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This vignette illustrates the computation of sparse eigenvectors or sparse PCA with the package
sparseEigen (with a comparison with other packages) and gives a description of the algorithms
used.

1 Comparison with other packages

We compare the proposed function spEigen() with the existing functions elasticnet::spca() and
rrcovHD::SPcaGrid().

First, we illustrate how the functions scale with dimension. For this, we generate synthetic data with
sparse eigenvectors (see next section for details) of increasing dimension (100 Monte Carlo runs in each
dimension). We apply the two functions to extract the first three eigenvectors. Figure 1 illustrates how the
running time of the functions increase as we increase the dimension of the problem. It is clear that spEigen()

scales very well, while SPcaGrid() and spca() become impractical for large dimensions.
Another advantage of spEigen() (and spEigenCov()) is the parsimony and robustness in parameter

selection. To illustrate this, in Figure 2 we compare the angle and pattern recovery ability of the functions.
To this end, we generate 200 samples form a multivariate Gaussian distribution of dimension 500, following
the process described in the next section.

We observe that spEigen() requires only one parameter and can recover correctly the eigenvectors for a
large range of the parameter’s values. On the other hand, spca() requires one parameter per eigenvector,
the recovery is significantly affected by small changes of these parameters, and in general it underperforms
compared to spEigen(). Finally, SPcaGrid() requires one sparsity parameter (it also accepts one parameter
per eigenvector) but cannot capture efficiently the sparsity pattern of the eigenvectors.

Further advantages of spEigen() are that it can handle real and complex data, and it accepts as input
both data and covariance matrices.
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Figure 1: Average running time.
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Figure 2: Eigenvector recovery.
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2 Usage of the package

2.1 Computation of sparse eigenvectors of a given matrix

We start by loading the package and generating synthetic data with sparse eigenvectors:

library(sparseEigen)

set.seed(42)

# parameters

m <- 500 # dimension

n <- 100 # number of samples

q <- 3 # number of sparse eigenvectors to be estimated

sp_card <- 0.2*m # cardinality of each sparse eigenvector

rho <- 0.6 # sparsity level

# generate non-overlapping sparse eigenvectors

V <- matrix(0, m, q)

V[cbind(seq(1, q*sp_card), rep(1:q, each = sp_card))] <- 1/sqrt(sp_card)

V <- cbind(V, matrix(rnorm(m*(m-q)), m, m-q))

# keep first q eigenvectors the same (already orthogonal) and orthogonalize the rest

V <- qr.Q(qr(V))

# generate eigenvalues

lmd <- c(100*seq(from = q, to = 1), rep(1, m-q))

# generate covariance matrix from sparse eigenvectors and eigenvalues

R <- V %*% diag(lmd) %*% t(V)

# generate data matrix from a zero-mean multivariate Gaussian distribution

# with the constructed covariance

X <- MASS::mvrnorm(n, rep(0, m), R) # random data with underlying sparse structure

Then, we estimate the covariance matrix with cov(X) and compute its sparse eigenvectors with spEigen():

# computation of sparse eigenvectors

res_standard <- eigen(cov(X))

res_sparse1 <- spEigen(cov(X), q, rho)

res_sparse2 <- spEigen(X, q, rho, data = TRUE)

We can assess how good the estimated eigenvectors are by computing the inner product with the original
eigenvectors (the closer to 1 the better):

# show inner product between estimated eigenvectors and originals

abs(diag(t(res_standard$vectors) %*% V[, 1:q])) #for standard estimated eigenvectors

#> [1] 0.9215392 0.9194898 0.9740871

abs(diag(t(res_sparse1$vectors) %*% V[, 1:q])) #for sparse estimated eigenvectors

#> [1] 0.9973081 0.9975819 0.9930549

abs(diag(t(res_sparse2$vectors) %*% V[, 1:q])) #for sparse estimated eigenvectors

