
OncoSimulR: forward genetic simulation in asexual
populations with arbitrary epistatic interactions and

a focus on modeling tumor progression.

Ramon Diaz-Uriarte, Sergio Sanchez-Carrillo, Juan Antonio Miguel-Gonzalez, Javier López Cano, Alberto González Klein, Javier Muñoz Haro
Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, and Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain.

r.diaz@uam.es, rdiaz02@gmail.com, https://ligarto.org/rdiaz

2024-07-25. OncoSimulR version 4.7.1. Revision: 3044304

Contents
1 Introduction 8

1.1 Key features of OncoSimulR . 10
1.2 What kinds of questions is OncoSimulR suited for? 13
1.3 Examples of questions that can be addressed with OncoSimulR . . . 16

1.3.1 Recovering restrictions in the order of accumulation of mutations 16
1.3.2 Sign epistasis and probability of crossing fitness valleys 17
1.3.3 Predictability of evolution in complex fitness landscapes . . . 19
1.3.4 Mutator and antimutator genes 20
1.3.5 Epistatic interactions between drivers and passengers in cancer

and the consequences of order effects 22
1.3.5.1 Epistatic interactions between drivers and passengers 22
1.3.5.2 Consequences of order effects for cancer initiation . . 25

1.3.6 Simulating evolution with frequency-dependent fitness 26
1.4 Trade-offs and what is OncoSimulR not well suited for 27
1.5 Random fitness landscapes, clonal competition, predictability, and the

strong selection weak mutation (SSWM) regime 27
1.6 Steps for using OncoSimulR . 31
1.7 Two quick examples of fitness specifications 31
1.8 Citing OncoSimulR and other documentation 35

1.8.1 HTML and PDF versions of the vignette 36
1.9 Testing, code coverage, and other examples 36
1.10 Versions . 37

2 Running time and space consumption of OncoSimulR 38
2.1 Exp and McFL with “detectionProb” and pancreas example 39

1

mailto:r.diaz@uam.es
mailto:rdiaz02@gmail.com
https://ligarto.org/rdiaz

2.1.1 Changing fitness: s = 0.1 and s = 0.05 51
2.2 Several “common use cases” runs . 53

2.2.1 Common use cases, set 1. 55
2.2.2 Common use cases, set 2. 59

2.3 Can we use a large number of genes? 61
2.3.1 Exponential model with 10,000 and 50,000 genes 61

2.3.1.1 Exponential, 10,000 genes, example 1 61
2.3.1.2 Exponential, 10,000 genes, example 2 62
2.3.1.3 Exponential, 50,000 genes, example 1 63
2.3.1.4 Exponential, 50,000 genes, example 2 64
2.3.1.5 Exponential, 50,000 genes, example 3 64
2.3.1.6 Interlude: where is that 1 GB coming from? 65

2.3.2 McFarland model with 50,000 genes; the effect of keepEvery . 66
2.3.2.1 McFarland, 50,000 genes, example 1 66
2.3.2.2 McFarland, 50,000 genes, example 2 67
2.3.2.3 McFarland, 50,000 genes, example 3 68
2.3.2.4 McFarland, 50,000 genes, example 4 69
2.3.2.5 McFarland, 50,000 genes, example 5 70
2.3.2.6 McFarland, 50,000 genes, example 6 71

2.3.3 Examples with s = 0.05 . 72
2.3.4 The different consequences of keepEvery = NA in the Exp and

McFL models . 73
2.3.5 Are we keeping the complete history (genealogy) of the clones? 74

2.4 Population sizes ≥ 1010 . 75
2.5 A summary of some determinants of running time and space consumption 78

3 Specifying fitness effects 79
3.1 Introduction to the specification of fitness effects 79

3.1.1 Explicit mapping of genotypes to fitness 81
3.1.2 How to specify fitness effects with the lego system 86

3.2 Numeric values of fitness effects . 87
3.2.1 McFarland parameterization 87

3.2.1.1 Death rate under the McFarland model 88
3.2.2 No viability of clones and types of models 88

3.3 Genes without interactions . 89
3.4 Using DAGs: Restrictions in the order of mutations as extended posets 91

3.4.1 AND, OR, XOR relationships 91
3.4.2 Fitness effects . 92
3.4.3 Extended posets . 92
3.4.4 DAGs: A first conjunction (AND) example 92
3.4.5 DAGs: A second conjunction example 95
3.4.6 DAGs: A semimonotone or “OR” example 97
3.4.7 An “XMPN” or “XOR” example 98
3.4.8 Posets: the three types of relationships 100

3.5 Modules . 102
3.5.1 What does a module provide 102

2

3.5.2 Specifying modules . 103
3.5.3 Modules and posets again: the three types of relationships and

modules . 105
3.6 Order effects . 107

3.6.1 Order effects: three-gene orders 107
3.6.2 Order effects and modules with multiple genes 108
3.6.3 Order and modules with 325 genotypes 110
3.6.4 Order effects and genes without interactions 111

3.7 Epistasis . 112
3.7.1 Epistasis: two alternative specifications 112
3.7.2 Epistasis with three genes and two alternative specifications . 114
3.7.3 Why can we specify some effects with a “-”? 115
3.7.4 Epistasis: modules . 116

3.8 I do not want epistasis, but I want modules! 117
3.9 Synthetic viability . 120

3.9.1 A simple synthetic viability example 120
3.9.2 Synthetic viability, non-zero fitness, and modules 121

3.10 Synthetic mortality or synthetic lethality 122
3.11 Possible issues with Bozic model . 123

3.11.1 Synthetic viability using Bozic model 123
3.11.2 Numerical issues with death rates of 0 in Bozic model 124

3.12 A longer example: Poset, epistasis, synthetic mortality and viability,
order effects and genes without interactions, with some modules . . . 125

3.13 Homozygosity, heterozygosity, oncogenes, tumor suppressors 132
3.14 Gene-specific mutation rates . 132
3.15 Mutator genes . 133

4 Plotting fitness landscapes 138

5 Specifying fitness effects: some examples from the literature 143
5.1 Bauer et al., 2014 . 143

5.1.1 Using a DAG . 143
5.1.2 Specifying fitness of genotypes directly 146

5.2 Misra et al., 2014 . 148
5.2.1 Example 1.a . 148
5.2.2 Example 1.b . 149
5.2.3 Example 1.c . 150

5.3 Ochs and Desai, 2015 . 151
5.4 Weissman et al., 2009 . 153

5.4.1 Figure 1.a . 153
5.4.2 Figure 1.b . 153

5.5 Gerstung et al., 2011, pancreatic cancer poset 156
5.6 Raphael and Vandin’s 2014 modules 157

6 Running and plotting the simulations: starting, ending, and exam-
ples 160
6.1 Starting and ending . 160

3

6.2 Can I start the simulation from a specific mutant? 160
6.3 Ending the simulations . 163

6.3.1 Ending the simulations: conditions 163
6.3.2 Stochastic detection mechanism: “detectionProb” 164

6.3.2.1 Stochastic detection mechanism and minimum num-
ber of drivers . 166

6.3.3 Fixation of genes/gene combinations 166
6.3.4 Fixation of genotypes . 168
6.3.5 Fixation: tolerance, number of periods, minimal size 170
6.3.6 Mixing stopping on gene combinations and genotypes 172

6.4 Plotting genotype/driver abundance over time; plotting the simulated
trajectories . 172

6.5 Several examples of simulations and plotting simulation trajectories . 172
6.5.1 Bauer’s example again . 172
6.5.2 McFarland model with 5000 passengers and 70 drivers 173
6.5.3 McFarland model with 50,000 passengers and 70 drivers: clonal

competition . 178
6.5.4 Simulation with a conjunction example 180
6.5.5 Simulation with order effects and McFL model 185

6.6 Interactive graphics . 192
6.7 Multiple initial mutants: starting the simulation from arbitrary con-

figurations . 192
6.8 Multispecies simulations . 194

7 Sampling multiple simulations 198
7.1 Whole-tumor and single-cell sampling, and do we always want to sample?202
7.2 Differences between “samplePop” and “oncoSimulSample” 203

8 Showing the genealogical relationships of clones 204
8.1 Parent-child relationships from multiple runs 210

9 Generating random fitness landscapes 214
9.1 Random fitness landscapes from a Rough Mount Fuji model 214
9.2 Random fitness landscapes from Kauffman’s NK model 216
9.3 Random fitness landscapes from an additive model 217
9.4 Random fitness landscapes from Eggbox model 218
9.5 Random fitness landscapes from Ising model 219
9.6 Random fitness landscapes from Full models 220
9.7 Epistasis and fitness landscape statistics 221

10 Frequency-dependent fitness 223
10.1 A first example with frequency-dependent fitness 224
10.2 Hurlbut et al., 2018: a four-cell example with angiogenesis and cyto-

toxicity . 229
10.3 An example with absolute numbers and population collapse 235
10.4 Predator-prey, commensalism, and consumer-resource models 240

10.4.1 Competition . 241

4

10.4.2 Competition . 244
10.4.3 Predator-prey, first example 246
10.4.4 Predator-prey, second example 250
10.4.5 Commensalism . 253

10.5 Frequency-dependent fitness: can I mix relative and absolute frequencies?253
10.6 Frequency-dependent fitness: can I use genes with mutator effects? . 258
10.7 Can we use the BNB algorithm to model frequency-dependent fitness? 263

11 Additional examples of frequency-dependent fitness 263
11.1 Rock-paper-scissors model in bacterial community 263

11.1.1 Introduction . 263
11.1.1.1 Case 1 . 264
11.1.1.2 Case 2 . 265
11.1.1.3 Case 3 . 268

11.2 Hawk and Dove example . 269
11.3 Game Theory with social dilemmas of tumour acidity and vasculature 273

11.3.1 Fully glycolytic tumours: . 274
11.3.2 Fully angiogenic tumours: . 275
11.3.3 Heterogeneous tumours: . 276

11.4 Prostate cancer tumour–stroma interactions 278
11.4.1 Simulations . 279

11.4.1.1 First scenario . 280
11.4.1.2 Second scenario . 282
11.4.1.3 Third scenario . 283
11.4.1.4 Fourth scenario . 284

11.5 Evolutionary Dynamics of Tumor-Stroma Interactions in Multiple
Myeloma . 286
11.5.1 Simulations . 287
11.5.2 Scenario 1 . 289
11.5.3 Scenario 2 . 291

11.6 An example of modellization in Parkinson disease related cell community293
11.7 Evolutionary Game between Commensal and Pathogenic Microbes in

Intestinal Microbiota . 295
11.7.1 Antibiotic absence situation 300
11.7.2 Antibiotic presence situation 301

11.8 Modeling of breast cancer through evolutionary game theory. 302
11.8.1 Cancer kept under control . 306
11.8.2 Development of a non-metastatic cancer 307
11.8.3 Development of a metastatic cancer 308

11.9 Improving the previous example. Modeling of breast cancer with the
presence chemotherapy and resistance. 310
11.9.1 Absence of chemotherapy . 314
11.9.2 Chemotherapy with low R mutation rate 315
11.9.3 Chemotherapy with considerable R mutation rate 316

12 Death and Birth specification 319
12.1 Changes in nomenclature . 319

5

12.2 Explicit mapping of genotypes to death rates 319

13 Simulating with constant total population size 322

14 Simulating therapeutic interventions and adaptive therapy, and
using user-defined variables 323
14.1 Interventions . 324
14.2 A first example with interventions . 326
14.3 Intervening over the total population 329

14.3.1 Differences between intervening on the total population or over
specific genotypes: when do each occur? 332

14.4 Intervening in Rock-Paper-Scissors model in bacterial comunity . . . 332
14.5 User variables . 337
14.6 Basic example with user variables . 339
14.7 User Variables Example 2 . 342
14.8 Adaptive therapy. Interventions using user variables 345
14.9 Another example of adaptive therapy 347
14.10Adaptive therapy: a canonical example 351

15 Simulating therapeutic interventions that depend on time 357
15.1 Adaptive control of competitive release and chemotherapeutic resistance359

15.1.1 Scenario without chemotherapy 360
15.1.2 Scenario with continuous chemotherapy: fixed dose 363
15.1.3 Scenario with switching doses of chemotherapy 365

15.2 Growth factors as chemotherapy target 367
15.2.1 Scenario without chemotherapy 368
15.2.2 Scenario with GF as target for chemotherapy 371

15.3 Examples using time dependent frequency definition 373
15.3.1 Increasing fitness at a certain timepoint 373
15.3.2 Intervention at a certain point to stop subpopulation growth . 375
15.3.3 Intervention to slow down collapsing populations 378

16 Measures of evolutionary predictability and genotype diversity 381

17 Generating random DAGs for restrictions 383

18 FAQ, odds and ends 385
18.1 What we mean by “clone”; and “I want clones disregarding passengers”385
18.2 Does OncoSimulR keep track of individuals or of clones? And how

can it keep track of such large populations? 386
18.2.1 sampleEvery, keepPhylog, and pruning 386

18.3 Dealing with errors in “oncoSimulPop” 387
18.4 Whole tumor sampling, genotypes, and allele counts: what gives? And

what about order? . 388
18.5 Doesn’t the BNB algorithm require small mutation rates for it to be

advantageous? . 388

6

18.6 Can we use the BNB algorithm with state-dependent birth or death
rates? . 389

18.7 Sometimes I get exceptions when running with mutator genes 389
18.8 What are good values of sampleEvery? 390
18.9 mutationPropGrowth and is mutation associated to division? 391
18.10Messages about ‘Using old version of fitnessEffects’ and ‘v2 function-

ality detected. Adapting to v3 functionality.’ 391

19 Session info and packages used 392
19.1 Time it takes to build the vignette and most time consuming chunks . 393

20 Funding 394

21 References 394

7

1 Introduction
OncoSimulR is an individual- or clone-based forward-time genetic simulator for
biallelic markers (wildtype vs. mutated) in asexually reproducing populations without
spatial structure (perfect mixing). Its design emphasizes flexible specification of
fitness and mutator effects.

OncoSimulR was originally developed to simulate tumor progression with emphasis
on allowing users to set restrictions in the accumulation of mutations as specified, for
example, by Oncogenetic Trees (OT: Desper et al., 1999; Szabo & Boucher, 2008) or
Conjunctive Bayesian Networks (CBN: Beerenwinkel, Eriksson, et al., 2007; Gerstung
et al., 2009; Gerstung, Eriksson, et al., 2011), with the possibility of adding passenger
mutations to the simulations and allowing for several types of sampling.

Since then, OncoSimulR has been vastly extended to allow you to specify other types
of restrictions in the accumulation of genes, such as the XOR models of Korsunsky et
al. (2014) or the “semimonotone” model of Farahani & Lagergren (2013). Moreover,
different fitness effects related to the order in which mutations appear can also
be incorporated, involving arbitrary numbers of genes. This is very different from
“restrictions in the order of accumulation of mutations”. With order effects, described
in a recent cancer paper by Ortmann and collaborators (Ortmann et al., 2015),
the effect of having both mutations “A” and “B” differs depending on whether “A”
appeared before or after “B” (the actual case involves genes JAK2 and TET2).

More generally, OncoSimulR now also allows you to specify arbitrary epistatic inter-
actions between arbitrary collections of genes and to model, for example, synthetic
mortality or synthetic viability (again, involving an arbitrary number of genes, some
of which might also depend on other genes, or show order effects with other genes).
Moreover, it is possible to specify the above interactions in terms of modules, not
genes. This idea is discussed in, for example, Raphael & Vandin (2015) and Gerstung,
Eriksson, et al. (2011): the restrictions encoded in, say, CBNs or OT can be consid-
ered to apply not to genes, but to modules, where each module is a set of genes (and
the intersection between modules is the empty set) that performs a specific biological
function. Modules, then, play the role of a “union operation” over the set of genes in
a module. In addition, arbitrary numbers of genes without interactions (and with
fitness effects coming from any distribution you might want) are also possible.

You can also directly specify the mapping between genotypes and fitness and, thus,
you can simulate on fitness landscapes of arbitrary complexity.

It is now (released initially in this repo as the freq-dep-fitness branch on February
2019) also possible to simulate scenarios with frequency-dependent fitness, where the
fitness of one or more genotypes depends on the relative or absolute frequencies of
other genotypes, as in game theory and adaptive dynamics. This makes it possible
to model predation and parasitism, cooperation and mutualism, and commensalism.
It also allows to model therapeutic interventions (where fitness changes at specified
time points or as a function of the total populations size or as a function of arbitrary
user-defined variables); in particular, it is possible to emulate adaptive therapy
(Hansen & Read (2020b); Hansen & Read (2020a)).

8

Simulations can start from arbitrary initial population compositions and it is also
possible to simulate multiple species. Thus, simulations that involve both ecological
and evolutionary processes are possible.

Mutator/antimutator genes, genes that alter the mutation rate of other genes (Gerrish
et al., 2007; Tomlinson et al., 1996), can also be simulated with OncoSimulR
and specified with most of the mechanisms above (you can have, for instance,
interactions between mutator genes). And, regardless of the presence or not of other
mutator/antimutator genes, different genes can have different mutation rates.

Simulations can be stopped as a function of total population size, number of mutated
driver genes, or number of time periods. Simulations can also be stopped with a
stochastic detection mechanism where the probability of detecting a tumor increases
with total population size. Simulations return the number of cells of every geno-
type/clone at each of the sampling periods and we can take samples from the former
with single-cell or whole- tumor resolution, adding noise if we want. If we ask for
them, simulations also store and return the genealogical relationships of all clones
generated during the simulation.

The models so far implemented are all continuous time models, which are simulated
using the BNB algorithm of Mather et al. (2012). The core of the code is implemented
in C++, providing for fast execution. To help with simulation studies, code to
simulate random graphs of the kind often seen in CBNs, OTs, etc, is also available.
Finally, OncoSimulR also allows for the generation of random fitness landscapes
and the representation of fitness landscapes and provides statistics of evolutionary
predictability.

Funding

Supported by: grant BFU2015-67302-R (MINECO/FEDER, EU) funded
by MCIN/AEI/10.13039/501100011033 and by ERDF A way of mak-
ing Europe to R. Diaz-Uriarte; grant PID2019-111256RB-I00 funded by
MCIN/AEI/10.13039/501100011033 to R. Diaz-Uriarte; “Beca de Colaboración”
at the Universidad Autónoma de Madrid from Spanish Ministry of Education,
2017-18, to S. Sánchez Carrillo; Comunidad de Madrid’s PEJ16/MED/AI-1709 and
PEJ-2019-AI/BMD-13961 to R. Diaz-Uriarte.

9

1.1 Key features of OncoSimulR
As mentioned above, OncoSimulR is now a very general package for forward genetic
simulation, with applicability well beyond tumor progression. This is a summary of
some of its key features:

• You can specify arbitrary interactions between genes, with arbitrary fitness
effects, with explicit support for:

– Restrictions in the accumulations of mutations, as specified by Oncogenetic
Trees (OTs), Conjunctive Bayesian Networks (CBNs), semimonotone
progression networks, and XOR relationships.

– Epistatic interactions including, but not limited to, synthetic viability
and synthetic lethality.

– Order effects.

• You can add passenger mutations.

• You can add mutator/antimutator effects.

• Fitness and mutation rates can be gene-specific.

• You can add arbitrary numbers of non-interacting genes with arbitrary fitness
effects.

• you can allow for deviations from the OT, CBN, semimonotone, and XOR
models, specifying a penalty for such deviations (the sh parameter).

• You can conduct multiple simulations, and sample from them with different
temporal schemes and using both whole tumor or single cell sampling.

• You can stop the simulations using a flexible combination of conditions: final
time, number of drivers, population size, fixation of certain genotypes, and a
stochastic stopping mechanism that depends on population size.

• Right now, three different models are available, two that lead to exponential
growth, one of them loosely based on Bozic et al. (2010), and another that
leads to logistic-like growth, based on McFarland et al. (2013).

• You can use large numbers of genes (e.g., see an example of 50000 in section
6.5.3).

• Simulations are generally very fast: I use C++ to implement the BNB algorithm
(see sections 18.5 and 18.6 for more detailed comments on the usage of this
algorithm).

• You can obtain the true sequence of events and the phylogenetic relationships
between clones (see section 18.1 for the details of what we mean by “clone”).

• You can generate random fitness landscapes (under the House of Cards, Rough
Mount Fuji, or additive models, or combinations of the former and under the
NK model) and use those landscapes as input to the simulation functions.

10

• You can plot fitness landscapes.

• You can obtain statistics of evolutionary predictability from the simulations.

• You can now also use simulations with frequency-dependent fitness: fitness
(birth rate) is not fixed for a genotype, but can be a function of the frequecies
of the clones (see section 10). We can therefore use OncoSimulR to examine,
via simulations, results from game theory and adaptive dynamics and study
complex scenarios that are not amenable to analytical solutions. More generally,
we can model predation and parasitism, cooperation and mutualism, and
commensalism.

• It is possible to start the simulation with arbitrary initial composition (section
6.7) and to simulate multiple species (section 6.8). You can thus run simulations
that involve both ecological and evolutionary processes involving inter-species
relationships plus genetic restrictions in evolution.

• It is possible to simulate many different therapeutic interventions. Section 15
shows examples of interventions where certain genotypes change fitness (because
of chemotherapy) at specified times. More generally, since fitness (birth rates)
can be made a function of total populations sizes and/or frequencies (see section
10), many different arbitrary intervention schemes can be simulated. Possible
models are, of course, not limited to cancer chemotherapy, but could include
antibiotic treatment of bacteria, antiviral therapy, etc.

The table below, modified from the table at the Genetics Simulation Resources (GSR)
page, provides a summary of the key features of OncoSimulR. (An explanation of
the meaning of terms specific to the GSR table is available from https://popmodels.
cancercontrol.cancer.gov/gsr/search/ or from the Genetics Simulation Resources
table itself, by moving the mouse over each term).

11

https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/#detailed
https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/#detailed
https://popmodels.cancercontrol.cancer.gov/gsr/search/
https://popmodels.cancercontrol.cancer.gov/gsr/search/
https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/#detailed
https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/#detailed

Table 1: Key features of OncoSimulR. Modified
from the original table from https://popmodels.ca
ncercontrol.cancer.gov/gsr/packages/oncosimulr
/#detailed .

Attribute Category Attribute
Target

Type of Simulated Data Haploid DNA Sequence
Variations Biallelic Marker, Genotype or Sequencing Error

Simulation Method Forward-time
Type of Dynamical Model Continuous time
Entities Tracked Clones (see 18.2)

Input Program specific (R data frames and matrices
specifying genotypes’ fitness, gene effects, and
starting genotype)

Output
Data Type Genotype or Sequence, Individual Relationship

(complete parent-child relationships between
clones), Demographic (populations sizes of all
clones at sampling times), Diversity Measures
(LOD, POM, diversity of genotypes), Fitness

Sample Type Random or Independent, Longitudinal, Other
(proportional to population size)

Evolutionary Features
Mating Scheme Asexual Reproduction
Demographic

Population Size Changes Exponential (two models), Logistic (McFarland
et al., 2013)

Fitness Components
Birth Rate Individually Determined from Genotype (models

“Exp”, “McFL”, “McFLD”).
Frequency-Dependently Determined from
Genotype (models “Exp”, “McFL”, “McFLD”)

Death Rate Individually Determined from Genotype (model
“Bozic”), Influenced by Environment
—population size (models “McFL” and “McFLD”)

Natural Selection
Determinant Single and Multi-locus, Fitness of Offspring,

Environmental Factors (population size,
genotype frequencies)

Models Directional Selection, Multi-locus models,
Epistasis, Random Fitness Effects,
Frequency-Dependent

Mutation Models Two-allele Mutation Model (wildtype, mutant),
without back mutation

12

https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/#detailed
https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/#detailed
https://popmodels.cancercontrol.cancer.gov/gsr/packages/oncosimulr/#detailed

Attribute Category Attribute
Events Allowed Varying Genetic Features: change of individual

mutation rates (mutator/antimutator genes)
Spatial Structure No Spatial Structure (perfectly mixed and no

migration)

Further details about the original motivation for wanting to simulate data this way
in the context of tumor progression can be found in Diaz-Uriarte (2015), where
additional comments about model parameters and caveats are discussed.

Are there similar programs? The Java program by Reiter et al. (2013), TTP, offers
somewhat similar functionality to the previous version of OncoSimulR, but it is
restricted to at most four drivers (whereas v.1 of OncoSimulR allowed for up to
64), you cannot use arbitrary CBNs or OTs (or XORs or semimonotone graphs) to
specify restrictions, there is no allowance for passengers, and a single type of model
(a discrete time Galton-Watson process) is implemented. The current functionality
of OncoSimulR goes well beyond the the previous version (and, thus, also the TPT
of Reiter et al. (2013)). We now allow you to specify all types of fitness effects
in other general forward genetic simulators such as FFPopSim (Zanini & Neher,
2012), and some that, to our knowledge (e.g., order effects) are not available from
any genetics simulator. In addition, the “Lego system” to flexibly combine different
fitness specifications is also unique; by “Lego system” I mean that we can combine
different pieces and blocks, similarly to what we do with Lego bricks. (I find this an
intuitive and very graphical analogy, which I have copied from Hothorn et al. (2006)
and Hothorn et al. (2008)). In a nutshell, salient features of OncoSimulR compared
to other simulators are the unparalleled flexibility to specify fitness and mutator
effects, with modules and order effects as particularly unique, and the options for
sampling and stopping the simulations, particularly convenient in cancer evolution
models. Also unique in this type of software is the addition of functions for simulating
fitness landscapes and assessing evolutionary predictability.

1.2 What kinds of questions is OncoSimulR suited for?
OncoSimulR can be used to address questions that span from the effect of mutator
genes in cancer to the interplay between fitness landscapes and mutation rates. The
main types of questions that OncoSimulR can help address involve combinations of:

• Simulating asexual evolution (the oncoSimul* functions) where:

– Fitness is:
∗ A function of specific epistatic effects between genes
∗ A function of order effects
∗ A function of epistatic effects specified using DAGs/posets where

these DAGs/posets:
· Are user-specified
· Generated randomly (simOGraph)

13

∗ Any mapping between genotypes and fitness where this mapping is:
· User-specified
· Generated randomly from families of random fitness landscapes

(rfitness)
∗ A function of the frequency of other genotypes (i.e., frequency-

dependent fitness), such as in adaptive dynamics (see section 10
for more details). This also allows you to model competition, cooper-
ation and mutualism, parasitism and predation, and commensalism
between clones.

– Mutation rates can:
∗ Vary between genes
∗ Be affected by other genes

• Examining times to evolutionarily or biomedically relevant events (fixation of
genotypes, reaching a minimal size, acquiring a minimal number of driver genes,
etc —specified with the stopping conditions to the oncoSimul* functions).

• Using different sampling schemes (samplePop) that are related to:

– Assessing genotypes from single-cell vs. whole tumor (or whole population)
with the typeSample argument

– Genotyping error (propError argument)
– Timing of samples (timeSample argument)
– . . . and assessing the consequences of those on the observed genotypes

and their diversity (sampledGenotypes) and any other inferences that
depend on the observational process.

– (OncoSimulR returns the abundances of all genotypes at each of the
sampling points, so you are not restricted by what the samplePop function
provides.)

• Tracking the genealogical relationships of clones (plotClonePhylog) and as-
sessing evolutionary predictability (LOD, POM).

Some specific questions that you can address with the help of OncoSimulR are
discussed in section 1.3.

A quick overview of the main functions and their relationships is shown in Figure 1,
where we use italics for the type/class of R object and courier font for the name of
the functions.

14

allFitnessEffects

Effects of genes
on fitness (list)

allMutatorEffects

Effects of genes
on mutation (list)

Order restrictions
DAG (data frame)

Order
effects
(vector)

Epistasis
(vector)

Non-interacting
genes (vector)

simOGraph

Random
fitness
landscape
(matrix)

rfitness

oncoSimulIndiv
oncoSimulPop

oncoSimulSample

Simulated tra-
jectories (lists)plot

samplePop
sampledGenotypes

Genotypes, genotype
frequencies, diversity
(matrix, data frame)

LOD, POM
diversityLOD/POM

Evolut. predictability
(vector, scalars)

plotClonePhylog

plot

(Plot of fitness landscape)

to Magellan

(text file)

evalAllFitnessEffects
evalAllMutatorEffects

Fitness/mutation of all
genotypes (data frame)

(Plot of genealo-
gies/phylogenies)

plot

(Plot of fitness landscape)

(Plot of genotypes
abundances over time)

Figure 1: Relationships between the main functions
in OncoSimulR.

15

1.3 Examples of questions that can be addressed with On-
coSimulR

Most of the examples in the rest of this vignette, starting with those in 1.7, focus
on the mechanics. Here, we will illustrate some problems in cancer genomics and
evolutionary genetics where OncoSimulR could be of help. This section does not
try to provide an answer to any of these questions (those would be full papers by
themselves). Instead, this section simply tries to illustrate some kinds of questions
where you can use OncoSimulR; of course, the possible uses of OncoSimulR are only
limited by your ingenuity. Here, I will only use short snippets of working code as we
are limited by time of execution; for real work you would want to use many more
scenarios and many more simulations, you would use appropriate statistical methods
to compare the output of runs, etc, etc, etc.
Load the package
library(OncoSimulR)

1.3.1 Recovering restrictions in the order of accumulation of mutations

This is a question that was addressed, for instance, in Diaz-Uriarte (2015): do
methods that try to infer restrictions in the order of accumulation of mutations
(Gerstung et al., 2009; Ramazzotti et al., 2015; e.g., Szabo & Boucher, 2008) work
well under different evolutionary models and with different sampling schemes?

A possible way to examine that question would involve:

• generating random DAGs that encode restrictions;
• simulating cancer evolution using those DAGs;
• sampling the data and adding different levels of noise to the sampled data;
• running the inferential method;
• comparing the inferred DAG with the original, true, one.

For reproducibility
set.seed(2)
RNGkind("L'Ecuyer-CMRG")

Simulate a DAG
g1 <- simOGraph(4, out = "rT")

Simulate 10 evolutionary trajectories
s1 <- oncoSimulPop(10, allFitnessEffects(g1, drvNames = 1:4),

onlyCancer = TRUE,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility of vignette

Sample those data uniformly, and add noise
d1 <- samplePop(s1, timeSample = "unif", propError = 0.1)
##
Subjects by Genes matrix of 10 subjects and 4 genes.

16

You would now run the appropriate inferential method and
compare observed and true. For example

require(Oncotree)
fit1 <- oncotree.fit(d1)

Now, you'd compare fitted and original. This is well beyond
the scope of this document (and OncoSimulR itself).

1.3.2 Sign epistasis and probability of crossing fitness valleys

This question, and the question in the next section (1.3.3), encompass a wide range
of issues that have been addressed in evolutionary genetics studies and which include
from detailed analysis of simple models with a few uphill paths and valleys as in
Weissman et al. (2009) or Ochs & Desai (2015), to questions that refer to larger,
more complex fitness landscapes as in Szendro, Franke, et al. (2013) or Franke et al.
(2011) or Krug (2019) (see below).

Using as an example Ochs & Desai (2015) (we will see this example again in
section 5.3, where we cover different ways of specifying fitness), we could specify
the fitness landscape and run simulations until fixation (with argument fixation to
oncoSimulPop —see more details in section 6.3.3 and 6.3.4, again with this example).
We would then examine the proportion of genotypes fixed under different scenarios.
And we can extend this example by adding mutator genes:
For reproducibility
set.seed(2)
RNGkind("L'Ecuyer-CMRG")

Specify fitness effects.

Numeric values arbitrary, but set the intermediate genotype en
route to ui as mildly deleterious so there is a valley.

As in Ochs and Desai, the ui and uv genotypes
can never appear.

u <- 0.2; i <- -0.02; vi <- 0.6; ui <- uv <- -Inf

od <- allFitnessEffects(
epistasis = c("u" = u, "u:i" = ui,

"u:v" = uv, "i" = i,
"v:-i" = -Inf, "v:i" = vi))

For the sake of extending this example, also turn i into a

17

mutator gene

odm <- allMutatorEffects(noIntGenes = c("i" = 50))

How do mutation and fitness look like for each genotype?
evalAllGenotypesFitAndMut(od, odm, addwt = TRUE)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Birth MutatorFactor
1 WT 1.000 1
2 i 0.980 50
3 u 1.200 1
4 v 0.000 1
5 i, u 0.000 50
6 i, v 1.568 50
7 u, v 0.000 1
8 i, u, v 0.000 50

Ochs and Desai explicitly say “Each simulated population was evolved until either
the uphill genotype or valley-crossing genotype fixed.” So we will use fixation.
Set a small initSize, as o.w. unlikely to pass the valley
initS <- 10
The number of replicates is tiny, for the sake of speed
of creation of the vignette. Even fewer in Windows, since we run on a single
core

if(.Platform$OS.type == "windows") {
nruns <- 4

} else {
nruns <- 10

}

od_sim <- oncoSimulPop(nruns, od, muEF = odm,
fixation = c("u", "i, v"), initSize = initS,
model = "McFL",
mu = 1e-4, detectionDrivers = NA,
finalTime = NA,
detectionSize = NA, detectionProb = NA,
onlyCancer = TRUE,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

What is the frequency of each final genotype?
sampledGenotypes(samplePop(od_sim))
##
Subjects by Genes matrix of 10 subjects and 3 genes.
Genotype Freq

18

1 i, v 4
2 u 6
##
Shannon's diversity (entropy) of sampled genotypes: 0.673

1.3.3 Predictability of evolution in complex fitness landscapes

Focusing now on predictability in more general fitness landscapes, we would run
simulations under random fitness landscapes with varied ruggedness, and would then
examine the evolutionary predictability of the trajectories with measures such as
“Lines of Descent” and “Path of the Maximum” (Szendro, Franke, et al., 2013) and
the diversity of the sampled genotypes under different sampling regimes (see details
in section 16). (See also related comments in section 1.5).
For reproducibility
set.seed(7)
RNGkind("L'Ecuyer-CMRG")

Repeat the following loop for different combinations of whatever
interests you, such as number of genes, or distribution of the
c and sd (which affect how rugged the landscape is), or
reference genotype, or evolutionary model, or stopping criterion,
or sampling procedure, or ...

Generate a random fitness landscape, from the Rough Mount
Fuji model, with g genes, and c ("slope" constant) and
reference chosen randomly (reference is random by default and
thus not specified below). Require a minimal number of
accessible genotypes

g <- 6
c <- runif(1, 1/5, 5)
rl <- rfitness(g, c = c, min_accessible_genotypes = g)

Plot it if you want; commented here as it takes long for a
vignette

plot(rl)

Obtain landscape measures from MAGELLAN. Export to MAGELLAN and
call your own copy of MAGELLAN's binary

to_Magellan(rl, file = "rl1.txt") ## (Commented out here to avoid writing files)

or use the binary copy provided with OncoSimulR

19

see also below.

Magellan_stats(rl) ## (Commented out here to avoid writing files)
ngeno npeaks nsinks gamma gamma. r.s
64.000 2.000 1.000 0.769 0.854 0.372
nchains nsteps nori depth magn sign
1.000 5.000 4.000 2.000 0.863 0.129
rsign f.1. X.2. f.3.. mode_f outD_m
0.008 0.916 0.010 0.074 1.000 0.346
outD_v steps_m reach_m fitG_m opt_i mProbOpt_0
1.587 3.052 13.597 32.452 60.000 0.128
opt_i.1 mProbOpt_1
63.000 0.872

Simulate evolution in that landscape many times (here just 10)
simulrl <- oncoSimulPop(10, allFitnessEffects(genotFitness = rl),

keepPhylog = TRUE, keepEvery = 1,
onlyCancer = TRUE,
initSize = 4000,
seed = NULL, ## for reproducibility
mc.cores = 2) ## adapt to your hardware

Obtain measures of evolutionary predictability
diversityLOD(LOD(simulrl))
[1] 1.418

diversityPOM(POM(simulrl))
[1] 1.418

sampledGenotypes(samplePop(simulrl, typeSample = "whole"))
##
Subjects by Genes matrix of 10 subjects and 6 genes.
Genotype Freq
1 A 1
2 B 1
3 D, F 1
4 E 4
5 F 3
##
Shannon's diversity (entropy) of sampled genotypes: 1.418

1.3.4 Mutator and antimutator genes

The effects of mutator and antimutator genes have been examined both in cancer
genetics (Nowak, 2006; Tomlinson et al., 1996) and in evolutionary genetics (Gerrish
et al., 2007), and are related to wider issues such as Muller’s ratchet and the evolution
of sex. There are, thus, a large range of questions related to mutator and antimutator

20

genes.

One question addressed in Tomlinson et al. (1996) concerns under what circumstances
mutator genes are likely to play a role in cancer progression. For instance, Tomlinson
et al. (1996) find that an increased mutation rate is more likely to matter if the
number of required mutations in driver genes needed to reach cancer is large and if
the mutator effect is large.

We might want to ask, then, how long it takes before to reach cancer under different
scenarios. Time to reach cancer is stored in the component FinalTime of the output.
We would specify different numbers and effects of mutator genes (argument muEF).
We would also change the criteria for reaching cancer and in our case we can easily
do that by specifying different numbers in detectionDrivers. Of course, we would
also want to examine the effects of varying numbers of mutators, drivers, and possibly
fitness consequences of mutators. Below we assume mutators are neutral and we
assume there are no additional genes with deleterious mutations, but this need not
be so, of course (Gerrish et al., 2007; McFarland et al., 2014; see also Tomlinson et
al., 1996).

Let us run an example. For the sake of simplicity, we assume no epistatic interactions.
sd <- 0.1 ## fitness effect of drivers
sm <- 0 ## fitness effect of mutator
nd <- 20 ## number of drivers
nm <- 5 ## number of mutators
mut <- 10 ## mutator effect

fitnessGenesVector <- c(rep(sd, nd), rep(sm, nm))
names(fitnessGenesVector) <- 1:(nd + nm)
mutatorGenesVector <- rep(mut, nm)
names(mutatorGenesVector) <- (nd + 1):(nd + nm)

ft <- allFitnessEffects(noIntGenes = fitnessGenesVector,
drvNames = 1:nd)

mt <- allMutatorEffects(noIntGenes = mutatorGenesVector)

Now, simulate using the fitness and mutator specification. We fix the number of
drivers to cancer, and we stop when those numbers of drivers are reached. Since we
only care about the time it takes to reach cancer, not the actual trajectories, we set
keepEvery = NA:
For reproducibility
set.seed(2)
RNGkind("L'Ecuyer-CMRG")

ddr <- 4
st <- oncoSimulPop(4, ft, muEF = mt,

detectionDrivers = ddr,

21

finalTime = NA,
detectionSize = NA,
detectionProb = NA,
onlyCancer = TRUE,
keepEvery = NA,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

How long did it take to reach cancer?
unlist(lapply(st, function(x) x$FinalTime))
[1] 370 141 1793 282

(Incidentally, notice that it is easy to get OncoSimulR to throw an exception if you
accidentally specify a huge mutation rate when all mutator genes are mutated: see
section 18.7.)

1.3.5 Epistatic interactions between drivers and passengers in cancer
and the consequences of order effects

1.3.5.1 Epistatic interactions between drivers and passengers Bauer et
al. (2014) have examined the effects of epistatic relationships between drivers and
passengers in cancer initiation. We could use their model as a starting point, and
examine how likely cancer is to develop under different variations of their model and
different evolutionary scenarios (e.g., initial sample size, mutation rates, evolutionary
model, etc).

There are several ways to specify their model, as we discuss in section 5.1. We will
use one based on DAGs here:
K <- 4
sp <- 1e-5
sdp <- 0.015
sdplus <- 0.05
sdminus <- 0.1

cnt <- (1 + sdplus)/(1 + sdminus)
prod_cnt <- cnt - 1
bauer <- data.frame(parent = c("Root", rep("D", K)),

child = c("D", paste0("s", 1:K)),
s = c(prod_cnt, rep(sdp, K)),
sh = c(0, rep(sp, K)),
typeDep = "MN")

fbauer <- allFitnessEffects(bauer)
(b1 <- evalAllGenotypes(fbauer, order = FALSE, addwt = TRUE))
Genotype Birth
1 WT 1.0000
2 D 0.9545

22

3 s1 1.0000
4 s2 1.0000
5 s3 1.0000
6 s4 1.0000
7 D, s1 0.9689
8 D, s2 0.9689
9 D, s3 0.9689
10 D, s4 0.9689
11 s1, s2 1.0000
12 s1, s3 1.0000
13 s1, s4 1.0000
14 s2, s3 1.0000
15 s2, s4 1.0000
16 s3, s4 1.0000
17 D, s1, s2 0.9834
18 D, s1, s3 0.9834
19 D, s1, s4 0.9834
20 D, s2, s3 0.9834
21 D, s2, s4 0.9834
22 D, s3, s4 0.9834
23 s1, s2, s3 1.0000
24 s1, s2, s4 1.0000
25 s1, s3, s4 1.0000
26 s2, s3, s4 1.0000
27 D, s1, s2, s3 0.9981
28 D, s1, s2, s4 0.9981
29 D, s1, s3, s4 0.9981
30 D, s2, s3, s4 0.9981
31 s1, s2, s3, s4 1.0000
32 D, s1, s2, s3, s4 1.0131

How does the fitness landscape look like?
plot(b1, use_ggrepel = TRUE) ## avoid overlapping labels
Warning: ggrepel: 12 unlabeled data points (too many overlaps).
Consider increasing max.overlaps

23

WT

s1
s2

s3
s4

D, s1

D, s2
D, s3

D, s4

s1, s2, s3
s1, s2, s4

s1, s3, s4
s2, s3, s4

D, s1, s2, s3D, s1, s2, s4

D, s1, s3, s4
D, s2, s3, s4

s1, s2, s3, s4

D

D, s1, s2, s3, s4

0.96

0.97

0.98

0.99

1.00

1.01

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

Now run simulations and examine how frequently the runs end up with population
sizes larger than a pre-specified threshold; for instance, below we look at increasing
population size 4x in the default maximum number of 2281 time periods (for real,
you would of course increase the number of total populations, the range of initial
population sizes, model, mutation rate, required population size or number of drivers,
etc):
For reproducibility
set.seed(2)
RNGkind("L'Ecuyer-CMRG")

totalpops <- 5
initSize <- 100
sb1 <- oncoSimulPop(totalpops, fbauer, model = "Exp",

initSize = initSize,
onlyCancer = FALSE,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

What proportion of the simulations reach 4x initSize?
sum(summary(sb1)[, "TotalPopSize"] > (4 * initSize))/totalpops
[1] 0.2

Alternatively, to examine how long it takes to reach cancer for a pre-specified size, you
could look at the value of FinalTime as we did above (section 1.3.4) after running
simulations with onlyCancer = TRUE and detectionSize set to some reasonable
value:

24

totalpops <- 5
initSize <- 100
sb2 <- oncoSimulPop(totalpops, fbauer, model = "Exp",

initSize = initSize,
onlyCancer = TRUE,
detectionSize = 10 * initSize,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

How long did it take to reach cancer?
unlist(lapply(sb2, function(x) x$FinalTime))
[1] 416 354 339 445 215

1.3.5.2 Consequences of order effects for cancer initiation Instead of
focusing on different models for epistatic interactions, you might want to examine the
consequences of order effects (Ortmann et al., 2015). You would proceed as above,
but using models that differ by, say, the presence or absence of order effects. Details
on their specification are provided in section 3.6. Here is one particular model (you
would, of course, want to compare this to models without order effects or with other
magnitudes and types of order effects):
Order effects involving three genes.

Genotype "D, M" has different fitness effects
depending on whether M or D mutated first.
Ditto for genotype "F, D, M".

Meaning of specification: X > Y means
that X is mutated before Y.

o3 <- allFitnessEffects(orderEffects = c(
"F > D > M" = -0.3,
"D > F > M" = 0.4,
"D > M > F" = 0.2,
"D > M" = 0.1,
"M > D" = 0.5))

With the above specification, let's double check
the fitness of the possible genotypes

(oeag <- evalAllGenotypes(o3, addwt = TRUE, order = TRUE))
Genotype Birth
1 WT 1.00
2 D 1.00
3 F 1.00

25

4 M 1.00
5 D > F 1.00
6 D > M 1.10
7 F > D 1.00
8 F > M 1.00
9 M > D 1.50
10 M > F 1.00
11 D > F > M 1.54
12 D > M > F 1.32
13 F > D > M 0.77
14 F > M > D 1.50
15 M > D > F 1.50
16 M > F > D 1.50

Now, run simulations and examine how frequently the runs do not end up in extinction.
As above, for real, you would of course increase the number of total populations, the
range of initial population sizes, mutation rate, etc:
For reproducibility
set.seed(2)
RNGkind("L'Ecuyer-CMRG")

totalpops <- 5
soe1 <- oncoSimulPop(totalpops, o3, model = "Exp",

initSize = 500,
onlyCancer = FALSE,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

What proportion of the simulations do not end up extinct?
sum(summary(soe1)[, "TotalPopSize"] > 0)/totalpops
[1] 0.4

As we just said, alternatively, to examine how long it takes to reach cancer you could
run simulations with onlyCancer = TRUE and look at the value of FinalTime as we
did above (section 1.3.4).

1.3.6 Simulating evolution with frequency-dependent fitness

The new frequency-dependent fitness funcionality allows users to run simulations in
a different way, defining fitness (birth rates) as functions of clone’s frequencies. We
can thus model frequency-dependent selection, as well as predation and parasitism,
cooperation and mutualism, and commensalism. See section 10 for further details
and examples.

26

1.4 Trade-offs and what is OncoSimulR not well suited for
OncoSimulR is designed for complex fitness specifications and selection scenarios and
uses forward-time simulations; the types of questions where OncoSimulR can be of
help are discussed in sections 1.2 and 1.3 and running time and space consumption
of OncoSimulR are addressed in section 2. You should be aware that coalescent
simulations, sometimes also called backward-time simulations, are much more
efficient for simulating neutral data as well as some special selection scenarios
(Carvajal-Rodriguez, 2010; Hoban et al., 2011; Yuan et al., 2012).

In addition, since OncoSimulR allows you to specify fitness with arbitrary epistatic
and order effects, as well as mutator effects, you need to learn the syntax of how to
specify those effects and you might be paying a performance penalty if your scenario
does not require this complexity. For instance, in the model of Beerenwinkel, Antal,
et al. (2007), the fitness of a genotype depends only on the total number of drivers
mutated, but not on which drivers are mutated (and, thus, not on the epistatic
interactions nor the order of accumulation of the drivers). This means that the
syntax for specifying that model could probably be a lot simpler (e.g., specify s per
driver).

But it also means that code written for just that case could probably run much faster.
First, because fitness evaluation is easier. Second, and possibly much more important,
because what we need to keep track of leads to much simpler and economic structures:
we do not need to keep track of clones (where two cells are regarded as different
clones if they differ anywhere in their genotype), but only of clone types or clone
classes as defined by the number of mutated drivers, and keeping track of clones can
be expensive —see sections 2 and 18.2.

So for those cases where you do not need the full flexibility of OncoSimulR, special
purpose software might be easier to use and faster to run. Of course, for some types
of problems this special purpose software might not be available, though.

1.5 Random fitness landscapes, clonal competition, pre-
dictability, and the strong selection weak mutation
(SSWM) regime

Many studies about evolutionary predictability (among other topics) focus on the
strong selection, weak mutation regime, SSWM (Gillespie, 1984; Orr, 2002) (see
overview in Krug (2019)). In this regime, mutations are rare (much smaller than the
mutation rate times the population size) and selection is strong (much larger than
1/population size), so that the population consists of a single clone most of the time,
and evolution proceeds by complete, successive clonal expansions of advantageous
mutations.

We can easily simulate variations around these scenarios with OncoSimulR, moving
away from the SSWM by increasing the population size, or changing the size of the
fitness differences.

The examples below, not run for the sake of speed, play with population size and

27

fitness differences. To make sure we use a similar fitness landscape, we use the
same simulated fitness landscape, scaled differently, so that the differences in fitness
between mutants are increased or decreased while keeping their ranking identical
(and, thus, having the same set of accessible and inaccessible genotypes and paths
over the landscape).

If you run the code, you will see that as we increase population size we move further
away from the SSWM: the population is no longer composed of a single clone most
of the time.

Before running the examples, and to show the effects quantitatively, we define a
simple wrapper to compute a few statistics.
oncoSimul object -> measures of clonal interference
they are not averaged over time. One value for sampled time
clonal_interf_per_time <- function(x) {

x <- x$pops.by.time
y <- x[, -1, drop = FALSE]
shannon <- apply(y, 1, OncoSimulR:::shannonI)
tot <- rowSums(y)
half_tot <- tot * 0.5
five_p_tot <- tot * 0.05
freq_most_freq <- apply(y/tot, 1, max)
single_more_half <- rowSums(y > half_tot)
whether more than 1 clone with more than 5% pop.
how_many_gt_5p <- rowSums(y > five_p_tot)
several_gt_5p <- (how_many_gt_5p > 1)
return(cbind(shannon, ## Diversity of clones

freq_most_freq, ## Frequency of the most freq. clone
single_more_half, ## Any clone with a frequency > 50%?
several_gt_5p, ## Are there more than 1 clones with

frequency > 5%?
how_many_gt_5p ## How many clones are there with

frequency > 5%
))

}

set.seed(1)
r7b <- rfitness(7, scale = c(1.2, 0, 1))

Large pop sizes: clonal interference
(sr7b <- oncoSimulIndiv(allFitnessEffects(genotFitness = r7b),

model = "McFL",
mu = 1e-6,
onlyCancer = FALSE,
finalTime = 400,
initSize = 1e7,
keepEvery = 4,

28

detectionSize = 1e10))

plot(sr7b, show = "genotypes")

colMeans(clonal_interf_per_time(sr7b))

Small pop sizes: a single clone most of the time
(sr7c <- oncoSimulIndiv(allFitnessEffects(genotFitness = r7b),

model = "McFL",
mu = 1e-6,
onlyCancer = FALSE,
finalTime = 60000,
initSize = 1e3,
keepEvery = 4,
detectionSize = 1e10))

plot(sr7c, show = "genotypes")

colMeans(clonal_interf_per_time(sr7c))

Even smaller fitness differences, but large pop. sizes
set.seed(1); r7b2 <- rfitness(7, scale = c(1.05, 0, 1))

(sr7b2 <- oncoSimulIndiv(allFitnessEffects(genotFitness = r7b2),
model = "McFL",
mu = 1e-6,
onlyCancer = FALSE,
finalTime = 3500,
initSize = 1e7,
keepEvery = 4,
detectionSize = 1e10))

sr7b2
plot(sr7b2, show = "genotypes")
colMeans(clonal_interf_per_time(sr7b2))

Increase pop size further
(sr7b3 <- oncoSimulIndiv(allFitnessEffects(genotFitness = r7b2),

model = "McFL",
mu = 1e-6,
onlyCancer = FALSE,
finalTime = 1500,
initSize = 1e8,
keepEvery = 4,

29

detectionSize = 1e10))
sr7b3
plot(sr7b3, show = "genotypes")
colMeans(clonal_interf_per_time(sr7b3))

30

1.6 Steps for using OncoSimulR
Using this package will often involve the following steps:

1. Specify fitness effects: sections 3 and 5.

2. Simulate cancer progression: section 6. You can simulate for a single individual
or subject or for a set of subjects. You will need to:

• Decide on a model. This basically amounts to choosing a model with
exponential growth (“Exp” or “Bozic”) or a model with carrying capacity
(“McFL”). If exponential growth, you can choose whether the the effects of
mutations operate on the death rate (“Bozic”) or the birth rate (“Exp”)1.

• Specify other parameters of the simulation. In particular, decide when to
stop the simulation, mutation rates, etc.

Of course, at least for initial playing around, you can use the defaults.

3. Sample from the simulated data and do something with those simulated data
(e.g., fit an OT model to them, examine diversity or time until cancer, etc).
Most of what you do with the data, however, is outside the scope of this
package and this vignette.

Before anything else, let us load the package in case it was not yet loaded. We also
explicitly load graph and igraph for the vignette to work (you do not need that for
your usual interactive work). And I set the default color for vertices in igraph.
library(OncoSimulR)
library(graph)
library(igraph)
igraph_options(vertex.color = "SkyBlue2")

To be explicit, what version are we running?
packageVersion("OncoSimulR")
[1] '4.7.1'

1.7 Two quick examples of fitness specifications
Following 1.6 we will run two very minimal examples. First a model with a few genes
and epistasis:
1. Fitness effects: here we specify an
epistatic model with modules.
sa <- 0.1
sb <- -0.2
sab <- 0.25

1It is of course possible to do this with the carrying capacity (or gompertz-like) models, but
there probably is little reason to do it. McFarland et al. (2013) discuss this has little effect on
their results, for example. In addition, decreasing the death rate will more easily lead to numerical
problems as shown in section 3.11.2.

31

https://bioconductor.org/packages/3.20/graph
https://CRAN.R-project.org/package=igraph

sac <- -0.1
sbc <- 0.25
sv2 <- allFitnessEffects(epistasis = c("-A : B" = sb,

"A : -B" = sa,
"A : C" = sac,
"A:B" = sab,
"-A:B:C" = sbc),

geneToModule = c(
"A" = "a1, a2",
"B" = "b",
"C" = "c"),

drvNames = c("a1", "a2", "b", "c"))
evalAllGenotypes(sv2, addwt = TRUE)
Genotype Birth
1 WT 1.000
2 a1 1.100
3 a2 1.100
4 b 0.800
5 c 1.000
6 a1, a2 1.100
7 a1, b 1.250
8 a1, c 0.990
9 a2, b 1.250
10 a2, c 0.990
11 b, c 1.000
12 a1, a2, b 1.250
13 a1, a2, c 0.990
14 a1, b, c 1.125
15 a2, b, c 1.125
16 a1, a2, b, c 1.125

2. Simulate the data. Here we use the "McFL" model and set
explicitly parameters for mutation rate, initial size, size
of the population that will end the simulations, etc

RNGkind("Mersenne-Twister")
set.seed(983)
ep1 <- oncoSimulIndiv(sv2, model = "McFL",

mu = 5e-6,
sampleEvery = 0.025,
keepEvery = 0.5,
initSize = 2000,
finalTime = 3000,
onlyCancer = FALSE)

32

3. We will not analyze those data any further. We will only plot
them. For the sake of a small plot, we thin the data.
plot(ep1, show = "drivers", xlim = c(0, 1500),

thinData = TRUE, thinData.keep = 0.5)

0 500 1000 1500

1
5

50
50

0

Time units

N
um

be
r

of
 c

el
ls

0 500 1000 1500

1
5

50
50

0

Number of drivers

0
1
2
3

Figure 2: Plot of drivers of an epistasis simulation.

As a second example, we will use a model where we specify restrictions in the
order of accumulation of mutations using a DAG with the pancreatic cancer
poset in Gerstung, Eriksson, et al. (2011) (see more details in section 5.5):
1. Fitness effects:
pancr <- allFitnessEffects(

data.frame(parent = c("Root", rep("KRAS", 4),
"SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),

child = c("KRAS","SMAD4", "CDNK2A",
"TP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),

s = 0.1,
sh = -0.9,
typeDep = "MN"),

drvNames = c("KRAS", "SMAD4", "CDNK2A", "TP53",
"MLL3", "TGFBR2", "PXDN"))

Plot the DAG of the fitnessEffects object
plot(pancr)

33

Root

KRAS

SMAD4 CDNK2A TP53 MLL3

PXDN TGFBR2

Figure 3: Plot of DAG corresponding to fitnessEf-
fects object.

2. Simulate from it. We change several possible options.

set.seed(1) ## Fix the seed, so we can repeat it
We set a small finalTime to speed up the vignette

ep2 <- oncoSimulIndiv(pancr, model = "McFL",
mu = 1e-6,
sampleEvery = 0.02,
keepEvery = 1,
initSize = 1000,
finalTime = 20000,
detectionDrivers = 3,
onlyCancer = FALSE)

3. What genotypes and drivers we get? And play with limits
to show only parts of the data. We also aggressively thin
the data.
par(cex = 0.7)
plot(ep2, show = "genotypes", xlim = c(500, 1800),

ylim = c(0, 2400),
thinData = TRUE, thinData.keep = 0.3)

34

600 800 1000 1200 1400 1600 1800

0
50

0
10

00
15

00
20

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
CDNK2A
CDNK2A, KRAS
CDNK2A, KRAS, MLL3
CDNK2A, KRAS, PXDN
CDNK2A, KRAS, TGFBR2
CDNK2A, KRAS, TP53
KRAS

KRAS, MLL3
KRAS, TP53
MLL3
PXDN
SMAD4
TGFBR2
TP53

Figure 4: Plot of genotypes of a simulation from a
DAG.

The rest of this vignette explores all of those functions and arguments in much more
detail.

1.8 Citing OncoSimulR and other documentation
In R, you can do
citation("OncoSimulR")
If you use OncoSimulR, please cite the OncoSimulR
Bioinformatics paper. OncoSimulR has been used in three
large comparative studies of methods to infer restrictions
in the order of accumulation of mutations (cancer
progression models) published in PLoS Computational Biology,
Bioinformatics and BMC Bioinformatics; you might want to
cite those too, if appropriate, such as when referring to
using evolutionary simulations to assess oncogenetic
tree/cancer progression methods performance.
##
R Diaz-Uriarte. OncoSimulR: genetic simulation with
arbitrary epistasis and mutator genes in asexual
populations. 2017. Bioinformatics, 33, 1898--1899.
https://doi.org/10.1093/bioinformatics/btx077.

35

##
R Diaz-Uriarte and C. Vasallo. Every which way? On
predicting tumor evolution using cancer progression models
2019 PLoS Computational Biology
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007246
##
R Diaz-Uriarte. Cancer progression models and fitness
landscapes: a many-to-many relationship 2017
Bioinformatics.
https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btx663/
##
R Diaz-Uriarte. Identifying restrictions in the order of
accumulation of mutations during tumor progression:
effects of passengers, evolutionary models, and sampling
2015. BMC Bioinformatics, 16(41).
##
To see these entries in BibTeX format, use
'print(<citation>, bibtex=TRUE)', 'toBibtex(.)', or set
'options(citation.bibtex.max=999)'.

which will tell you how to cite the package. Please, do cite the Bionformatics paper
if you use the package in publications.

This is the URL for the Bioinformatics paper: https://doi.org/10.1093/bioinformati
cs/btx077 (there is also an early preprint at bioRxiv, but it should now point to the
Bioinformatics paper).

1.8.1 HTML and PDF versions of the vignette

A PDF version of this vignette is available from https://rdiaz02.github.io/OncoSimu
l/pdfs/OncoSimulR.pdf. And an HTML version from https://rdiaz02.github.io/
OncoSimul/OncoSimulR.html. These files should correspond to the most recent,
GitHub version, of the package (i.e., they might include changes not yet available
from the BioConductor package). Beware that the PDF might have figures and R
code that do not fit on the page, etc.

1.9 Testing, code coverage, and other examples
OncoSimulR includes more than 2000 tests that are run at every check cycle. These
tests provide a code coverage of more than 90% including both the C++ and R code.
Another set of over 500 long-running (several hours) tests can be run on demand
(see directory ‘/tests/manual’). In addition to serving as test cases, some of that
code also provides further examples of usage.

36

https://doi.org/10.1093/bioinformatics/btx077
https://doi.org/10.1093/bioinformatics/btx077
http://biorxiv.org/content/early/2016/08/14/069500
https://rdiaz02.github.io/OncoSimul/pdfs/OncoSimulR.pdf
https://rdiaz02.github.io/OncoSimul/pdfs/OncoSimulR.pdf
https://rdiaz02.github.io/OncoSimul/OncoSimulR.html
https://rdiaz02.github.io/OncoSimul/OncoSimulR.html

1.10 Versions
In this vignette and the documentation I often refer to version 1 (v.1) and version 2
of OncoSimulR. Version 1 is the version available up to, and including, BioConductor
v. 3.1. Version 2 of OncoSimulR is available starting from BioConductor 3.2 (and,
of course, available too from development versions of BioC). So, if you are using the
current stable or development version of BioConductor, or you grab the sources from
GitHub (https://github.com/rdiaz02/OncoSimul) you are using what we call version
2. The functionality of version 1 has been removed.

Version 3 (for BioConductor 3.13) made frequency dependent fitness available in the
stable version.

Version 4 (BioConductor 3.16) introduces interventions and the possibility to specify,
separately, birth and death (including frequency dependence).

37

https://github.com/rdiaz02/OncoSimul

2 Running time and space consumption of On-
coSimulR

Time to complete the simulations and size of returned objects (space consumption)
depend on several, interacting factors. The usual rule of “experiment before launching
a large number of simulations” applies, but here we will walk through several cases to
get a feeling for the major factors that affect speed and size. Many of the comments
on this section need to use ideas discussed in other places of this document; if you
read this section first, you might want to come back after reading the relevant parts.

Speed will depend on:

• Your hardware, of course.
• The evolutionary model.
• The granularity of how often you keep data (keepEvery argument). Note that

the default, which is to keep as often as you sample (so that we preserve all
history) can lead to slow execution times.

• The mutation rate, because higher mutation rates lead to more clones, and
more clones means we need to iterate over, well, more clones, and keep larger
data structures.

• The fitness specification: more complex fitness specifications tend to be slightly
slower but specially different fitness specifications can have radically different
effects on the evolutionary trajectories, accessibility of fast growing genotypes
and, generally, the evolutionary dynamics.

• The stopping conditions (detectionProb, detectionDrivers, detectionSize
arguments) and whether or not simulations are run until cancer is reached
(onlyCancer argument).

• Most of the above factors can interact in complex ways.

Size of returned objects will depend on:

• Any factor that affects the number of clones tracked/returned, in particular:
initial sizes and stopping conditions, mutation rate, and how often you keep
data (the keepEvery argument can make a huge difference here).

• Whether or not you keep the complete genealogy of clones (this affects slightly
the size of returned object, not speed).

In the sections that follow, we go over several cases to understand some of the main
settings that affect running time (or execution time) and space consumption (the size
of returned objects). It should be understood, however, that many of the examples
shown below do not represent typical use cases of OncoSimulR and are used only to
identify what and how affects running time and space consumption. As we will see
in most examples in this vignette, typical use cases of OncoSimulR involve hundreds
to thousands of genes on population sizes up to 105 to 107.

Note that most of the code in this section is not executed during the building of the
vignette to keep vignette build time reasonable and prevent using huge amounts of
RAM. All of the code, ready to be sourced and run, is available from the ‘inst/miscell’
directory (and the summary output from some of the benchmarks is available from

38

the ‘miscell-files/vignette_bench_Rout’ directory of the main OncoSimul repository
at https://github.com/rdiaz02/OncoSimul).

2.1 Exp and McFL with “detectionProb” and pancreas ex-
ample

To get familiar with some of they factors that affect time and size, we will use the
fitness specification from section 1.7, with the detectionProb stopping mechanism
(see 6.3.2). We will use the two main growth models (exponential and McFarland).
Each model will be run with two settings of keepEvery. With keepEvery = 1 (runs
exp1 and mc1), population samples are stored at time intervals of 1 (even if most
of the clones in those samples later become extinct). With keepEvery = NA (runs
exp2 and mc2) no intermediate population samples are stored, so clones that become
extinct at any sampling period are pruned and only the existing clones at the end of
the simulation are returned (see details in 18.2.1).

Will run 100 simulations. The results I show are for a laptop with an 8-core Intel Xeon
E3-1505M CPU, running Debian GNU/Linux (the results from these benchmarks
are available as data(benchmark_1)).
Specify fitness
pancr <- allFitnessEffects(

data.frame(parent = c("Root", rep("KRAS", 4),
"SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),

child = c("KRAS","SMAD4", "CDNK2A",
"TP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),

s = 0.1,
sh = -0.9,
typeDep = "MN"),

drvNames = c("KRAS", "SMAD4", "CDNK2A", "TP53",
"MLL3", "TGFBR2", "PXDN"))

Nindiv <- 100 ## Number of simulations run.
Increase this number to decrease sampling variation

keepEvery = 1
t_exp1 <- system.time(

exp1 <- oncoSimulPop(Nindiv, pancr,
onlyCancer = TRUE,
detectionProb = "default",
detectionSize = NA,
detectionDrivers = NA,

finalTime = NA,
keepEvery = 1,
model = "Exp",

39

https://github.com/rdiaz02/OncoSimul

mc.cores = 1))["elapsed"]/Nindiv

t_mc1 <- system.time(
mc1 <- oncoSimulPop(Nindiv, pancr,

onlyCancer = TRUE,
detectionProb = "default",
detectionSize = NA,
detectionDrivers = NA,

finalTime = NA,
keepEvery = 1,
model = "McFL",
mc.cores = 1))["elapsed"]/Nindiv

keepEvery = NA
t_exp2 <- system.time(

exp2 <- oncoSimulPop(Nindiv, pancr,
onlyCancer = TRUE,
detectionProb = "default",
detectionSize = NA,

detectionDrivers = NA,
finalTime = NA,
keepEvery = NA,
model = "Exp",
mc.cores = 1))["elapsed"]/Nindiv

t_mc2 <- system.time(
mc2 <- oncoSimulPop(Nindiv, pancr,

onlyCancer = TRUE,
detectionProb = "default",
detectionSize = NA,

detectionDrivers = NA,
finalTime = NA,
keepEvery = NA,
model = "McFL",
mc.cores = 1))["elapsed"]/Nindiv

We can obtain times, sizes of objects, and summaries of numbers of clones, iterations,
and final times doing, for instance:
cat("\n\n\n t_exp1 = ", t_exp1, "\n")
object.size(exp1)/(Nindiv * 1024ˆ2)
cat("\n\n")
summary(unlist(lapply(exp1, "[[", "NumClones")))
summary(unlist(lapply(exp1, "[[", "NumIter")))

40

summary(unlist(lapply(exp1, "[[", "FinalTime")))
summary(unlist(lapply(exp1, "[[", "TotalPopSize")))

The above runs yield the following:

41

Table 2: Benchmarks of Exp and McFL models using the default detectionProb with two settings of keepEvery.

Elapsed Time, average
per simulation (s)

Object Size, average
per simulation (MB)

Number of
Clones,
median

Number of
Iterations,

median

Final
Time,

median
Total Population

Size, median

Total
Population Size,

max. keepEvery

exp1 0 0.04 2 254 252 1,058 11,046 1
mc1 0.74 3.9 12 816,331 20,406 696 979 1
exp2 0 0.01 1 296 294 1,021 21,884 NA
mc2 0.7 0.01 1 694,716 17,366 692 888 NA

42

The above table shows that a naive comparison (looking simply at execution time)
might conclude that the McFL model is much, much slower than the Exp model.
But that is not the complete story: using the detectionProb stopping mechanism
(see 6.3.2) will lead to stopping the simulations very quickly in the exponential model
because as soon as a clone with fitness > 1 appears it starts growing exponentially.
In fact, we can see that the number of iterations and the final time are much smaller
in the Exp than in the McFL model. We will elaborate on this point below (section
2.2.1), when we discuss the setting for checkSizePEvery (here left at its default
value of 20): checking the exiting condition more often (smaller checkSizePEvery)
would probably be justified here (notice also the very large final times) and would
lead to a sharp decrease in number of iterations and, thus, running time.

This table also shows that the keepEvery = NA setting, which was in effect in
simulations exp2 and mc2, can make a difference especially for the McFL models, as
seen by the median number of clones and the size of the returned object. Models
exp2 and mc2 do not store any intermediate population samples so clones that
become extinct at any sampling period are pruned and only the existing clones at
the end of the simulation are returned. In contrast, models exp1 and mc1 store
population samples at time intervals of 1 (keepEvery = 1), even if many of those
clones eventually become extinct. We will return to this issue below as execution
time and object size depend strongly on the number of clones tracked.

We can run the exponential model again modifying the arguments of the
detectionProb mechanism; in two of the models below (exp3 and exp4) no
detection can take place unless populations are at least 100 times larger than the
initial population size, and probability of detection is 0.1 with a population size
1,000 times larger than the initial one (PDBaseline = 5e4, n2 = 5e5). In the other
two models (exp5 and exp6), no detection can take place unless populations are at
least 1,000 times larger than the initial population size, and probability of detection
is 0.1 with a population size 100,000 times larger than the initial one (PDBaseline
= 5e5, n2 = 5e7)2. In runs exp3 and exp5 we set keepEvery = 1 and in runs exp4
and exp6 we set keepEvery = NA.
t_exp3 <- system.time(

exp3 <- oncoSimulPop(Nindiv, pancr,
onlyCancer = TRUE,
detectionProb = c(PDBaseline = 5e4,

p2 = 0.1, n2 = 5e5,
checkSizePEvery = 20),

detectionSize = NA,
detectionDrivers = NA,

finalTime = NA,
keepEvery = 1,
model = "Exp",
mc.cores = 1))["elapsed"]/Nindiv

2Again, these are not necessarily reasonable or common settings. We are using them to understand
what and how affects running time and space consumption.

43

t_exp4 <- system.time(
exp4 <- oncoSimulPop(Nindiv, pancr,

onlyCancer = TRUE,
detectionProb = c(PDBaseline = 5e4,

p2 = 0.1, n2 = 5e5,
checkSizePEvery = 20),

detectionSize = NA,
detectionDrivers = NA,

finalTime = NA,
keepEvery = NA,
model = "Exp",
mc.cores = 1))["elapsed"]/Nindiv

t_exp5 <- system.time(
exp5 <- oncoSimulPop(Nindiv, pancr,

onlyCancer = TRUE,
detectionProb = c(PDBaseline = 5e5,

p2 = 0.1, n2 = 5e7),
detectionSize = NA,
detectionDrivers = NA,

finalTime = NA,
keepEvery = 1,
model = "Exp",
mc.cores = 1))["elapsed"]/Nindiv

t_exp6 <- system.time(
exp6 <- oncoSimulPop(Nindiv, pancr,

onlyCancer = TRUE,
detectionProb = c(PDBaseline = 5e5,

p2 = 0.1, n2 = 5e7),
detectionSize = NA,
detectionDrivers = NA,

finalTime = NA,
keepEvery = NA,
model = "Exp",
mc.cores = 1))["elapsed"]/Nindiv

44

Table 3: Benchmarks of Exp and McFL models modifying the default detectionProb with two settings of
keepEvery.

