
HED specification v3.0.0
Release 3.0.0

HED Working Group

Oct 27, 2022

CONTENTS:

1 1. Introduction to HED 3
1.1 1.1. Scope of HED . 3
1.2 1.2. Brief history of HED . 4
1.3 1.2. Goals of HED . 5
1.4 1.3. HED design principles . 5
1.5 1.4. Specification organization . 6

2 2. HED terminology 7
2.1 Agent [*] . 7
2.2 Condition-variable [*] . 7
2.3 Control-variable [*] . 7
2.4 Dataset . 7
2.5 Event [*] . 8
2.6 Event-context [*] . 8
2.7 Event marker . 8
2.8 Event-stream [*] . 8
2.9 Experiment-participant [*] . 8
2.10 Experimental-trial [*] . 8
2.11 HED schema [*] . 8
2.12 HED string . 9
2.13 HED tag . 9
2.14 Indicator-variable [*] . 9
2.15 Parameter [*] . 9
2.16 Recording [*] . 9
2.17 Tag-group . 9
2.18 Task [*] . 9
2.19 Temporal scope . 10
2.20 Time-block [*] . 10

3 3. The HED schema 11
3.1 3.1. Mediawiki schema format . 12
3.2 3.2. XML schema format . 13

3.2.1 3.2.1 The <node> element . 14
3.2.2 3.2.2 Unit classes and modifiers . 15
3.2.3 3.2.3 Value classes . 15
3.2.4 3.2.4 Schema attributes . 15
3.2.5 3.2.5 Schema properties . 15

3.3 3.3. Allowed names and values . 15
3.3.1 3.3.1 Rules for the HED schema . 15
3.3.2 3.3.2 Rules for HED tags . 16

i

3.3.3 3.3.3 Placeholders in HED tags . 16
3.4 3.4. Vocabulary organization . 17
3.5 3.5. Tag syntax . 17

4 4. Basic annotation 19
4.1 4.1. Instantaneous events . 19
4.2 4.2. Sensory presentations . 19
4.3 4.3. Task role . 21
4.4 4.4. Agent actions . 21
4.5 4.5. Experimental control . 22
4.6 4.6. Data features . 23
4.7 4.7. What else? . 24

5 5. Advanced annotation 25
5.1 5.1. HED definitions . 25
5.2 5.2. Using definitions . 26
5.3 5.3. Temporal scope . 27

5.3.1 5.3.1. Onset and Offset . 27
5.3.2 5.3.2. Duration . 29
5.3.3 5.3.3. Temporal offsets with Delay . 30

5.4 5.4. Event streams . 31
5.5 5.5. Event context . 31
5.6 5.6. Experimental design . 32
5.7 5.7. Specialized annotation . 34

6 6. Infrastructure 35
6.1 6.1. Short and long forms . 35
6.2 6.2. File formats . 35

6.2.1 6.2.1. BIDS event files . 35
6.2.2 6.2.2. BIDS sidecars . 36
6.2.3 6.2.3. HED version in BIDS . 37

6.3 6.3. Levels of validation . 37
6.3.1 6.3.1. Tag validation . 38
6.3.2 6.3.2. String validation . 38
6.3.3 6.3.3. Sidecar validation . 38
6.3.4 6.3.4. Event validation . 38
6.3.5 6.3.5. Recording validation . 38

6.4 6.4. Analysis tools . 39
6.5 6.5. BIDS support in HED . 39

7 7. Library schema 41
7.1 7.1. Defining a schema . 42
7.2 7.2. Schema namespaces . 43
7.3 7.3. Attributes and classes . 43

7.3.1 7.3.1. Required sections . 43
7.3.2 7.3.2. Relation to standard HED schema . 43
7.3.3 7.3.3. Schema properties . 44
7.3.4 7.3.4. Unit classes . 44
7.3.5 7.3.5. Value classes . 44
7.3.6 7.3.6. Schema attributes . 44
7.3.7 7.3.7. Syntax checking . 44

7.4 7.4. library schemas in BIDS . 45

8 A. Schema format 47
8.1 A.1. Mediawiki file format . 47

ii

8.1.1 A.1.1. Overall file layout . 47
8.1.2 A.1.2. The header-line . 48
8.1.3 A.1.3. Schema section . 49
8.1.4 A.1.4. Other sections . 50

8.2 A.2. XML file format . 51
8.2.1 A.2.1. The schema section . 52
8.2.2 A.2.2. Unit classes . 54
8.2.3 A.2.3. Value classes . 55
8.2.4 A.2.4. Schema attributes . 55