#> [1] 0.9972779 0.9975556 0.9929739

Finally, the following plot shows the sparsity pattern of the eigenvectors (sparse computation vs. classical
computation):
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par(mfcol = c(3, 2))

plot(res_sparse1$vectors[, 1]*sign(res_sparse1$vectors[1, 1]),

main = "First sparse eigenvector", xlab = "index", ylab = "", type = "h")

lines(V[, 1]*sign(V[1, 1]), col = "red")

plot(res_sparse1$vectors[, 2]*sign(res_sparse1$vectors[sp_card+1, 2]),

main = "Second sparse eigenvector", xlab = "index", ylab = "", type = "h")

lines(V[, 2]*sign(V[sp_card+1, 2]), col = "red")

plot(res_sparse1$vectors[, 3]*sign(res_sparse1$vectors[2*sp_card+1, 3]),

main = "Third sparse eigenvector", xlab = "index", ylab = "", type = "h")

lines(V[, 3]*sign(V[2*sp_card+1, 3]), col = "red")

plot(res_standard$vectors[, 1]*sign(res_standard$vectors[1, 1]),

main = "First regular eigenvector", xlab = "index", ylab = "", type = "h")

lines(V[, 1]*sign(V[1, 1]), col = "red")

plot(res_standard$vectors[, 2]*sign(res_standard$vectors[sp_card+1, 2]),

main = "Second regular eigenvector", xlab = "index", ylab = "", type = "h")

lines(V[, 2]*sign(V[sp_card+1, 2]), col = "red")

plot(res_standard$vectors[, 3]*sign(res_standard$vectors[2*sp_card+1, 3]),

main = "Third regular eigenvector", xlab = "index", ylab = "", type = "h")

lines(V[, 3]*sign(V[2*sp_card+1, 3]), col = "red")
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2.2 Covariance matrix estimation with sparse eigenvectors

The function spEigenCov() requires more samples than the dimension (otherwise some regularization is
required). Therefore, we generate data as previously with the only difference that we set the number of
samples to be n=600.

Then, we compute the covariance matrix through the joint estimation of sparse eigenvectors and eigenvalues:

# computation of covariance matrix

res_sparse3 <- spEigenCov(cov(X), q, rho)

Again, we can assess how good the estimated eigenvectors are by computing the inner product with the
original eigenvectors:

# show inner product between estimated eigenvectors and originals

abs(diag(t(res_sparse3$vectors[, 1:q]) %*% V[, 1:q])) #for sparse estimated eigenvectors

#> [1] 0.9994329 0.9991827 0.9984716

The following plot shows the sparsity pattern of the eigenvectors:

par(mfcol = c(3, 1))

plot(res_sparse3$vectors[, 1]*sign(res_sparse3$vectors[1, 1]),

main = "First sparse eigenvector", xlab = "index", ylab = "", type = "h")

lines(V[, 1]*sign(V[1, 1]), col = "red")

plot(res_sparse3$vectors[, 2]*sign(res_sparse3$vectors[sp_card+1, 2]),

main = "Second sparse eigenvector", xlab = "index", ylab = "", type = "h")

lines(V[, 2]*sign(V[sp_card+1, 2]), col = "red")

plot(res_sparse3$vectors[, 3]*sign(res_sparse3$vectors[2*sp_card+1, 3]),

main = "Third sparse eigenvector", xlab = "index", ylab = "", type = "h")

lines(V[, 3]*sign(V[2*sp_card+1, 3]), col = "red")
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Finally, we can compute the error of the estimated covariance matrix (sparse eigenvector computation
vs. classical computation):

# show error between estimated and true covariance

norm(cov(X) - R, type = 'F') #for sample covariance matrix

#> [1] 48.42514

norm(res_sparse3$cov - R, type = 'F') #for covariance with sparse eigenvectors

#> [1] 29.31746

2.3 Complex-valued inputs

The previous examples illustrate the usage of the functions spEigen() and spEigenCov() for real-valued
data and covariance matrices. However, both functions can handle complex-valued inputs.