Elapsed Time,
average per

simulation (s)
Object Size, average
per simulation (MB)

Number of
Clones,
median

Number of
Iterations,

median

Final
Time,

median

Total
Population

Size, median

Total
Population
Size, max. keepEveryPDBaselinen2

exp3 0.01 0.41 14 2,754 1,890 6,798,358 2.7e+08 1 50,000 5e+05
exp4 0.01 0.02 8 2,730 2,090 7,443,812 1.7e+08 NA 50,000 5e+05
exp5 0.84 0.91 34 54,332 2,026 1.4e+09 4.2e+10 1 5e+05 5e+07
exp6 0.54 0.02 27 44,288 2,026 1.2e+09 3.3e+10 NA 5e+05 5e+07

45

As above, keepEvery = NA (in exp4 and exp6) leads to much smaller object sizes
and slightly smaller numbers of clones and execution times. Changing the exiting
conditions (by changing detectionProb arguments) leads to large increases in
number of iterations (in this case by factors of about 15x to 25x) and a corresponding
increase in execution time as well as much larger population sizes (in some cases
> 1010).

In some of the runs of exp5 and exp6 we get the (recoverable) exception message
from the C++ code: Recoverable exception ti set to DBL_MIN. Rerunning,
which is related to those simulations reaching total population sizes > 1010; we return
to this below (section 2.4). You might also wonder why total and median population
sizes are so large in these two runs, given the exiting conditions. One of the reasons
is that we are using the default checkSizePEvery = 20, so the interval between
successive checks of the exiting condition is large; this is discussed at greater length
in section 2.2.1.

All the runs above used the default value onlyCancer = TRUE. This means that
simulations will be repeated until the exiting conditions are reached (see details in
section 6.3) and, therefore, any simulation that ends up in extinction will be repeated.
This setting can thus have a large effect on the exponential models, because when
the initial population size is not very large and we start from the wildtype, it is not
uncommon for simulations to become extinct (when birth and death rates are equal
and the population size is small, it is easy to reach extinction before a mutation in
a gene that increases fitness occurs). But this is rarely the case in the McFarland
model (unless we use really tiny initial population sizes) because of the dependency
of death rate on total population size (see section 3.2.1).

The number of attempts until cancer was reached in the above models is shown in
Table 4 (the values can be obtained from any of the above runs doing, for instance,
median(unlist(lapply(exp1, function(x) x$other$attemptsUsed)))):

Table 4: Number of attempts until cancer.

Attempts until
Cancer, median

Attempts until
Cancer, mean

Attempts until
Cancer, max. PDBaseline n2

exp1 1 1.9 7 600 1,000
mc1 1 1 1 600 1,000
exp2 2 2.2 16 600 1,000
mc2 1 1 1 600 1,000
exp3 6 7.7 40 50,000 5e+05
exp4 6 8 39 50,000 5e+05
exp5 5 8.3 41 5e+05 5e+07
exp6 5 7.2 30 5e+05 5e+07

The McFL models finish in a single attempt. The exponential model simulations
where we can exit with small population sizes (exp1, exp2) need many fewer attempts
to reach cancer than those where large population sizes are required (exp3 to exp6).

46

There is no relevant different among those last four, which is what we would expect:
a population that has already reached a size of 50,000 cells from an initial population
size of 500 is obviously a growing population where there is at least one mutant with
positive fitness; thus, it unlikely to go extinct and therefore having to grow up to at
least 500,000 will not significantly increase the risk of extinction.

We will now rerun all of the above models with argument onlyCancer = FALSE. The
results are shown in Table 5 (note that the differences between this table and Table
2 for the McFL models are due only to sampling variation).

47

Table 5: Benchmarks of models in Table 2 and 3 when run with onlyCancer = FALSE.

Elapsed Time,
average per

simulation (s)

Object Size,
average per

simulation (MB)
Number of

Clones, median

Number of
Iterations,

median
Final Time,

median

Total
Population

Size, median

Total
Population
Size, mean

Total
Population
Size, max. keepEvery PDBaseline n2

exp1_noc 0.001 0.041 1.5 394 393 0 708 18,188 1 600 1,000
mc1_noc 0.69 3.9 12 673,910 16,846 692 700 983 1 600 1,000
exp2_noc 0.001 0.012 1 320 319 726 870 26,023 NA 600 1,000
mc2_noc 0.65 0.014 1 628,683 15,716 694 704 910 NA 600 1,000
exp3_noc 0.002 0.15 2 718 694 0 2,229,519 5.7e+07 1 50,000 5e+05
exp4_noc 0.002 0.013 0 600 599 0 3,122,765 1.3e+08 NA 50,000 5e+05
exp5_noc 0.17 0.22 3 848 777 0 5.9e+08 1.5e+10 1 5e+05 5e+07
exp6_noc 0.068 0.013 0 784 716 0 4.1e+08 1.3e+10 NA 5e+05 5e+07

48

Now most simulations under the exponential model end up in extinction, as seen
by the median population size of 0 (but not all, as the mean and max. population
size are clearly away from zero). Consequently, simulations under the exponential
model are now faster (and the size of the average returned object is smaller). Of
course, whether one should run simulations with onlyCancer = TRUE or onlyCancer
= FALSE will depend on the question being asked (see, for example, section 1.3.5 for
a question where we will naturally want to use onlyCancer = FALSE).

To make it easier to compare results with those of the next section, Table 6 shows
all the runs so far.

49

Table 6: Benchmarks of all models in Tables 2, 3, and 5.

Elapsed
Time,

average per
simulation

(s)

Object Size,
average per
simulation

(MB)

Number of
Clones,
median

Number of
Iterations,

median
Final Time,

median

Total
Population

Size, median

Total
Population
Size, mean

Total
Population
Size, max. keepEvery PDBaseline n2 onlyCancer

exp1 0.001 0.037 2 254 252 1,058 1,277 11,046 1 600 1,000 TRUE
mc1 0.74 3.9 12 816,331 20,406 696 702 979 1 600 1,000 TRUE
exp2 0.001 0.012 1 296 294 1,021 1,392 21,884 NA 600 1,000 TRUE
mc2 0.7 0.014 1 694,716 17,366 692 698 888 NA 600 1,000 TRUE
exp3 0.01 0.41 14 2,754 1,890 6,798,358 1.7e+07 2.7e+08 1 50,000 5e+05 TRUE
exp4 0.009 0.016 8 2,730 2,090 7,443,812 1.5e+07 1.7e+08 NA 50,000 5e+05 TRUE
exp5 0.84 0.91 34 54,332 2,026 1.4e+09 3.5e+09 4.2e+10 1 5e+05 5e+07 TRUE
exp6 0.54 0.021 27 44,288 2,026 1.2e+09 3.2e+09 3.3e+10 NA 5e+05 5e+07 TRUE
exp1_noc 0.001 0.041 1.5 394 393 0 708 18,188 1 600 1,000 FALSE
mc1_noc 0.69 3.9 12 673,910 16,846 692 700 983 1 600 1,000 FALSE
exp2_noc 0.001 0.012 1 320 319 726 870 26,023 NA 600 1,000 FALSE
mc2_noc 0.65 0.014 1 628,683 15,716 694 704 910 NA 600 1,000 FALSE
exp3_noc 0.002 0.15 2 718 694 0 2,229,519 5.7e+07 1 50,000 5e+05 FALSE
exp4_noc 0.002 0.013 0 600 599 0 3,122,765 1.3e+08 NA 50,000 5e+05 FALSE
exp5_noc 0.17 0.22 3 848 777 0 5.9e+08 1.5e+10 1 5e+05 5e+07 FALSE
exp6_noc 0.068 0.013 0 784 716 0 4.1e+08 1.3e+10 NA 5e+05 5e+07 FALSE

50

2.1.1 Changing fitness: s = 0.1 and s = 0.05

In the above fitness specification the fitness effect of each gene (when its restrictions
are satisfied) is s = 0.1 (see section 3.2 for details). Here we rerun all the above
benchmarks using s = 0.05 (the results from these benchmarks are available as
data(benchmark_1_0.05)) and results are shown below in Table 7.

51

Table 7: Benchmarks of all models in Table 6 using s = 0.05 (instead of s = 0.1).

Elapsed
Time,

average per
simulation

(s)

Object Size,
average per
simulation

(MB)

Number of
Clones,
median

Number of
Iterations,

median
Final Time,

median

Total
Population

Size, median

Total
Population
Size, mean

Total
Population
Size, max. keepEvery PDBaseline n2 onlyCancer

exp1 0.002 0.043 2 316 315 1,104 1,181 3,176 1 600 1,000 TRUE
mc1 1.7 11 17 2e+06 50,696 644 647 761 1 600 1,000 TRUE
exp2 0.001 0.012 1 274 273 1,129 1,281 7,608 NA 600 1,000 TRUE
mc2 1.6 0.016 1 1,615,197 40,376 644 651 772 NA 600 1,000 TRUE
exp3 0.012 0.63 15 3,995 2,919 3,798,540 5,892,376 4.5e+07 1 50,000 5e+05 TRUE
exp4 0.011 0.017 9 4,288 3,276 4,528,072 6,551,319 3.2e+07 NA 50,000 5e+05 TRUE
exp5 0.3 1.2 34 68,410 2,751 6.8e+08 1e+09 8.2e+09 1 5e+05 5e+07 TRUE
exp6 0.26 0.022 23 44,876 2,499 4.3e+08 8.9e+08 7.3e+09 NA 5e+05 5e+07 TRUE
exp1_noc 0.001 0.039 2 310 308 0 522 2,239 1 600 1,000 FALSE
mc1_noc 1.6 11 17 2e+06 50,776 638 643 757 1 600 1,000 FALSE
exp2_noc 0.001 0.012 0 340 336 0 599 3,994 NA 600 1,000 FALSE
mc2_noc 1.7 0.017 1 2,102,439 52,556 645 650 740 NA 600 1,000 FALSE
exp3_noc 0.002 0.11 2 618 615 0 150,978 6,093,498 1 50,000 5e+05 FALSE
exp4_noc 0.002 0.013 0 813 812 0 558,225 2.3e+07 NA 50,000 5e+05 FALSE
exp5_noc 0.031 0.23 3 917 914 0 1.1e+08 3.7e+09 1 5e+05 5e+07 FALSE
exp6_noc 0.046 0.013 0 628 610 0 1.7e+08 5.1e+09 NA 5e+05 5e+07 FALSE

52

As expected, having a smaller s leads to slower processes in most cases, since it takes
longer to reach the exiting conditions sooner. Particularly noticeable are the runs for
the McFL models (notice the increases in population size and number of iterations

—see also below).

That is not the case, however, for exp5 and exp6 (and exp5_noc and exp6_noc).
When running with s = 0.05 the simulations exit at a later time (see column “Final
Time”) but they exit with smaller population sizes. Here we have an interaction
between sampling frequency, speed of growth of the population, mutation events and
number of clones. In populations that grow much faster mutation events will happen
more often (which will trigger further iterations of the algorithm); in addition, more
new clones will be created, even if they only exist for short times and become extinct
by the following sampling period (so they are not reflected in the pops.by.time
matrix). These differences are proportionally larger the larger the rate of growth of
the population. Thus, they are larger between, say, the exp5 at s = 0.1 and s = 0.05
than between the exp4 at the two different s: the exp5 exit conditions can only be
satisfied at much larger population sizes so at populations sizes when growth is much
faster (recall we are dealing with exponential growth).

Recall also that with the default settings in detectionProb, we assess the exiting
condition every 20 time periods (argument checkSizePEvery); this means that for
fast growing populations, the increase in population size between successive checks of
the exit conditions will be much larger (this phenomenon is also discussed in section
2.2.1).

Thus, what is happening in the exp5 and exp6 with s = 0.1 is that close to the
time the exit conditions could be satisfied, they are growing very fast, accumulating
mutants, and incurring in additional iterations. They exit sooner in terms of time
periods, but they do much more work before arriving there.

The setting of checkSizePEvery is also having a huge effect on the McFL model
simulations (the number of iterations is > 106). Even more than in the previous
section, checking the exiting condition more often (smaller checkSizePEvery) would
probably be justified here (notice also the very large final times) and would lead to a
sharp decrease in number of iterations and, thus, running time.

The moral here is that in complex simulations like this (and most simulations
are complex), the effects of some parameters (s in this case) might look counter-
intuitive at first. Thus the need to “experiment before launching a large number of
simulations”.

2.2 Several “common use cases” runs
Let us now execute some simulations under more usual conditions. We will use seven
different fitness specifications: the pancreas example, two random fitness landscapes,
and four sets of independent genes (200 to 4000 genes) with fitness effects randomly
drawn from exponential distributions:

53

pancr <- allFitnessEffects(
data.frame(parent = c("Root", rep("KRAS", 4),

"SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),

child = c("KRAS","SMAD4", "CDNK2A",
"TP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),

s = 0.1,
sh = -0.9,
typeDep = "MN"),

drvNames = c("KRAS", "SMAD4", "CDNK2A", "TP53",
"MLL3", "TGFBR2", "PXDN"))

Random fitness landscape with 6 genes
At least 50 accessible genotypes
rfl6 <- rfitness(6, min_accessible_genotypes = 50)
attributes(rfl6)$accessible_genotypes ## How many accessible
rf6 <- allFitnessEffects(genotFitness = rfl6)

Random fitness landscape with 12 genes
At least 200 accessible genotypes
rfl12 <- rfitness(12, min_accessible_genotypes = 200)
attributes(rfl12)$accessible_genotypes ## How many accessible
rf12 <- allFitnessEffects(genotFitness = rfl12)

Independent genes; positive fitness from exponential distribution
with mean around 0.1, and negative from exponential with mean
around -0.02. Half of genes positive fitness effects, half
negative.

ng <- 200 re_200 <- allFitnessEffects(noIntGenes = c(rexp(ng/2, 10),
-rexp(ng/2, 50)))

ng <- 500
re_500 <- allFitnessEffects(noIntGenes = c(rexp(ng/2, 10),

-rexp(ng/2, 50)))

ng <- 2000
re_2000 <- allFitnessEffects(noIntGenes = c(rexp(ng/2, 10),

-rexp(ng/2, 50)))

54

ng <- 4000
re_4000 <- allFitnessEffects(noIntGenes = c(rexp(ng/2, 10),

-rexp(ng/2, 50)))

2.2.1 Common use cases, set 1.

We will use the Exp and the McFL models, run with different parameters. The script
is provided as ‘benchmark_2.R’, under ‘/inst/miscell’, with output in the ‘miscell-
files/vignette_bench_Rout’ directory of the main OncoSimul repository at https:
//github.com/rdiaz02/OncoSimul. The data are available as data(benchmark_2).

For the Exp model the call will be

oncoSimulPop(Nindiv,
fitness,
detectionProb = NA,
detectionSize = 1e6,
initSize = 500,
detectionDrivers = NA,
keepPhylog = TRUE,
model = "Exp",
errorHitWallTime = FALSE,
errorHitMaxTries = FALSE,
finalTime = 5000,
onlyCancer = FALSE,
mc.cores = 1,
sampleEvery = 0.5,
keepEvery = 1)

And for McFL:
initSize <- 1000
oncoSimulPop(Nindiv,

fitness,
detectionProb = c(

PDBaseline = 1.4 * initSize,
n2 = 2 * initSize,
p2 = 0.1,
checkSizePEvery = 4),

initSize = initSize,
detectionSize = NA,
detectionDrivers = NA,
keepPhylog = TRUE,
model = "McFL",
errorHitWallTime = FALSE,
errorHitMaxTries = FALSE,
finalTime = 5000,

55

https://github.com/rdiaz02/OncoSimul
https://github.com/rdiaz02/OncoSimul

max.wall.time = 10,
onlyCancer = FALSE,
mc.cores = 1,
keepEvery = 1)

For the exponential model we will stop simulations when populations have > 106

cells (simulations start from 500 cells). For the McFarland model we will use the
detectionProb mechanism (see section 6.3.2 for details); we could have used as
stopping mechanism detectionSize = 2 * initSize (which would be basically
equivalent to reaching cancer, as argued in (McFarland et al., 2013)) but we want to
provide further examples under the detectionProb mechanism. We will start from
1000 cells, not 500 (starting from 1000 we almost always reach cancer in a single
run).

Why not use the detectionProb mechanism with the Exp models? Because it can be
hard to intuitively understand what are reasonable settings for the parameters of the
detectionProb mechanism when used in a population that is growing exponentially,
especially if different genes have very different effects on fitness. Moreover, we are
using fitness specifications that are very different (compare the fitness landscape of
six genes, the pancreas specification, and the fitness specification with 4000 genes
with fitness effects drawn from an exponential distribution —re_4000). In contrast,
the detectionProb mechanism might be simpler to reason about in a population
that is growing under a model of carrying capacity with possibly large periods of
stasis. Let us emphasize that it is not that the detectionProb mechanism does not
make sense with the Exp model; it is simply that the parameters might need finer
adjustment for them to make sense, and in these benchmarks we are dealing with
widely different fitness specifications.

Note also that we specify checkSizePEvery = 4 (instead of the default, which is
20). Why? Because the fitness specifications where fitness effects are drawn from
exponential distributions (re_200 to re_4000 above) include many genes (well, up to
4000) some of them with possibly very large effects. In these conditions, simulations
can run very fast in the sense of “units of time”. If we check exiting conditions every
20 units the population could have increased its size several orders of magnitude in
between checks (this is also discussed in sections 2.1.1 and 6.3.2). You can verify this
by running the script with other settings for checkSizePEvery (and being aware that
large settings might require you to wait for a long time). To ensure that populations
have really grown, we have increased the setting of PDBaseline so that no simulation
can be considered for stopping unless its size is 1.4 times larger than initSize.

In all cases we use keepEvery = 1 and keepPhylog = TRUE (so we store the popula-
tion sizes of all clones every 1 time unit and we keep the complete genealogy of clones).
Finally, we run all models with errorHitWallTime = FALSE and errorHitMaxTries
= FALSE so that we can see results even if stopping conditions are not met.

The results of the benchmarks, using 100 individual simulations, are shown in Table
8.

56

Table 8: Benchmarks under some common use cases, set 1.

Model Fitness

Elapsed Time,
average per

simulation (s)
Object Size, average
per simulation (MB)

Number of
Clones,
median

Number of
Iterations,

median

Final
Time,

median

Total
Population

Size, median

Total
Population
Size, mean

Total
Population
Size, max.

Exp pancr 0.002 0.12 3 1,397 697 0 164,222 1,053,299
McFL pancr 0.12 0.56 8 2e+05 5,000 1,037 1,144 1,938
Exp rf6 0.002 0.064 6 783 391 1e+06 594,899 1,309,497
McFL rf6 0.019 0.071 3 23,297 582 1,884 1,975 4,636
Exp rf12 0.01 0.13 4 1,178 542 0 287,669 1,059,141
McFL rf12 0.14 0.82 18 2e+05 5,000 1,252 1,295 1,695
Exp re_200 0.013 0.67 230 1,185 223 1,060,944 859,606 1,536,242
McFL re_200 0.018 0.22 47 9,679 240 2,166 2,973 29,301
Exp re_500 0.09 2.7 771 2,732 152 1,068,732 959,026 1,285,522
McFL re_500 0.024 0.44 91 7,056 172 2,148 2,578 8,234
Exp re_2000 0.91 29 3,376 7,412 70 1,163,990 1,143,041 1,741,492
McFL re_2000 0.031 1.9 186 3,546 80 2,870 3,704 13,248
Exp re_4000 3.3 113 7,088 12,216 52 1,217,568 1,309,185 2,713,200
McFL re_4000 0.063 6.5 326 2,731 52 4,592 13,601 729,611

57

In most cases, simulations run reasonably fast (under 0.1 seconds per individual
simulation) and the returned objects are small. I will only focus on a few cases.

The McFL model with random fitness landscape rf12 and with pancr does not
satisfy the conditions of detectionProb in most cases: its median final time is 5000,
which was the maximum final time specified. This suggests that the fitness landscape
is such that it is unlikely that we will reach population sizes > 1400 (remember
we the setting for PDBaseline) before 5000 time units. There is nothing particular
about using a fitness landscape of 12 genes and other runs in other 12-gene random
fitness landscapes do not show this pattern. However, complex fitness landscapes
might be such that genotypes of high fitness (those that allow reaching a large
population size quickly) are not easily accessible3 so reaching them might take a
long time. This does not affect the exponential model in the same way because, well,
because there is exponential growth in that model: any genotype with fitness > 1
will grow exponentially (of course, at possibly very different rates). You might want
to play with the script and modify the call to rfitness (using different values of
reference and c, for instance) to have simpler paths to a maximum or modify the
call to oncoSimulPop (with, say, finalTime to much larger values). Some of these
issues are related to more general questions about fitness landscapes and accessibility
(see section 1.3.2 and references therein).

You could also set onlyCancer = TRUE. This might make sense if you are interested
in only seeing simulations that “reach cancer” (where “reach cancer” means reaching
a state you define as a function of population size or drivers). However, if you are
exploring fitness landscapes, onlyCancer = TRUE might not always be reasonable
as reaching a particular population size, for instance, might just not be possible
under some fitness landscapes (this phenomenon is of course not restricted to random
fitness landscapes —see also section 2.3.3).

As we anticipated above, the detectionProb mechanism has to be used with care:
some of the simulations run in very short “time units”, such as those for the fitness
specifications with 2000 and 4000 genes. Having used a checkSizePEvery = 20
probably would not have made sense.

Finally, it is interesting that in the cases examined here, the two slowest running
simulations are from “Exp”, with fitnesses re_2000 and re_4000 (and the third
slowest is also Exp, under re_500). These are also the cases with the largest
number of clones. Why? In the “Exp” model there is no competition, and fitness
specifications re_2000 and re_4000 have genomes with many genes with positive
fitness contributions. It is thus very easy to obtain, from the wildtype ancestor, a
large number of clones all of which have birth rates > 1 and, thus, clones that are
unlikely to become extinct.

3By easily accessible I mean that there are many, preferably short, paths of non-decreasing
fitness from the wildtype to this genotype. See definitions and discussion in, e.g., Franke et al.
(2011).

58

2.2.2 Common use cases, set 2.

We will now rerun the simulations above changing the following:

• finalTime set to 25000.
• onlyCancer set to TRUE.
• The “Exp” models will stop when population size > 105.

This is in script ‘benchmark_3.R’, under ‘/inst/miscell’, with output in the ‘miscell-
files/vignette_bench_Rout’ directory of the main OncoSimul repository at https:
//github.com/rdiaz02/OncoSimul. The data are available as data(benchmark_3).

59

https://github.com/rdiaz02/OncoSimul
https://github.com/rdiaz02/OncoSimul

Table 9: Benchmarks under some common use cases, set 2.

Model Fitness

Elapsed Time,
average per

simulation (s)
Object Size, average
per simulation (MB)

Number of
Clones,
median

Number of
Iterations,

median

Final
Time,

median

Total
Population

Size, median

Total
Population
Size, mean

Total
Population
Size, max.

Exp pancr 0.012 0.32 10 3,480 1,718 1e+05 1e+05 108,805
McFL pancr 0.41 1.7 14 4e+05 9,955 1,561 1,555 1,772
Exp rf6 0.003 0.058 4 866 430 107,492 109,774 135,257
McFL rf6 0.033 0.12 4 35,216 880 2,003 2,010 3,299
Exp rf12 0.012 0.098 9 1,138 561 1e+05 1e+05 112,038
McFL rf12 0.17 0.76 16 1e+05 2,511 1,486 1,512 1,732
Exp re_200 0.004 0.39 106 723 252 1e+05 105,586 122,338
McFL re_200 0.026 0.33 61 13,484 335 1,830 2,049 3,702
Exp re_500 0.007 0.61 168 490 117 110,311 112,675 134,860
McFL re_500 0.018 0.33 70 5,157 126 2,524 3,455 19,899
Exp re_2000 0.046 5.7 651 1,078 68 106,340 109,081 153,146
McFL re_2000 0.029 1.8 186 3,444 80 2,837 4,009 37,863
Exp re_4000 0.1 19 1,140 1,722 51 111,256 113,499 168,958
McFL re_4000 0.057 6.7 325 3,081 60 3,955 8,892 265,183

60

Since we increased the maximum final time and forced runs to “reach cancer” the
McFL run with the pancreas fitness specification takes a bit longer because it also
has to do a larger number of iterations. Interestingly, notice that the median final
time is close to 10000, so the runs in 2.2.1 with maximum final time of 5000 would
have had a hard time finishing with onlyCancer = TRUE.

Forcing simulations to “reach cancer” and just random differences between the
random fitness landscape also affect the McFL run under rf12: final time is below
5000 and the median number of iterations is about half of what was above.

Finally, by stopping the Exp simulations at 105, simulations with re_2000 and
re_4000 finish now in much shorter times (but they still take longer than their McFL
counterparts) and the number of clones created is much smaller.

2.3 Can we use a large number of genes?
Yes. In fact, in OncoSimulR there is no pre-set limit on genome size. However,
large numbers of genes can lead to unacceptably large returned object sizes and/or
running time. We discuss several examples next that illustrate some of the major
issues to consider. Another example with 50,000 genes is shown in section 6.5.3.

We have seen in 2.1 and 2.2.1 that for the Exp model, benchmark results using
detectionProb require a lot of care and can be misleading. Here, we will fix initial
population sizes (to 500) and all final population sizes will be set to ≥ 106. In
addition, to avoid the confounding factor of the onlyCancer = TRUE argument, we
will set it to FALSE, so we measure directly the time of individual runs.

2.3.1 Exponential model with 10,000 and 50,000 genes

2.3.1.1 Exponential, 10,000 genes, example 1 We will start with 10000
genes and an exponential model, where we stop when the population grows over 106

individuals:
ng <- 10000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),

rep(-0.1, ng/2)))

t_e_10000 <- system.time(
e_10000 <- oncoSimulPop(5, u, model = "Exp", mu = 1e-7,

detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
mutationPropGrowth = TRUE,
mc.cores = 1))

t_e_10000
user system elapsed

61

4.368 0.196 4.566

summary(e_10000)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 5017 1180528 415116 143 7547
2 3726 1052061 603612 131 5746
3 4532 1100721 259510 132 6674
4 4150 1283115 829728 99 6646
5 4430 1139185 545958 146 6748

print(object.size(e_10000), units = "MB")
863.9 Mb

Each simulation takes about 1 second but note that the number of clones for most
simulations is already over 4000 and that the size of the returned object is close to 1
GB (a more detailed explanation of where this 1 GB comes from is deferred until
section 2.3.1.6).

2.3.1.2 Exponential, 10,000 genes, example 2 We can decrease the size
of the returned object if we use the keepEvery = NA argument (this setting was
explained in detail in section 2.1):
t_e_10000b <- system.time(

e_10000b <- oncoSimulPop(5,
u,
model = "Exp",
mu = 1e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = TRUE,
mc.cores = 1
))

t_e_10000b
user system elapsed
5.484 0.100 5.585

summary(e_10000b)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 2465 1305094 727989 91 6447
2 2362 1070225 400329 204 8345
3 2530 1121164 436721 135 8697
4 2593 1206293 664494 125 8149

62

5 2655 1186994 327835 191 8572

print(object.size(e_10000b), units = "MB")
488.3 Mb

2.3.1.3 Exponential, 50,000 genes, example 1 Let’s use 50,000 genes.
To keep object sizes reasonable we use keepEvery = NA. For now, we also set
mutationPropGrowth = FALSE so that the mutation rate does not become really
large in clones with many mutations but, of course, whether or not this is a
reasonable decision depends on the problem; see also below.
ng <- 50000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),

rep(-0.1, ng/2)))
t_e_50000 <- system.time(

e_50000 <- oncoSimulPop(5,
u,
model = "Exp",
mu = 1e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_e_50000
user system elapsed
44.192 1.684 45.891

summary(e_50000)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 7367 1009949 335455 75.00 18214
2 8123 1302324 488469 63.65 17379
3 8408 1127261 270690 72.57 21144
4 8274 1138513 318152 80.59 20994
5 7520 1073131 690814 70.00 18569

print(object.size(e_50000), units = "MB")
7598.6 Mb

Of course, simulations now take longer and the size of the returned object is over 7
GB (we are keeping more than 7,000 clones, even if when we prune all those that

63

went extinct).

2.3.1.4 Exponential, 50,000 genes, example 2 What if we had not pruned?
ng <- 50000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),

rep(-0.1, ng/2)))
t_e_50000np <- system.time(

e_50000np <- oncoSimulPop(5,
u,
model = "Exp",
mu = 1e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = 1,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_e_50000np
user system elapsed
42.316 2.764 45.079

summary(e_50000np)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 13406 1027949 410074 71.97 19469
2 12469 1071325 291852 66.00 17834
3 11821 1089834 245720 90.00 16711
4 14008 1165168 505607 77.61 19675
5 14759 1074621 205954 87.68 20597

print(object.size(e_50000np), units = "MB")
12748.4 Mb

The main effect is not on execution time but on object size (it has grown by 5 GB).
We are tracking more than 10,000 clones.

2.3.1.5 Exponential, 50,000 genes, example 3 What about the
mutationPropGrowth setting? We will rerun the example in 2.3.1.3 leaving
keepEvery = NA but with the default mutationPropGrowth:

ng <- 50000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),

rep(-0.1, ng/2)))

64

t_e_50000c <- system.time(
e_50000c <- oncoSimulPop(5,

u,
model = "Exp",
mu = 1e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = TRUE,
mc.cores = 1
))

t_e_50000c
user system elapsed
84.228 2.416 86.665

summary(e_50000c)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 11178 1241970 344479 84.74 27137
2 12820 1307086 203544 91.94 33448
3 10592 1126091 161057 83.81 26064
4 11883 1351114 148986 65.68 25396
5 10518 1101392 253523 99.79 26082

print(object.size(e_50000c), units = "MB")
10904.9 Mb

As expected (because the mutation rate per unit time is increasing in the fastest
growing clones), we have many more clones, larger objects, and longer times of
execution here: we almost double the time and the size of the object increases by
almost 3 GB.

What about larger population sizes or larger mutation rates? The number of clones
starts growing fast, which means much slower execution times and much larger
returned objects (see also the examples below).

2.3.1.6 Interlude: where is that 1 GB coming from? In section 2.3.1.1 we
have seen an apparently innocuous simulation producing a returned object of almost
1 GB. Where is that coming from? It means that each simulation produced almost
200 MB of output.

Let us look at one simulation in more detail:

65

r1 <- oncoSimulIndiv(u,
model = "Exp",
mu = 1e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
mutationPropGrowth = TRUE
)

summary(r1)[c(1, 8)]
NumClones FinalTime
1 3887 345

print(object.size(r1), units = "MB")
160 Mb

Size of the two largest objects inside:
sizes <- lapply(r1, function(x) object.size(x)/(1024ˆ2))
sort(unlist(sizes), decreasing = TRUE)[1:2]
Genotypes pops.by.time
148.28 10.26

dim(r1$Genotypes)
[1] 10000 3887

The above shows the reason: the Genotypes matrix is a 10,000 by 3,887 integer matrix
(with a 0 and 1 indicating not-mutated/mutated for each gene in each genotype)
and in R integers use 4 bytes each. The pops.by.time matrix is 346 by 3,888 (the
1 in 346 = 345 + 1 comes from starting at 0 and going up to the final time, both
included; the 1 in 3888 = 3887 + 1 is from the column of time) double matrix and
doubles use 8 bytes4.

2.3.2 McFarland model with 50,000 genes; the effect of keepEvery

We show an example of McFarland’s model with 50,000 genes in section 6.5.3. We
will show here a few more examples with those many genes but with a different
fitness specification and changing several other settings.

2.3.2.1 McFarland, 50,000 genes, example 1 Let’s start with mutationPropGrowth
= FALSE and keepEvery = NA. Simulations end when population size ≥ 106.
ng <- 50000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),

4These matrices do not exist during most of the execution of the C++ code; they are generated
right before returning from the C++ code.

66

rep(-0.1, ng/2)))

t_mc_50000_nmpg <- system.time(
mc_50000_nmpg <- oncoSimulPop(5,

u,
model = "McFL",
mu = 1e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_mc_50000_nmpg
user system elapsed
30.46 0.54 31.01

summary(mc_50000_nmpg)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 1902 1002528 582752 284.2 31137
2 2159 1002679 404858 274.8 36905
3 2247 1002722 185678 334.5 42429
4 2038 1009606 493574 218.4 32519
5 2222 1004661 162628 291.0 38470

print(object.size(mc_50000_nmpg), units = "MB")
2057.6 Mb

We are already dealing with 2000 clones.

2.3.2.2 McFarland, 50,000 genes, example 2 Setting keepEvery = 1 (i.e.,
keeping track of clones with an interval of 1):
t_mc_50000_nmpg_k <- system.time(

mc_50000_nmpg_k <- oncoSimulPop(5,
u,
model = "McFL",
mu = 1e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,

67

onlyCancer = FALSE,
keepEvery = 1,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_mc_50000_nmpg_k
user system elapsed
30.000 1.712 31.714

summary(mc_50000_nmpg_k)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 8779 1000223 136453 306.7 38102
2 7442 1006563 428150 345.3 35139
3 8710 1003509 224543 252.3 35659
4 8554 1002537 103889 273.7 36783
5 8233 1003171 263005 301.8 35236

print(object.size(mc_50000_nmpg_k), units = "MB")
8101.4 Mb

Computing time increases slightly but the major effect is seen on the size of the
returned object, that increases by a factor of about 4x, up to 8 GB, corresponding to
the increase in about 4x in the number of clones being tracked (see details of where
the size of this object comes from in section 2.3.1.6).

2.3.2.3 McFarland, 50,000 genes, example 3 We will set keepEvery = NA
again, but we will now increase detection size by a factor of 3 (so we stop when total
population size becomes ≥ 3 ∗ 106).
ng <- 50000
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng/2),

rep(-0.1, ng/2)))

t_mc_50000_nmpg_3e6 <- system.time(
mc_50000_nmpg_3e6 <- oncoSimulPop(5,

u,
model = "McFL",
mu = 1e-7,
detectionSize = 3e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = FALSE,
mc.cores = 1

68

))
t_mc_50000_nmpg_3e6
user system elapsed
77.240 1.064 78.308

summary(mc_50000_nmpg_3e6)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 5487 3019083 836793 304.5 65121
2 4812 3011816 789146 286.3 53087
3 4463 3016896 1970957 236.6 45918
4 5045 3028142 956026 360.3 63464
5 4791 3029720 916692 358.1 55012

print(object.size(mc_50000_nmpg_3e6), units = "MB")
4759.3 Mb

Compared with the first run (2.3.2.1) we have approximately doubled computing
time, number of iterations, number of clones, and object size.

2.3.2.4 McFarland, 50,000 genes, example 4 Let us use the same
detectionSize = 1e6 as in the first example (2.3.2.1), but with 5x the mutation
rate:

t_mc_50000_nmpg_5mu <- system.time(
mc_50000_nmpg_5mu <- oncoSimulPop(5,

u,
model = "McFL",
mu = 5e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_mc_50000_nmpg_5mu
user system elapsed
167.332 1.796 169.167

summary(mc_50000_nmpg_5mu)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 7963 1004415 408352 99.03 57548
2 8905 1010751 120155 130.30 74738

69

3 8194 1005465 274661 96.98 58546
4 9053 1014049 119943 112.23 75379
5 8982 1011817 95047 99.95 76757

print(object.size(mc_50000_nmpg_5mu), units = "MB")
8314.4 Mb

The number of clones we are tracking is about 4x the number of clones of the first
example (2.3.2.1), and roughly similar to the number of clones of the second example
(2.3.2.2), and size of the returned object is similar to that of the second example. But
computing time has increased by a factor of about 5x and iterations have increased
by a factor of about 2x. Iterations increase because mutation is more frequent; in
addition, at each sampling period each iteration needs to do more work as it needs
to loop over a larger number of clones and this larger number includes clones that
are not shown here, because they are pruned (they are extinct by the time we exit
the simulation —again, pruning is discussed with further details in 18.2.1).

2.3.2.5 McFarland, 50,000 genes, example 5 Now let’s run the above example
but with keepEvery = 1:
t_mc_50000_nmpg_5mu_k <- system.time(

mc_50000_nmpg_5mu_k <- oncoSimulPop(5,
u,
model = "McFL",
mu = 5e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = 1,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_mc_50000_nmpg_5mu_k
user system elapsed
174.404 5.068 179.481

summary(mc_50000_nmpg_5mu_k)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 25294 1001597 102766 123.4 74524
2 23766 1006679 223010 124.3 71808
3 21755 1001379 203638 114.8 62609
4 24889 1012103 161003 119.3 75031
5 21844 1002927 255388 108.8 64556

70

print(object.size(mc_50000_nmpg_5mu_k), units = "MB")
22645.8 Mb

We have already seen these effects before in section 2.3.2.2: using keepEvery = 1
leads to a slight increase in execution time. What is really affected is the size of
the returned object which increases by a factor of about 3x (and is now over 20GB).
That 3x corresponds, of course, to the increase in the number of clones being tracked
(now over 20,000). This, by the way, also allows us to understand the comment
above, where we said that in these two cases (where we have increased mutation
rate) at each iteration we need to do more work as at every update of the population
the algorithm needs to loop over a much larger number of clones (even if many of
those are eventually pruned).

2.3.2.6 McFarland, 50,000 genes, example 6 Finally, we will run the example
in section 2.3.2.1 with the default of mutationPropGrowth = TRUE:

t_mc_50000 <- system.time(
mc_50000 <- oncoSimulPop(5,

u,
model = "McFL",
mu = 1e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = TRUE,
mc.cores = 1
))

t_mc_50000
user system elapsed
303.352 2.808 306.223

summary(mc_50000)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 13928 1010815 219814 210.9 91255
2 12243 1003267 214189 178.1 67673
3 13880 1014131 124354 161.4 88322
4 14104 1012941 75521 205.7 98583
5 12428 1005594 232603 167.4 70359

print(object.size(mc_50000), units = "MB")
12816.6 Mb

Note the huge increase in computing time (related of course to the huge increase

71

in number of iterations) and in the size of the returned object: we have gone from
having to track about 2000 clones to tracking over 12000 clones even when we prune
all clones without descendants.

2.3.3 Examples with s = 0.05

A script with the above runs but using s = 0.05 instead of s = 0.1 is available from
the repository (‘miscell-files/vignette_bench_Rout/large_num_genes_0.05.Rout’).
I will single out a couple of cases here.

First, we repeat the run shown in section 2.3.2.5:
t_mc_50000_nmpg_5mu_k <- system.time(

mc_50000_nmpg_5mu_k <- oncoSimulPop(2,
u,
model = "McFL",
mu = 5e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = 1,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_mc_50000_nmpg_5mu_k
user system elapsed
305.512 5.164 310.711

summary(mc_50000_nmpg_5mu_k)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 61737 1003273 104460 295.8731 204214
2 65072 1000540 133068 296.6243 210231

print(object.size(mc_50000_nmpg_5mu_k), units = "MB")
24663.6 Mb

Note we use only two replicates, since those two already lead to a 24 GB returned
object as we are tracking more than 60,000 clones, more than twice those with
s = 0.1. The reason for the difference in number of clones and iterations is of
course the change from s = 0.1 to s = 0.05: under the McFarland model to reach
population sizes of 106 starting from an equilibrium population of 500 we need about
43 mutations (whereas only about 22 are needed if s = 0.15).

5Given the dependence of death rates on population size in McFarland’s model (section 3.2.1 and
3.2.1.1), if all mutations have the same fitness effects we can calculate the equilibrium population
size (where birth and death rates are equal) for a given number of mutated genes as: K ∗(e(1+s)p −1),
where K is the initial equilibrium size, s the fitness effect of each mutation, and p the number of

72

Next, let us rerun 2.3.2.1:
t_mc_50000_nmpg <- system.time(

mc_50000_nmpg <- oncoSimulPop(5,
u,
model = "McFL",
mu = 1e-7,
detectionSize = 1e6,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
keepEvery = NA,
mutationPropGrowth = FALSE,
mc.cores = 1
))

t_mc_50000_nmpg
user system elapsed
111.236 0.596 111.834

summary(mc_50000_nmpg)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 2646 1000700 217188 734.475 108566
2 2581 1001626 209873 806.500 107296
3 2903 1001409 125148 841.700 120859
4 2310 1000146 473948 906.300 91519
5 2704 1001290 448409 838.800 103556

print(object.size(mc_50000_nmpg), units = "MB")
2638.3 Mb

Using s = 0.05 leads to a large increase in final time and number of iterations.
However, as we are using the keepEvery = NA setting, the increase in number of
clones tracked and in size of returned object is relatively small.

2.3.4 The different consequences of keepEvery = NA in the Exp and McFL
models

We have seen that keepEvery = NA often leads to much smaller returned objects
when using the McFarland model than when using the Exp model. Why? Because in
the McFarland model there is strong competition and there can be complete clonal
sweeps so that in extreme cases a single clone might be all that is left after some
time. This is not the case in the exponential models.

Of course, the details depend on the difference in fitness effects between different
genotypes (or clones). In particular, we have seen several examples where even with
keepEvery=NA there are a lot of clones in the McFL models. In those examples many
mutated genes.

73

clones had identical fitness (the fitness effects of all genes with positive fitness was
the same, and ditto for the genes with negative fitness effects), so no clone ends up
displacing all the others.

2.3.5 Are we keeping the complete history (genealogy) of the clones?

Yes we are if we run with keepPhylog = TRUE, regardless of the setting for keepEvery.
As explained in section 18.2, OncoSimulR prunes clones that never had a population
size larger than zero at any sampling period (so they are not reflected in the
pops.by.time matrix in the output). And when we set keepEvery = NA we are
telling OncoSimulR to discard all sampling periods except the very last one (i.e., the
pops.by.time matrix contains only the clones with 1 or more cells at the end of the
simulation).

keepPhylog operates differently: it records the exact time at which a clone appeared
and the clone that gave rise to it. This information is kept regardless of whether or
not those clones appear in the pops.by.time matrix.

Keeping the complete genealogy might be of limited use if the pops.by.time matrix
only contains the very last period. However, you can use plotClonePhylog and ask
to be shown only clones that exist in the very last period (while of course showing all
of their ancestors, even if those are now extinct —i.e., regardless of their abundance).

For instance, in run 2.3.1.3 we could have looked at the information stored about
the genealogy of clones by doing (we look at the first “individual” of the simulation,
of the five “individuals” we simulated):
head(e_50000[[1]]$other$PhylogDF)
parent child time
1 3679 0.8402
2 4754 1.1815
3 20617 1.4543
4 15482 2.3064
5 4431 3.7130
6 41915 4.0628

tail(e_50000[[1]]$other$PhylogDF)
parent child time
20672 3679, 20282 3679, 20282, 22359 75.0
20673 3679, 17922, 22346 3679, 17922, 22346, 35811 75.0
20674 2142, 3679 2142, 3679, 25838 75.0
20675 3679, 17922, 19561 3679, 17922, 19561, 43777 75.0
20676 3679, 15928, 19190, 20282 3679, 15928, 19190, 20282, 49686 75.0
20677 2142, 3679, 16275 2142, 3679, 16275, 24201 75.0

where each row corresponds to one event of appearance of a new clone, the column
labeled “parent” are the mutated genes in the parent, and the column labeled “child”
are the mutated genes in the child.

74

And we could plot the genealogical relationships of clones that have a population size
of at least one in the last period (again, while of course showing all of their ancestors,
even if those are now extinct —i.e., regardless of their current numbers) doing:
plotClonePhylog(e_50000[[1]]) ## plot not shown

What is the cost of keep the clone genealogies? In terms of time it is minor. In terms
of space, and as shown in the example above, we can end up storing a data frame with
tends of thousands of rows and three columns (two factors, one float). In the example
above the size of that data frame is approximately 2 MB for a single simulation. This
is much smaller than the pops.by.time or Genotypes matrices, but it can quickly
build up if you routinely launch, say, 1000 simulations via oncoSimulPop. That is
why the default is keepPhylog = FALSE as this information is not needed as often
as that in the other two matrices (pops.by.time and Genotypes).

2.4 Population sizes ≥ 1010

We have already seen examples where population sizes reach 108 to 1010, as in Tables
3, 5, 7. What about even larger population sizes?

The C++ code will unconditionally alert if population sizes exceed 4 ∗ 1015 as
in those cases loosing precision (as we are using doubles) would be unavoidable,
and we would also run into problems with the generation of binomial random
variates (code that illustrates and discusses this problem is available in file “example-
binom-problems.cpp”, in directory “/inst/miscell”). However, well before we reach
4 ∗ 1015 we loose precision from other sources. One of the most noticeable ones is
that when we reach population sizes around 1011 the C++ code will often alert
us by throwing exceptions with the message Recoverable exception ti set to
DBL_MIN. Rerunning. I throw this exception because ti, the random variable for
time to next mutation, is less than DBL_MIN, the minimum representable floating-
point number. This happens because, unless we use really tiny mutation rates, the
time to a mutation starts getting closer to zero as population sizes grow very large.
It might be possible to ameliorate these problems somewhat by using long doubles
(instead of doubles) or special purpose libraries that provide more precision. However,
this would make it harder to run the same code in different operating systems and
would likely decrease execution speed on the rest of the common scenarios for which
OncoSimulR has been designed.

The following code shows some examples where we use population sizes of 1010 or
larger. Since we do not want simulations in the exponential model to end because of
extinction, I use a fitness specification where all genes have a positive fitness effect
and we start all simulations from a large population (to make it unlikely that the
population will become extinct before cells mutate and start increasing in numbers).
We set the maximum running time to 10 minutes. We keep the genealogy of the
clones and use keepEvery = 1.
ng <- 50
u <- allFitnessEffects(noIntGenes = c(rep(0.1, ng)))

75

t_mc_k_50_1e11 <- system.time(
mc_k_50_1e11 <- oncoSimulPop(5,

u,
model = "McFL",
mu = 1e-7,
detectionSize = 1e11,
initSize = 1e5,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
mutationPropGrowth = FALSE,
keepEvery = 1,
finalTime = 5000,
mc.cores = 1,
max.wall.time = 600
))

Recoverable exception ti set to DBL_MIN. Rerunning.
Recoverable exception ti set to DBL_MIN. Rerunning.

t_mc_k_50_1e11
user system elapsed
613.612 0.040 613.664

summary(mc_k_50_1e11)[, c(1:3, 8, 9)]
NumClones TotalPopSize LargestClone FinalTime NumIter
1 5491 100328847809 44397848771 1019.950 942764
2 3194 100048090441 34834178374 789.675 888819
3 5745 100054219162 24412502660 927.950 929231
4 4017 101641197799 60932177160 750.725 480938
5 5393 100168156804 41659212367 846.250 898245

print(object.size(mc_k_50_1e11), units = "MB")
177.8 Mb

We get to 1011. But notice the exception with the warning about ti. Notice also that
this takes a long time and we run a very large number of iterations (getting close to
one million in some cases).

Now the exponential model with detectionSize = 1e11:
t_exp_k_50_1e11 <- system.time(

exp_k_50_1e11 <- oncoSimulPop(5,
u,
model = "Exp",
mu = 1e-7,

76

detectionSize = 1e11,
initSize = 1e5,
detectionDrivers = NA,
detectionProb = NA,
keepPhylog = TRUE,
onlyCancer = FALSE,
mutationPropGrowth = FALSE,
keepEvery = 1,
finalTime = 5000,
mc.cores = 1,
max.wall.time = 600,
errorHitWallTime = FALSE,
errorHitMaxTries = FALSE
))

Recoverable exception ti set to DBL_MIN. Rerunning.
Hitted wall time. Exiting.
Recoverable exception ti set to DBL_MIN. Rerunning.
Recoverable exception ti set to DBL_MIN. Rerunning.
Recoverable exception ti set to DBL_MIN. Rerunning.
Hitted wall time. Exiting.
Recoverable exception ti set to DBL_MIN. Rerunning.
Recoverable exception ti set to DBL_MIN. Rerunning.
Recoverable exception ti set to DBL_MIN. Rerunning.
Recoverable exception ti set to DBL_MIN. Rerunning.
Recoverable exception ti set to DBL_MIN. Rerunning.
Hitted wall time. Exiting.
Hitted wall time. Exiting.

t_exp_k_50_1e11
user system elapsed
2959.068 0.128 2959.556
try(summary(exp_k_50_1e11)[, c(1:3, 8, 9)])
NumClones TotalPopSize LargestClone FinalTime NumIter
1 6078 65172752616 16529682757 235.7590 1883438
2 5370 106476643712 24662446729 232.0000 2516675
3 2711 21911284363 17945303353 224.8608 543698
4 2838 13241462284 2944300245 216.8091 372298
5 7289 76166784312 10941729810 240.0217 1999489

print(object.size(exp_k_50_1e11), units = "MB")
53.5 Mb

Note that we almost reached max.wall.time (600 * 5 = 3000). What if we wanted
to go up to 1012? We would not be able to do it in 10 minutes. We could set
max.wall.time to a value larger than 600 to allow us to reach larger sizes but

77

then we would be waiting for a possibly unacceptable time for simulations to finish.
Moreover, this would eventually fail as simulations would keep hitting the ti exception
without ever being able to complete. Finally, even if we were very patient, hitting
that ti exception should make us worry about possible biases in the samples.

2.5 A summary of some determinants of running time and
space consumption

To summarize this section, we have seen:

• Both McFL and Exp can be run in short times over a range of sizes for
the detectionProb and detectionSize mechanisms using a complex fitness
specification with moderate numbers of genes. These are the typical or common
use cases of OncoSimulR.

• The keepEvery argument can have a large effect on time in the McFL models
and specially on object sizes. If only the end result of the simulation is to be
used, you should set keepEvery = NA.

• The distribution of fitness effects and the fitness landscape can have large
effects on running times. Sometimes these are intuitive and simple to reason
about, sometimes they are not as they interact with other factors (e.g., stop-
ping mechanism, numbers of clones, etc). In general, there can be complex
interactions between different settings, from mutation rate to fitness effects to
initial size. As usual, test before launching a massive simulation.

• Simulations start to slow down and lead to a very large object size when we keep
track of around 6000 to 10000 clones. Anything that leads to these patterns
will slow down the simulations.

• OncoSimulR needs to keep track of genotypes (or clones), not just numbers
of drivers and passengers, because it allows you to use complex fitness and
mutation specifications that depend on specific genotypes. The keepEvery
= NA is an approach to store only the minimal information needed, but it is
unavoidable that during the simulations we might be forced to deal with many
thousands of different clones.

78

3 Specifying fitness effects
OncoSimulR uses a standard continuous time model, where individual cells divide,
die, and mutate with rates that can depend on genotype and population size; over
time the abundance of the different genotypes changes by the action of selection
(due to differences in net growth rates among genotypes), drift, and mutation. As a
result of a mutation in a pre-existing clone new clones arise, and the birth rate of a
newly arisen clone is determined at the time of its emergence as a function of its
genotype. Simulations can use an use exponential growth model or a model with
carrying capacity that follows McFarland et al. (2013). For the exponential growth
model, the death rate is fixed at one whereas in the model with carrying capacity
death rate increases with population size. In both cases, therefore, fitness differences
among genotypes in a given population at a given time are due to differences in the
mapping between genotype and birth rate. There is second exponential model (called
“Bozic”) where birth rate is fixed at one, and genotype determines death rate instead
of birth rate (see details in 3.2). So when we discuss specifying fitness effects or the
effects of genes on fitness, we are actually referring to specifying effects on birth (or
death) rates, which then translate into differences in fitness (since the other rate,
death or birth, is either fixed, as in the Exp and Bozic models, or depends on the
population size). This is also shown in Table 1, in the rows for “Fitness components”,
under “Evolutionary Features”.

In the case of frequency-dependent fitness simulations (see section 10), the fitness
effects must be reevaluated frequently so that birth rate, death rate, or both, de-
pending the model used, are updated. To do this it is necessary to use a short step
to reevaluate fitness; this is done using a small value for sampleEvery parameter
in oncoSimulindv (see 18.8 for more details), as is the case when using McFarland
model.

Incidentally, notice that with OncoSimulR we do not directly specify fitness itself
(even if, for the sake of simplicity, we often refer to fitness in the documentation) as
fitness is, arguably, a derived quantity (Doebeli et al., 2017). Rather, we specify how
birth and/or death rates, which are the actual mechanistic drivers of evolutionary
dynamics, are related to genotypes (or to the frequencies of the different genotypes).

3.1 Introduction to the specification of fitness effects
With OncoSimulR you can specify different types of effects on fitness:

• A special type of epistatic effect that is particularly amenable to be represented
as a graph (a DAG). In this graph having, say, “B” be a child of “A” means that
a mutation in B can only accumulate if a mutation in A is already present. This
is what OT (Desper et al., 1999; Szabo & Boucher, 2008), CBN (Beerenwinkel,
Eriksson, et al., 2007; Gerstung et al., 2009; Gerstung, Eriksson, et al., 2011),
progression networks (Farahani & Lagergren, 2013), and other similar models
(Korsunsky et al., 2014) generally mean. Details are provided in section 3.4.
Note that this is not an order effect (discussed below): the fitness of a genotype
from this DAGs is a function of whether or not the restrictions in the graph

79

are satisfied, not the historical sequence of how they were satisfied.

• Effects where the order in which mutations are acquired matters, as illustrated
in section 3.6. There is, in fact, empirical evidence of these effects (Ortmann et
al., 2015). For instance, the fitness of genotype “A, B” would differ depending
on whether A or B was acquired first (or, as in the actual example in (Ortmann
et al., 2015), the fitness of the mutant with JAK2 and TET2 mutated will
depend on which of the genes was mutated first).

• General epistatic effects (e.g., section 3.7), including synthetic viability (e.g.,
section 3.9) and synthetic lethality/mortality (e.g., section 3.10).

• Genes that have independent effects on fitness (section 3.3).

• Modules (see section 3.5) allow you to specify any of the above effects (except
those for genes without interactions, as it would not make sense there) in terms
of modules (sets of genes), not individual genes. We will introduce them right
after 3.4, and we will continue using them thereafter.

A guiding design principle of OncoSimulR is to try to make the specification of those
effects as simple as possible but also as flexible as possible. Thus, there are two main
ways of specifying fitness effects:

• Combining different types of effects in a single specification. For instance, you
can combine epistasis with order effects with no interaction genes with modules.
What you would do here is specify the effects that different mutations (or their
combinations) have on fitness (the fitness effects) and then have OncoSimulR
take care of combining them as if each of these were lego pieces. We will refer
to this as the lego system of fitness effects. (As explained above, I find
this an intuitive and very graphical analogy, which I have copied from Hothorn
et al. (2006) and Hothorn et al. (2008)).

• Explicitly passing to OncoSimulR a mapping of genotypes to fitness. Here
you specify the fitness of each genotype. We will refer to this as the explicit
mapping of genotypes to fitness. This includes frequency-dependent fitness
(section 10).

Both approaches have advantages and disadvantages. Here I emphasize some relevant
differences.

• With the lego system you can specify huge genomes with an enormous variety of
interactions, since the possible genotypes are not constructed in advance. You
would not be able to do this with the explicit mapping of genotypes to fitness
if you wanted to, say, construct that mapping for a modest genotype of 500
genes (you’d have more genotypes than particles in the observable Universe).

• For many models/data you often intuitively start with the fitness of the
genotypes, not the fitness consequences of the different mutations. In these
cases, you’d need to do the math to specify the terms you want if you used the
lego system so you’ll probably use the specification with the direct mapping
genotype → fitness.

80

• Likewise, sometimes you already have a moderate size genotype → fitness
mapping and you certainly do not want to do the math by hand: here the lego
system would be painful to use.

• But sometimes we do think in terms of “the effects on fitness of such and such
mutations are” and that immediately calls for the lego system, where you focus
on the effects, and let OncoSimulR take care of doing the math of combining.

• If you want to use order effects, you must use the lego system (at least for
now).

• If you want to specify modules, you must use the lego system (the explicit
mapping of genotypes is, by its very nature, ill-suited for this).

• The lego system might help you see what your model really means: in many
cases, you can obtain fairly succinct specifications of complex fitness models
with just a few terms. Similarly, depending on what your emphasis is, you can
often specify the same fitness landscape in several different ways.

Regardless of the route, you need to get that information into OncoSimulR’s functions.
The main function we will use is allFitnessEffects: this is the function in charge
of reading the fitness specifications. We also need to discuss how, what, and where
you have to pass to allFitnessEffects.

3.1.1 Explicit mapping of genotypes to fitness

Conceptually, the simplest way to specify fitness is to specify the mapping of all
genotypes to fitness explicitly. An example will make this clear. Let’s suppose you
have a simple two-gene scenario, so a total of four genotypes, and you have a data
frame with genotypes and fitness, where genoytpes are specified as character vectors,
with mutated genes separated by commas:
m4 <- data.frame(G = c("WT", "A", "B", "A, B"), F = c(1, 2, 3, 4))

Now, let’s give that to the allFitnessEffects function:
fem4 <- allFitnessEffects(genotFitness = m4)
Column names of object not Genotype and Birth Renaming them assuming that is what you wanted

(The message is just telling you what the program guessed you wanted.)

That’s it. You can try to plot that fitnessEffects object
try(plot(fem4))
Error in plot.fitnessEffects(fem4) :
This fitnessEffects object can not be ploted this way. It is probably one with fitness landscape specification, so you might want to plot the fitness landscape instead.

In this case, you probably want to plot the fitness landscape.
plotFitnessLandscape(evalAllGenotypes(fem4))

81

A

B

WT

A, B

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

You can also check what OncoSimulR thinks the fitnesses are, with the
evalAllGenotypes function that we will use repeatedly below (of course, here we
should see the same fitnesses we entered):
evalAllGenotypes(fem4, addwt = TRUE)
Genotype Birth
1 WT 1
2 A 2
3 B 3
4 A, B 4

And you can plot the fitness landscape:
plotFitnessLandscape(evalAllGenotypes(fem4))

82

A

B

WT

A, B

1.0

1.5

2.0

2.5

3.0

3.5

4.0
B

ir
th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

To specify the mapping you can also use a matrix (or data frame) with g + 1 columns;
each of the first g columns contains a 1 or a 0 indicating that the gene of that column
is mutated or not. Column g + 1 contains the fitness values. And you do not even
need to specify all the genotypes: the missing genotypes are assigned a fitness 0

—except for the WT genotype which, if missing, is assigned a fitness of 1:
m6 <- cbind(c(1, 1), c(1, 0), c(2, 3))
fem6 <- allFitnessEffects(genotFitness = m6)
No column names: assigning gene names from LETTERS
Warning in to_genotFitness_std(genotFitness,
frequencyDependentBirth = FALSE, : No wildtype in the fitness
landscape!!! Adding it with birth 1.

evalAllGenotypes(fem6, addwt = TRUE)
Genotype Birth
1 WT 1
2 A 3
3 B 0
4 A, B 2

plot(fem6)

plotFitnessLandscape(evalAllGenotypes(fem6))

83

WT

A, B

A

B
0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

This way of giving a fitness specification to OncoSimulR might be ideal if you directly
generate random mappings of genotypes to fitness (or random fitness landscapes),
as we will do in section 9. Specially when the fitness landscape contains many non-
viable genotypes (which are considered those with fitness —birth rate— < 1e − 9)
this can result in considerable savings as we only need to check the fitness of the
viable genotypes in a table (a C++ map). Note, however, that using the Bozic
model with the fitness landscape specification is not tested. In addition, for speed,
missing genotypes from the fitness landscape specification are taken to be non-viable
genotypes (beware!! this is a breaking change relative to versions < 2.9.1)6.

In the case of frequency-dependent fitness situations, the only way to specify fitness
effects is using genoFitnes as we have shown before, but now you need to set
frequencyDependentFitness = TRUE in allFitnessEffects. The fundamental

6Note for curious readers: it used to be the case that we converted the table of fitness of
genotypes to a fitness specification with all possible epistatic interactions; you can take a look at
the test file test.genot_fitness_to_epistasis.R that uses the fem6 object. We no longer do
that but instead pass directly the fitness landscape.

84

difference is the Fitness column in genoFitnes. Now this column must be a character
vector and each element (character also) is a function whose variables are the
relative frequencies of the clones in the population. You must specify the variables
like f_, for frequency of wild type, f_1 or f_A for frequency of mutant A or
position 1, f_1_2 or f_A_B for double mutant, and so on. Mathematical operations
and symbols allowed are described in the documentation of C++ library ExprTk
(http://www.partow.net/programming/exprtk/). ExprTk is the library used
to parse and evaluate the fitness equations. The numeric vector spPopSizes is
only necesary to evaluate genotypes through evalGenotype or evalAllGenotypes
functions because population sizes are needed to calculate the clone’s frequencies.
r <- data.frame(Genotype = c("WT", "A", "B", "A, B"),

Fitness = c("10 * f_",
"10 * f_1",
"50 * f_2",
"200 * (f_1 + f_2) + 50 * f_1_2"))

afe <- allFitnessEffects(genotFitness = r,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = r,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

plotFitnessLandscape(evalAllGenotypes(afe,
spPopSizes = c(WT = 2500, A = 2000,

B = 5500, "A, B" = 700)))
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

85

http://www.partow.net/programming/exprtk/

WT

B

A

A, B

0

50

100

150
B

ir
th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

The above example is simple enough in terms of genes and genotypes that using f_1
is OK. But it will be better, as examples get more complex, to use:
r <- data.frame(Genotype = c("WT", "A", "B", "A, B"),

Fitness = c("10 * f_",
"10 * f_A",
"50 * f_B",
"200 * (f_A + f_B) + 50 * f_A_B"))

which makes explicit what depends on what (i.e., you do not need to keep in mind the
mapping of letters to numbers). In other words, we write f_genotype expressed
as combination of gene names, with the gene names we are actually using. And
those f_something_other, will match the genotypes given in Genotype (there will
a something, other genotype).

3.1.2 How to specify fitness effects with the lego system

An alternative general approach followed in many genetic simulators is to specify
how particular combinations of alleles modify the wildtype genotype or the genotype
that contains the individual effects of the interacting genes (e.g., see equation 1 in
the supplementary material for FFPopSim (Zanini & Neher, 2012)). For example, if
we specify that a mutation in “A” contributes 0.04, a mutation in “B” contributes
0.03, and the double mutation “A:B” contributes 0.1, that means that the fitness of
the “A, B” genotype (the genotype with A and B mutated) is that of the wildtype
(1, by default), plus (actually, times —see section 3.2— but plus on the log scale)
the effects of having A mutated, plus (times) the effects of having B mutated, plus
(times) the effects of “A:B” both being mutated.

86

We will see below that with the “lego system” it is possible to do something very
similar to the explicit mapping of section 3.1.1. But this will sometimes require a
more cumbersome notation (and sometimes also will require your doing some math).
We will see examples in sections 3.7.1, 3.7.2 and 3.7.3 or the example in 5.4.2. But
then, if we can be explicit about (at least some of) the mappings genotype → fitness,
how are these procedures different? When you use the “lego system” you can combine
both a partial explicit mapping of genotypes to fitness with arbitrary fitness effects
of other genes/modules. In other words, with the “lego system” OncoSimulR makes
it simple to be explicit about the mapping of specific genotypes, while also using
the “how this specific effects modifies previous effects” logic, leading to a flexible
specification. This also means that in many cases the same fitness effects can be
specified in several different ways.

Most of the rest of this section is devoted to explaining how to combine those pieces.
Before that, however, we need to discuss the fitness model we use.

3.2 Numeric values of fitness effects
We evaluate fitness using the usual (Beerenwinkel, Eriksson, et al., 2007; Datta et al.,
2013; Gillespie, 1993; Zanini & Neher, 2012) multiplicative model: fitness is ∏(1 + si)
where si is the fitness effect of gene (or gene interaction) i. In all models except
Bozic, this fitness refers to the growth rate (the death rate being fixed to 17). The
original model of McFarland et al. (2013) has a slightly different parameterization,
but you can go easily from one to the other (see section 3.2.1).

For the Bozic model (Bozic et al., 2010), however, the birth rate is set to 1, and the
death rate then becomes ∏(1 − si).

3.2.1 McFarland parameterization

In the original model of McFarland et al. (2013), the effects of drivers contribute
to the numerator of the birth rate, and those of the (deleterious) passengers to the
denominator as: (1+s)d

(1+sp)p , where d and p are, respectively, the total number of drivers
and passengers in a genotype, and here the fitness effects of all drivers is the same
(s) and that of all passengers the same too (sp). Note that, as written above, and as
explicitly said in McFarland et al. (2013) (see p. 2911) and McFarland (2014) (see
p. 9), “(. . .) sp is the fitness disadvantage conferred by a passenger”. In other words,
the larger the sp the more deleterious the passenger.

This is obvious, but I make it explicit because in our parameterization a positive s
means fitness advantage, whereas fitness disadvantages are associated with negative
s. Of course, if you rewrite the above expression as (1+s)d

(1−sp)p then we are back to the
“positive means fitness advantage and negative means fitness disadvantage”.

As McFarland (2014) explains (see p. 9, bottom), we can rewrite the above expression
so that there are no terms in the denominator. McFarland writes it as (I copy verbatim

7You can change this if you really want to.

87

from the fourth and fifth lines from the bottom on his p. 9) (1 + sd)nd(1 − s
′
p)np

where s
′
p = sp/(1 + sp).

However, if we want to express everything as products (no ratios) and use the
“positive s means advantage and negative s means disadvantage” rule, we want to
write the above expression as (1 + sd)nd(1 + spp)np where spp = −sp/(1 + sp). And
this is actually what we do in v.2. There is an example, for instance, in section 6.5.2
where you will see:
sp <- 1e-3
spp <- -sp/(1 + sp)

so we are going from the “(. . .) sp is the fitness disadvantage conferred by a passenger”
in McFarland et al. (2013) (p. 2911) and McFarland (2014) (p. 9) to the expression
where we have a product ∏(1+si), with the “positive s means advantage and negative
s means disadvantage” rule. This reparameterization applies to v.2. In v.1 we used
the same parameterization as in the original one in McFarland et al. (2013), but
with the “positive s means advantage and negative s means disadvantage” rule (so
we are using expression (1+s)d

(1−sp)p).

3.2.1.1 Death rate under the McFarland model For death rate, we use the
expression that McFarland et al. (2013) (see their p. 2911) use “(. . .) for large cancers
(grown to 106 cells)”: D(N) = log(1 + N/K) where K is the initial equilibrium
population size. As the authors explain, for large N/K the above expression “(. . .)
recapitulates Gompertzian dynamics observed experimentally for large tumors”.

By default, OncoSimulR uses a value of K = initSize/(e1 − 1) so that the starting
population is at equilibrium.

A consequence of the above expression for death rate is that if the population size
decreases the death rate decreases. This is not relevant in most cases (as mutations, or
some mutations, will inexorably lead to population size increases). And this prevents
the McFL model from resulting in extinction even with very small population sizes
as long as birth rate ≥ death rate. (For small population sizes, it is likely that the
population will become extinct if birth rate = death rate; you can try this with the
exponential model).

But this is not what we want in some other models, such as frequency-dependent
ones, where modeling population collapse (which will happen if birth rate < death
rate) can be important (as in the example in 10.3). Here, it makes sense to set
D(N) = max(1, log(1 + N/K)) so that the death rate never decreases below 1.
(Using 1 is reasonable if we consider the equilibrium birth rate in the absence of any
mutants to be 1). You can specify this behaviour using model McFLD (a shorthand
for McFarlandLogD).

3.2.2 No viability of clones and types of models

For all models where fitness affects directly the birth rate (all except Bozic), if you
specify that some event (say, mutating gene A) has sA ≤ −1, if that event happens

88

then birth rate becomes zero. This is taken to indicate that the clone is not even
viable and thus disappears immediately without any chance for mutation8.

Models based on Bozic, however, have a birth rate of 1 and mutations affect the
death rate. In this case, a death rate larger than birth rate, per se, does not signal
immediate extinction and, moreover, even for death rates that are a few times larger
than birth rates, the clone could mutate before becoming extinct9.

In general, if you want to identify some mutations or some combinations of mutations
as leading to immediate extinction (i.e., no viability), of the affected clone, set it
to −∞ as this would work even if how birth rates of 0 are handled changes. Most
examples below evaluate fitness by its effects on the birth rate. You can see one
where we do it both ways in Section 3.11.1.

3.3 Genes without interactions
This is a simple scenario. Each gene i has a fitness effect si if mutated. The si can
come from any distribution you want. As an example let’s use three genes. We know
there are no order effects, but we will also see what happens if we examine genotypes
as ordered.

ai1 <- evalAllGenotypes(allFitnessEffects(
noIntGenes = c(0.05, -.2, .1), frequencyDependentFitness = FALSE), order = FALSE)

Warning in allFitnessEffects(noIntGenes = c(0.05, -0.2, 0.1),
frequencyDependentFitness = FALSE): v2 functionality detected.
Adapting to v3 functionality.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

We can easily verify the first results:
ai1
Genotype Fitness
1 1 1.050

8This is a shortcut that we take because we think that it is what you mean. Note, however, that
technically a clone with birth rate of 0 might have a non-zero probability of mutating before becoming
extinct because in the continuous time model we use mutation is not linked to reproduction. In the
present code, we are not allowing for any mutation when birth rate is 0. There are other options,
but none which I find really better. An alternative implementation makes a clone immediately
extinct if and only if any of the si = −∞. However, we still need to handle the case with si < −1
as a special case. We either make it identical to the case with any si = −∞ or for any si > −∞ we
set (1 + si) = max(0, 1 + si) (i.e., if si < −1 then (1 + si) = 0), to avoid obtaining negative birth
rates (that make no sense) and the problem of multiplying an even number of negative numbers. I
think only the second would make sense as an alternative.

