
PRIMA: What, Why, How, and So What?

Zaikun Zhang

The Hong Kong Polytechnic University

ICIAM 2023, Tokyo, Japan

https://www.zhangzk.net


What is this talk about?

Derivative-Free Optimization (DFO):
Optimization without using derivatives

Topics of this talk:

1 A new DFO solver named PRIMA

2 The mathematics behind it

Let us start with some tests of PRIMA based on the CUTEst problems.

1/34



Performance of PRIMA compared with Powell’s solvers

0 1 2
0

0.2

0.4

0.6

0.8

1

PRIMA

UOBYQA (Powell)

PRIMA v.s. UOBYQA
(unconstrained problems, at most 100 variables)

2/34



Performance of PRIMA compared with Powell’s solvers

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

PRIMA

BOBYQA (Powell)

PRIMA v.s. BOBYQA
(bound-constrained problems, at most 200 variables)

3/34



Performance of PRIMA compared with Powell’s solvers

0 0.5 1
0

0.2

0.4

0.6

0.8

1

PRIMA

LINCOA (Powell)

PRIMA v.s. LINCOA
(linearly constrained problems, at most 200 variables, 20,000 constraints)

4/34



Performance of PRIMA compared with Powell’s solvers

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

PRIMA

COBYLA (Powell)

PRIMA v.s. COBYLA
(nonlinearly constrained problems, at most 100 variables, 10,000 constraints)

5/34



Sorry, I lied ...

Topics of this talk:

1 A new DFO solver named PRIMA
PRIMA is not a new solver but a re-implementation of Powell’s solvers.

2 The mathematics behind it
There is no mathematics in this talk.

6/34



PRIMA: Reference Implementation for Powell’s
Methods with Modernization and Amelioration

Zaikun Zhang

The Hong Kong Polytechnic University

ICIAM 2023, Tokyo, Japan

Dedicated to the late Professor M. J. D. Powell FRS (1936–2015)

Funding: Hong Kong RGC grants 253012/17P, 153054/20P, and 153066/21P.



Trust-region DFO methods based on interpolation models

xk+1 ≈ xk + arg min
∥d∥≤∆k

Mk(xk + d)

Mk is the trust-region model (surrogate)
Mk(x) ≈ f(x) around xk
Mk interpolates f on a set Xk consisting of previous iterates

∥d∥ ≤ ∆k is the trust-region constraint
If “things work well”, increase ∆k
Otherwise, decrease ∆k

Images by Dr. F. V. Berghen from http://www.applied-mathematics.net.
1/34

http://www.applied-mathematics.net


Trust-region DFO methods based on interpolation models

xk+1 ≈ xk + arg min
∥d∥≤∆k

Mk(xk + d)

Mk is the trust-region model (surrogate)
Mk(x) ≈ f(x) around xk
Mk interpolates f on a set Xk consisting of previous iterates

∥d∥ ≤ ∆k is the trust-region constraint
If “things work well”, increase ∆k
Otherwise, decrease ∆k

Images by Dr. F. V. Berghen from http://www.applied-mathematics.net.
1/34

http://www.applied-mathematics.net


Trust-region DFO methods based on interpolation models

xk+1 ≈ xk + arg min
∥d∥≤∆k

Mk(xk + d)

Mk is the trust-region model (surrogate)
Mk(x) ≈ f(x) around xk
Mk interpolates f on a set Xk consisting of previous iterates

∥d∥ ≤ ∆k is the trust-region constraint
If “things work well”, increase ∆k
Otherwise, decrease ∆k

Images by Dr. F. V. Berghen from http://www.applied-mathematics.net.
1/34

http://www.applied-mathematics.net


Trust-region DFO methods based on interpolation models

xk+1 ≈ xk + arg min
∥d∥≤∆k

Mk(xk + d)

Mk is the trust-region model (surrogate)
Mk(x) ≈ f(x) around xk
Mk interpolates f on a set Xk consisting of previous iterates

