Factoring and Lattice Reduction
DRAFT
March 16, 1995

Leonard M. Adleman
University of Southern California

Abstract

Factoring integers and finding the smallest vector in a lattice are central prob-
lems in algorithmic number theory. The complexity of both problems is poorly
understood. Neither is known to be computable in polynomial time nor to be
NP-hard. In this paper it is shown (under reasonable assumptions) that the fac-
toring problem is random polynomial time reducible to the lattice problem. This
result raises the possibility of using ‘approximate’ lattice reduction algorithms
for factoring.

1 Introduction

We will consider two well known computational problems:

Factoring: Oninput n € Z~(, output primes p1,ps,...,pkx € Zsg and ey, €s,..., e €
k e;
Zo such that n = [[;_; p;".

Lattice: On input R-independent vectors by, bo,...,b, € Q™, output v € Zb;
Zby @ ... ® Zb, with ||[v]|a = min{||z||2 |z € Zb; & Zba @ ... D Zb,, & z # 0}.

The complexity of both of these problems has long been open [?]. We will
argue (under reasonable assumptions) that Factoring is random polynomial time
reducible to Lattice. A similar result seems likely for the discrete logarithm
problem.

Since it is widely assumed that factoring is not in P, this gives the first substan-
tial evidence that Lattice is not in P.

These results suggest the possibility of using well known ‘approximate’ lattice
reduction algorithms (e.g. [?]) to give new algorithms for factoring and discrete
logarithms.

Schnorr [?] appears to be the first to publish on the relationship between fac-
toring and finding small vectors in a lattice. Many of the techniques used here
are already to be found in [?]. Schnorr provides an heuristic argument that
factoring is reducible to finding small vectors in a lattice using the || ||; norm
(rather than the || || norm considered here). It is worth noting that Lagarias
has previously shown that for the || || and || ||1 the lattice problem is NP-hard

(7.
2 Arguments

The notion of ‘smoothness’ is central to many factoring algorithms.

Definition For all n € Z, for all B € R<q, n is B-smooth iff for all primes p|n
p < B.

For most factoring algorithms to date, B-smooth numbers are used where B is
of the form:

e(ti-i—o(l))(ln(n)'Y Inln(n)t=7)

where 6 € Rsg and v =1/2 or 1/3.

Here much smaller B will be used, for example B = In®(n) where ¢ is a small
positive number. The informal term ‘supersmooth’ will sometimes be used for
such numbers.

Much is known about supersmooth numbers [?]. We thank Carl Pomerance [?]
for providing the following basic theorem:

For all ¢ € Z-4, for all sufficiently large positive integers n, the number of
squarefree positive integers less than n which are In®(n)-smooth exceeds n(¢=1/¢,

Let n be a positive integer (e.g. that we wish to factor). The arguments which
follow will hold for all sufficiently large n. The basic idea is to use lattice
reduction to find a linear combination of the logs of n and the ‘supersmall’
primes p1, ps, ..., P, which is very close to zero. Such a combination will, upon
exponentiation, yield a product of the form:

n"P/Q =expo
Where P and) are supersmooth and the absolute value of ¢ is very small.

Since exp o is approximately 1 + o, we have:

n"P=Q+ Qo

for some small ¢’ and hence:

Q= —-Qoc' modn (1)

When ¢ is sufficiently small, —Qo’ will be supersmooth and (??) is a congruence
of supersmooth numbers. Such ‘supersmooth congruences’ are used in standard
ways to factor n.

The details become a bit untidy as a consequence of the need to use approxi-
mations to logs in actual computations.

Let M denote n* and p1,pa, ..., p, be the primes less than 1n20(2n1'25). If there
exits an 7 € Z§f such that p;|n, then replace n with n|p;. Define z + 1 vectors
in R**! as follows.

For1 <j <z
j—1 z—j

— ~
V; =< Mn'(p;),0, ..., 0, V' In(p;),0...,0 >.

Since in a polynomial time computation, In cannot be computed to arbitrary
precision, an ‘approximate log’ In’ is used which is obtained by ‘rounding up’ at
the [1.251logy(n)]" digit following the decimal point. Hence for all a € Z¢:

0 <In'(a) —In(a) < 5/n'?
Similarly, \// In will be the ‘approximate square root of the log’ such that for all
ac Z>0:
0 < (v/'In(a))? —In(a) < 5/n'?°

Hence a matrix with these vectors as rows has non zero entries only in the first
column and along the diagonal.

Let:

, ,—M
Vo =< M(In'(n) +7),0,...,0 >

v will act as a ‘fudge factor’ to compensate for the use of ‘approximate logs’
rather than true logs. v will range over the values a/1011-221°810(")] where a € Z
and —161n(n) < a < 161n(n). Hence —161n(a)/n*? < v < 161n(a)/nt?>. v
will be described further in what follows.