8.3 A.3. Schema sections . 56
8.3.1 A.3.1. Schema properties . 56
8.3.2 A.3.2. Schema attributes . 56
8.3.3 A.3.3. Value classes . 58
8.3.4 A.3.4. HED unit classes . 58
8.3.5 A.3.5. HED unit modifiers . 59

9 B. HED errors 61
9.1 B.1. HED validation errors . 61
9.2 B.2. Schema validation errors . 63

9.2.1 B.2.2. General validation schema errors . 63
9.2.2 B.2.3. Format-specific schema errors. 64
9.2.3 B.3. Schema loading errors . 64

10 HED resources 65
10.1 HED publications . 65
10.2 HED schema viewers . 65
10.3 HED websites . 66
10.4 HED working documents . 67

iii

iv

HED specification v3.0.0, Release 3.0.0

Links

• PDF version

• Specification source

• Examples and tutorials

CONTENTS: 1

https://hed-specification.readthedocs.io/_/downloads/en/latest/pdf/
https://github.com/hed-standard/hed-specification/
https://hed-examples.readthedocs.io/en/latest/

HED specification v3.0.0, Release 3.0.0

2 CONTENTS:

CHAPTER

ONE

1. INTRODUCTION TO HED

This document contains the specification for third generation HED or HED-3G. It is meant for the implementers and
users of HED tools. Other tutorials and tagging guides are available to researchers using HED to annotate their data.
This document (HEDSPEC 3.0.0) contains the specification for the first official release of HED-3G. This specification
applies to HED Schema versions HED 8.0.0-xxx and above. When the term HED is used in this document, it refers
to third generation (HED-3G) unless explicitly stated otherwise.

The aspects of HED that are described in this document are supported or will soon be supported by validators and other
tools and are available for immediate use by annotators. The schema vocabulary can be viewed using an expandable
schema viewer.

All HED-related source and documentation repositories are housed on the HED-standard organization GitHub site,
https://github.com/hed-standard, which is maintained by the HED Working Group. HED development is open-source
and community-based. Also see the official HED website https://www.hedtags.org for a list of additional resources.

The HED Working Group invites those interested in HED to contribute to the development process. Users are en-
couraged to use the Issues mechanism of the hed-specification repository on the GitHub hed-standard working
group website: https://github.com/hed-standard/hed-specification/issues to ask for help or make suggestions. The HED
discussion forum https://github.com/hed-standard/hed-specification/discussions is maintained for in depth discussions
of HED issues and evolution.

Several other aspects of HED annotation are being planned, but their specification has not been fully determined. These
aspects are not contained in this specification document, but rather are contained in ancillary working documents which
are open for discussion. These ancillary specifications include the HED working document on spatial annotation and
the HED working document on task annotation.

1.1 1.1. Scope of HED

HED (an acronym for Hierarchical Event Descriptors) is an evolving framework that facilitates the description and for-
mal annotation of events identified in time series data, together with tools for validation and for using HED annotations
in data search, extraction, and analysis. HED allows researchers to annotate what happened during an experiment,
including experimental stimuli and other sensory events, participant responses and actions, experimental design, the
role of events in the task, and the temporal structure of the experiment. The resulting annotation is machine-actionable,
meaning that it can be used as input to algorithms without manual intervention. HED facilitates detailed comparisons
of data across studies.

As the name HED implies, much of the HED framework focuses on associating metadata with the experimental timeline
to make datasets analysis-ready and machine-actionable. However, HED annotations and framework can be used to
incorporate other types of metadata into analysis by providing a common API (Application Programming Interface)
for building inter-operable tools.

This specification describes the official release of third generation of HED or HED-3G, which is HED version 8.0.0.
Third generation HED represents a significant advance in documenting the content and intent of experiments in a format

3

https://www.hedtags.org/display_hed.html
https://github.com/hed-standard
https://www.hedtags.org
https://github.com/hed-standard/hed-specification/issues
https://github.com/hed-standard/hed-specification/discussions
https://docs.google.com/document/u/0/d/1jpSASpWQwOKtan15iQeiYHVewvEeefcBUn1xipNH5-8/edit
https://docs.google.com/document/u/0/d/1eGRI_gkYutmwmAl524ezwkX7VwikrLTQa9t8PocQMlU/edit

HED specification v3.0.0, Release 3.0.0

that enables large-scale cross-study analysis of time-series behavioral and neuroimaging data, including but not limited
to EEG, MEG, iEEG, fMRI, eye-tracking, motion-capture, EKG, and audiovisual recording.