9We said “a few times”. For a clone of population size 1 —which is the size at which all clones
start from mutation—, if death rate is, say, 90 but birth rate is 1, the probability of mutating
before becoming extinct is very, very close to zero for all reasonable values of mutation rate}. How
do we signal immediate extinction or no viability in this case? You can set the value of s = −∞.

89

2 2 0.800
3 3 1.100
4 1, 2 0.840
5 1, 3 1.155
6 2, 3 0.880
7 1, 2, 3 0.924

all(ai1[, "Fitness"] == c((1 + .05), (1 - .2), (1 + .1),
(1 + .05) * (1 - .2),
(1 + .05) * (1 + .1),
(1 - .2) * (1 + .1),
(1 + .05) * (1 - .2) * (1 + .1)))

[1] TRUE

And we can see that considering the order of mutations (see section 3.6) makes no
difference:
(ai2 <- evalAllGenotypes(allFitnessEffects(

noIntGenes = c(0.05, -.2, .1)), order = TRUE,
addwt = TRUE))

Genotype Birth
1 WT 1.000
2 1 1.050
3 2 0.800
4 3 1.100
5 1 > 2 0.840
6 1 > 3 1.155
7 2 > 1 0.840
8 2 > 3 0.880
9 3 > 1 1.155
10 3 > 2 0.880
11 1 > 2 > 3 0.924
12 1 > 3 > 2 0.924
13 2 > 1 > 3 0.924
14 2 > 3 > 1 0.924
15 3 > 1 > 2 0.924
16 3 > 2 > 1 0.924

(The meaning of the notation in the output table is as follows: “WT” denotes the
wild-type, or non-mutated clone. The notation x > y means that a mutation in “x”
happened before a mutation in “y”. A genotype x > y _ z means that a mutation in
“x” happened before a mutation in “y”; there is also a mutation in “z”, but that is a
gene for which order does not matter).

And what if I want genes without interactions but I want modules (see section 3.5)?
Go to section 3.8.

90

3.4 Using DAGs: Restrictions in the order of mutations as
extended posets

3.4.1 AND, OR, XOR relationships

The literature on Oncogenetic trees, CBNs, etc, has used graphs as a way of showing
the restrictions in the order in which mutations can accumulate. The meaning of
“convergent arrows” in these graphs, however, differs. In Figure 1 of Korsunsky et
al. (2014) we are shown a simple diagram that illustrates the three basic different
meanings of convergent arrows using two parental nodes. We will illustrate it here
with three. Suppose we focus on node “g” in the following figure (we will create it
shortly)
data(examplesFitnessEffects)
plot(examplesFitnessEffects[["cbn1"]])
This graph was created by an old(er) igraph version.
Call upgrade_graph() on it to use with the current igraph version
For now we convert it on the fly...

Root

a b

d ec

g

• In relationships of the type used in Conjunctive Bayesian Networks (CBN)
(e.g., Gerstung et al., 2009), we are modeling an AND relationship, also called
CMPN by Korsunsky et al. (2014) or monotone relationship by Farahani &
Lagergren (2013). If the relationship in the graph is fully respected, then “g”
will only appear if all of “c”, “d”, and “e” are already mutated.

• Semimonotone relationships sensu Farahani & Lagergren (2013) or DMPN
sensu Korsunsky et al. (2014) are OR relationships: “g” will appear if one or
more of “c”, “d”, or “e” are already mutated.

• XMPN relationships (Korsunsky et al., 2014) are XOR relationships: “g” will

91

be present only if exactly one of “c”, “d”, or “e” is present.

Note that Oncogenetic trees (Desper et al., 1999; Szabo & Boucher, 2008) need not
deal with the above distinctions, since the DAGs are trees: no node has more than
one incoming connection or more than one parent10.

To have a flexible way of specifying all of these restrictions, we will want to be able
to say what kind of dependency each child node has on its parents.

3.4.2 Fitness effects

Those DAGs specify dependencies and, as explained in Diaz-Uriarte (2015), it is
simple to map them to a simple evolutionary model: any set of mutations that does
not conform to the restrictions encoded in the graph will have a fitness of 0. However,
we might not want to require absolute compliance with the DAG. This means we
might want to allow deviations from the DAG with a corresponding penalization
that is, however, not identical to setting fitness to 0 (again, see Diaz-Uriarte, 2015).
This we can do by being explicit about the fitness effects of the deviations from the
restrictions encoded in the DAG. We will use below a column of s for the fitness
effect when the restrictions are satisfied and a column of sh when they are not. (See
also 3.2 for the details about the meaning of the fitness effects).

That way of specifying fitness effects makes it also trivial to use the model in Hjelm
et al. (2006) where all mutations might be allowed to occur, but the presence of some
mutations increases the probability of occurrence of other mutations. For example,
the values of sh could be all small positive ones (or for mildly deleterious effects,
small negative numbers), while the values of s are much larger positive numbers.

3.4.3 Extended posets

In version 1 of this package we used posets in the sense of Beerenwinkel, Eriksson,
et al. (2007) and Gerstung et al. (2009), as explained in the help for poset. The
functionality for simulating directly from such two column matrices has been removed.
Instead, we use what we call extended posets.

With the extended posets, we continue using two columns, that specify parents and
children, but we add columns for the specific values of fitness effects (both s and sh

—i.e., fitness effects for what happens when restrictions are and are not satisfied) and
for the type of dependency as explained in section 3.4.1.

We can now illustrate the specification of different fitness effects using DAGs.

3.4.4 DAGs: A first conjunction (AND) example

cs <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c"),
child = c("a", "b", "d", "e", "c", "c", rep("g", 3)),

10OTs and CBNs have some other technical differences about the underlying model they assume,
such as the exponential waiting time in CBNs. We will not discuss them here.

92

s = 0.1,
sh = -0.9,
typeDep = "MN")

cbn1 <- allFitnessEffects(cs)

(We skip one letter, just to show that names need not be consecutive or have any
particular order.)

We can get a graphical representation using the default “graphNEL”
plot(cbn1)

Root

a b

d ec

g

or one using “igraph”:
plot(cbn1, "igraph")

Root

a

b

d

e

c

g

Since we have a parent and children, the reingold.tilford layout is probably the best
here, so you might want to use that:

93

library(igraph) ## to make the reingold.tilford layout available
plot(cbn1, "igraph", layout = layout.reingold.tilford)

Root

a b d e

c g

And what is the fitness of all genotypes?
gfs <- evalAllGenotypes(cbn1, order = FALSE, addwt = TRUE)

gfs[1:15,]
Genotype Birth
1 WT 1.00
2 a 1.10
3 b 1.10
4 c 0.10
5 d 1.10
6 e 1.10
7 g 0.10
8 a, b 1.21
9 a, c 0.11
10 a, d 1.21
11 a, e 1.21
12 a, g 0.11
13 b, c 0.11
14 b, d 1.21
15 b, e 1.21

You can verify that for each genotype, if a mutation is present without all of its
dependencies present, you get a (1−0.9) multiplier, and you get a (1+0.1) multiplier
for all the rest with its direct parents satisfied. For example, genotypes “a”, or “b”,
or “d”, or “e” have fitness (1 + 0.1), genotype “a, b, c” has fitness (1 + 0.1)3, but
genotype “a, c” has fitness (1 + 0.1)(1 − 0.9) = 0.11.

94

3.4.5 DAGs: A second conjunction example

Let’s try a first attempt at a somewhat more complex example, where the fitness
consequences of different genes differ.

c1 <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c"),
child = c("a", "b", "d", "e", "c", "c", rep("g", 3)),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, rep(0.2, 3)),
sh = c(rep(0, 4), c(-.1, -.2), c(-.05, -.06, -.07)),
typeDep = "MN")

try(fc1 <- allFitnessEffects(c1))
Error in FUN(X[[i]], ...) : Not all sh identical within a child

If you try this, you’ll get an error. There is an error because the “sh” varies within a
child, and we do not allow that for a poset-type specification, as it is ambiguous. If
you need arbitrary fitness values for arbitrary combinations of genotypes, you can
specify them using epistatic effects as in section 3.7 and order effects as in section
3.6.

Why do we need to specify as many “s” and “sh” as there are rows (or a single one,
that gets expanded to those many) when the “s” and “sh” are properties of the child
node, not of the edges? Because, for ease, we use a data.frame.

We fix the error in our specification. Notice that the “sh” is not set to −1 in these
examples. If you want strict compliance with the poset restrictions, you should set
sh = −1 or, better yet, sh = −∞ (see section 3.2.2), but having an sh > −1 will
lead to fitnesses that are > 0 and, thus, is a way of modeling small deviations from
the poset (see discussion in Diaz-Uriarte, 2015).

Note that for those nodes that depend only on “Root” the type of dependency is
irrelevant.
c1 <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c"),

child = c("a", "b", "d", "e", "c", "c", rep("g", 3)),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, rep(0.2, 3)),
sh = c(rep(0, 4), c(-.9, -.9), rep(-.95, 3)),
typeDep = "MN")

cbn2 <- allFitnessEffects(c1)

We could get graphical representations but the figures would be the same as in the
example in section 3.4.4, since the structure has not changed, only the numeric
values.

What is the fitness of all possible genotypes? Here, order of events per se does not
matter, beyond that considered in the poset. In other words, the fitness of genotype
“a, b, c” is the same no matter how we got to “a, b, c”. What matters is whether or
not the genes on which each of “a”, “b”, and “c” depend are present or not (I only
show the first 10 genotypes)

95

gcbn2 <- evalAllGenotypes(cbn2, order = FALSE)
gcbn2[1:10,]
Genotype Birth
1 a 1.010
2 b 1.020
3 c 0.100
4 d 1.030
5 e 1.040
6 g 0.050
7 a, b 1.030
8 a, c 0.101
9 a, d 1.040
10 a, e 1.050

Of course, if we were to look at genotypes but taking into account order of occurrence
of mutations, we would see no differences
gcbn2o <- evalAllGenotypes(cbn2, order = TRUE, max = 1956)
gcbn2o[1:10,]
Genotype Birth
1 a 1.010
2 b 1.020
3 c 0.100
4 d 1.030
5 e 1.040
6 g 0.050
7 a > b 1.030
8 a > c 0.101
9 a > d 1.040
10 a > e 1.050

(The max = 1956 is there so that we show all the genotypes, even if they are more
than 256, the default.)

You can check the output and verify things are as they should. For instance:
all.equal(

gcbn2[c(1:21, 22, 28, 41, 44, 56, 63) , "Fitness"],
c(1.01, 1.02, 0.1, 1.03, 1.04, 0.05,

1.01 * c(1.02, 0.1, 1.03, 1.04, 0.05),
1.02 * c(0.10, 1.03, 1.04, 0.05),
0.1 * c(1.03, 1.04, 0.05),
1.03 * c(1.04, 0.05),
1.04 * 0.05,
1.01 * 1.02 * 1.1,
1.01 * 0.1 * 0.05,
1.03 * 1.04 * 0.05,
1.01 * 1.02 * 1.1 * 0.05,

96

1.03 * 1.04 * 1.2 * 0.1, ## notice this
1.01 * 1.02 * 1.03 * 1.04 * 1.1 * 1.2
))

[1] "target is NULL, current is numeric"

A particular one that is important to understand is genotype with mutated genes “c,
d, e, g”:
gcbn2[56,]
Genotype Birth
56 c, d, e, g 0.1285

all.equal(gcbn2[56, "Fitness"], 1.03 * 1.04 * 1.2 * 0.10)
[1] "target is NULL, current is numeric"

where “g” is taken as if its dependencies are satisfied (as “c”, “d”, and “e” are present)
even when the dependencies of “c” are not satisfied (and that is why the term for “c”
is 0.9).

3.4.6 DAGs: A semimonotone or “OR” example

We will reuse the above example, changing the type of relationship:

s1 <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c"),
child = c("a", "b", "d", "e", "c", "c", rep("g", 3)),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, rep(0.2, 3)),
sh = c(rep(0, 4), c(-.9, -.9), rep(-.95, 3)),
typeDep = "SM")

smn1 <- allFitnessEffects(s1)

It looks like this (where edges are shown in blue to denote the semimonotone
relationship):
plot(smn1)

97

Root

a b

d ec

g

gsmn1 <- evalAllGenotypes(smn1, order = FALSE)

Having just one parental dependency satisfied is now enough, in contrast to what
happened before. For instance:
gcbn2[c(8, 12, 22),]
Genotype Birth
8 a, c 0.101
12 b, c 0.102
22 a, b, c 1.133

gsmn1[c(8, 12, 22),]
Genotype Birth
8 a, c 1.111
12 b, c 1.122
22 a, b, c 1.133

gcbn2[c(20:21, 28),]
Genotype Birth
20 d, g 0.05150
21 e, g 0.05200
28 a, c, g 0.00505

gsmn1[c(20:21, 28),]
Genotype Birth
20 d, g 1.236
21 e, g 1.248
28 a, c, g 1.333

3.4.7 An “XMPN” or “XOR” example

Again, we reuse the example above, changing the type of relationship:

98

x1 <- data.frame(parent = c(rep("Root", 4), "a", "b", "d", "e", "c"),
child = c("a", "b", "d", "e", "c", "c", rep("g", 3)),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, rep(0.2, 3)),
sh = c(rep(0, 4), c(-.9, -.9), rep(-.95, 3)),
typeDep = "XMPN")

xor1 <- allFitnessEffects(x1)

It looks like this (edges in red to denote the “XOR” relationship):
plot(xor1)

Root

a b

d ec

g

gxor1 <- evalAllGenotypes(xor1, order = FALSE)

Whenever “c” is present with both “a” and “b”, the fitness component for “c” will
be (1 − 0.1). Similarly for “g” (if more than one of “d”, “e”, or “c” is present, it will
show as (1 − 0.05)). For example:
gxor1[c(22, 41),]
Genotype Birth
22 a, b, c 0.10302
41 d, e, g 0.05356

c(1.01 * 1.02 * 0.1, 1.03 * 1.04 * 0.05)
[1] 0.10302 0.05356

However, having just both “a” and “b” is identical to the case with CBN and the
monotone relationship (see sections 3.4.5 and 3.4.6). If you want the joint presence
of “a” and “b” to result in different fitness than the product of the individual terms,
without considering the presence of “c”, you can specify that using general epistatic
effects (section 3.7).

We also see a very different pattern compared to CBN (section 3.4.5) here:

99

gxor1[28,]
Genotype Birth
28 a, c, g 1.333

1.01 * 1.1 * 1.2
[1] 1.333

as exactly one of the dependencies for both “c” and “g” are satisfied.

But
gxor1[44,]
Genotype Birth
44 a, b, c, g 0.1236

1.01 * 1.02 * 0.1 * 1.2
[1] 0.1236

is the result of a 0.1 for “c” (and a 1.2 for “g” that has exactly one of its dependencies
satisfied).

3.4.8 Posets: the three types of relationships

p3 <- data.frame(
parent = c(rep("Root", 4), "a", "b", "d", "e", "c", "f"),
child = c("a", "b", "d", "e", "c", "c", "f", "f", "g", "g"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),

"XMPN", "XMPN", "MN", "MN", "SM", "SM"))
fp3 <- allFitnessEffects(p3)

This is how it looks like:
plot(fp3)

100

Root

a b d e

c f

g

We can also use “igraph”:
plot(fp3, "igraph", layout.reingold.tilford)

Root

a b d e

c f

g

gfp3 <- evalAllGenotypes(fp3, order = FALSE)

Let’s look at a few:
gfp3[c(9, 24, 29, 59, 60, 66, 119, 120, 126, 127),]
Genotype Birth
9 a, c 1.111000
24 d, f 0.051500
29 a, b, c 0.103020

101

59 c, f, g 0.006500
60 d, e, f 1.285440
66 a, b, c, f 0.005151
119 c, d, e, f, g 0.167107
120 a, b, c, d, e, f 0.132426
126 b, c, d, e, f, g 1.874943
127 a, b, c, d, e, f, g 0.172154

c(1.01 * 1.1, 1.03 * .05, 1.01 * 1.02 * 0.1, 0.1 * 0.05 * 1.3,
1.03 * 1.04 * 1.2, 1.01 * 1.02 * 0.1 * 0.05,
0.1 * 1.03 * 1.04 * 1.2 * 1.3,
1.01 * 1.02 * 0.1 * 1.03 * 1.04 * 1.2,
1.02 * 1.1 * 1.03 * 1.04 * 1.2 * 1.3,
1.01 * 1.02 * 1.03 * 1.04 * 0.1 * 1.2 * 1.3)

[1] 1.111000 0.051500 0.103020 0.006500 1.285440 0.005151 0.167107
[8] 0.132426 1.874943 0.172154

As before, looking at the order of mutations makes no difference (look at the test
directory to see a test that verifies this assertion).

3.5 Modules
As already mentioned, we can think of all the effects of fitness in terms not of
individual genes but, rather, modules. This idea is discussed in, for example, Raphael
& Vandin (2015), Gerstung, Eriksson, et al. (2011): the restrictions encoded in,
say, the DAGs can be considered to apply not to genes, but to modules, where each
module is a set of genes (and the intersection between modules is the empty set).
Modules, then, play the role of a “union operation” over sets of genes. Of course, if
we can use modules for the restrictions in the DAGs we should also be able to use
them for epistasis and order effects, as we will see later (e.g., 3.6.2).

3.5.1 What does a module provide

Modules can provide very compact ways of specifying relationships when you want
to, well, model the existence of modules. For simplicity suppose there is a module,
“A”, made of genes “a1” and “a2”, and a module “B”, made of a single gene “b1”.
Module “B” can mutate if module “A” is mutated, but mutating both “a1” and “a2”
provides no additional fitness advantage compared to mutating only a single one of
them. We can specify this as:
s <- 0.2
sboth <- (1/(1 + s)) - 1
m0 <- allFitnessEffects(data.frame(

parent = c("Root", "Root", "a1", "a2"),
child = c("a1", "a2", "b", "b"),
s = s,
sh = -1,

102

typeDep = "OR"),
epistasis = c("a1:a2" = sboth))

evalAllGenotypes(m0, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 a1 1.20
3 a2 1.20
4 b 0.00
5 a1, a2 1.20
6 a1, b 1.44
7 a2, b 1.44
8 a1, a2, b 1.44

Note that we need to add an epistasis term, with value “sboth” to capture the idea
of “mutating both”a1” and “a2” provides no additional fitness advantage compared
to mutating only a single one of them”; see details in section 3.7.

Now, specify it using modules:
s <- 0.2
m1 <- allFitnessEffects(data.frame(

parent = c("Root", "A"),
child = c("A", "B"),
s = s,
sh = -1,
typeDep = "OR"),

geneToModule = c("Root" = "Root",
"A" = "a1, a2",
"B" = "b1"))

evalAllGenotypes(m1, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 a1 1.20
3 a2 1.20
4 b1 0.00
5 a1, a2 1.20
6 a1, b1 1.44
7 a2, b1 1.44
8 a1, a2, b1 1.44

This captures the ideas directly. The typing savings here are small, but they can be
large with modules with many genes.

3.5.2 Specifying modules

How do you specify modules? The general procedure is simple: you pass a vector
that makes explicit the mapping from modules to sets of genes. We just saw an
example. There are several additional examples such as 3.5.3, 3.6.2, 3.7.4.

103

It is important to note that, once you specify modules, we expect all of the relation-
ships (except those that involve the non interacting genes) to be specified as modules.
Thus, all elements of the epistasis, posets (the DAGs) and order effects components
should be specified in terms of modules. But you can, of course, specify a module as
containing a single gene (and a single gene with the same name as the module).

What about the “Root” node? If you use a “restriction table”, that restriction table
(that DAG) must have a node named “Root” and in the mapping of genes to module
there must be a first entry that has a module and gene named “Root”, as we saw
above with geneToModule = c("Root" = "Root", We force you to do this
to be explicit about the “Root” node. This is not needed (thought it does not hurt)
with other fitness specifications. For instance, if we have a model with two modules,
one of them with two genes (see details in section 3.8) we do not need to pass a
“Root” as in
fnme <- allFitnessEffects(epistasis = c("A" = 0.1,

"B" = 0.2),
geneToModule = c("A" = "a1, a2",

"B" = "b1"))
evalAllGenotypes(fnme, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 a1 1.10
3 a2 1.10
4 b1 1.20
5 a1, a2 1.10
6 a1, b1 1.32
7 a2, b1 1.32
8 a1, a2, b1 1.32

but it is also OK to have a “Root” in the geneToModule:
fnme2 <- allFitnessEffects(epistasis = c("A" = 0.1,

"B" = 0.2),
geneToModule = c(

"Root" = "Root",
"A" = "a1, a2",
"B" = "b1"))

evalAllGenotypes(fnme, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 a1 1.10
3 a2 1.10
4 b1 1.20
5 a1, a2 1.10
6 a1, b1 1.32
7 a2, b1 1.32
8 a1, a2, b1 1.32

104

3.5.3 Modules and posets again: the three types of relationships and
modules

We use the same specification of poset, but add modules. To keep it manageable,
we only add a few genes for some modules, and have some modules with a single
gene. Beware that the number of genotypes is starting to grow quite fast, though.
We capitalize to differentiate modules (capital letters) from genes (lowercase with a
number), but this is not needed.
p4 <- data.frame(

parent = c(rep("Root", 4), "A", "B", "D", "E", "C", "F"),
child = c("A", "B", "D", "E", "C", "C", "F", "F", "G", "G"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),

"XMPN", "XMPN", "MN", "MN", "SM", "SM"))

fp4m <- allFitnessEffects(
p4,
geneToModule = c("Root" = "Root", "A" = "a1",

"B" = "b1, b2", "C" = "c1",
"D" = "d1, d2", "E" = "e1",
"F" = "f1, f2", "G" = "g1"))

By default, plotting shows the modules:
plot(fp4m)

Root

A B D E

C F

G

but we can show the gene names instead of the module names:
plot(fp4m, expandModules = TRUE)

105

Root

a1 b1, b2 d1, d2 e1

c1 f1, f2

g1

or
plot(fp4m, "igraph", layout = layout.reingold.tilford,

expandModules = TRUE)

Root

a1 b1, b2 d1, d2 e1

c1 f1, f2

g1

We obtain the fitness of all genotypes in the usual way:
gfp4 <- evalAllGenotypes(fp4m, order = FALSE, max = 1024)

Let’s look at a few of those:
gfp4[c(12, 20, 21, 40, 41, 46, 50, 55, 64, 92,

155, 157, 163, 372, 632, 828),]
Genotype Birth

106

12 a1, b2 1.0302
20 b1, b2 1.0200
21 b1, c1 1.1220
40 c1, g1 0.1300
41 d1, d2 1.0300
46 d2, e1 1.0712
50 e1, f1 0.0520
55 f2, g1 0.0650
64 a1, b2, c1 0.1030
92 b1, b2, c1 1.1220
155 c1, f2, g1 0.0065
157 d1, d2, f1 0.0515
163 d1, f1, f2 0.0515
372 d1, d2, e1, f2 1.2854
632 d1, d2, e1, f1, f2 1.2854
828 b2, c1, d1, e1, f2, g1 1.8749

c(1.01 * 1.02, 1.02, 1.02 * 1.1, 0.1 * 1.3, 1.03,
1.03 * 1.04, 1.04 * 0.05, 0.05 * 1.3,
1.01 * 1.02 * 0.1, 1.02 * 1.1, 0.1 * 0.05 * 1.3,
1.03 * 0.05, 1.03 * 0.05, 1.03 * 1.04 * 1.2, 1.03 * 1.04 * 1.2,
1.02 * 1.1 * 1.03 * 1.04 * 1.2 * 1.3)

[1] 1.0302 1.0200 1.1220 0.1300 1.0300 1.0712 0.0520 0.0650 0.1030
[10] 1.1220 0.0065 0.0515 0.0515 1.2854 1.2854 1.8749

3.6 Order effects
As explained in the introduction (section 1), by order effects we mean a phenomenon
such as the one shown empirically by Ortmann et al. (2015): the fitness of a double
mutant “A”, “B” is different depending on whether “A” was acquired before “B” or
“B” before “A”. This, of course, can be generalized to more than two genes.

Note that order effects are different from the restrictions in the order of accumulation
of mutations discussed in section 3.4. With restrictions in the order of accumulation
of mutations we might say that acquiring “B” depends or is facilitated by having “A”
mutated (and, unless we allowed for multiple mutations, having “A” mutated means
having “A” mutated before “B”). However, once you have the genotype “A, B”, its
fitness does not depend on the order in which “A” and “B” appeared.

3.6.1 Order effects: three-gene orders

Consider this case, where three specific three-gene orders and two two-gene orders
(one of them a subset of one of the three) lead to different fitness compared to the
wild-type. We add also modules, to show its usage (but just limit ourselves to using
one gene per module here).

Order effects are specified using a x > y, which means that that order effect is

107

satisfied when module x is mutated before module y.
o3 <- allFitnessEffects(orderEffects = c(

"F > D > M" = -0.3,
"D > F > M" = 0.4,
"D > M > F" = 0.2,
"D > M" = 0.1,
"M > D" = 0.5),

geneToModule =
c("M" = "m",

"F" = "f",
"D" = "d"))

(ag <- evalAllGenotypes(o3, addwt = TRUE, order = TRUE))
Genotype Birth
1 WT 1.00
2 d 1.00
3 f 1.00
4 m 1.00
5 d > f 1.00
6 d > m 1.10
7 f > d 1.00
8 f > m 1.00
9 m > d 1.50
10 m > f 1.00
11 d > f > m 1.54
12 d > m > f 1.32
13 f > d > m 0.77
14 f > m > d 1.50
15 m > d > f 1.50
16 m > f > d 1.50

(The meaning of the notation in the output table is as follows: “WT” denotes the
wild-type, or non-mutated clone. The notation x > y means that a mutation in “x”
happened before a mutation in “y”. A genotype x > y _ z means that a mutation in
“x” happened before a mutation in “y”; there is also a mutation in “z”, but that is a
gene for which order does not matter).

The values for the first nine genotypes come directly from the fitness specifications.
The 10th genotype matches D > F > M (= (1 + 0.4)) but also D > M ((1 + 0.1)).
The 11th matches D > M > F and D > M . The 12th matches F > D > M but
also D > M . Etc.

3.6.2 Order effects and modules with multiple genes

Consider the following case:

108

ofe1 <- allFitnessEffects(
orderEffects = c("F > D" = -0.3, "D > F" = 0.4),
geneToModule =

c("F" = "f1, f2",
"D" = "d1, d2"))

ag <- evalAllGenotypes(ofe1, order = TRUE)

There are four genes, d1, d2, f1, f2, where each d belongs to module D and each f
belongs to module F .

What to expect for cases such as d1 > f1 or f1 > d1 is clear, as shown in
ag[5:16,]
Genotype Birth
5 d1 > d2 1.0
6 d1 > f1 1.4
7 d1 > f2 1.4
8 d2 > d1 1.0
9 d2 > f1 1.4
10 d2 > f2 1.4
11 f1 > d1 0.7
12 f1 > d2 0.7
13 f1 > f2 1.0
14 f2 > d1 0.7
15 f2 > d2 0.7
16 f2 > f1 1.0

Likewise, cases such as d1 > d2 > f1 or f2 > f1 > d1 are clear, because in terms
of modules they map to $ D > F$ or F > D: the observed order of mutation
d1 > d2 > f1 means that module D was mutated first and module F was mutated
second. Similar for d1 > f1 > f2 or f1 > d1 > d2: those map to D > F and F > D.
We can see the fitness of those four case in:
ag[c(17, 39, 19, 29),]
Genotype Birth
17 d1 > d2 > f1 1.4
39 f2 > f1 > d1 0.7
19 d1 > f1 > d2 1.4
29 f1 > d1 > d2 0.7

and they correspond to the values of those order effects, where F > D = (1 − 0.3)
and D > F = (1 + 0.4):
ag[c(17, 39, 19, 29), "Fitness"] == c(1.4, 0.7, 1.4, 0.7)
logical(0)

What if we match several patterns? For example, d1 > f1 > d2 > f2 and d1 > f1 >
f2 > d2? The first maps to D > F > D > F and the second to D > F > D. But

109

since we are concerned with which one happened first and which happened second
we should expect those two to correspond to the same fitness, that of pattern D > F ,
as is the case:
ag[c(43, 44),]
Genotype Birth
43 d1 > f1 > d2 > f2 1.4
44 d1 > f1 > f2 > d2 1.4

ag[c(43, 44), "Fitness"] == c(1.4, 1.4)
logical(0)

More generally, that applies to all the patterns that start with one of the “d” genes:
all(ag[41:52, "Fitness"] == 1.4)
[1] TRUE

Similar arguments apply to the opposite pattern, F > D, which apply to all the
possible gene mutation orders that start with one of the “f” genes. For example:
all(ag[53:64, "Fitness"] == 0.7)
[1] TRUE

3.6.3 Order and modules with 325 genotypes

We can of course have more than two genes per module. This just repeats the
above, with five genes (there are 325 genotypes, and that is why we pass the “max”
argument to evalAllGenotypes, to allow for more than the default 256).

ofe2 <- allFitnessEffects(
orderEffects = c("F > D" = -0.3, "D > F" = 0.4),
geneToModule =

c("F" = "f1, f2, f3",
"D" = "d1, d2"))

ag2 <- evalAllGenotypes(ofe2, max = 325, order = TRUE)

We can verify that any combination that starts with a “d” gene and then contains at
least one “f” gene will have a fitness of 1 + 0.4. And any combination that starts
with an “f” gene and contains at least one “d” genes will have a fitness of 1 − 0.3.
All other genotypes have a fitness of 1:
all(ag2[grep("ˆd.*f.*", ag2[, 1]), "Fitness"] == 1.4)
[1] TRUE

all(ag2[grep("ˆf.*d.*", ag2[, 1]), "Fitness"] == 0.7)
[1] TRUE

oe <- c(grep("ˆf.*d.*", ag2[, 1]), grep("ˆd.*f.*", ag2[, 1]))
all(ag2[-oe, "Fitness"] == 1)
[1] TRUE

110

3.6.4 Order effects and genes without interactions

We will now look at both order effects and interactions. To make things more
interesting, we name genes so that the ordered names do split nicely between those
with and those without order effects (this, thus, also serves as a test of messy orders
of names).

foi1 <- allFitnessEffects(
orderEffects = c("D>B" = -0.2, "B > D" = 0.3),
noIntGenes = c("A" = 0.05, "C" = -.2, "E" = .1))

You can get a verbose view of what the gene names and modules are (and their
automatically created numeric codes) by:
foi1[c("geneModule", "long.geneNoInt")]
$geneModule
Gene Module GeneNumID ModuleNumID
1 Root Root 0 0
2 B B 1 1
3 D D 2 2
##
$long.geneNoInt
Gene GeneNumID s
A A 3 0.05
C C 4 -0.20
E E 5 0.10

We can get the fitness of all genotypes (we set max = 325 because that is the number
of possible genotypes):
agoi1 <- evalAllGenotypes(foi1, max = 325, order = TRUE)
head(agoi1)
Genotype Birth
1 B 1.00
2 D 1.00
3 A 1.05
4 C 0.80
5 E 1.10
6 B > D 1.30

Now:
rn <- 1:nrow(agoi1)
names(rn) <- agoi1[, 1]

agoi1[rn[LETTERS[1:5]], "Fitness"] == c(1.05, 1, 0.8, 1, 1.1)
logical(0)

According to the fitness effects we have specified, we also know that any genotype
with only two mutations, one of which is either “A”, “C” “E” and the other is “B”

111

or “D” will have the fitness corresponding to “A”, “C” or “E”, respectively:
agoi1[grep("ˆA > [BD]$", names(rn)), "Fitness"] == 1.05
logical(0)

agoi1[grep("ˆC > [BD]$", names(rn)), "Fitness"] == 0.8
logical(0)

agoi1[grep("ˆE > [BD]$", names(rn)), "Fitness"] == 1.1
logical(0)

agoi1[grep("ˆ[BD] > A$", names(rn)), "Fitness"] == 1.05
logical(0)

agoi1[grep("ˆ[BD] > C$", names(rn)), "Fitness"] == 0.8
logical(0)

agoi1[grep("ˆ[BD] > E$", names(rn)), "Fitness"] == 1.1
logical(0)

We will not be playing many additional games with regular expressions, but let us
check those that start with “D” and have all the other mutations, which occupy
rows 230 to 253; fitness should be equal (within numerical error, because of floating
point arithmetic) to the order effect of “D” before “B” times the other effects
(1 − 0.3) ∗ 1.05 ∗ 0.8 ∗ 1.1 = 0.7392
all.equal(agoi1[230:253, "Fitness"] ,

rep((1 - 0.2) * 1.05 * 0.8 * 1.1, 24))
[1] "target is NULL, current is numeric"

and that will also be the value of any genotype with the five mutations where “D”
comes before “B” such as those in rows 260 to 265, 277, or 322 and 323, but it will
be equal to (1 + 0.3) ∗ 1.05 ∗ 0.8 ∗ 1.1 = 1.2012 in those where “B” comes before “D”.
Analogous arguments apply to four, three, and two mutation genotypes.

3.7 Epistasis
3.7.1 Epistasis: two alternative specifications

We want the following mapping of genotypes to fitness:

A B Fitness
wt wt 1
wt M 1 + sb

M wt 1 + sa

M M 1 + sab

Suppose that the actual numerical values are sa = 0.2, sb = 0.3, sab = 0.7.

112

We specify the above as follows:
sa <- 0.2
sb <- 0.3
sab <- 0.7

e2 <- allFitnessEffects(epistasis =
c("A: -B" = sa,

"-A:B" = sb,
"A : B" = sab))

evalAllGenotypes(e2, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 A 1.2
3 B 1.3
4 A, B 1.7

That uses the “-” specification, so we explicitly exclude some patterns: with “A:-B”
we say “A when there is no B”.

But we can also use a specification where we do not use the “-”. That requires a
different numerical value of the interaction, because now, as we are rewriting the
interaction term as genotype “A is mutant, B is mutant” the double mutant will
incorporate the effects of “A mutant”, “B mutant” and “both A and B mutants”.
We can define a new s2 that satisfies (1 + sab) = (1 + sa)(1 + sb)(1 + s2) so (1 + s2) =
(1 + sab)/((1 + sa)(1 + sb)) and therefore specify as:
s2 <- ((1 + sab)/((1 + sa) * (1 + sb))) - 1

e3 <- allFitnessEffects(epistasis =
c("A" = sa,

"B" = sb,
"A : B" = s2))

evalAllGenotypes(e3, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 A 1.2
3 B 1.3
4 A, B 1.7

Note that this is the way you would specify effects with FFPopsim (Zanini & Neher,
2012). Whether this specification or the previous one with “-” is simpler will depend
on the model. For synthetic mortality and viability, I think the one using “-” is
simpler to map genotype tables to fitness effects. See also section 3.7.2 and 3.7.3
and the example in section 5.4.2.

Finally, note that we can also specify some of these effects by combining the graph
and the epistasis, as shown in section 5.2.1 or 5.4.2.

113

3.7.2 Epistasis with three genes and two alternative specifications

Suppose we have

A B C Fitness
M wt wt 1 + sa

wt M wt 1 + sb

wt wt M 1 + sc

M M wt 1 + sab

wt M M 1 + sbc

M wt M (1 + sa)(1 + sc)
M M M 1 + sabc

where missing rows have a fitness of 1 (they have been deleted for conciseness). Note
that the mutant for exactly A and C has a fitness that is the product of the individual
terms (so there is no epistasis in that case).
sa <- 0.1
sb <- 0.15
sc <- 0.2
sab <- 0.3
sbc <- -0.25
sabc <- 0.4

sac <- (1 + sa) * (1 + sc) - 1

E3A <- allFitnessEffects(epistasis =
c("A:-B:-C" = sa,

"-A:B:-C" = sb,
"-A:-B:C" = sc,
"A:B:-C" = sab,
"-A:B:C" = sbc,
"A:-B:C" = sac,
"A : B : C" = sabc)

)

evalAllGenotypes(E3A, order = FALSE, addwt = FALSE)
Genotype Birth
1 A 1.10
2 B 1.15
3 C 1.20
4 A, B 1.30
5 A, C 1.32
6 B, C 0.75
7 A, B, C 1.40

We needed to pass the sac coefficient explicitly, even if it that term was just the

114

product. We can try to avoid using the “-”, however (but we will need to do other
calculations). For simplicity, I use capital “S” in what follows where the letters differ
from the previous specification:

sa <- 0.1
sb <- 0.15
sc <- 0.2
sab <- 0.3
Sab <- ((1 + sab)/((1 + sa) * (1 + sb))) - 1
Sbc <- ((1 + sbc)/((1 + sb) * (1 + sc))) - 1
Sabc <- ((1 + sabc)/

((1 + sa) * (1 + sb) * (1 + sc) *
(1 + Sab) * (1 + Sbc))) - 1

E3B <- allFitnessEffects(epistasis =
c("A" = sa,

"B" = sb,
"C" = sc,
"A:B" = Sab,
"B:C" = Sbc,
"A:C" = sac, ## not needed now
"A : B : C" = Sabc)

)
evalAllGenotypes(E3B, order = FALSE, addwt = FALSE)
Genotype Birth
1 A 1.10
2 B 1.15
3 C 1.20
4 A, B 1.30
5 A, C 1.32
6 B, C 0.75
7 A, B, C 1.40

The above two are, of course, identical:
all(evalAllGenotypes(E3A, order = FALSE, addwt = FALSE) ==

evalAllGenotypes(E3B, order = FALSE, addwt = FALSE))
[1] TRUE

We avoid specifying the “A:C”, as it just follows from the individual “A” and “C”
terms, but given a specified genotype table, we need to do a little bit of addition
and multiplication to get the coefficients.

3.7.3 Why can we specify some effects with a “-”?

Let’s suppose we want to specify the synthetic viability example seen before:

115

A B Fitness
wt wt 1
wt M 0
M wt 0
M M (1 + s)

where “wt” denotes wild type and “M” denotes mutant.

If you want to directly map the above table to the fitness table for the program, to
specify the genotype “A is wt, B is a mutant” you can specify it as “-A,B”, not just
as “B”. Why? Because just the presence of a “B” is also compatible with genotype
“A is mutant and B is mutant”. If you use “-” you are explicitly saying what should
not be there so that “-A,B” is NOT compatible with “A, B”. Otherwise, you need
to carefully add coefficients. Depending on what you are trying to model, different
specifications might be simpler. See the examples in section 3.7.1 and 3.7.2. You
have both options.

3.7.4 Epistasis: modules

There is nothing conceptually new, but we will show an example here:

sa <- 0.2
sb <- 0.3
sab <- 0.7

em <- allFitnessEffects(epistasis =
c("A: -B" = sa,

"-A:B" = sb,
"A : B" = sab),

geneToModule = c("A" = "a1, a2",
"B" = "b1, b2"))

evalAllGenotypes(em, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 a1 1.2
3 a2 1.2
4 b1 1.3
5 b2 1.3
6 a1, a2 1.2
7 a1, b1 1.7
8 a1, b2 1.7
9 a2, b1 1.7
10 a2, b2 1.7
11 b1, b2 1.3
12 a1, a2, b1 1.7
13 a1, a2, b2 1.7

116

14 a1, b1, b2 1.7
15 a2, b1, b2 1.7
16 a1, a2, b1, b2 1.7

Of course, we can do the same thing without using the “-”, as in section 3.7.1:
s2 <- ((1 + sab)/((1 + sa) * (1 + sb))) - 1

em2 <- allFitnessEffects(epistasis =
c("A" = sa,

"B" = sb,
"A : B" = s2),

geneToModule = c("A" = "a1, a2",
"B" = "b1, b2")

)
evalAllGenotypes(em2, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 a1 1.2
3 a2 1.2
4 b1 1.3
5 b2 1.3
6 a1, a2 1.2
7 a1, b1 1.7
8 a1, b2 1.7
9 a2, b1 1.7
10 a2, b2 1.7
11 b1, b2 1.3
12 a1, a2, b1 1.7
13 a1, a2, b2 1.7
14 a1, b1, b2 1.7
15 a2, b1, b2 1.7
16 a1, a2, b1, b2 1.7

3.8 I do not want epistasis, but I want modules!
Sometimes you might want something like having several modules, say “A” and “B”,
each with a number of genes, but with “A” and “B” showing no interaction.

It is a terminological issue whether we should allow noIntGenes (no interaction
genes), as explained in section 3.3 to actually be modules. The reasoning for not
allowing them is that the situation depicted above (several genes in module A, for
example) actually is one of interaction: the members of “A” are combined using
an “OR” operator (i.e., the fitness consequences of having one or more genes of A
mutated are the same), not just simply multiplying their fitness; similarly for “B”.
This is why no interaction genes also mean no modules allowed.

So how do you get what you want in this case? Enter the names of the modules

117

in the epistasis component but have no term for “:” (the colon). Let’s see an
example:

fnme <- allFitnessEffects(epistasis = c("A" = 0.1,
"B" = 0.2),

geneToModule = c("A" = "a1, a2",
"B" = "b1, b2, b3"))

evalAllGenotypes(fnme, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 a1 1.10
3 a2 1.10
4 b1 1.20
5 b2 1.20
6 b3 1.20
7 a1, a2 1.10
8 a1, b1 1.32
9 a1, b2 1.32
10 a1, b3 1.32
11 a2, b1 1.32
12 a2, b2 1.32
13 a2, b3 1.32
14 b1, b2 1.20
15 b1, b3 1.20
16 b2, b3 1.20
17 a1, a2, b1 1.32
18 a1, a2, b2 1.32
19 a1, a2, b3 1.32
20 a1, b1, b2 1.32
21 a1, b1, b3 1.32
22 a1, b2, b3 1.32
23 a2, b1, b2 1.32
24 a2, b1, b3 1.32
25 a2, b2, b3 1.32
26 b1, b2, b3 1.20
27 a1, a2, b1, b2 1.32
28 a1, a2, b1, b3 1.32
29 a1, a2, b2, b3 1.32
30 a1, b1, b2, b3 1.32
31 a2, b1, b2, b3 1.32
32 a1, a2, b1, b2, b3 1.32

In previous versions these was possible using the longer, still accepted way of
specifying a : with a value of 0, but this is no longer needed:

118

fnme <- allFitnessEffects(epistasis = c("A" = 0.1,
"B" = 0.2,
"A : B" = 0.0),

geneToModule = c("A" = "a1, a2",
"B" = "b1, b2, b3"))

evalAllGenotypes(fnme, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 a1 1.10
3 a2 1.10
4 b1 1.20
5 b2 1.20
6 b3 1.20
7 a1, a2 1.10
8 a1, b1 1.32
9 a1, b2 1.32
10 a1, b3 1.32
11 a2, b1 1.32
12 a2, b2 1.32
13 a2, b3 1.32
14 b1, b2 1.20
15 b1, b3 1.20
16 b2, b3 1.20
17 a1, a2, b1 1.32
18 a1, a2, b2 1.32
19 a1, a2, b3 1.32
20 a1, b1, b2 1.32
21 a1, b1, b3 1.32
22 a1, b2, b3 1.32
23 a2, b1, b2 1.32
24 a2, b1, b3 1.32
25 a2, b2, b3 1.32
26 b1, b2, b3 1.20
27 a1, a2, b1, b2 1.32
28 a1, a2, b1, b3 1.32
29 a1, a2, b2, b3 1.32
30 a1, b1, b2, b3 1.32
31 a2, b1, b2, b3 1.32
32 a1, a2, b1, b2, b3 1.32

This can, of course, be extended to more modules.

119

3.9 Synthetic viability
Synthetic viability and synthetic lethality (e.g., Ashworth et al., 2011; Hartman et
al., 2001) are just special cases of epistasis (section 3.7) but we deal with them here
separately.

3.9.1 A simple synthetic viability example

A simple and extreme example of synthetic viability is shown in the following table,
where the joint mutant has fitness larger than the wild type, but each single mutant
is lethal.

A B Fitness
wt wt 1
wt M 0
M wt 0
M M (1 + s)

where “wt” denotes wild type and “M” denotes mutant.

We can specify this (setting s = 0.2) as (I play around with spaces, to show there is
a certain flexibility with them):
s <- 0.2
sv <- allFitnessEffects(epistasis = c("-A : B" = -1,

"A : -B" = -1,
"A:B" = s))

Now, let’s look at all the genotypes (we use “addwt” to also get the wt, which by
decree has fitness of 1), and disregard order:
(asv <- evalAllGenotypes(sv, order = FALSE, addwt = TRUE))
Genotype Birth
1 WT 1.0
2 A 0.0
3 B 0.0
4 A, B 1.2

Asking the program to consider the order of mutations of course makes no difference:
evalAllGenotypes(sv, order = TRUE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 A 0.0
3 B 0.0
4 A > B 1.2
5 B > A 1.2

Another example of synthetic viability is shown in section 5.2.2.

120

Of course, if multiple simultaneous mutations are not possible in the simulations, it
is not possible to go from the wildtype to the double mutant in this model where
the single mutants are not viable.

3.9.2 Synthetic viability, non-zero fitness, and modules

This is a slightly more elaborate case, where there is one module and the single
mutants have different fitness between themselves, which is non-zero. Without the
modules, this is the same as in Misra et al. (2014), Figure 1b, which we go over in
section 5.2.

A B Fitness
wt wt 1
wt M 1 + sb

M wt 1 + sa

M M 1 + sab

where sa, sb < 0 but sab > 0.
sa <- -0.1
sb <- -0.2
sab <- 0.25
sv2 <- allFitnessEffects(epistasis = c("-A : B" = sb,

"A : -B" = sa,
"A:B" = sab),

geneToModule = c(
"A" = "a1, a2",
"B" = "b"))

evalAllGenotypes(sv2, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 a1 0.90
3 a2 0.90
4 b 0.80
5 a1, a2 0.90
6 a1, b 1.25
7 a2, b 1.25
8 a1, a2, b 1.25

And if we look at order, of course it makes no difference:
evalAllGenotypes(sv2, order = TRUE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 a1 0.90
3 a2 0.90
4 b 0.80

121

5 a1 > a2 0.90
6 a1 > b 1.25
7 a2 > a1 0.90
8 a2 > b 1.25
9 b > a1 1.25
10 b > a2 1.25
11 a1 > a2 > b 1.25
12 a1 > b > a2 1.25
13 a2 > a1 > b 1.25
14 a2 > b > a1 1.25
15 b > a1 > a2 1.25
16 b > a2 > a1 1.25

3.10 Synthetic mortality or synthetic lethality
In contrast to section 3.9, here the joint mutant has decreased viability:

A B Fitness
wt wt 1
wt M 1 + sb

M wt 1 + sa

M M 1 + sab

where sa, sb > 0 but sab < 0.
sa <- 0.1
sb <- 0.2
sab <- -0.8
sm1 <- allFitnessEffects(epistasis = c("-A : B" = sb,

"A : -B" = sa,
"A:B" = sab))

evalAllGenotypes(sm1, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 A 1.1
3 B 1.2
4 A, B 0.2

And if we look at order, of course it makes no difference:
evalAllGenotypes(sm1, order = TRUE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 A 1.1
3 B 1.2

122

4 A > B 0.2
5 B > A 0.2

3.11 Possible issues with Bozic model
3.11.1 Synthetic viability using Bozic model

If we were to use the above specification with Bozic’s models, we might not get what
we think we should get:
evalAllGenotypes(sv, order = FALSE, addwt = TRUE, model = "Bozic")
Genotype Death_rate
1 WT 1.0
2 A 2.0
3 B 2.0
4 A, B 0.8

What gives here? The simulation code would alert you of this (see section 3.11.2)
in this particular case because there are “-1”, which might indicate that this is not
what you want. The problem is that you probably want the Death rate to be infinity
(the birth rate was 0, so no clone viability, when we used birth rates —section 3.2.2).

Let us say so explicitly:
s <- 0.2
svB <- allFitnessEffects(epistasis = c("-A : B" = -Inf,

"A : -B" = -Inf,
"A:B" = s))

evalAllGenotypes(svB, order = FALSE, addwt = TRUE, model = "Bozic")
Genotype Death_rate
1 WT 1.0
2 A Inf
3 B Inf
4 A, B 0.8

Likewise, values of s larger than one have no effect beyond setting s = 1 (a single
term of (1 − 1) will drive the product to 0, and as we cannot allow negative death
rates negative values are set to 0):

s <- 1
svB1 <- allFitnessEffects(epistasis = c("-A : B" = -Inf,

"A : -B" = -Inf,
"A:B" = s))

evalAllGenotypes(svB1, order = FALSE, addwt = TRUE, model = "Bozic")
Genotype Death_rate
1 WT 1
2 A Inf

123

3 B Inf
4 A, B 0

s <- 3
svB3 <- allFitnessEffects(epistasis = c("-A : B" = -Inf,

"A : -B" = -Inf,
"A:B" = s))

evalAllGenotypes(svB3, order = FALSE, addwt = TRUE, model = "Bozic")
Genotype Death_rate
1 WT 1
2 A Inf
3 B Inf
4 A, B 0

Of course, death rates of 0.0 are likely to lead to trouble down the road, when we
actually conduct simulations (see section 3.11.2).

3.11.2 Numerical issues with death rates of 0 in Bozic model

As we mentioned above (section 3.11.1) death rates of 0 can lead to trouble when
using Bozic’s model:
i1 <- allFitnessEffects(noIntGenes = c(1, 0.5))
evalAllGenotypes(i1, order = FALSE, addwt = TRUE,

model = "Bozic")
Genotype Death_rate
1 WT 1.0
2 1 0.0
3 2 0.5
4 1, 2 0.0

i1_b <- oncoSimulIndiv(i1, model = "Bozic", onlyCancer = TRUE)
Warning in nr_oncoSimul.internal(rFE = fp, birth = birth, death =
death, : You are using a Bozic model with the new restriction
specification, and you have at least one s of 1. If that gene is
mutated, this will lead to a death rate of 0 and the simulations
will abort when you get a non finite value.
##
DEBUG2: Value of rnb = nan
##
DEBUG2: Value of m = 1
##
DEBUG2: Value of pe = 0
##
DEBUG2: Value of pm = 1

124

##
this is spP
##
popSize = 1
birth = 1
death = 0
W = 1
R = 1
mutation = 1e-10
timeLastUpdate = 533.709
absfitness = -inf
numMutablePos = 0
##
Unrecoverable exception: Algo 2: retval not finite. Aborting.

Of course, there is no problem in using the above with other models:
evalAllGenotypes(i1, order = FALSE, addwt = TRUE,

model = "Exp")
Genotype Birth
1 WT 1.0
2 1 2.0
3 2 1.5
4 1, 2 3.0

i1_e <- oncoSimulIndiv(i1, model = "Exp", onlyCancer = TRUE)
summary(i1_e)
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 3 200196519 200110030 0 0
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 0 0 803.7 1204
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE NA 5e+05 5e+05
OccurringDrivers
1

3.12 A longer example: Poset, epistasis, synthetic mortality
and viability, order effects and genes without interac-
tions, with some modules

We will now put together a complex example. We will use the poset from section
3.5.3 but will also add:

• Order effects that involve genes in the poset. In this case, if C happens before
F, fitness decreases by 1 − 0.1. If it happens the other way around, there is no
effect on fitness beyond their individual contributions.

• Order effects that involve two new modules, “H” and “I” (with genes “h1,

125

h2” and “i1”, respectively), so that if H happens before I fitness increases by
1 + 0.12.

• Synthetic mortality between modules “I” (already present in the epistatic
interaction) and “J” (with genes “j1” and “j2”): the joint presence of these
modules leads to cell death (fitness of 0).

• Synthetic viability between modules “K” and “M” (with genes “k1”, “k2” and
“m1”, respectively), so that their joint presence is viable but adds nothing to
fitness (i.e., mutation of both has fitness 1), whereas each single mutant has a
fitness of 1 − 0.5.

• A set of 5 driver genes (n1, . . . , n5) with fitness that comes from an exponential
distribution with rate of 10.

As we are specifying many different things, we will start by writing each set of effects
separately:
p4 <- data.frame(

parent = c(rep("Root", 4), "A", "B", "D", "E", "C", "F"),
child = c("A", "B", "D", "E", "C", "C", "F", "F", "G", "G"),
s = c(0.01, 0.02, 0.03, 0.04, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3),
sh = c(rep(0, 4), c(-.9, -.9), c(-.95, -.95), c(-.99, -.99)),
typeDep = c(rep("--", 4),

"XMPN", "XMPN", "MN", "MN", "SM", "SM"))

oe <- c("C > F" = -0.1, "H > I" = 0.12)
sm <- c("I:J" = -1)
sv <- c("-K:M" = -.5, "K:-M" = -.5)
epist <- c(sm, sv)

modules <- c("Root" = "Root", "A" = "a1",
"B" = "b1, b2", "C" = "c1",
"D" = "d1, d2", "E" = "e1",
"F" = "f1, f2", "G" = "g1",
"H" = "h1, h2", "I" = "i1",
"J" = "j1, j2", "K" = "k1, k2", "M" = "m1")

set.seed(1) ## for reproducibility
noint <- rexp(5, 10)
names(noint) <- paste0("n", 1:5)

fea <- allFitnessEffects(rT = p4, epistasis = epist,
orderEffects = oe,
noIntGenes = noint,
geneToModule = modules)

How does it look?

126

plot(fea)

Root

A B

D EC

F

I

KH

G

J

M

or
plot(fea, "igraph")

127

Root

A

B D

E

C

F

I

K

H

G

J

M

We can, if we want, expand the modules using a “graphNEL” graph
plot(fea, expandModules = TRUE)

Root

a1 b1, b2

d1, d2 e1c1

f1, f2

i1

k1, k2h1, h2

g1

j1, j2

m1

128

or an “igraph” one
plot(fea, "igraph", expandModules = TRUE)

Root
a1

b1, b2

d1, d2

e1c1

f1, f2

i1

k1, k2

h1, h2 g1

j1, j2

m1

We will not evaluate the fitness of all genotypes, since the number of all ordered
genotypes is > 7 ∗ 1022. We will look at some specific genotypes:

evalGenotype("k1 > i1 > h2", fea) ## 0.5
[1] 0.5

evalGenotype("k1 > h1 > i1", fea) ## 0.5 * 1.12
[1] 0.56

evalGenotype("k2 > m1 > h1 > i1", fea) ## 1.12
[1] 1.12

evalGenotype("k2 > m1 > h1 > i1 > c1 > n3 > f2", fea)
[1] 0.005113

1.12 * 0.1 * (1 + noint[3]) * 0.05 * 0.9

Finally, let’s generate some ordered genotypes randomly:

randomGenotype <- function(fe, ns = NULL) {
gn <- setdiff(c(fe$geneModule$Gene,

fe$long.geneNoInt$Gene), "Root")

129

if(is.null(ns)) ns <- sample(length(gn), 1)
return(paste(sample(gn, ns), collapse = " > "))

}

set.seed(2) ## for reproducibility

evalGenotype(randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)
Genotype: j2 > d2 > n4 > f1 > k2 > n1 > h2 > i1 > f2 > b1 > h1 > a1 > b2 > n3 > j1 > k1 > e1 > m1 > g1 > c1 > n2
Individual s terms are : 0.0755182 0.118164 0.0145707 0.0139795 0.01 0.02 -0.9 0.03 0.04 0.2 0.3 -1 0.12
Fitness: 0
[1] 0

Genotype: k2 > i1 > c1 > n1 > m1
Individual s terms are : 0.0755182 -0.9
Fitness: 0.107552
evalGenotype(randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)
Genotype: f2 > j1 > f1 > k1 > i1 > n4
Individual s terms are : 0.0139795 -0.95 -1 -0.5
Fitness: 0
[1] 0

Genotype: n2 > h1 > h2
Individual s terms are : 0.118164
Fitness: 1.11816
evalGenotype(randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)
Genotype: d2 > n1 > f2 > f1 > i1 > n5 > b1 > e1 > k2 > b2 > c1 > j1 > a1 > k1 > n3 > d1
Individual s terms are : 0.0755182 0.0145707 0.0436069 0.01 0.02 -0.9 0.03 0.04 0.2 -1 -0.5
Fitness: 0
[1] 0

Genotype: d2 > k2 > c1 > f2 > n4 > m1 > n3 > f1 > b1 > g1 > n5 > h1 > j2
Individual s terms are : 0.0145707 0.0139795 0.0436069 0.02 0.1 0.03 -0.95 0.3 -0.1
Fitness: 0.0725829
evalGenotype(randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)
Genotype: a1 > m1 > f1 > c1 > i1 > d1 > b1 > n4 > d2 > n1 > e1 > k2 > j2 > n2 > g1
Individual s terms are : 0.0755182 0.118164 0.0139795 0.01 0.02 -0.9 0.03 0.04 0.2 0.3 -1
Fitness: 0
[1] 0

Genotype: h2 > c1 > f1 > n2 > b2 > a1 > n1 > i1
Individual s terms are : 0.0755182 0.118164 0.01 0.02 -0.9 -0.95 -0.1 0.12
Fitness: 0.00624418
evalGenotype(randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)
Genotype: g1 > j2 > m1 > d2 > n1 > n4 > i1 > b2 > f1
Individual s terms are : 0.0755182 0.0139795 0.02 0.03 -0.95 0.3 -1 -0.5
Fitness: 0
[1] 0

130

Genotype: h2 > j1 > m1 > d2 > i1 > b2 > k2 > d1 > b1 > n3 > n1 > g1 > h1 > c1 > k1 > e1 > a1 > f1 > n5 > f2
Individual s terms are : 0.0755182 0.0145707 0.0436069 0.01 0.02 -0.9 0.03 0.04 0.2 0.3 -1 -0.1 0.12
Fitness: 0
evalGenotype(randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)
Genotype: i1 > k2 > d1 > d2 > n4 > f2 > j2 > c1 > a1 > j1 > n1 > n3 > h1 > m1 > h2 > b2 > n5 > k1 > e1 > n2 > b1 > g1
Individual s terms are : 0.0755182 0.118164 0.0145707 0.0139795 0.0436069 0.01 0.02 -0.9 0.03 0.04 0.2 0.3 -1
Fitness: 0
[1] 0

Genotype: n1 > m1 > n3 > i1 > j1 > n5 > k1
Individual s terms are : 0.0755182 0.0145707 0.0436069 -1
Fitness: 0
evalGenotype(randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)
Genotype: n2 > a1 > c1 > d2 > j1 > e1 > k1 > b2 > d1 > n3 > j2 > f2 > i1 > g1 > k2 > h2 > n4 > n5 > m1 > f1 > h1 > n1 > b1
Individual s terms are : 0.0755182 0.118164 0.0145707 0.0139795 0.0436069 0.01 0.02 -0.9 0.03 0.04 0.2 0.3 -1 -0.1
Fitness: 0
[1] 0

Genotype: d2 > n1 > g1 > f1 > f2 > c1 > b1 > d1 > k1 > a1 > b2 > i1 > n4 > h2 > n2
Individual s terms are : 0.0755182 0.118164 0.0139795 0.01 0.02 -0.9 0.03 -0.95 0.3 -0.5
Fitness: 0.00420528
evalGenotype(randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)
Genotype: d2 > a1 > h2
Individual s terms are : 0.01 0.03
Fitness: 1.04
[1] 1.04

Genotype: j1 > f1 > j2 > a1 > n4 > c1 > n3 > k1 > d1 > h1
Individual s terms are : 0.0145707 0.0139795 0.01 0.1 0.03 -0.95 -0.5
Fitness: 0.0294308
evalGenotype(randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)
Genotype: n2 > f2
Individual s terms are : 0.118164 -0.95
Fitness: 0.05591
[1] 0.05591

Genotype: n5 > f2 > f1 > h2 > n4 > c1 > n3 > b1
Individual s terms are : 0.0145707 0.0139795 0.0436069 0.02 0.1 -0.95
Fitness: 0.0602298
evalGenotype(randomGenotype(fea), fea, echo = TRUE, verbose = TRUE)
Genotype: n5 > n1 > d1 > f1 > c1 > b1 > n2 > i1 > a1 > n3 > n4 > e1 > k2 > b2 > h1 > m1 > j2
Individual s terms are : 0.0755182 0.118164 0.0145707 0.0139795 0.0436069 0.01 0.02 -0.9 0.03 0.04 0.2 -1
Fitness: 0
[1] 0

Genotype: h1 > d1 > f2
Individual s terms are : 0.03 -0.95
Fitness: 0.0515

131

3.13 Homozygosity, heterozygosity, oncogenes, tumor sup-
pressors

We are using what is conceptually a single linear chromosome. However, you can
use it to model scenarios where the numbers of copies affected matter, by properly
duplicating the genes.

Suppose we have a tumor suppressor gene, G, with two copies, one from Mom and
one from Dad. We can have a table like:

OM OD Fitness
wt wt 1
wt M 1
M wt 1
M M (1 + s)

where s > 0, meaning that you need two hits, one in each copy, to trigger the clonal
expansion.

What about oncogenes? A simple model is that one single hit leads to clonal
expansion and additional hits lead to no additional changes, as in this table for gene
O, where again the M or D subscript denotes the copy from Mom or from Dad:

OM OD Fitness
wt wt 1
wt M (1 + s)
M wt (1 + s)
M M (1 + s)

If you have multiple copies you can proceed similarly. As you can see, these are
nothing but special cases of synthetic mortality (3.10), synthetic viability (3.9) and
epistasis (3.7).

3.14 Gene-specific mutation rates
You can specify gene-specific mutation rates. Instead of passing a scalar value for mu,
you pass a named vector. (This does not work with the old v. 1 format, though; yet an-
other reason to stop using that format). This is a simple example (many more are avail-
able in the tests, see file ./tests/testthat/test.per-gene-mutation-rates.R).

muvar2 <- c("U" = 1e-6, "z" = 5e-5, "e" = 5e-4, "m" = 5e-3,
"D" = 1e-4)

ni1 <- rep(0, 5)
names(ni1) <- names(muvar2) ## We use the same names, of course
fe1 <- allFitnessEffects(noIntGenes = ni1)

132

bb <- oncoSimulIndiv(fe1,
mu = muvar2, onlyCancer = FALSE,
initSize = 1e5,
finalTime = 25,
seed =NULL)

3.15 Mutator genes
You can specify mutator/antimutator genes (e.g. Gerrish et al., 2007; Tomlinson et
al., 1996). These are genes that, when mutated, lead to an increase/decrease in the
mutation rate all over the genome (similar to what happens with, say, mutations in
mismatch-repair genes or microsatellite instability in cancer).

The specification is very similar to that for fitness effects, except we do not (at least
for now) allow the use of DAGs nor of order effects (we have seen no reference in
the literature to suggest any of these would be relevant). You can, however, specify
epistasis and use modules. Note that the mutator genes must be a subset of the
genes in the fitness effects; if you want to have mutator genes that have no direct
fitness effects, give them a fitness effect of 0.

This first is a very simple example with simple fitness effects and modules for mutators.
We will specify the fitness and mutator effects and evaluate the fitness and mutator
effects:
fe2 <- allFitnessEffects(noIntGenes =

c(a1 = 0.1, a2 = 0.2,
b1 = 0.01, b2 = 0.3, b3 = 0.2,
c1 = 0.3, c2 = -0.2))

fm2 <- allMutatorEffects(epistasis = c("A" = 5,
"B" = 10,
"C" = 3),

geneToModule = c("A" = "a1, a2",
"B" = "b1, b2, b3",
"C" = "c1, c2"))

Show the fitness effect of a specific genotype
evalGenotype("a1, c2", fe2, verbose = TRUE)
##
Individual s terms are : 0.1 -0.2
[1] 0.88

Show the mutator effect of a specific genotype
evalGenotypeMut("a1, c2", fm2, verbose = TRUE)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
##

133

Individual mutator product terms are : 5 3
[1] 15

Fitness and mutator of a specific genotype
evalGenotypeFitAndMut("a1, c2", fe2, fm2, verbose = TRUE)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
##
Individual s terms are : 0.1 -0.2
##
Individual mutator product terms are : 5 3
[1] 0.88 15.00

You can also use the evalAll functions. We do not show the output here to avoid
cluttering the vignette:
Show only all the fitness effects
evalAllGenotypes(fe2, order = FALSE)

Show only all mutator effects
evalAllGenotypesMut(fm2)

Show all fitness and mutator
evalAllGenotypesFitAndMut(fe2, fm2, order = FALSE)

Building upon the above, the next is an example where we have a bunch of no
interaction genes that affect fitness, and a small set of genes that affect the mutation
rate (but have no fitness effects).

set.seed(1) ## for reproducibility
17 genes, 7 with no direct fitness effects
ni <- c(rep(0, 7), runif(10, min = -0.01, max = 0.1))
names(ni) <- c("a1", "a2", "b1", "b2", "b3", "c1", "c2",

paste0("g", 1:10))

fe3 <- allFitnessEffects(noIntGenes = ni)

fm3 <- allMutatorEffects(epistasis = c("A" = 5,
"B" = 10,
"C" = 3,
"A:C" = 70),

geneToModule = c("A" = "a1, a2",
"B" = "b1, b2, b3",
"C" = "c1, c2"))

Let us check what the effects are of a few genotypes:

134

These only affect mutation, not fitness
evalGenotypeFitAndMut("a1, a2", fe3, fm3, verbose = TRUE)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
##
Individual s terms are : 0 0
##
Individual mutator product terms are : 5
[1] 1 5

evalGenotypeFitAndMut("a1, b3", fe3, fm3, verbose = TRUE)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
##
Individual s terms are : 0 0
##
Individual mutator product terms are : 5 10
[1] 1 50

These only affect fitness: the mutator multiplier is 1
evalGenotypeFitAndMut("g1", fe3, fm3, verbose = TRUE)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
##
Individual s terms are : 0.019206
[1] 1.019 1.000

evalGenotypeFitAndMut("g3, g9", fe3, fm3, verbose = TRUE)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
##
Individual s terms are : 0.0530139 0.0592025
[1] 1.115 1.000

These affect both
evalGenotypeFitAndMut("g3, g9, a2, b3", fe3, fm3, verbose = TRUE)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
##
Individual s terms are : 0 0 0.0530139 0.0592025
##
Individual mutator product terms are : 5 10
[1] 1.115 50.000

Finally, we will do a simulation with those data

135

set.seed(1) ## so that it is easy to reproduce
mue1 <- oncoSimulIndiv(fe3, muEF = fm3,

mu = 1e-6,
initSize = 1e5,
model = "McFL",
detectionSize = 5e6,
finalTime = 500,
onlyCancer = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

We do not show this in the vignette to avoid cluttering it
with output
mue1

Of course, it is up to you to keep things reasonable: mutator effects are multiplicative,
so if you specify, say, 20 genes (without modules), or 20 modules, each with a mutator
effect of 50, the overall mutation rate can be increased by a factor of 5020 and that
is unlikely to be what you really want (see also section 18.7).

You can play with the following case (an extension of the example above), where
a clone with a mutator phenotype and some fitness enhancing mutations starts
giving rise to many other clones, some with additional mutator effects, and thus
leading to the number of clones blowing up (as some also accumulate additional
fitness-enhancing mutations). Things start getting out of hand shortly after time 250.
The code below takes a few minutes to run and is not executed here, but you can
run it to get an idea of the increase in the number of clones and their relationships
(the usage of plotClonePhylog is explained in section 8).

set.seed(1) ## for reproducibility
17 genes, 7 with no direct fitness effects
ni <- c(rep(0, 7), runif(10, min = -0.01, max = 0.1))
names(ni) <- c("a1", "a2", "b1", "b2", "b3", "c1", "c2",

paste0("g", 1:10))

Next is for nicer figure labeling.
Consider as drivers genes with s >0
gp <- which(ni > 0)

fe3 <- allFitnessEffects(noIntGenes = ni,
drvNames = names(ni)[gp])

set.seed(12)
mue1 <- oncoSimulIndiv(fe3, muEF = fm3,

mu = 1e-6,
initSize = 1e5,

136

model = "McFL",
detectionSize = 5e6,
finalTime = 270,
keepPhylog = TRUE,
onlyCancer = FALSE)

mue1
If you decrease N even further it gets even more cluttered
op <- par(ask = TRUE)
plotClonePhylog(mue1, N = 10, timeEvents = TRUE)
plot(mue1, plotDrivers = TRUE, addtot = TRUE,

plotDiversity = TRUE)

The stacked plot is slow; be patient
Most clones have tiny population sizes, and their lines
are piled on top of each other
plot(mue1, addtot = TRUE,

plotDiversity = TRUE, type = "stacked")
par(op)

137

4 Plotting fitness landscapes
The evalAllGenotypes and related functions allow you to obtain tables of the
genotype to fitness mappings. It might be more convenient to actually plot that,
allowing us to quickly identify local minima and maxima and get an idea of how the
fitness landscape looks.

In plotFitnessLandscape I have blatantly and shamelessly copied most of the looks
of the plots of MAGELLAN (Brouillet et al., 2015) (see also http://wwwabi.snv.jus
sieu.fr/public/Magellan/), a very nice web-based tool for fitness landscape plotting
and analysis (MAGELLAN provides some other extra functionality and epistasis
statistics not provided here).

