.
By the uniform consistency of the empirical d.f., it can be shown easily that

NxS;ipr’xAS;;Nx =Op ((nh)_l) .

Note that the extra h™" comes from the scaling matrix N, but not the kernel function Kj. Next we consider
Ng S Epyz QSP ! N,, which takes the following form (up to the negligible smoothing bias):

N.S, 23,225, AN, =N sH(B,(z) — B,( e} Z (%Ic _I) Ky (xy, —m)(]l[xi < ) —F(mk)) S, N,

=0g((nh)~"?) = op(1),

where the last line uses the asymptotic normality of Bp(a:) For 21,@,1, we make the observation that it is possible to
ignore all “diagonal” terms, meaning that

Sy = % > on () (mkh_x)/Kh(xj — o) Kn(wn — @) (U < 5] = Fe,)) (U < ] = Flan) ) + ox(h),

B4,k
distinct

under the assumption that nh? — co. As a surrogate, define

U, jk=rp (x]}:x) rp (xkf: m)lKh(mj —x)Kp(z, — m)(]l[ﬂcz < zj] — F(xj)) (]l[xl < i) — F(xk)),

which means

Pll_ § Uik

i,7,k
distinct

The critical step is to further decompose the above into

EP»IJ =3 Z E[U;,j,k|2i] I

dlstmct

1
T > (Umnk - ]E[Ui,j,k\l‘i,wj]) (In)
distmet

1
+to3 ) (E[Ui,j,kma r;] — E[Ui,j,k\l‘i]) (I11)
ik
distinct
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We already investigated the properties of term (I) in Lemma 3, hence it remains to show that both (II) and (III) are
o(h), hence does not affect the estimation of asymptotic variance. We consider (II) as an example, and the analysis
of (III) is similar. Since (II) has zero expectation, we consider its variance (for simplicity treat U as a scaler):

1
VD] =E | % > (Ui,j,k —E[Uij.klzi, xj]) (Ui,j,k - ]E[Ui',j',k’m'»xj’})
ik ik
distinct distinct
The expectation will be zero if the six indices are all distinct. Similarly, when there are only two indices among the
six are equal, the expectation will be zero unless k = k’, hence

1
VD] =E | -5 Z > (Um‘,k - ]E[Ui,j,klwz‘»%']) (Um‘,k - ]E[Ui',j',k'|wi'a$j'])
L dictinet ks

1
=E|5 > (Ui,j,k — E[Uq 5|, l’j]) (Ui,j,k —E[Us ;s klzir, xj’])

i,4,k,i’ 5’
distinct
+ cee
where - - - represent cases where more than two indices among the six are equal. We can easily compute the order
from the above as
V[(ID] = O(n™") + O((nh)~?),
which shows that
(ID) = Op(n ™% + (nh) ") = or(h),

which closes the proof. [ ]

7.7 Proof of Lemma 5

Proof. We rely on Lemma 1 and 2 (note that whether the weights are estimated is irrelevant here), hence will not
repeat arguments already established there. Instead, extra care will be given to ensure the characterization of higher
order bias.

Consider the case where with enough smoothness on G, then the bias is characterized by

httel, [1(@)Sp. +hE® ()8, + o(h) + Os(1/¥h)] o

r Jallany () [ pp+2) (x) Fpt1) () ] T
p+1 p+2 (2) e p+2
x F E
TR f(@)epa +h rE)! x) + pr) (x) S +o(h )
1 F(g) =
— B ule’ -1 _p 15 gl 1 h
o {f(w) S0~ W e SieSnaSis + 0e (1/Vnh)
r Frt+l) (z) [ p(e+2) () JalCan) (z) T ]
pPt Y t()e, o + AP ) + FOz)| &, 0 + o(hPT? 14 op(1)},
which gives the desired result. Here S, , = ILU’EI urp(u)rp(u) k(u)du. And for the last line to hold, one needs the
e
extra condition nh® — oo so that Op (1/\/nh> = op(h). See Fan and Gijbels (1996) (Theorem 3.1, pp. 62). [ ]
7.8 Proof of Lemma 6
Proof. The proof resembles that of Lemma 1, and is omitted here. |

24



7.9 Proof of Theorem 3

Proof. The proof splits into two cases. We sketch one of them. Assume either x is boundary or p — v is odd, the
MSE-optimal bandwidth is asymptotically equivalent to the following:

1
hoole) 1y (1@ DI@elS St )T
hplw) 0 e n(op—20+ (R oS te, 02 )

(p+1)!

which is obtained by optimizing MSE ignoring the higher order bias term. With consistency of the preliminary
estimates, it can be shown that