HED annotations may be included in BIDS (Brain Imaging Data Structure) datasets https://bids.neuroimaging.io as
described in Chapter 6: Infrastructure.

1.2 1.2. Brief history of HED

HED was originally proposed by Nima Bigdely-Shamlo in 2010 to support annotation in HeadIT an early public repos-
itory for EEG data hosted by the Swartz Center for Computational Neuroscience, UCSD (Bigdely-Shamlo et al. 2013).
HED-1G was partially based on CogPO (Turner and Laird 2012).

Event annotation in HED-1G was organized around a single hierarchy whose root was the Time-Locked Event. Users
could extend the HED-1G hierarchy at its deepest (leaf) nodes. First generation HED (HED-1G, versions < 5.0.0)
attempted to describe events using a strictly hierarchical vocabulary.

HED-1G was oriented toward annotating stimuli and responses, but its lack of orthogonality in vocabulary design
presented major difficulties. If Red/Triangle and Green/Triangle are terms in a hierarchy, one is also likely to need
Red/Square and Green/Square* as well as other color and shape combinations.

HED-2G (versions 5.0.0 - 7.x.x) introduced a more orthogonal vocabulary, meaning that independent terms were in
different subtrees of the vocabulary tree. Separating independent concepts such as shapes and colors into separate
hierarchies, eliminates an exponential vocabulary growth due to term duplication in different branches of the hierarchy.

Parentheses were introduced so that terms could be grouped. Tools for validation and epoching based on HED tags
were built, and large-scale cross-study “mega-analyses” were performed. However, as more complicated and varied
datasets were annotated using HED-2G, the vocabulary started to become less manageable as HED tried to adapt to
more complex annotation demands.

In 2019, work began on a rethinking of the HED vocabulary design, resulting in the release of the third generation of
HED (HED-3G) in August 2021. HED-3G represents a dramatic increase in annotation capacity, but also a significant
simplification of the user experience.

New in HED (versions 8.0.0+).

1. Improved vocabulary structure

2. Short-form annotation

3. Library schema

4. Definitions

5. Temporal scope

6. Encoding of experimental design

Following basic design principles, the HED Working Group redesigned the HED vocabulary tree to be organized in
a balanced hierarchy with a limited number of subcategories at each node. (See the expandable schema browser to
browser the vocabulary and explore the overall organization. Chapter2:Terminology defines some important HED tags
and terminology used in HED.)

A major improvement in vocabulary design was the adoption of the requirement that individual nodes or terms in the
HED vocabulary must be unique. This allows users to use individual node names (short form) rather than the full paths
to the schema root during annotation, resulting in substantially simpler, more readable annotations.

To enable and regulate the extension process, the root HED-3G head schema specified here includes, for the first time,
HED library schema to extend the HED vocabulary to include terms and concepts of importance to individual user

4 Chapter 1. 1. Introduction to HED

https://bids.neuroimaging.io
https://headit.ucsd.edu
https://www.hedtags.org/display_hed.html

HED specification v3.0.0, Release 3.0.0

communities – for example researchers who design and perform experiments to study brain and language, brain and
music, or brain dynamics in natural or virtual reality environments. The HED library schema concept may also be used
to extend HED annotation to encompass specialized vocabularies used in clinical research and practice.

HED-3G also introduced a number of advanced tagging concepts that allow users to represent events with temporal
duration, as well as annotations that represent experimental design.

1.3 1.2. Goals of HED

An event is a process that unfolds over time representing something that happens. Events are typically measured by
noting sequences of time points (event markers) usually marking specific transition points which could be thought of
as moments of phase transition in a dynamic process. HED annotation documents what happens at these event markers
in order to facilitate data analysis and interpretation. Commonly recorded event markers in electrophysiological data
collection include the initiation, termination, or other features of sensory presentations and participant actions.
Other events may be unplanned environmental events (for example, noise and vibration from construction work
unrelated to the experiment, or a laboratory device malfunction), changes in experiment control parameters as well
as data features and control mishaps that cause operation to fall outside of normal experiment parameters. The goals
of HED are to provide a standardized annotation and supporting infrastructure.

Goals of HED.

1. Document the exact nature of events (sensory, behavioral, environmental, and other) that occur during recorded
time series data in order to inform data analysis and interpretation.

2. Describe the design of the experiment including participant task(s).

3. Relate event occurrences both to the experiment design and to participant tasks and experience.

4. Provide basic infrastructure for building and using machine-actionable tools to systematically analyze data
associated with recorded events in and across data sets, studies, paradigms, and modalities.