As an example, let us show the example of Weissman et al. we saw in 5.4:

d1 <- -0.05 ## single mutant fitness 0.95
d2 <- -0.08 ## double mutant fitness 0.92
d3 <- 0.2 ## triple mutant fitness 1.2
s2 <- ((1 + d2)/(1 + d1)ˆ2) - 1
s3 <- ((1 + d3)/((1 + d1)ˆ3 * (1 + s2)ˆ3)) - 1

wb <- allFitnessEffects(
epistasis = c(

"A" = d1,
"B" = d1,
"C" = d1,
"A:B" = s2,
"A:C" = s2,
"B:C" = s2,
"A:B:C" = s3))

plotFitnessLandscape(wb, use_ggrepel = TRUE)

138

http://wwwabi.snv.jussieu.fr/public/Magellan/
http://wwwabi.snv.jussieu.fr/public/Magellan/

A

B
C

WT

A, BA, C

B, C

A, B, C

0.95

1.00

1.05

1.10

1.15

1.20
B

ir
th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

We have set use_ggrepel = TRUE to avoid overlap of labels.

139

For some types of objects, directly invoking plot will give you the fitness landscape
plot:
(ewb <- evalAllGenotypes(wb, order = FALSE))
Genotype Birth
1 A 0.95
2 B 0.95
3 C 0.95
4 A, B 0.92
5 A, C 0.92
6 B, C 0.92
7 A, B, C 1.20

plot(ewb, use_ggrepel = TRUE)

A
B

C

WT

A, B

A, C

B, C

A, B, C

0.95

1.00

1.05

1.10

1.15

1.20

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

140

This is example (section 5.5) will give a very busy plot:
par(cex = 0.7)
pancr <- allFitnessEffects(

data.frame(parent = c("Root", rep("KRAS", 4),
"SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),

child = c("KRAS","SMAD4", "CDNK2A",
"TP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),

s = 0.1,
sh = -0.9,
typeDep = "MN"))

plot(evalAllGenotypes(pancr, order = FALSE), use_ggrepel = TRUE)
Warning: ggrepel: 103 unlabeled data points (too many overlaps).
Consider increasing max.overlaps
Warning: ggrepel: 7 unlabeled data points (too many overlaps).
Consider increasing max.overlaps

141

WT

KRAS

CDNK2A, KRAS

KRAS, MLL3
KRAS, SMAD4

KRAS, TP53

CDNK2A, KRAS, MLL3, SMAD4

CDNK2A, KRAS, MLL3, TP53

CDNK2A, KRAS, SMAD4, TP53

KRAS, MLL3, SMAD4, TP53

KRAS, MLL3, TGFBR2, TP53

CDNK2A, KRAS, MLL3, SMAD4, TP53
CDNK2A, KRAS, MLL3, TGFBR2, TP53

CDNK2A, KRAS, PXDN, SMAD4, TP53

KRAS, MLL3, SMAD4, TGFBR2, TP53

CDNK2A, KRAS, MLL3, PXDN, SMAD4, TP53

CDNK2A, KRAS, MLL3, SMAD4, TGFBR2, TP53

CDNK2A, KRAS, MLL3, PXDN, SMAD4, TGFBR2, TP53

0.0

0.5

1.0

1.5

2.0
B

ir
th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

142

5 Specifying fitness effects: some examples from
the literature

5.1 Bauer et al., 2014
In the model of Bauer and collaborators (Bauer et al., 2014, p. 54) we have “For
cells without the primary driver mutation, each secondary driver mutation leads to a
change in the cell’s fitness by sP . For cells with the primary driver mutation, the
fitness advantage obtained with each secondary driver mutation is sDP .”

The proliferation probability is given as:

• 1
2(1 + sp)k when there are k secondary drivers mutated and no primary diver;

• 1
2

1+S+
D

1+S−
D

(1 + SDP)k when the primary driver is mutated;

apoptosis is one minus the proliferation rate.

5.1.1 Using a DAG

We cannot find a simple mapping from their expressions to our fitness parameteriza-
tion, but we can get fairly close by using a DAG; in this one, note the unusual feature
of having one of the “s” terms (that for the driver dependency on root) be negative.
Using the parameters given in the legend of their Figure 3 for sp, S+

D, S−
D, SDP and

obtaining that negative value for the dependency of the driver on root we can do:
K <- 4
sp <- 1e-5
sdp <- 0.015
sdplus <- 0.05
sdminus <- 0.1
cnt <- (1 + sdplus)/(1 + sdminus)
prod_cnt <- cnt - 1
bauer <- data.frame(parent = c("Root", rep("D", K)),

child = c("D", paste0("s", 1:K)),
s = c(prod_cnt, rep(sdp, K)),
sh = c(0, rep(sp, K)),
typeDep = "MN")

fbauer <- allFitnessEffects(bauer)
(b1 <- evalAllGenotypes(fbauer, order = FALSE, addwt = TRUE))
Genotype Birth
1 WT 1.0000
2 D 0.9545
3 s1 1.0000
4 s2 1.0000
5 s3 1.0000
6 s4 1.0000
7 D, s1 0.9689
8 D, s2 0.9689

143

9 D, s3 0.9689
10 D, s4 0.9689
11 s1, s2 1.0000
12 s1, s3 1.0000
13 s1, s4 1.0000
14 s2, s3 1.0000
15 s2, s4 1.0000
16 s3, s4 1.0000
17 D, s1, s2 0.9834
18 D, s1, s3 0.9834
19 D, s1, s4 0.9834
20 D, s2, s3 0.9834
21 D, s2, s4 0.9834
22 D, s3, s4 0.9834
23 s1, s2, s3 1.0000
24 s1, s2, s4 1.0000
25 s1, s3, s4 1.0000
26 s2, s3, s4 1.0000
27 D, s1, s2, s3 0.9981
28 D, s1, s2, s4 0.9981
29 D, s1, s3, s4 0.9981
30 D, s2, s3, s4 0.9981
31 s1, s2, s3, s4 1.0000
32 D, s1, s2, s3, s4 1.0131

(We use “D” for “driver” or “primary driver”, as is it is called in the original paper,
and “s” for secondary drivers, somewhat similar to passengers).

Note that what we specify as “typeDep” is irrelevant (MN, SMN, or XMPN make
no difference).

This is the DAG:
plot(fbauer)

144

Root

D

s1 s2 s3 s4

And if you compare the tabular output of evalAllGenotypes you can see that the
values of fitness reproduces the fitness landscape that they show in their Figure 1.
We can also use our plot for fitness landscapes:
plot(b1, use_ggrepel = TRUE)
Warning: ggrepel: 20 unlabeled data points (too many overlaps).
Consider increasing max.overlaps

145

WT

s1

s2

s3

s4

D, s1

D, s2
D, s3

D, s4

s1, s2, s3, s4

D

D, s1, s2, s3, s4

0.96

0.97

0.98

0.99

1.00

1.01

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

5.1.2 Specifying fitness of genotypes directly

An alternative approach to specify the fitness, if the number of genotypes is reasonably
small, is to directly evaluate fitness as given by their expressions. Then, use the
genotFitness argument to allFitnessEffects.

We will create all possible genotypes; then we will write a function that gives the
fitness of each genotype according to their expression; finally, we will call this function
on the data frame of genotypes, and pass this data frame to allFitnessEffects.
m1 <- expand.grid(D = c(1, 0), s1 = c(1, 0), s2 = c(1, 0),

s3 = c(1, 0), s4 = c(1, 0))

fitness_bauer <- function(D, s1, s2, s3, s4,
sp = 1e-5, sdp = 0.015, sdplus = 0.05,
sdminus = 0.1) {

if(!D) {
b <- 0.5 * ((1 + sp)ˆ(sum(c(s1, s2, s3, s4))))

146

} else {
b <- 0.5 *

(((1 + sdplus)/(1 + sdminus) *
(1 + sdp)ˆ(sum(c(s1, s2, s3, s4)))))

}
fitness <- b - (1 - b)
our_fitness <- 1 + fitness ## prevent negative fitness and
make wt fitness = 1
return(our_fitness)

}

m1$Fitness <-
apply(m1, 1, function(x) do.call(fitness_bauer, as.list(x)))

bauer2 <- allFitnessEffects(genotFitness = m1)

Now, show the fitness of all genotypes:
evalAllGenotypes(bauer2, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.0000
2 D 0.9545
3 s1 1.0000
4 s2 1.0000
5 s3 1.0000
6 s4 1.0000
7 D, s1 0.9689
8 D, s2 0.9689
9 D, s3 0.9689
10 D, s4 0.9689
11 s1, s2 1.0000
12 s1, s3 1.0000
13 s1, s4 1.0000
14 s2, s3 1.0000
15 s2, s4 1.0000
16 s3, s4 1.0000
17 D, s1, s2 0.9834
18 D, s1, s3 0.9834
19 D, s1, s4 0.9834
20 D, s2, s3 0.9834
21 D, s2, s4 0.9834
22 D, s3, s4 0.9834
23 s1, s2, s3 1.0000
24 s1, s2, s4 1.0000
25 s1, s3, s4 1.0000
26 s2, s3, s4 1.0000

147

27 D, s1, s2, s3 0.9981
28 D, s1, s2, s4 0.9981
29 D, s1, s3, s4 0.9981
30 D, s2, s3, s4 0.9981
31 s1, s2, s3, s4 1.0000
32 D, s1, s2, s3, s4 1.0131

Can we use modules in this example, if we use the “lego system”? Sure, as in any
other case.

5.2 Misra et al., 2014
Figure 1 of Misra et al. (2014) presents three scenarios which are different types of
epistasis.

5.2.1 Example 1.a

F
itn

es
s

wt

A B

In that figure it is evident that the fitness effect of “A” and “B” are the same. There
are two different models depending on whether “AB” is just the product of both, or
there is epistasis. In the first case probably the simplest is:
s <- 0.1 ## or whatever number
m1a1 <- allFitnessEffects(data.frame(parent = c("Root", "Root"),

child = c("A", "B"),
s = s,
sh = 0,
typeDep = "MN"))

evalAllGenotypes(m1a1, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 A 1.10
3 B 1.10
4 A, B 1.21

If the double mutant shows epistasis, as we saw before (section 3.7.1) we have a
range of options. For example:

148

s <- 0.1
sab <- 0.3
m1a2 <- allFitnessEffects(epistasis = c("A:-B" = s,

"-A:B" = s,
"A:B" = sab))

evalAllGenotypes(m1a2, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 A 1.1
3 B 1.1
4 A, B 1.3

But we could also modify the graph dependency structure, and we have to change
the value of the coefficient, since that is what multiplies each of the terms for “A”
and “B”: (1 + sAB) = (1 + s)2(1 + sAB3)
sab3 <- ((1 + sab)/((1 + s)ˆ2)) - 1
m1a3 <- allFitnessEffects(data.frame(parent = c("Root", "Root"),

child = c("A", "B"),
s = s,
sh = 0,
typeDep = "MN"),

epistasis = c("A:B" = sab3))
evalAllGenotypes(m1a3, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 A 1.1
3 B 1.1
4 A, B 1.3

And, obviously
all.equal(evalAllGenotypes(m1a2, order = FALSE, addwt = TRUE),

evalAllGenotypes(m1a3, order = FALSE, addwt = TRUE))
[1] TRUE

5.2.2 Example 1.b

This is a specific case of synthetic viability (see also section 3.9):

149

F
itn

es
s

wt

A
B

AB

Here, SA, SB < 0, SB < 0, SAB > 0 and (1 + SAB)(1 + SA)(1 + SB) > 1.

As before, we can specify this in several different ways. The simplest is to specify all
genotypes:
sa <- -0.6
sb <- -0.7
sab <- 0.3
m1b1 <- allFitnessEffects(epistasis = c("A:-B" = sa,

"-A:B" = sb,
"A:B" = sab))

evalAllGenotypes(m1b1, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 A 0.4
3 B 0.3
4 A, B 1.3

We could also use a tree and modify the “sab” for the epistasis, as before (5.2.1).

5.2.3 Example 1.c

The final case, in figure 1.c of Misra et al., is just epistasis, where a mutation in one
of the genes is deleterious (possibly only mildly), in the other is beneficial, and the
double mutation has fitness larger than any of the other two.

F
itn

es
s

wt

A

B

AB

150

Here we have that sA > 0, sB < 0, (1 + sAB)(1 + sA)(1 + sB) > (1 + sAB) so
sAB > −sB

1+sB

As before, we can specify this in several different ways. The simplest is to specify all
genotypes:
sa <- 0.2
sb <- -0.3
sab <- 0.5
m1c1 <- allFitnessEffects(epistasis = c("A:-B" = sa,

"-A:B" = sb,
"A:B" = sab))

evalAllGenotypes(m1c1, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.0
2 A 1.2
3 B 0.7
4 A, B 1.5

We could also use a tree and modify the “sab” for the epistasis, as before (5.2.1).

5.3 Ochs and Desai, 2015
In Ochs & Desai (2015) the authors present a model shown graphically as (the actual
numerical values are arbitrarily set by me):

0.95

1.00

1.05

1.10

1.15

1.20

u wt i v

In their model, su > 0, sv > su, si < 0, we can only arrive at v from i, and the
mutants “ui” and “uv” can never appear as their fitness is 0, or −∞, so sui = suv = −1
(or −∞).

We can specify this combining a graph and epistasis specifications:
su <- 0.1
si <- -0.05
fvi <- 1.2 ## the fitness of the vi mutant
sv <- (fvi/(1 + si)) - 1
sui <- suv <- -1
od <- allFitnessEffects(

151

data.frame(parent = c("Root", "Root", "i"),
child = c("u", "i", "v"),
s = c(su, si, sv),
sh = -1,
typeDep = "MN"),

epistasis = c(
"u:i" = sui,
"u:v" = suv))

A figure showing that model is
plot(od)

Root

i

u

v

And the fitness of all genotype is
evalAllGenotypes(od, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 i 0.95
3 u 1.10
4 v 0.00
5 i, u 0.00
6 i, v 1.20
7 u, v 0.00
8 i, u, v 0.00

We could alternatively have specified fitness either directly specifying the fitness of
each genotype or specifying epistatic effects. Let us use the second approach:

%% this was wrong %% u <- 0.2; i <- -0.02; vi <- 0.6; ui <- uv <- -Inf
u <- 0.1; i <- -0.05; vi <- (1.2/0.95) - 1; ui <- uv <- -Inf
od2 <- allFitnessEffects(

epistasis = c("u" = u, "u:i" = ui,
"u:v" = uv, "i" = i,

152

"v:-i" = -Inf, "v:i" = vi))
evalAllGenotypes(od2, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 i 0.95
3 u 1.10
4 v 0.00
5 i, u 0.00
6 i, v 1.20
7 u, v 0.00
8 i, u, v 0.00

We will return to this model when we explain the usage of fixation for stopping
the simulations (see 6.3.3 and 6.3.4).

5.4 Weissman et al., 2009
In their figure 1a, Weissman et al. (2009) present this model (actual numeric values
are set arbitrarily)

5.4.1 Figure 1.a

0.95
1.00
1.05
1.10
1.15
1.20

wt 1 2

where the “1” and “2” in the figure refer to the total number of mutations in two
different loci. This is, therefore, very similar to the example in section 5.2.2. Here we
have, in their notation, δ1 < 0, fitness of single “A” or single “B” = 1 + δ1, SAB > 0,
(1 + SAB)(1 + δ1)2 > 1.

5.4.2 Figure 1.b

In their figure 1b they show

0.95
1.00
1.05
1.10
1.15
1.20

wt 1 2 3

153

Where, as before, 1, 2, 3, denote the total number of mutations over three different
loci and δ1 < 0, δ2 < 0, fitness of single mutant is (1 + δ1), of double mutant is
(1 + δ2) so that (1 + δ2) = (1 + δ1)2(1 + s2) and of triple mutant is (1 + δ3), so that
(1 + δ3) = (1 + δ1)3(1 + s2)3(1 + s3).

We can specify this combining a graph with epistasis:

d1 <- -0.05 ## single mutant fitness 0.95
d2 <- -0.08 ## double mutant fitness 0.92
d3 <- 0.2 ## triple mutant fitness 1.2

s2 <- ((1 + d2)/(1 + d1)ˆ2) - 1
s3 <- ((1 + d3)/((1 + d1)ˆ3 * (1 + s2)ˆ3)) - 1

w <- allFitnessEffects(
data.frame(parent = c("Root", "Root", "Root"),

child = c("A", "B", "C"),
s = d1,
sh = -1,
typeDep = "MN"),

epistasis = c(
"A:B" = s2,
"A:C" = s2,
"B:C" = s2,
"A:B:C" = s3))

The model can be shown graphically as:
plot(w)

Root

A

B

C

154

And fitness of all genotypes is:
evalAllGenotypes(w, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 A 0.95
3 B 0.95
4 C 0.95
5 A, B 0.92
6 A, C 0.92
7 B, C 0.92
8 A, B, C 1.20

Alternatively, we can directly specify what each genotype adds to the fitness, given
the included genotype. This is basically replacing the graph by giving each of “A”,
“B”, and “C” directly:
wb <- allFitnessEffects(

epistasis = c(
"A" = d1,
"B" = d1,
"C" = d1,
"A:B" = s2,
"A:C" = s2,
"B:C" = s2,
"A:B:C" = s3))

evalAllGenotypes(wb, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 A 0.95
3 B 0.95
4 C 0.95
5 A, B 0.92
6 A, C 0.92
7 B, C 0.92
8 A, B, C 1.20

The plot, of course, is not very revealing and we cannot show that there is a three-way
interaction (only all three two-way interactions):
plot(wb)

155

A

B

C
As we have seen several times already (sections 3.7.1, 3.7.2, 3.7.3) we can also give
the genotypes directly and, consequently, the fitness of each genotype (not the added
contribution):
wc <- allFitnessEffects(

epistasis = c(
"A:-B:-C" = d1,
"B:-C:-A" = d1,
"C:-A:-B" = d1,
"A:B:-C" = d2,
"A:C:-B" = d2,
"B:C:-A" = d2,
"A:B:C" = d3))

evalAllGenotypes(wc, order = FALSE, addwt = TRUE)
Genotype Birth
1 WT 1.00
2 A 0.95
3 B 0.95
4 C 0.95
5 A, B 0.92
6 A, C 0.92
7 B, C 0.92
8 A, B, C 1.20

5.5 Gerstung et al., 2011, pancreatic cancer poset
We can specify the pancreatic cancer poset in Gerstung, Eriksson, et al. (2011) (their
figure 2B, left). We use directly the names of the genes, since that is immediately
supported by the new version.

pancr <- allFitnessEffects(
data.frame(parent = c("Root", rep("KRAS", 4),

"SMAD4", "CDNK2A",

156

"TP53", "TP53", "MLL3"),
child = c("KRAS","SMAD4", "CDNK2A",

"TP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),

s = 0.1,
sh = -0.9,
typeDep = "MN"))

plot(pancr)

Root

KRAS

SMAD4 CDNK2A TP53 MLL3

PXDN TGFBR2

Of course the “s” and “sh” are set arbitrarily here.

5.6 Raphael and Vandin’s 2014 modules
In Raphael & Vandin (2015), the authors show several progression models in terms
of modules. We can code the extended poset for the colorectal cancer model in their
Figure 4.a is (s and sh are arbitrary):
rv1 <- allFitnessEffects(data.frame(parent = c("Root", "A", "KRAS"),

child = c("A", "KRAS", "FBXW7"),
s = 0.1,
sh = -0.01,
typeDep = "MN"),

geneToModule = c("Root" = "Root",
"A" = "EVC2, PIK3CA, TP53",
"KRAS" = "KRAS",

157

"FBXW7" = "FBXW7"))

plot(rv1, expandModules = TRUE, autofit = TRUE)

Root

EVC2, PIK3CA, TP53

KRAS

FBXW7

We have used the (experimental) autofit option to fit the labels to the edges. Note
how we can use the same name for genes and modules, but we need to specify all
the modules.

Their Figure 5b is
rv2 <- allFitnessEffects(

data.frame(parent = c("Root", "1", "2", "3", "4"),
child = c("1", "2", "3", "4", "ELF3"),
s = 0.1,
sh = -0.01,
typeDep = "MN"),

geneToModule = c("Root" = "Root",
"1" = "APC, FBXW7",
"2" = "ATM, FAM123B, PIK3CA, TP53",
"3" = "BRAF, KRAS, NRAS",
"4" = "SMAD2, SMAD4, SOX9",
"ELF3" = "ELF3"))

plot(rv2, expandModules = TRUE, autofit = TRUE)

158

Root

APC, FBXW7

ATM, FAM123B, PIK3CA, TP53

BRAF, KRAS, NRAS

SMAD2, SMAD4, SOX9

ELF3

159

6 Running and plotting the simulations: starting,
ending, and examples

6.1 Starting and ending
After you have decided the specifics of the fitness effects and the model, you need to
decide:

• Where will you start your simulation from. This involves deciding the initial
population size (argument initSize) and, possibly, the genotype of the initial
population; the later is covered in section 6.2.

• When will you stop it: how long to run it, and whether or not to require
simulations to reach cancer (under some definition of what it means to reach
cancer). This is covered in 6.3.

6.2 Can I start the simulation from a specific mutant?
You bet. In version 2 you can specify the genotype for the initial mutant with the
same flexibility as in evalGenotype. Here we show a couple of examples (we use
the representation of the parent-child relationships —discussed in section 8— of the
clones so that you can see which clones appear, and from which, and check that we
are not making mistakes).

o3init <- allFitnessEffects(orderEffects = c(
"M > D > F" = 0.99,
"D > M > F" = 0.2,
"D > M" = 0.1,
"M > D" = 0.9),

noIntGenes = c("u" = 0.01,
"v" = 0.01,
"w" = 0.001,
"x" = 0.0001,
"y" = -0.0001,
"z" = -0.001),

geneToModule =
c("M" = "m",

"F" = "f",
"D" = "d"))

oneI <- oncoSimulIndiv(o3init, model = "McFL",
mu = 5e-5, finalTime = 200,
detectionDrivers = 3,
onlyCancer = FALSE,
initSize = 1000,
keepPhylog = TRUE,
initMutant = c("m > u > d")

160

)
plotClonePhylog(oneI, N = 0)

m > d _ u

m > d > f _ u

m > d > f _ u, ym > d > f _ u, wm > d > f _ u, xm > d > f _ u, vm > d > f _ u, z

m > d > f _ u, v, zm > d > f _ u, v, y m > d > f _ u, v, xm > d > f _ u, v, w

m > d > f _ u, v, w, z

m > d _ u, xm > d _ u, vm > d _ u, ym > d _ u, wm > d _ u, z

m > d > f _ u, x, ym > d > f _ u, w, xm > d > f _ u, w, ym > d > f _ u, w, zm > d > f _ u, x, zm > d > f _ u, y, z

m > d > f _ u, v, y, zm > d > f _ u, v, x, zm > d > f _ u, v, w, ym > d > f _ u, v, w, xm > d > f _ u, v, x, y

m > d > f _ u, v, w, x, z

Note we also disable the stopping stochastically as a function of size
to allow the population to grow large and generate may different
clones.

For speed, we set a small finalTime and we fix the seed
for reproducilibity. Beware: since finalTime is short, sometimes
we do not reach cancer
set.seed(1)
RNGkind("L'Ecuyer-CMRG")

ospI <- oncoSimulPop(2,
o3init, model = "Exp",
mu = 5e-5, finalTime = 200,
detectionDrivers = 3,
onlyCancer = TRUE,
initSize = 10,
keepPhylog = TRUE,
initMutant = c("d > m > z"),
mc.cores = 2,
seed = NULL
)

Show just one example

161

op <- par(mar = rep(0, 4), mfrow = c(1, 2))
plotClonePhylog(ospI[[1]])

d > m _ z

d > m > f _ z d > m _ v, zd > m _ x, z

d > m > f _ v, z

d > m _ w, z

d > m > f _ u, z

d > m _ u, z

d > m > f _ x, zd > m > f _ w, zd > m > f _ y, z

d > m _ y, z

d > m > f _ x, y, zd > m > f _ v, y, zd > m > f _ u, x, z

d > m _ u, v, zd > m _ v, x, zd > m _ w, x, zd > m _ w, y, z

d > m > f _ u, y, z

d > m _ v, y, zd > m _ u, y, z

d > m > f _ v, w, zd > m > f _ u, v, z

d > m _ u, w, zd > m _ v, w, z

d > m > f _ v, x, zd > m > f _ u, w, zd > m > f _ w, x, zd > m > f _ w, y, z

d > m > f _ v, w, y, zd > m > f _ u, w, x, z

plotClonePhylog(ospI[[2]])
par(op)

set.seed(1)
RNGkind("L'Ecuyer-CMRG")
ossI <- oncoSimulSample(2,

o3init, model = "Exp",
mu = 5e-5, finalTime = 200,
detectionDrivers = 2,
onlyCancer = TRUE,
initSize = 10,
initMutant = c("z > d"),
check presence of initMutant:
thresholdWhole = 1,
seed = NULL

)
Successfully sampled 2 individuals
##
Subjects by Genes matrix of 2 subjects and 9 genes.

No phylogeny is kept with oncoSimulSample, but look at the
OcurringDrivers and the sample
ossI$popSample

162

d f m u v w x y z
[1,] 1 0 1 0 0 0 0 0 1
[2,] 1 0 1 0 0 0 0 0 1

ossI$popSummary[, "OccurringDrivers", drop = FALSE]
OccurringDrivers
1
2

Since version 2.21.994, it is possible to start the simulations from arbitrary initial
configurations: this uses multiple initial mutants (see section 6.7) and allows for
multispecies simulations (section 6.8).

6.3 Ending the simulations
OncoSimulR provides very flexible ways to decide when to stop a simulation. Here
we focus on a single simulation; see further options with multiple simulations in 7.

6.3.1 Ending the simulations: conditions

• onlyCancer = TRUE. A simulation will be repeated until any one of the
“reach cancer” conditions is met, if this happens before the simulation reaches
finalTime11. These conditions are:

– Total population size becomes larger than detectionSize.
– The number of drivers in any one genotype or clone becomes equal to,

or larger than, detectionDrivers; note that this allows you to stop the
simulation as soon as a specific genotype is found, by using exactly
and only the genes that make that genotype as the drivers. This is not
allowed by the moment in frequency-dependent fitness simulations.

– A gene or gene combination among those listed in fixation becomes
fixed in the population (i.e., has a frequency is 1) (see details in (6.3.3
and 6.3.4).

– The tumor is detected according to a stochastic detection mechanism,
where the probability of “detecting the tumor” increases with popula-
tion size; this is explained below (6.3.2) and is controlled by argument
detectionProb.

As we exit as soon as any of the exiting conditions is reached, if you only care
about one condition, set the other to NA (see also section 6.3.2.1).

• onlyCancer = FALSE. A simulation will run only once, and will exit as soon
as any of the above conditions are met or as soon as the total population size
becomes zero or we reach finalTime.

As an example of onlyCancer = TRUE, focusing on the first two mechanisms, sup-
pose you give detectionSize = 1e4 and detectionDrivers =3 (and you have

11Of course, the “reach cancer” idea and the onlyCancer argument are generic names; this could
have been labeled “reach whatever interests me”.

163

detectionProb = NA). A simulation will exit as soon as it reaches a total population
size of 104 or any clone has four drivers, whichever comes first (if any of these happen
before finalTime).

In the onlyCancer = TRUE case, what happens if we reach finalTime (or the
population size becomes zero) before any of the “reach cancer” conditions have been
fulfilled? The simulation will be repeated again, within the following limits:

• max.wall.time: the total wall time we allow an individual simulation to run;
• max.num.tries: the maximum number of times we allow a simulation to be

repeated to reach cancer;
• max.wall.time.total and max.num.tries.total, similar to the above but

over a set of simulations in function oncoSimulSample.

Incidentally, we keep track of the number of attempts used (the component
other$attemptsUsed$) before we reach cancer, so you can estimate (as from a
negative binomial sampling) the probability of reaching your desired end point under
different scenarios.

The onlyCancer = FALSE case might be what you want to do when you examine
general population genetics scenarios without focusing on possible sampling issues.
To do this, set finalTime to the value you want and set onlyCancer = FALSE; in
addition, set detectionProb to “NA” and detectionDrivers and detectionSize
to “NA” or to huge numbers12. In this scenario you simply collect the simulation
output at the end of the run, regardless of what happened with the population (it
became extinct, it did not reach a large size, it did not accumulate drivers, etc).

6.3.2 Stochastic detection mechanism: “detectionProb”

This is the process that is controlled by the argument detectionProb. Here the
probability of tumor detection increases with the total population size. This is
biologically a reasonable assumption: the larger the tumor, the more likely it is it
will be detected.

At regularly spaced times during the simulation, we compute the probability of
detection as a function of size and determine (by comparing against a random
uniform number) if the simulation should finish. For simplicity, and to make sure
the probability is bounded between 0 and 1, we use the function

P (N) =
1 − e−c((N−B)/B) if N > B

0 if N ≤ B
(1)

where P (N) is the probability that a tumor with a population size N will be detected,
and c (argument cPDetect in the oncoSimul* functions) controls how fast P (N)
increases with increasing population size relative to a baseline, B (PDBaseline in
the oncoSimul* functions); with B we both control the minimal population size at

12Setting detectionDrivers and detectionSize to “NA” is in fact equivalent to setting them
to the largest possible numbers for these variables: 232 − 1 and ∞, respectively.

164

which this mechanism stats operating (because we will rarely want detection unless
there is some meaningful increase of population size over initSize) and we model
the increase in P (N) as a function of relative differences with respect to B. (Note
that this is a major change in version 2.9.9. Before version 2.9.9, the expression
used was P (N) = 1 − e−c(N−B), so we did not make the increase relative to B; of
course, you can choose an appropriate c to make different models comparable, but
the expression used before 2.9.9 made it much harder to compare simulations with
very different initial population sizes, as baselines are often naturall a function of
initial population sizes.)

The P (N) refers to the probability of detection at each one of the occasions when
we assess the probability of exiting. When, or how often, do we do that? When we
assess probability of exiting is controlled by checkSizePEvery, which will often be
much larger than sampleEvery13. Biologically, a way to think of checkSizePEvery
is “time between doctor appointments”.

An important warning, though: for populations that are growing very, very fast
or where some genes might have very large effects on fitness even a moderate
checkSizePEvery of, say, 10, might be inappropriate, since populations could have
increased by several orders of magnitude between successive checks. This issue is
also discussed in section 2.1.1 and 2.2.

Finally, you can specify c (cPDetect) directly (you will need to set n2 and p2 to NA).
However, it might be more intuitive to specify the pair n2, p2, such that P (n2) = p2
(and from that pair we solve for the value of cPDetect).

You can get a feeling for the effects of these arguments by playing with the following
code, that we do not execute here for the sake of speed. Here no mutation has any
effect, but there is a non-zero probability of exiting as soon as the total population
size becomes larger than the initial population size. So, eventually, all simulations
will exit and, as we are using the McFarland model, population size will vary slightly
around the initial population size.
gi2 <- rep(0, 5)
names(gi2) <- letters[1:5]
oi2 <- allFitnessEffects(noIntGenes = gi2)
s5 <- oncoSimulPop(200,

oi2,
model = "McFL",
initSize = 1000,
onlyCancer = TRUE,
detectionProb = c(p2 = 0.1,

n2 = 2000,

13We assess probability of exiting at every sampling time, as given by sampleEvery, that is the
smallest possible sampling time that is separated from the previous time of assessment by at least
checkSizePEvery. In other words, the interval between successive assessments will be the smallest
multiple integer of sampleEvery that is larger than checkSizePEvery. For example, suppose
sampleEvery = 2 and checkSizePEvery = 3: we will assess exiting at times 4, 8, 12, 16, If
sampleEvery = 3 and checkSizePEvery = 3: we will assess exiting at times 6, 12, 18,

165

PDBaseline = 1000,
checkSizePEvery = 2),

detectionSize = NA,
finalTime = NA,
keepEvery = NA,
detectionDrivers = NA)

s5
hist(unlist(lapply(s5, function(x) x$FinalTime)))

As you decrease checkSizePEvery the distribution of “FinalTime” will resemble
more and more an exponential distribution.

In this vignette, there are some further examples of using this mechanism in 6.5.4
and 6.5.2, with the default arguments.

6.3.2.1 Stochastic detection mechanism and minimum number of drivers
We said above that we exit as soon as any of the conditions is reached (i.e., we
use an OR operation over the exit conditions). There is a special exception to
this procedure: if you set AND_DrvProbExit = TRUE, both the number of drivers
and the detectionProb mechanism condition must fulfilled. This means that the
detectionProb mechanism not assessed unless the detectionDrivers condition is.
Using AND_DrvProbExit = TRUE allows to run simulations and ensure that all of
the returned simulations will have at least some cells with the number of drivers as
specified by detectionDrivers. Note, though, that this does not guarantee that
when you sample the population, all those drivers will be detected (as this depends
on the actual proportion of cells with the drivers and the settings of samplePop).

6.3.3 Fixation of genes/gene combinations

In some cases we might be interested in running simulations until a particular set of
genes, or gene combinations, reaches fixation. This exit condition might be more
relevant than some of the above in many non-cancer-related evolutionary genetics
scenarios.

Simulations will stop as soon as any of the genes or gene combinations in the vector
(or list) fixation reaches a frequency of 1. These gene combinations might have
non-zero intersection (i.e., they might share genes), and those genes need not be
drivers. If we want simulations to only stop when fixation of those genes/gene
combinations is reached, we will set all other stopping conditions to NA. It is, of
course, up to you to ensure that those stopping conditions are reasonable (that
they can be reached) and to use, or not, finalTime; otherwise, simulations will
eventually abort (e.g., when max.wall.time or max.num.tries are reached). Since
we are asking for fixation, the Exp or Bozic models will often not be appropriate
here; instead, models with competition such as McFL are more appropriate.

We return here to the example from section 5.3.

166

u <- 0.2; i <- -0.02; vi <- 0.6; ui <- uv <- -Inf
od2 <- allFitnessEffects(

epistasis = c("u" = u, "u:i" = ui,
"u:v" = uv, "i" = i,
"v:-i" = -Inf, "v:i" = vi))

Ochs and Desai explain that “Each simulated population was evolved until either
the uphill genotype or valley-crossing genotype fixed.” (see Ochs & Desai (2015), p.2,
section “Simulations”). We will do the same here. We specify that we want to end
the simulation when either the “u” or the “v, i” genotypes have reached fixation, by
passing those genotype combinations as the fixation argument (in this example
using fixation = c("u", "v") would have been equivalent, since the “v” genotype
by itself has fitness of 0).

We want to be explicit that fixation will be the one and only condition for end-
ing the simulations, and thus we set arguments detectionDrivers, finalTime,
detectionSize and detectionProb explicitly to NA. (We set the number of repeti-
tions only to 10 for the sake of speed when creating the vignette).
initS <- 20
We use only a small number of repetitions for the sake
of speed. Even fewer in Windows, since we run on a single
core

if(.Platform$OS.type == "windows") {
nruns <- 4

} else {
nruns <- 10

}

od100 <- oncoSimulPop(nruns, od2,
fixation = c("u", "v, i"),
model = "McFL",
mu = 1e-4,
detectionDrivers = NA,
finalTime = NA,
detectionSize = NA,
detectionProb = NA,
onlyCancer = TRUE,
initSize = initS,
mc.cores = 2)

What is the frequency of each genotype among the simulations? (or, what is the
frequency of fixation of each genotype?)
sampledGenotypes(samplePop(od100))
##
Subjects by Genes matrix of 10 subjects and 3 genes.

167

Genotype Freq
1 i, v 1
2 u 9
##
Shannon's diversity (entropy) of sampled genotypes: 0.3251

Note the very large variability in reaching fixation
head(summary(od100)[, c(1:3, 8:9)])
NumClones TotalPopSize LargestClone FinalTime NumIter
1 3 31 31 3386.7 135482
2 3 23 23 820.3 32821
3 3 20 20 391.8 15675
4 3 18 18 2417.9 96726
5 4 44 44 5571.6 222895
6 3 31 31 2980.9 119250

6.3.4 Fixation of genotypes

Section 6.3.3 deals with the fixation of gene/gene combinations. What if you want
fixation on specific genotypes? To give an example, suppose we have a five loci
genotype and suppose that you want to stop the simulations only if genotypes
“A”, “B, E”, or “A, B, C, D, E” reach fixation. You do not want to stop it if, say,
genotype “A, B, E” reaches fixation. To specify genotypes, you prepend the genotype
combinations with a “_,“, and that tells OncoSimulR that you want fixation of
genotypes, not just gene combinations.

An example of the differences between the mechanisms can be seen from this code:
Create a simple fitness landscape
rl1 <- matrix(0, ncol = 6, nrow = 9)
colnames(rl1) <- c(LETTERS[1:5], "Fitness")
rl1[1, 6] <- 1
rl1[cbind((2:4), c(1:3))] <- 1
rl1[2, 6] <- 1.4
rl1[3, 6] <- 1.32
rl1[4, 6] <- 1.32
rl1[5,] <- c(0, 1, 0, 0, 1, 1.5)
rl1[6,] <- c(0, 0, 1, 1, 0, 1.54)
rl1[7,] <- c(1, 0, 1, 1, 0, 1.65)
rl1[8,] <- c(1, 1, 1, 1, 0, 1.75)
rl1[9,] <- c(1, 1, 1, 1, 1, 1.85)
class(rl1) <- c("matrix", "genotype_fitness_matrix")
plot(rl1) ## to see the fitness landscape

Gene combinations
local_max_g <- c("A", "B, E", "A, B, C, D, E")
Specify the genotypes

168

local_max <- paste0("_,", local_max_g)

fr1 <- allFitnessEffects(genotFitness = rl1, drvNames = LETTERS[1:5])
initS <- 2000

######## Stop on gene combinations #####
r1 <- oncoSimulPop(10,

fp = fr1,
model = "McFL",
initSize = initS,
mu = 1e-4,
detectionSize = NA,
sampleEvery = .03,
keepEvery = 1,
finalTime = 50000,
fixation = local_max_g,
detectionDrivers = NA,
detectionProb = NA,
onlyCancer = TRUE,
max.num.tries = 500,
max.wall.time = 20,
errorHitMaxTries = TRUE,
keepPhylog = FALSE,
mc.cores = 2)

sp1 <- samplePop(r1, "last", "singleCell")
##
Subjects by Genes matrix of 10 subjects and 5 genes.

sgsp1 <- sampledGenotypes(sp1)
often you will stop on gene combinations that
are not local maxima in the fitness landscape
sgsp1
Genotype Freq
1 A 6
2 A, C, D 2
3 B, E 2
##
Shannon's diversity (entropy) of sampled genotypes: 0.9503

sgsp1$Genotype %in% local_max_g
[1] TRUE FALSE TRUE

####### Stop on genotypes ####

r2 <- oncoSimulPop(10,

169

fp = fr1,
model = "McFL",
initSize = initS,
mu = 1e-4,
detectionSize = NA,
sampleEvery = .03,
keepEvery = 1,
finalTime = 50000,
fixation = local_max,
detectionDrivers = NA,
detectionProb = NA,
onlyCancer = TRUE,
max.num.tries = 500,
max.wall.time = 20,
errorHitMaxTries = TRUE,
keepPhylog = FALSE,
mc.cores = 2)

All final genotypes should be local maxima
sp2 <- samplePop(r2, "last", "singleCell")
##
Subjects by Genes matrix of 10 subjects and 5 genes.

sgsp2 <- sampledGenotypes(sp2)
sgsp2$Genotype %in% local_max_g
[1] TRUE TRUE TRUE

6.3.5 Fixation: tolerance, number of periods, minimal size

In particular if you specify stopping on genotypes, you might want to think about
three additional parameters: fixation_tolerance, min_successive_fixation,
and fixation_min_size.

fixation_tolerance: fixation is considered to have happened if the genotype/gene
combinations specified as genotypes/gene combinations for fixation have reached a
frequency > 1−fixation_tolerance. (The default is 0, so we ask for genotypes/gene
combinations with a frequency of 1, which might not be what you want with large
mutation rates and complex fitness landscape with genotypes of similar fitness.)

min_successive_fixation: during how many successive sampling periods the con-
ditions of fixation need to be fulfilled before declaring fixation. These must be
successive sampling periods without interruptions (i.e., a single period when the
condition is not fulfilled will set the counter to 0). This can help to exclude short,
transitional, local maxima that are quickly replaced by other genotypes. (The default
is 50, but this is probably too small for “real life” usage).

fixation_min_size: you might only want to consider fixation to have happened if
a minimal size has been reached (this can help weed out local maxima that have
fitness that is barely above that of the wild-type genotype). (The default is 0).

170

An example of using those options:
Create a simple fitness landscape
rl1 <- matrix(0, ncol = 6, nrow = 9)
colnames(rl1) <- c(LETTERS[1:5], "Fitness")
rl1[1, 6] <- 1
rl1[cbind((2:4), c(1:3))] <- 1
rl1[2, 6] <- 1.4
rl1[3, 6] <- 1.32
rl1[4, 6] <- 1.32
rl1[5,] <- c(0, 1, 0, 0, 1, 1.5)
rl1[6,] <- c(0, 0, 1, 1, 0, 1.54)
rl1[7,] <- c(1, 0, 1, 1, 0, 1.65)
rl1[8,] <- c(1, 1, 1, 1, 0, 1.75)
rl1[9,] <- c(1, 1, 1, 1, 1, 1.85)
class(rl1) <- c("matrix", "genotype_fitness_matrix")
plot(rl1) ## to see the fitness landscape

The local fitness maxima are
c("A", "B, E", "A, B, C, D, E")

fr1 <- allFitnessEffects(genotFitness = rl1, drvNames = LETTERS[1:5])
initS <- 2000

Stop on genotypes

r3 <- oncoSimulPop(10,
fp = fr1,
model = "McFL",
initSize = initS,
mu = 1e-4,
detectionSize = NA,
sampleEvery = .03,
keepEvery = 1,
finalTime = 50000,
fixation = c(paste0("_,",

c("A", "B, E", "A, B, C, D, E")),
fixation_tolerance = 0.1,
min_successive_fixation = 200,
fixation_min_size = 3000),

detectionDrivers = NA,
detectionProb = NA,
onlyCancer = TRUE,
max.num.tries = 500,
max.wall.time = 20,
errorHitMaxTries = TRUE,
keepPhylog = FALSE,

171

mc.cores = 2)

6.3.6 Mixing stopping on gene combinations and genotypes

This would probably be awfully confusing and is not tested formally (though it
should work). Let me know if you think this is an important feature. (Pull requests
with tests welcome.)

6.4 Plotting genotype/driver abundance over time; plotting
the simulated trajectories

We have seen many of these plots already, starting with Figure 2 and Figure 4 and
we will see many more below, in the examples, starting with section 6.5.1 such as in
figures 5 and 6. In a nutshell, what we are plotting is the information contained in
the pops.by.time matrix, the matrix that contains the abundances of all the clones
(or genotypes) at each of the sampling periods.

The functions that do the work are called plot and these are actually methods for
objects of class “oncosimul” and “oncosimulpop”. You can access the help by doing
?plot.oncosimul, for example.

What entities are shown in the plot? You can show the trajectories of:

• numbers of drivers (e.g., 5);

• genotypes or clones (e.g., 6).

(Of course, showing “drivers” requires that you have specified certain genes as drivers.)

What types of plots are available?

• line plots;

• stacked plots;

• stream plots.

All those three are shown in both of Figure 5 and Figure 6.

If you run multiple simulations using oncoSimulPop you can plot the trajectories of
all of the simulations.

6.5 Several examples of simulations and plotting simulation
trajectories

6.5.1 Bauer’s example again

We will use the model of Bauer et al. (2014) that we saw in section 5.1.
K <- 5
sd <- 0.1
sdp <- 0.15

172

sp <- 0.05
bauer <- data.frame(parent = c("Root", rep("p", K)),

child = c("p", paste0("s", 1:K)),
s = c(sd, rep(sdp, K)),
sh = c(0, rep(sp, K)),
typeDep = "MN")

fbauer <- allFitnessEffects(bauer, drvNames = "p")
set.seed(1)
Use fairly large mutation rate
b1 <- oncoSimulIndiv(fbauer, mu = 5e-5, initSize = 1000,

finalTime = NA,
onlyCancer = TRUE,
detectionProb = "default")

We will now use a variety of plots
par(mfrow = c(3, 1))
First, drivers
plot(b1, type = "line", addtot = TRUE)
plot(b1, type = "stacked")
plot(b1, type = "stream")

par(mfrow = c(3, 1))
Next, genotypes
plot(b1, show = "genotypes", type = "line")
plot(b1, show = "genotypes", type = "stacked")
plot(b1, show = "genotypes", type = "stream")

In this case, probably the stream plots are most helpful. Note, however, that (in
contrast to some figures in the literature showing models of clonal expansion) the
stream plot (or the stacked plot) does not try to explicitly show parent-descendant
relationships, which would hardly be realistically possible in these plots (although
the plots of phylogenies in section 8 could be of help).

6.5.2 McFarland model with 5000 passengers and 70 drivers

set.seed(678)
nd <- 70
np <- 5000
s <- 0.1
sp <- 1e-3
spp <- -sp/(1 + sp)
mcf1 <- allFitnessEffects(noIntGenes = c(rep(s, nd), rep(spp, np)),

drvNames = seq.int(nd))
mcf1s <- oncoSimulIndiv(mcf1,

model = "McFL",

173

0 50 100 150

1
10

10
0

10
00

10
00

0

Time units

N
um

be
r

of
 c

el
ls

0 50 100 150

1
10

10
0

10
00

10
00

0

Number of drivers

0
1

0 50 100 150

0
50

00
15

00
0

25
00

0
35

00
0

Time units

N
um

be
r

of
 c

el
ls

Number of drivers

0
1

0 50 100 150

−
15

00
0

−
50

00
0

50
00

15
00

0

Time units

N
um

be
r

of
 c

el
ls

Number of drivers

0
1

Figure 5: Three drivers’ plots of a simulation of
Bauer’s model

174

0 50 100 150

1
10

10
0

10
00

10
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
p
p, s1
p, s1, s4
p, s2, s4
p, s3, s4
p, s4
p, s4, s5
s1

s1, s4
s2
s2, s4
s3
s3, s4
s4
s4, s5
s5

0 50 100 150

0
50

00
15

00
0

25
00

0
35

00
0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
p
p, s1
p, s1, s4
p, s2, s4
p, s3, s4
p, s4
p, s4, s5
s1

s1, s4
s2
s2, s4
s3
s3, s4
s4
s4, s5
s5

0 50 100 150

−
15

00
0

−
50

00
0

50
00

15
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
p
p, s1
p, s1, s4
p, s2, s4
p, s3, s4
p, s4
p, s4, s5
s1

s1, s4
s2
s2, s4
s3
s3, s4
s4
s4, s5
s5

Figure 6: Three genotypes’ plots of a simulation of
Bauer’s model

175

mu = 1e-7,
detectionProb = "default",
detectionSize = NA,
detectionDrivers = NA,
sampleEvery = 0.025,
keepEvery = 8,
initSize = 2000,
finalTime = 4000,
onlyCancer = FALSE)

summary(mcf1s)
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 973 2855 2412 3 2
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 2 11 2841 117409
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE 0.01309 1695 1972
OccurringDrivers
1 7, 9, 10, 11, 16, 20, 22, 23, 33, 45, 59

par(mfrow = c(2, 1))
I use thinData to make figures smaller and faster
plot(mcf1s, addtot = TRUE, lwdClone = 0.9, log = "",

thinData = TRUE, thinData.keep = 0.5)
plot(mcf1s, show = "drivers", type = "stacked",

thinData = TRUE, thinData.keep = 0.3,
legend.ncols = 2)

176

0 500 1000 1500 2000 2500

0
50

0
10

00
20

00

Time units

N
um

be
r

of
 c

el
ls

0 500 1000 1500 2000 2500

0
50

0
10

00
20

00

Number of drivers

0
1
2
3

0 500 1000 1500 2000 2500

0
50

0
10

00
15

00
20

00
25

00

Time units

N
um

be
r

of
 c

el
ls

Number of drivers

0
1

2
3

With the above output (where we see there are over 500 different genotypes) trying
to represent the genotypes makes no sense.

177

6.5.3 McFarland model with 50,000 passengers and 70 drivers: clonal
competition

The next is too slow (takes a couple of minutes in an i5 laptop) and too big to run
in a vignette, because we keep track of over 4000 different clones (which leads to a
result object of over 800 MB):

set.seed(123)
nd <- 70
np <- 50000
s <- 0.1
sp <- 1e-4 ## as we have many more passengers
spp <- -sp/(1 + sp)
mcfL <- allFitnessEffects(noIntGenes = c(rep(s, nd), rep(spp, np)),

drvNames = seq.int(nd))
mcfLs <- oncoSimulIndiv(mcfL,

model = "McFL",
mu = 1e-7,
detectionSize = 1e8,
detectionDrivers = 100,
sampleEvery = 0.02,
keepEvery = 2,
initSize = 1000,
finalTime = 2000,
onlyCancer = FALSE)

But you can access the pre-stored results and plot them (beware: this object has
been trimmed by removing empty passenger rows in the Genotype matrix)
data(mcfLs)
plot(mcfLs, addtot = TRUE, lwdClone = 0.9, log = "",

thinData = TRUE, thinData.keep = 0.3,
plotDiversity = TRUE)

178

H

0.
0

2.
0

0 500 1000 1500 2000

0
50

0
10

00
15

00

Time units

N
um

be
r

of
 c

el
ls

0 500 1000 1500 2000

0
50

0
10

00
15

00

Number of drivers

0
1
2
3

The argument plotDiversity = TRUE asks to show a small plot on top with Shan-
non’s diversity index.
summary(mcfLs)
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 4458 1718 253 3 3
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 3 70 2000 113759
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE 0.01922 184.1 199.6
OccurringDrivers
1 13, 38, 40, 69

number of passengers per clone
summary(colSums(mcfLs$Genotypes[-(1:70),]))
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 4.00 6.00 5.67 7.75 13.00

Note that we see clonal competition between clones with the same number of drivers
(and with different drivers, of course). We will return to this (section 6.5.5).

A stacked plot might be better to show the extent of clonal competition (plotting
takes some time —a stream plot reveals similar patterns and is also slower than the
line plot). I will aggressively thin the data for this plot so it is faster and smaller
(but we miss some of the fine grain, of course):

179

plot(mcfLs, type = "stacked", thinData = TRUE,
thinData.keep = 0.1,
plotDiversity = TRUE,
xlim = c(0, 1000))

H

0.
0

1.
5

0 200 400 600 800 1000

0
50

0
10

00
15

00

Time units

N
um

be
r

of
 c

el
ls

Number of drivers

0
1
2
3

6.5.4 Simulation with a conjunction example

We will use several of the previous examples. Most of them are in file
examplesFitnessEffects, where they are stored inside a list, with named
components (names the same as in the examples above):
data(examplesFitnessEffects)
names(examplesFitnessEffects)
[1] "cbn1" "cbn2" "smn1" "xor1" "fp3" "fp4m" "o3"
[8] "ofe1" "ofe2" "foi1" "sv" "svB" "svB1" "sv2"
[15] "sm1" "e2" "E3A" "em" "fea" "fbauer" "w"
[22] "pancr"

set.seed(1)

We will simulate using the simple CBN-like restrictions of section 3.4.4 with two
different models.
data(examplesFitnessEffects)
evalAllGenotypes(examplesFitnessEffects$cbn1, order = FALSE)[1:10,]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

180

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 a 1.10
2 b 1.10
3 c 0.10
4 d 1.10
5 e 1.10
6 g 0.10
7 a, b 1.21
8 a, c 0.11
9 a, d 1.21
10 a, e 1.21

sm <- oncoSimulIndiv(examplesFitnessEffects$cbn1,
model = "McFL",
mu = 5e-7,
detectionSize = 1e8,
detectionDrivers = 2,
detectionProb = "default",
sampleEvery = 0.025,
keepEvery = 5,
initSize = 2000,
onlyCancer = TRUE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

summary(sm)
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 4 2635 2014 2 2
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 2 3 372.5 14905
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE 0.01266 314478 333333
OccurringDrivers
1 a, b, e

set.seed(1234)
evalAllGenotypes(examplesFitnessEffects$cbn1, order = FALSE,

model = "Bozic")[1:10,]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Death_rate

181

1 a 0.90
2 b 0.90
3 c 1.90
4 d 0.90
5 e 0.90
6 g 1.90
7 a, b 0.81
8 a, c 1.71
9 a, d 0.81
10 a, e 0.81

sb <- oncoSimulIndiv(examplesFitnessEffects$cbn1,
model = "Bozic",
mu = 5e-6,

detectionProb = "default",
detectionSize = 1e8,
detectionDrivers = 4,
sampleEvery = 2,
initSize = 2000,
onlyCancer = TRUE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

summary(sb)
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 12 26655 25030 2 2
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 1 6 550 310
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE NA 33333 33333
OccurringDrivers
1 a, b, c, d, e, g

As usual, we will use several plots here.
Show drivers, line plot
par(cex = 0.75, las = 1)
plot(sb,show = "drivers", type = "line", addtot = TRUE,

plotDiversity = TRUE)

182

H

0.0
0.2
0.4
0.6

0 100 200 300 400 500

1

10

100

1000

10000

Time units

N
um

be
r

of
 c

el
ls

0 100 200 300 400 500

1

10

100

1000

10000
Number of drivers

0
1
2

Drivers, stacked
par(cex = 0.75, las = 1)
plot(sb,show = "drivers", type = "stacked", plotDiversity = TRUE)

H

0.0
0.2
0.4
0.6

0 100 200 300 400 500

0

5000

10000

15000

20000

25000

Time units

N
um

be
r

of
 c

el
ls

Number of drivers

0
1
2

Drivers, stream
par(cex = 0.75, las = 1)
plot(sb,show = "drivers", type = "stream", plotDiversity = TRUE)

183

H

0.0
0.2
0.4
0.6

0 100 200 300 400 500

−10000

−5000

0

5000

10000

Time units

N
um

be
r

of
 c

el
ls

Number of drivers

0
1
2

Genotypes, line plot
par(cex = 0.75, las = 1)
plot(sb,show = "genotypes", type = "line", plotDiversity = TRUE)

H

0.0
0.2
0.4
0.6

0 100 200 300 400 500

1

10

100

1000

10000

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
a
a, b
a, c
a, d
a, e

a, g
b
c
d
e
g

Genotypes, stacked
par(cex = 0.75, las = 1)
plot(sb,show = "genotypes", type = "stacked", plotDiversity = TRUE)

184

H

0.0
0.2
0.4
0.6

0 100 200 300 400 500

0

5000

10000

15000

20000

25000

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
a
a, b
a, c
a, d
a, e

a, g
b
c
d
e
g

Genotypes, stream
par(cex = 0.75, las = 1)
plot(sb,show = "genotypes", type = "stream", plotDiversity = TRUE)

H

0.0
0.2
0.4
0.6

0 100 200 300 400 500

−10000

−5000

0

5000

10000

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
a
a, b
a, c
a, d
a, e

a, g
b
c
d
e
g

The above illustrates again that different types of plots can be useful to reveal
different patterns in the data. For instance, here, because of the huge relative
frequency of one of the clones/genotypes, the stacked and stream plots do not reveal
the other clones/genotypes as we cannot use a log-transformed y-axis, even if there
are other clones/genotypes present.

6.5.5 Simulation with order effects and McFL model

(We use a somewhat large mutation rate than usual, so that the simulation runs
quickly.)

set.seed(4321)
tmp <- oncoSimulIndiv(examplesFitnessEffects[["o3"]],

185

model = "McFL",
mu = 5e-5,
detectionSize = 1e8,
detectionDrivers = 3,
sampleEvery = 0.025,
max.num.tries = 10,
keepEvery = 5,
initSize = 2000,
finalTime = 6000,
onlyCancer = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

We show a stacked and a line plot of the drivers:
par(las = 1, cex = 0.85)
plot(tmp, addtot = TRUE, log = "", plotDiversity = TRUE,

thinData = TRUE, thinData.keep = 0.2)

H

0.0
0.2
0.4
0.6

0 500 1000 1500 2000

0

1000

2000

3000

4000

Time units

N
um

be
r

of
 c

el
ls

0 500 1000 1500 2000

0

1000

2000

3000

4000
Number of drivers

0
1
2
3

par(las = 1, cex = 0.85)
plot(tmp, type = "stacked", plotDiversity = TRUE,

ylim = c(0, 5500), legend.ncols = 4,
thinData = TRUE, thinData.keep = 0.2)

186

H

0.0
0.2
0.4
0.6

0 500 1000 1500 2000

0

1000

2000

3000

4000

5000

Time units

N
um

be
r

of
 c

el
ls

Number of drivers

0 1 2 3

In this example (and at least under Linux, with both GCC and clang —random
number streams in C++, and thus simulations, can differ between combinations of
operating system and compiler), we can see that the mutants with three drivers do
not get established when we stop the simulation at time 6000. This is one case where
the summary statistics about number of drivers says little of value, as fitness is very
different for genotypes with the same number of mutations, and does not increase in
a simple way with drivers:
evalAllGenotypes(examplesFitnessEffects[["o3"]], addwt = TRUE,

order = TRUE)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 1.00
2 d 1.00
3 f 1.00
4 m 1.00
5 d > f 1.00
6 d > m 1.10
7 f > d 1.00
8 f > m 1.00
9 m > d 1.50
10 m > f 1.00
11 d > f > m 1.54
12 d > m > f 1.32
13 f > d > m 0.77

187

14 f > m > d 1.50
15 m > d > f 1.50
16 m > f > d 1.50

A few figures could help:
plot(tmp, show = "genotypes", ylim = c(0, 5500), legend.ncols = 3,

thinData = TRUE, thinData.keep = 0.5)

0 500 1000 1500 2000

0
10

00
20

00
30

00
40

00
50

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
d _
f _

f > d _
m _
m > d _

m > d > f _

(When reading the figure legends, recall that genotype x > y _ z is one where a
mutation in “x” happened before a mutation in “y”, and there is also a mutation in
“z” for which order does not matter. Here, there are no genes for which order does
not matter and thus there is nothing after the “_“).

In this case, the clones with three drivers end up displacing those with two by the
time we stop; moreover, notice how those with one driver never really grow to a large
population size, so we basically go from a population with clones with zero drivers
to a population made of clones with two or three drivers:
set.seed(15)
tmp <- oncoSimulIndiv(examplesFitnessEffects[["o3"]],

model = "McFL",
mu = 5e-5,
detectionSize = 1e8,
detectionDrivers = 3,
sampleEvery = 0.025,

188

max.num.tries = 10,
keepEvery = 5,
initSize = 2000,
finalTime = 20000,
onlyCancer = FALSE,
extraTime = 1500)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

tmp
##
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = examplesFitnessEffects[["o3"]], model = "McFL",
mu = 5e-05, detectionSize = 1e+08, detectionDrivers = 3,
sampleEvery = 0.025, initSize = 2000, keepEvery = 5, extraTime = 1500,
finalTime = 20000, onlyCancer = FALSE, max.num.tries = 10)
##
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 7 3984 3984 3 3
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 3 3 7178 288895
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE 0.01343 6254 6667
OccurringDrivers
1 d, f, m
##
Final population composition:
Genotype N
1 _ 0
2 d _ 0
3 d > m _ 0
4 f _ 0
5 m _ 0
6 m > d _ 0
7 m > d > f _ 3984

use a drivers plot:
par(las = 1, cex = 0.85)
plot(tmp, addtot = TRUE, log = "", plotDiversity = TRUE,

thinData = TRUE, thinData.keep = 0.5)

189

H

0.0
0.2
0.4
0.6

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

Time units

N
um

be
r

of
 c

el
ls

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000
Number of drivers

0
1
2
3

par(las = 1, cex = 0.85)
plot(tmp, type = "stacked", plotDiversity = TRUE,

legend.ncols = 4, ylim = c(0, 5200), xlim = c(3400, 5000),
thinData = TRUE, thinData.keep = 0.5)

H

0.00

0.10

0.20

0.30

3500 4000 4500 5000

0

1000

2000

3000

4000

5000

Time units

N
um

be
r

of
 c

el
ls

Number of drivers

0 1 2 3

Now show the genotypes explicitly:
Improve telling apart the most abundant
genotypes by sorting colors
differently via breakSortColors

190

Modify ncols of legend, so it is legible by not overlapping
with plot
par(las = 1, cex = 0.85)
plot(tmp, show = "genotypes", breakSortColors = "distave",

plotDiversity = TRUE, legend.ncols = 4,
ylim = c(0, 5300), xlim = c(3400, 5000),
thinData = TRUE, thinData.keep = 0.5)

H

0.00
0.05
0.10
0.15
0.20
0.25
0.30

3500 4000 4500 5000

0

1000

2000

3000

4000

5000

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
d _

d > m _
f _

m _
m > d _

m > d > f _

As before, the argument plotDiversity = TRUE asks to show a small plot on top
with Shannon’s diversity index. Here, as before, the quick clonal expansion of the
clone with two drivers leads to a sudden drop in diversity (for a while, the population
is made virtually of a single clone). Note, however, that compared to section 6.5.3,
we are modeling here a scenario with very few genes, and correspondingly very few
possible genotypes, and thus it is not strange that we observe very little diversity.

(We have used extraTime to continue the simulation well past the point of detection,
here specified as three drivers. Instead of specifying extraTime we can set the
detectionDrivers value to a number larger than the number of existing possible
drivers, and the simulation will run until finalTime if onlyCancer = FALSE.)

191

6.6 Interactive graphics
It is possible to create interactive stacked area and stream plots using the streamgraph
package, available from https://github.com/hrbrmstr/streamgraph. However, that
package is not available as a CRAN or BioConductor package, and thus we cannot
depend on it for this vignette (or this package). You can, however, paste the code
below and make it run locally.

Before calling the streamgraph function, though, we need to convert the data from
the original format in which it is stored into “long format”. A simple convenience
function is provided as OncoSimulWide2Long in OncoSimulR.

As an example, we will use the data we generated above for section 6.5.1.
Convert the data
lb1 <- OncoSimulWide2Long(b1)

Install the streamgraph package from GitHub and load
library(devtools)
devtools::install_github("hrbrmstr/streamgraph")
library(streamgraph)

Stream plot for Genotypes
sg_legend(streamgraph(lb1, Genotype, Y, Time, scale = "continuous"),

show=TRUE, label="Genotype: ")

Staked area plot and we use the pipe
streamgraph(lb1, Genotype, Y, Time, scale = "continuous",

offset = "zero") %>%
sg_legend(show=TRUE, label="Genotype: ")

6.7 Multiple initial mutants: starting the simulation from
arbitrary configurations

You can specify the population composition when you start the simulation: in other
words, you can use multiple initial mutants. Simply pass a vector to initMutant
and a vector of the same length to initSize: the first are the genotypes/clones, the
second the population sizes of the corresponding genotypes/clones.

(It often makes no sense to start the simulation with genotypes with birth rate of 0:
you can try it, but you will be told about it.)

Two examples.
r2 <- rfitness(6)
Make sure these always viable for interesting stuff
r2[2, 7] <- 1 + runif(1) # A
r2[4, 7] <- 1 + runif(1) # C
r2[8, 7] <- 1 + runif(1) # A, B

192

https://github.com/hrbrmstr/streamgraph
https://github.com/hrbrmstr/streamgraph
https://bioconductor.org/packages/3.20/OncoSimulR

o2 <- allFitnessEffects(genotFitness = r2)
ag <- evalAllGenotypes(o2)

out1 <- oncoSimulIndiv(o2, initMutant = c("A", "C"),
initSize = c(100, 200),
onlyCancer = FALSE,
finalTime = 200)

No WT, nor any other genotypes with a single mutation (except “A” and “C”) would
thus be possible either (it is impossible to obtain, say, a “B” if there are no WT).

We can do something similar with the frequency-dependent functionality (section
10):
gffd0 <- data.frame(

Genotype = c(
"A", "A, B",
"C", "C, D", "C, E"),

Fitness = c(
"1.3",
"1.4",
"1.4",
"1.1 + 0.7*((f_A + f_A_B) > 0.3)",
"1.2 + sqrt(f_A + f_C + f_C_D)"))

afd0 <- allFitnessEffects(genotFitness = gffd0,
frequencyDependentFitness = TRUE)

Warning in allFitnessEffects(genotFitness = gffd0,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
frequencyType set to 'auto'

sp <- 1:5
names(sp) <- c("A", "C", "A, B", "C, D", "C, E")
eag0 <- evalAllGenotypes(afd0, spPopSizes = sp)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

os0 <- oncoSimulIndiv(afd0,
initMutant = c("A", "C"),
finalTime = 20, initSize = c(1e4, 1e5),
onlyCancer = FALSE, model = "McFLD")

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects

193

to last version.

6.8 Multispecies simulations
Since we can use arbitrary initial populations to start the simulation (section 6.7)
and we can use arbitrary fitness specifications, you can run multi-species simulations
using a simple trick.

Suppose you want to use a two species simulation, where the first species has two
loci and the second three loci. This is a possible procedure:

• Create a genotype of total length (1 + 2) + (1 + 3).
• The first locus in each set we will use as the “species indicator”.
• Thus, Species A will use loci 1, 2, 3 and Species B loci 4 to 7.
• Make all genotype combinations where loci from different species are mutated

lethal (e.g., a genotype with loci 2 and 5 mutated is not viable).
• Now you can start the simulation from the “WT of each species”: the initMu-

tants will have genotypes with only loci 1 or loci 4 mutated.

This trick is really only an approximation: mutation to the other species is actually
death. So there is “leakage” from mutation to death, as in example 10.4: both species
are leaking a small number of children via mutation to non-viable “hybrids”. Factor
this into your equations for death rate, but this should be negligible if death rate ≫
mutation rate. (You can ameliorate this problem slightly by making mutation to the
“species indicator” locus very small, say 10−10 —do not set it to 0, as you will get an
error).

Of course, you can extend the scheme above to arbitrary numbers of species.

Let’s give several examples.

We use a capital letter for the “species indicator locus” and name each of the species-
specific loci with the lower case and a number. We then ameliorate the leakage issue
by making mutation to “A” or “B” tiny (though there is still leakage from, say, “A”
to “A, b1”).

mspec <- data.frame(
Genotype = c("A",

"A, a1", "A, a2", "A, a1, a2",
"B",
"B, b1", "B, b2", "B, b3",
"B, b1, b2", "B, b1, b3", "B, b1, b2, b3"),

Fitness = 1 + runif(11)
)
fmspec <- allFitnessEffects(genotFitness = mspec)
Column names of object not Genotype and Birth Renaming them assuming that is what you wanted
Warning in allGenotypes_to_matrix(x, frequencyDependentBirth,
frequencyDependentDeath, : No WT genotype. Setting its birth to 1.

194

afmspec <- evalAllGenotypes(fmspec)

Show only viable ones
afmspec[afmspec$Fitness >= 1,]
[1] Genotype Birth
<0 rows> (or 0-length row.names)

muv <- c(1e-10, rep(1e-5, 2), 1e-10, rep(1e-5, 3))
names(muv) <- c("A", paste0("a", 1:2), "B", paste0("b", 1:3))

out1 <- oncoSimulIndiv(fmspec, initMutant = c("A", "B"),
initSize = c(100, 200),
mu = muv,
onlyCancer = FALSE,
finalTime = 200)

We can do something similar with the frequency-dependent-fitness functionality. (We
use a somewhat silly specification, so that checking equations is easy)

mspecF <- data.frame(
Genotype = c("A",

"A, a1", "A, a2", "A, a1, a2",
"B",
"B, b1", "B, b2", "B, b3",
"B, b1, b2", "B, b1, b3", "B, b1, b2, b3"),

Fitness = c("1 + f_A_a1",
"1 + f_A_a2",
"1 + f_A_a1_a2",
"1 + f_B",
"1 + f_B_b1",
"1 + f_B_b2",
"1 + f_B_b3",
"1 + f_B_b1_b2",
"1 + f_B_b1_b3",
"1 + f_B_b1_b2_b3",
"1 + f_A")

)
fmspecF <- allFitnessEffects(genotFitness = mspecF,

frequencyDependentFitness = TRUE)
Warning in allFitnessEffects(genotFitness = mspecF,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
frequencyType set to 'auto'

Remeber, spPopSizes correspond to the genotypes
shown in

195

fmspecF$full_FDF_spec
A a1 a2 B b1 b2 b3 Genotype_as_numbers Genotype_as_letters
1 1 0 0 0 0 0 0 1 A
2 0 0 0 1 0 0 0 4 B
3 1 1 0 0 0 0 0 1, 2 A, a1
4 1 0 1 0 0 0 0 1, 3 A, a2
5 0 0 0 1 1 0 0 4, 5 B, b1
6 0 0 0 1 0 1 0 4, 6 B, b2
7 0 0 0 1 0 0 1 4, 7 B, b3
8 1 1 1 0 0 0 0 1, 2, 3 A, a1, a2
9 0 0 0 1 1 1 0 4, 5, 6 B, b1, b2
10 0 0 0 1 1 0 1 4, 5, 7 B, b1, b3
11 0 0 0 1 1 1 1 4, 5, 6, 7 B, b1, b2, b3
Genotype_as_fvarsb Fitness_as_fvars Fitness_as_letters
1 f_1 1 + f_1_2 1 + f_A_a1
2 f_4 1 + f_4_5 1 + f_B_b1
3 f_1_2 1 + f_1_3 1 + f_A_a2
4 f_1_3 1 + f_1_2_3 1 + f_A_a1_a2
5 f_4_5 1 + f_4_6 1 + f_B_b2
6 f_4_6 1 + f_4_7 1 + f_B_b3
7 f_4_7 1 + f_4_5_6 1 + f_B_b1_b2
8 f_1_2_3 1 + f_4 1 + f_B
9 f_4_5_6 1 + f_4_5_7 1 + f_B_b1_b3
10 f_4_5_7 1 + f_4_5_6_7 1 + f_B_b1_b2_b3
11 f_4_5_6_7 1 + f_1 1 + f_A

in exactly that order if it is unnamed.

afmspecF <- evalAllGenotypes(fmspecF,
spPopSizes = 1:11)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

Alternatively, pass a named vector, which is the recommended approach

spp <- 1:11
names(spp) <- c("A","B",

"A, a1", "A, a2",
"B, b1", "B, b2", "B, b3",
"A, a1, a2",
"B, b1, b2", "B, b1, b3", "B, b1, b2, b3")

196

afmspecF <- evalAllGenotypes(fmspecF,
spPopSizes = spp)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

Show only viable ones
afmspecF[afmspecF$Fitness >= 1,]
Genotype Fitness
2 A 1.045
5 B 1.076
9 A, a1 1.061
10 A, a2 1.121
24 B, b1 1.091
25 B, b2 1.106
26 B, b3 1.136
30 A, a1, a2 1.030
61 B, b1, b2 1.152
62 B, b1, b3 1.167
99 B, b1, b2, b3 1.015

Expected values of fitness
exv <- 1 + c(3, 5, 4, 8, 6, 7, 9, 2, 10, 11, 1)/sum(1:11)
stopifnot(isTRUE(all.equal(exv, afmspecF[afmspecF$Fitness >= 1,]$Fitness)))

muv <- c(1e-10, rep(1e-5, 2), 1e-10, rep(1e-5, 3))
names(muv) <- c("A", paste0("a", 1:2), "B", paste0("b", 1:3))

out1 <- oncoSimulIndiv(fmspecF, initMutant = c("A", "B"),
initSize = c(1e4, 1e5),
mu = muv,
finalTime = 20,
model = "McFLD",
onlyCancer = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Init Mutant with birth == 1.0
Init Mutant with birth == 1.0

Some further examples are given below, as in 10.4.2.