∥d∥ ≤ ∆k is the trust-region constraint
If “things work well”, increase ∆k
Otherwise, decrease ∆k

Images by Dr. F. V. Berghen from http://www.applied-mathematics.net.
1/34

http://www.applied-mathematics.net


Trust-region DFO methods based on interpolation models

xk+1 ≈ xk + arg min
∥d∥≤∆k

Mk(xk + d)

Mk is the trust-region model (surrogate)
Mk(x) ≈ f(x) around xk
Mk interpolates f on a set Xk consisting of previous iterates

∥d∥ ≤ ∆k is the trust-region constraint
If “things work well”, increase ∆k
Otherwise, decrease ∆k

Images by Dr. F. V. Berghen from http://www.applied-mathematics.net.
1/34

http://www.applied-mathematics.net


Maintenance of the interpolation set

The interpolation set Xk must be updated with care.

Xk must reuse previous iterates as much as possible.

The geometry of Xk must ensure the well-conditioning of the problem

Mk(x) = f(x), x ∈ Xk.

Normally, Xk+1 = (Xk ∪ {xk+1}) \ {a “bad” point}.

Take geometry-improving steps if the geometry of Xk deteriorates.

2/34



Powell’s trust-region DFO algorithms and software

COBYLA: solving general nonlinearly constrained problems using
linear models; code released in 1992; paper published in 1994
UOBYQA: solving unconstrained problems using quadratic models;
code released in 2000; paper published in 2002
NEWUOA: solving unconstrained problems using quadratic models;
code released in 2004; paper published in 2006
BOBYQA: solving bound-constrained problems using quadratic
models; code released and paper written in 2009
LINCOA: solving linearly constrained problems using quadratic
models; code released in 2013 but no paper written

3/34



What do these algorithms look like?

NEWUOA
4/34



Implementation of these methods is HARD

The development of NEWUOA has taken nearly three years. The work was
very frustrating ...

— M. J. D. Powell
The NEWUOA software for unconstrained optimization without derivatives, 2006

N.B.
NEWUOA was Powell’s third trust-region DFO solver, COBYLA and
UOBYQA being the first two.
Mathematically speaking, NEWUOA and UOBYQA are essentially the
same except for the ways they construct the model.
Given the experience with UOBYQA (and COBYLA), Powell still
spent three frustrating years on the development of NEWUOA.

5/34



The central difficulty

6/34



Powell’s implementation

Powell implemented these five methods into publicly available solvers.

The solvers are widely used by scientists and engineers.

They are often used as benchmarks when designing new algorithms.

However, the implementation was in Fortran 77, with plenty of
GOTOs: in total, 7939 lines of code with 249 GOTOs!

A modernized implementation is greatly needed.

7/34



Why should I work on a modernized implementation

Professor Powell, April 2015: “It would be a relief to me if you would
kindly continue to look after my optimisation software (NEWUOA,
BOBYQA and LINCOA). Also I would like you to add COBYLA and
TOLMIN if you do not have them already.”

Stefan Wild, ICCOPT 2016, Tokyo: People do not want interfaces.
They want implementations that they can understand and play with.

Jeff Larson, ISMP 2018, Bordeaux: Numerical linear algebra people
have standard implementations for standard algorithms, e.g.,
LAPACK, whereas we all work on our own implementation of
interpolation, model improvement, ...

8/34



An inspiration

9/34



Isn’t it a perfect project for an engineer or a student?

Given that Powell spent three frustrating years on the development of
his own algorithm NEWUOA despite his abundant experience, where
could I find this genius engineer who can learn all the five algorithms
from scratch and implement them in a reasonable amount of time?
Assume that I am lucky to find the abovementioned genius engineer
and he/she happens to be my Ph.D. student. How should I persuade
him/her to be fully devoted to a project for three years (as I did)
without producing a single publication? Am I even allowed to do so?

10/34



PRIMA

libprima.net

PRIMA is an acronym for

“Reference Implementation for Powell’s Methods
with Modernization and Amelioration”,

“P” for Powell.

