
GPU Implementation of Self Organizing
Maps

Computação de Alto Desempenho - 1st project

2018/2019

1 Goal

The goal of this project to develop a GPU implementation of Self Organizing Map (SOM)
algorithm, and compare its performance (speedup, efficiency and cost) against a given
sequential implementation of the algorithm. You may implement your solution in either
CUDA or OpenCL. No higher level frameworks, such as Thrust, SkePU, TensorFlow,
Marrow, or others, are allowed. The project must be carried out by a group of, at most,
2 students.

2 Self Organizing Map

SOM [1] is a very popular artificial neural network model that is trained via unsu-
pervised learning, meaning that the learning process does not require human inter-
vention and that not much needs to be known about the data itself. The algorithm
is used for clustering (feature detection) and visualization in exploratory data anal-
ysis. Application fields include pattern recognition, data mining and process opti-
mization. If you are curious about the fundamentals and the application of the al-
gorithm, site https://www.superdatascience.com/blogs/the-ultimate-guide-to-

self-organizing-maps-soms is a good starting point. Note however, that you do not
need this information to accomplish the task asked in this project.

The SOM algorithm is presented in Algorithm 1. The fitting of the model to the
input dataset is represented by a map (represented by variable map), which is an array
of nrows ∗ ncols vectors of nfeatures features, i.e. a tensor of size nrows × ncols ×
nfeatures. The algorithm begins by initialing map with vectors of random values, and
then, for each input i performs the following steps:

1. Compute the distance from i to all vectors of map. The distance function may be
any. You will be asked to implement 2 functions.

1

2. Compute the Best Matching Unit (bmu), which is the vector closest (with minimum
distance) to i. Note that the argmin function returns the coordinate of the map
where the bmu is.

3. Update the map, given the input i and the bmu.

With regard to the update map procedure, several learning rates may be considered.
In this project you will consider only the one given by formula

learning rate(t) =
1

t

Algorithm 1 The SOM algorithm

1: nrows – number of rows of map
2: ncols – number of columns of map
3: nfeatures – number of features in each input vector
4: map – tensor of loats of size nrows× ncols× nfeatures.
5: max distance – maximum distance between two vectors in the initial configuration

of the map.

6: procedure SOM(inputs)
7: map← initialize with n random vectors with values ∈ [0, 1]
8: max distance←

√
nrows2 + ncols2

9: t← 0 current iteration of the algorithm
10: for all i ∈ inputs do
11: t← t + 1
12: distances← ∀j,k (distance(map[j][k], i))
13: bmu← argmin(distances)
14: map← update map(t, i, bmu,#inputs)
15: end for
16: end procedure

17: procedure update map(t, i, bmu, input count)
18: learn rate← learning rate(t)
19: neighborhood← ∀j,k (neighborhood function(t, bmu, (j, k), input count))
20: map← ∀j,k (map[j][k] + (learn rate ∗ neighborhood[j][k] ∗ (i−map[j][k])))
21: end procedure

22: function neighborhood function(t, bmu, current point, inputs count)
23: theta← (max distance/2)− ((max distance/2) ∗ (t/inputs count))
24: sqrDist← |bmu− current point|2
25: n← e−(sqrDist/theta2)

26: return n > 0.01 ? n : 0
27: end function

2

3 GPU Implementation

You must implement a C/C++ program that receives the following command line:

gpu som number rows number columns datafile outputfile [distance]

where number rows and number cols denote, respectively, the number of rows and
columns of the map, datafile is the name of the file holding the input data set,
and outputfile is the name of the file to where the final state of the map must
be written. distance is the parameter that allows the user to choose between the
two distance functions to implement. It is a optional parameter defaulted to the
Euclidean distance.

Given this configuration, your program must execute in the GPU as much of the pre-
sented SOM algorithm as possible. In particular, the SOM map must reside is GPU’s
memory and be modified there, as it receives inputs read from the input file and trans-
ferred to the GPU. A close analysis to Algorithm 1 will unveil several massively parallel
computations, such as the ones that are performed for all the vectors of the matrix.

The map must only be transferred to the host explicitly via a function implemented
for the purpose, with a name such as get map. You must naturally do this at the end of
the computation, to store the map’s final state to the output file, but you can use it for
debugging purposes (not in the version to evaluate for performance).

In order for you to test and evaluate your solution, several input data files will be
provided in the next few days.

Distance Functions: As mentioned in the previous section, you must implement two
distance functions:

Euclidean distance distance(v, u) =
√

(u1 − v1)2 + (u2 − v2)2 + · · ·+ (un − vn)2

Cosine distance distance(v, u) = 1− u1×v1+u2×v2+···+un×vn√
u2
1+u2

2+···+u2
n×
√

v21+v22+···+v2n

Performance Measurements: You must calculate the execution time of the versions1

your algorithm from the moment the SOM map is initialized (do not include this ini-
tialization) up until the map is written to the output file. These execution times must
be compared against a sequential version that will be given in the next few days.

Report: Along with the code of your solution, you must deliver a report of, at most, 5
pages presenting your solution, your experiment results and your conclusions. Concern-
ing the solution, focus on explaining which parts of the algorithm are executed on the
GPU, and describing the algorithms you devised to accomplish such execution.

1One version for each distance function.

3

References

[1] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480,
Sep 1990.

4