197

7 Sampling multiple simulations
Often, you will want to simulate multiple runs of the same scenario, and then
obtain the matrix of runs by mutations (a matrix of individuals/samples by genes or,
equivalently, a vector of “genotypes”), and do something with them. OncoSimulR
offers several ways of doing this.

The key function here is samplePop, either called explicitly after oncoSimulPop
(or oncoSimulIndiv), or implicitly as part of a call to oncoSimulSample. With
samplePop you can use single cell or whole tumor sampling (for details see the
help of samplePop). Depending on how the simulations were conducted, you might
also sample at different times, or as a function of population sizes. A major difference
between procedures has to do with whether or not you want to keep the complete
history of the simulations.

You want to keep the complete history of population sizes of clones during
the simulations. You will simulate using:

• oncoSimulIndiv repeatedly (maybe within mclapply, to parallelize the run).

• oncoSimulPop. oncoSimulPop is basically a thin wrapper around
oncoSimulIndiv that uses mclapply.

In both cases, you specify the conditions for ending the simulations (as explained
in 6.3). Then, you use function samplePop to obtain the matrix of samples by
mutations.

You do not want to keep the complete history of population sizes of clones
during the simulations. You will simulate using:

• oncoSimulIndiv repeatedly, with argument keepEvery = NA.

• oncoSimulPop, with argument keepEvery = NA.

In both cases you specify the conditions for ending the simulations (as explained
in 6.3). Then, you use function samplePop.

• oncoSimulSample, specifying the conditions for ending the simulations (as
explained in 6.3). In this case, you will not use samplePop, as that is implicitly
called by oncoSimulSample. The output is directly the matrix (and a little bit
of summary from each run), and during the simulation it only stores one time
point.

Why the difference between the above cases? If you keep the complete history of
population sizes, you can take samples at any of the times between the beginning
and the end of the simulations. If you do not keep the history, you can only sample
at the time the simulation exited (see section 18.2). Why would you want to use
the second route? If we are only interested in the final matrix of individuals by
mutations, keeping the complete history above is wasteful because we store fully
all of the simulations (for example in the call to oncoSimulPop) and then sample
(in the call to samplePop). Further criteria to use when choosing between sampling
procedures is whether you need detectionSize and detectionDrivers do differ

198

between simulations: if you use oncoSimulPop the arguments for detectionSize
and detectionDrivers must be the same for all simulations but this is not the case
for oncoSimulSample. See further comments in 7.2. Finally, parallelized execution
is available for oncoSimulPop but, by design, not for oncoSimulSample.

The following are a few examples. First we run oncoSimulPop to obtain 4 simulations
and in the last line we sample from them:

pancrPop <- oncoSimulPop(4, pancr,
onlyCancer = TRUE,
detectionSize = 1e7,
keepEvery = 10,
mc.cores = 2)

summary(pancrPop)
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 11 10512126 10460815 0 0
2 14 10565402 7416572 0 0
3 11 10838249 10791939 0 0
4 14 11021534 10893508 0 0
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 0 0 1269 1975
2 0 0 462 1014
3 0 0 2047 2784
4 0 0 1848 2605
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE NA 142857 142857
2 FALSE FALSE NA 142857 142857
3 FALSE FALSE NA 142857 142857
4 FALSE FALSE NA 142857 142857
OccurringDrivers
1
2
3
4

samplePop(pancrPop)
##
Subjects by Genes matrix of 4 subjects and 7 genes.
CDNK2A KRAS MLL3 PXDN SMAD4 TGFBR2 TP53
[1,] 0 1 0 0 0 0 0
[2,] 0 1 0 0 0 0 0
[3,] 0 1 0 0 0 0 0
[4,] 0 1 0 0 0 0 0

Now a simple multiple call to oncoSimulIndiv wrapped inside mclapply; this is
basically the same we just did above. We set the class of the object to allow direct

199

usage of samplePop. (Note: in Windows mc.cores > 1 is not supported, so for the
vignette to run in Windows, Linux, and Mac we explicitly set it here in the call
to mclapply. For regular usage, you will not need to do this; just use whatever is
appropriate for your operating system and number of cores. As well, we do not need
any of this with oncoSimulPop because the code inside oncoSimulPop already takes
care of setting mc.cores to 1 in Windows).
library(parallel)

if(.Platform$OS.type == "windows") {
mc.cores <- 1

} else {
mc.cores <- 2

}

p2 <- mclapply(1:4, function(x) oncoSimulIndiv(pancr,
onlyCancer = TRUE,
detectionSize = 1e7,
keepEvery = 10),
mc.cores = mc.cores)

class(p2) <- "oncosimulpop"
samplePop(p2)
##
Subjects by Genes matrix of 4 subjects and 7 genes.
CDNK2A KRAS MLL3 PXDN SMAD4 TGFBR2 TP53
[1,] 0 1 0 0 0 0 0
[2,] 0 1 0 0 0 0 0
[3,] 0 1 0 0 0 0 0
[4,] 0 1 0 0 0 0 0

Above, we have kept the complete history of the simulations as you can check by
doing, for instance
tail(pancrPop[[1]]$pops.by.time)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[123,] 1220 2088 0 0 77052 3 0 0 0 0
[124,] 1230 2070 0 0 211703 4 0 0 0 0
[125,] 1240 2570 0 0 580354 27 0 47 2 17
[126,] 1250 2521 16 0 1566900 73 0 475 4 222
[127,] 1260 2638 220 0 4254588 794 4 4777 2 1545
[128,] 1269 2760 1726 18 10460815 5401 10 30651 14 10731
[,11] [,12]
[123,] 0 0
[124,] 0 0
[125,] 0 0
[126,] 0 0
[127,] 0 0

200

[128,] 0 0

If we were not interested in the complete history of simulations we could have done
instead (note the argument keepEvery = NA)
pancrPopNH <- oncoSimulPop(4, pancr,

onlyCancer = TRUE,
detectionSize = 1e7,
keepEvery = NA,
mc.cores = 2)

summary(pancrPopNH)
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 9 10317397 10291675 0 0
2 13 10528981 7009735 0 0
3 9 10407445 10243670 0 0
4 8 10422244 10397392 0 0
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 0 0 2220 2988
2 0 0 1815 2410
3 0 0 1948 2688
4 0 0 1467 2148
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE NA 142857 142857
2 FALSE FALSE NA 142857 142857
3 FALSE FALSE NA 142857 142857
4 FALSE FALSE NA 142857 142857
OccurringDrivers
1
2
3
4

samplePop(pancrPopNH)
##
Subjects by Genes matrix of 4 subjects and 7 genes.
CDNK2A KRAS MLL3 PXDN SMAD4 TGFBR2 TP53
[1,] 0 1 0 0 0 0 0
[2,] 0 1 0 0 0 0 0
[3,] 0 1 0 0 0 0 0
[4,] 0 1 0 0 0 0 0

which only keeps the very last sample:
pancrPopNH[[1]]$pops.by.time
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2220 14751 6772 10291675 2814 7 825 12 540 1

201

Or we could have used oncoSimulSample:
pancrSamp <- oncoSimulSample(4, pancr, onlyCancer = TRUE)
Successfully sampled 4 individuals
##
Subjects by Genes matrix of 4 subjects and 7 genes.

pancrSamp$popSamp
CDNK2A KRAS MLL3 PXDN SMAD4 TGFBR2 TP53
[1,] 0 1 0 0 1 0 0
[2,] 0 1 0 0 0 0 0
[3,] 0 1 0 0 0 0 0
[4,] 0 1 0 0 0 0 0

Again, why the above differences? If we are only interested in the final matrix
of populations by mutations, keeping the complete history the above is wasteful,
because we store fully all of the simulations (in the call to oncoSimulPop) and then
sample (in the call to samplePop).

7.1 Whole-tumor and single-cell sampling, and do we always
want to sample?

samplePop is designed to emulate the process of obtaining a sample from a (set
of) “patient(s)”. But there is no need to sample. The history of the population,
with a granularity that is controlled by argument keepEvery, is kept in the matrix
pops.by.time which contains the number of cells of every clone at every sampling
point (see further details in 18.2). This is the information used in the plots that
show the trajectory of a simulation: the plots that show the change in genotype or
driver abundance over time (see section 6.4 and examples mentioned there).

Regardless of whether and how you plot the information in pops.by.time, you can
also sample one or multiple simulations using samplePop. In whole-tumor sampling
the resolution is the whole tumor (or the whole population). Thus, a key argument
is thresholdWhole, the threshold for detecting a mutation: a gene is considered
mutated if it is altered in at least “thresholdWhole” proportion of the cells in that
simulation (at a particular time point). This of course means that your “sampled
genotype” might not correspond to any existing genotype because we are summing
over all cells in the population. For instance, suppose that at the time we take the
sample there are only two clones in the population, one clone with a frequency of 0.4
that has gene A mutated, and a second clone one with a frequency of 0.6 that has
gene B mutated. If you set thresholdWhole to values ≤ 0.4 the sampled genotype
will show both A and B mutated. Single-cell sampling is provided as an option in
contrast to whole-tumor sampling. Here any sampled genotype will correspond to
an existing genotype as you are sampling with single-cell resolution.

When samplePop is run on a set of simulated data of, say, 100 simulated trajectories
(100 “subjects”), it will produce a matrix with 100 rows (100 “subjects”). But if it
makes sense in the context of your problem (e.g., multiple samples per patient?) you

202

can of course run samplePop repeatedly.

7.2 Differences between “samplePop” and “oncoSimulSam-
ple”

samplePop provides two sampling times: “last” and “uniform”. It also allows you
to sample at the first sample time(s) at which the population(s) reaches a given
size, which can be either the same or different for each simulation (with argument
popSizeSample). “last” means to sample each individual in the very last time period
of the simulation. “uniform” means sampling each individual at a time chosen
uniformly from all the times recorded in the simulation between the time when
the first driver appeared and the final time period. “unif” means that it is almost
sure that different individuals will be sampled at different times. “last” does not
guarantee that different individuals will be sampled at the same time unit, only that
all will be sampled in the last time unit of their simulation.

With oncoSimulSample we obtain samples that correspond to timeSample =
"last" in samplePop by specifying a unique value for detectionSize and
detectionDrivers. The data from each simulation will correspond to the time
point at which those are reached (analogous to timeSample = "last"). How about
uniform sampling? We pass a vector of detectionSize and detectionDrivers,
where each value of the vector comes from a uniform distribution. This is not
identical to the “uniform” sampling of oncoSimulSample, as we are not sampling
uniformly over all time periods, but are stopping at uniformly distributed values
over the stopping conditions. Arguably, however, the procedure in samplePop might
be closer to what we mean with “uniformly sampled over the course of the disease”
if that course is measured in terms of drivers or size of tumor.

An advantage of oncoSimulSample is that we can specify arbitrary sampling schemes,
just by passing the appropriate vector detectionSize and detectionDrivers. A
disadvantage is that if we change the stopping conditions we can not just resample
the data, but we need to run it again.

There is no difference between oncoSimulSample and oncoSimulPop + samplePop
in terms of the typeSample argument (whole tumor or single cell).

Finally, there are some additional differences between the two functions.
oncoSimulPop can run parallelized (it uses mclapply). This is not done with
oncoSimulSample because this function is designed for simulation experiments where
you want to examine many different scenarios simultaneously. Thus, we provide
additional stopping criteria (max.wall.time.total and max.num.tries.total)
to determine whether to continue running the simulations, that bounds the total
running time of all the simulations in a call to oncoSimulSample. And, if you are
running multiple different scenarios, you might want to make multiple, separate,
independent calls (e.g., from different R processes) to oncoSimulSample, instead
of relying in mclapply, since this is likely to lead to better usage of multiple
cores/CPUs if you are examining a large number of different scenarios.

203

8 Showing the genealogical relationships of clones
If you run simulations with keepPhylog = TRUE, the simulations keep track of when
every clone is generated, and that will allow us to see the parent-child relationships
between clones. (This is disabled by default).

Let us re-run a previous example:

set.seed(15)
tmp <- oncoSimulIndiv(examplesFitnessEffects[["o3"]],

model = "McFL",
mu = 5e-5,
detectionSize = 1e8,
detectionDrivers = 3,
sampleEvery = 0.025,
max.num.tries = 10,
keepEvery = 5,
initSize = 2000,
finalTime = 20000,
onlyCancer = FALSE,
extraTime = 1500,
keepPhylog = TRUE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

tmp
##
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = examplesFitnessEffects[["o3"]], model = "McFL",
mu = 5e-05, detectionSize = 1e+08, detectionDrivers = 3,
sampleEvery = 0.025, initSize = 2000, keepEvery = 5, extraTime = 1500,
finalTime = 20000, onlyCancer = FALSE, keepPhylog = TRUE,
max.num.tries = 10)
##
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 7 3984 3984 3 3
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 3 3 7178 288895
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE 0.01343 6254 6667
OccurringDrivers
1 d, f, m
##
Final population composition:
Genotype N

204

1 _ 0
2 d _ 0
3 d > m _ 0
4 f _ 0
5 m _ 0
6 m > d _ 0
7 m > d > f _ 3984

We can plot the parent-child relationships14 of every clone ever created (with fitness
larger than 0 —clones without viability are never shown):
plotClonePhylog(tmp, N = 0)

 _

d _ m _

m > d _

f _

d > m _

m > d > f _

However, we often only want to show clones that exist (have number of cells > 0) at
a certain time (while of course showing all of their ancestors, even if those are now
extinct —i.e., regardless of their current numbers).
plotClonePhylog(tmp, N = 1)

14There are several packages in R devoted to phylogenetic inference and related issues. For instance,
ape. I have not used that infrastructure because of our very specific needs and circumstances;
for instance, internal nodes are observed, we can have networks instead of trees, and we have no
uncertainty about when events occurred.

205

https://CRAN.R-project.org/package=ape

 _

m _

m > d _

m > d > f _

If we set keepEvents = TRUE the arrows show how many times each clone appeared:

(The next can take a while)
plotClonePhylog(tmp, N = 1, keepEvents = TRUE)

 _

m _

m > d _

m > d > f _

And we can show the plot so that the vertical axis is proportional to time (though
you might see overlap of nodes if a child node appeared shortly after the parent):
plotClonePhylog(tmp, N = 1, timeEvents = TRUE)

206

 _ m _

m > d _ m > d > f _

We can obtain the adjacency matrix doing
get.adjacency(plotClonePhylog(tmp, N = 1, returnGraph = TRUE))
Warning: `get.adjacency()` was deprecated in igraph 2.0.0.
i Please use `as_adjacency_matrix()` instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
4 x 4 sparse Matrix of class "dgCMatrix"
_ m _ m > d _ m > d > f _
_ . 1 . .
m _ . . 1 .
m > d _ . . . 1
m > d > f _

We can see another example here:

set.seed(456)
mcf1s <- oncoSimulIndiv(mcf1,

model = "McFL",
mu = 1e-7,
detectionSize = 1e8,
detectionDrivers = 100,
sampleEvery = 0.025,
keepEvery = 2,
initSize = 2000,
finalTime = 1000,
onlyCancer = FALSE,
keepPhylog = TRUE)

Showing only clones that exist at the end of the simulation (and all their parents):

207

plotClonePhylog(mcf1s, N = 1)

2368192241903339160730894808

196, 4808134, 1607

4793

2368, 2681

Notice that the labels here do not have a “_“, since there were no order effects in
fitness. However, the labels show the genes that are mutated, just as before.

Similar, but with vertical axis proportional to time:
par(cex = 0.7)
plotClonePhylog(mcf1s, N = 1, timeEvents = TRUE)

2368

1922
4190

3339

1607

3089
4808196, 4808 134, 160747932368, 2681

What about those that existed in the last 200 time units?
par(cex = 0.7)
plotClonePhylog(mcf1s, N = 1, t = c(800, 1000))

208

2368 1922419016523339138716073089

1922, 4409

48083324103318554694

2368, 3675

33381024

1715, 41901183, 2368 4190, 45894190, 4347

4988

1922, 30761922, 41871922, 4229

3765

1922, 25421002, 1922

21315132549

1922, 46513339, 36631652, 36711922, 4561

26245991582844952

2368, 3293

218249031724535

4190, 4449

137047021317

1607, 2619

3660

1170, 41901922, 40622898, 33392189, 2368

3411

1607, 4783

3930

2104, 2368 1387, 1688315, 3339

1614

1975, 2368 1145, 1387

1926

1070, 2368

2015962805

2368, 4776 1652, 33393008, 3339

1231180236443108

3339, 3930

1260

2541, 30892375, 33391765, 2368

26713958

1607, 18171607, 3051

320749121248

2368, 3140712, 2368214, 2368 3339, 4963945, 3339735, 2368 1460, 41902368, 3388 3407, 4190

2548

2368, 4237 3339, 4183196, 4808

1022

43, 41902368, 50132368, 4257 2160, 33392368, 28101847, 23681007, 2368 3249, 33391607, 18321607, 45061279, 30891607, 3944134, 16071750, 23682103, 23681919, 4190

3428

907, 3089

1762

1607, 50402221, 23681801, 2368738, 2368 1607, 4396752, 16072166, 2368 1225, 3339

4793

2368, 2681

And try now to show also when the clones appeared (we restrict the time to between
900 and 1000, to avoid too much clutter):
par(cex = 0.7)
plotClonePhylog(mcf1s, N = 1, t = c(900, 1000), timeEvents = TRUE)

2368

1922
4190

3339

1387 1607

3089
1922, 4409 48083324

2368, 3675

19262368, 4776 1652, 33393008, 3339 12311802364431083339, 3930 12602541, 30892375, 33391765, 2368 267139581607, 18171607, 3051 3207491212482368, 3140712, 2368214, 2368 3339, 4963945, 3339735, 2368 1460, 41902368, 3388 3407, 4190 25482368, 4237 3339, 4183196, 4808 102243, 41902368, 5013 2368, 42572160, 33392368, 28101847, 23681007, 2368 3249, 33391607, 18321607, 45061279, 30891607, 3944134, 16071750, 23682103, 23681919, 4190 3428907, 3089 17621607, 50402221, 23681801, 2368738, 2368 1607, 4396752, 16072166, 2368 1225, 3339 47932368, 2681

(By playing with t, it should be possible to obtain animations of the phylogeny. We
will not pursue it here.)

If the previous graph seems cluttered, we can represent it in a different way by calling
igraph directly after storing the graph and using the default layout:
g1 <- plotClonePhylog(mcf1s, N = 1, t = c(900, 1000),

returnGraph = TRUE)

plot(g1)

209

https://CRAN.R-project.org/package=igraph

2368

1922

4190

3339
1387

1607

3089

1922, 4409

4808

3324

2368, 3675

1926

2368, 4776

1652, 3339
3008, 3339

12311802
3644

3108
3339, 3930

1260

2541, 3089

2375, 3339

1765, 2368

2671

3958

1607, 1817
1607, 3051

3207 4912
1248

2368, 3140

712, 2368

214, 2368

3339, 4963
945, 3339

735, 2368

1460, 4190

2368, 3388

3407, 4190

2548

2368, 4237

3339, 4183
196, 4808

1022

43, 4190

2368, 5013
2368, 4257

2160, 3339

2368, 28101847, 2368
1007, 2368

3249, 3339

1607, 18321607, 4506

1279, 3089

1607, 3944
134, 1607

1750, 2368

2103, 2368

1919, 4190

3428

907, 3089
1762

1607, 5040

2221, 2368

1801, 2368

738, 2368

1607, 4396
752, 1607

2166, 2368

1225, 3339 4793

2368, 2681

which might be easier to show complex relationships or identify central or key clones.

It is of course quite possible that, especially if we consider few genes, the parent-child
relationships will form a network, not a tree, as the same child node can have multiple
parents. You can play with this example, modified from one we saw before (section
3.4.6):
op <- par(ask = TRUE)
while(TRUE) {

tmp <- oncoSimulIndiv(smn1, model = "McFL",
mu = 5e-5, finalTime = 500,
detectionDrivers = 3,
onlyCancer = FALSE,
initSize = 1000, keepPhylog = TRUE)

plotClonePhylog(tmp, N = 0)
}
par(op)

8.1 Parent-child relationships from multiple runs
If you use oncoSimulPop you can store and plot the “phylogenies” of the different
runs:

oi <- allFitnessEffects(orderEffects =
c("F > D" = -0.3, "D > F" = 0.4),
noIntGenes = rexp(5, 10),

geneToModule =
c("F" = "f1, f2, f3",

"D" = "d1, d2"))
oiI1 <- oncoSimulIndiv(oi, model = "Exp", onlyCancer = TRUE)
oiP1 <- oncoSimulPop(4, oi,

keepEvery = 10,
mc.cores = 2,
keepPhylog = TRUE, onlyCancer = TRUE)

210

We will plot the first two:

op <- par(mar = rep(0, 4), mfrow = c(2, 1))
plotClonePhylog(oiP1[[1]])
plotClonePhylog(oiP1[[2]])

211

 _

 _ 10

 _ 9, 10 _ 7, 10 d1 _ 10d2 _ 10

f1 _ 7, 10

 _ 8, 10 _ 6, 10

 _ 7, 8, 10 _ 6, 7, 10d2 _ 7, 10f3 _ 7, 10

f2 _ 10f1 _ 10f3 _ 10

 _ 8, 9, 10 d1 _ 7, 10f2 _ 9, 10 f2 _ 7, 10d1 _ 8, 10 _ 7, 9, 10d2 _ 9, 10 f2 _ 8, 10

f1 _ 7, 9, 10

d2 _ 8, 10f3 _ 8, 10 _ 6, 8, 10

 _ 7, 8, 9, 10f1 _ 7, 8, 10f3 > f2 _ 7, 10

 _

 _ 8

 _ 7, 8 d2 _ 8f3 _ 8 _ 8, 9 _ 8, 10f1 _ 8d1 _ 8f2 _ 8 _ 6, 8

 _ 7, 8, 10 _ 8, 9, 10 _ 7, 8, 9 _ 6, 7, 8f2 _ 7, 8d1 _ 7, 8d2 > f3 _ 8f1 _ 7, 8

par(op)

212

This is so far disabled in function oncoSimulSample, since that function is optimized
for other uses. This might change in the future.

213

9 Generating random fitness landscapes

9.1 Random fitness landscapes from a Rough Mount Fuji
model

In most of the examples seen above, we have fully specified the fitness of the different
genotypes (either by providing directly the full mapping genotypes to fitness, or by
providing that mapping by specifying the effects of the different gene combinations).
In some cases, however, we might want to specify a particular model that generates
the fitness landscape, and then have fitnesses be random variables obtained under this
model. In other words, in this random fitness landscape the fitness of the genotypes is
a random variable generated under some specific model. Random fitness landscapes
are used extensively, for instance, to understand the evolutionary consequences of
different types of epistatic interactions (Franke et al., 2011; e.g., Szendro, Schenk, et
al., 2013) and there are especially developed tools for plotting and analyzing random
fitness landscapes (e.g., Brouillet et al., 2015).

With OncoSimulR it is possible to generate mappings of genotype to fitness using
the function rfitness that allows you to use from a pure House of Cards model to
a purely additive model (see 9.2 for NK model). I have followed Szendro, Schenk, et
al. (2013) and Franke et al. (2011) and model fitness as

fi = −c d(i, reference) + xi (2)

where d(i, j) is the Hamming distance between genotypes i and j (the number of
positions that differ), c is the decrease in fitness of a genotype per each unit increase
in Hamming distance from the reference genotype, and xi is a random variable (in
this case, a normal deviate of mean 0 and standard deviation sd). You can change
the reference genotype to any of the genotypes: for the deterministic part, you make
the fittest genotype be the one with all positions mutated by setting reference =
"max", or use the wildtype by using a string of 0s, or randomly select a genotype as
a reference by using reference = "random" or reference = "random2". And by
changing c and sd you can flexibly modify the relative weight of the purely House of
Cards vs. additive component. The expression used above is also very similar to the
one on Greene & Crona (2014) if you use rfitness with the argument reference
= "max".

What can you do with these genotype to fitness mappings? You could plot them,
you could use them as input for oncoSimulIndiv and related functions, or you
could export them (to_Magellan) and plot them externally (e.g., in MAGELLAN:
http://wwwabi.snv.jussieu.fr/public/Magellan/, Brouillet et al. (2015)).
A small example
rfitness(3)
A B C Birth
[1,] 0 0 0 1.0000
[2,] 1 0 0 1.3485
[3,] 0 1 0 1.0170

214

http://wwwabi.snv.jussieu.fr/public/Magellan/

[4,] 0 0 1 1.0572
[5,] 1 1 0 2.3799
[6,] 1 0 1 0.9260
[7,] 0 1 1 2.1455
[8,] 1 1 1 0.9875
attr(,"class")
[1] "matrix" "array"
[3] "genotype_fitness_matrix"

A 5-gene example, where the reference genotype is the
one with all positions mutated, similar to Greene and Crona,
2014. We will plot the landscape and use it for simulations
We downplay the random component with a sd = 0.5

r1 <- rfitness(5, reference = rep(1, 5), sd = 0.6)
plot(r1)

WT

A
B

D

E

A, B

A, CA, D

A, E

B, CB, D

B, E

C, E

A, B, C

A, B, D

A, C, D

A, C, E

A, D, E

B, C, D

B, D, E

A, B, C, E

A, B, D, E

A, C, D, E

B, C, D, E

A, B, C, D, E

C

C, D

D, E

A, B, E

B, C, E

C, D, E

A, B, C, D

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

oncoSimulIndiv(allFitnessEffects(genotFitness = r1),
onlyCancer = TRUE)

##
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = allFitnessEffects(genotFitness = r1), onlyCancer = TRUE)
##
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 10 212432090 154439733 0 0
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter

215

1 0 0 333 1394
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE NA 85791 2e+05
OccurringDrivers
1
##
Final population composition:
Genotype N
1 2070
2 A, C, D 473
3 A, D 240
4 B 0
5 B, C, D 553
6 B, D 238
7 C, D 154439733
8 C, D, E 326
9 D 57856440
10 D, E 132017

9.2 Random fitness landscapes from Kauffman’s NK model
You can also use Kauffman’s NK model (Brouillet et al., 2015; e.g., Ferretti et al.,
2016). We call the function fl_generate from MAGELLAN (Brouillet et al., 2015).
rnk <- rfitness(5, K = 3, model = "NK")
plot(rnk)

WT

A

B
A, C

A, D

A, E

B, C

B, D
B, E

C, D

C, E

D, E

A, B, DA, B, E

A, D, E

B, C, D
B, C, E

C, D, E

A, B, C, DA, B, C, E

A, B, D, E

A, C, D, E

C

D

E

A, B

A, B, C
A, C, D

A, C, E

B, D, E

B, C, D, E

A, B, C, D, E

0.0

0.5

1.0

1.5

2.0

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

216

oncoSimulIndiv(allFitnessEffects(genotFitness = rnk),
onlyCancer = TRUE)

##
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = allFitnessEffects(genotFitness = rnk), onlyCancer = TRUE)
##
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 7 1.26e+08 1.26e+08 0 0
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 0 0 401 1635
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE NA 149820 2e+05
OccurringDrivers
1
##
Final population composition:
Genotype N
1 8.86e+02
2 A 0.00e+00
3 A, C 2.66e+02
4 B, C 1.26e+02
5 C 1.26e+08
6 C, D 3.68e+02
7 C, E 2.46e+02

9.3 Random fitness landscapes from an additive model
This model evaluates fitness with different contributions of each allele, which will be
randomly generated.

Given a number a genes by the user, the code uses rnorm to generate random
contribution for the mutated allele in each locus. Later, this constributions will
be used in the generation of the matrix that gives the value of fitness for each
combination of wild type/mutated alleles by addition of the values for each locus
and combination.
radd <- rfitness(4, model = "Additive", mu = 0, sd = 0.5)
plot(radd)

217

WT

A

B

C

D

A, B

A, C

B, D

C, D

A, B, C

A, B, D

A, C, D

B, C, D

A, B, C, D

A, D

B, C

0.5

1.0

1.5

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

9.4 Random fitness landscapes from Eggbox model
You can also use Eggbox model (Brouillet et al., 2015; e.g., Ferretti et al., 2016),
where each locus is either high or low fitness (depending on the “e” parameter value),
with a systematic change between each neighbor. We call the function fl_generate
from MAGELLAN (Brouillet et al., 2015) to generate these landscapes.
regg <- rfitness(4, model = "Eggbox", e = 1, E = 0.5)
plot(regg)

218

WT

A
B

C

D

A, BA, C
A, D

B, C

B, D

C, D

A, B, CA, B, DA, C, D

B, C, D

A, B, C, D

1.0

1.5

2.0

2.5

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

9.5 Random fitness landscapes from Ising model
In the Ising model (Brouillet et al., 2015; e.g., Ferretti et al., 2016), loci are arranged
sequentially and each locus interacts with its physical neighbors. For each pair of
interacting loci, there is a cost to (log)fitness if both alleles are not identical (and
therefore ‘compatible’); in this case, the cost for incompatibility i is applied. The
last and the first loci will interact only if ‘circular’ is set. The implementation of
this model is decribedin (Brouillet et al., 2015), and we use a call to MAGELLAN
code to generate the landscape.
ris <- rfitness(g = 4, model = "Ising", i = 0.002, I = 0.45)
plot(ris)

219

WT

A, B
A, C

A, DB, C

B, D
C, D

A, B, C, D

A

B

C

D A, B, C

A, B, D

A, C, D

B, C, D

0.6

0.8

1.0

1.2

1.4

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

9.6 Random fitness landscapes from Full models
MAGELLAN also offers the possibility to combine different models with their own
parameters in order to generate a Full model. The models combined are:

• House of cards: H is the number of interacting genes.
• Multiplicative (what we call additive): s and S mean and SD for generating

random fitnesses. d is a diminishing (negative) or increasing (positive) return
as you approach the peak.

• Kauffman NK: each locus interacts with any other K loci that can be chosen
randomly pasing “r = TRUE” or among its neigbors.

• RMF: explained at 9.1.
• Ising: i and I mean and SD for incompatibility. If circular option is provided,

the last and first alleles can interact (circular arrangement).
• Eggbox: In this model, each locus is considered as high or low fitness. From

one locus to another the fitness changes its sign so that one is benefficial and
its neigbor is detrimental. e and E are fitness and noise for fitness.

• Optimum: there is an optimum fitness contribution defined by o mu and O
sigma and every locus has a production pand P (also mean and sd respectively).

All models can be taken into account for the fitness calculation. With default
parameters, neither of Ising, Eggbox or Optimum contribute to fitness lanadcape
generation as all i, e, o and p all == 0. Also, as all parameters refering to standard
deviations have value == -1, those are also have no effect unless changed. Further
details can be found in MAGELLAN’s webpage http://wwwabi.snv.jussieu.fr/public
/Magellan/ and (Brouillet et al., 2015).

220

http://wwwabi.snv.jussieu.fr/public/Magellan/
http://wwwabi.snv.jussieu.fr/public/Magellan/

rnk <- rfitness(4, model = "Full", i = 0.5, I = 0.1,
e = 2, s = 0.3, S = 0.08)

plot(rnk)

WT

A

B

C

D

A, B

A, CA, D

B, C

B, D

C, D

A, B, C
A, B, D

A, C, D

B, C, D

A, B, C, D

1

2

3

4

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

9.7 Epistasis and fitness landscape statistics
We can call MAGELLAN’s (Brouillet et al., 2015) fl_statistics to obtain fitness
landscape statistics, including measures of sign and reciprocal sign epistasis. See the
help of Magellan_stats for further details on output format. For example:
rnk1 <- rfitness(6, K = 1, model = "NK")
Magellan_stats(rnk1)
ngeno npeaks nsinks gamma gamma. r.s
64.000 4.000 6.000 0.668 0.396 1.286
nchains nsteps nori depth magn sign
5.000 10.000 8.000 2.000 0.417 0.183
rsign f.1. X.2. f.3.. mode_f outD_m
0.100 0.585 0.344 0.071 1.000 2.888
outD_v steps_m reach_m fitG_m opt_i mProbOpt_0
2.825 2.297 6.533 32.883 20.000 0.385
opt_i.1 mProbOpt_1 opt_i.2 mProbOpt_2 opt_i.3 mProbOpt_3
30.000 0.154 43.000 0.013 48.000 0.447

rnk2 <- rfitness(6, K = 4, model = "NK")
Magellan_stats(rnk2)
ngeno npeaks nsinks gamma gamma. r.s

221

64.000 4.000 5.000 0.322 0.150 2.813
nchains nsteps nori depth magn sign
6.000 11.000 10.000 2.000 0.354 0.442
rsign f.1. X.2. f.3.. mode_f outD_m
0.204 0.231 0.357 0.412 2.000 1.837
outD_v steps_m reach_m fitG_m opt_i mProbOpt_0
3.079 2.681 16.883 33.267 9.000 0.041
opt_i.1 mProbOpt_1 opt_i.2 mProbOpt_2 opt_i.3 mProbOpt_3
23.000 0.468 42.000 0.265 49.000 0.226

(These fitness landscapes are, of course, frequency-independent fitness landscapes;
with frequency-dependent fitness, as in section @ref{fdf} fitness landscapes as such
are not defined.)

222

10 Frequency-dependent fitness
(Note that except for the example of 10.2, based on Hurlbut et al. (2018), the examples
below are not used because of their biological realism, but rather to show some key
features of the software)

With frequency-dependence fitness we can make fitness (actually, birth rate) depend
on the frequency of other genotypes. We specify how the fitness (birth rate) of each
genotype depends (or not) on other genotypes. Thus, this is similar to the explicit
mapping of genotypes to fitness (see 3.1.1), but fitness can be a function of the
abundance (relative or absolute) of other genotypes. Frequency-dependent fitness
allows you to examine models from game theory and adaptive dynamics. Game
theory has long tradition in evolutionary biology (Maynard Smith, 1982) and has
been widely used in cancer (Archetti & Pienta, 2019, for classical papers that cover
from early uses to a very recent review; Basanta & Deutsch, 2008; see, for example,
Tomlinson, 1997).

Since birth rate can be an arbitrary function of the frequencies of other clones, we
can model competition, cooperation and mutualism, parasitism and predation, and
commensalism. (Recall that in the “Exp” model death rate is constant and fixed
to 1. In the “McFL” and “McFLD” models, death rate is density-dependent —but
not frequency-dependent. You can thus model all those phenomena by, for example,
making the effects of clones i, j on each other and on their own be asymmetric on
their birth rates). See examples in section 10.4; as explained there, if you use the
“Exp” model, you might want to decrease the value of sampleEvery.

The procedure for working with the frequency-dependent functionality is the general
one with OncoSimulR. We first create a data frame with the mapping between
genotypes and their (frequency-dependent) fitness, similar to section 3.1.1. For
example, a two-column data frame, where the first column are the genotypes and
the second column contains, as strings, the expressions for the function that relate
fitness to frequencies of other genotypes. (We can also use a data frame with g + 1
columns; each of the first g columns contains a 1 or a 0 indicating that the gene
of that column is mutated or not. Column g + 1 contains the expressions for the
fitness specifications; see oncoSimulIndiv and allFitnessEffects for examples).
Once this data frame is created, we pass it to allFitnessEffects. From there,
simulation proceeds as usual.

How complex can the functions that specify fitness be? We use library ExprTk
for the fitness specifications so the range of functions you can use is very large
(http://www.partow.net/programming/exprtk/), including of course the usual
arithmetic expressions, logical expressions (so you can model thresholds or jumps
and use step functions), and a wide range of mathematical functions (so linear,
non-linear, convex, concave, etc, functions can be used, including of course affine
fitness functions as in Gerstung, Nakhoul, et al., 2011).

223

https://github.com/ArashPartow/exprtk
http://www.partow.net/programming/exprtk/

10.1 A first example with frequency-dependent fitness
The following is an arbitrary example. We will model birth rate of some genotypes
as a function of the relative frequencies of other genotypes; we use f_1 to denote the
relative frequency of the genotype with the first gene mutated, f_1_2 to denote the
relative frequency of the genotype with the first and second genes mutated, etc, and
f_ to denote the frequency of the WT genotype —below, in sections 10.3, 10.5, and
10.4, we will use absolute number of cells instead of relative frequencies). (As we
have discussed already, instead of f_1 you can, and probably should for any example
except trivial ones, use f_A or f_genotype expressed as combination of gene
names).

As you can see below, the birth rate of genotype “A” = 1.2 + 1.5 ∗ f_A_B and that
of the wildtype = 1 + 1.5 ∗ f_A_B. Genotype “A, B” in this example could be
a genotype whose presence leads to an increase in the growth of other genotypes
(maybe via diffusible factors, induction of angiogenesis, etc). Genotype “B” does
not show frequency-dependence. The birth rate of genotype “C” increases with
the frequency of f_A_B and increases (adding 0.7) with the frequency of genotypes
“A” and “B”, but only if the sum of the frequencies of genotypes “A” and “B” is
larger than 0.3. For genotype “A, B” its fitness increases with the square root of the
sum of the frequencies of genotypes “A”, “B”, and “C”, but it decreases (i.e., shows
increased intra-clone competition) if its own frequency is larger than 0.5. Genotypes
not defined explicitly have a fitness of 0.
Define fitness of the different genotypes
gffd <- data.frame(

Genotype = c("WT", "A", "B", "C", "A, B"),
Fitness = c("1 + 1.5 * f_A_B",

"1.3 + 1.5 * f_A_B",
"1.4",
"1.1 + 0.7*((f_A + f_B) > 0.3) + f_A_B",
"1.2 + sqrt(f_1 + f_C + f_B) - 0.3 * (f_A_B > 0.5)"))

(In the data frame creation, we use stringsAsFactors = FALSE to avoid messages
about conversions between factors and characters in former versions of R).

You could also specify that as
Define fitness of the different genotypes
gffdn <- data.frame(

Genotype = c("WT", "A", "B", "C", "A, B"),
Fitness = c("1 + 1.5 * f_1_2",

"1.3 + 1.5 * f_1_2",
"1.4",
"1.1 + 0.7*((f_1 + f_2) > 0.3) + f_1_2",
"1.2 + sqrt(f_1 + f_3 + f_2) - 0.3 * (f_1_2 > 0.5)"),

stringsAsFactors = FALSE)

but it is strongly preferred to use explicit gene name letters (otherwise, you must

224

keep in mind how R orders names of genes when making the mapping from letters
to numbers).

Let us verify that we have specified what we think we have specified using
evalAllGenotypes (we have done this repeatedly in this vignette, for example
in 1.3.2 or 1.7 or 5.1. Because fitness can depend on population sizes of different
populations, we need to pass the populations sizes at which we want fitness evaluated
in evalAllGenotypes.

Note that when calling allFitnessEffects we have to set the paramenter
frequencyDependentFitness to TRUE. Since we are using relative frequencies, we
can be explicit and specify freqType = "rel" (though it is not needed). We will
see below (10.3, 10.5, and 10.4) several examples with absolute numbers.

When passing spPopSizes it is also strongly preferred to use a named vector as
that allows the code to run some checks. Otherwise, the order of the population
sizes must be identical to that in the table with the fitness descriptions (component
full_FDF_spec in the fitness effects object).
evalAllGenotypes(allFitnessEffects(genotFitness = gffd,

frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(WT = 100, A = 20, B = 20, C = 30, "A, B" = 0))
Warning in allFitnessEffects(genotFitness = gffd,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 1.000
2 A 1.300
3 B 1.400
4 C 1.100
5 A, B 1.842
6 A, C 0.000
7 B, C 0.000
8 A, B, C 0.000

Notice the warning
evalAllGenotypes(allFitnessEffects(genotFitness = gffd,

frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(100, 30, 40, 0, 10))
Warning in allFitnessEffects(genotFitness = gffd,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

225

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 1.083
2 A 1.383
3 B 1.400
4 C 1.856
5 A, B 1.824
6 A, C 0.000
7 B, C 0.000
8 A, B, C 0.000

evalAllGenotypes(allFitnessEffects(genotFitness = gffd,
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(100, 30, 40, 0, 100))
Warning in allFitnessEffects(genotFitness = gffd,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 1.556
2 A 1.856
3 B 1.400
4 C 1.470
5 A, B 1.709
6 A, C 0.000
7 B, C 0.000
8 A, B, C 0.000

The numbered one gives the same results. Note as well that using frequencyType is
not needed (the default, auto, infers the type)
evalAllGenotypes(allFitnessEffects(genotFitness = gffdn,

frequencyDependentFitness = TRUE),
spPopSizes = c(100, 20, 20, 30, 0))

Warning in allFitnessEffects(genotFitness = gffdn,

226

frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
frequencyType set to 'auto'
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 1.000
2 A 1.300
3 B 1.400
4 C 1.100
5 A, B 1.842
6 A, C 0.000
7 B, C 0.000
8 A, B, C 0.000

evalAllGenotypes(allFitnessEffects(genotFitness = gffdn,
frequencyDependentFitness = TRUE),

spPopSizes = c(100, 30, 40, 0, 10))
Warning in allFitnessEffects(genotFitness = gffdn,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
frequencyType set to 'auto'
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 1.083
2 A 1.383
3 B 1.400
4 C 1.856
5 A, B 1.824
6 A, C 0.000
7 B, C 0.000
8 A, B, C 0.000

evalAllGenotypes(allFitnessEffects(genotFitness = gffdn,
frequencyDependentFitness = TRUE),

spPopSizes = c(100, 30, 40, 0, 100))

227

Warning in allFitnessEffects(genotFitness = gffdn,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
frequencyType set to 'auto'
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 1.556
2 A 1.856
3 B 1.400
4 C 1.470
5 A, B 1.709
6 A, C 0.000
7 B, C 0.000
8 A, B, C 0.000

The fitness specification is correct. Let us now create the allFitnessEffects
object and simulate. We will use the McFL model, so in addition to the frequency
dependence in the birth rates, there is also density dependence in the death rate (see
section 3).
afd <- allFitnessEffects(genotFitness = gffd,

frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = gffd,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

set.seed(1) ## for reproducibility
sfd <- oncoSimulIndiv(afd,

model = "McFL",
onlyCancer = FALSE,
finalTime = 55, ## short, for speed
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects

228

to last version.

plot(sfd, show = "genotypes")

0 10 20 30 40 50

0
50

00
10

00
0

15
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
A, B
B
C

There is no need to specify the fitness of all possible genotypes (and no need to
always specify the fitness of a WT): those are taken to be 0. But no fitness expression
can, thus, contain a function of the genotypes for which fitness is not specified (e.g.,
suppose you do not pass the fitness of genotype “B”: it will be taken as 0; but no
genotype can have, in its fitness, a function such as “2 * f_B”).

10.2 Hurlbut et al., 2018: a four-cell example with angio-
genesis and cytotoxicity

The following example is based on Hurlbut et al. (2018). As explained in p. 3 of that
paper, “Stromal cancer cells (A-) [WT in the code below] have no particular benefit or
cost unique to themselves, and they are considered a baseline neutral cell within the
context of the model. In contrast, angiogenesis-factor producing cells (A+) [A in the
code below] vascularize the local tumor area which consequently introduces a nutrient
rich blood to the benefit of all interacting cells. Nutrient recruitment expands when
A+ cells interact with one another. Cytotoxic cells (C) release a chemical compound
which harms heterospecific cells and increases their rate of cell death. The cytotoxic
cells benefit from the resulting disruption in competition caused by the interaction.
For simplicity, our model presumes that cytotoxic cells are themselves immune to
this class of agent. Finally, proliferative cells (P) possess a reproductive or metabolic
advantage relative to the other cell types. In our model this advantage does not
compound with the nutrient enrichment produced by vascularization when A+ cells
are present; however, it does place the proliferative cell at a greater vulnerability to
cytotoxins.”

229

They provide, in p. 4, the payoff matrix reproduced in Figure 7:

Figure 7: Payoff matrix from Table 2 of Hurlbut
et al., 2018, ‘Game Theoretical Model of Cancer
Dynamics withFour Cell Phenotypes’, Games, 9,
61; doi:10.3390/g9030061.

As explained in p. 6 (equation 1) of Hurlbut et al. (2018), we can write the fitness
of the four types as f=Gu, where f and u are the vectors with the four fitnesses
and frequencies (where each element of u corresponds to the relative frequencies of
stromal, angiogenic, proliferative, and cytotoxic cells), and G is the payoff matrix in
Figure 7.

To allow modelling scenarios with different values for the parameters in Figure 7
we will define a function to create the data frame of frequency-dependent fitnesses.
First, we will assume that each one of types A+, P, and C, are all derived from WT
by a single mutation in one of three genes, say, A, P, C, respectively.

create_fe <- function(a, b, c, d, e, f, g,
gt = c("WT", "A", "P", "C")) {

data.frame(Genotype = gt,
Fitness = c(

paste0("1 + ",
d, " * f_A ",
"- ", c, " * f_C"),

paste0("1 - ", a,
" + ", d, " + ",

f, " * f_A ",
"- ", c, " * f_C"),

paste0("1 + ", g, " + ",
d, " * f_A ",
"- ", c, " * (1 + ",
g, ") * f_C"),

paste0("1 - ", b, " + ",
e, " * f_ + ",
"(", d, " + ",
e, ") * f_A + ",
e , " * f_P")))

230

doi:10.3390/g9030061

}

We can check we recover Figure 7:
create_fe("a", "b", "c", "d", "e", "f", "g")
Genotype Fitness
1 WT 1 + d * f_A - c * f_C
2 A 1 - a + d + f * f_A - c * f_C
3 P 1 + g + d * f_A - c * (1 + g) * f_C
4 C 1 - b + e * f_ + (d + e) * f_A + e * f_P

We could model a different set of ancestor-dependent relationships:
Different assumption about origins from mutation:
WT -> P; P -> A,P; P -> C,P

create_fe2 <- function(a, b, c, d, e, f, g,
gt = c("WT", "A", "P", "C", "A, P", "A, C",

"C, P")) {
data.frame(Genotype = gt,

Fitness = c(
paste0("1 + ",

d, " * f_A_P ",
"- ", c, " * f_P_C"),

"0",
paste0("1 + ", g, " + ",

d, " * f_A_P ",
"- ", c, " * (1 + ",
g, ") * f_P_C"),

"0",
paste0("1 - ", a, " + ",
d, " + ",

f, " * f_A_P ",
"- ", c, " * f_P_C"),

"0",
paste0("1 - ", b, " + ",

e, " * f_ + ",
"(", d, " + ",
e, ") * f_A_P + ",
e , " * f_P")),

stringsAsFactors = FALSE)
}

And check:
create_fe2("a", "b", "c", "d", "e", "f", "g")
Genotype Fitness
1 WT 1 + d * f_A_P - c * f_P_C

231

2 A 0
3 P 1 + g + d * f_A_P - c * (1 + g) * f_P_C
4 C 0
5 A, P 1 - a + d + f * f_A_P - c * f_P_C
6 A, C 0
7 C, P 1 - b + e * f_ + (d + e) * f_A_P + e * f_P

Note: we are writing f_P_C: this is remapped internally to f_C_P (which is the
genotype name, with gene names reordered).

To show two examples, we will run the analyses Hurlbut et al. (2018) use for Figures
3a and 3b (p.8 of their paper):
Figure 3a
afe_3_a <- allFitnessEffects(

genotFitness =
create_fe(0.02, 0.04, 0.08, 0.06,

0.15, 0.1, 0.06),
frequencyDependentFitness = TRUE)

Warning in allFitnessEffects(genotFitness = create_fe(0.02, 0.04,
0.08, : v2 functionality detected. Adapting to v3 functionality.

For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below

data(s_3_a)
if (FALSE) {
set.seed(2)
s_3_a <- oncoSimulIndiv(afe_3_a,

model = "McFL",
onlyCancer = FALSE,
finalTime = 160,
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE,
keepEvery = 1)

}
plot(s_3_a, show = "genotypes", type = "line",

col = c("black", "green", "red", "blue"))

232

0 50 100 150

1
5

50
50

0
50

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
C
P

Figure 3b
afe_3_b <- allFitnessEffects(

genotFitness =
create_fe(0.02, 0.04, 0.08, 0.1,

0.15, 0.1, 0.05),
frequencyDependentFitness = TRUE)

Warning in allFitnessEffects(genotFitness = create_fe(0.02, 0.04,
0.08, : v2 functionality detected. Adapting to v3 functionality.

For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below
data(s_3_b)

if (FALSE) {
set.seed(2)
Use a short finalTime, for speed of vignette execution
s_3_b <- oncoSimulIndiv(afe_3_b,

model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE,
keepEvery = 1)

}

233

plot(s_3_b, show = "genotypes", type = "line",
col = c("black", "green", "red", "blue"))

0 20 40 60 80 100

1
5

50
50

0
50

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
C
P

we are using keepEvery. O.w. we could have used
thinData = TRUE for faster plotting

Of course, if we assume that the mutations leading to the different cell types are
different, the results can change:
Figure 3b. Now with WT -> P; P -> A,P; P -> C,P
For speed, we set finalTime = 100
afe_3_b_2 <- allFitnessEffects(

genotFitness =
create_fe2(0.02, 0.04, 0.08, 0.1,

0.15, 0.1, 0.05),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = create_fe2(0.02, 0.04,
0.08, : v2 functionality detected. Adapting to v3 functionality.

set.seed(2)
s_3_b_2 <- oncoSimulIndiv(afe_3_b_2,

model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,

234

errorHitWallTime = FALSE,
keepEvery = 1)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(s_3_b_2, show = "genotypes", type = "line",
col = c("black", "green", "red", "blue"))

0 20 40 60 80 100

1
5

50
50

0
50

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
P

(Examples for the remaining Figures 2 and 3 are provided, using also oncoSimulPop,
in file ‘inst/miscell/hurlbut-ex.R’)

10.3 An example with absolute numbers and population
collapse

In the following example we use absolute numbers (thus the n_1, etc, instead of the
f_1 in the fitness definition). This is a toy model where there is a change in fitness in
two of the genotypes if the other is above a specified threshold (this also shows again
the usage of a logical inequality). The genotype with gene B mutated has birth rate
less than 1, unless there are at least more than 10 cells with genotype A mutated.
gffd3 <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c("1",
"1 + 0.2 * (n_B > 10)",
".9 + 0.4 * (n_A > 10)"
))

afd3 <- allFitnessEffects(genotFitness = gffd3,
frequencyDependentFitness = TRUE)

235

Warning in allFitnessEffects(genotFitness = gffd3,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.

As usual, let us verify that we have specified what we think we have specified using
evalAllGenotypes:
evalAllGenotypes(allFitnessEffects(genotFitness = gffd3,

frequencyDependentFitness = TRUE),
spPopSizes = c(WT = 100, A = 1, B = 11))

Warning in allFitnessEffects(genotFitness = gffd3,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
Genotype Fitness
1 WT 1.0
2 A 1.2
3 B 0.9
4 A, B 0.0

evalAllGenotypes(allFitnessEffects(genotFitness = gffd3,
frequencyDependentFitness = TRUE),

spPopSizes = c(WT = 100, A = 11, B = 1))
Warning in allFitnessEffects(genotFitness = gffd3,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
Genotype Fitness
1 WT 1.0
2 A 1.0
3 B 1.3
4 A, B 0.0

In this simulation, the population collapses: genotype B is able to invade the
population when there are some A’s around. But as soon as A disappears due to
competition from B, B collapses as its birth rate becomes 0.9, less than the death rate;
we are using the “McFLD” model (where death rate D(N) = max(1, log(1 + N/K)));
see details in 3.2.1.1.
set.seed(1)
sfd3 <- oncoSimulIndiv(afd3,

model = "McFLD",
onlyCancer = FALSE,
finalTime = 200,
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,

236

errorHitWallTime = FALSE)
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(sfd3, show = "genotypes", type = "line")

0 50 100 150

1
10

10
0

10
00

10
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

plot(sfd3, show = "genotypes")

0 50 100 150

0
20

00
40

00
60

00
80

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

237

sfd3
##
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = afd3, model = "McFLD", mu = 1e-04, initSize = 5000,
finalTime = 200, onlyCancer = FALSE, keepPhylog = FALSE,
errorHitWallTime = FALSE, errorHitMaxTries = FALSE, seed = NULL)
##
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 3 0 0 0 0
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 0 0 173.8 7037
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE 0.007211 5000 5000
OccurringDrivers
1
##
Final population composition:
Genotype N
1 0
2 A 0
3 B 0

Had we used the “usual” death rate expression, that can lead to death rates below
1 (see 3.2.1.1), we would have obtained a population that stabilizes around a final
value slightly below the initial one (the one that corresponds to a death rate equal
to 0.9):
set.seed(1)
sfd4 <- oncoSimulIndiv(afd3,

model = "McFL",
onlyCancer = FALSE,
finalTime = 145,
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(sfd4, show = "genotypes", type = "line")

238

0 50 100 150

1
10

10
0

10
00

10
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

plot(sfd4, show = "genotypes")

0 50 100 150

0
20

00
40

00
60

00
80

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

sfd4
##
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = afd3, model = "McFL", mu = 1e-04, initSize = 5000,
finalTime = 145, onlyCancer = FALSE, keepPhylog = FALSE,
errorHitWallTime = FALSE, errorHitMaxTries = FALSE, seed = NULL)
##
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 3 7750 7716 0 0

239

NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 0 0 145 5941
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE 0.007544 4859 5000
OccurringDrivers
1
##
Final population composition:
Genotype N
1 0
2 A 34
3 B 7716

Check final pop size corresponds to birth = death
K <- 5000/(exp(1) - 1)
K
[1] 2910

log1p(4290/K)
[1] 0.906

10.4 Predator-prey, commensalism, and consumer-resource
models

Since birth rates can be arbitrary functions of frequencies of other clones, we can easily
model classical ecological models, such as predator-prey, competition, commensalism
and, more generally, consumer-resource models (see, for example, section 3.4 in Otto
& Day, 2007).

OncoSimulR was originally designed as a forward-time genetic simulator; thus, we
used to need to use a simple trick to get the system going. For example, suppose
we want to model a predator-prey system; we could do this having a WT that can
mutate into either preys or predators. (This is no longer necessary since we can
specify starting the simulation from populations with arbitrary numbers of different
clones; see sections 6.7 and 6.8. But we have not yet updated the examples).

Even with the There is, in fact, a small leakage in the system because both preys
and predators are “leaking” a small number of children, via mutation to a non-viable
predator-and-prey genotype, but this is negligible relative to their birth/death rates.

We will use below the usual consumer-resource model with Lotka-Volterra equations.
To model them, we use the “Exp” model, which has a constant death rate of 1, and
directly translate the usual expressions (e.g., expressions 3.15a and 3.15b in p. 73 of
Otto & Day, 2007) for rates of change into the birth rate. Of course, you can use
any other function for how rates of change of each “species” depend on the numbers
of the different species, including constant inflow and outflow, Type I, Type II, and
Type III functional responses, etc. And you can model systems that involve multiple
different types of preys, predators, commensals, etc (see the example in 10.2 for a

240

four-type example).

What about sampleEvery? In “for real” work, and specially with complex models,
you might want to decrease it, or at least examine how much results are affected by
changes in sampleEvery. Decreasing sampleEvery will result in birth rates being
updated more frequently, and we use the BNB algorithm, which updates all rates
only when the whole population is sampled. (Recall that by default, in the McFL
and McFLD models the setting for sampleEvery is smaller than in the Exp model).
Further discussion of these issues is provided in sections 10.7 and 18.6.

Since the WT genotype is just a trick used to get the system going, we will make sure
it disappears from the system soon after we get it to have both preys and predators
(and we use the max function to prevent birth rate from ever becoming negative
or identically 0). Finally, note that we can make this much more sophisticated; for
example, we could get the system going differently by having different mutations from
WT to prey and predator. Remember that you can now start the simulation from
arbitrary initial compositions (section 6.7). This is left here for historical purposes
and to show additional use cases.

10.4.1 Competition

First, create a function that will generate the usual Lotka-Volterra expressions for
competition models (see below for this example without using the WT, and directly
starting from “S1” and “S2”).
G_fe_LV <- function(r1, r2, K1, K2, a_12, a_21, awt = 1e-4,

gt = c("WT", "S1", "S2")) {
data.frame(Genotype = gt,

Fitness = c(
paste0("max(0.1, 1 - ", awt, " * (n_2 + n_1))"),
paste0("1 + ", r1,

" * (1 - (n_1 + ", a_12, " * n_2)/", K1,
")"),

paste0("1 + ", r2,
" * (1 - (n_2 + ", a_21, " * n_1)/", K2,
")")

))
}

Show expressions for birth rates
G_fe_LV("r1", "r2", "K1", "K2", "a_12", "a_21", "awt")
Genotype Fitness
1 WT max(0.1, 1 - awt * (n_2 + n_1))
2 S1 1 + r1 * (1 - (n_1 + a_12 * n_2)/K1)
3 S2 1 + r2 * (1 - (n_2 + a_21 * n_1)/K2)

Note we use numbers, not letters, in the expressions above (n_1, etc). This allows for
reusing the function, but requires extra care making sure that the numbers match

241

the order of the genotypes (it is not a problem with “S1” and “S2”, since there “S1”
will always be 1 and “S2” 2; but what about “Predator” and “prey”?)

Remember the above are the birth rates for a model with death rate = 1 (the “Exp”
model). That is why we added a 1 to the birth rate. If you subtract 1 from the
expressions for the birth rates of predators and prey above you get the standard
expressions for the differential equations for Lotka-Volterra model of competition:
dn1
dt

= r1n1(1 − n1+α12n2
K1

). (Verbosely: we are simulating using a model where we
have, in a rather general expression, dn1

dt
= (b − d) n1, where b and d are the birth

and death rates (that could be arbitrary functions of other stuff); these are the birth
and death rates used in the BNB algorithm. And when we simulate under the “Exp”
model we have d = 1. So just solve for (b − d)n1 = r1n1(1 − n1+α12n2

K1
), with b = 1

and you get the b you need to use).

Now, run that model by setting appropriate parameters; see how we have a_12 > 0
and a_21 > 0.
fe_competition <-

allFitnessEffects(
genotFitness =

G_fe_LV(1.5, 1.4, 10000, 4000, 0.6, 0.2,
gt = c("WT","S1", "S2")),

frequencyDependentFitness = TRUE,
frequencyType = "abs")

Warning in allFitnessEffects(genotFitness = G_fe_LV(1.5, 1.4,
10000, 4000, : v2 functionality detected. Adapting to v3
functionality.

competition <- oncoSimulIndiv(fe_competition,
model = "Exp",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-4,
initSize = 40000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

If we plot the whole simulation, we of course see the WT:
plot(competition, show = "genotypes")

242

0 20 40 60 80 100

0
10

00
0

20
00

0
30

00
0

40
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
S1
S2

but we can avoid that by showing the plot after the WT are long gone:
plot(competition, show = "genotypes",

xlim = c(80, 100))

80 85 90 95 100

0
20

00
60

00
10

00
0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
S1
S2

plot(competition, show = "genotypes", type = "line",
xlim = c(80, 100), ylim = c(1500, 12000))

243

80 85 90 95 100

20
00

40
00

80
00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
S1
S2

10.4.2 Competition

We repeat the above, but starting directly from the two species, using the 6.8 logic
and 6.7.
G_fe_LVm <- function(r1, r2, K1, K2, a_12, a_21, awt = 1e-4,

gt = c("S1", "S2")) {
data.frame(Genotype = gt,

Fitness = c(
paste0("1 + ", r1,

" * (1 - (n_1 + ", a_12, " * n_2)/", K1,
")"),

paste0("1 + ", r2,
" * (1 - (n_2 + ", a_21, " * n_1)/", K2,
")")

))
}

Show expressions for birth rates
G_fe_LVm("r1", "r2", "K1", "K2", "a_12", "a_21", "awt")
Genotype Fitness
1 S1 1 + r1 * (1 - (n_1 + a_12 * n_2)/K1)
2 S2 1 + r2 * (1 - (n_2 + a_21 * n_1)/K2)

fe_competitionm <-
allFitnessEffects(

genotFitness =
G_fe_LVm(1.5, 1.4, 10000, 4000, 0.6, 0.2,

gt = c("S1", "S2")),

244

frequencyDependentFitness = TRUE)
Warning in allFitnessEffects(genotFitness = G_fe_LVm(1.5, 1.4,
10000, 4000, : v2 functionality detected. Adapting to v3
functionality.

fe_competitionm$full_FDF_spec
S1 S2 Genotype_as_numbers Genotype_as_letters Genotype_as_fvarsb
1 1 0 1 S1 n_1
2 0 1 2 S2 n_2
Fitness_as_fvars
1 1 + 1.5 * (1 - (n_1 + 0.6 * n_2)/10000)
2 1 + 1.4 * (1 - (n_2 + 0.2 * n_1)/4000)
Fitness_as_letters
1 1 + 1.5 * (1 - (n_1 + 0.6 * n_2)/10000)
2 1 + 1.4 * (1 - (n_2 + 0.2 * n_1)/4000)

competitionm <- oncoSimulIndiv(fe_competitionm,
model = "Exp",
initMutant = c("S1", "S2"),
initSize = c(5000, 2000),
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-4,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

plot(competitionm, show = "genotypes")

245

0 20 40 60 80 100

0
20

00
60

00
10

00
0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

S1
S2

10.4.3 Predator-prey, first example

The simplest model would use the above Lotka-Volterra expressions and set one of
the a_ to be negative (see, for example, Otto & Day, 2007, p. 73). Let’s turn former
“S2” and thus a_21 < 0 (to make the effects more salient, we also increase that value
in magnitude).

We will also use a general function to generate fitness expressions. This is actually
nicer than we did above, because it allows us to give the names of the species, not
codes such as “n_1” that depend on how the names are ordered by R.
G_fe_LVm2 <- function(r1, r2, K1, K2, a_12, a_21, awt = 1e-4,

gt = c("S1", "S2")) {
data.frame(Genotype = gt,

Fitness = c(
paste0("1 + ", r1,

" * (1 - (n_", gt[1], " + ", a_12, " * n_", gt[2], ")/", K1,
")"),

paste0("1 + ", r2,
" * (1 - (n_", gt[2], " + ", a_21, " * n_", gt[1], ")/", K2,
")")

))
}

But notice that, because of ordering, "prey" ends up being n_2
but that is not a problem.

fe_pred_preym2 <-
allFitnessEffects(

246

genotFitness =
G_fe_LVm2(1.5, 1.4, 10000, 4000, 1.1, -0.5, awt = 1,

gt = c("prey", "Predator")),
frequencyDependentFitness = TRUE)

Warning in allFitnessEffects(genotFitness = G_fe_LVm2(1.5, 1.4,
10000, 4000, : v2 functionality detected. Adapting to v3
functionality.
frequencyType set to 'auto'
All single-gene genotypes as input to to_genotFitness_std

fe_pred_preym2$full_FDF_spec
Predator prey Genotype_as_numbers Genotype_as_letters
1 0 1 2 prey
2 1 0 1 Predator
Genotype_as_fvarsb Fitness_as_fvars
1 n_2 1 + 1.5 * (1 - (n_2 + 1.1 * n_1)/10000)
2 n_1 1 + 1.4 * (1 - (n_1 + -0.5 * n_2)/4000)
Fitness_as_letters
1 1 + 1.5 * (1 - (n_prey + 1.1 * n_Predator)/10000)
2 1 + 1.4 * (1 - (n_Predator + -0.5 * n_prey)/4000)

Change order and note how these are, of course, equivalent

fe_pred_preym3 <-
allFitnessEffects(

genotFitness =
G_fe_LVm2(1.4, 1.5, 4000, 10000, -0.5, 1.1, awt = 1,

gt = c("Predator", "prey")),
frequencyDependentFitness = TRUE)

Warning in allFitnessEffects(genotFitness = G_fe_LVm2(1.4, 1.5,
4000, 10000, : v2 functionality detected. Adapting to v3
functionality.
frequencyType set to 'auto'
All single-gene genotypes as input to to_genotFitness_std

fe_pred_preym3$full_FDF_spec
Predator prey Genotype_as_numbers Genotype_as_letters
1 1 0 1 Predator
2 0 1 2 prey
Genotype_as_fvarsb Fitness_as_fvars
1 n_1 1 + 1.4 * (1 - (n_1 + -0.5 * n_2)/4000)
2 n_2 1 + 1.5 * (1 - (n_2 + 1.1 * n_1)/10000)
Fitness_as_letters
1 1 + 1.4 * (1 - (n_Predator + -0.5 * n_prey)/4000)
2 1 + 1.5 * (1 - (n_prey + 1.1 * n_Predator)/10000)

247

evalAllGenotypes(fe_pred_preym2, spPopSizes = c(1000, 300))
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 0.00
2 Predator 2.47
3 prey 2.30
4 Predator, prey 0.00

evalAllGenotypes(fe_pred_preym3, spPopSizes = c(300, 1000))
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 0.00
2 Predator 2.47
3 prey 2.30
4 Predator, prey 0.00

s_pred_preym2 <- oncoSimulIndiv(fe_pred_preym2,
model = "Exp",
initMutant = c("prey", "Predator"),
initSize = c(1000, 1000),
onlyCancer = FALSE,
finalTime = 200,
mu = 1e-3,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(s_pred_preym2, show = "genotypes")

248

0 50 100 150 200

0
20

00
60

00
10

00
0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

Predator
prey

You can easily play with a range of parameters, say the carrying capacity of one of
the species, to see how they affect the stochasticity of the system.

If you run the above model repeatedly, you will frequently find that only one of
the species is left; and, yes, that could be the “Predator”, as in the Lotka-Volterra
expressions above there can be predators without prey. For example, you can check
that the birth rate of the predator is larger than 1 even if there are 0 prey (identically
1 when n_1 = K_1:
evalAllGenotypes(fe_pred_preym2, spPopSizes = c(0, 300))
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 0.000
2 Predator 2.295
3 prey 2.450
4 Predator, prey 0.000

evalAllGenotypes(allFitnessEffects(
genotFitness =

G_fe_LVm2(1.5, 1.4, 100, 40,
0.6, -0.5, awt = 0.1,
gt = c("prey", "Predator")),

frequencyDependentFitness = TRUE),
spPopSizes = c(0, 40))

249

Warning in allFitnessEffects(genotFitness = G_fe_LVm2(1.5, 1.4,
100, 40, : v2 functionality detected. Adapting to v3 functionality.
frequencyType set to 'auto'
All single-gene genotypes as input to to_genotFitness_std
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 0.00
2 Predator 1.00
3 prey 2.14
4 Predator, prey 0.00

10.4.4 Predator-prey, second example

We use now the model in p. 76 of Otto & Day (2007), where prey grow exponentially
in the absence of predators (and predators will eventually go extinct in the absence
of prey):

dn1

dt
= r n1 − a c n1 n2

dn2

dt
= ϵ a c n1 n2 − δ n2

(Recall what we explained in section 10.4.1 for how we find the b, birth rate, to use
in our simulations when we are using and “Exp” model with death rate 1: basically,
each of the birth rates, bi is 1 + expression above/ni).
C_fe_pred_prey2 <- function(r, a, c, e, d,

gt = c("s1", "s2")) {
data.frame(Genotype = gt,

Fitness = c(
paste0("1 + ", r, " - ", a,

" * ", c, " * n_2"),
paste0("1 + ", e, " * ", a,

" * ", c, " * n_1 - ", d)
))

}

C_fe_pred_prey2("r", "a", "c", "e", "d")
Genotype Fitness
1 s1 1 + r - a * c * n_2
2 s2 1 + e * a * c * n_1 - d

250

Given how we wrote C_fe_pred_prey2, the prey is hardcoded as n_1, so specify
names of creatures so that the prey comes first, in terms of order (note we avoided
this problem in the example above, 10.4.3, by always using the full name of the
genotype we refered to in the function to generate the fitness effects, G_fe_LVm2).
(Yes, we could have used a classic pair: “Hare” and “Lynx”).
fe_pred_prey2 <-

allFitnessEffects(
genotFitness =

C_fe_pred_prey2(r = .7, a = 1, c = 0.005,
e = 0.02, d = 0.4,
gt = c("Fly", "Lizard")),

frequencyDependentFitness = TRUE)
Warning in allFitnessEffects(genotFitness = C_fe_pred_prey2(r =
0.7, a = 1, : v2 functionality detected. Adapting to v3
functionality.
frequencyType set to 'auto'
All single-gene genotypes as input to to_genotFitness_std

fe_pred_prey2$full_FDF_spec
Fly Lizard Genotype_as_numbers Genotype_as_letters
1 1 0 1 Fly
2 0 1 2 Lizard
Genotype_as_fvarsb Fitness_as_fvars
1 n_1 1 + 0.7 - 1 * 0.005 * n_2
2 n_2 1 + 0.02 * 1 * 0.005 * n_1 - 0.4
Fitness_as_letters
1 1 + 0.7 - 1 * 0.005 * n_2
2 1 + 0.02 * 1 * 0.005 * n_1 - 0.4

You want to make sure you start the simulation from
a viable condition

evalAllGenotypes(fe_pred_prey2,
spPopSizes = c(5000, 100))

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 0.0
2 Fly 1.2
3 Lizard 1.1

251

4 Fly, Lizard 0.0

set.seed(2)
pred_prey2 <- oncoSimulIndiv(fe_pred_prey2,

model = "Exp",
initMutant = c("Fly", "Lizard"),
initSize = c(500, 100),
sampleEvery = 0.1,
mu = 1e-3,
onlyCancer = FALSE,
finalTime = 100,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

op <- par(mfrow = c(1, 2))
Nicer colors
plot(pred_prey2, show = "genotypes")
But this shows better what is going on
plot(pred_prey2, show = "genotypes", type = "line")

0 20 40 60 80 100

0
50

00
15

00
0

25
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

Fly
Lizard

0 20 40 60 80 100

1
10

10
0

10
00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

Fly
Lizard

par(op)

If you run that model repeatedly, sometimes the system will go extinct quickly, or

252

you will only get prey growing exponentially.