It is clear that these vectors are independent over R. Let the lattice they
generate be denoted A.

In what follows we will use a number theoretic analysis to show that A has some
small vectors which correspond to supersmooth congruences mod n. We will
then show that the smallest vector in the A is just such a vector.

Consider all numbers of the form Pn—1 as P = n'/4+1, ...,2n'/*. Then there are
n'/4 such numbers each greater than n'2® and less than 2n'2%. As is ‘standard’
in the analysis of factoring algorithms we will assume that these numbers have
the same probability of being squarefree- supersmooth as a ‘random’ number less
than 2n'25. Hence at least one in (2n'2%)1/20 of these numbers are squarefree-
supersmooth with respect to In??(2n'2%). By the same assumption, at least one
in (2n12%)1/20 of the P are squarefree-supersmooth. Now we will make another
‘standard’ assumption: that the probability that P is squarefree-supersmooth
is independent of the probability that Q = Pn — 1 is squarefree-supersmooth’.
Hence we may assume the probability that P and @ will simultaneously be
‘squarefree- supersmooth’ is at least one in (2n'29)2/20 = 21/10,1/8 Hence
there exist at least n'/®/2'/19 such pairs. Notice we must have (P,Q) = 1

Consider such a pair with P = [],cgpi and Q = [[,cppi- Then Pn—1=Q or
equivalently Pn/Q =1+ 1/Q. Now taking logs we have:

lnn+> In(p;) — > In(g;) =In(1 +1/Q)

Since 0 < In(1+1/Q) < 1/Q < 1/n'?5, and since there are at most 31n(n) — 1
primes dividing PQ it follows that:

In'n+ > In'(p;) =Y. In'(¢;) +7=0

where v = a/10/12519810(")1 for some a € Z with —161n(n) < a < 161n(n).

I This cannot be strictly true since (Q, P) = 1. Nonetheless this is presumed to be ‘essen-
tially’ true. A similar assumption is made in many factoring algorithms.

For the appropriate choice of v in Vo, the vector W = Vo + 32, Vi = > ,cr Vi
must have first coordinate equal to 0. Further by our selection of values along
the diagonal, the length of W, ||W||2, will be near In(PQ). In fact because of
the use of ‘approximate square root of the log’ we have:

W= Y (/Inp)?= 3 upi+5

ieSuUT iesuT
where 0 < 3 < 151n(n)/n!-2°.
Hence ||[W||s = In(PQe?). For sufficiently large n, 1 < e” < 2 so:

In(n"?) < [[W]]2 < In(8n"")

We will next argue that for this choice of =y, the shortest vector in A must
correspond to a supersmooth pair P,Q with Pn—@ = s with s supersmooth. Let
the shortest vector in A be U = rVo+ >, cqaiVi = ;e biVi where SNT =),
foralli € S, 1 #0& a; € Zsg, foralli € T, i # 0 & b; € Z~p, and wlog
r € Z>o. Let P =[], cqpy" and Q = HieTpi”. Notice that SNT =) implies
that (P, Q) = 1.

The first coordinate of U is M (rln’(n) +rv+ >, c g ai In'(p;) — >, cq b In' (p5)).
This must be 0 otherwise it is at least n*/10/1251°810("1 and hence the vec-
tor W described above is shorter. Hence rln'(n) + ry + >, cga:In'(p;) —
> ierbiln’(p;)) = 0. Since In" is obtained by rounding up, there exist non-
negative real ‘error terms’ p, , 8 such that:

[p+rIn(n))] + [ry] + [+ Z a; In(p;)] — [B + Z biln(p;))] =0 (2)
i€ ieT

where the following bounds can be easily obtained:

p= L2’

—161n(n)/n*?* <y < 161In(n)/n*?

< 5
= 1% D@
ies

5
B< nl25 Zbi

€S
In addition:

1(2) S b < Q) < W(PQ) < [|U]]z < |[W]|> < In(3n)
€S
It follows that:

5 In(8n'®)
< - 7
ps nl-25 1In(2)

and hence when n is sufficiently large:

In(n?)
A< nl.25

A similar argument gives:

Exponentiating equation (??) gives:

e’n’ee®P = ePQ

Assume that n is sufficiently large that p,«, 3 < 1 and |y| < 1. Then:

(nje)" < efn"e™e*P =ePQ < eQ

By inequality (??) Q < 8n'-?°. It follows that for n sufficiently large r < 2.