1
2p+1
. 1 (20 — 1)6p,0 (z)?nl? 1
hpo(z) = - ;<2+1>(z) - ; {1 +op(1)}.
(2p —2v+ 2)(U!Weésp,x‘3p,x)

Apply the consistency assumption of the preliminary estimates again, one can easily show that ﬁp,v(m) is consistent
both in rate and constant.
A similar argument can be made for the other case, and is omitted here. |

7.10 Proof of Lemma 7
Proof. This resembles the proof of Lemma 1, and we only perform the mean computation. To start,

2 [ximx] =2 s (555 ) () G ()]

=5 [n (55 )m (7)1 (55)
+2[n () m (5) 7 ()

Then by Lemma 1, the first term takes the form:

B n (20 n (200) 11 (20)

0

= f(@ — |z < D)F(2) / v (w)r—p(u) K (u)du + O(h),

—1

i < a_s} F(z)

x; > :E] (1- F(x)).

xi < 1‘:} F(z)

where f(Z —|z; < Z) is the one-sided density of x; at the cutoff, conditional on z; < Z. Alternatively, we can simplify
by the fact that f(Z|z; < Z)F(z) = f(Z—). Similarly, one has

2 (%) m (50) 15 (50)

=f(@+ |z 2 2)(1 - F(ﬂf‘))/0 i p(u)ry p(u) K (u)du + O(h),

i > :z] (1-F(x)

and that f(Z + |z; > Z)(1 — F(Z)) = f(Z+). The rest of the proof follows standard variance calculation, and is not
repeated here. |

7.11 Proof of Lemma 8

Proof. This follows from Lemma 2 by splitting the bias calculation for the two subsamples, below and above the
cutoff z. m

7.12 Proof of Lemma 9

Proof. To start,

1

/_1 vy () (F(z + hu) = F(z + hu) ) K (u) f(7 + hu)du = % /

1 -1

rp (1) (11 [2: <7+ hu] — F(Z + hu))K(u)f(i: 1 hu)du,
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and
v [/i rp (1) (1[x,~ <z +hu - F(z + hu))K(u)f(az + hu)du}
=[] o, 0) K@K+ b6+ o)
« [/R ([t < 7 + hu] — F( + hu)) (1t < 7 + ho] — F(F + ho)) f(t)dt] dudv

- //1 rp (1) rp (V) K () K (v) (T + hu) f (T + hv) (F(i: + h(uAv)) — F(z + hu)F(z + hv))dudv. (1)
Now we split the integral of (I) into four regions.
(u < 0,v < 0) // v ()T (0) K(0)K (0) (@ + hu) (@ + ho) (F(@ + h(u A v)) ~ F(@ + hu) F(@ + o) )dudy
= f@@-)? (F(a‘s) - F(ff)sf,peo,fea,_sf,p
— hf(@=)°F(2)S-p(e1,-€y, +eo—€) )S_,

+hf(@=)F? (@) (F(@) = F(2)°)S- p(e1—eh— +eoe),)S—,
+hf(@=)°T—, + O(?),

(w>0,0>0) (I) = //0 v ()T (o)) KK W)@+ ha)f(@ + ho) (F@ +h(u A v)) — F(@ + h) F(@ + ho) ) dudo

= f@+)’ (F(@) = F(2)’)St.0e0.+€5,: 1.5
— hf(@+)’F(z)Sy p(e1 €0+ +eo 1€ 4)S1p
+hf(@+)F® (z+) (F(f) - F(:E)2)S+,p(e1,+e(’)7+ + €01 €1,4+)S1p
+ hf(T4)°T4, + O(h?),

and
(u < 0,0>0) //[ oy T (O (0 KK @ 4 )@+ h) @+ o (1= F@ + hv) ) dudv
- U_l v (u) K(u)f(F + hu) F(Z + hu)du] {/01 v () K@) f(E + o) (1 F( + hv))dv}
= [F@)F@)S- peo + h(f(@-) + F?(@-)F(2))S- per,- + O(h")]
(/@)1 = F@)81peos +h( = @) + FO @)1 - F(@))) St pers + 00|,
and
(u>0,v<0) //[O i T (T (O KK ()@ + h) (4 o) F (@ + ) (1= P+ hu) ) dudv

= [/0 ryp(u) K(u)f(Z+hu)(1 - F(Z+ hu))du} {/j r_p () K@) f(Z + hv)F (T + hv))dv}
= [F@H 1 = F@)Stpe0s +h( = f@+) + FP @4)(1 = F(@)))Sypers +O(h)]

[F@)F@-)8_peo +h(f@-)* + FO@-)F(@)S_pei- + 0]
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Let S:}p and S;lp be the Moore-Penrose inverse of S_ , and Sy ;, respectively. Then

v [<e1,+ - el,f)’\/%(f(ﬂ)sw L fE)S_) 'L

= f(z—)el, ST T_ ST e~ + f(@+)el ST T ,Si et + O(h).