You could now (left as an exercise) build a more complex model to simulate arms-race
scenarios between predators and prey (maybe by having mutations with possibly
opposing effects on different coefficients above).

10.4.5 Commensalism

Modelling commensalism simply requires changing the values of the α, the a_12 and
a_21. Again, we can now avoid starting from a WT and start the simulation directly
from “A” and “Commensal” (section 6.7).

For example (not run, as this is just repetitive):
fe_commens <-

allFitnessEffects(
genotFitness =

G_fe_LV(1.2, 1.3, 5000, 20000,
0, -0.2,
gt = c("WT","A", "Commensal")),

frequencyDependentFitness = TRUE,
frequencyType = "abs")

commens <- oncoSimulIndiv(fe_commens,
model = "Exp",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-4,
initSize = 40000,

keepPhylog = FALSE,
seed = NULL,

errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

plot(commens, show = "genotypes")

plot(commens, show = "genotypes",
xlim = c(80, 100))

plot(commens, show = "genotypes", type = "line",
xlim = c(80, 100), ylim = c(2000, 22000))

10.5 Frequency-dependent fitness: can I mix relative and
absolute frequencies?

Yes, of course, since you can always use an absolute specification with the appropriate
quotient. For example, the following two specifications are identical:

253

rar <- data.frame(Genotype = c("WT", "A", "B", "C"),
Fitness = c("1",

"1.1 + .3*f_2",
"1.2 + .4*f_1",
"1.0 + .5 * (f_1 + f_2)"))

afear <- allFitnessEffects(genotFitness = rar,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = rar,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

evalAllGenotypes(afear, spPopSizes = c(100, 200, 300, 400))
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Genotype Fitness
1 WT 1.00
2 A 1.19
3 B 1.28
4 C 1.25
5 A, B 0.00
6 A, C 0.00
7 B, C 0.00
8 A, B, C 0.00

rar2 <- data.frame(Genotype = c("WT", "A", "B", "C"),
Fitness = c("1",

"1.1 + .3*(n_2/N)",
"1.2 + .4*(n_1/N)",
"1.0 + .5 * ((n_1 + n_2)/N)"))

afear2 <- allFitnessEffects(genotFitness = rar2,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

Warning in allFitnessEffects(genotFitness = rar2,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

evalAllGenotypes(afear2, spPopSizes = c(100, 200, 300, 400))
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Genotype Fitness
1 WT 1.00
2 A 1.19
3 B 1.28

254

4 C 1.25
5 A, B 0.00
6 A, C 0.00
7 B, C 0.00
8 A, B, C 0.00

and simulating with them leads to identical results
set.seed(1)
tmp1 <- oncoSimulIndiv(afear,

model = "McFL",
onlyCancer = FALSE,
finalTime = 30,
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

set.seed(1)
tmp2 <- oncoSimulIndiv(afear2,

model = "McFL",
onlyCancer = FALSE,
finalTime = 30,
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

stopifnot(identical(print(tmp1), print(tmp2)))
##
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = afear, model = "McFL", mu = 1e-04, initSize = 5000,
finalTime = 30, onlyCancer = FALSE, keepPhylog = FALSE, errorHitWallTime = FALSE,
errorHitMaxTries = FALSE, seed = NULL)
##
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 4 5072 4748 0 0
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 0 0 30 1250
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE 0.006621 3220 3333
OccurringDrivers
1
##

255

Final population composition:
Genotype N
1 4748
2 A 46
3 B 273
4 C 5
##
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = afear2, model = "McFL", mu = 1e-04, initSize = 5000,
finalTime = 30, onlyCancer = FALSE, keepPhylog = FALSE, errorHitWallTime = FALSE,
errorHitMaxTries = FALSE, seed = NULL)
##
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 4 5072 4748 0 0
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 0 0 30 1250
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE 0.006621 3220 3333
OccurringDrivers
1
##
Final population composition:
Genotype N
1 4748
2 A 46
3 B 273
4 C 5

So you can always mix relative and absolute; here fitness of two genotypes depends
on the relative frequencies of others, whereas fitness of the third on the absolute
frequencies (number of cells):
rar3 <- data.frame(Genotype = c("WT", "A", "B", "C"),

Fitness = c("1",
"1.1 + .3*(n_2/N)",
"1.2 + .4*(n_1/N)",
"1.0 + .5 * (n_1 > 20)"))

afear3 <- allFitnessEffects(genotFitness = rar3,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

Warning in allFitnessEffects(genotFitness = rar3,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

evalAllGenotypes(afear3, spPopSizes = c(100, 200, 300, 400))
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes

256

unnamed: cannot check genotype names.
Genotype Fitness
1 WT 1.00
2 A 1.19
3 B 1.28
4 C 1.50
5 A, B 0.00
6 A, C 0.00
7 B, C 0.00
8 A, B, C 0.00

set.seed(1)
tmp3 <- oncoSimulIndiv(afear3,

model = "McFL",
onlyCancer = FALSE,
finalTime = 60,
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

plot(tmp3, show = "genotypes")

0 10 20 30 40 50 60

0
20

00
40

00
60

00
80

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B
C

257

10.6 Frequency-dependent fitness: can I use genes with
mutator effects?

Yes. The following examples show it:
Relative
r1fd <- data.frame(Genotype = c("WT", "A", "B", "A, B"),

Fitness = c("1",
"1.4 + 1*(f_2)",
"1.4 + 1*(f_1)",
"1.6 + f_1 + f_2"))

afe4 <- allFitnessEffects(genotFitness = r1fd,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = r1fd,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

mtfd <- allMutatorEffects(epistasis = c("A" = 0.1,
"B" = 10))

set.seed(1)
s1fd <- oncoSimulIndiv(afe4,

model = "McFL",
onlyCancer = FALSE,
finalTime = 40,
mu = 1e-4,
initSize = 5000,
keepPhylog = TRUE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(s1fd, show = "genotypes")

258

0 10 20 30 40

0
50

00
10

00
0

15
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
A, B
B

set.seed(1)
s2fd <- oncoSimulIndiv(afe4,

muEF = mtfd,
model = "McFL",
onlyCancer = FALSE,
finalTime = 40,
mu = 1e-4,
initSize = 5000,
keepPhylog = TRUE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

In the Mac ARM64 architecture, the above
run leads to an exception, which is really odd.
While that is debugged, use try to prevent
failure of the plot to abort vignette building.

try(plot(s2fd, show = "genotypes"))

259

0 10 20 30 40

0
50

00
10

00
0

15
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
A, B
B

plotClonePhylog(s1fd, keepEvents = TRUE)

B A

A, B

plotClonePhylog(s2fd, keepEvents = TRUE)

B A

A, B

260

Of course, it also works with absolute frequencies (code not executed for the sake of
speed):

Absolute
r5 <- data.frame(Genotype = c("WT", "A", "B", "A, B"),

Fitness = c("1",
"1.25 - .0025*(n_2)",
"1.25 - .0025*(n_1)",
"1.4"),

stringsAsFactors = FALSE)

afe5 <- allFitnessEffects(genotFitness = r5,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

set.seed(8)
s5 <- oncoSimulIndiv(afe5,

model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-4,
initSize = 5000,
keepPhylog = TRUE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

plot(s5, show = "genotypes")
plot(s5, show = "genotypes", log = "y", type = "line")

mt <- allMutatorEffects(epistasis = c("A" = 0.1,
"B" = 10))

set.seed(8)
s6 <- oncoSimulIndiv(afe5,

muEF = mt,
model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-4,
initSize = 5000,
keepPhylog = TRUE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

plot(s6, show = "genotypes")
plot(s6, show = "genotypes", log = "y", type = "line")

plotClonePhylog(s5, keepEvents = TRUE)

261

plotClonePhylog(s6, keepEvents = TRUE)

Note that evalAllGenotypesFitAndMut currently works with frequency-
dependent fitness:

evalAllGenotypes(allFitnessEffects(genotFitness = r1fd,
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(10, 20, 30, 40))
Warning in allFitnessEffects(genotFitness = r1fd,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 1.0
2 A 1.7
3 B 1.6
4 A, B 2.1

evalAllGenotypesFitAndMut(allFitnessEffects(genotFitness = r1fd,
frequencyDependentFitness = TRUE,

frequencyType = "rel"),
mtfd,
spPopSizes = c(10, 20, 30, 40))

Warning in allFitnessEffects(genotFitness = r1fd,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness MutatorFactor
1 WT 1.0 1.0
2 A 1.7 0.1
3 B 1.6 10.0
4 A, B 2.1 1.0

262

10.7 Can we use the BNB algorithm to model frequency-
dependent fitness?

This question is similar to the one we address in 18.6. Briefly, the answer is yes. You
can think of this as an approximation to an exact simulation of a stochastic system.
You can also think of a delay in the system in the sense that the changes in rates
due to changes in the frequencies of the different genotypes are updated at periodic
intervals, not immediately.

11 Additional examples of frequency-dependent
fitness

In this section, we provide additional examples that use frequency-dependent fitness.
As mentioned also in 10,

Note also that in most of these examples we make rather arbitrary and simple
assumptions about the genetic basis of the different phenotypes or strategies (most
are one-mutation-away from WT); see 10.4 and 10.2 (where we change the ancestor-
dependent relationships). In some examples mutation rates are also very high, to
speed up processes and because a high mutation rate is used as a procedure (a hack?)
to quickly obtain descendants from WT (i.e., to get the game started with some
representatives of the non-WT types).

Examples 11.1, 11.2, 11.3, 11.4, 11.5 were originally prepared by Sara Dorado
Alfaro, Miguel Hernández del Valle, Álvaro Huertas García, Diego Mañanes Cayero,
Alejandro Martín Muñoz; example 11.6 was originally prepared by Marta Couce
Iglesias, Silvia García Cobos, Carlos Madariaga Aramendi, Ana Rodríguez Ronchel,
and Lucía Sánchez García; examples 11.7, 11.8, 11.9 were prepared by Yolanda
Benítez Quesada, Asier Fernández Pato, Esperanza López López, Alberto Manuel
Parra Pérez. All of these as an exercisse for the course Programming and Statistics
with R (Master’s Degree in Bioinformatics and Computational Biology, Universidad
Autónoma de Madrid), course 2019-20.

11.1 Rock-paper-scissors model in bacterial community
11.1.1 Introduction

This example is inspired by Kerr et al. (2002). It describes the relationship between
three populations of Escherichia coli, that turns out to be very similar to a rock-
paper-scissors game.

An E. coli community can have a specific strain of colicinogenic bacteria, that are
capable of creating colicin, a toxin to which this special strain is resistant. The
wild-type bacteria is killed by this toxin, but can mutate into a resistant strain.

So, there are three kinds of bacteria: wild-type (WT), colicinogenic (C) and resistant
(R). The presence of C reduces the population of WT, but increases the population
of R because R has an advantage over C, since R doesn’t have the cost of creating

263

the toxin. At the same time, WT has an advantage over R, because by losing the
toxin receptors, R loses also some important functions. Therefore, every strain “wins”
against one strain and “loses” against the other, creating a rock-paper-scissors game.
crs <- function (a, b, c){

data.frame(Genotype = c("WT", "C", "R"),
Fitness = c(paste0("1 + ", a, " * f_R - ", b, " * f_C"),

paste0("1 + ", b, " * f_ - ", c, " * f_R"),
paste0("1 + ", c, " * f_C - ", a, " * f_")

))
}

The equations are:

W (WT) = 1 + afR − bfC (3)
W (C) = 1 + bfW T − cfR (4)
W (R) = 1 + cfC − afW T (5)

(6)

where fW T , fC and fR are the frequencies of WT, C and R, respectively.
crs("a", "b", "c")
Genotype Fitness
1 WT 1 + a * f_R - b * f_C
2 C 1 + b * f_ - c * f_R
3 R 1 + c * f_C - a * f_

11.1.1.1 Case 1 We are going to study the scenario in which all the relationships
have the same relative weight.
afcrs1 <- allFitnessEffects(genotFitness = crs(1, 1, 1),

frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = crs(1, 1, 1),
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

resultscrs1 <- oncoSimulIndiv(afcrs1,
model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-2,
initSize = 4000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,

264

errorHitWallTime = FALSE)
op <- par(mfrow = c(1, 2))
plot(resultscrs1, show = "genotypes", type = "line", cex.lab=1.1,

las = 1)
plot(resultscrs1, show = "genotypes", type = "stacked")

0 20 40 60 80 100

1

5
10

50
100

500
1000

5000

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
C
R

0 20 40 60 80 100

0
10

00
20

00
30

00
40

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
C
R

par(op)

An oscillatory equilibrium is reached, in which the same populations have a similar
number of individuals but oscillates. This makes sense, because the rise on a particular
strand will lead to a rise in the one that “wins” against it, and then to a rise in
the one that “wins” against the second one, creating this cyclical behaviour. In the
stacked plot we can see that the total population remains almost constant.

Note, though, that altering mutation rate (which is huge here) can change the results
of the model.

11.1.1.2 Case 2 We are going to put a bigger weight in one of the coefficients,
so a=10, b=1, c=1.
afcrs2 <- allFitnessEffects(genotFitness = crs(10, 1, 1),

frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = crs(10, 1, 1),
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

If we run multiple simulations, for example by doing

265

resultscrs2 <- oncoSimulPop(10,
afcrs2,

model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-2,
initSize = 4000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

we can verify there are two different scenarios.

The first one is the one in which all the strains coexist, with the colicinogenic bacteria
having a much bigger population.
set.seed(1)

resultscrs2a <- oncoSimulIndiv(afcrs2,
model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-2,
initSize = 4000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

plot(resultscrs2a, show = "genotypes", type = "line")

266

0 20 40 60 80 100

1
5

50
50

0
50

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
C
R

In the second one, the wild type and the colicinogenic bacteria dissapear, so the
resistant strain is the only one that survives.

As above, though, decreasing the mutation rate can lead to a different solution and
you will want to run the model for much longer to see the resistant strain appear
and outcompete the others.
set.seed(3)

resultscrs2b <- oncoSimulIndiv(afcrs2,
model = "McFL",
onlyCancer = FALSE,
finalTime = 60,
mu = 1e-2,
initSize = 4000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

plot(resultscrs2b, show = "genotypes", type = "line", cex.lab=1.1,
las = 1)

267

0 10 20 30 40 50 60

1

5
10

50
100

500
1000

5000

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
C
R

11.1.1.3 Case 3 Finally, we are going to put more weight in two coefficients, so
a=1, b=5, c=5.
afcrs3 <- allFitnessEffects(genotFitness = crs(1, 5, 5),

frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = crs(1, 5, 5),
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

resultscrs3 <- oncoSimulIndiv(afcrs3,
model = "McFL",
onlyCancer = FALSE,
finalTime = 60,
mu = 1e-2,
initSize = 4000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

plot(resultscrs3, show = "genotypes", type = "line", cex.lab=1.1,
las = 1)

268

0 10 20 30 40 50 60

1

10

100

1000

10000

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
C
R

In all the cases all three strains survive, with C having a much smaller population
than the other two.

11.2 Hawk and Dove example
The example we are going to show is one of the first games that Maynard Smith
analyzed, for example in his classic Maynard Smith (1982) (see also, e.g., https:
//en.wikipedia.org/wiki/Chicken_%28game%29).

In this game, the two competitors are subtypes of the same species but with different
strategies. The Hawk first displays aggression, then escalates into a fight until it
either wins or is injured (loses). The Dove first displays aggression, but if faced with
major escalation runs for safety. If not faced with such escalation, the Dove attempts
to share the resource (see the payoff matrix, for instance in https://en.wikipedia.org
/wiki/Chicken_%28game%29#Hawk%E2%80%93dove).

Given that the resource is given the value V, the damage from losing a fight is given
cost C:

• If a Hawk meets a Dove he gets the full resource V to himself
• If a Hawk meets a Hawk – half the time he wins, half the time he loses. . . so

his average outcome is then V/2 minus C/2
• If a Dove meets a Hawk he will back off and get nothing – 0
• If a Dove meets a Dove both share the resource and get V/2

The actual payoff however depends on the probability of meeting a Hawk or Dove,
which in turn is a representation of the percentage of Hawks and Doves in the
population when a particular contest takes place. That in turn is determined by the
results of all of the previous contests. If the cost of losing C is greater than the value
of winning V (the normal situation in the natural world) the mathematics ends in an

269

https://en.wikipedia.org/wiki/Chicken_%28game%29
https://en.wikipedia.org/wiki/Chicken_%28game%29
https://en.wikipedia.org/wiki/Chicken_%28game%29#Hawk%E2%80%93dove
https://en.wikipedia.org/wiki/Chicken_%28game%29#Hawk%E2%80%93dove

stationary point (ESS), a mix of the two strategies where the population of Hawks is
V/C.

In this case we assume a stable equilibrium in the population dynamics, that is,
although there are external variations in the model, it recovers and returns to
equilibrium.

We are going to simulate with OncoSimulR the situation in which the cost of losing
C is greater than the value of gaining V (C = 10, V = 2). We assume that both
Hawk and Dove are derived from WT by one mutation (see also 10.4) and we will
use very high mutation rates to get some hawks and doves from WT quickly (see
above).

Before performing the simulation, let’s look at the fitness of each competitor.
Stablish Genotype-Fitnees mapping. D = Dove, H = Hawk

With newer OncoSimulR functionality, using WT to start the simulation
would no longer be needed.
H_D_fitness <- function(c, v,

gt = c("WT", "H", "D")) {
data.frame(Genotype = gt,

Fitness = c(
paste0("1"),
paste0("1 + f_H *", (v-c)/2, "+ f_D *", v),
paste0("1 + f_D *", v/2)))

}

Fitness Effects specification
HD_competition <-allFitnessEffects(

genotFitness = H_D_fitness(10, 2,
gt = c("WT", "H", "D")),

frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = H_D_fitness(10, 2, gt =
c("WT", : v2 functionality detected. Adapting to v3 functionality.

Plot fitness landscape of genotype "H, D" evaluation
data.frame("Doves_fitness" = evalGenotype(genotype = "D",

fitnessEffects = HD_competition,
spPopSizes = c(5000, 5000, 5000)),

"Hawks_fitness" = evalGenotype(genotype = "H",
fitnessEffects = HD_competition,
spPopSizes = c(5000, 5000, 5000))

)
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes

270

unnamed: cannot check genotype names.
Doves_fitness Hawks_fitness
1 1.333 0.3333

We observe that the penalty of fighting (C > V) benefits the dove in terms of fitness
respect to the hawk.
Simulated trajectories
run only a few for the sake of speed
simulation <- oncoSimulPop(2,

mc.cores = 2,
HD_competition,
model = "McFL", # There is no collapse
onlyCancer = FALSE,
finalTime = 50,
mu = 1e-2, # Quick emergence of D and H
initSize = 4000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Plot first trajectory as an example
plot(simulation[[1]], show = "genotypes", type = "line",

xlim = c(40, 50),
lwdClone = 2, ylab = "Number of individuals",
main = "Hawk and Dove trajectory",
col = c("#a37acc", "#f8776d", "#7daf00"),
font.main=2, font.lab=2,
cex.main=1.4, cex.lab=1.1,
las = 1)

271

40 42 44 46 48 50

1

10

100

1000

10000

Hawk and Dove trajectory

Time units

N
um

be
r

of
 in

di
vi

du
al

s

Genotypes

WT
D
H

As mentioned above, mathematically when a stationary point (ESS) is reached the
relative frequency of hawks is V/C and doves 1-(V/C). Considering f_H as relative
frecuency of hawks and f_D = 1-f_H as frequency of doves:

Hawk:
1 + fH ∗ (v − c)/2 + (1 − fH) ∗ v

Dove:
1 + (1 − fH) ∗ v/2

Hawk = Dove:

1 + fH ∗ (v − c)/2 + (1 − fH) ∗ v = 1 + (1 − fH) ∗ v/2

Resolving for f_H:
fH = v/c

Therefore, the relative frequency of hawks in equilibrium is equal to V/C. In our
case it would be 20% (C = 10, V = 2). Let’s check it:
Recover the final result from first simulation
result <- tail(simulation[[1]][[1]], 1)

Get the number of organisms from each species
n_WT <- result[2]
n_D <- result[3]
n_H <- result[4]
total <- n_WT + n_D + n_H

272

Dove percentage
data.frame("Doves" = round(n_D/total, 2)*100,

"Hawks" = round(n_H/total, 2)*100)
Doves Hawks
1 79 21

To sum up, this example shows that when the risks of contest injury or death (the
Cost C) is significantly greater than the potential reward (the benefit value V), the
stable population will be mixed between aggressors and doves, and the proportion
of doves will exceed that of the aggressors. This explains behaviours observed in
nature.

11.3 Game Theory with social dilemmas of tumour acidity
and vasculature

This example is based on Kaznatcheev et al. (2017). In this work, it is explained
that the progression of cancer is marked by the acquisition of a number of hallmarks,
including self-sufficiency of growth factor production for angiogenesis and repro-
gramming energy metabolism for aerobic glycolysis. Moreover, there is evidence of
intra-tumour heterogeneity. Given that some cancer cells can not invest in something
that benefits the whole tumor while others can free-ride on the benefits created by
them (evolutionary social dilemmas), how do these population level traits evolve, and
how are they maintained? The authors answer this question with a mathematical
model that treats acid production through glycolysis as a tumour-wide public good
that is coupled to the club good of oxygen from better vascularisation.

The cell types of the model are:

• VOP: VEGF (over)-producers.
• GLY: glycolytic cells.
• DEF: aerobic cells that do not call for more vasculature.

On the other hand, the micro-environmental parameters of the model are:

• a: the benefit per unit of acidification.
• v: the benefit from oxygen per unit of vascularisation.
• c: the cost of (over)-producing VEGF.

The fitness equations derived from those populations and parameters are:

W (GLY) = 1 + a ∗ (f1 + 1) (7)
W (V OP) = 1 + a ∗ f1 + v ∗ (f2 + 1) − c (8)

W (DEF) = 1 + a ∗ f1 + v ∗ f2 (9)

Where f1 is the GLY cells’ frequency and f2 is the VOF cells’ frequency at a given
time. All fitness equations start from balance by the sum of 1.

273

Finally, depending of the parameter’s values, the model can lead to three different
situations (as in other examples, the different types are one mutation away from
WT):

11.3.1 Fully glycolytic tumours:

If the fitness benefit of a single unit of acidification is higher than the maximum
benefit from the club good for aerobic cells, then GLY cells will always have a strictly
higher fitness than aerobic cells, and be selected for. In this scenario, the population
will converge towards all GLY, regardless of the initial proportions (as long as there
is at least some GLY in the population).

Definition of the function for creating the corresponding dataframe.
avc <- function (a, v, c) {

data.frame(Genotype = c("WT", "GLY", "VOP", "DEF"),
Fitness = c("1",

paste0("1 + ",a," * (f_GLY + 1)"),
paste0("1 + ",a," * f_GLY + ",v," * (f_VOP + 1) - ",c),
paste0("1 + ",a," * f_GLY + ",v," * f_VOP")
))
}

Specification of the different effects on fitness.
afavc <- allFitnessEffects(genotFitness = avc(2.5, 2, 1),

frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = avc(2.5, 2, 1),
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

For real, you would probably want to run
this multiple times with oncoSimulPop
simulation <- oncoSimulIndiv(afavc,

model = "McFL",
onlyCancer = FALSE,
finalTime = 15,
mu = 1e-3,
initSize = 4000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Representation of the plot of one simulation as an example (the others are
highly similar).
plot(simulation, show = "genotypes", type = "line",

274

ylab = "Number of individuals", main = "Fully glycolytic tumours",
font.main=2, font.lab=2, cex.main=1.4, cex.lab=1.1, las = 1)

0 5 10 15

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

Fully glycolytic tumours

Time units

N
um

be
r

of
 in

di
vi

du
al

s

Genotypes

WT
DEF
GLY
VOP

11.3.2 Fully angiogenic tumours:

If the benefit to VOP from their extra unit of vascularisation is higher than the cost
c to produce that unit, then VOP will always have a strictly higher fitness than
DEF, selecting the proportion of VOP cells towards 1. In addition, if the maximum
possible benefit of the club good to aerobic cells is higher than the benefit of an
extra unit of acidification, then for sufficiently high number of VOP, GLY will have
lower fitness than aerobic cells. When both conditions are satisfied, the population
will converge towards all VOP.

Definition of the function for creating the corresponding dataframe.
avc <- function (a, v, c) {

data.frame(Genotype = c("WT", "GLY", "VOP", "DEF"),
Fitness = c("1",

paste0("1 + ",a," * (f_GLY + 1)"),
paste0("1 + ",a," * f_GLY + ",v, " * (f_VOP + 1) - ",c),
paste0("1 + ",a," * f_GLY + ",v, " * f_VOP")
))
}

Specification of the different effects on fitness.
afavc <- allFitnessEffects(genotFitness = avc(2.5, 7, 1),

frequencyDependentFitness = TRUE,

275

frequencyType = "rel")
Warning in allFitnessEffects(genotFitness = avc(2.5, 7, 1),
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

simulation <- oncoSimulIndiv(afavc,
model = "McFL",
onlyCancer = FALSE,
finalTime = 15,
mu = 1e-4,
initSize = 4000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

We get a huge number of VOP very quickly
(too quickly?)
plot(simulation, show = "genotypes", type = "line",

ylab = "Number of individuals", main = "Fully angiogenic tumours",
font.main=2, font.lab=2, cex.main=1.4, cex.lab=1.1, las = 1)

0 1 2 3 4

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

Fully angiogenic tumours

Time units

N
um

be
r

of
 in

di
vi

du
al

s

Genotypes

WT
DEF
GLY
VOP

11.3.3 Heterogeneous tumours:

If the benefit from an extra unit of vascularisation in a fully aerobic group is lower
than the cost c to produce that unit, then for a sufficiently low proportion of GLY

276

and thus sufficiently large number of aerobic cells sharing the club good, DEF will
have higher fitness than VOP. This will lead to a decrease in the proportion of VOP
among aerobic cells and thus a decrease in the average fitness of aerobic cells. A
lower fitness in aerobic cells will lead to an increase in the proportion of GLY until
the aerobic groups (among which the club good is split) get sufficiently small and
fitness starts to favour VOP over DEF, swinging the dynamics back.

Definition of the function for creating the corresponding dataframe.
avc <- function (a, v, c) {

data.frame(Genotype = c("WT", "GLY", "VOP", "DEF"),
Fitness = c("1",

paste0("1 + ",a," * (f_GLY + 1)"),
paste0("1 + ",a," * f_GLY + ",v," * (f_VOP + 1) - ",c),
paste0("1 + ",a," * f_GLY + ",v," * f_VOP")
))
}

Specification of the different effects on fitness.
afavc <- allFitnessEffects(genotFitness = avc(7.5, 2, 1),

frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = avc(7.5, 2, 1),
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

Launching of the simulation (20 times).
simulation <- oncoSimulIndiv(afavc,

model = "McFL",
onlyCancer = FALSE,
finalTime = 25,
mu = 1e-4,
initSize = 4000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Representation of the plot of one simulation as an example (the others are
highly similar).
plot(simulation, show = "genotypes", type = "line",

ylab = "Number of individuals", main = "Heterogeneous tumours",
font.main=2, font.lab=2, cex.main=1.4, cex.lab=1.1, las = 1)

277

0 1 2 3

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

Heterogeneous tumours

Time units

N
um

be
r

of
 in

di
vi

du
al

s

Genotypes

WT
GLY

11.4 Prostate cancer tumour–stroma interactions
This example is based on Basanta et al. (2012). The authors apply evolutionary game
theory to model the behavior and progression of a prostate tumour formed by three
different cell populations: stromal cells, a dependant tumour phenotype capable of
co-opting stromal cells to support its growth and an independent tumour phenotype
that does not require microenvironmental support, be it stromal associated or not.
To enable this, the model has four variables, which is the minimun necessary to
describe the relationships in terms of costs and benefits between the different types
of cells and, of course, to describe the progression of the cancer.

The different cell types, hence, are as follows:

1. S: stromal cells.
2. D: microenvironmental-dependent tumour cells.
3. I: microenvironmental-independent tumour cells.

And the parameters that describe the relationships are as follows:

• α: benefit derived from the cooperation between a S cell and a D cell.
• β: cost of extracting resources from the microenvironment.
• γ: cost of being microenvironmentally independent.
• ρ: benefit derived by D from paracrine growth factors produced by I cells.

Table 18 shows the payoffs for each cell type when interacting with others. We
consider no other phenotypes are relevant in the context of the game and disregard
spatial considerations.

278

Table 18: Payoff table that represents the interac-
tions between the three cell types considered by de
model

. S D I
S 0 α 0
D 1 + α − β 1 − 2β 1 − β + ρ
I 1 − γ 1 − γ 1 − γ

As in Basanta et al. (2012), the I cells are relatively independent from the microen-
vironment and produce their own growth factors (e.g. testosterone) and thus are
considered to have a comparatively constant fitness (1 − γ), where γ represents
the fitness cost for I cells to be independent. The D cells rely more on their mi-
croenvironment for survival and growth at a fitness cost (β) that represents the
scarcity of resources or space that I cells can procure themselves. A resource-poor
microenvironment would then be characterised by a higher value of β. As I cells
produce space and shareable growth factors, this model assumes that D cells derive
a fitness advantage from their interactions with I cells represented by the variable ρ.
On the other hand, D cells interacting with other D cells will have a harder time
sharing existing microenvironmental resources with other equally dependant cells
and thus are assumed to have double the cost 2β for relying on the microenvironment
for survival and growth and thus have a fitness of 1˘2β. The S cells can interact with
tumour cells. In a normal situation, this population are relatively growth quiescent
with low rates of proliferation and death. For this reason the fitness benefit derived by
stromal cells from the interactions with tumour cells is assumed to be zero. However,
they are able to undergo rapid proliferation and produce growth factors if they are
stimulated by factors produced by I cells, giving rise to a mutualistic relationship.
This relationship is represented by the parameter α. A low α represents tumours in
which the stroma cannot be co-opted and vice versa.

From these variables, the fitness of each cell population (W (S) , W (I) , W (D)) is as
follows:

W (S) = 1 + f3α (10)
W (I) = 2 − γ (11)

W (D) = 1+(1 − f2 − f3) (1 − β + α)+f2 (1 − β + ρ)+f3(1−2β)+1−β+α+f2 (ρ − α)−f3 (β + α)
(12)

where f2 is the frequency of I cells and f3 is the frequency of D cells at a given time.
All fitness equations start from balance by the sum of 1.

11.4.1 Simulations

First, we define the fitness of the different genotypes (see Equations (10), (11) and
(12)) through the function fitness_rel that builds a data frame.

279

It is important to note that this program models a situation where, from a WT cell
population, the rest of the cell population types are formed. However, this model has
also stromal cells that are not formed from a WT, since they are not tumour cells
although interacting with it. Hence, for this model, we can not represent scenarios
with total biological accuracy, something that we must consider when interpreting
the results.
fitness_rel <- function(a, b, r, g, gt = c("WT", "S", "I", "D")) {

data.frame(
Genotype = gt,
Fitness = c("1",

paste0("1 + ", a, " * f_D"),
paste0("1 + 1 - ", g),
paste0("1 + (1 - f_I - f_D) * (1 - ", b, " + ",

a, ") + f_I * (1 - ", b, " + ", r,
") + f_D * (1 - 2 * ", b, ") + 1 - ", b,
" + ", a, " + f_I * (", r, " - ",
a, ") - f_D * (", b, " + ", a, ")"))

)
}

Then, we are going to model different scenarios that represent different biological
situations. In this case, we are going to explain four possible situations.

Note: for these simulations the values of paratemers are normalised in the range (0
: 1) so 1 represents the maximum value for any parameter being positive of negative
to fitness depending on the parameter.

11.4.1.1 First scenario In this simulation, we are modelling a situation where
the environment is relatively resource-poor. In addition, we set a intermediate
cooperation between D-D and D-I and a very low benefit from coexistence of D with
I.

• α (a) = 0.5: intermediate cooperation between D and D cells.
• β (b) = 0.7: relatively resource-poor microenvironment.
• ρ (p) = 0.1: low benefit of D cells.
• γ (g) = 0.8: high cost of independence of I cells.

We can observe that high values of α and low values of ρ are translated in a larger
profit of D cells from his interaction with S cells than from his interaction with I
cells. Also, because of the high cost of independence of I cells (γ), it is not surprise
that this population ends up becoming extinct. Finally, the tumour is composed by
two cellular types: D and S cells.
scen1 <- allFitnessEffects(genotFitness = fitness_rel(a = 0.5, b = 0.7,

r = 0.1, g = 0.8),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = fitness_rel(a = 0.5, b

280

= 0.7, : v2 functionality detected. Adapting to v3 functionality.

set.seed(1)
simulScen1 <- oncoSimulIndiv(scen1,

model = "McFL",
onlyCancer = FALSE,
finalTime = 70,
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

op <- par(mfrow = c(1, 2))
plot(simulScen1, show = "genotypes", type = "line",

main = "First scenario",
cex.main = 1.4, cex.lab = 1.1,
las = 1)

plot(simulScen1, show = "genotypes",
main = "First scenario",
cex.main = 1.4, cex.lab = 1.1,
las = 1)

0 20 40 60

1

10

100

1000

10000

First scenario

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
D
I
S

0 20 40 60

0

2000

4000

6000

8000

First scenario

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
D
I
S

par(op)

To understand the stability of the results, we should run multiple simulations. We will
not pursue that here. Note that the results can be sensitive to the initial population

281

size and the mutation rate.

11.4.1.2 Second scenario In this case, we set α lower than in the first scenario
and we enable the indepenence of I cells through a lower γ.

• α (a) = 0.3: low cooperation between D cells.
• β (b) = 0.7: relatively resource-poor microenvironment.
• ρ (r) = 0.1: low benefit of D cells from coexisting with I cells.
• γ (g) = 0.7: lower cost of independence of I cells than in the first scenario.

Because of we are easing the possibility of independence of I cells, instead of extin-
guishing as in the first scenario, they compose the bulk of the tumour along with D
cells in spite of the low benefit of cooperation between them (low ρ). Besides, we
can observe that the population of I cells is bigger than the population of D cells,
being at the end of the simulation in balance. On the other hand, stromal cells drop
at the beginning of the simulation.
scen2 <- allFitnessEffects(genotFitness = fitness_rel(a = 0.3, b = 0.7,

r = 0.1, g = 0.7),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = fitness_rel(a = 0.3, b
= 0.7, : v2 functionality detected. Adapting to v3 functionality.

set.seed(1)

simulScen2 <- oncoSimulIndiv(scen2,
model = "McFL",
onlyCancer = FALSE,
finalTime = 70,
mu = 1e-4,
initSize = 4000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

op <- par(mfrow = c(1, 2))
plot(simulScen2, show = "genotypes", type = "line",

main = "Second scenario",
cex.main = 1.4, cex.lab = 1.1,
las = 1)

plot(simulScen2, show = "genotypes",
main = "Second scenario",
cex.main = 1.4, cex.lab = 1.1,
las = 1)

282

0 20 40 60

1

5
10

50
100

500
1000

5000

Second scenario

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
D
I
S

0 20 40 60

0

1000

2000

3000

4000

5000

6000

Second scenario

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
D
I
S

par(op)

11.4.1.3 Third scenario In this case, we have a extreme situation where the
microenvironment is rich (high β) and the independence costs are very low (γ) in
relation with the previous scenarios.

• α (a) = 0.2: low cooperation between D cells.
• β (b) = 0.3: rich microenvironment, being beneficial for D cells.
• ρ (r) = 0.1: low benefit of D cells from coexisting with I cells.
• γ (g) = 0.3: independence costs very low, being beneficial for I cells.

Although γ and ρ are very low, which could make us think that I cells will control
the tumour, we can observe that the fact that the microenvironment is very rich
(with a low value of β) allows to D cells lead the progression of the tumour over the
rest of cell populations, including I cells.
scen3 <- allFitnessEffects(genotFitness = fitness_rel(a = 0.2, b = 0.3,

r = 0.1, g = 0.3),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = fitness_rel(a = 0.2, b
= 0.3, : v2 functionality detected. Adapting to v3 functionality.

set.seed(1)
simulScen3 <- oncoSimulIndiv(scen3,

model = "McFL",
onlyCancer = FALSE,

283

finalTime = 50,
mu = 1e-4,
initSize = 4000,

keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

op <- par(mfrow = c(1, 2))
plot(simulScen3, show = "genotypes", type = "line",

main = "Third scenario",
cex.main = 1.4, cex.lab = 1.1,
las = 1)

plot(simulScen3, show = "genotypes",
main = "Third scenario",
cex.main = 1.4, cex.lab = 1.1,
las = 1)

0 10 20 30 40 50

1

10

100

1000

10000

Third scenario

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
D
I
S

0 10 20 30 40 50

0

2000

4000

6000

8000

10000

12000

Third scenario

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
D
I
S

par(op)

11.4.1.4 Fourth scenario This is a variation of the third scenario to illustrate
that, if we set a microenvironment more rich than in the previous scenario, we get a
cooperation between D and I cells, although we can still observe the superiority of D
cells over I cells.

• α (a) = 0.2: low cooperation between D cells.
• β (b) = 0.4: lower richness than in the previous scenario.
• ρ (r) = 0.1: low benefit of D cells from coexisting with I cells.

284

• γ (g) = 0.3: independence costs very low, being beneficial for I cells.
scen4 <- allFitnessEffects(genotFitness = fitness_rel(a = 0.2, b = 0.4,

r = 0.1, g = 0.3),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = fitness_rel(a = 0.2, b
= 0.4, : v2 functionality detected. Adapting to v3 functionality.

Set a different seed to show the results better since
with set.seed(1) the progression of I cells was not shown
set.seed(2)

simulScen4 <- oncoSimulIndiv(scen4,
model = "McFL",
onlyCancer = FALSE,
finalTime = 40,
mu = 1e-4,
initSize = 4000,

keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

op <- par(mfrow = c(1, 2))
plot(simulScen4, show = "genotypes", type = "line",

main = "Fourth scenario",
cex.main = 1.4, cex.lab = 1.1,
las = 1)

plot(simulScen4, show = "genotypes",
main = "Fourth scenario",
cex.main = 1.4, cex.lab = 1.1,
las = 1)

285

0 10 20 30 40

1

10

100

1000

10000

Fourth scenario

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
D
I
S

0 10 20 30 40

0

2000

4000

6000

8000

10000

Fourth scenario

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
D
I
S

par(op)

In this case, we can see that there is more variation in the size of population of I
cells. There are cases where the I cell population cooperates with D cells and, in
others, there is not cooperation. You can examine this running multiple simulations
(or manually rerun the example above changing the seed).

11.5 Evolutionary Dynamics of Tumor-Stroma Interactions
in Multiple Myeloma

This example is based on Sartakhti et al. (2016). The authors provide a frequency-
dependent model to study the growth of malignant plasma cells in multiple myeloma.
Assuming that cancer cells and stromal cells cooperate by exchanging diffusible
factors, the study is carried out in the framework of evolutionary game theory.

We first need to define a payoff strategy for this kind of scenario. The following
definitions are needed:

• There are n phenotypes in a population denoted by {P1, . . . , Pn}.
• Each phenotype can produce one diffusible factor {G1, . . . , Gn}.
• Each diffusible factor j has a different effect ri,j on the other phenotypes i.
• The cost for Pi for growth factor Gi is denoted as ci.
• M is the number of cells within the diffusion range.
• There are Mj individuals of type Pj among the other group members.

286

Then, the payoff for strategy Pj is:

πPj
(M1, . . . , Mn) = (Mj + 1) × cj

M
rj,j +

n∑
i=1,i ̸=j

Mi × ci

M
rj,i − cj . (13)

In multiple Myeloma we have three different types of cells that have autocrine and
paracrine effects on the cells within their diffusion range: Malignant plasma cells
(MM), Osteoblasts (OB) and Osteoclasts (OC). The specification of fitness is the
following (see [10]):

WOC = (f1(M − 1) + 1)c1

M
r11 + ((1 − f3)(M − 1) − f1(M − 1) − 1)c2

M
r12 (14)

+ (M − (1 − f3)(M − 1))c3

M
r13 − c1 (15)

WOB = (f2(M − 1) + 1)c2

M
r22 + ((1 − f1)(M − 1) − f2(M − 1) − 1)c3

M
r23 (16)

+ (M − (1 − f1)(M − 1))c1

M
r21 − c2 (17)

WMM = (f3(M − 1) + 1)c3

M
r33 + ((1 − f2)(M − 1) − f3(M − 1) − 1)c1

M
r31 (18)

+ (M − (1 − f2)(M − 1))c2

M
r32 − c3 , (19)

where f1, f2 and f3 denote the frequency of the phenotype OC, OB and MM in the
population. The multiplication factors for diffusible factors produced by the cells are
shown in the following table (taken from Sartakhti et al. (2016)):

Several scenarios varying the values of the parameters are shown in Sartakhti et al.
(2016). Here we reproduce some of them.

11.5.1 Simulations

First, we define the fitness of the different genotypes through the function fitness_rel.
f_cells <- function(c1, c2, c3, r11, r12, r13,

r21, r22, r23, r31, r32, r33, M, awt = 1e-4,
gt = c("WT", "OC", "OB", "MM")) {

data.frame(Genotype = gt,
Fitness = c(

paste0("max(0.1, 1 - ", awt, " * (f_OC + f_OB+f_MM)*N)"),
paste0("1", "+(((f_OC * (", M, "-1)+1)*", c1, ")/", M, ")*",r11,

"+((((1-f_MM) * (", M, "-1)-f_OC*(", M, "-1)-1)*", c2, ")/", M, ")*", r12,
"+(((", M, "-(1-f_MM)*(", M, "-1))*", c3, ")/", M, ")*", r13,
"-", c1
),

paste0("1", "+(((f_OB*(", M, "-1)+1)*", c2, ")/", M, ")*", r22,

287

Figure 8: Multiplication factor in myeloma
interaction. Table 1 in Sartakhti et al.,
2016, ’Evolutionary Dynamics of Tumor-
Stroma Interactions in Multiple Myeloma’
https://doi.org/10.1371/journal.pone.0168856 .

288

"+((((1-f_OC)*(", M, "-1)-f_OB*(", M, "-1)-1)*", c3, ")/", M, ")*", r23,
"+(((", M, "-(1-f_OC)*(", M, "-1))*", c1, ")/", M, ")*", r21,
"-", c2
),

paste0("1", "+(((f_MM*(", M, "-1)+1)*", c3, ")/", M, ")*", r33,
"+((((1-f_OB)*(", M, "-1)-f_MM*(", M, "-1)-1)*", c1, ")/", M, ")*", r31,
"+(((", M, "-(1-f_OB)*(", M, "-1))*", c2, ")/", M, ")*", r32,
"-", c3
)

)
,stringsAsFactors = FALSE
)

}

It is important to note that, in order to exactly reproduce the experiments of the
paper, we need to create an initial population with three different types of cell, but
we do not need the presence of a wild type. For this reason, we will increase the
probability of mutation of the wild type, which will disappear in early stages of the
simulation; this is a procedure we have used before in several cases too (e.g., 11.2).
This is something that we must consider when interpreting the results.

11.5.2 Scenario 1

Here we model a common situation in multiple myeloma in which c1 < c2 < c3. In
the presence of a small number of MM cells, the stable point on the OB-OC border
becomes a saddle point and clonal selection leads to a stable coexistence of OC and
MM cells. Parameters for the simulation can be seen in the R code.
N <- 40000
M <- 10
c1 <- 1
c2 <- 1.2
c3 <- 1.4
r11 <- 0
r12 <- 1
r13 <- 2.5
r21 <- 1
r22 <- 0
r23 <- -0.3
r31 <- 2.5
r32 <- 0
r33 <- 0

fe_cells <-
allFitnessEffects(

genotFitness =
f_cells(c1, c2, c3, r11, r12, r13,

289

r21, r22, r23, r31, r32, r33, M,
gt = c("WT", "OC", "OB", "MM")),

frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = f_cells(c1, c2, c3,
r11, r12, : v2 functionality detected. Adapting to v3
functionality.
All single-gene genotypes as input to to_genotFitness_std

Simulated trajectories

For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below
data(smyelo3v57)

if (FALSE) {
set.seed(2)
smyelo3v57 <- oncoSimulIndiv(fe_cells,

model = "McFL",
onlyCancer = FALSE,
finalTime = 20,
mu = c("OC"=1e-1, "OB"=1e-1, "MM"=1e-4),
initSize = N,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE,
keepEvery = 0.1)

}
Plot trajectories
plot(smyelo3v57, show = "genotypes")

290

0 5 10 15 20

0
10

00
0

30
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
MM
OB
OC

Clearly, the appearance of MM cells quickly brings the system to an equilibrium
point, which is stable. OB cells are extinct and cancer has propelled.

11.5.3 Scenario 2

As in the second scenario of [10] (c1 = c2 = c3) configuration A (upper row in the
grid of images). We should find one stable point on the OC-OB edge under certain
conditions, which are met in the example. Further information about the parameters
can be found in the R code shown below.
N <- 40000
M <- 10
c1 <- 1
c2 <- 1
c3 <- 1
r11 <- 0
r12 <- 1
r13 <- 0.5
r21 <- 1
r22 <- 0
r23 <- -0.3
r31 <- 0.5
r32 <- 0
r33 <- 0

fe_cells <-
allFitnessEffects(

genotFitness =
f_cells(c1, c2, c3, r11, r12, r13,

r21, r22, r23, r31, r32, r33, M,

291

gt = c("WT", "OC", "OB", "MM")),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = f_cells(c1, c2, c3,
r11, r12, : v2 functionality detected. Adapting to v3
functionality.
All single-gene genotypes as input to to_genotFitness_std

Simulated trajectories
set.seed(1)
simulation <- oncoSimulIndiv(fe_cells,

model = "McFL",
onlyCancer = FALSE,
finalTime = 15, ## 25
mu = c("OC"=1e-1, "OB"=1e-1, "MM"=1e-4),
initSize = N,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

#Plot trajectorie
plot(simulation, show = "genotypes", thinData = TRUE)

0 5 10 15

0
10

00
0

20
00

0
30

00
0

40
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
MM
OB
OC

292

As expected, under these condtitions, MM cells are not able to propagate. The
equilibrium point in the OB-OC edge is stable, resisting small variations in the
number of MM cells.

11.6 An example of modellization in Parkinson disease re-
lated cell community

The following example is based on Masliah (2007), and it discusses the coexistance
between cells that produce α-synuclein and β-synuclein, related with pore-like
oligomer development and Parkinson disease.
park1<- data.frame(Genotype = c("WT", "A", "B", "A,B"),

Fitness = c("1",
"1 + 3*(f_1 + f_2 + f_1_2)",
"1 + 2*(f_1 + f_2 + f_1_2)", ## We establish
the fitness of B smaller than the one of A because
it is an indirect cause of the disease and not a direct one.
"1.5 + 4.5*(f_1 + f_2 + f_1_2)")) ## The baseline
of the fitness is higher in the
AB population (their growth is favored).

parkgen1<- allFitnessEffects(genotFitness = park1,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = park1,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

• α- – normal a-synuclein production
• β- – normal b-synuclein production
• α+ – deleterious a-synuclein production, causing aggregation and the rest of

mentioned effects
• β+ – deleterious b-synuclein production, preventing it from slowing down the

aggregation of a-synuclein
• WT - α- and β- (balance)
• A - α+ and β- (increases [slight] the probability of Parkinson’s disease)
• B – α- and β+ (increases [slight] the probability of Parkinson’s disease)
• AB – α+ and β+ (massive increase of probability of Parkinson’s disease)

In this simulation, at the very end, the only cells that remain alive are those from AB
population (which means that both α and β are mutated, α+ and β+, which means
that the individual has a high risk of developing the disease, and all the cells keep
this mutation). Genotype AB is able to invade the population when there are some
A’s and B’s around. Cooperation increases the fitness at 1.5 level respecting the
fitness for just A’s or just B’s, so the rest of population (appart from AB) collapses.
We can observe this cell behaviour in the following code and graphic:

293

set.seed(1)
fpark1 <- oncoSimulIndiv(parkgen1,

model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-4,
initSize = 5000,
keepPhylog = TRUE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(fpark1, show = "genotypes", type = "line",
col = c("black", "green", "red", "blue"))

0 20 40 60 80 100

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
A, B
B

Analyzing the graphic obtain from OncoSimulR we can see that A, B and the WT
population dissapear at (more or less) the same point that AB population increases
drastically, which makes sense because the fitness of AB population is greater than
the other three population fitnesses. As the birth rate of the population depends
directly of the fitness, at the end, just the AB population survives. We have a model
of frequency-dependent fitness here, but the results are not really surprising given
the fitness of each type, and no coexistence is possible.

The AB population comes mainly from the A population, as would be expected,
because of its fitness, and abundance, relative to that of the B population:

294

plotClonePhylog(fpark1, N = 0, keepEvents=TRUE, timeEvents=TRUE)

A B

A, B

11.7 Evolutionary Game between Commensal and
Pathogenic Microbes in Intestinal Microbiota

The following adapted example is based on Wu & Ross (2016). As explained in p. 2
of the aforementioned paper, the commensal microbiota has been simplified into two
phenotypic groups: antibiotic-sensitive bacteria (CS) [WT in the code below] and
antibiotic-tolerant bacteria (CT). In addition, a third phenotypic group of pathogenic
bacteria (PA) is considered which are kept in low numbers in absence of intestinal
microbiota disturbances. We assume CS and CT bacteria cooperate and depend on
each other for optimal proliferation, leading to a benefit (bG) for both of them as
well as to a cost for factor growth (cG) production which permits a stable coexistence
between CS and CT cells if the fraction of PA cells is negligible. Meanwhile, PA
possess a reproductive or metabolic advantage relative to CS and CT. Without
antibiotic administration CS population inhibits PA population via the release of a
chemical compound which harms PA (iPA) when their relative frequency is equal to
or greater than 0.2, carrying a production cost (cI). However, PA population takes
over CS population in the presence of antibiotic (ab). In this situation PA and CT
compete for resources. Finally, a cohabit cost (cS) is considered for all three cell
types.

The adapted payoff matrix obtained is shown in the next table.

295

Table 19: Payoff matrix for the adapted example
from Wu A, Ross D., 2016, ‘Evolutionary Game
between Commensal and Pathogenic Microbes in
Intestinal Microbiota’. Games. 2016;7(3); doi:
10.3390/g7030026 .

CS CT PA
CS bG – cG – cS - ab bG – cG – cS - ab bG – cG – cS -cI - ab
CT bG – cG – cS bG – cG – cS bG – cG – cS
PA bPA – iPA - cS bPA – cS bPA – cS

On the basis of the interactions between the different microbe populations and the
payoff matrix, we establish fitness as:

• CS (Fcs = bG([CS] + [CT]) - cS*([CS] + [CT] + [PA]) - cI - cG - ab)
• CT (Fct = bG([CS] + [CT]) - cS*([CS] + [CT] + [PA]) - cG)
• PA (Fpa = bPA([PA]) - cS([CS] + [CT] + [PA]) - iPA[CS])

A function to create the data frame of frequency-dependent fitnesses is defined in
order to be able to model situations with different values for the parameters, and it
is assumed that WT derive to the other cell types by a single mutation.
create_fe <- function(bG, cG, iPA, cI, cS, bPA, ab,

gt = c("WT", "CT", "PA")) {
data.frame(Genotype = gt,

Fitness = c(
paste0("1 + ", bG, " * (f_ + f_CT) - ", cS,

" * (f_ + f_CT + f_PA) - ", cI, "(f_PA > 0.2) - ", cG,
" - ", ab),

paste0("1 + ", bG, " * (f_ + f_CT) - ", cS,
" * (f_ + f_CT + f_PA) - ", cG),

paste0("1 +", bPA, " - ", cS, " * (f_ + f_CT + f_PA) - ", iPA,
" *(f_(f_PA > 0.2))")),

stringsAsFactors = FALSE)
}

We can check we recover the Table 19 :
create_fe("bG", "cG", "iPA", "cI", "cS", "bPA", "ab")
Genotype
1 WT
2 CT
3 PA
Fitness
1 1 + bG * (f_ + f_CT) - cS * (f_ + f_CT + f_PA) - cI(f_PA > 0.2) - cG - ab
2 1 + bG * (f_ + f_CT) - cS * (f_ + f_CT + f_PA) - cG
3 1 +bPA - cS * (f_ + f_CT + f_PA) - iPA *(f_(f_PA > 0.2))

296

We verify what we have specified executing evalAllGenotypes. We specify pop-
ulations sizes for evaluating fitness at different moments in the total population
evolution.

In the absence of antibiotic we observe how, even though CS (WT) and CT population
size is equal, CT fitness is greater than CS fitness due to the PA inhibitory factor
releasing cost. PA fitness is decreased by means of this inhibitor produced by CS.
evalAllGenotypes(allFitnessEffects(genotFitness =

create_fe(7, 1, 9, 0.5, 2, 5, 0),
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(1000, 1000, 1000))
Warning in allFitnessEffects(genotFitness = create_fe(7, 1, 9, 0.5,
2, 5, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 2.167
2 CT 2.667
3 PA 1.000
4 CT, PA 0.000

CS (WT) fitness decrease in the presence of antibiotic, while PA and CT fitness are
not affected, and CT fitness is the largest.
evalAllGenotypes(allFitnessEffects(genotFitness =

create_fe(7, 1, 9, 0.5, 2, 5, 2),
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(1000, 1000, 1000))
Warning in allFitnessEffects(genotFitness = create_fe(7, 1, 9, 0.5,
2, 5, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 0.1667
2 CT 2.6667

297

3 PA 1.0000
4 CT, PA 0.0000

In the extreme situation in in which antibiotic is administrated and only PA is
present, neither WT (CS) nor CT would be able to grow:
evalAllGenotypes(allFitnessEffects(genotFitness =

create_fe(7, 1, 9, 0.5, 2, 5, 2),
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(0, 0, 1000))
Warning in allFitnessEffects(genotFitness = create_fe(7, 1, 9, 0.5,
2, 5, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 0
2 CT 0
3 PA 4
4 CT, PA 0

From a PA population size much greater than WT (CS) population size, the presence
of WT decreases PA fitness via inhibitor production while WT fitness does not
increase due to antibiotic administration.
evalAllGenotypes(allFitnessEffects(genotFitness =

create_fe(7, 1, 9, 0.5, 2, 5, 2),
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(100, 0, 1000))
Warning in allFitnessEffects(genotFitness = create_fe(7, 1, 9, 0.5,
2, 5, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 0.000
2 CT 0.000

298

3 PA 3.182
4 CT, PA 0.000

Starting from a population of WT and with high antibiotic doses, WT does not
have the capacity of growing while CT shows the largest fitness (and PA fitness is
decreased by the inhibitory compound produced by WT):
evalAllGenotypes(allFitnessEffects(genotFitness =

create_fe(7, 1, 9, 0.5, 2, 5, 5),
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(1000, 0, 0))
Warning in allFitnessEffects(genotFitness = create_fe(7, 1, 9, 0.5,
2, 5, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 0
2 CT 5
3 PA 4
4 CT, PA 0

At the same WT and PA population size and with high antibiotic dose administration,
the fitness of both of them is decreased to the same extent since they inhibit each
other while CT grow a little.
evalAllGenotypes(allFitnessEffects(genotFitness =

create_fe(7, 1, 9, 0.5, 2, 5, 5),
frequencyDependentFitness = TRUE,

frequencyType = "rel"),
spPopSizes = c(1000, 0, 1000))

Warning in allFitnessEffects(genotFitness = create_fe(7, 1, 9, 0.5,
2, 5, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 0.0

299

2 CT 1.5
3 PA 0.0
4 CT, PA 0.0

We have verified that fitness specification gives the expected results:

Now we create allFitnessEffects object and simulate two different situations:
microbiota evolution in the absence and presence of antibiotic. The model used is
McFL so density dependence in the death rate is considered.

11.7.1 Antibiotic absence situation

We observe how CT and PA cells emerge at time 0 from WT mutations. PA
population starts to grow but when its frequency is greater than the established
threshold, 0.2, WT population produces inhibitory compounds which harm PA and
affect its fitness; when its frequency is under that threshold, WT stop releasing
inhibitory PA growth factor and PA starts to grow again. This loop remains over
time. Meanwhile, WT population decreases slowly due to the cost of producing
the inhibitor when PA frequency exceed the established 0.2 and is reached by CT
population, which grow until WT and CT are stabilized and cohabit taking in account
the cost for sharing space.
woAntib <- allFitnessEffects(

genotFitness = create_fe(7, 1, 9, 0.5, 2, 5, 0),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

We do not run this for speed but load it below
set.seed(2)
woAntibS <- oncoSimulIndiv(woAntib,

model = "McFL",
onlyCancer = FALSE,
finalTime = 2000,
mu = 1e-4,
initSize = 1000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE,
keepEvery = 2 ## store a smaller object
)

Load stored results
data(woAntibS)

plot(woAntibS, show = "genotypes", type = "line",
col = c("black", "green", "red"))

300

0 500 1000 1500 2000

1e
+

00
1e

+
02

1e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
CT
PA

11.7.2 Antibiotic presence situation

We observe how CT and PA cells emerge from WT mutations. WT cells decrease in
number due to antibiotic administration and inhibitory PA growth factor when the
frequency of this latest surpass the threshold imposed, so PA population grow with
difficulty in comparison to CT. WT population finally disappear and CT and PA
compete for resources, but CT takes over PA given its larger population size and CT
population remain stable over time.
wiAntib <- allFitnessEffects(

genotFitness = create_fe(7, 1, 9, 0.5, 2, 5, 2),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = create_fe(7, 1, 9, 0.5,
2, 5, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

set.seed(2)
wiAntibS <- oncoSimulIndiv(wiAntib,

model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 1e-4,
initSize = 1000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

301

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(wiAntibS, show = "genotypes", type = "line",
col = c("black", "green", "red"))

0 20 40 60 80 100

1e
+

00
1e

+
02

1e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
CT
PA

11.8 Modeling of breast cancer through evolutionary game
theory.

The following example is based on Barton & Sendova (2018). This model assumes
that there are four different types of cells in the body: (a) the native cells (NC),
which are the healthy stromal cells; (b) the macrophages (Mph), which are part of
the immune system; (c) the benign tumor cells (BTC), lump-forming cancer cells
that lack the ability to metastasize; (d) the motile tumor cells (MTC), metastatic
cancer cells that can invade neighboring tissues.

Both the native cells and macrophages produce growth factor, which benefits all
types of cells.The cost of producing the growth factor, cG, and the benefits of the
growth factor, bG, will be assumed to be the same for all types of the cells. The
macrophages and motile tumor cells can move and we will assume that the ability
comes at the costs cM,Mph, and cM,MTC respectively. The native cells and benign
tumor cells stay in place and thus have to share the resources with other native and
benign tumor cells, which comes at the cost cS. The cancer cells can reproduce faster
than native cells or macrophages, which we model by additional benefit bR to the
cancer cells, but the cancer cells can be destroyed by macrophages, which we model
by additional cost cD to the cancer cells.

302

They provide also the payoff matrix reproduced in next table :

Table 20: Payoff matrix from Barton et al., 2018,
‘Modeling of breast cancer through evolutionary
game theory’, Involve, a Journal of Mathematics,
11(4), 541-548; https://doi.org/10.2140/involve.20
18.11.541 .

MTC Mph NC BTC
MTC bR - cMMTC bR - cMMTC -

cD + bG
bR - cMMTC
+ bG

bR - cMMTC

Mph - cG - cMMph bG - cG -
cMMph

bG - cG -
cMMph

-cG - cMMph

NC - cG bG - cG bG - cG - cS - cG - cS
BTC bR bR + bG - cD bR + bG - cS bR - cS

Overall, when the concentrations of the cells are [NC], [Mph], [BTC] and [MTC], the
net benefits (benefits minus the costs) to each type of the cells are:

• W(NC) = bG([NC] + [Mph]) - cG - cS([NC] + [BTC])
• W(Mph) = bG([NC] + [Mph]) - cG - cMMph
• W(BTC) = bR + bG([NC] + [Mph]) - cS([NC] + [BTC]) - cD[Mph]
• W(MTC) = bR + bG([NC] + [Mph]) - cMMTC - cD[Mph]

To allow modelling scenarios with different values for the parameters above we will
define a function to create the data frame of frequency-dependent fitnesses. First,
we will consider the NC cell type as the WT. Moreover, we will assume that each
one of the other cell types types (Mph , BTC and MTC) are all derived from WT by
a single mutation in one of three genes, say, O, B, M, respectively.
create_fe <- function(cG, bG, cS, cMMph, cMMTC, bR, cD,

gt = c("WT", "Mph", "BTC", "MTC")) {
data.frame(Genotype = gt,

Fitness = c(
paste0("1 + ", bG, "*(f_ + f_Mph) - ", cG, " - ", cS, "*(f_ + f_BTC)"),
paste0("1 + ", bG, "*(f_ + f_Mph) - ", cG, " - ", cMMph),
paste0("1 + ", bR, " + ", bG, "*(f_ + f_Mph) - ", cS, "* (f_ + f_BTC) -",

cD , " * f_Mph"),
paste0("1 + ", bR, " + ", bG, " *(f_ + f_Mph) -", cMMTC, " - ",

cD , " * f_Mph")
),

stringsAsFactors = FALSE)
}

We can check we recover the Table 20 :
create_fe("cG", "bG","cS", "cMMph", "cMMTC", "bR", "cD")
Genotype Fitness

303

https://doi.org/10.2140/involve.2018.11.541
https://doi.org/10.2140/involve.2018.11.541

1 WT 1 + bG*(f_ + f_Mph) - cG - cS*(f_ + f_BTC)
2 Mph 1 + bG*(f_ + f_Mph) - cG - cMMph
3 BTC 1 + bR + bG*(f_ + f_Mph) - cS* (f_ + f_BTC) -cD * f_Mph
4 MTC 1 + bR + bG *(f_ + f_Mph) -cMMTC - cD * f_Mph

We check that we have correctly specified the different parameters executing
evalAllGenotypes. For this, we specify populations sizes for evaluating fitness at
different moments in the total population evolution.

When there are only wild-type cells, the fitness of the cancer cells is higher than the
other type of cells’ fitness. This makes sense, since there are no macrophages that
can affect them.
evalAllGenotypes(allFitnessEffects(genotFitness =

create_fe(2, 5, 1, 0.8, 1, 1, 9),
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(WT = 1000, Mph = 0, BTC = 0, MTC = 0))
Warning in allFitnessEffects(genotFitness = create_fe(2, 5, 1, 0.8,
1, 1, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 3.0
2 BTC 6.0
3 Mph 3.2
4 MTC 6.0
5 BTC, Mph 0.0
6 BTC, MTC 0.0
7 Mph, MTC 0.0
8 BTC, Mph, MTC 0.0

In case that there are wild-type cells and macrophages, fitness of cancer cells is lower
than before.
evalAllGenotypes(allFitnessEffects(genotFitness =

create_fe(2, 5, 1, 0.8, 1, 1, 9),
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(WT = 1000, Mph = 1000, BTC = 0, MTC = 0))
Warning in allFitnessEffects(genotFitness = create_fe(2, 5, 1, 0.8,
1, 1, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

304

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 3.5
2 BTC 2.0
3 Mph 3.2
4 MTC 1.5
5 BTC, Mph 0.0
6 BTC, MTC 0.0
7 Mph, MTC 0.0
8 BTC, Mph, MTC 0.0

When cancer cells start to grow, the fitness of wild type cells and macrophages
decrease. This makes sense for wild-type cells, since they will share space with
BTC cells, reducing their resources; and for macrophages, because the decrease of
wild-type cells will affect the benefit of growth factor produced by them.
evalAllGenotypes(allFitnessEffects(genotFitness =

create_fe(2, 5, 1, 0.8, 1, 1, 9),
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(WT = 1000, Mph = 1000, BTC = 100, MTC = 100))
Warning in allFitnessEffects(genotFitness = create_fe(2, 5, 1, 0.8,
1, 1, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 3.045
2 BTC 1.955
3 Mph 2.745
4 MTC 1.455
5 BTC, Mph 0.000
6 BTC, MTC 0.000
7 Mph, MTC 0.000
8 BTC, Mph, MTC 0.000

So, since the model seems correct, we create now the allFitnessEffects object and
do the simulation. Here, we use the McFL model, with death density dependence
in addition to the frequency dependence in the birth rates. In this case, we model
three different situations: cancer being controlled, development of a non-metastatic
cancer, and development of metastatic cancer.

305

11.8.1 Cancer kept under control

In this example, cD value is increased in order to represent a highly functioning
immune system that helps fighting against cancer cells, while the cost of producing
growth factor (cG) is low to allow a better fitness of non-cancer cells. This results in
the fitness of wild-type cells and macrophages being kept in high levels, helping to
control the proliferation of cancer cells, which is maintained under acceptable levels.
afe_3_a <- allFitnessEffects(

genotFitness =
create_fe(0.5, 4, 1, 0.2, 1, 0.5, 4),

frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = create_fe(0.5, 4, 1,
0.2, 1, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

set.seed(2)

s_3_a <- oncoSimulIndiv(afe_3_a,
model = "McFL",
onlyCancer = FALSE,
finalTime = 50,
mu = 1e-4,
initSize = 10000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(s_3_a, show = "genotypes", type = "line",
col = c("black", "green", "red", "blue", "yellow"))

306

0 10 20 30 40 50

1e
+

00
1e

+
02

1e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
BTC
Mph
MTC

11.8.2 Development of a non-metastatic cancer

In this second scenario, bR and cMMTC are increased, promoting a higher prolif-
erative capacity of cancer cells but increasing the cost of the ability to move by
metastatic cells (MTC), while Cs is slightly decreased, allowing a better fitness of
non-motile cells that have to share resources (WT and BTC). This situation leads to
the appearance of a non-metastatic cancer due to the higher fitness of BTC cells,
thanks to their absence of mobility cost and their increased proliferative capacity,
specially in the absence of other cell types that compete for resources.
afe_3_a <- allFitnessEffects(

genotFitness =
create_fe(1, 4, 0.5, 1, 1.5, 1, 4),

frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = create_fe(1, 4, 0.5, 1,
1.5, : v2 functionality detected. Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

set.seed(2)

s_3_a <- oncoSimulIndiv(afe_3_a,
model = "McFL",
onlyCancer = FALSE,
finalTime = 50,
mu = 1e-4,
initSize = 10000,
keepPhylog = FALSE,
seed = NULL,

307

errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(s_3_a, show = "genotypes", type = "line",
col = c("black", "green", "red", "blue", "yellow"))

0 10 20 30 40 50

1e
+

00
1e

+
02

1e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
BTC
Mph
MTC

11.8.3 Development of a metastatic cancer

In this last example, cS value is increased, hindering the growth and fitness of
non-motile cells that compete for space and resources, whereas the cost of mobility
of metastatic cancer cells (cMMTC) is considerably reduced, thus favoring their
proliferation. This scenario leads to the development of metastatic cancer, due to
a rapid increase in the proliferation of metastatic cancer cells, thanks to their low
mobility cost, and a slightly slower increase in the fitness of benign tumor cells, that
have to compete with resources with the wild-type cells until their disappearance.

afe_3_a <- allFitnessEffects(
genotFitness =

create_fe(0.5, 4, 2, 0.5, 0.5, 1, 4),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = create_fe(0.5, 4, 2,
0.5, 0.5, : v2 functionality detected. Adapting to v3

308

functionality.
All single-gene genotypes as input to to_genotFitness_std

set.seed(2)

s_3_a <- oncoSimulIndiv(afe_3_a,
model = "McFL",
onlyCancer = FALSE,
finalTime = 50,
mu = 1e-4,
initSize = 10000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(s_3_a, show = "genotypes", type = "line",
col = c("black", "green", "red", "blue", "yellow"))

0 10 20 30 40 50

1e
+

00
1e

+
02

1e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
BTC
Mph
MTC

309

11.9 Improving the previous example. Modeling of breast
cancer with the presence chemotherapy and resistance.

With the aim of obtaining a more reliable and representative picture of what happens
in a situation of cancer development and treatment, we model a more complex
scenario inproving the previous example, 11.8.