Following the previous data generation procedure, we generate sparse complex eigenvectors by introducing
a random phase in each entry:

m <- 500 # dimension

n <- 600 # number of samples

q <- 3 # number of sparse eigenvectors to be estimated

sp_card <- 0.2*m # cardinality of the sparse eigenvectors

rho <- 0.5

# generate non-overlapping sparse eigenvectors

V <- matrix(0, m, q)

V[cbind(seq(1, q*sp_card), rep(1:q, each = sp_card))] <-

exp(1i*runif(q*sp_card, 0, 2*pi))/sqrt(sp_card)

V <- cbind(V, matrix(rnorm(m*(m-q))*exp(1i*runif(m*(m-q),0,2*pi)), m, m-q))

# keep first q eigenvectors the same (already orthogonal) and orthogonalize the rest

V_ <- (diag(m) - V[, 1:q] %*% Conj(t(V[, 1:q]))) %*% V[, -c(1:q)]

V <- cbind(V[, 1:q], qr.Q(qr(V_)))

# generate eigenvalues

lmd <- c(100*seq(from = q, to = 1), rep(1, m-q))

# generate covariance matrix from sparse eigenvectors and eigenvalues

R <- V %*% diag(lmd) %*% Conj(t(V))

# generate data matrix from a zero-mean multivariate Gaussian distribution

# with the constructed covariance

X <- MASS::mvrnorm(n, rep(0, m), R) # random data with underlying sparse structure

X <- scale(X, center = TRUE, scale = FALSE)

Then, we compute the sparse complex eigenvectors (spEigen()) and the covariance matrix
(spEigenCov()):

# computation of sparse eigenvectors and covariance matrix

S <- 1/(n-1) * t(X) %*% Conj(X)

res_sparse4 <- spEigen(S, q, rho)

res_sparse5 <- spEigenCov(S, q, rho)

The following plot shows the sparsity pattern of the eigenvectors for both functions:

par(mfcol = c(3, 2))

plot(abs(res_sparse4$vectors[, 1]), main = "spEigen: First sparse eigenvector",
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xlab = "index", ylab = "", type = "h")

lines(abs(V[, 1]), col = "red")

plot(abs(res_sparse4$vectors[, 2]), main = "spEigen: Second sparse eigenvector",

xlab = "index", ylab = "", type = "h")

lines(abs(V[, 2]), col = "red")

plot(abs(res_sparse4$vectors[, 3]), main = "spEigen: Third sparse eigenvector",

xlab = "index", ylab = "", type = "h")

lines(abs(V[, 3]), col = "red")

plot(abs(res_sparse5$vectors[, 1]), main = "spEigenCov: First sparse eigenvector",

xlab = "index", ylab = "", type = "h")

lines(abs(V[, 1]), col = "red")

plot(abs(res_sparse5$vectors[, 2]), main = "spEigenCov: Second sparse eigenvector",

xlab = "index", ylab = "", type = "h")

lines(abs(V[, 2]), col = "red")

plot(abs(res_sparse5$vectors[, 3]), main = "spEigenCov: Third sparse eigenvector",

xlab = "index", ylab = "", type = "h")

lines(abs(V[, 3]), col = "red")
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Finally, we can compute the error of the estimated covariance matrix (sparse eigenvector computation
vs. classical computation):
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# show error between estimated and true covariance

norm(abs(S - R), type = 'F') #for sample covariance matrix

#> [1] 50.4656

norm(abs(res_sparse5$cov - R), type = 'F') #for covariance with sparse eigenvectors

#> [1] 28.41869

3 Explanation of the algorithms

3.1 spEigen(): Sparse eigenvectors from a given covariance matrix

The goal of spEigen() is the estimation of the q leading sparse eigenvectors (with q ≤ rank(S)) from an
m×m covariance matrix S (typically the sample covariance matrix obtained from n samples) based on [1].
The underlying optimization problem that is solved is

maximize
U

Tr
(

U⊤SUDiag(d)
)

−

q
∑

i=1

ρi‖ui‖0

subject to U⊤U = Iq,

where U ∈ R
m×q is a matrix containing the q leading eigenvectors, d is a vector of weights to ensure that U

contains the leading eigenvectors without an arbitrary rotation, and the ρi’s are the regularization parameters
to control how much sparsity is desired. This problem is the typical PCA formulation with an extra penalty
term in the objective that penalizes the cardinality of the eigenvectors, controled by the regularization
parameters ρi’s.