A central goal of HED is to enable building of archives of brain imaging data in a form amenable to new forms of larger
scale analysis, both within and across studies. Such event-related analysis requires that the nature(s) of the recorded
events be specified in a common language. The HED project seeks to formalize the development of this language, to
develop and distribute tools that maximize its ease of use, and to inform new and existing researchers of its purpose
and value.

Most experiments have a limited number of distinct event types, which are often identified in the original experiment
by local event codes. The strategy for assigning local codes to individual events depends on the format of the data
set. However, in practice, HED tagging usually involves annotating a few event types or codes for an entire study, not
tagging individual instances of events in individual data recordings.

1.4 1.3. HED design principles

The near decade-long effort to develop effective event annotation for neurophysiological and behavioral data, culmi-
nating to date in HED-3G, has revealed the importance of four principles (aka the PASS principles), all of which have
roots in other fields:

The PASS principles for HED design.

1. Preserve orthogonality of concepts in specifying vocabularies.

2. Abstract functionality into layers (e.g., more general vs. more specific).

1.3. 1.2. Goals of HED 5

HED specification v3.0.0, Release 3.0.0

3. Separate content from presentation.

4. Separate implementation from the interface (for flexibility).

Orthogonality, the notion of keeping independently applicable concepts in separate hierarchies (1 above), has long been
recognized as a fundamental principle in reusable software design, distilled in the design rule: Favor composition over
inheritance (Gamma et al. 1994).

Abstraction of functionality into layers (2) and separation of content from presentation (3) are well-known principles
in user-interface and graphics design that allow tools to maintain a single internal representation of needed information
while emphasizing different aspects of the information when presenting it to users.

Similarly, making validation and analysis code independent of the HED schema (4) allows redesign of the schema
without having to re-implement the annotation tools. A well-specified and stable API (application program interface)
empowers tool developers.

1.5 1.4. Specification organization

This specification is meant to provide guidelines for tool-builders as well as HED annotators. Chapter 2: Terminology
reviews the basic terminology used in HED, and Chapter 3: Schema outlines the rules for HED vocabularies. Basic and
advanced event models and their annotations are explained in Chapter 4: Basic annotation and Chapter 5: Advanced
annotation. Discussions of how tags for local event codes are associated with event instances are deferred to Chapter
6: Infrastructure.

HED provides a mechanism for user communities to develop discipline-specific library vocabularies. (See Chapter 7:
Library schema for details.)

Appendix A: Schema format provides a reference manual for the HED vocabulary format rules. Appendix B: HED
errors gives a complete listing of HED error codes and their meanings.

Other resources include a comprehensive list of HED resources resources and a HED-examples that contains many
tutorials and code examples.

All HED source code and resources are open-source and staged in the HED Standards Organization Repository https:
//github.com/hed-standard.

6 Chapter 1. 1. Introduction to HED

https://hed-examples.readthedocs.io/en/latest/
https://github.com/hed-standard
https://github.com/hed-standard

CHAPTER

TWO

2. HED TERMINOLOGY

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

This specification uses a list of terms and abbreviations whose meaning is clarified here. Note: We here hyphenate
multi-word terms as they appear in HED strings themselves; in plain text usage they may not need to be hyphenated.
Starred variables [*] correspond to actual HED tags.

2.1 Agent [*]

A person or thing, living or virtual, that produces (or appears to participants to be ready and capable of producing)
specified effects. Agents include the study participants from whom data is collected. Virtual agents may be human or
other actors in virtual-reality or augmented-reality paradigms or on-screen in video or cartoon presentations (e.g., an
actor interacting with the recorded participant in a social neuroscience experiment, or a dog or robot active in a live
action or animated video).

2.2 Condition-variable [*]

An aspect of the experiment that is set or manipulated during the experiment to observe an effect or to manage bias.
Condition variables are sometimes called independent variables.

2.3 Control-variable [*]

An aspect of the experiment that is fixed throughout the study and usually is explicitly controlled.

2.4 Dataset

A set of neuroimaging and behavioral data acquired for a purpose of a particular study. A dataset consists of data
recordings acquired from one or more subjects, possibly from multiple sessions and sensor modalities. A dataset is
often referred to as a study.

7

https://www.ietf.org/rfc/rfc2119.txt

HED specification v3.0.0, Release 3.0.0

2.5 Event [*]

Something that happens during the recording or that may be perceived by a participant as happening, to which a time of
occurrence (most typically onset or offset) can be identified. Something expected by a participant to happen at a certain
time that does not happen can also be a meaningful recording event. The nature of other events may be known only to
the experimenter or to the experiment control application (e.g., undisclosed condition changes in task parameters).