7.13 Proof of Lemma 10

Proof. This follows from Lemma 4 by splitting the bias calculation for the two subsamples, below and above the
cutoff z. |

7.14 Proof of Corollary 1

Proof. This follows from the previous lemmas and verifying the Lindeberg condition. See also the proof of Lemma
3, Theorem 1 and Theorem 2. |

7.15 Proof of Lemma 11

Proof. This follows from Lemma 1 by splitting the bias calculation for the two subsamples, below and above the
cutoff Z. See also the proof of Lemma 7. |

7.16 Proof of Lemma 12

Proof. This follows from Lemma 2 by splitting the bias calculation for the two subsamples, below and above the
cutoff z. n

7.17 Proof of Lemma 13

Proof. To start,

1

/j vy (u) (F (@ + huw) — F(@ + b)) K (u) f (& + hu)du = / vy (u) (Lo < 4 hu] — F( + hu) ) K () (2 + hu)du,

1 -1

and

v [/j vy (u) (o < 4 hu] — F( + hu) ) K () (2 + hu)du}

- / / ry )5y (0) KK ()@ + ha) @+ o)

x [/ ([t < T + hu] — F(Z + hu)) (L[t < T + hv] — F(Z + ho)) f(t)dt] dudv

/[1 rp (u) 1, (V) K@) K (v)f(Z + hu) f(Z + hv) (F(a? + h(uAv)) — F(Z+ hu)F(Z + hv))dudv. (I
Now we split the integral of (I) into four regions.
(u<0,0<0) (I) = //_1 r_p (W) r_p (v) K(u)K () f(T + hu) f(F + hv) (F(:i + h(uAv)) — F(Z + hu)F(Z + hv))dudv

= [@-)(F(@) - F(@)?)S- yeoesS-,
— hf(7=)"F(2)S- p(e1,-eh +eoel )S—,
+hf(@=)F? @) (F(2) - F(@)?)S-p(e1-€) + evel, )S—,
+hf(z=)’T—, + O(h?),
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(u>0,0>0) (I) = //0 rop (W), (W) KWK @) f(E+ hu)f(T + ho) (F(a‘: + h(uAv)) — F(z + hu)F(z + hv))dudv

= f(74)? (F F(z) 2)5 p€0ehSip
— hf(T+) F(2)S+p(e1,+€0 + €€l 1)S+.
+hf(@+)F? (2)(F(2) = F(@)*)Stp(e1.+e) + eeh,4)S+p
+hf(@+)"Tp + O(R?),

and
(u < 0,v>0) // ooy ™ wry, () KWK @) f(z+ hu)f(@ + ho)F(z + hu)(l — F(z + hv))dudv
_ Ml v, (u) K(u) (3 + hu) F(Z + hu)du] Uol P (o) K()1(@ + ho)(1— P2 + hv))dv]
= [F@-)F@)S_ o0+ h(f(z-) + FO @) F(@))S- per,— + O(?)]
@)1 = F@)8+pe0 +h( = @) + FO@)(1 ~ F(2))Sspe14 + O],
and

(u>0,0<0) (I) = //[O iy T (W) r4p (0) KWK ©)f(F + hu) f(Z + hvo)F(Z + ho) (1 —F(@+ hu))dudv

0

_ [/01 rep () K@) f(E + hu)(1 — F(z + hu))du} U () K@) f(F + ho)F(Z + hv))dv}

= [F@H)(1 = F@)S+pe0 + h( = [(@+)” + FP@)(1 = F(2))) S+ pe1s + O(h?)]
(1@ F@S- peo + h(1@-) + FO @) F(@)S- per,- +0(07)] .
By collecting terms, one has
() = (@8 + F@H)S—p ) eoeh (@S 1 + fEH)S_ )
— hf@-)F @) f(T-)S_per,eo(f(EH)Ssp + F(E)S_ )
B @)1~ F@) (718 por-eh (74181 + (7)5-)
~ hf@E)E@)(f@H)S 10+ F(@-)Sp)eoet _f(T-)S
LD E @)1~ F@)(J@HS 1+ 1G-S euet, S-S
— hfEHFE) [EHS 1 per,eh(TEH)Sp+ [(E)S )
Lo (1~ F@)F@ 48 g0 (74)8 1 + (7-)5-)
“MEDFEE)S0s + [E)S- oo 1 S2)81s
F@)(1— F@)(f@H)S 1. + [(3-)S_p)eoel /(@+)S+,

(T~ )S_7pe17_e6f(f+)S+,p
(Z+)S+,pe0el,_ f(Z—)S— p
F+ P + f( ) 7»17)'