However, r # 0 since otherwise:

P =¢e’Q

Hence:

P<eQ & Q <eP (5)

Wlog assume that P > @. Then:

P<Qe’ <Q(+pB+p%

and so:

P-Q<Q(B+p)

But the left hand side is a positive integer so:

1<Q(B+ 5%

Hence by (?7?) for n sufficiently large:

n1.25

@= 21n(n?)

Together with inequalities (??), this contradicts inequality (?7?) that In(PQ) <
In(8n'?%). Hence r = 1 and

e’ne’e®P = eQ

Letting0 =0 —p—v— «:

nP =e'Q

and for all sufficiently large n:

31n(n?)

ol < =

=1 (6)

Assume @ < Pn, then:

31n(n?
nP=e’Q<(1+60+6%)Q <1+ nn1(;l5))Q

Hence:

1 2
np <2 g ™)

But nP — @ is a positive integer, so:

31n(n?)

1< WQ
And therefore:

3§$U<Q
But since Q < Pn:

iE%MP

But since by inequality (?7) In(PQ) < In(8n'-), it follows that:

Q < 241In(n?)n'?

So by inequality (?7?):

WP Q< 31n(n?)

< S5 Q < 72In(n?)
oL

So there exists a positive integer s = nP — @ such that s < 72 ln2(n2). When
n is sufficiently large, s < 1n20(2n1'25); hence s is supersmooth yielding the
supersmooth congruence:

Q=-smodn
When Pn < @ (by assumption on n, (Pn,Q) = 1 and hence Pn # @) a similar
argument (switching the roles of Pn and Q) yields the same result.
Thus by trying all possible v, a ‘supersmooth congruence’ will be obtained.
It will be necessary to obtain many different supersmooth congruences. This

will be accomplished by selecting random pairs of indices 1 <1i < j < z and re-
placing V by Vo + V; + V; and rerunning the algorithm above. Since there were

at least nl/® /2110 squarefree-supersmooth pairs P, Q meeting the conditions
described above, it is reasonable to assume that with high probability there ex-
ists some such pair with p;p;|P (it seems possible that this assumption may be
replaceable by a rigorous argument). It will then follow as above, that upon re-
running the algorithm such a P will be found. When In*’(n!-2®) random choices
of i, 7 are tried, they are likely to yield distinct ‘supersmooth congruences’. Fi-
nally we will make the ‘standard’ assumption that with high probability, after
collecting lngo(nl'%) such supersmooth congruences, linear algebra will yield
a non trivial congruence of squares and hence a non-trivial factor of n. The
complete factorization of n is then obtained by iteration.

3 Discussion

This result raises the possibility of using ‘approximate’ lattice reduction algo-
rithms (e.g. L? [?]) to factor numbers. Whether ‘lattice factorization’ will be
useful is unclear. L? does not always find the shortest vector in a lattice. In
fact the best theoretical analysis suggest that sometimes the shortest vector it
can produce will be longer that the true shortest by an ‘exponential (in the
dimension of the space)’ multiplicative factor. For lattice factorization to be
useful, it seems likely that either a more refined approach will be necessary
or L3 (or another algorithm) must in reality produce smaller vectors than the
current analysis suggests.

Among the open problems which remain are the following. Is the lattice problem
random polynomial time equivalent to factoring? Is the lattice problem in NPN
Co-NP? Is the lattice problem NP-complete. How ‘good’ an ‘approximate’ lat-
tice reduction algorithm would be required to yield a factoring algorithm better
than the best currently known. See [?] for additional information and references
on factoring, lattice and other open problems of a number theoretic nature.

4 Acknowledgment

Schnorr long ago argued that an efficient method for finding smooth numbers
above a given bound could improve factorization times. Odlyzko, recently re-
visited and refined Schnorr’s results. It was interest in this approach which
lead the author to begin considering lattices on logs. The author is grateful to
Professor Ming-Deh Huang and Jonathan DeMarrais for their contributions to
this paper.

5 Reference

References

[AM]

Adleman L and McCurley K. ”Open problems in number-theoretic
complexity II”, Proceedings of the 1994 Algorithmic Number Theory
Symposium”, Ed. Adleman L and Huang M-D. Lecture Notes in Com-
puter Science, Springer-Verlag 877 (1994).

Lagarias J. ”The computational complexity of simultaneous diophan-
tine approximation problems”, SIAM Journal of Computing 14:196-
209 (1985).

Lenstra A, Lenstra H and Lovasz” L. ”Factoring polynomials with
rational coefficients”, Mathematische Annalen261:515-534 (1982).

Norton K.K. ”Numbers with small prime factors and the least kth
power non-residue”, Mem. Amer. Math. Soc. 106 (1971).

Pomerance C. personal communication. (1995).

Schnorr C. P. ”Factoring Integers and Computing Discrete Logarithms
via Diophantine Approximation”, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science 13:172-181 (1993).

10