2.6 Event-context [*]

Circumstances forming or contributing to the setting in which an event occurs that are relevant to its interpretation,
assessment, and consequences.

2.7 Event marker

A time point relative to the experimental timeline that can be associated with an annotation. Often such a marker
indicates a transition point for some underlying event process.

2.8 Event-stream [*]

A named sequence of events such as all the events that are face stimuli or all of the events that are participant responses.

2.9 Experiment-participant [*]

A living agent, particularly a human from whom data is acquired during an experiment, though in some paradigms
other human participants may also play roles.

2.10 Experimental-trial [*]

A contiguous data period that is considered a unit used to observe or measure something, typically a data period
including an expected event sequence that is repeated many times during the experiment (possibly with variations).
Example: a repeating sequence of stimulus presentation, participant response action, and sensory feedback delivery
events in a sensory judgment task.

2.11 HED schema [*]

A formal specification of the vocabulary and rules of a particular version of HED for use in annotation, validation, and
analysis. A HED schema is given in XML (.xml) format. The top-level versioned HED schema is used for all HED
event annotations. Named and versioned HED library schema may be used as well to make use of descriptive terms
used by a particular research community. (For example, an experiment on comprehension of connected speech might
annotate events using a grammatical vocabulary contained in a linguistics HED schema library.)

8 Chapter 2. 2. HED terminology

HED specification v3.0.0, Release 3.0.0

2.12 HED string

A comma-separated list of HED tags and/or tag-groups.

2.13 HED tag

A valid path along one branch of a HED vocabulary hierarchy. A valid long-form HED tag is a slash-separated path
following the schema tree hierarchy from its root to a term along some branch. Any suffix of a valid long-form HED tag
is a valid short-form HED tag. No white space is allowed within terms themselves. For example, the long form of the
HED tag specifying an experiment participant is: Property/Agent-property/Agent-task-role/Experiment-participant.
Valid short-form tags are Experiment-participant, Agent-task-role/Experiment-participant, and Agent-property/Agent-
task-role/Experiment-participant. HED tools should treat long-form and short-form tags interchangeably.

2.14 Indicator-variable [*]

An aspect of the experiment or task that is measured or calculated for analysis. Indicator variables, sometimes called
dependent variables, can be data features that are calculated from measurements rather than aspects that are directly
measured.

2.15 Parameter [*]

An experiment-specific item, often a specific behavioral or computer measure, that is useful in documenting the analysis
or assisting downstream analysis.

2.16 Recording [*]

A continuous recording of data from an instrument in a single session without repositioning the recording sensors.

2.17 Tag-group

One or more valid, comma-separated HED tags or enclosed in parentheses to indicate that these tags belong together.
Tag-groups may contain arbitrary nestings of other tags and tag-groups.

2.18 Task [*]

A set of structured activities performed by the participant that are integrally related to the purpose of the experiment.
Tasks often include observations and responses to sensory presentations as well as specified actions in response to
presented situations.

2.12. HED string 9

HED specification v3.0.0, Release 3.0.0

2.19 Temporal scope

The time interval between events marking the beginning and end of something in the experiment. The time between
and including the onset and offset of an event.

2.20 Time-block [*]

A contiguous portion of the data recording during which some aspect of the experiment is fixed or noted.

10 Chapter 2. 2. HED terminology

CHAPTER

THREE

3. THE HED SCHEMA

A HED schema is the formal specification of the HED vocabulary and rules for annotating events. The HED schema
vocabulary is organized hierarchically so that similar concepts and terms appear close to one another in the organi-
zational hierarchy. (See the expandable schema viewer.) Valid HED annotations must be drawn from a HED schema
vocabulary and HED validators and other tools use the information encoded in the relevant schema when performing
validation and other processing of HED annotations.

Users must provide the version of the HED schema they are using when creating an annotation. Past, present, and
future versions of the HED schema adhere to semantic versioning with version numbers of the form x.y.z representing
major.minor.patch versions. Although schema developers work with HED schema in .mediawiki format for ease in
editing, HED tools generally use XML versions of the HED schema.

Standard development process for XML schema.

1. Create or modify a .mediawiki file containing the schema.

2. Convert to .xml using the HED tools.

3. View in the expandable schema viewer to verify.

HED schema XML filenames use the standardized format HEDx.y.z.xml. These standardized names make it easier
for tools to locate the appropriate HED schema version in the HED working group GitHub website. The XML schema
versions are stored in the hedxml directory of the HED specification repository.