11/34

http://www.libprima.net


An overview of PRIMA

The solvers are implemented in a structured and modularized way so
that they are understandable, maintainable, extendable, fault-tolerant,
and future-proof.

The code has no GOTO and uses matrix-vector procedures instead of
loops whenever possible.

The implementation is mathematically equivalent to Powell’s except
for the bug fixes and improvements we introduce intentionally.

The implementation of PRIMA in modern Fortran (F2008 or above)
has been finished.

Versions in MATLAB, Python, Julia, R, ... will be implemented using
the modern Fortran as a reference.

A MATLAB interface is provided to use the modern Fortran version.

The inclusion of PRIMA into SciPy is under discussion, and the major
SciPy maintainers are positive about it.

12/34



Why do I start with modern Fortran?

Fortran? Are you a caveman?

The syntax and style of modern Fortran are very similar to MATLAB.
I start with modern Fortran, so that I can systematically verify the
bit-to-bit faithfulness of PRIMA, as the original code is Fortran.
With other languages, the verification is hard, if not impossible.

Ultimate goal of PRIMA:
Make Powell’s methods available to everyone in her/his favorite languages.

13/34



Powell’s description of NEWUOA (recapped)

NEWUOA
14/34



The original implementation of NEWUOA: a snippet

15/34



Faithful pseudocode of NEWUOA in PRIMA
Pick X ⊂Rn and ρ > 0. Let M interpolate f on X . xo := arg minx∈X f(x). ∆ := ρ.
1: while not converged do
2: Calculate a trust-region trial point xtr ≈ arg min{M(x) : ∥x − xo∥ ≤ ∆}
3: if M(xo)− M(xtr) is too small or ∥xtr − xo∥ is too short then
4: Reduce ∆ subject to ∆ ≥ ρ
5: else
6: Evaluate the reduction ratio and update ∆ accordingly subject to ∆ ≥ ρ
7: if it is proper to replace a point xdrop ∈ X with xtr then
8: Set X =

(
X ∪ {xtr}

)
\ {xdrop}, and then update M and xo

9: end if
10: end if
11: improve_geo := xtr is bad & the geometry of X is inadequate
12: reduce_rho := xtr is bad & the geometry of X is adequate & ∆ is small
13: if improve_geo then
14: Decide a point xdrop ∈ X to drop and a geometry-improving point xgeo
15: Set X =

(
X \ {xdrop}

)
∪ {xgeo}, and then update M and xo

16: end if
17: if reduce_rho then reduce ρ and reduce ∆ subject to ∆ ≥ ρ
18: end while
N.B.: The updates keep M interpolating f on X and xo = arg minx∈X f(x).

16/34



PRIMA NEWUOA: trust-region phase (ln. 2–10)

17/34



PRIMA NEWUOA: improve_geo, reduce_rho (ln. 11, 12)

18/34



PRIMA NEWUOA: post-processing phase (ln. 13–17)

19/34



Issues in the Fortran 77 implementation: an example

The above code may crash, as KNEW may be used uninitialized.
20/34



Issues in the Fortran 77 implementation

The Fortran 77 solvers may crash with memory violations (segfaults).
Reason: Some indices are only initialized under conditions that can
never be met because of NaN resulted from floating point exceptions.
The Fortran 77 solvers may get stuck in infinite loops.
Reason: Some loops are only terminated under conditions that can
never be met because of NaN resulted from floating point exceptions.

N.B.:
The problems are due to floating point exceptions in the Fortran 77
code rather than flaws in the algorithms.
The problems affect all implementations or wrappers of these solvers
based on the Fortran 77 code, including SciPy (COBYLA), NLopt, ...

21/34



How to ensure PRIMA does not have similar issues?
Strategy 1. Programming by contract

The preconditions and postconditions are checked only in the debug
mode. In the code that users receive, they are disabled by default.
In the debug mode, if some subroutine receives strange inputs or
produces strange outputs, the program will raise an error so that the
developer (i.e., Zaikun Zhang) can check the issue and fix it.