The ℓ0-“norm” is approximated by the continuous and differentiable function

gǫ
p (x) =







x2

2ǫ(p+ǫ) log(1+1/p) , |x| ≤ ǫ,

log
(

p+|x|
p+ǫ

)

+ ǫ
2(p+ǫ)

log(1+1/p) , |x| > ǫ,

where p > 0 and 0 < ǫ ≪ 1 are parameters that control the approximation. This leads to the following
approximate problem:

maximize
U

Tr
(

U⊤SUDiag(d)
)

−

q
∑

j=1

ρj

m
∑

i=1

gǫ
p (uij)

subject to U⊤U = Iq.

This problem can be solved via Majorization-Minimization (MM) [2] with an iterative closed-form update
algorithm. For this, at each iteration (denoted by k) two key quantities are needed:

G(k) = SU(k)Diag(d)

H(k) =
[

diag
(

w(k) −w(k)
max ⊗ 1m

)

ũ(k)
]

m×q
,

where

w
(k)
i =







ρi

2ǫ(p+ǫ) log(1+1/p) , |ũ
(k)
i | ≤ ǫ,

ρi

2 log(1+1/p)|ũ
(k)
i

|
(

|ũ
(k)
i

|+p
) , |ũ

(k)
i | > ǫ,

with w ∈ R
mq
+ , ũ(k) = vec(U(k)) ∈ R

mq
+ , wmax ∈ R

q
+, with wmax,i being the maximum weight that corresponds

to the i-th eigenvector u
(k)
i .
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The iterative closed-form update algorithm is:

Algorithm 1

1. Set k = 0 and choose an initial point U(0)

2. Compute G(k) and H(k)

3. Compute VL, VR as the left and right singular vectors of
(

G(k) −H(k)
)

4. U(k+1) ← VLV⊤
R

5. k ← k + 1
6. Repeat steps 2-5 until convergence
7. Return U(k)

The initial point of the algorithm U(0) is set by default to the q leading standard eigenvectors, unless the
user specifies otherwise. Internally, all the computations of G(k) and H(k) are done through the eigenvalue
decomposition (EVD) of S. Since we can also retrieve the eigenvectors and eigenvalues of S through the
singular value decomposition (SVD) of the data matrix X, with S = 1

n−1 X⊤X, it becomes possible to use as
an input to spEigen() either the covariance matrix S or directly the data matrix X.

Although H(k) does not depend directly on S, the parameters ρj are set based on its eigenvalues. In
particular, each ρj takes a value in an interval [0, ρmax

j ] based on the input variable ρ ∈ [0, 1] that the user
selects, i.e., ρj = ρρmax

j . The uppperbound ρmax
j depends, among others, on the eigenvalues of S. Note that

the theoretical upperbound is derived based on the initial problem and not the approximate. Therefore,
although a suggested range for ρ is the interval [0, 1], any nonnegative value is accepted by the algorithm.

Finally, note that the approximate problem is controlled by the parameters p, ǫ, and in particular, as
p→ 0 we get ρp → ℓ0. However, by setting small values to p, ǫ, it is likely that the algorithm will get stuck
to a local minimum. To solve this issue we start with large values for p, ǫ, i.e., a “loose” approximation, and
solve the corresponding optimization problem. Then, we sequentially decrease p, ǫ, i.e., we “tighten” the
approximation, and solve the problem again using the previous solution as an initial point. In practice we are
interested only in the last, “tightest” problem. For each problem that is solved (i.e., for fixed p, ǫ) we utilize
an acceleration scheme that increases the convergence speed of the MM algorithm. For details, please refer to
[3].