Third generation HED begins with schema version 8.0.0. Thus, the file containing the first official release of the third
generation HED schema is HED8.0.0.xml. Note: HED versions 8.0.0-alpha.1 through 8.0.0-beta.5 are prerelease
versions of HED-3G and should not be used as they will eventually be deprecated.

Releases are stored in hedxml directory of the hed-specification repository. Deprecated versions of the HED
schema are stored in the hedxml/deprecated directory of the hed-specification repository.

All data recordings in a dataset should be annotated using a single version of the standard HED schema. Validation
and analysis tools are not expected to handle multiple versions of the standard HED schema when processing a dataset.
Datasets may also include annotations from multiple HED library schema extensions in addition to those from the
standard schema, as described in Chapter 7: Library schema of this document. A more detailed discussion of the HED
schema format appears in Appendix A.

11

https://www.hedtags.org/display_hed.html
https://semver.org/
https://hedtools.ucsd.edu/hed/schema
https://www.hedtags.org/display_hed.html
https://github.com/hed-standard
https://github.com/hed-standard/hed-specification/tree/master/hedxml
https://github.com/hed-standard/hed-specification
https://github.com/hed-standard/hed-specification/tree/master/hedxml
https://github.com/hed-standard/hed-specification
https://github.com/hed-standard/hed-specification/tree/master/hedxml/deprecated
https://github.com/hed-standard/hed-specification

HED specification v3.0.0, Release 3.0.0

3.1 3.1. Mediawiki schema format

HED schema developers usually specify schema in .mediawiki format for more convenient editing, display, and
reference on GitHub. However, tools assume that the schema is in .mediawiki format. Conversion tools allow The
following brief example illustrates the format. A full description of the format is given in Appendix A.

Example: Layout of a HED schema (.mediawiki).

HED version="8.0.0"

'''Prologue'''
This prologue introduces the schema.

!# start schema
'''Event''' <nowiki>[Something that happens at a given place and time.]</nowiki>
* Sensory-event <nowiki>{suggestedTask=Task-event-role}[Something perceivable by an␣
→˓agent.]</nowiki>

. . .
'''Property'''<nowiki>{extensionAllowed}[A characteristic.] </nowiki>
* Informational-property <nowiki>[A quality pertaining to information.]</nowiki>
** Label <nowiki>{requireChild} [A string of 20 or fewer characters.]</nowiki>
*** <nowiki># {takesValue, valueClass=nameClass}</nowiki>
!# end schema

'''Unit classes''' <nowiki>[Unit classes and units for the nodes.]</nowiki>
. . .

'''Unit modifiers''' <nowiki>[Unit multiples and submultiples.]</nowiki>
. . .

'''Value classes''' <nowiki>[Rules for the values provided by users.]</nowiki>
. . .

'''Schema attributes''' <nowiki>[Allowed node attributes.]</nowiki>
. . .

'''Properties''' <nowiki>[Properties of the schema attributes.]</nowiki>
. . .

'''Epilogue'''
An optional section that is the place for notes and is ignored in HED processing.

!# end hed

Beginning with third generation HED (HED schema versions 8.0.0 and later), terms in a given schema must be
unique within that schema. This uniqueness rule allows automated expansion of short form HED strings into their
full long forms.

Top level tree root elements are enclosed by triple single quotes. Each child term within the schema must be on a
single line that begins with a certain number of consecutive asterisks (*) corresponding to the term’s level within the
hierarchy. The term or node name is separate from its level-indicating asterisks by a space.

Everything after each HED term must be enclosed by <nowiki></nowiki> markup elements. Items within these
markup elements include a term description and term attributes.

Term (node element) descriptions are enclosed in square brackets ([]) in the .mediawiki specification and indicate
the meaning of the term or tag they modify.

HED term attributes are enclosed with curly braces ({ }). These term attribute provide additional rules about how the

12 Chapter 3. 3. The HED schema

HED specification v3.0.0, Release 3.0.0

tag and modifying values should be used and handled by tools. Allowed HED term attributes include unit class and value
class values as well as HED schema attributes that do not have the unitClassProperty, unitModifierProperty,
unitProperty, or valueClassProperty.

HED term attributes appear in the schema specification either as name attributes or as name=value pairs. The presence
of a name attribute for a schema node element indicates that the attribute is true for that term, while the presence of a
name=value attribute indicates that the attribute has the specified value for that term. If multiple values of a particular
attribute are applicable, they should be specified as separate name-value pairs.