22/34



How to ensure PRIMA does not have similar issues?
Strategy 2. TOUGH (Tolerance Of Untamed and Genuine Hazards) tests

In TOUGH tests, objective functions are corrupted as above with NaN,
Inf, evaluated failures, ..., and then fed to the solvers.
PRIMA works properly even if the objective functions are corrupted in
this severe way. (What about your solvers?)

23/34



How to ensure PRIMA does not have similar issues?

Strategy 3. Automated and randomized tests using GitHub Actions

Every day, extensive TOUGH tests and other tests are conducted
automatically on randomized variants of CUTEst problems.

The longer time passes, the more reliable PRIMA is, automatically.

As of June 2023, > 42,000 workflows have been successfully run.

Each workflow consists of ∼ 5 (sometimes more than 150) randomized
tests, each test taking from tens of minutes to several hours.

In other words, PRIMA has been verified by more than 200,000 hours
(or more than 20 years) of randomized tests.

Code must be battle-tested before it becomes software.

24/34



The performance of PRIMA

UOBYQA
(unconstrained problems, at most 100 variables)

25/34



The performance of PRIMA

NEWUOA
(unconstrained problems, at most 200 variables)

26/34



The performance of PRIMA

BOBYQA
(bound-constrained problems, at most 200 variables)

27/34



The performance of PRIMA

LINCOA
(linearly constrained problems, at most 200 variables, 20,000 constraints)

28/34



The performance of PRIMA

COBYLA
(nonlinearly constrained problems, at most 100 variables, 10,000 constraints)

29/34



How to ensure the improvements are not by luck?
Take COBYLA as an example.
The PRIMA implementation of COBYLA is tested on 359 nonlinearly
constrained CUTEst problems with at most 100 variables and 10,000
constraints. Seven tests are made.

1 A plain test
2 A test that permutes the variables randomly
3 A test that perturbs the starting point randomly
4 A test based on single-precision objective & constraint values
5 A test using only 5 significant digits of the objective & constraints
6 A test contaminating the objective & constraints by deterministic noise
7 A test contaminating the objective & constraints by random noise

30/34



How to ensure the improvements are not by luck?

168 performance profiles of the new and old implementations of COBYLA
31/34



A “fun” fact ...

Working on PRIMA, I have spotted a dozen of bugs in reputable
Fortran compilers and two bugs in MATLAB.

Each of them represents days of bitter debugging.

From an unusual angle, they reflect how intensive the coding is.
The bitterness behind this fun fact is exactly why I work on PRIMA:

I hope all the frustrations that I have experienced will not
happen to any user of Powell’s methods anymore.
I hope I am the last one in the world to decode a maze of 244
GOTOs in 7939 lines of Fortran 77 code — I did this for three
years and I do not want anyone else to do it again.

32/34



But it is not quite rewarding in terms of career and life ...

You may write 3 good papers in 1 year, but not 1 good package in 3
years, especially if you start with a nontrivial Fortran 77 codebase.

Internet: “Writing software is a low-status academic activity.”

Internet: “A general problem is that ... professors are usually
rewarded for publications, not their software.”

Comments on my grant proposal: The PI’s expertise seems in
software development, but he may not be a good mathematician.

As a “not-so-good mathematician”, I much prefer spending my time
on proofs, which are a lot easier and much more enjoyable for me.

Sometimes we do things that are not enjoyable but have to be done.

- Who translated Euclid’s Elements to modern languages?
- You probably do not know (and do not care).

But we cannot live in a world without such a translation.
33/34



Concluding remarks

Implementation of model-based DFO solvers is intrinsically hard
PRIMA provides the reference implementation of Powell’s DFO solvers
The modern Fortran version and a MATLAB interface is finished
PRIMA will also be implemented in MATLAB, Python, Julia, R, C++

PRIMA fixes issues in the original Fortran 77 code
PRIMA is tested extensively to ensure its correctness & robustness
PRIMA outperforms the original implementation of the solvers

libprima.net

Thank you!
34/34

http://www.libprima.net