This alternative model considers the presence of seven cell types, four of which
are the same that have been described in the previous model: the native cells
(NC), macrophages (Mph), benign tumor cells (BTC) and metastatic cancer cells
(MTC). Moreover, we include here the chemotherapy-resistant normal cells (R),
chemotherapy-resistant benign tumor cells (BTC,R) and chemotherapy-resistant
metastatic cancer cells (MTC,R).

Most of the costs and benefits of this new model are similar to those described in the
previous situation. Native cells and macrophages, but also the chemotherapy-resistant
normal cells, produce growth factor bG, which benefits all cell types. These three
cells types are considered to have the same cost of producing the growth factor, cG.
The macrophages and motile tumor cells (both MTC and MTC,R) have the ability
to move, assuming that the cost of this ability is cM,Mph, cM,MTC and cM,MTC,R
respectively. The native cells and benign tumor cells (both BTC and BTC,R) have
no motile capacity and have to stay in place, competing for the available resources
with other native and benign tumor cells, which comes at the cost cS for all these
cell types. As occurred in the previous model, considering that cancer cells have
a higher reproductive rate than native cells or macrophages, we add an additional
benefit bR to the cancer cells. However, as they can also be destroyed and attacked
by macrophages, we add an additional cost cD to the cancer cells. Moreover, in this
model we add an additional factor Q that represents the effect of chemotherapeutic
treatment, which will not have any effect on cells that have been able to develop
resistance to it, but it will have a negative effect on the rest of the cell types, being
especially important on cancer cells, as they have a higher rate of reproduction.

The payoff matrix will also introduce slight changes, which reproduced in next table:

Table 21: Payoff matrix adapted from Barton
et al., 2018, ‘Modeling of breast cancer through
evolutionary game theory’, Involve, a Journal of
Mathematics, 11(4), 541-548; https://doi.org/10.2
140/involve.2018.11.541 .

MTC Mph NC BTC R BTC,RMTC,R
MTC bR -

cMMTC - Q
bR -
cMMTC -
cD + bG -Q

bR -
cMMTC +
bG -Q

bR -
cMMTC -
Q

bR
-
cMMTC
+
bG
-
Q

bR -
cMMTC
- Q

bR -
cMMTC
-Q

310

https://doi.org/10.2140/involve.2018.11.541
https://doi.org/10.2140/involve.2018.11.541

MTC Mph NC BTC R BTC,RMTC,R
Mph - cG -

cMMph -
0.01 * Q

bG - cG -
cMMph -
0.01 * Q

bG - cG -
cMMph -
0.01 * Q

-cG -
cMMph -
0.01 * Q

bG
-
cG
-
cMMph-

0.01
*
Q

-cG -
cMMph
-
0.01
* Q

- cG
-
cMMph
-
0.01
* Q

NC - cG - 0.01 *
Q

bG - cG -
0.01 * Q

bG - cG - cS
- 0.01 * Q

- cG - cS -
0.01 * Q

bG
-
cG
-
cS
-
0.01
*
Q

- cG
- cS -
0.01
* Q

- cG
-
0.01
* Q

BTC bR - Q bR + bG -
cD - Q

bR + bG -
cS - Q

bR - cS -
Q

bR
+
bG
-
cS
-
Q

bR -
cS -
Q

bR -
Q

R - cG bG - cG bG - cG - cS - cG - cS bG
-
cG
-
cS

- cG
- cS

- cG

BTC,R bR bR + bG -
cD

bR + bG -
cS

bR - cS bR
+
bG
-
cS

bR -
cS

bR

MTC,R bR -
cMMTC

bR -
cMMTC -
cD + bG

bR -
cMMTC +
bG

bR -
cMMTC

bR
-
cMMTC
+
bG

bR -
cMMTC

bR -
cMMTC

Overall, when the concentrations of the cells are ǪNC, ǪMph, ǪBTC, ǪMTC, ǪR,
ǪBTC,R and ǪMTC,R, the net benefits (benefits minus the costs) to each cell type
are:

311

• W(NC) = bG([NC] + [Mph] + [R]) - cG - cS([NC] + [BTC] + [R] + [BTC,R])
- 0.01*Q

• W(Mph) = bG([NC] + [Mph] + [R]) - cG - cMMph - 0.001*Q
• W(BTC) = bR + bG([NC] + [Mph] + [R]) - cS([NC] + [Mph] + [R] + [BTC,R])

- cD[Mph] - Q
• W(MTC) = bR + bG([NC] + [Mph] + [R]) - cMMTC - cD[Mph] - Q
• W(R) = bG ([NC] + [Mph] + [R]) - cG - cS ([NC] + [BTC] + [R] + [BTC,R])
• W(BTC,R) = bR + bG([NC] + [Mph] + [R]) - cS([NC] + [Mph] + [R] +

[BTC,R]) - cD[Mph]
• W(MTC,R) = bR + bG([NC] + [Mph] + [R]) - cMMTC - cD[Mph]

Now, we will define a function to create the data frame of frequency-dependent
fitnesses to allow modelling several situations. As in the previous model, we will
consider the NC cell type as the WT and will assume that Mph, BTC and MTC cells
are all derived from WT by a single mutation, as previously described. Likewise, we
consider that the chemotherapy-resistant normal cells (R) are derived from a single
mutation in a gene, say, R. Furthermore, we will assume that the two chemotherapy-
resistant cancer cells (BTC,R and MTC,R) are all derived from WT by two different
mutations.
create_fe <- function(cG, bG, cS, cMMph, cMMTC, bR, cD, Q,

gt = c("WT", "BTC", "R", "MTC", "Mph", "BTC,R", "MTC,R")) {
data.frame(Genotype = gt,

Fitness = c(

paste0("1 + ", bG, "(f_ + f_R + f_Mph) - ", cG, " - ", cS, "(f_ + f_BTC + f_R + f_BTC_R) -",
"0.01*", Q),

paste0("1 + ", bR, " + ", bG, "(f_ + f_R + f_Mph) - ", cS, " (f_ + f_BTC + f_R + f_BTC_R) -",
cD , " * f_Mph -", Q),

paste0("1 + ", bG, "(f_ + f_R + f_Mph) - ", cG, " - ", cS, "(f_ + f_BTC + f_R + f_BTC_R)"),
paste0("1 + ", bR, " + ", bG, " *(f_ + f_R + f_Mph) -", cMMTC, " - ",

cD , " * f_Mph -", Q),
paste0("1 + ", bG, "(f_ + f_R + f_Mph) - ", cG, " - ", cMMph, "- 0.01*",Q),
paste0("1 + ", bR, " + ", bG, "(f_ + f_R + f_Mph) - ", cS, " (f_ + f_BTC + f_R + f_BTC_R) -",

cD , " * f_Mph"),
paste0("1 + ", bR, " + ", bG, " *(f_ + f_R + f_Mph) -", cMMTC, " - ",

cD , " * f_Mph")
),
stringsAsFactors = FALSE)

}

We verify that we recover Table 21 :
create_fe("cG", "bG","cS", "cMMph", "cMMTC", "bR", "cD", "Q")
Genotype
1 WT
2 BTC
3 R

312

4 MTC
5 Mph
6 BTC,R
7 MTC,R
Fitness
1 1 + bG(f_ + f_R + f_Mph) - cG - cS(f_ + f_BTC + f_R + f_BTC_R) -0.01*Q
2 1 + bR + bG(f_ + f_R + f_Mph) - cS (f_ + f_BTC + f_R + f_BTC_R) -cD * f_Mph -Q
3 1 + bG(f_ + f_R + f_Mph) - cG - cS(f_ + f_BTC + f_R + f_BTC_R)
4 1 + bR + bG *(f_ + f_R + f_Mph) -cMMTC - cD * f_Mph -Q
5 1 + bG(f_ + f_R + f_Mph) - cG - cMMph- 0.01*Q
6 1 + bR + bG(f_ + f_R + f_Mph) - cS (f_ + f_BTC + f_R + f_BTC_R) -cD * f_Mph
7 1 + bR + bG *(f_ + f_R + f_Mph) -cMMTC - cD * f_Mph

We check once again that we have correctly specified the different parameters
executing evalAllGenotypes. We are trying the same case than in the previous
example, having wild-type cells, macrophages and both cancer cells. But in this case,
we are introducing the parameter “Q” (chemotherapy), with a value of 5.
evalAllGenotypes(allFitnessEffects(genotFitness =

create_fe(2,5,1,0.8,1,1,9,5),
frequencyDependentFitness = TRUE,
frequencyType = "rel"),

spPopSizes = c(WT = 1000, BTC = 100, R = 0,
MTC = 100, Mph = 1000,
"BTC, R" = 0, "MTC, R" = 0))

Warning in allFitnessEffects(genotFitness = create_fe(2, 5, 1, 0.8,
1, 1, : v2 functionality detected. Adapting to v3 functionality.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 2.995
2 BTC 0.000
3 Mph 2.695
4 MTC 0.000
5 R 3.045
6 BTC, Mph 0.000
7 BTC, MTC 0.000
8 BTC, R 1.955
9 Mph, MTC 0.000
10 Mph, R 0.000
11 MTC, R 1.455
12 BTC, Mph, MTC 0.000
13 BTC, Mph, R 0.000
14 BTC, MTC, R 0.000

313

15 Mph, MTC, R 0.000
16 BTC, Mph, MTC, R 0.000

As we can see, BTC and MTC have a fitness of 0, so the will not proliferate. But
cancer cells mutants with a double mutation (BTC, R and MTC, R) are resistant to
chemotherapy, so they can still grow. This is what we were expecting to happen, so
we started with the simulation.

Now, we create the allFitnessEffects object and do the simulation using the McFL
model. In this case, we specify gene-specific mutations rates, so we can model a more
realistic scenario where the appearence of chemotherapy-resistant cells is hindered.
Once again, we simulate different situations by changing the values of the different
parameters.

11.9.1 Absence of chemotherapy

In the first scenario, we simulate a situation where no chemotherapy is applied. In
this condition, there is a very low R mutation rate, which hampers the proliferation
of chemotherapy-resistant cells. A fast appearance of macrophages is observed, as
well as non-resistant tumor cells. As there is no chemoterapy treatment, the fitness of
non-resistant tumor cells is favoured against macrophages, leading to the appearance
of cancer, where BTC cells show the greatest fitness due to the mobility cost of MTC
cells.

afe_3_a <- allFitnessEffects(
genotFitness =

create_fe(2, 5, 1, 0.8, 1, 1, 9, 0),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = create_fe(2, 5, 1, 0.8,
1, 1, : v2 functionality detected. Adapting to v3 functionality.

#Set mutation rates
muvar2 <- c("Mph" = 1e-2, "BTC" = 1e-3, "MTC"=1e-3, "R" = 1e-7)

set.seed(2)
s_3_a <- oncoSimulIndiv(afe_3_a,

model = "McFL",
onlyCancer = FALSE,
finalTime = 20,
mu = muvar2,
initSize = 10000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects

314

to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(s_3_a, show = "genotypes", type = "line",
col = c("black", "green", "red", "blue", "pink", "orange", "brown"))

0 5 10 15 20

1e
+

00
1e

+
02

1e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
BTC
Mph
MTC

11.9.2 Chemotherapy with low R mutation rate

In the second scenario, we perform a simulation including chemotherapy as a treat-
ment. However, here we maintain a low R mutation rate, hampering once again
the appearance of chemotherapy-resistant cells. This situation can be reflecting the
application of a combination chemotherapy that reduces or limits the appearance of
resistance. We observe that the fitness of wild-type cells and macrophages increases
rapidly and remains elevated, while tumor cells undergo some proliferation at first,
but it remains under control over time thanks to the negative effect on them of
chemotherapy.

afe_3_a <- allFitnessEffects(
genotFitness =

create_fe(2, 5, 1, 0.8, 1, 1, 9, 2),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = create_fe(2, 5, 1, 0.8,
1, 1, : v2 functionality detected. Adapting to v3 functionality.

muvar2 <- c("Mph" = 1e-2, "BTC" = 1e-3, "MTC"=1e-3, "R" = 1e-7)

315

set.seed(2)

s_3_a <- oncoSimulIndiv(afe_3_a,
model = "McFL",
onlyCancer = FALSE,
finalTime = 20,
mu = muvar2,
initSize = 10000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(s_3_a, show = "genotypes", type = "line",
col = c("black", "green", "red", "blue", "pink", "orange", "brown"))

0 5 10 15 20

1e
+

00
1e

+
02

1e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
BTC
Mph
MTC

11.9.3 Chemotherapy with considerable R mutation rate

Finally, we simulate a scenario in the presence of chemotherapy as a treatment and also
a considerable R mutation rate. This would allow the appearance of chemotherapy-
resistant cells. This simulation reflects the situation of using chemotherapy treatments
against which tumor cells develop resistance. Here, we observe a similar fitness
evolution of wild-type cells and macrophages to the previous example, rapidly

316

increasing their population and remaining elevated for a period of time. The
proliferation of non-resistant tumor cells is also maintained under acceptable levels
thanks to the effect of chemotherapy. However, due to the increased R mutation
rate, chemotherapy-resistant cells begin to appear in low levels, until the fitness of
chemotherapy-resistant benign tumor cells stats to increase considerably, leading
to the disappearance of the other cell types and allowing the development of a
non-metastatic cancer.

afe_3_a <- allFitnessEffects(
genotFitness =

create_fe(2, 5, 1, 0.8, 1, 1, 9, 2),
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = create_fe(2, 5, 1, 0.8,
1, 1, : v2 functionality detected. Adapting to v3 functionality.

muvar2 <- c("Mph" = 1e-2, "BTC" = 1e-3, "MTC"=1e-3, "R" = 1e-5)

set.seed(2)

s_3_a <- oncoSimulIndiv(afe_3_a,
model = "McFL",
onlyCancer = FALSE,
finalTime = 20, ## short for speed; increase for "real"
mu = muvar2,
initSize = 10000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(s_3_a, show = "genotypes", type = "line",
col = c("black", "green", "red", "blue", "pink", "orange", "brown"))

317

0 5 10 15 20

1e
+

00
1e

+
02

1e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
BTC
BTC, R
Mph

MTC
MTC, R
R

318

12 Death and Birth specification
With the changes introduced in mid 2021 by Alberto González Klein, the user is
allowed to specify arbitrary death rates in the same way fitness could be specified,
instead of using the fixed death rate given by the chosen model. However, the
introduction of explicit death rates makes the fitness nomenclature confusing and
inconsistent. Because of this, fitness has been renamed to birth.

12.1 Changes in nomenclature
The changes only concern the explicit mapping. The Fitness column in the mapping
has been renamed to Birth. Also, the parameter frequencyDependentFitness in
the function allFitnessEffects has been renamed to frequencyDependentBirth.
The next example will illustrate the new nomentaclature.

m4 <- data.frame(Genotype = c("WT", "A", "B", "A, B"), Birth = c(1, 2, 3, 4))

fem4 <- allFitnessEffects(genotFitness = m4, frequencyDependentBirth = FALSE)

evalAllGenotypes(fem4)
Genotype Birth
1 A 2
2 B 3
3 A, B 4

Note that the parameter frequencyDependentBirth has been specified in order to
show the changes. However, it continues to default as FALSE.

Despite this change, the old nomenclature continues to be valid and it will work in
every function of the package. Users can use already created objects using the fitness
nomenclature and can also create new objects with the old nomenclature.

12.2 Explicit mapping of genotypes to death rates
The mapping is done analogously to the genotypes to birth rates. However, death
rates cannot be mapped if birth rates are not being mapped as well. This is to
make it compatible with the pre-existing behavior. Either we specify the death rates
ourselves or the model we choose will determine the death rates. A new parameter
has been introduced to indicate the allFitnessEffects function that death rates
are being specified. This parameter is deathSpec.

Also, the death rates can be frequency dependent or not. This is determined by the
new parameter frequencyDependentDeath in the function ‘allFitnessEffects. The
following example shows how to explicitly map genotypes to death rates.
m4 <- data.frame(Genotype = c("WT", "A", "B", "A, B"),

Birth = c(1, 2, 3, 4),
Death = c(1, 2, 3, 4))

319

fem4 <- allFitnessEffects(genotFitness = m4,
frequencyDependentBirth = FALSE,
frequencyDependentDeath = FALSE,
deathSpec = TRUE)

evalAllGenotypes(fem4)
Warning in evalAllGenotypesORMut(fmEffects = fitnessEffects, order
= order, : Death is specified in fitnessLandscape. Assuming
arbitrary model
Genotype Birth Death
1 A 2 2
2 B 3 3
3 A, B 4 4

In order to simulate using oncoSimulIndiv, we must specify a model. A new model
has been introduced to indicate the simulation that the death rates are present in
the mapping and that we do not use any of the already existing models. The new
model is Arb. The next example will show a simulation using the Arb model.
G_fe_LVm <- function(r1, r2, K1, K2, a_12, a_21, gt = c("S1", "S2")) {

data.frame(Genotype = gt,
Birth = c(paste0(r1, "-", r1, "*(", a_12, "*n_", gt[2], ")/", K1), r2),
Death = c(paste0(r1, "*(n_", gt[1], ")/", K1),

paste0(r2, "*(n_", gt[2], "+", a_21, "*n_", gt[1], ")/", K2)))
}
fe_pred_prey <- allFitnessEffects(

genotFitness = G_fe_LVm(1.4, 1.5, 4000, 10000, -0.5, 1.1, gt = c("Predator", "Prey")),
frequencyDependentBirth = TRUE,
frequencyDependentDeath = TRUE,
deathSpec = TRUE)

frequencyType set to 'auto'
All single-gene genotypes as input to to_genotFitness_std

s_pred_preym <- oncoSimulIndiv(fe_pred_prey, model = "Arb",
initMutant = c("Predator", "Prey"),
initSize = c(1000, 1000),
onlyCancer = FALSE,
finalTime = 75, mu = 1e-3,

keepPhylog = FALSE, seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE,
keepEvery = 1)

plot(s_pred_preym, show="genotypes", type="line", log = "")

320

0 20 40 60

0
20

00
60

00
10

00
0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

Predator
Prey

321

13 Simulating with constant total population size
There are some models in which it is necessary to maintain the total size of the
population constant, such as Moran models Moran (1962). In order to allow this
types of models to be simulated, the Const model must be used, as shown in the
example below.
H_D_fitness <- function(c, v, gt = c("H", "D")) {

data.frame(Genotype = gt,
Birth = c(

paste0("max(1e-5, f_H *", (v-c)/2, "+ f_D *", v, ")"),
paste0("f_D *", v/2)))

}

HD_eq <- allFitnessEffects(
genotFitness = H_D_fitness(10, 4, gt = c("H", "D")),
frequencyDependentBirth = TRUE,
frequencyType = "rel")

All single-gene genotypes as input to to_genotFitness_std

osi_eq <- oncoSimulIndiv(HD_eq, model = "Const",
onlyCancer = FALSE, finalTime = 50,
mu = 1e-6, initSize = c(2000, 2000),

initMutant = c("H", "D"), keepPhylog = FALSE,
seed = NULL, errorHitMaxTries = FALSE,

errorHitWallTime = FALSE)

osi_eq
##
Individual OncoSimul trajectory with call:
oncoSimulIndiv(fp = HD_eq, model = "Const", mu = 1e-06, initSize = c(2000,
2000), finalTime = 50, onlyCancer = FALSE, keepPhylog = FALSE,
errorHitWallTime = FALSE, errorHitMaxTries = FALSE, initMutant = c("H",
"D"), seed = NULL)
##
NumClones TotalPopSize LargestClone MaxNumDrivers MaxDriversLast
1 2 4021 2402 0 0
NumDriversLargestPop TotalPresentDrivers FinalTime NumIter
1 0 0 50 2001
HittedWallTime HittedMaxTries errorMF minDMratio minBMratio
1 FALSE FALSE NA 612244 1004002
OccurringDrivers
1
##
Final population composition:
Genotype N
1 D 2402

322

2 H 1619

This try should not be necessary, except
the code above seems to produce an empty object
in the BioC kjohnson3 (maOS 13.6.5, arm64) machine.
See below, "Help debugging"
try(plot(osi_eq, show="genotypes", ylim=c(1, 5000)))

0 10 20 30 40 50

0
10

00
30

00
50

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

D
H

(Help debugging: If you are running this in a macOS 13.6.5 with arm64 or, more
generally, if you see the above plot produce nothing, I’d appreciate if you can let
me know. Email me with the output of the run, specially what print(osi_eq) and
summary(osi_eq) yield. And try running the code again, to see if this happens
consistently regardless of the seed.)

When using this model, we can either specify the death rates or not. In the case that
we specify them, the death rates will be corrected in order to maintain the desired
size of population (which is the initial size of the population). On the other hand, if
we do not specify the death rates they will be set to the required value.

14 Simulating therapeutic interventions and adap-
tive therapy, and using user-defined variables

(Most of the code that implements this functionality has been added by Javier
Muñoz Haro and Javier López Cano. Authors for specific examples are listed in the
corresponding places.)

323

14.1 Interventions
(Note that the examples below are not used because of their biological realism, but
rather to show some key features of the software)

OncoSimulR also allows the user to specify interventions within the simulation.
Interventions will allow the user to manipulate different scenarios in the simulation,
by reducing the population of a specific genotype or the total population. In R-terms
a intervention a list of lists, where each element of the list must have the following
attributes:

• ID: This will be the identifier of the intervention. This attribute must be
unique in the list.

• Trigger: A condition that “triggers” an action over the simulation. It is a
boolean evaluation, meaning this will give a TRUE or FALSE result.

• WhatHappens: The action that will affect the simulation.
• Repetitions: How many times do we want the intervention to affect the

population (Trigger must be activated in order to execute a Repetition).
• Periodicity: How much time must pass between to repeat the intervention.

Here we have an example of how the user can specify a list of interventions:
interventions <- list(

list(ID = "i2",
Trigger = "(N > 1e6) & (T > 100)",
WhatHappens = "N = 0.001 * N",
Repetitions = 7,
Periodicity = Inf

),
list(ID = "i1",

Trigger = "(T > 10)",
WhatHappens = "N = 0.3 * N",
Periodicity = 10,
Repetitions = 0

),
list(ID = "i3",

Trigger = "(T > 1) & (T < 200)",
WhatHappens = "n_A = n_A * 0,3 / n_C",
Repetitions = Inf,
Periodicity = 10

),
list(ID = "i5",

Trigger = "(N > 1e8) & (T> 1.2)",
WhatHappens = "n_A_B = n_B * 0,3 / n_SRL",
Repetitions = 0,
Periodicity = Inf

)
)

324

(Note: In a intervention, if Periodicity is specified as Inf, then the intervention will
only execute once. An intervention that specifies will only execute if this expression:
(T – (Last time executed) >= Periodicity turns out to be TRUE.)

As is seen in the example above, interventions can depend on the current time of
The simulation (T), the current total population (N) or some genotype population
n_(genotype name), and can be combined as the user might want, depending on
the mean of the intervention. This is possible thanks to [Exprtk library] (http:
//www.partow.net/programming/exprtk/), this library allow complex expressions to
be specified.

In order to specify interventions, the user must call createInterventions function.
This function will adapt the different attributes specified to something C++ will
understand. But first, a fitnessEffects object must be defined, for example:
fa1 <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c("n_*0",
"1.5",
"1"))

afd3 <- allFitnessEffects(genotFitness = fa1,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

Warning in allFitnessEffects(genotFitness = fa1,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

Note that, for now, the fitness must have frequencyDependentFitness as TRUE
and frequencyTypeas “abs” (it can be).

Once this is specified, we call createInterventions:
interventions <- createInterventions(interventions, afd3)
[1] "Checking intervention: i2"
[1] "Checking intervention: i1"
[1] "Checking intervention: i3"
[1] "Checking intervention: i5"

Where the first argument is the list of lists previously defined, and the second
argument is the fitnessEffects object.

Finally, once the intervention is “created” by the createInterventions function,
the object returned can be passed as an argument to the oncoSimul* function, like
this example below. More detailed examples are shown next (and, for speed creating
the vignette, we do not execute the next code chunk).
ep2 <- oncoSimulIndiv(

afd3,
model = "Exp",

325

http://www.partow.net/programming/exprtk/
http://www.partow.net/programming/exprtk/

mu = 1e-4,
sampleEvery = 0.001,
initSize = c(20000, 20000),
initMutant = c("A", "B"),
finalTime = 5.2,
onlyCancer = FALSE,
interventions = interventions

)

14.2 A first example with interventions
As is stated before, the examples provided will show that the software works. In this
example it will be shown how a simple intervention can affect the way the simulation
develops. First, we define (as usual) the dataframe that associates the genotypes
with their fitness. In this case in particular, we will define an scenario where the
genotype B has a higher fitness than the other genotypes in the population:
df3x <- data.frame(Genotype = c("WT", "B", "A", "B, A", "C, A"),

Fitness = c("0*n_",
"1.5",
"1.002",
"1.003",
"1.004"))

afd3 <- allFitnessEffects(genotFitness = df3x,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

Warning in allFitnessEffects(genotFitness = df3x,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

ex1 <- oncoSimulIndiv(
afd3,
model = "McFLD",
mu = 1e-4,
sampleEvery = 0.01,
initSize = c(20000, 20000),
initMutant = c("A", "B"),
finalTime = 10,
onlyCancer = FALSE
)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

326

plot(ex1, show="genotypes", type = "line")

0 2 4 6 8 10

1e
+

00
1e

+
02

1e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

A
A, B
A, C
B

As expected, the B genotype dominates the population but ¿what if we periodically
we start to decrement the dominant genotype?

First, we define that intervention, in this case, the intervention will decrement the B
population by 88% each 0.07 time units:
interventions <- list(

list(ID = "intOverB",
Trigger = "(T >= 5)",
WhatHappens = "n_B = n_B * 0.88",
Repetitions = Inf,
Periodicity = 0.07

))

interventions <- createInterventions(interventions, afd3)
[1] "Checking intervention: intOverB"

Note that we specify as Inf the amount of repetitions that this interventions will
execute. This means that, until finalTime is reached, the intervention will be
executing each 0.5 time units. Another detail that is worth noticing is the Trigger
attribute, that defines in this case, that until the current time of the simulation T
reaches 5 time units, the intervention will not execute over the simulation.

Then, we run the simulation again, but this time with the interventions specified:

ex1_with_ints <- oncoSimulIndiv(
afd3,
model = "McFLD",

327

mu = 1e-4,
sampleEvery = 0.01,
initSize = c(20000, 20000),
initMutant = c("A", "B"),
finalTime = 10,
onlyCancer = FALSE,
interventions = interventions)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

This try should not be necessary, except
the code above seems to produce an empty object
in the BioC kjohnson3 (maOS 13.6.5, arm64) machine.
See below, "Help debugging"
try(plot(ex1_with_ints, show="genotypes", type = "line"))

0 2 4 6 8 10

1e
+

00
1e

+
02

1e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

A
A, B
A, C
B

(Help debugging: If you are running this in a macOS 13.6.5 with arm64 or, more
generally, if you see the above plot produce nothing, I’d appreciate if you can let me
know. Email me with the output of the run, specially what print(ex1_with_ints)
and summary(ex1_with_ints) yield. And try running the code again, to see if this
happens consistently regardless of the seed.)

Where it is shown that, once we reach T=5, the population of B decreases, and, as
a result of that, since genotype A does not encounter any other competition, starts
to expanding the population.

328

14.3 Intervening over the total population
In the previous example, the intervention is specified so only one genotype is affected
by it, but ¿can we define interventions that affect the total population?

First, we define the scenario where the intervention will operate. In these case we
take the example from the example @??fdfabs), where genotype B has a birth rate
less than 1, unless genotype A exists in the population. Where create the scenario:
gffd3 <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c("1",
"1 + 0.25 * (n_B > 0)",
".9 + 0.4 * (n_A > 0)"
))

afd3 <- allFitnessEffects(genotFitness = gffd3,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

Warning in allFitnessEffects(genotFitness = gffd3,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below
data(osi)

if (FALSE) {
osi <- oncoSimulIndiv(afd3,

model = "McFLD",
onlyCancer = FALSE,
finalTime = 200,
mu = 1e-4,
initSize = 5000,
sampleEvery = 0.001,
keepEvery = 1)

}

Then, we plot the result:
plot(osi, show = "genotypes", type = "line")

329

0 50 100 150 200

1
10

10
0

10
00

10
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

Now, we want to intervene over the total population, so we define the following
intervention:
intervention_tot_pop = list(

list(
ID = "intOverTotPop",
Trigger = "T > 40",
WhatHappens = "N = N * 0.2",
Repetitions = 2,
Periodicity = 20

)
)

intervention_tot_pop <- createInterventions(intervention_tot_pop, afd3)
[1] "Checking intervention: intOverTotPop"

Where the intervention will start at T > 40, reducing the total population to the
20% of the original value. This intervention will be executed with a maximum of 2
repetitions (3 in total if the conditions are given) with a periodicity of 20 time units.
Now, we re-run the simulation, but this time specifying the interventions:
For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below
data(osi_with_ints)

if(FALSE) {
osi_with_ints <- oncoSimulIndiv(afd3,

model = "McFLD",
onlyCancer = FALSE,

330

finalTime = 200,
mu = 1e-4,
initSize = 5000,
sampleEvery = 0.001,
interventions = intervention_tot_pop)

}

plot(osi_with_ints, show = "genotypes", type = "line")

0 50 100 150 200

1
10

10
0

10
00

10
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

(Note that, this simulation will take long to run, since sampleEvery is quite small.)

As it can be seen, when T=40, T=60 and T=80, the total population decrements,
but let’s take a closer look and see what pops.by.time in those instants:
osi_with_ints$pops.by.time[39:42,]
[,1] [,2] [,3] [,4]
[1,] 38.02 415 2147 4727
[2,] 39.02 350 2174 5002
[3,] 40.02 62 446 1024
[4,] 41.02 67 544 1475

Here, the first column represents the time units, the second represents the population
of the wild-type (WT) genotype for a given time, the third column represents the
population of genotype A for a given time and the forth column represents the
population for the B genotype. As it can be seen, when the current time of the
simulation is really close to 40, the intervention happens, reducing the population to
the 20%.

331

pre_int_tot_pop = osi_with_ints$PerSampleStats[40, 1]
post_int_tot_pop = osi_with_ints$PerSampleStats[41, 1]

If you did not remember about PerSampleStats
you could add all except the first column of pops.by.time
to get the total population sizes.
percentage_eliminated = (post_int_tot_pop/pre_int_tot_pop)*100

paste0("The percentage of population has decreased by ", percentage_eliminated, "%")
[1] "The percentage of population has decreased by 20.3560988572947%"

14.3.1 Differences between intervening on the total population or over
specific genotypes: when do each occur?

Suppose an intervention that happens at time unit 10 (and, for the sake of simplicity,
suppose we have set sampleEvery = 1). When, in the “What Happens” you specify
something like

N = 0.2 * N

the total population size at time unit 10 is 0.2 times the population you had at
the immediately previous sampling period; in this case, total population size at
time 10 will be 0.2 the total population size at time 9. You can easily check this
looking at the pops.by.time object (beware if you are not keeping all the sampling
period; in case of doubt, and if you want to check this, make sure keepEvery is set
to sampleEvery).

If you do, instead,

n_A = 0.2 * n_A

you will not see that n_A at time 10 is 0.2 n_A at time 9. The way the code works
is: after we have done all the updates, etc, we change the n_A by the requested one.
Thus, n_A at time 10 is not 0.2 the n_A at time 9, but 0.2 the n_A that you would
have seen at time 10 had you not done an intervention.

14.4 Intervening in Rock-Paper-Scissors model in bacterial
comunity

This example is taken from the example @??rockscissors) inspired by Kerr et al.
(2002). Here it is described the relationship between 3 strains of Escherichia coli
bacteria, that turns out to be very similar to a rock-paper-scissors game. (It is
strongly recommended to visit that example before trying to understand this one.)

We know that the equations that model the growth of the different strains are these:

332

W (WT) = 1 + afR − bfC (20)
W (C) = 1 + bfW T − cfR (21)
W (R) = 1 + cfC − afW T (22)

(23)

where fW T , fC and fR are the frequencies of WT, C and R, respectively. Being WT
the wild-type, C the strain that produces colicin and R the strain that is resistant to
the colicin.

We create the equations and run the simulation:
crs <- function (a, b, c){

data.frame(Genotype = c("WT", "C", "R"),
Fitness = c(paste0("1 + ", a, " * n_R/N - ", b, " * n_C/N"),
paste0("1 + ", b, " * n_/N - ", c, " * n_R/N"),
paste0("1 + ", c, " * n_C/N - ", a, " * n_/N")
))

}

afcrs1 <- allFitnessEffects(genotFitness = crs(1, 1, 1),
frequencyDependentFitness = TRUE,
frequencyType = "abs")
Warning in allFitnessEffects(genotFitness = crs(1, 1, 1),
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

resultscrs1_noints <- oncoSimulIndiv(afcrs1,
model = "McFL",
finalTime = 25,
mu = 1e-2,
initSize = 4000,
onlyCancer = FALSE,
keepPhylog = FALSE,
seed = NULL)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(resultscrs1_noints, show="genotypes", type = "line")

333

0 5 10 15 20 25

1
5

50
50

0
50

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
C
R

The WT genotype initially dominates the population, but, when the mutation
starts, and the genotype C appears, it grows quite rapidly, since C produces the
toxin (colicin) that WT is sensible to. This causes to the genotype WT to decrease,
allowing the resistant strain (R) to proliferate. Once populations of the genotypes C
and R grow, C strain will lose to R strain, since R resists to the toxin. Once R is
dominating the total population, WT has an advantage over R, since R loses some
capacities by loosing the receptor to the toxin that makes it inmune, so the WT
genotype will dominate (again the population), but ¿what happens if we decide to
intervene over this loop?

Let’s say for example, that we do not want the R strain to proliferate, since the
equations define that the R genotype needs the C genotype to exist and grow, if we
cut the progression of C, R will never dominate the population. First, we define the
intervention:
int_over_C <- list(

list(
ID = "Bothering R strain, by reducing C",
Trigger = "n_C >= 500",
WhatHappens = "n_C = n_C * 0.1",
Periodicity = 3,
Repetitions = Inf

)
)

final_int_over_C <-
createInterventions(interventions = int_over_C,

genotFitness = afcrs1)
[1] "Checking intervention: Bothering R strain, by reducing C"

334

Where it is controled that, if the C genotype exceeds 500 individuals of population
its population is reduced to the 1%. This will happen with a periodicity of 3 time
units and with no limit of repetitions.

Running the simulations again, but this time with the interventions specified:
resultscrs1_noints <- oncoSimulIndiv(afcrs1,

model = "McFL",
finalTime = 25,
mu = 1e-2,
initSize = 4000,
onlyCancer = FALSE,
keepPhylog = FALSE,
seed = NULL,
interventions = final_int_over_C)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(resultscrs1_noints, show="genotypes", type = "line")

0 5 10 15 20 25

1
5

50
50

0
50

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
C
R

The peaks seen on the graphic representation of the population of strain C, are
an effect of the intervention acting on strain C, reducing it to 10% of the initial
population. As it is logical, since the WT strain continues to dominate the
simulation, in the time interval that is created between intervention and intervention,
the C strain invades the WT strain, in such a way that the population of the WT
strain is reduced . Once the intervention happens, WT grows back, but not for long,
as the growth of strain C reoccurs. On the other hand, the population of the R
strain can never take off, because C cannot proliferate.

335

It can be seen in the graph that, from the intervention on the population of C, the
population of R decreases, but, on the other hand, when the population C grows, R
also does, since the strain C is not allowed to proliferating at a frequency greater
than 500 never dominates the simulation.

As it can be seen, interventions are flexible, and as complex as the user wants them
to be. They can also be scheduled as the user wants. so they can be executed in key
parts of the simulation when certain conditions are given. In conclusion, by using
interventions the user can affect how the outcome of a simulation might be.

336

14.5 User variables
OncoSimulR grants the user the possibilty of defining some arbitrarily complex user
variables that depend on the data of the simulation. This variables will be calculated
durig the simulation according to the definition provided by the user, and can be
then checked as a return from the program, or can be used in the definition of
interventions, allowing to emulate adaptive therapy. Thsese user variables will be
defined in a list with the following parameters:

• Name: This will be name that will identify the variable. This attribute must
be unique. in the list.

• Value: The value that the variable has in a given moment. When defining the
variable, the user will set the initial valiue for the variable.

Therefore, the user should define a list of user variables in the following way:
userVars <- list(

list(Name = "user_var1",
Value = 0

),
list(Name = "user_var2",

Value = 3
),
list(Name = "user_var3",

Value = 2.5
)

)

The user can also define a list of rules that will determine when and how the user
varsiables will be modified during the simulation. This is what makes the user
variables be arbitrarily complex, and gives the user complete freedom when defining
the variables. These rules must be defined using the following attributes: * ID: A
parameter to identify the rule. Tis attribute must be unique. * Condition: The
condition (must be true/false) that determines when the rule will be executed. *
Action: The action that will take place when the rule executes, it defines what
variables will be modified, and what will be their value.

Similarly to the user variables, the user can define a list of rules:
rules <- list(

list(ID = "rule_1",
Condition = "T > 20",
Action = "user_var_1 = 1"

),list(ID = "rule_2",
Condition = "T > 30",
Action = "user_var_2 = 2; user_var3 = 2*N"

),list(ID = "rule_3",
Condition = "T > 40",
Action = "user_var_3 = 3;user_var_2 = n_A*n_B"

337

)
)

As is seen in the example above, rules can depend on the current time of the simulation
(T), the current total population (N) or some genotype population n_(genotype
name), they can also depend on birth, death or mutation rates of genotypes (b_,
d_ and m_ respectively) or even on some of the defined user variables; and can
be combined as the user might want. This is possible thanks to [Exprtk library]
(http://www.partow.net/programming/exprtk/), this library allow complex
expressions to be specified.

In order to create the user variables and rules, the user must use createUserVars
and createRules function, which will check that these are correctly specified and
will adapt them so that they can be sucessfully transferred to C++. The correct
way to do so is the following:
dfuv <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c("1",
"1 + 0.2 * (n_B > 0)",
".9 + 0.4 * (n_A > 0)"
))

afuv <- allFitnessEffects(genotFitness = dfuv,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

Warning in allFitnessEffects(genotFitness = dfuv,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

Note that, for now, the fitness must have frequencyDependentFitness as TRUE
and frequencyTypeas “abs”.

After tjis, we can call both createUserVars and createRules:
userVars <- createUserVars(userVars)
[1] "Checking user variable: user_var1"
[1] "Checking user variable: user_var2"
[1] "Checking user variable: user_var3"

rules <- createRules(rules, afuv)
[1] "Checking rule: rule_1"
[1] "Checking rule: rule_2"
[1] "Checking rule: rule_3"

In createUserVars the argument is the previously defined list of user variables.
In createRules, the first argument is the previously defined list of rules, and the
second one is the fitnessEffects object.

Finally, once both objects are created, they can be passed as an argument to the

338

http://www.partow.net/programming/exprtk/

oncoSimul* function (for speed, we do not run the example below, as we have more
detailed examples next).

uvex <- oncoSimulIndiv(
afuv,
model = "McFLD",
mu = 1e-4,
sampleEvery = 0.001,
initSize = c(20000, 20000),
initMutant = c("A", "B"),
finalTime = 5.2,
onlyCancer = FALSE,
userVars = userVars,
rules = rules

)

14.6 Basic example with user variables
The examples that will be provided in the following sections will show that the
software works. In this example it will be shown how a user variable vary during
the simularion time, we will use a similar example to the one used to first illustrate
the intervention funtionality, for this example we will make the user variable be the
proportion of genotype B cells in the total population (n_B/N), and we will check
its value every second (T%1 == 0):
dfuv2 <- data.frame(Genotype = c("WT", "B", "A", "B, A", "C, A"),

Fitness = c("0*n_",
"1.5",
"1.002",
"1.003",
"1.004"))

afuv2 <- allFitnessEffects(genotFitness = dfuv2,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

Warning in allFitnessEffects(genotFitness = dfuv2,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

userVars <- list(
list(Name = "genAProp",

Value = 0.5
),
list(Name = "genBProp",

Value = 0.5
),

339

list(Name = "genABProp",
Value = 0.0

),
list(Name = "genACProp",

Value = 0.0
)

)

userVars <- createUserVars(userVars)
[1] "Checking user variable: genAProp"
[1] "Checking user variable: genBProp"
[1] "Checking user variable: genABProp"
[1] "Checking user variable: genACProp"

rules <- list(
list(ID = "rule_1",

Condition = "TRUE",
Action = "genBProp = n_B/N"

),
list(ID = "rule_2",

Condition = "TRUE",
Action = "genAProp = n_A/N"

),
list(ID = "rule_3",

Condition = "TRUE",
Action = "genABProp = n_A_B/N"

),
list(ID = "rule_4",

Condition = "TRUE",
Action = "genACProp = n_A_C/N"

)
)

rules <- createRules(rules, afuv2)
[1] "Checking rule: rule_1"
[1] "Checking rule: rule_2"
[1] "Checking rule: rule_3"
[1] "Checking rule: rule_4"

For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below
data(uvex2)

if(FALSE) {
set.seed(1)

340

uvex2 <- oncoSimulIndiv(
afuv2,
model = "McFLD",
mu = 1e-4,
sampleEvery = 0.01,
initSize = c(20000, 20000),
initMutant = c("A", "B"),
finalTime = 10,
onlyCancer = FALSE,
userVars = userVars,
rules = rules,
keepEvery = 0.1
)

}

plot(
unlist(uvex2$other$userVarValues) [c(FALSE, FALSE, FALSE, FALSE, TRUE)],
unlist(uvex2$other$userVarValues) [c(TRUE, FALSE, FALSE, FALSE, FALSE)],
xlab="Time", ylab="Proportion", ylim=c(0,1), type="l", col="purple")

lines(
unlist(uvex2$other$userVarValues) [c(FALSE, FALSE, FALSE, FALSE, TRUE)],
unlist(uvex2$other$userVarValues) [c(FALSE, TRUE, FALSE, FALSE, FALSE)], type="l", col="#E6AB02")

lines(
unlist(uvex2$other$userVarValues) [c(FALSE, FALSE, FALSE, FALSE, TRUE)],
unlist(uvex2$other$userVarValues) [c(FALSE, FALSE, TRUE, FALSE, FALSE)], type="l", col="#1B9E77")

lines(
unlist(uvex2$other$userVarValues) [c(FALSE, FALSE, FALSE, FALSE, TRUE)],
unlist(uvex2$other$userVarValues) [c(FALSE, FALSE, FALSE, TRUE, FALSE)], type="l", col="#666666")

legend(0,1,
legend=c("genABProp", "genACProp", "genAProp", "genBProp"), col=c("purple", "#E6AB02", "#1B9E77", "#666666"), lty= 1:2)

341

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

po
rt

io
n

genABProp
genACProp
genAProp
genBProp

We can see, just as we saw in the interventions example that genotype B dominates
the population, but, as we used user variables that show us the proportions intead
of directly the populatios, we can se the fraction of the total represented by each
genotype.

14.7 User Variables Example 2
In this example we will take a look at the difference between borth and death rates
to better understand the evolution of the genotype populations.
dfuv3 <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c("1",
"1 + 0.2 * (n_B > 10)",
".9 + 0.4 * (n_A > 10)"
))

afuv3 <- allFitnessEffects(genotFitness = dfuv3,
frequencyDependentFitness = TRUE)

Warning in allFitnessEffects(genotFitness = dfuv3,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
frequencyType set to 'auto'
All single-gene genotypes as input to to_genotFitness_std

userVars <- list(
list(Name = "genWTRateDiff",

Value = 0.5
),list(Name = "genARateDiff",

Value = 0.5
),list(Name = "genBRateDiff",

Value = 0.0

342

)
)

userVars <- createUserVars(userVars)
[1] "Checking user variable: genWTRateDiff"
[1] "Checking user variable: genARateDiff"
[1] "Checking user variable: genBRateDiff"

rules <- list(
list(ID = "rule_1",

Condition = "TRUE",
Action = "genWTRateDiff = b_-d_"

),list(ID = "rule_2",
Condition = "TRUE",
Action = "genARateDiff = b_1-d_1"

),list(ID = "rule_3",
Condition = "TRUE",
Action = "genBRateDiff = b_2-d_2"

)
)

rules <- createRules(rules, afuv3)
[1] "Checking rule: rule_1"
[1] "Checking rule: rule_2"
[1] "Checking rule: rule_3"

For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below

data(uvex3)

if(FALSE) {
set.seed(1)

uvex3 <- oncoSimulIndiv(afuv3,
model = "McFLD",
onlyCancer = FALSE,
finalTime = 105,
mu = 1e-4,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE,

343

userVars = userVars,
rules = rules,
keepEvery = 1)

}

plot(uvex3, show = "genotypes", type = "line")

0 20 40 60 80 100

1
10

10
0

10
00

10
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

We now plot the difference between birth and death rate
plot(

unlist(uvex3$other$userVarValues) [c(FALSE, FALSE, FALSE, TRUE)],
unlist(uvex3$other$userVarValues) [c(FALSE, FALSE, TRUE, FALSE)], xlab="Time", ylab="Rate Diff",
xlim=c(0, 105),
ylim=c(-0.75,0.75), type="l", col="#1B9E77")

lines(
unlist(uvex3$other$userVarValues) [c(FALSE, FALSE, FALSE, TRUE)],
unlist(uvex3$other$userVarValues) [c(TRUE, FALSE, FALSE, FALSE)], type="l", col="#A6761D")

lines(
unlist(uvex3$other$userVarValues) [c(FALSE, FALSE, FALSE, TRUE)],
unlist(uvex3$other$userVarValues) [c(FALSE, TRUE, FALSE, FALSE)], type="l", col="#666666")

legend(0, 0.75,
legend=c("genWTRateDiff", "genARateDiff", "genBRateDiff"), col=c("#1B9E77", "#A6761D", "#666666"), lty= 1:2)

344

0 20 40 60 80 100

−
0.

5
0.

0
0.

5

Time

R
at

e
D

iff

genWTRateDiff
genARateDiff
genBRateDiff

As expected we see that the points in time when the population of some genotypes
decline match the points where the difference between birth and death rate is
negative.

14.8 Adaptive therapy. Interventions using user variables
OncoSimulR can now emilate the effects of adaptive therapy (Hansen & Read
(2020b); Hansen & Read (2020a)) during the simulations by using the implemented
user variables when defining interventions. When doing so, we can create a set of
interventions that vary according to the current state of the tumor in the simulation,
as the user variables are constantly changing according to the simulaition parameters.

In order to achieve this, we must first define the user variables and rules to calculate
their value, as explained in the user variables section:

dfat <- data.frame(Genotype = c("WT", "B", "A", "B, A", "C, A"),
Fitness = c("0*n_",

"1.5",
"1.002",
"1.003",
"1.004"))

adat <- allFitnessEffects(genotFitness = dfat,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

Warning in allFitnessEffects(genotFitness = dfat,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

345

userVars <- list(
list(Name = "user_var1",

Value = 0
)

)

userVars <- createUserVars(userVars)
[1] "Checking user variable: user_var1"

rules <- list(
list(ID = "rule_1",

Condition = "n_B > n_A",
Action = "user_var1 = n_A-n_B"

),list(ID = "rule_2",
Condition = "n_B > n_A",
Action = "user_var1 = n_B-n_A"

)
)

rules <- createRules(rules, adat)
[1] "Checking rule: rule_1"
[1] "Checking rule: rule_2"

After this, we proceed to define the interventions as explained in the interventions
section. When doing so, we can now use thedefined user variables in order to achieve
the adaptive therapy.
interventions <- list(

list(ID = "i1",
Trigger = "N > 1000",
WhatHappens = "N = user_var1*0.8",
Periodicity = 1,
Repetitions = 5

)
)

interventions <- createInterventions(interventions, adat)
[1] "Checking intervention: i1"

We now proceed to the call to OncoSimulIndiv passing userVars, rules and interven-
tions as arguments and we plot the result populations.
atex <- oncoSimulIndiv(

adat,
model = "McFLD",
mu = 1e-4,
sampleEvery = 0.01,

346

initSize = c(20000, 20000),
initMutant = c("A", "B"),
finalTime = 10,
onlyCancer = FALSE,
userVars = userVars,
rules = rules,
interventions = interventions
)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(atex, show = "genotypes", type = "line")

0 2 4 6 8 10

1
10

10
0

10
00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

A
A, B
A, C
B

14.9 Another example of adaptive therapy
Finally we will try and examplify a more real scenario where we have a continuous
specific treatment to keep the tumor at bay, if the mutated cells are enough to be
detected, but if we detect a sudden increase in some mutated genotype we switch
the treatment to focus that growth, also, if the tumor grows too big, we simulate a
quirurgic intervention.
dfat3 <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c("1",
"0.8 + 0.2 * (n_B > 10) + 0.1 (n_A > 10)",
"0.8 + 0.25 * (n_B > 10)"
))

afat3 <- allFitnessEffects(genotFitness = dfat3,

347

frequencyDependentFitness = TRUE)
Warning in allFitnessEffects(genotFitness = dfat3,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
frequencyType set to 'auto'
All single-gene genotypes as input to to_genotFitness_std

userVars <- list(
list(Name = "lastMeasuredA",

Value = 0
),
list(Name = "lastMeasuredB",

Value = 0
),
list(Name = "previousA",

Value = 0
),
list(Name = "previousB",

Value = 0
),
list(Name = "lastTime",

Value = 0
),
list(Name = "measure",

Value = 0
),
list(Name = "treatment",

Value = 0
)

)

userVars <- createUserVars(userVars)
[1] "Checking user variable: lastMeasuredA"
[1] "Checking user variable: lastMeasuredB"
[1] "Checking user variable: previousA"
[1] "Checking user variable: previousB"
[1] "Checking user variable: lastTime"
[1] "Checking user variable: measure"
[1] "Checking user variable: treatment"

rules <- list(
list(ID = "rule_1",

Condition = "T - lastTime < 10",
Action = "measure = 0"

348

),
list(ID = "rule_2",

Condition = "T - lastTime >= 10",
Action = "measure = 1;lastTime = T"

),
list(ID = "rule_3",

Condition = "measure == 1",
Action = "previousA = lastMeasuredA;previousB = lastMeasuredB;lastMeasuredA = n_A;lastMeasuredB = n_B"

),
list(ID = "rule_4",

Condition = "TRUE",
Action = "treatment = 0"

),
list(ID = "rule_5",

Condition = "lastMeasuredA + lastMeasuredB > 100",
Action = "treatment = 1"

),
list(ID = "rule_6",

Condition = "lastMeasuredA - PreviousA > 500",
Action = "treatment = 2"

),
list(ID = "rule_7",

Condition = "lastMeasuredB - PreviousB > 500",
Action = "treatment = 3"

),
list(ID = "rule_8",

Condition = "lastMeasuredA - PreviousA > 500 and lastMeasuredB - PreviousB > 500",
Action = "treatment = 4"

)
)

rules <- createRules(rules, afat3)
[1] "Checking rule: rule_1"
[1] "Checking rule: rule_2"
[1] "Checking rule: rule_3"
[1] "Checking rule: rule_4"
[1] "Checking rule: rule_5"
[1] "Checking rule: rule_6"
[1] "Checking rule: rule_7"
[1] "Checking rule: rule_8"

interventions <- list(
list(ID = "basicTreatment",

Trigger = "treatment == 1",

349

WhatHappens = "N = 0.8*N",
Periodicity = 10,
Repetitions = Inf

),
list(ID = "treatmentOverA",

Trigger = "treatment == 2 or treatment == 4",
WhatHappens = "n_B = n_B*0.3",
Periodicity = 20,
Repetitions = Inf

),
list(ID = "treatmentOverB",

Trigger = "treatment == 3 or treatment == 4",
WhatHappens = "n_B = n_B*0.3",
Periodicity = 20,
Repetitions = Inf

),
list(ID = "intervention",

Trigger = "lastMeasuredA+lastMeasuredB > 5000",
WhatHappens = "N = 0.1*N",
Periodicity = 70,
Repetitions = Inf

)
)

interventions <- createInterventions(interventions, afat3)
[1] "Checking intervention: basicTreatment"
[1] "Checking intervention: treatmentOverA"
[1] "Checking intervention: treatmentOverB"
[1] "Checking intervention: intervention"

For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below

data(atex2b)

if (FALSE) {

set.seed(1) ## for reproducibility
atex2b <- oncoSimulIndiv(afat3,

model = "McFLD",
onlyCancer = FALSE,
finalTime = 200,
mu = 1e-4,
initSize = 5000,

350

keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE,
userVars = userVars,
rules = rules,
interventions = interventions,
keepEvery = 1)

}

plot(atex2b, show = "genotypes", type = "line")

0 50 100 150 200

1
5

50
50

0
50

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

We clearley see here how the therapy adapts to the circumstances cutting genotype
B when it starts to grow rapidly, and then making a major intervention once A
grows so big that the total mutated cell exceed the set amount.

14.10 Adaptive therapy: a canonical example
We now simulate a canonical adaptive therapy example such as the one shown in
examples b and c of Figure 1 in Hansen & Read (2020b).

We start by creating the scenario with 2 types of cells, A will be treatment-resistant
and slow growing whereas B will be faster growing but treatment susceptible.
dfat4 <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c("n_/n_",
"1.005",
"1.1"
))

afat4 <- allFitnessEffects(genotFitness = dfat4,

351

frequencyDependentFitness = TRUE)
Warning in allFitnessEffects(genotFitness = dfat4,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
frequencyType set to 'auto'
All single-gene genotypes as input to to_genotFitness_std

We first execute this scenario without adaptive therapy to check what the out-
come would be. We therefore set the standard treatment by defining the following
intervention:
interventions <- list(

list(ID = "i1",
Trigger = "T > 10",
WhatHappens = "n_B = n_B*0.8",
Periodicity = 1,
Repetitions = Inf

)
)

interventions <- createInterventions(interventions, afat4)
[1] "Checking intervention: i1"

We run the simulation and plot the results.
For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below

data(atex4)

if(FALSE) {
set.seed(1) ## for reproducibility
atex4 <- oncoSimulIndiv(afat4,

model = "McFLD",
onlyCancer = FALSE,
finalTime = 2000,
mu = 1e-4,
initSize = c(10000, 50, 1000),
initMutant = c("WT", "A", "B"),
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE,
interventions = interventions,
keepEvery = 1)

}

352

plot(atex4, show = "genotypes", type = "line")

0 500 1000 1500 2000

1
10

10
0

10
00

10
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

We now set the same initial scenario but this time we apply adaptive therapy.
dfat5 <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c("n_/n_",
"1.005",
"1.1"
))

afat5 <- allFitnessEffects(genotFitness = dfat5,
frequencyDependentFitness = TRUE)

Warning in allFitnessEffects(genotFitness = dfat5,
frequencyDependentFitness = TRUE): v2 functionality detected.
Adapting to v3 functionality.
frequencyType set to 'auto'
All single-gene genotypes as input to to_genotFitness_std

In order to apply adaptive therapy we set the following variables and rules
userVars <- list(

list(Name = "measure",
Value = 0

),list(Name = "lastTime",
Value = 0

),list(Name = "treatment",
Value = 0

),list(Name = "totalPopMeasured",
Value = 0

)

353

)

userVars <- createUserVars(userVars)
[1] "Checking user variable: measure"
[1] "Checking user variable: lastTime"
[1] "Checking user variable: treatment"
[1] "Checking user variable: totalPopMeasured"

rules <- list(
list(ID = "rule_1",

Condition = "T - lastTime < 10",
Action = "measure = 0"

),list(ID = "rule_2",
Condition = "T - lastTime >= 10",
Action = "measure = 1;lastTime = T"

),list(ID = "rule_3",
Condition = "measure == 1",
Action = "totalPopMeasured = n_A + n_B"

),list(ID = "rule_4",
Condition = "totalPopMeasured < 2000",
Action = "treatment = 0"

),list(ID = "rule_5",
Condition = "totalPopMeasured >= 2000",
Action = "treatment = 1"

)
)

rules <- createRules(rules, afat5)
[1] "Checking rule: rule_1"
[1] "Checking rule: rule_2"
[1] "Checking rule: rule_3"
[1] "Checking rule: rule_4"
[1] "Checking rule: rule_5"

We define the same intervention as before but we apply it only when the adaptive
therapy determines so.
interventions <- list(

list(ID = "i1",
Trigger = "treatment == 1",
WhatHappens = "n_B = n_B*0.8",
Periodicity = 1,
Repetitions = Inf

)
)

354

interventions <- createInterventions(interventions, afat5)
[1] "Checking intervention: i1"

We run the simulation and plot the results.
For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below

data(atex5)

if(FALSE) {
set.seed(1) ## for reproducibility
atex5 <- oncoSimulIndiv(afat5,

model = "McFLD",
onlyCancer = FALSE,
finalTime = 1500,
mu = 1e-4,
initSize = c(10000, 50, 1000),
initMutant = c("WT", "A", "B"),
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE,
userVars = userVars,
rules = rules,
interventions = interventions)

}

plot(atex5, show = "genotypes", type = "line")

0 500 1000 1500

1
10

10
0

10
00

10
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

355

Comparing these results with the ones without adaptive therapy we see that by
interrupting the treatment before the complete elimination of the susceptible treat-
ment we achieve the desired effect, that is the control of the resistant genotype by
maintaining certain degree of cellular competition between genotypes.

356

15 Simulating therapeutic interventions that de-
pend on time

In this section we show some examples using the time dependent functionality; with
it, fitness can be made to depend on T, the current time defined in the simulation.
These examples were originally prepared by Niklas Endres, Rafael Barrero Rodríguez,
Rosalía Palomino Cabrera and Silvia Talavera Marcos, as an exercisse for the
course Programming and Statistics with R (Master’s Degree in Bioinformatics and
Computational Biology, Universidad Autónoma de Madrid), course 2019-20; Niklas
Endres had the idea of accessing T from exprTk.

This first example is an artificial simulation, but it shows how the fitness of a genotype
can suddenly increase at a certain given timepoint.
Fitness definition
fl <- data.frame(

Genotype = c("WT", "A", "B"),
Fitness = c("1", #WT

"if (T>50) 1.5; else 0;", #A
"0*f_") , #B

stringsAsFactors = FALSE
)

fe <- allFitnessEffects(genotFitness = fl,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = fl,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

Evaluate the fitness before and after the specified currentTime
evalAllGenotypes(fe, spPopSizes = c(100, 100, 100))
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 1
2 A 0
3 B 0
4 A, B 0

evalAllGenotypes(fe, spPopSizes = c(100, 100, 100), currentTime = 80)
Using old version of fitnessEffects. Transforming fitnessEffects

357

to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
1 WT 1.0
2 A 1.5
3 B 0.0
4 A, B 0.0

Simulation
sim <- oncoSimulIndiv(fe,

model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 0.01,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL,
errorHitMaxTries = FALSE,
errorHitWallTime = FALSE)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

Plot the results
plot(sim, show = "genotypes")

358

0 20 40 60 80 100

0
20

00
60

00
10

00
0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A

15.1 Adaptive control of competitive release and chemother-
apeutic resistance

The code structure of the previous example can be used, for instance, to simulate
the effect of different chemotherapy treatment protocols.

An example of using these game theory concepts is the adaptive theory. The primary
goal is to maximize the time of tumor control by using the tumor cells that are
sensitive to treatment as agents that can supress the proliferation of the resistant
cells. Thus, a significant residual populations of tumor cells can be under control to
inhibit the growth of cells that otherwise cannot control: killed vs resistant.

Newton and Ma Newton & Ma (2019) built simulations for a tumor consisting in
two types of cells: resistant to chemotherapy and sensitive to chemotherapy. The
idea is to promote competition among tumor cells in order to prevent tumor growth.

To do this, they developed a three-component Prisoner’s Dilemma scenario
including healthy (H) cells as well as chemoresistant (R) and chemosensitive (S)
cancer cells. Healthy cells are cooperators, while cancer cells are defectors.

This is the system’s payoff matrix:
a <- 1; b <- 0.5; c <- 0.5 ## a b c
d <- 1; e <- 1.25; f <- 0.7 ## d e f
g <- 0.975; h <- -0.5; i <- 0.75 ## g h i

payoff_m <- matrix(c(a,b,c,d,e,f,g,h,i), ncol=3, byrow=TRUE)
colnames(payoff_m) <- c("Healthy", "Chemo-sensitive", "Chemo-resistant")
rownames(payoff_m) <- c("Healthy", "Chemo-sensitive", "Chemo-resistant")
print(payoff_m <- as.table(payoff_m))
Healthy Chemo-sensitive Chemo-resistant

359

Healthy 1.000 0.500 0.500
Chemo-sensitive 1.000 1.250 0.700
Chemo-resistant 0.975 -0.500 0.750

The numerical values in the matrix are selected to satisfy the following theoretical
constraints:

g > a > i > c; d > a > e > b; f > i > e > h and d > g (cost to resistance).

Thus, the fitness definitions for the three types of cells could be written as in the
following data frame:
print(df <- data.frame(

CellType = c("H", "S", "R"),
Fitness = c("F(H) = ax(H) + bx(S) + cx(R)", #Healthy

"F(S) = dx(H) + ex(S) + fx(R)", #Sensitive
"F(R) = gx(H) + hx(S) + ix(R)")), #Resistant

row.names = FALSE)
CellType Fitness
H F(H) = ax(H) + bx(S) + cx(R)
S F(S) = dx(H) + ex(S) + fx(R)
R F(R) = gx(H) + hx(S) + ix(R)

In summary:

• The fitness of H cells is lower than the chemosensitive cells.
• Without any therapy, S cells have a higher fitness value than R cells, because

of the cost to resistance
• In the presence of therapy, R cells take over the S cells

One of the challenges is to optimize the drug dosage intervals. In practice, this would
mean to infer the growth rates of the different cell types from a frequent monitoring
of the tumor environment. With OncoSimulR is possible to try out different intervals
on simulations of the collected data.

15.1.1 Scenario without chemotherapy

First of all, we can simulate the growth of a tumor from H cells without any treatment.
We can consider that R tumor cells are generated from S and WT cells. Thus, as we
expected, we can observe in the simulation results that S cells grow (tumor) and R
cells cannot subsist because of their fitness disadvantage: the cost of being resistant.
set.seed(2)
RNGkind("L'Ecuyer-CMRG")

Coefficients
Healthy Sensitive Resistant
a=3; b=1.5; c=1.5 # Healthy
d=4; e=5; f=2.8 # Sensitive

360

g=3.9; h=-2; i=2.2 # Resistant

Here we divide coefficients to reduce the amount of cells obtained in the simulation.
We have divided a, b and c by 3, and d, e and i by 4.

Healthy Sensitive Resistant
a <- 1; b <- 0.5; c <- 0.5 # Healthy
d <- 1; e <- 1.25; f <- 0.7 # Sensitive
g <- 0.975; h <- -0.5; i <- 0.75 # Resistant

Fitness definition
players <- data.frame(Genotype = c("WT","S","R","S,R"),

Fitness = c(paste0(a, "*f_+", b, "*f_S+", c, "*f_S_R"), #WT
paste0(d,"*f_+",e,"*f_S+",f,"*f_S_R"), #S
"0", #R
paste0(g,"*f_+",h,"*f_S+",i,"*f_S_R")), #S,R

stringsAsFactors = FALSE)

game <- allFitnessEffects(genotFitness = players,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = players,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

Plot the first scenario
eag <- evalAllGenotypes(game, spPopSizes = c(10,1,0,10))[c(1, 3, 4),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(eag)

361

WT

S

R, S

0.75

0.80

0.85

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

Simulation
gamesimul <- oncoSimulIndiv(game,

model = "McFL",
onlyCancer = FALSE,
finalTime = 40,
mu = 0.01,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

Plot 2
plot(gamesimul, show = "genotypes", type = "line",

col = c("black", "green", "red"), ylim = c(20, 50000))

362

0 10 20 30 40

20
10

0
50

0
50

00
50

00
0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
R, S
S

plot(gamesimul, show = "genotypes")

0 10 20 30 40

0
20

00
40

00
60

00

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
R, S
S

15.1.2 Scenario with continuous chemotherapy: fixed dose

For this simulation, we add the effect of chemotherapy as a fixed coefficient
(drug_eff), representing a fixed dose. The dose is delivered only when a tumor has
grown up, so we perform the drug effect after starting the simulation. For this, we
apply the time funcionality used in the first section of this chapter.
Effect of drug on fitness sensible tumor cells
drug_eff <- 0.01

363

wt_fitness <- paste0(a, "*f_+", b, "*f_S+", c, "*f_S_R")
sens_fitness <- paste0(d, "*f_+", e, "*f_S+", f, "*f_S_R")
res_fitness <- paste0(g, "*f_+", h, "*f_S+", i, "*f_S_R")

players_1 <- data.frame(Genotype = c("WT", "S", "R", "S, R"),
Fitness = c(wt_fitness, #WT

paste0("if (T>50) ", drug_eff, "*(",sens_fitness, ")",";
else ", sens_fitness, ";"), #S

"0", #R
res_fitness), #S,R

stringsAsFactors = FALSE)

period_1 <- allFitnessEffects(genotFitness = players_1,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = players_1,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below

data(simul_period_1)

if (FALSE) {
set.seed(2)

final_time <- 170 ## for speed
simul_period_1 <- oncoSimulIndiv(period_1,

model = "McFL",
onlyCancer = FALSE,
finalTime = final_time,
mu = 0.01,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL)

}
ylim has been adapted to number of cells
plot(simul_period_1, show = "genotypes", type = "line",

col = c("black", "green", "red"), ylim = c(20, 300000),
thinData = TRUE)

364

0 50 100 150

5e
+

01
1e

+
03

5e
+

04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
R, S
S

plot(simul_period_1, show = "genotypes", ylim = c(20, 12000))

As expected, the simulation results show how sensitive cells suddenly decrease when
the current time of the simulation reach a value of 50, which is the consequence of
the chemotherapy. In this regard, the code illustrates how sensitive cells fitness is
multiplied by drug_eff variable after 50 units of time, and then resistant cells start
to grow exponentially until reaching an equilibrium where chemoterapy does not
affect them anymore.

With this example, we can show how chemotherapy usage could be counterproductive
under certain situations, especially in those cases in which resistant tumor cells are
more aggressive than sensitive cells.

15.1.3 Scenario with switching doses of chemotherapy

The original model by Newton and Ma Newton & Ma (2019) includes chemotherapeu-
tic dosage as a time-dependent controller. The main idea is to increase or decrease
the dose according to a periodic cancer growth in order to avoid the fixation of both
sensitive and resistant cells, and keep the tumor trajectory enclosed in a loop.

The model developed by this group is a is a cubic nonlinear system based on
Hamiltonian orbits. They use time-dependent chemotherapeutic parameters w,
whose values are different in each one of the several and carefully chosen intervals
that depends on C(t), which is the chemo-concentration parameter. For simplicity’s
sake, we will just define the fitness of sensitive cells as dependent on a sine time
function.

During this simulation, we will see in our results small oscilations doses that keep
sensitive cells population at a minimum value and the R cells progress is prevented.

365

set.seed(2)
RNGkind("L'Ecuyer-CMRG")

Healthy Sensitive Resistant
a <- 1; b <- 0.5; c <- 0.5 # Healthy
d <- 1; e <- 1.25; f <- 0.7 # Sensitive
g <- 0.975; h <- -0.5; i <- 0.75 # Resistant

wt_fitness <- paste0(a, "*f_+", b, "*f_S+", c, "*f_S_R")
sens_fitness <- paste0(d, "*f_+", e, "*f_S+", f, "*f_S_R")
res_fitness <- paste0(g, "*f_+", h, "*f_S+", i, "*f_S_R")

fitness_df <-data.frame(Genotype = c("WT", "S", "R", "S, R"),
Fitness = c(wt_fitness, #WT

paste0("if (T>50) (sin(T+2)/10) * (", sens_fitness,")",
"; else ", sens_fitness, ";"), #S

"0", #R
res_fitness), #S,R

stringsAsFactors = FALSE)

afe <- allFitnessEffects(genotFitness = fitness_df,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = fitness_df,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

switching_sim <- oncoSimulIndiv(afe,
model = "McFL",
onlyCancer = FALSE,
finalTime = 100,
mu = 0.01,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(switching_sim, show = "genotypes", type = "line",
col = c("black", "green", "red"), ylim = c(20, 200000))

366

0 20 40 60 80 100

5e
+

01
5e

+
02

5e
+

03
5e

+
04

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
R, S
S

plot(switching_sim, show = "genotypes", ylim = c(20, 1000))

15.2 Growth factors as chemotherapy target
It has been reported in the literature and verified in the above simulations, that
resistance acquisition is almost unavoidable. A new approach to avoid this evolution-
ary adaptation, proposes to change the chemotherapy target, from the cell subclones
to the growing factors (GF) they produce. These molecules, which are secreted to
the medium by cooperators, help to grow their own subclone types besides the GF
defectors. Thus, the fitness of the whole population increases and the tumor grows.

An attended side effect of this type of treatment is the emergence of cooperators
that overproduce GF. This will increase their fitness and reduce the impact of GF
sequestering agents. However, it would also increase the cost of its production, which
will decrease this benefitial impact.