The hashtag character (#) is a placeholder for a user-supplied value. Within the HED schema a # node indicates that the
user must supply a value consistent with the unit classes and value classes of the # node if it has any. Lines with hashtag
(#) placeholders should have everything after the asterisks enclosed by <nowiki></nowiki> markup elements.

3.2 3.2. XML schema format

The HED XML version of the schema is used during validation and analysis. The .xml format has changed with the
release of HED-3G. This modification of the XML format was done for the following reasons.

Reasons for XML file format change for HED.

1. To correctly handle multiple values of schema attributes.

2. To preserve the prologue and epilogue information present in .mediawiki files.

3. To allow schema attributes to be formally specified and validated.

4. To allow an XSD specification of the HED schema for validation of the schema.

The following is a translation of the .mediawiki example from the previous section in the new XML format. A
complete specification of the format is given in Appendix A: Schema format.

Example: XML version of previous example.

<?xml version="1.0" ?>
<HED version="8.0.0">

<prologue>This prologue introduces the schema.</prologue>
<schema>

<node>
<name>Event</name>
<description>Something that happens at a given place and time.</description>
<node>

<name>Sensory-event</name>
<description>Something perceivable by an agent.</description>
<attribute>

<name>suggestedTag</name>
<value>Task-event-role</value>

</attribute>
</node>

</node>
. . .

<node>
<name>Property</name>
<description>A characteristic of some entity.</description>

(continues on next page)

3.2. 3.2. XML schema format 13

HED specification v3.0.0, Release 3.0.0

(continued from previous page)

<attribute>
<name>extensionAllowed</name>

</attribute>
<node>

<name>Informational-property</name>
<description>A quality pertaining to information.</description>
<node>

<name>Label</name>
<description>A string of less than 20.</description>
<attribute>

<name>requireChild</name>
</attribute>

<node>
<name>#</name>
<attribute>

<name>takesValue</name>
</attribute>
<attribute>

<name>valueClass</name>
<value>nameClass</value>

</attribute>
</node></node>

</node>
</node>

</schema>
<unitClassDefinitions> ...</unitClassDefinitions>
<unitModifierDefinitions>...</unitModifierDefinitions>
<valueClassDefinitions>...</valueClassDefinitions>
<schemaAttributeDefinitions>...</schemaAttributeDefinitions>
<propertyDefinitions>...</propertyDefinitions>
<epilogue>This epilogue is a place for notes and is ignored in HED processing.</

→˓epilogue>
</HED>

3.2.1 3.2.1 The <node> element

Each <node> element must have a <name> child element corresponding to the HED tag term that it specifies. A <node>
element may also have a <description> child element containing the text that appears in square brackets ([]) in
the .mediawiki version. The schema attributes (which appear as name values or name-value pairs enclosed in curly
braces {} in the .mediawiki file) are translated into <attribute> child elements of <node> in the .xml.

14 Chapter 3. 3. The HED schema

HED specification v3.0.0, Release 3.0.0

3.2.2 3.2.2 Unit classes and modifiers

The HED schema also includes a <unitClassDefinitions> section that specifies the allowed unit classes and the
corresponding allowed unit names. Only the singular version of each unit name is explicitly specified, but the corre-
sponding plurals of the explicitly mentioned singular versions are also allowed (e.g., feet is allowed in addition to
foot). HED uses a pluralize function available in both Python and Javascript to check validity.

The <unitModifierDefinitions> section lists the SI unit multiples and submultiples that are allowed to be
prepended to units that have the SIUnit schema attribute.

3.2.3 3.2.3 Value classes

The <valueClassDefinitions> section specifies rules for the values that are substituted for placeholders (#). Ex-
amples are special characters that are allowed for numeric values or dates. Placeholders that have no valueClass
attributes, are assumed to follow the rules for HED tag naming described in the next section.

3.2.4 3.2.4 Schema attributes

The <schemaAttributeDefinitions> section lists the schema attributes that apply to some nodes and definitions
in other sections of the schema. The specification of which type of elements an attribute may apply to is specified by
the property attributes of these schema attributes.

3.2.5 3.2.5 Schema properties

The <schemaPropertyDefinitions> section lists properties of the schema attributes, themselves. This specification
allows general validation to handle a lot of the processing directly based on the HED schema contents rather than on
hard-coded implementation.

3.3 3.3. Allowed names and values

The different parts of the HED schema and associated HED tags have different rules for the characters and names that
are allowed. UTF-8 characters are not supported. Schema designers and users that extend HED schema must use node
or term names that conform to the rules for valueClass=nameClass. Placeholder values that don’t have an associated
valueClass attribute are also assumed to have valueClass=nameClass.