+h

+h

\_/

=
+hf( -)
+hf( -)
+ h(f(@+

Next, we note that

Sipe1,- =S pert =0,
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which implies

(1) = (F@H)S s+ F@H)S - )eoeh (F@H)S 1 + fEH)S )
—hf(@=)F(@)(f(@+)S+p + f(Z-)S-p)er,—eo(f(+)S+p + f(T-)S-p)
F(2)(j)
f(@-)
—hf(@=)F(@)(f(@+)S+p + f(2-)S- pecer,  (f(+)S+p + f(2)S- )
F@)(@
f@-)
— hf(@+)F(@)(f(@+)S+p + f(T-)S-p)er+e0(f(@+)S+p + f(Z-)S- )
F ()
f(@+)
— hf(@H)F(@)(f(@+)S+p + f(T-)S-p)ecel 1 (f(T+)S+p + f(Z—)S- )
F®(z)

f(@+)

+hf(@=)(f(@H)S+p + f(7—)S- p)er,—eo f(2+)S+p
+ hf(@=) f(z+)S+.pever, (f(z )S+ p+ f(Z-)S-p)
+h(f(@+)°T4 p + f(3=)°T- ).

+h

+h

+h

Next note that

T = // 1 0]2(u At p(u)r—p(v) K (u) K (v)dudv
= [0 A e ) Kt
- / /[0 1]2(“ AV —u—0)ry p(u)ry p(v) UK (u) K (v)dudv

=WT, , ¥ - ¥S, e €S, ¥ - ‘I’S+,peoe/1,+s+,p‘1’
=WI, ,¥+S_,ei,_eS_,+S_eoe] _S_,,

then

(1) = (J@EH)S 1+ F@HS- ) eeh (F@+)S 15+ [@EH)S )

— hf(@=)F(@)(f(@+)S+p + f(2-)S-p)er,—ex(f(Z+)S+p + f(2-)S-p)
F@)(@
f(@=)

—hf(@=)F(@)(f(@+)S+p + f(2-)S- p)ecel, (f(z+)Ssp + f(2-)S- )

F(Q)(j)
f(@-)
— hf(@H)F(@)(f(@+)S+p + f(Z-)S-p)er+eo(f(T+)S+p + f(Z-)S-p)
FO (z)
f(@+)

— hf(@H)F(@)(f(@+)S+p + f(2-)S- p)ecel 1 (f(@+)Stp + f(Z-)S-p)
F(Q)(m)
f@+
=)
-)

+h

+h

+hf(z
+hf(

+h(f(z

(T+)S+p + f(i—)S,,p)ege/L,(f(a_c+)S+,p + f(j—)S,,p)

)
(F(@+)S4p + F(T—)S—p)er—eo(f(Z+)Stp + f(T—)S— )
(f
+)°Ty p + f(2—)° T, W),
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F(z)(1 = F(2)(f(#+)S+.p + [(7-)S- p)er,—eo(f(T+)S+ p + [ (-

F(@)(1 = F@)(f(@+)S+p + f(7-)S- p)ecer,_ (f(Z+)S+ p + f(T—

(1= F(2))F(Z)(f(Z+)S+p + f(Z—)S— p)er,reo(f(Z+)S+,p + f(Z—

F(z)(1 = F(2))(f(#+)S+.p + f(7-)S- p)ecer . (f(Z+)S+p + f(3—

F@)(1 = F@)(f(@+)S4p + f(Z-)S- per,—eo(f(Z+)Sp + f(T—

F(2)(1 — F(2))(f(@+)S+p + f(2—)S— p)eoel _ (f(Z+)S+p + f(Z—

(1= F(@)F(@)(f(@+)S+.p + f(3-)S- p)er +eo(f(3+)S+p + f(T—

F@)(1 = F@)(f(@+)S+p + f(3-)S- pecer + (f(T+)S4 p + f(7—

)S_

)S_

)S_

)S_

)S_

)S_

)S_

)S_

»)

»)

»)

»)

»)

»)

»)

»)



Therefore,

v |ters — o) [ @S+ F@8-) T

= (o1t — o1, ) (F(@H)Sp + F(3)S_) " (F(@+)°T4
+ F@E=) W W) (F(EH)S 10+ F(E)S_,) (ers —er-) + O(h).

7.18 Proof of Lemma 14

Proof. This follows from Lemma 4 by splitting the bias calculation for the two subsamples, below and above the
cutoff Z. n

7.19 Proof of Corollary 2

Proof. This follows from the previous lemmas and verifying the Lindeberg condition. See also the proof of Lemma
3, Theorem 1 and Theorem 2. |
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