Archetti (2013) develops a series of formulas to relate the impact of cooperation in
tumor composition and fitness of subclones, which they divide as cooperators and
defectors. Although GFs are not always distributed homogeneously, we will assume
they do in the following simulations for the sake of simplicity.

Attending to the theoretical foundations mentioned, we will create a cooperation sce-
nario, including wild-type healthy cells (WT) and tumour cells, which are cooperators
(C), defectors (D) and overproducers (P).

The system payoff matrix is the following:
WT Cooperators Defectors Overproducers
a <- 1; b <- 0.5; c <- 0.5; m <- 0.75 ## a b c m
d <- 1; e <- 1.25; f <- 0.7; o <- 0.185 ## d e f o
g <- 1; h <- 1.5; i <- 0.5; p <- 2.5 ## g h i p

367

j <- 0.8; k <- 1; l <- 0.5; q <- 1.5 ## j k l q

payoff_m <- matrix(c(a,b,c,m,d,e,f,o,g,h,i,p,j,k,l,q), ncol=4, byrow=TRUE)
colnames(payoff_m) <- c("WT", "Cooperators", "Defectors", "Overproducers")
rownames(payoff_m) <- c("WT", "Cooperators", "Defectors", "Overproducers")
print(payoff_m <- as.table(payoff_m))
WT Cooperators Defectors Overproducers
WT 1.000 0.500 0.500 0.750
Cooperators 1.000 1.250 0.700 0.185
Defectors 1.000 1.500 0.500 2.500
Overproducers 0.800 1.000 0.500 1.500

The fitness definitions for the four types of cells would be the following:
print(df <- data.frame(

CellType = c("WT", "C", "D", "P"),
Fitness = c("F(WT) = ax(WT) + bx(C) + cx(D) + mx(P)",

"F(C) = dx(WT) + ex(C) + fx(D) + ox(P)",
"F(D) = gx(WT) + hx(C) + ix(D) + px(P)",
"F(P) = jx(WT) + kc(C) + lx(D) + qx(P)")),

row.names = FALSE)
CellType Fitness
WT F(WT) = ax(WT) + bx(C) + cx(D) + mx(P)
C F(C) = dx(WT) + ex(C) + fx(D) + ox(P)
D F(D) = gx(WT) + hx(C) + ix(D) + px(P)
P F(P) = jx(WT) + kc(C) + lx(D) + qx(P)

Ordered by decreasing fitness:

In summary:

• The fitness of WT cells is lower than the tumour cells.
• Without any therapy, C cells fitness is higher than P cells, so the overproducers

will not overtake them.
• D subclones benefit from the high concentration of cooperators (C or P).

15.2.1 Scenario without chemotherapy

First, we will study the fitness of the subclones types based on hypothetical frequencies.
Then, we will simulate the growth of the tumor without any treatment. For this, we
are considering that C cells are the original tumor cells and they can mutate and
lose by deletion the GF gene (D cells grow) or duplicate it (P cells grow).
set.seed(2)
RNGkind("L'Ecuyer-CMRG")

Coefficients
New coefficients for the interaction with overproducing sensitive:

368

WT COOPERATOR DEFECTOR OVERPRODUCER
a <- 1; b <- 0.5; c <- 0.5; m <- 0.75 # WT
wt_fitness <- paste0(a, "*f_+", b, "*f_C+", c, "*f_C_D+", m, "*f_C_P")

d <- 1; e <- 1.25; f <- 0.7; o <- 1.875 # Cooperator
coop_fitness <- paste0(d, "*f_+", e, "*f_C+", f, "*f_C_D+", o, "*f_C_P")

g <- 1; h <- 1.5; i <- 0.5; p <- 2.5 # Defector
def_fitness <- paste0(g, "*f_+", h, "*f_C+", i, "*f_C_D+", p, "*f_C_P")

j <- 0.8; k <- 1; l <- 0.5; q <- 1.5 # Cooperator overproducing
over_fitness <- paste0(j, "*f_+", k, "*f_C+", l, "*f_C_D+", q, "*f_C_P")

No-chemotherapy
Fitness definition
coop_no <- data.frame(Genotype = c("WT", "C", "D", "P", "C,D", "C,P", "D,P", "C,D,P"),

Fitness = c(
wt_fitness, #WT
coop_fitness, #S
"0", #D
"0", #P
def_fitness, #S,D
over_fitness, #S,P
"0", #D,P
"0" #C,D,P
),
stringsAsFactors = FALSE)

game_no <- allFitnessEffects(genotFitness = coop_no,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = coop_no,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

First plot
eag <- evalAllGenotypes(game_no,

spPopSizes = c(WT = 10, C = 10, D = 0, P = 0,
"C, D" = 10, "C, P" = 1,
"D, P" = 0, "C, D, P" = 0))[c(1, 2, 5, 6),]

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

369

plot(eag)

C

WT

C, D

C, P

0.7

0.8

0.9

1.0

B
ir

th

Local
max/min

a

a

Peak

Sink

Change

Gain

Loss

Neutral

Simulation
gamesimul_no <- oncoSimulIndiv(game_no,

model = "McFL",
onlyCancer = FALSE,
finalTime = 35,
mu = 0.01,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

Second plot
plot(gamesimul_no, show = "genotypes", type = "line",

col = c("blue", "red", "green", "purple"), ylim = c(20, 50000),
thinData = TRUE)

370

0 5 10 15 20 25 30 35

20
10

0
50

0
50

00
50

00
0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
C
C, D
C, P

Third plot
plot(gamesimul_no, show = "genotypes")

The resulting plots show that D cells are highly benefited by the second most common
subclone activity (C cells), which is a cooperator. On the other hand, subclone P
has a lower fitness value because of the GF cost. However, as we can see in the first
plot, a small number of clones remain and survive.

15.2.2 Scenario with GF as target for chemotherapy

In this simulation, we will add the drug effect (at time 50) to the fitness of each
subclone. We assume that this will cause a reduction of the fitness by the level of GF
dependency for each subclone. We now introduce some constants to make it more
accurate. As cooperators will keep producing GF, they will be less affected by the
sequestration of this molecule, so their coefficients will be greater than 1. In addition,
P also will be less affected since its production of GF is greater, so its coefficient will
be greater than the C one (1.5 > 1.1). On the other hand, as D is a defector, it will
be more affected by the treatment, so its coefficient will set to 0.9, smaller than 1.
Chemotherapy - GF Impairing

Effect of drug on GF availability
This term is multiplied by the fitness, and reduces the GF available
drug_eff <- 0.25

coop_fix <- data.frame(Genotype = c("WT", "C", "D", "P", "C,D", "C,P", "D,P", "C,D,P"),
Fitness = c(

wt_fitness, #WT
paste0("if (T>50) ", drug_eff, "* 1.2 *(", coop_fitness, ")",

371

"; else ", coop_fitness, ";"), #C
"0", #D
"0", #P
paste0("if (T>50) ", drug_eff, "*(", def_fitness, ")",

"; else ", def_fitness, ";"), #C,D
paste0("if (T>50) ", drug_eff, "* 1.5 * (", over_fitness, ")",

"; else ", over_fitness, ";"), #C,P **
"0", #D,P
"0" #C,D,P

),
stringsAsFactors = FALSE)

** The drug effect is 1.5 times the original because of the overproduction of GF and the
full availability of this molecule inside the producing subclone.

period_fix <- allFitnessEffects(genotFitness = coop_fix,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = coop_fix,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.

set.seed(2)
final_time <- 30 ## you'd want this longer; short for speed of vignette
simul_period_fix <- oncoSimulIndiv(period_fix,

model = "McFL",
onlyCancer = FALSE,
finalTime = final_time,
mu = 0.01,
initSize = 5000,
keepPhylog = FALSE,
seed = NULL)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

First plot
plot(simul_period_fix, show = "genotypes", type = "line",

col = c("blue", "red", "green", "purple"), ylim = c(20, 50000),
thinData = TRUE)

372

0 5 10 15 20 25 30

20
10

0
50

0
50

00
50

00
0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
C
C, D
C, P

Second plot
plot(simul_period_fix, show = "genotypes", ylim = c(20, 8000))

As expected by Archetti and Pienta Archetti & Pienta (2019), the tumour will
be biased towards P mutant. Even if its fitness is lower than C because of its
overproduction of GF, it will assure its survival and proliferation when chemotherapy
is applied. As a result of this, D does not completely disappear, but reduces
dramatically its number.

15.3 Examples using time dependent frequency definition
Here in this chapter we will comment some others approaches that can have this
funcionality: increasing or decreasing the fitness as therapeutic interventions, or slow
down the collapse of a subpopulation of cells.

15.3.1 Increasing fitness at a certain timepoint

It is possible to increase the fitness value by using T functionality. In the following
example we can see how fitness value in genotypes A and B increases when the
simulation time reaches a specific value. Since we have used the exponential model,
that is the reason why we observe some delay between the specified time and when
A or B populations start to grow.
dfT1 <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c("1",
"if (T>50) 1 + 2.35*f_; else 0.50;",
"if (T>200) 1 + 0.45*(f_ + f_1); else 0.50;"),

stringsAsFactors = FALSE)

373

afeT1 <- allFitnessEffects(genotFitness = dfT1,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = dfT1,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

set.seed(1)
simT1 <- oncoSimulIndiv(afeT1,

model = "Exp",
mu = 1e-5,
initSize = 1000,
finalTime = 500,
onlyCancer = FALSE,
seed = NULL)

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

plot(simT1, show = "genotypes", type = "line")

0 100 200 300 400 500

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

We can check if the fitness values have increased by evaluating the genotypes in the
simulation time intervals.
evalAllGenotypes(afeT1, spPopSizes = c(10,10,10), currentTime = 49)[c(2,3),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.

374

Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
2 A 0.5
3 B 0.5

evalAllGenotypes(afeT1, spPopSizes = c(10,10,10), currentTime = 51)[c(2,3),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
2 A 1.783
3 B 0.500

evalAllGenotypes(afeT1, spPopSizes = c(10,10,10), currentTime = 201)[c(2,3),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
2 A 1.783
3 B 1.300

15.3.2 Intervention at a certain point to stop subpopulation growth

On the other hand, besides using T functionality to create time intervals, we can also
use it as an intervention. In the following example we have used the functionality to
increase the fitness value of genotype A, and suddenly decreases it as an intervention,
where B population takes advantage to grow, since its fitness is greater now. When
the intervention elapses, we can see how A population starts to grow again and
outcompetes with wild-type population whose fitness does not change during the
simulation.
dfT2 <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c(
"1",
"if (T>0 and T<50) 0; else if (T>100 and T<150) 0.05; else 1.2 + 0.35*f_;",
"0.8 + 0.45*(f_)"

),
stringsAsFactors = FALSE)

375

afeT2 <- allFitnessEffects(genotFitness = dfT2,
frequencyDependentFitness = TRUE,
frequencyType = "rel")

Warning in allFitnessEffects(genotFitness = dfT2,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below

data(simT2)

if (FALSE) {
set.seed(1)
simT2 <- oncoSimulIndiv(afeT2,

model = "McFL",
mu = 1e-5,
initSize = 10000,
finalTime = 225,
onlyCancer = FALSE,
seed = NULL,
keepEvery = 1)

}
Had we not used keepEvery, we'd probably have used
plot(simT2, show = "genotypes", thinData = TRUE)
plot(simT2, show = "genotypes")

376

0 50 100 150 200

0
40

00
80

00
12

00
0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

In this case, just like above, we can evaluate the fitness in each time interval and
observe how fitness is differente in each one of them.
evalAllGenotypes(afeT2, spPopSizes = c(100,10,10), currentTime = 49)[c(2,3),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
2 A 0.000
3 B 1.175

evalAllGenotypes(afeT2, spPopSizes = c(100,10,10), currentTime = 51)[c(2,3),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
2 A 1.492
3 B 1.175

evalAllGenotypes(afeT2, spPopSizes = c(100,10,10), currentTime = 101)[c(2,3),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.

377

Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
2 A 0.050
3 B 1.175

evalAllGenotypes(afeT2, spPopSizes = c(100,10,10), currentTime = 201)[c(2,3),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
2 A 1.492
3 B 1.175

15.3.3 Intervention to slow down collapsing populations

We can use time dependent frequency functionality to slow down a collapsing
population by doing an intervention at a certain time interval. In this case, we
observe that genotype B has previously a higher fitness than genotype A (as long as
the number of cells is greater than 10), but at certain point we can reduce its fitness
in order to make A grow and reach B. However, after the time interval, B recovers
its initial fitness again and overtakes A, but eventually collapses due to there are no
more A’s around. This could be a way to slow down the collapse of a population
when there is a size dependency between them.
dfT3 <- data.frame(Genotype = c("WT", "A", "B"),

Fitness = c(
"1",
"1 + 0.2 * (n_2 > 10)",
"if (T>50 and T<80) 0.80; else 0.9 + 0.4 * (n_1 > 10)"),

stringsAsFactors = FALSE)

afeT3 <- allFitnessEffects(genotFitness = dfT3,
frequencyDependentFitness = TRUE,
frequencyType = "abs")

Warning in allFitnessEffects(genotFitness = dfT3,
frequencyDependentFitness = TRUE, : v2 functionality detected.
Adapting to v3 functionality.
All single-gene genotypes as input to to_genotFitness_std

For speed creating the vignette, we load
precomputed simulation data. Otherwise, run code below

378

data(simT3)

if (FALSE) {
set.seed(2)
simT3 <- oncoSimulIndiv(afeT3,

model = "McFLD",
mu = 1e-4,
initSize = 5000,
finalTime = 500,
onlyCancer = FALSE,
seed = NULL,
errorHitWallTime = FALSE,
errorHitMaxTries = FALSE,
keepEvery = 1)

}

plot(simT3, show = "genotypes", type = "line")

0 50 100 150 200 250

1
10

10
0

10
00

10
00

0

Time units

N
um

be
r

of
 c

el
ls

Genotypes

WT
A
B

We evaluate the fitness before and after genotype B has a higher and lower fitness
respectively, and finally ends up collapsing because the condition of “n_1 > 10” is
no longer accomplished.
evalAllGenotypes(afeT3, spPopSizes = c(10,10,10), currentTime = 30)[c(2,3),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects

379

to last version.
Genotype Fitness
2 A 1.0
3 B 0.9

evalAllGenotypes(afeT3, spPopSizes = c(11,11,11), currentTime = 79)[c(2,3),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
2 A 1.2
3 B 0.8

evalAllGenotypes(afeT3, spPopSizes = c(11,11,11), currentTime = 81)[c(2,3),]
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Warning in match_spPopSizes(spPopSizes, fmEffects): spPopSizes
unnamed: cannot check genotype names.
Using old version of fitnessEffects. Transforming fitnessEffects
to last version.
Genotype Fitness
2 A 1.2
3 B 1.3

380

16 Measures of evolutionary predictability and
genotype diversity

Several measures of evolutionary predictability have been proposed in the literature
(see, e.g., Szendro, Franke, et al. (2013) and references therein). We provide two,
Lines of Descent (LOD) and Path of the Maximum (POM), following Szendro, Franke,
et al. (2013); we also provide a simple measure of diversity of the actual genotypes
sampled.

In Szendro, Franke, et al. (2013) “(. . .) paths defined as the time ordered sets of
genotypes that at some time contain the largest subpopulation” are called “Path of
the Maximum” (POM) (see their p. 572). In our case, POM are obtained by finding
the clone with largest population size whenever we sample and, thus, the POMs will
be affected by how often we sample (argument sampleEvery), since we are running
a continuous time process.

Szendro, Franke, et al. (2013) also define Lines of Descent (LODs) which “(. . .)
represent the lineages that arrive at the most populated genotype at the final time”.
In that same page (572) they provide the details on how the LODs are obtained.
Starting with version 2.9.2 of OncoSimulR I only provide an implementation where a
single LOD per simulation is returned, with the same meaning as in Szendro, Franke,
et al. (2013).

To briefly show some output, we will use again the 5.5 example.
pancr <- allFitnessEffects(

data.frame(parent = c("Root", rep("KRAS", 4), "SMAD4", "CDNK2A",
"TP53", "TP53", "MLL3"),

child = c("KRAS","SMAD4", "CDNK2A",
"TP53", "MLL3",
rep("PXDN", 3), rep("TGFBR2", 2)),

s = 0.05, sh = -0.3, typeDep = "MN"))

pancr16 <- oncoSimulPop(16, pancr,
model = "Exp", onlyCancer = TRUE,
mc.cores = 2)

Look a the first POM
str(POM(pancr16)[1:3])
List of 3
$: chr [1:2] "" "KRAS"
$: chr [1:2] "" "KRAS"
$: chr [1:2] "" "KRAS"

LOD(pancr16)[1:2]
[[1]]
[1] "" "KRAS"
##

381

[[2]]
[1] "" "KRAS"

The diversity of LOD (lod_single) and POM might or might not
be identical
diversityPOM(POM(pancr16))
[1] 0.2338

diversityLOD(LOD(pancr16))
[1] 0.2338

Show the genotypes and their diversity (which might, or might
not, differ from the diversity of LOD and POM)
sampledGenotypes(samplePop(pancr16))
##
Subjects by Genes matrix of 16 subjects and 7 genes.
Genotype Freq
1 KRAS 15
2 KRAS, SMAD4 1
##
Shannon's diversity (entropy) of sampled genotypes: 0.2338

Beware, however, that if you use multiple initial mutants (section 6.7) the LOD
function will probably not do what you want. It is not even clear that the LOD is
well defined in this case. We are working on this.

382

17 Generating random DAGs for restrictions
You might want to randomly generate DAGs like those often found in the literature
on Oncogenetic trees et al. Function simOGraph might help here.
No seed fixed, so reruns will give different DAGs.
(a1 <- simOGraph(10))
Root 1 2 3 4 5 6 7 8 9 10
Root 0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0
2 0 0 0 0 1 1 0 0 0 0 0
3 0 0 0 0 0 0 1 0 1 0 1
4 0 0 0 0 0 0 0 0 0 1 0
5 0 0 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0

library(graph) ## for simple plotting
plot(as(a1, "graphNEL"))

Root

12 3

4 5 6

7

8

9 10

Once you obtain the adjacency matrices, it is for now up to you to convert them
into appropriate posets or fitnessEffects objects.

Why this function? I searched for, and could not find any that did what I wanted,

383

in particular bounding the number of parents, being able to specify the approximate
depth15 of the graph, and optionally being able to have DAGs where no node is
connected to another both directly (an edge between the two) and indirectly (there
is a path between the two through other nodes). So I wrote my own code. The code
is fairly simple to understand (all in file generate-random-trees.R). I would not
be surprised if this way of generating random graphs has been proposed and named
before; please let me know, best if with a reference.

Should we remove direct connections if there are indirect? Or, should we set
removeDirectIndirect = TRUE? Setting removeDirectIndirect = TRUE is basi-
cally asking for the transitive reduction of the generated DAG. Except for Farahani
& Lagergren (2013) and Ramazzotti et al. (2015), none of the DAGs I’ve seen in the
context of CBNs, Oncogenetic trees, etc, include both direct and indirect connections
between nodes. If these exist, reasoning about the model can be harder. For example,
with CBN (AND or CMPN or monotone relationships) adding a direct connection
makes no difference iff we assume that the relationships encoded in the DAG are
fully respected (e.g., all sh = −∞). But it can make a difference if we allow for
deviations from the monotonicity, specially if we only check for the satisfaction of the
presence of the immediate ancestors. And things get even trickier if we combine XOR
with AND. Thus, I strongly suggest you leave the default removeDirectIndirect
= TRUE. If you change it, you should double check that the fitnesses of the possible
genotypes are what you expect. In fact, I would suggest that, to be sure you get what
you think you should get, you convert the fitness from the DAG to a fitness table,
and pass that to the simulations, and this requires using non-exposed user functions;
to give you an idea, this could work (but you’ve been warned: this is dangerous!)
g2 <- simOGraph(4, out = "rT", removeDirectIndirect = FALSE)

fe_from_d <- allFitnessEffects(g2)
fitness_d <- evalAllGenotypes(fe_from_d)

fe_from_t <- allFitnessEffects(genotFitness =
OncoSimulR:::allGenotypes_to_matrix(fitness_d))

Compare
fitness_d
(fitness_t <- evalAllGenotypes(fe_from_t))

identical(fitness_d, fitness_t)

... but to be safe use fe_from_t as the fitnessEffects object for simulations

15Where depth is defined in the usual way to mean smallest number of nodes —or edges— to
traverse to get from the bottom to the top of the DAG.

384

https://en.wikipedia.org/wiki/Transitive_reduction

18 FAQ, odds and ends

18.1 What we mean by “clone”; and “I want clones disre-
garding passengers”

In this vignette we often use “clone” or “genotype” interchangeably. A clone denotes
a set of cells that have identical genotypes. So if you are using a fitness specification
with four genes (i.e., your genome has only four loci), there can be up to 16 = 24

different genotypes or clones. Any two entities that differ in the genotype are different
clones. And this applies regardless of whether or not you declare that some genes
(loci) are drivers or not. So if you have four genes, it does not matter whether only
the first or all four are regarded as drivers; you will always have at most 16 different
clones or 16 different genotypes. Of course you can arrive at the same clone/genotype
by different routes. Just think about loci A and B in our four-loci genome, and how
you can end up with a cell with both A and B mutated.

Analogously, if you have 100 genes, 10 drivers and 90 passengers, you can have up to
2100 different clones or genotypes. Sure, one cell might have driver A mutated and
passenger B mutated, and another cell might have driver A mutated and passenger
C mutated. So if you only look at drivers you might be tempted to say that they are
“the same clone for all practical purposes”; but they really are not the same clone as
they differ in their genotype and this makes a lot of difference computationally.

If you want summaries of simulations that collapse over some genes (say, some
“passengers”, the 90 passengers we just mentioned) look at the help for samplePop,
argument geneNames. This would allow you, for instance, to look at the diversity of
clones/genotypes, considering as identical those genotypes that only differ in genes
you deem relevant; something similar to defining a “drivers’ clone” as the set formed
from the union of all sets of cells that have identical genotype with respect to only
the drivers (so that in the example of “A, B” and “A, C” just mentioned both cells
would be considered “the same clone” as they only differ with respect to passengers).
However, this “disregard some genes” only applies to summaries of simulations once
we are done simulating data. OncoSimulR will always track clones, as defined above,
regardless of whether many of those clones have the same genotype if you were to
only focus on driver genes; see also section 18.2.

Labeling something as a “driver”, therefore, does not affect what we mean by clone.
Yes, labeling something as a driver can affect when you stop simulations if you use
detectionDrivers as a stopping mechanism (see section 6.3). But, again, this has
nothing to do with the definition of “clone”.

If this is all obvious to you, ignore it. I am adding it here because I’ve seen
strange misunderstandings that eventually could be traced to the apparently multiple
meanings of clone. (And to make the story complete, Mather et al. (2012) use the
expression “class” —e.g., Algorithm 4 in the paper, Algorithm 5 in the supplementary
material).

385

18.2 Does OncoSimulR keep track of individuals or of clones?
And how can it keep track of such large populations?

OncoSimulR keeps track of clones, where a clone is a set of cells that are genet-
ically identical (note that this means completely identical over the whole set of
genes/markers you are using; see section 18.1). We do not need to keep track
of individual cells because, for all purposes, and since we do not consider spatial
structure, two or more cells that are genetically identical are interchangeable. This
means, for instance, that the computational cost of keeping a population of a single
clone with 1 individual or with 109 individuals is exactly the same: we just keep
track of the genotype and the number of cells. (Sure, it is much more likely we will
see a mutation soon in a clone with 109 cells than in a clone with 1, but that is a
different issue.)

Of course, the entities that die, reproduce, and mutate are individual cells. This
is of course dealt with by tracking clones (as is clearly shown by Algorithms 4 and
5 in Mather et al. (2012)). Tracking individuals, as individuals, would provide
no advantage, but would increase the computational burden by many orders of
magnitude.

18.2.1 sampleEvery, keepPhylog, and pruning

At each sampling time (where sampleEvery determines the time units between
sampling times) the abundance of all the clones with number of cells > 0 is recorded.
This is the structure that at the end of the run is converted into the pops.by.time
matrix.

Now, some clones might arise from mutation between successive population samples
but these clones might be extinct by the time we take a population sample. These
clones do not appear in the pops.by.time matrix because, as we just said, they have
0 cells at the time of sampling. Of course, some of these clones might appear again
later and reach a size larger than 0 at some posterior sampling time; it is at this time
when this/these clone(s) will appear in the pops.by.time matrix. This pruning of
clones with 0 cells can allow considerable savings in computing time (OncoSimulR
needs to track the genotype of clones, their population sizes, their birth, death, and
mutation rates, their next mutation time and the last time they were updated and
thus it is important that we only loop over structures with information that is really
needed).

However, we still need to track clones as clones, not simply as classes such as “number
of mutated genes”. Therefore, very large genomes can represent a problem if they
lead to the creation and tracking of many different clones (even if they have the
same number of mutated genes), as we have seen, for instance, in section 2.3. In this
case, programs that only keep track of numbers of mutated genes or of drivers, not
individual clones, can of course achieve better speed.

What about the genealogy? If you ask OncoSimulR to keep track of the complete
parent-child relationships (keepPhylog = TRUE), you might see in the genealogy
clones that are not present in pops.by.time if these are clones that never had a

386

population size larger than 0 at any sampling time. To give an example, suppose that
we will take population samples at times 0, 1, and 2. Clone A, with a population
size larger than 0 at time 1, gives rise at time 1.5 to clone B; clone B then gives
rise to clone C at time 1.8. Finally, suppose that at time 2 only clone C is alive. In
other words, when we carry out the update of the population with Algorithm 5 from
Mather et al. (2012), clones A and B have size 0. Now, at time 1 clones B and C did
not yet exist, and clone B is never alive at times 1 or 2. Thus, clone B is not present
in pops.by.time. But we cannot remove clone B from our genealogy if we want to
reflect the complete genealogy of C. Thus, pops.by.time will show only clones A
and C (not B) but the complete genealogy will show clones A, B, C (and will show
that B appeared from A at time 1.5 and C appeared from B at time 1.8). Since
function plotClonePhylog offers a lot of flexibility with respect to what clones to
show depending on their population sizes at different times, you can prevent being
shown B, but its existence is there should you need it (see also 2.3.5).

18.3 Dealing with errors in “oncoSimulPop”
When running OncoSimulR under Windows mclapply does not use multiple cores,
and errors from oncoSimulPop are reported directly. For example:
This code will only be evaluated under Windows
if(.Platform$OS.type == "windows")

try(pancrError <- oncoSimulPop(10, pancr,
initSize = 1e-5,
onlyCancer = TRUE,
detectionSize = 1e7,
keepEvery = 10,

mc.cores = 2))

Under POSIX operating systems (e.g., GNU/Linux or Mac OSX) oncoSimulPop can
ran parallelized by calling mclapply. Now, suppose you did something like
Do not run under Windows
if(.Platform$OS.type != "windows")

pancrError <- oncoSimulPop(10, pancr,
initSize = 1e-5,
onlyCancer = TRUE,
detectionSize = 1e7,
keepEvery = 10,
mc.cores = 2)

Warning in mclapply(seq.int(Nindiv), function(x) oncoSimulIndiv(fp
= fp, : all scheduled cores encountered errors in user code

The warning you are seeing tells you there was an error in the functions called by
mclapply. If you check the help for mclpapply you’ll see that it returns a try-error
object, so we can inspect it. For instance, we could do:

387

pancrError[[1]]

But the output of this call might be easier to read:
pancrError[[1]][1]

And from here you could see the error that was returned by oncoSimulIndiv:
initSize < 1 (which is indeed true: we pass initSize = 1e-5).

18.4 Whole tumor sampling, genotypes, and allele counts:
what gives? And what about order?

You are obtaining genotypes, regardless of order. When we use “whole tumor
sampling”, it is the frequency of the mutations in each gene that counts, not the
order. So, for instance, “c, d” and “c, d” both contribute to the counts of “c” and
“d”. Similarly, when we use single cell sampling, we obtain a genotype defined in
terms of mutations, but there might be multiple orders that give this genotype. For
example, d > c and c > d both give you a genotype with “c” and “d” mutated, and
thus in the output you can have two columns with both genes mutated.

18.5 Doesn’t the BNB algorithm require small mutation
rates for it to be advantageous?

As discussed in the original paper by Mather et al. (2012) (see also their supple-
mentary material), the BNB algorithm can achieve considerable speed advantages
relative to other algorithms especially when mutation events are rare relative to birth
and death events; the larger the mutation rate, the smaller the gains compared to
other algorithms. As mentioned in their supplementary material (see p.5) “Note
that the ‘cost’ of each step in BNB is somewhat higher than in SSA [SSA is the
original Gillespie’s Stochastic Simulation Algorithm] since it requires generation of
several random numbers as compared to only two uniform random numbers for SSA.
However this cost increase is small compared with significant benefits of jumping
over birth and death reactions for the case of rare mutations.”

Since the earliest versions, OncoSimulR has provided information to assess these
issues. The output of function oncoSimulIndiv includes a list called “other” that
itself includes two lists named “minDMratio” and “minBMratio”, the smallest ratio,
over all simulations, of death rate to mutation rate or birth rate to mutation rate,
respectively. As explained above, the BNB algorithm thrives when those are large.
Note, though, we say “it thrives”: these ratios being large is not required for the
BNB algorithm to be an exact simulation algorithm; these ratios being large make
BNB comparatively much faster than other algorithms.

388

18.6 Can we use the BNB algorithm with state-dependent
birth or death rates?

As discussed in the original paper by Mather et al. (2012) (see sections 2.6 and 3.2
of the paper and section E of the supplementary material), the BNB algorithm can
be used as an approximate stochastic simulation algorithm “(. . .) with non-constant
birth, death, and mutation rates by evolving the system with a BNB step restricted
to a short duration t.” (p. 9 in supplementary material). The justification is that
“(. . .) the propensities for reactions can be considered approximately constant during
some short interval.” (p. 1234). This is the reason why, when we use McFarland’s
model, we set a very short sampleEvery. In addition, the output of the simulation
functions contains the simple summary statistic errorMF that can be used to assess
the quality of the approximation16.

Note that, as the authors point out, approximations are common with stochastic
simulation algorithms when there is density dependence, but the advantage of the
BNB algorithm compared to, say, most tau-leap methods is that clones of different
population sizes are treated uniformly. Mather et al. (2012) further present results
from simulations comparing the BNB algorithm with the original direct SSA method
and the tau-leaps (see their Fig. 5), which shows that the approximation is very
accurate as soon as the interval between samples becomes reasonably short.

18.7 Sometimes I get exceptions when running with mutator
genes

Yes, sure, the following will cause an exception; this is similar to the example used
in 1.3.4 but there is one crucial difference:
sd <- 0.1 ## fitness effect of drivers
sm <- 0 ## fitness effect of mutator
nd <- 20 ## number of drivers
nm <- 5 ## number of mutators
mut <- 50 ## mutator effect THIS IS THE DIFFERENCE

fitnessGenesVector <- c(rep(sd, nd), rep(sm, nm))
names(fitnessGenesVector) <- 1:(nd + nm)

16Death rates are affected by density dependence and, thus, it is on the death rates where the
approximation that they are constant over a short interval plays a role. Thus, we examine how
large the difference between successive death rates is. More precisely, let A and C denote two
successive sampling periods, with DA = log(1+NA/K) and DC = log(1+NC/K) their death rates.
errorMF_size stores the largest abs(DC − DA) between any two sampling periods ever seen during
a simulation. errorMF stores the largest abs(DC − DA)/DA. Additionally, a simple procedure to
use is to run the simulations with different values of sampleEvery, say the default value of 0.025
and values that are 10, 20, and 50 times larger or smaller, and assess their effects on the output of
the simulations and the errorMF statistic itself. You can check that using a sampleEvery much
smaller than 0.025 rarely makes any difference in errorMF or in the simulation output (though
it increases computing time significantly). And, just for the fun of it, you can also check that
using huge values for sampleEvery can lead to trouble and will be manifested too in the simulation
output with large and unreasonable jumps in total population sizes and sudden extinctions.

389

mutatorGenesVector <- rep(mut, nm)
names(mutatorGenesVector) <- (nd + 1):(nd + nm)

ft <- allFitnessEffects(noIntGenes = fitnessGenesVector,
drvNames = 1:nd)

mt <- allMutatorEffects(noIntGenes = mutatorGenesVector)

Now, simulate using the fitness and mutator specification. We fix the number of
drivers to cancer, and we stop when those numbers of drivers are reached. Since we
only care about the time it takes to reach cancer, not the actual trajectories, we set
keepEvery = NA:
ddr <- 4
set.seed(2)
RNGkind("L'Ecuyer-CMRG")
st <- oncoSimulPop(4, ft, muEF = mt,

detectionDrivers = ddr,
finalTime = NA,
detectionSize = NA,
detectionProb = NA,
onlyCancer = TRUE,
keepEvery = NA,
mc.cores = 2, ## adapt to your hardware
seed = NULL) ## for reproducibility

set.seed(NULL) ## return things to their "usual state"

What happened? That you are using five mutator genes, each with an effect of
multiplying by 50 the mutation rate. So the genotype with all those five genes
mutated will have an increased mutation rate of 505 = 312500000. If you set the
mutation rate to the default of 1e−6 you have a mutation rate of 312 which makes no
sense (and leads to all sorts of numerical issues down the road and an early warning).

Oh, but you want to accumulate mutator effects and have some, or the early ones,
have a large effects and the rest progressively smaller effects? You can do that using
epistatic effects for mutator effects.

18.8 What are good values of sampleEvery?
First, we need to differentiate between the McFarland and the exponential models.
If you use the McFarland model, you should read section 18.6 but, briefly, the small
default is probably a good choice.

With the exponential model, however, simulations can often be much faster if
sampleEvery is large. How large? As large as you can make it. sampleEvery
should not be larger than your desired keepEvery, where keepEvery determines the
resolution or granularity of your samples (i.e., how often you take a snapshot of the
population). If you only care about the final state, then set keepEvery = NA.

390

The other factors that affects choosing a reasonable sampleEvery are mutation rate
and population size. If population growth is very fast or mutation rate very large, you
need to sample frequently to avoid the “Recoverable exception ti set to DBL_MIN.
Rerunning.” issue (see discussion in section 2.4).

18.9 mutationPropGrowth and is mutation associated to
division?

With BNB mutation is actually “mutate after division”: p. 1232 of Mather et al.,
2012 explains: “(. . .) mutation is simply defined as the creation and subsequent
departure of a single individual from the class”. Thus, if we want individuals of
clones/genotypes/populations that divide faster to also produce more mutants per
unit time (per individual) we have to set mutationPropGrowth = TRUE.

When mutationPropGrowth = FALSE, two individuals, one from a fast growing
genotype, and the other from a slow growing genotype, would be “emiting” (giving
rise to) different numbers of identical (non-mutated) descendants per unit time, but
they would be giving rise to the same number of mutated descendants per unit time.

There is an example in Mather et al, p. 1234, section 3.1.1 where “Mutation rate is
proportional to growth rate (faster growing species also mutate faster)”.

Of course, this only makes sense in models where birth rate changes.

18.10 Messages about ‘Using old version of fitnessEffects’
and ‘v2 functionality detected. Adapting to v3 func-
tionality.’

New functionality has been added that allows us to specify birth and death separately,
including making each frequency dependent. See, for example, 12. We still allow the
old specification where “fitness” actually meant birth rates, and death was fixed for
each model (and the other way around for the Bozic model). You can continue using
the old specification. And we continue to do so in most of this vignette (the plan is
to eventually update all examples).

391

19 Session info and packages used
This is the information about the version of R and packages used:
sessionInfo()
R version 4.4.1 Patched (2024-06-25 r86847)
Platform: x86_64-pc-linux-gnu
Running under: Debian GNU/Linux trixie/sid
##
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-openmp/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-openmp/libopenblasp-r0.3.27.so; LAPACK version 3.12.0
##
Random number generation:
RNG: L'Ecuyer-CMRG
Normal: Inversion
Sample: Rejection
##
locale:
[1] LC_CTYPE=en_GB.utf8 LC_NUMERIC=C
[3] LC_TIME=en_GB.utf8 LC_COLLATE=en_GB.utf8
[5] LC_MONETARY=en_GB.utf8 LC_MESSAGES=en_GB.utf8
[7] LC_PAPER=en_GB.utf8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_GB.utf8 LC_IDENTIFICATION=C
##
time zone: Europe/Madrid
tzcode source: system (glibc)
##
attached base packages:
[1] parallel stats graphics grDevices utils datasets
[7] methods base
##
other attached packages:
[1] igraph_2.0.3 graph_1.83.0 BiocGenerics_0.51.0
[4] OncoSimulR_4.7.1 pander_0.6.5 bookdown_0.39
[7] BiocStyle_2.33.1 rmarkdown_2.27
##
loaded via a namespace (and not attached):
[1] utf8_1.2.4 generics_0.1.3 gtools_3.9.5
[4] lattice_0.22-6 stringi_1.8.4 digest_0.6.36
[7] magrittr_2.0.3 evaluate_0.24.0 grid_4.4.1
[10] RColorBrewer_1.1-3 fastmap_1.2.0 Matrix_1.7-0
[13] ggrepel_0.9.5 tinytex_0.51 BiocManager_1.30.23
[16] fansi_1.0.6 scales_1.3.0 Rgraphviz_2.49.0
[19] smatr_3.4-8 abind_1.4-5 cli_3.6.3
[22] crayon_1.5.3 rlang_1.1.4 munsell_0.5.1

392

[25] withr_3.0.0 yaml_2.3.8 tools_4.4.1
[28] dplyr_1.1.4 colorspace_2.1-0 ggplot2_3.5.1
[31] vctrs_0.6.5 R6_2.5.1 png_0.1-8
[34] stats4_4.4.1 lifecycle_1.0.4 stringr_1.5.1
[37] car_3.1-2 pkgconfig_2.0.3 pillar_1.9.0
[40] gtable_0.3.5 data.table_1.15.4 glue_1.7.0
[43] Rcpp_1.0.12 xfun_0.45 tibble_3.2.1
[46] tidyselect_1.2.1 highr_0.11 knitr_1.47
[49] farver_2.1.2 htmltools_0.5.8.1 carData_3.0-5
[52] compiler_4.4.1

19.1 Time it takes to build the vignette and most time
consuming chunks

Time to build the vignette:

[1] "2.56609760920207 minutes"
The 15 most time consuming chunks
sort(unlist(all_times), decreasing = TRUE)[1:15]
prbau003bb fdf2d rps5
2.579 2.278 2.118
fdf2c sps3b exampleSimulDeath
2.083 2.051 1.826
example5scen1 switchChemo1 timefdf1
1.825 1.820 1.689
example5scen2 smyeloc1v23 AdaptiveTherapy3
1.654 1.594 1.593
wasthis111 fdf1c relar3a
1.592 1.585 1.534

paste("Sum times of chunks = ", sum(unlist(all_times))/60, " minutes")
[1] "Sum times of chunks = 1.39125513235728 minutes"

393

20 Funding
Supported by: grant BFU2015-67302-R (MINECO/FEDER, EU) funded
by MCIN/AEI/10.13039/501100011033 and by ERDF A way of mak-
ing Europe to R. Diaz-Uriarte; grant PID2019-111256RB-I00 funded by
MCIN/AEI/10.13039/501100011033 to R. Diaz-Uriarte; “Beca de Colaboración”
at the Universidad Autónoma de Madrid from Spanish Ministry of Education,
2017-18, to S. Sánchez Carrillo; Comunidad de Madrid’s PEJ16/MED/AI-1709 and
PEJ-2019-AI/BMD-13961 to R. Diaz-Uriarte.

21 References
Archetti, M. (2013). Evolutionary game theory of growth factor production: Impli-

cations for tumour heterogeneity and resistance to therapies. British Journal of
Cancer, 109 (4), 1056–1062. https://doi.org/10.1038/bjc.2013.336

Archetti, M., & Pienta, K. J. (2019). Cooperation among cancer cells: Applying
game theory to cancer. Nature Reviews Cancer, 19 (2), 110–117. https://doi.org/
10.1038/s41568-018-0083-7

Ashworth, A., Lord, C. J., & Reis-Filho, J. S. (2011). Genetic interactions in cancer
progression and treatment. Cell, 145 (1), 30–38. https://doi.org/10.1016/j.cell.2
011.03.020

Barton, S., K. Y., & Sendova, T. (2018). Modeling of breast cancer through
evolutionary game theory. Mathematical Sciences Publishers, 11 (4). https:
//doi.org/10.2140/involve.2018.11.541

Basanta, D., & Deutsch, A. (2008). A Game Theoretical Perspective on the Somatic
Evolution of cancer. In Selected Topics in Cancer Modeling: Genesis, Evolution,
Immune Competition, and Therapy (pp. 1–16). Birkhäuser Boston. https:
//doi.org/10.1007/978-0-8176-4713-1_5

394

https://doi.org/10.1038/bjc.2013.336
https://doi.org/10.1038/s41568-018-0083-7
https://doi.org/10.1038/s41568-018-0083-7
https://doi.org/10.1016/j.cell.2011.03.020
https://doi.org/10.1016/j.cell.2011.03.020
https://doi.org/10.2140/involve.2018.11.541
https://doi.org/10.2140/involve.2018.11.541
https://doi.org/10.1007/978-0-8176-4713-1_5
https://doi.org/10.1007/978-0-8176-4713-1_5

Basanta, D., Scott, J. G., Fishman, M. N., Ayala, G., Hayward, S. W., & Anderson, A.
R. A. (2012). Investigating prostate cancer tumour–stroma interactions: Clinical
and biological insights from an evolutionary game. Br J Cancer, 106 (1), 174–181.
https://doi.org/10.1038/bjc.2011.517

Bauer, B., Siebert, R., & Traulsen, A. (2014). Cancer initiation with epistatic
interactions between driver and passenger mutations. Journal of Theoretical
Biology, 358, 52–60. https://doi.org/10.1016/j.jtbi.2014.05.018

Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K. W., Velculescu,
V. E., Vogelstein, B., & Nowak, M. A. (2007). Genetic progression and the
waiting time to cancer. PLoS Computational Biology, 3 (11), e225. https:
//doi.org/10.1371/journal.pcbi.0030225

Beerenwinkel, N., Eriksson, N., & Sturmfels, B. (2007). Conjunctive Bayesian
networks. Bernoulli, 13 (4), 893–909. https://doi.org/10.3150/07-BEJ6133

Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R.,
Kinzler, K. W., Vogelstein, B., & Nowak, M. A. (2010). Accumulation of
driver and passenger mutations during tumor progression. Proceedings of the
National Academy of Sciences of the United States of America, 107, 18545–18550.
https://doi.org/10.1073/pnas.1010978107

Brouillet, S., Annoni, H., Ferretti, L., & Achaz, G. (2015). MAGELLAN: A tool to
explore small fitness landscapes. bioRxiv, 031583. https://doi.org/10.1101/031583

Carvajal-Rodriguez, A. (2010). Simulation of genes and genomes forward in time.
Current Genomics, 11 (1), 58–61. https://doi.org/10.2174/138920210790218007

Datta, R. S., Gutteridge, A., Swanton, C., Maley, C. C., & Graham, T. A. (2013).
Modelling the evolution of genetic instability during tumour progression. Evolu-
tionary Applications, 6 (1), 20–33. https://doi.org/10.1111/eva.12024

Desper, R., Jiang, F., Kallioniemi, O. P., Moch, H., Papadimitriou, C. H., & Schäffer,
A. A. (1999). Inferring tree models for oncogenesis from comparative genome
hybridization data. J Comput Biol, 6 (1), 37–51. http://view.ncbi.nlm.nih.gov/
pubmed/10223663

Diaz-Uriarte, R. (2015). Identifying restrictions in the order of accumulation of
mutations during tumor progression: effects of passengers, evolutionary models,
and sampling. BMC Bioinformatics, 16 (41), 0–36. https://doi.org/doi:10.1186/
s12859-015-0466-7

Doebeli, M., Ispolatov, Y., & Simon, B. (2017). Towards a mechanistic foundation
of evolutionary theory. eLife, 6, e23804. https://doi.org/10.7554/eLife.23804

Farahani, H., & Lagergren, J. (2013). Learning oncogenetic networks by reducing to
mixed integer linear programming. PloS One, 8 (6), e65773. https://doi.org/10.1
371/journal.pone.0065773

Ferretti, L., Schmiegelt, B., Weinreich, D., Yamauchi, A., Kobayashi, Y., Tajima, F.,
& Achaz, G. (2016). Measuring epistasis in fitness landscapes: The correlation
of fitness effects of mutations. Journal of Theoretical Biology, 396, 132–143.
https://doi.org/10.1016/j.jtbi.2016.01.037

Franke, J., Klözer, A., Visser, J. A. G. M. de, & Krug, J. (2011). Evolutionary
Accessibility of Mutational Pathways. PLoS Comput Biol, 7 (8), e1002134. https:
//doi.org/10.1371/journal.pcbi.1002134

Gerrish, P. J., Colato, A., Perelson, A. S., & Sniegowski, P. D. (2007). Complete

395

https://doi.org/10.1038/bjc.2011.517
https://doi.org/10.1016/j.jtbi.2014.05.018
https://doi.org/10.1371/journal.pcbi.0030225
https://doi.org/10.1371/journal.pcbi.0030225
https://doi.org/10.3150/07-BEJ6133
https://doi.org/10.1073/pnas.1010978107
https://doi.org/10.1101/031583
https://doi.org/10.2174/138920210790218007
https://doi.org/10.1111/eva.12024
http://view.ncbi.nlm.nih.gov/pubmed/10223663
http://view.ncbi.nlm.nih.gov/pubmed/10223663
https://doi.org/doi:10.1186/s12859-015-0466-7
https://doi.org/doi:10.1186/s12859-015-0466-7
https://doi.org/10.7554/eLife.23804
https://doi.org/10.1371/journal.pone.0065773
https://doi.org/10.1371/journal.pone.0065773
https://doi.org/10.1016/j.jtbi.2016.01.037
https://doi.org/10.1371/journal.pcbi.1002134
https://doi.org/10.1371/journal.pcbi.1002134

genetic linkage can subvert natural selection. Proceedings of the National Academy
of Sciences of the United States of America, 104 (15), 6266–6271. https://doi.or
g/10.1073/pnas.0607280104

Gerstung, M., Baudis, M., Moch, H., & Beerenwinkel, N. (2009). Quantifying
cancer progression with conjunctive Bayesian networks. Bioinformatics (Oxford,
England), 25 (21), 2809–2815. https://doi.org/10.1093/bioinformatics/btp505

Gerstung, M., Eriksson, N., Lin, J., Vogelstein, B., & Beerenwinkel, N. (2011). The
Temporal Order of Genetic and Pathway Alterations in Tumorigenesis. PLoS
ONE, 6 (11), e27136. https://doi.org/10.1371/journal.pone.0027136

Gerstung, M., Nakhoul, H., & Beerenwinkel, N. (2011). Evolutionary Games with
Affine Fitness Functions: Applications to Cancer. Dynamic Games and Applica-
tions, 1 (3), 370–385. https://doi.org/10.1007/s13235-011-0029-0

Gillespie, J. H. (1984). Molecular Evolution Over the Mutational Landscape. Evolu-
tion, 38 (5), 1116–1129. https://doi.org/10.2307/2408444

Gillespie, J. H. (1993). Substitution processes in molecular evolution. I. Uniform
and clustered substitutions in a haploid model. Genetics, 134 (3), 971–981.

Greene, D., & Crona, K. (2014). The changing geometry of a fitness landscape
along an adaptive walk. PLoS Computational Biology, 10 (5), e1003520. https:
//doi.org/10.1371/journal.pcbi.1003520

Hansen, E., & Read, A. F. (2020a). Cancer therapy: Attempt cure or manage drug
resistance? Evolutionary Applications, 13 (7), 1660–1672. https://doi.org/10.111
1/eva.12994

Hansen, E., & Read, A. F. (2020b). Modifying Adaptive Therapy to Enhance
Competitive Suppression. Cancers, 12 (12), 3556. https://doi.org/10.3390/cancer
s12123556

Hartman, J. L., Garvik, B., & Hartwell, L. (2001). Principles for the buffering
of genetic variation. Science (New York, N.Y.), 291 (5506), 1001–1004. https:
//doi.org/10.1126/science.291.5506.1001

Hjelm, M., Höglund, M., & Lagergren, J. (2006). New probabilistic network models
and algorithms for oncogenesis. J Comput Biol, 13 (4), 853–865. https://doi.org/
10.1089/cmb.2006.13.853

Hoban, S., Bertorelle, G., & Gaggiotti, O. E. (2011). Computer simulations: Tools for
population and evolutionary genetics. Nature Reviews. Genetics, 13 (2), 110–122.
https://doi.org/10.1038/nrg3130

Hothorn, T., Hornik, K., Wiel, M. A. van de, & Zeileis, A. (2006). A lego system for
conditional inference. The American Statistician, 60 (3), 257–263.

Hothorn, T., Hornik, K., Wiel, M. A. van de, & Zeileis, A. (2008). Implementing
a class of permutation tests: The coin package. Journal of Statistical Software,
28 (8), 1–23. http://www.jstatsoft.org/v28/i08/

Hurlbut, E., Ortega, E., Erovenko, I., & Rowell, J. (2018). Game Theoretical
Model of Cancer Dynamics with Four Cell Phenotypes. Games, 9 (3), 61. https:
//doi.org/10.3390/g9030061

Kaznatcheev, A., Vander Velde, R., Scott, J. G., & Basanta, D. (2017). Cancer
treatment scheduling and dynamic heterogeneity in social dilemmas of tumour
acidity and vasculature. Br J Cancer, 116 (6), 785–792. https://doi.org/10.1038/
bjc.2017.5

396

https://doi.org/10.1073/pnas.0607280104
https://doi.org/10.1073/pnas.0607280104
https://doi.org/10.1093/bioinformatics/btp505
https://doi.org/10.1371/journal.pone.0027136
https://doi.org/10.1007/s13235-011-0029-0
https://doi.org/10.2307/2408444
https://doi.org/10.1371/journal.pcbi.1003520
https://doi.org/10.1371/journal.pcbi.1003520
https://doi.org/10.1111/eva.12994
https://doi.org/10.1111/eva.12994
https://doi.org/10.3390/cancers12123556
https://doi.org/10.3390/cancers12123556
https://doi.org/10.1126/science.291.5506.1001
https://doi.org/10.1126/science.291.5506.1001
https://doi.org/10.1089/cmb.2006.13.853
https://doi.org/10.1089/cmb.2006.13.853
https://doi.org/10.1038/nrg3130
http://www.jstatsoft.org/v28/i08/
https://doi.org/10.3390/g9030061
https://doi.org/10.3390/g9030061
https://doi.org/10.1038/bjc.2017.5
https://doi.org/10.1038/bjc.2017.5

Kerr, B., Riley, M. A., Feldman, M. W., & Bohannan, B. J. M. (2002). Local
dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature,
418 (6894), 171–174. https://doi.org/10.1038/nature00823

Korsunsky, I., Ramazzotti, D., Caravagna, G., & Mishra, B. (2014). In-
ference of Cancer Progression Models with Biological Noise. 1–29.
http://arxiv.org/abs/1408.6032v1 http://biorxiv.org/content/ early/2014/08/25/00832

Krug, J. (2019). Accessibility percolation in random fitness landscapes.
arXiv:1903.11913 [Math, q-Bio]. http://arxiv.org/abs/1903.11913

Masliah, I. F. T. P. B. Y. S. L. C. M. H. M. A. M. S. H. K. O. P. J. X. -J. Y. E.
(2007). Dynamics of a-synuclein aggregation and inhibition of pore-like oligomer
development by b-synuclein. FEBS, 274 (7), 16. https://doi.org/10.1111/j.1742-
4658.2007.05733.x

Mather, W. H., Hasty, J., & Tsimring, L. S. (2012). Fast stochastic algorithm for
simulating evolutionary population dynamics. Bioinformatics (Oxford, England),
28 (9), 1230–1238. https://doi.org/10.1093/bioinformatics/bts130

Maynard Smith, J. M. (1982). Evolution and the theory of games. Cambridge Univ.
Press.

McFarland, C. D. (2014). The role of deleterious passengers in cancer [PhD thesis,
Harvard University]. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13070047

McFarland, C. D., Korolev, K. S., Kryukov, G. V., Sunyaev, S. R., & Mirny, L.
A. (2013). Impact of deleterious passenger mutations on cancer progression.
Proceedings of the National Academy of Sciences of the United States of America,
110 (8), 2910–2915. https://doi.org/10.1073/pnas.1213968110

McFarland, C. D., Mirny, L., & Korolev, K. S. (2014). A tug-of-war between driver
and passenger mutations in cancer and other adaptive processes. Proc Natl Acad
Sci U S A, 111 (42), 15138–15143. https://doi.org/10.1101/003053

Misra, N., Szczurek, E., & Vingron, M. (2014). Inferring the paths of somatic
evolution in cancer. Bioinformatics (Oxford, England), 30 (17), 2456–2463. https:
//doi.org/10.1093/bioinformatics/btu319

Moran, P. A. P. (1962). Statistical processes of evolutionary theory. Oxford University
Press.

Newton, P. K., & Ma, Y. (2019). Nonlinear adaptive control of competitive release
and chemotherapeutic resistance. Phys. Rev. E, 99, 022404. https://doi.org/10.1
103/PhysRevE.99.022404

Nowak, M. A. (2006). Evolutionary dynamics: Exploring the equations of life.
Belknap Press of Harvard University Press.

Ochs, I. E., & Desai, M. M. (2015). The competition between simple and complex
evolutionary trajectories in asexual populations. BMC Evolutionary Biology,
15 (1), 1–9. https://doi.org/10.1186/s12862-015-0334-0

Orr, H. A. (2002). The population genetics of adaptation: The adaptation of
dna sequences. Evolution, 56 (7), 1317–1330. https://doi.org/10.1554/0014-
3820(2002)056%5B1317:TPGOAT%5D2.0.CO;2

Ortmann, C. A., Kent, D. G., Nangalia, J., Silber, Y., Wedge, D. C., Grinfeld,
J., Baxter, E. J., Massie, C. E., Papaemmanuil, E., Menon, S., Godfrey, A.
L., Dimitropoulou, D., Guglielmelli, P., Bellosillo, B., Besses, C., Döhner, K.,
Harrison, C. N., Vassiliou, G. S., Vannucchi, A., . . . Green, A. R. (2015). Effect

397

https://doi.org/10.1038/nature00823
http://arxiv.org/abs/1408.6032v1%20http://biorxiv.org/content/%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20early/2014/08/25/00832
http://arxiv.org/abs/1903.11913
https://doi.org/10.1111/j.1742-4658.2007.05733.x
https://doi.org/10.1111/j.1742-4658.2007.05733.x
https://doi.org/10.1093/bioinformatics/bts130
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13070047
https://doi.org/10.1073/pnas.1213968110
https://doi.org/10.1101/003053
https://doi.org/10.1093/bioinformatics/btu319
https://doi.org/10.1093/bioinformatics/btu319
https://doi.org/10.1103/PhysRevE.99.022404
https://doi.org/10.1103/PhysRevE.99.022404
https://doi.org/10.1186/s12862-015-0334-0
https://doi.org/10.1554/0014-3820(2002)056%5B1317:TPGOAT%5D2.0.CO;2
https://doi.org/10.1554/0014-3820(2002)056%5B1317:TPGOAT%5D2.0.CO;2

of Mutation Order on Myeloproliferative Neoplasms. New England Journal of
Medicine, 372, 601–612. https://doi.org/10.1056/NEJMoa1412098

Otto, S. P., & Day, T. (2007). A biologist’s guide to mathematical modeling in ecology
and evolution. Princeton University Press.

Ramazzotti, D., Caravagna, G., Olde Loohuis, L., Graudenzi, A., Korsunsky, I.,
Mauri, G., Antoniotti, M., & Mishra, B. (2015). CAPRI: Efficient inference of
cancer progression models from cross-sectional data. Bioinformatics (Oxford,
England), 31 (18), 3016–3026. https://doi.org/10.1093/bioinformatics/btv296

Raphael, B. J., & Vandin, F. (2015). Simultaneous Inference of Cancer Pathways
and Tumor Progression from Cross-Sectional Mutation Data. Journal of Compu-
tational Biology, 22 (00), 250–264. https://doi.org/10.1089/cmb.2014.0161

Reiter, J., Bozic, I., Chatterjee, K., & Nowak, M. (2013). TTP: tool for
tumor progression. In N. Sharygina & H. Veith (Eds.), Computer aided
verification, lecture notes in computer science (pp. 101–106). Springer-
Verlag. http://link.springer.com/chapter/10.1007/ 978-3-642-39799-8_6
http://dx.doi.org/10.1007/ 978-3-642-39799-8_6 http://pub.ist.ac.at/ttp/

Sartakhti, J. S., Manshaei, M. H., Bateni, S., & Archetti, M. (2016). Evolutionary
Dynamics of Tumor-Stroma Interactions in Multiple Myeloma. PLOS ONE,
11 (12), e0168856. https://doi.org/10.1371/journal.pone.0168856

Szabo, A., & Boucher, K. M. (2008). Oncogenetic trees. In W.-Y. Tan & L. Hanin
(Eds.), Handbook of cancer models with applications (pp. 1–24). World Scientific.
http://www.worldscibooks.com/lifesci/6677.html

Szendro, I. G., Franke, J., Visser, J. A. G. M. de, & Krug, J. (2013). Predictability
of evolution depends nonmonotonically on population size. Proceedings of the
National Academy of Sciences, 110 (2), 571–576. https://doi.org/10.1073/pnas.1
213613110

Szendro, I. G., Schenk, M. F., Franke, J., Krug, J., & Visser, J. A. G. M. de. (2013).
Quantitative analyses of empirical fitness landscapes. Journal of Statistical
Mechanics: Theory and Experiment, 2013 (01), P01005. https://doi.org/10.1088/
1742-5468/2013/01/P01005

Tomlinson, I. P. (1997). Game-theory models of interactions between tumour cells.
European Journal of Cancer, 33 (9), 1495–1500. https://doi.org/10.1016/S0959-
8049(97)00170-6

Tomlinson, I. P., Novelli, M. R., & Bodmer, W. F. (1996). The mutation rate and
cancer. Proceedings of the National Academy of Sciences of the United States of
America, 93 (25), 14800–14803.

Weissman, D. B., Desai, M. M., Fisher, D. S., & Feldman, M. W. (2009). The rate
at which asexual populations cross fitness valleys. Theoretical Population Biology,
75 (4), 286–300. https://doi.org/10.1016/j.tpb.2009.02.006

Wu, A., & Ross, D. (2016). Evolutionary game between commensal and pathogenic
microbes in intestinal microbiota. Games, 7 (3). https://doi.org/10.3390/g70300
26

Yuan, X., Miller, D. J., Zhang, J., Herrington, D., & Wang, Y. (2012). An Overview
of Population Genetic Data Simulation. Journal of Computational Biology, 19 (1),
42–54. https://doi.org/10.1089/cmb.2010.0188

Zanini, F., & Neher, R. a. (2012). FFPopSim: An efficient forward simulation

398

https://doi.org/10.1056/NEJMoa1412098
https://doi.org/10.1093/bioinformatics/btv296
https://doi.org/10.1089/cmb.2014.0161
http://link.springer.com/chapter/10.1007/%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20978-3-642-39799-8/_6%20http://dx.doi.org/10.1007/%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20978-3-642-39799-8/_6%20http://pub.ist.ac.at/ttp/
http://link.springer.com/chapter/10.1007/%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20978-3-642-39799-8/_6%20http://dx.doi.org/10.1007/%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20978-3-642-39799-8/_6%20http://pub.ist.ac.at/ttp/
https://doi.org/10.1371/journal.pone.0168856
http://www.worldscibooks.com/lifesci/6677.html
https://doi.org/10.1073/pnas.1213613110
https://doi.org/10.1073/pnas.1213613110
https://doi.org/10.1088/1742-5468/2013/01/P01005
https://doi.org/10.1088/1742-5468/2013/01/P01005
https://doi.org/10.1016/S0959-8049(97)00170-6
https://doi.org/10.1016/S0959-8049(97)00170-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26216
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26216
https://doi.org/10.1016/j.tpb.2009.02.006
https://doi.org/10.3390/g7030026
https://doi.org/10.3390/g7030026
https://doi.org/10.1089/cmb.2010.0188

package for the evolution of large populations. Bioinformatics, 28 (24), 3332–
3333. https://doi.org/10.1093/bioinformatics/bts633

399

https://doi.org/10.1093/bioinformatics/bts633

	Introduction
	Key features of OncoSimulR
	What kinds of questions is OncoSimulR suited for?
	Examples of questions that can be addressed with OncoSimulR
	Recovering restrictions in the order of accumulation of mutations
	Sign epistasis and probability of crossing fitness valleys
	Predictability of evolution in complex fitness landscapes
	Mutator and antimutator genes
	Epistatic interactions between drivers and passengers in cancer and the consequences of order effects
	Epistatic interactions between drivers and passengers
	Consequences of order effects for cancer initiation

	Simulating evolution with frequency-dependent fitness

	Trade-offs and what is OncoSimulR not well suited for
	Random fitness landscapes, clonal competition, predictability, and the strong selection weak mutation (SSWM) regime
	Steps for using OncoSimulR
	Two quick examples of fitness specifications
	Citing OncoSimulR and other documentation
	HTML and PDF versions of the vignette

	Testing, code coverage, and other examples
	Versions

	Running time and space consumption of OncoSimulR
	Exp and McFL with ``detectionProb'' and pancreas example
	Changing fitness: s=0.1 and s=0.05

	Several ``common use cases'' runs
	Common use cases, set 1.
	Common use cases, set 2.

	Can we use a large number of genes?
	Exponential model with 10,000 and 50,000 genes
	Exponential, 10,000 genes, example 1
	Exponential, 10,000 genes, example 2
	Exponential, 50,000 genes, example 1
	Exponential, 50,000 genes, example 2
	Exponential, 50,000 genes, example 3
	Interlude: where is that 1 GB coming from?

	McFarland model with 50,000 genes; the effect of keepEvery
	McFarland, 50,000 genes, example 1
	McFarland, 50,000 genes, example 2
	McFarland, 50,000 genes, example 3
	McFarland, 50,000 genes, example 4
	McFarland, 50,000 genes, example 5
	McFarland, 50,000 genes, example 6

	Examples with s = 0.05
	The different consequences of keepEvery = NA in the Exp and McFL models
	Are we keeping the complete history (genealogy) of the clones?

	Population sizes \geq 10^{10}
	A summary of some determinants of running time and space consumption

	Specifying fitness effects
	Introduction to the specification of fitness effects
	Explicit mapping of genotypes to fitness
	How to specify fitness effects with the lego system

	Numeric values of fitness effects
	McFarland parameterization
	Death rate under the McFarland model

	No viability of clones and types of models

	Genes without interactions
	Using DAGs: Restrictions in the order of mutations as extended posets
	AND, OR, XOR relationships
	Fitness effects
	Extended posets
	DAGs: A first conjunction (AND) example
	DAGs: A second conjunction example
	DAGs: A semimonotone or ``OR'' example
	An ``XMPN'' or ``XOR'' example
	Posets: the three types of relationships

	Modules
	What does a module provide
	Specifying modules
	Modules and posets again: the three types of relationships and modules

	Order effects
	Order effects: three-gene orders
	Order effects and modules with multiple genes
	Order and modules with 325 genotypes
	Order effects and genes without interactions

	Epistasis
	Epistasis: two alternative specifications
	Epistasis with three genes and two alternative specifications
	Why can we specify some effects with a ``-''?
	Epistasis: modules

	I do not want epistasis, but I want modules!
	Synthetic viability
	A simple synthetic viability example
	Synthetic viability, non-zero fitness, and modules

	Synthetic mortality or synthetic lethality
	Possible issues with Bozic model
	Synthetic viability using Bozic model
	Numerical issues with death rates of 0 in Bozic model

	A longer example: Poset, epistasis, synthetic mortality and viability, order effects and genes without interactions, with some modules
	Homozygosity, heterozygosity, oncogenes, tumor suppressors
	Gene-specific mutation rates
	Mutator genes

	Plotting fitness landscapes
	Specifying fitness effects: some examples from the literature
	Bauer et al., 2014
	Using a DAG
	Specifying fitness of genotypes directly

	Misra et al., 2014
	Example 1.a
	Example 1.b
	Example 1.c

	Ochs and Desai, 2015
	Weissman et al., 2009
	Figure 1.a
	Figure 1.b

	Gerstung et al., 2011, pancreatic cancer poset
	Raphael and Vandin's 2014 modules

	Running and plotting the simulations: starting, ending, and examples
	Starting and ending
	Can I start the simulation from a specific mutant?
	Ending the simulations
	Ending the simulations: conditions
	Stochastic detection mechanism: ``detectionProb''
	Stochastic detection mechanism and minimum number of drivers

	Fixation of genes/gene combinations
	Fixation of genotypes
	Fixation: tolerance, number of periods, minimal size
	Mixing stopping on gene combinations and genotypes

	Plotting genotype/driver abundance over time; plotting the simulated trajectories
	Several examples of simulations and plotting simulation trajectories
	Bauer's example again
	McFarland model with 5000 passengers and 70 drivers
	McFarland model with 50,000 passengers and 70 drivers: clonal competition
	Simulation with a conjunction example
	Simulation with order effects and McFL model

	Interactive graphics
	Multiple initial mutants: starting the simulation from arbitrary configurations
	Multispecies simulations

	Sampling multiple simulations
	Whole-tumor and single-cell sampling, and do we always want to sample?
	Differences between ``samplePop'' and ``oncoSimulSample''

	Showing the genealogical relationships of clones
	Parent-child relationships from multiple runs

	Generating random fitness landscapes
	Random fitness landscapes from a Rough Mount Fuji model
	Random fitness landscapes from Kauffman's NK model
	Random fitness landscapes from an additive model
	Random fitness landscapes from Eggbox model
	Random fitness landscapes from Ising model
	Random fitness landscapes from Full models
	Epistasis and fitness landscape statistics

	Frequency-dependent fitness
	A first example with frequency-dependent fitness
	Hurlbut et al., 2018: a four-cell example with angiogenesis and cytotoxicity
	An example with absolute numbers and population collapse
	Predator-prey, commensalism, and consumer-resource models
	Competition
	Competition
	Predator-prey, first example
	Predator-prey, second example
	Commensalism

	Frequency-dependent fitness: can I mix relative and absolute frequencies?
	Frequency-dependent fitness: can I use genes with mutator effects?
	Can we use the BNB algorithm to model frequency-dependent fitness?

	Additional examples of frequency-dependent fitness
	Rock-paper-scissors model in bacterial community
	Introduction
	Case 1
	Case 2
	Case 3

	Hawk and Dove example
	Game Theory with social dilemmas of tumour acidity and vasculature
	Fully glycolytic tumours:
	Fully angiogenic tumours:
	Heterogeneous tumours:

	Prostate cancer tumour–stroma interactions
	Simulations
	First scenario
	Second scenario
	Third scenario
	Fourth scenario

	Evolutionary Dynamics of Tumor-Stroma Interactions in Multiple Myeloma
	Simulations
	Scenario 1
	Scenario 2

	An example of modellization in Parkinson disease related cell community
	Evolutionary Game between Commensal and Pathogenic Microbes in Intestinal Microbiota
	Antibiotic absence situation
	Antibiotic presence situation

	Modeling of breast cancer through evolutionary game theory.
	Cancer kept under control
	Development of a non-metastatic cancer
	Development of a metastatic cancer

	Improving the previous example. Modeling of breast cancer with the presence chemotherapy and resistance.
	Absence of chemotherapy
	Chemotherapy with low R mutation rate
	Chemotherapy with considerable R mutation rate

	Death and Birth specification
	Changes in nomenclature
	Explicit mapping of genotypes to death rates

	Simulating with constant total population size
	Simulating therapeutic interventions and adaptive therapy, and using user-defined variables
	Interventions
	A first example with interventions
	Intervening over the total population
	Differences between intervening on the total population or over specific genotypes: when do each occur?

	Intervening in Rock-Paper-Scissors model in bacterial comunity
	User variables
	Basic example with user variables
	User Variables Example 2
	Adaptive therapy. Interventions using user variables
	Another example of adaptive therapy
	Adaptive therapy: a canonical example

	Simulating therapeutic interventions that depend on time
	Adaptive control of competitive release and chemotherapeutic resistance
	Scenario without chemotherapy
	Scenario with continuous chemotherapy: fixed dose
	Scenario with switching doses of chemotherapy

	Growth factors as chemotherapy target
	Scenario without chemotherapy
	Scenario with GF as target for chemotherapy

	Examples using time dependent frequency definition
	Increasing fitness at a certain timepoint
	Intervention at a certain point to stop subpopulation growth
	Intervention to slow down collapsing populations

	Measures of evolutionary predictability and genotype diversity
	Generating random DAGs for restrictions
	FAQ, odds and ends
	What we mean by ``clone''; and ``I want clones disregarding passengers''
	Does OncoSimulR keep track of individuals or of clones? And how can it keep track of such large populations?
	sampleEvery, keepPhylog, and pruning

	Dealing with errors in ``oncoSimulPop''
	Whole tumor sampling, genotypes, and allele counts: what gives? And what about order?
	Doesn't the BNB algorithm require small mutation rates for it to be advantageous?
	Can we use the BNB algorithm with state-dependent birth or death rates?
	Sometimes I get exceptions when running with mutator genes
	What are good values of sampleEvery?
	mutationPropGrowth and is mutation associated to division?
	Messages about `Using old version of fitnessEffects' and `v2 functionality detected. Adapting to v3 functionality.'

	Session info and packages used
	Time it takes to build the vignette and most time consuming chunks

	Funding
	References