3.2 spEigenCov(): Covariance matrix estimation with sparse eigenvectors

The function spEigenCov() estimates a covariance matrix through the joint estimation of its sparse (orthogo-
nal) eigenvectors and eigenvalues [1], i.e., Σ = UΞU⊤, with U, Ξ ∈ R

m×m and Ξ = Diag(ξ). The underlying
optimization problem that is solved is the maximization of the log-likelihood under a Gaussian distribution
for the data:

minimize
U,Ξ

log det (Ξ) + Tr
(

SUΞ−1U⊤
)

+

m
∑

i=1

ρi‖ui‖0

subject to Ξ < 0,
ξi ≥ ξi+1, i = 1, . . . , q − 1,
ξq ≥ ξq+i, i = 1, . . . , m− q,
U⊤U = Im,

where S ∈ R
m×m is the sample covariance matrix and q is the number of eigenvectors we impose sparsity on

(i.e., ρi = 0 for i > q). The constraints ensure that the eigenvalues will be positive, while the first q of them
will be the largest and in descending order. This is important since in case of a swap of the eigenvalues during
the estimation process we would impose sparsity on different eigenvectors at each iteration of the algorithm
with disastrous consequences. Finally, the last constraint ensures the orthogonality of the eigenvectors.

Again, the ℓ0-“norm” is approximated by the continuous and differentiable function gǫ
p() which leads to

9



the following approximate problem:

minimize
U,Ξ

log det (Ξ) + Tr
(

SUΞ−1U⊤
)

+
m

∑

j=1

ρj

m
∑

i=1

gǫ
p (uij)

subject to Ξ < 0,
ξi ≥ ξi+1, i = 1, . . . , q − 1,
ξq ≥ ξq+i, i = 1, . . . , m− q,
U⊤U = Im,

This problem can be solved via Majorization-Minimization (MM) [2] with an iterative semi-closed-form
update algorithm. In particular, with a proper majorization, the eigenvector and eigenvalue estimation
decouples. Therefore, at each iteration we need to solve the following two problems:

• Eigenvector optimization:

minimize
U

Tr
(

H(k)⊤
U

)

subject to U⊤U = Im,

where H(k) =
[

diag
(

w(k) −w
(k)
max ⊗ 1m

)

ũ(k)
]

m×m
+

(

S− λ
(S)
maxIm

)

U(k)
(

Ξ(k)
)−1

. Again the vector

w is given by

w
(k)
i =







ρi

2ǫ(p+ǫ) log(1+1/p) , |ũ
(k)
i | ≤ ǫ,

ρi

2 log(1+1/p)|ũ
(k)
i

|
(

|ũ
(k)
i

|+p
) , |ũ

(k)
i | > ǫ,

with w ∈ R
m2

+ , ũ(k) = vec(U(k)) ∈ R
m2

+ , wmax ∈ R
m
+ , with wmax,i being the maximum weight that

corresponds to the i-th eigenvector u
(k)
i .

The optimal solution of this problem is U = VLV⊤
R where VL, VR are the lest and right singular

vectors of H(k), respectively.

• Eigenvalue optimization:

minimize
ξ

m
∑

i=1

(

log ξi + α
(k)
i ξi + λ(S)

max

1

ξi

)

subject to ξi ≥ ξi+1, i = 1, . . . , q − 1,
ξq ≥ ξq+i, i = 1, . . . , m− q,

where α(k) = diag
(

(

Ξ(k)
)−1

U(k)T
(

S− λ
(S)
maxIm

)

U(k)
(

Ξ(k)
)−1

)

. This problem is not convex. How-

ever, it can be transformed to a convex one by the variable transformation φ = 1/ξ. Solving the KKT
equations of the transformed convex formulation we can derive a finite-step algorithm that gives the
optimal solution of the problem.

The overall iterative semi-closed-form update algorithm is:

Algorithm 2

1. Set k = 0 and choose initial points U(0), ξ(0)

2. Compute H(k)

3. Compute VL, VR as the left and right singular vectors of H(k)

4. U(k+1) ← VLV⊤
R

5. Compute α(k)

6. Get ξ(k+1) from the finite-step algorithm
7. k ← k + 1
8. Repeat steps 2-7 until convergence
9. Return U(k), ξ(k)

As in the spEigen() function, we sequentially decrease the values of p, ǫ, and increase the convergence
speed of each problem using the acceleration method proposed in [3].
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