3.3.1 3.3.1 Rules for the HED schema

Table 1: Rules for valid terms in the HED schema.
Element Allowed characters
Node (nameClass) Alphanumeric characters, hyphens, and underbars with no white space.
Description (textClass) Alphanumeric characters, blanks, commas, periods, semicolons, colons, hyphens,

underbars, forward slashes, carets (^), and parentheses.
Placeholder (#) A special node value which indicates a later substitution.

Notes on rules for allowed characters in the HED schema.

1. The first letter of a schema term should be capitalized with the remainder lower case.

3.3. 3.3. Allowed names and values 15

HED specification v3.0.0, Release 3.0.0

2. Schema terms containing multiple words cannot contain blanks and should be hyphenated.

3. Schema descriptions should be concise sentences, possibly with clarifying examples.

4. Schema descriptions cannot contain square brackets, curly braces, quotes, or punctuation not specifically allowed
by textClass.

3.3.2 3.3.2 Rules for HED tags

HED tags are paths within the HED schema. Tags corresponding to schema nodes that have a # placeholder child
can be extended by a slash followed by a value that conforms to the value and unit classes specified in the schema #
placeholder node. These values can be terms corresponding to existing schema nodes, provided the terms satisfy value
and unit class constraints.

Nodes that do not have a # placeholder child may be extended by additional terms separated by slashes, provided that
they have inherited the extensionAllowed attribute. In this case, the extension terms should conform to the rules for
node names and may not already be a node in the schema.

Table 2: Rules for valid HED tags and their extensions.
Element Allowed characters
Node extensions (nameClass) Alphanumeric characters, hyphens, and underbars with no white space. The ex-

tension cannot be an existing schema node.
Description tag values
(textClass)

Alphanumeric characters, blanks, commas, periods, semicolons, colons, hyphens,
underbars, forward slashes, carets (^), and parentheses.

Placeholder substitutions Depends on valueClass as well as allowed unitClass and unit modifiers.
Library names A single word containing only alphabetic characters.
Namespaces A single alphabetic word followed by a single colon.

Notes on rules for allowed characters in the HED tags.

1. The first letter of a node name extensions should be capitalized with the remainder lower case.

2. Terms containing multiple words cannot contain blanks and should be hyphenated.

3. Blanks around comma and parentheses delimiters are not part of a HED tag.

4. Values substituted for # may have special characters determined by the value class. For example, the colon (:) is
specifically allowed for the dateTimeClass value class.

5. Units are separated from their value by at least one blank whether prefix or suffix.

6. Library namespace names are local and consist of a short alphabetic word followed by a single colon.

3.3.3 3.3.3 Placeholders in HED tags

The values of HED tag placeholders cannot stand alone, but must include the parent when used in a HED string. For
example, the Label node in the HED schema has the # child. Thus, the value myLabel meant to substitute for the #
child of the Label node must include Label when used in a HED tag (e.g., Label/myLabel not myLabel).

The values substituted for # may themselves be schema node names provided they conform with any value class re-
quirements associated with that #. Thus, Label/Item is a valid HED tag. However, Data-maximum/Item is not valid
because the # child of Data-maximum has a valueClass=numericClass attribute.

16 Chapter 3. 3. The HED schema

HED specification v3.0.0, Release 3.0.0

Certain unit classes allow other special characters in their value specification. These special characters are specified in
the schema with the allowedCharacter attribute. An example of this is the colon in the dateTimeClass unit class.

3.4 3.4. Vocabulary organization

The HED-3G schema (version 8.0.0 and above) contains six root trees of HED terms: Event, Agent, Action, Item,
Property, and Relation.

The Event root tree terms indicate the general category of the event, such as whether it is a sensory event, an agent
action, a data feature, or an event indicating experiment control or structure. The HED annotations describing each
event may be assembled from a number of sources during processing.

The assembled HED string annotating an event should have at least one tag from the Event tree, as many analysis tools
use the Event tags as a primary means of segregating, epoching, and processing the data. Ideally, tags from the Event
subtree should appear at the top level of the HED annotation describing an event to facilitate analysis.

The Agent root tree terms indicate types of agents (e.g., persons, animals, avatars) that take an active role or produce a
specified effect. An Agent tag should be grouped with property tags that provide information about the agent, such as
whether the agent is an experiment participant.

The Action root tree terms describe actions performed by agents. Generally these are grouped in a triple (A, (Action,
B)) which is interpreted as A does Action on B. If the action does not have a target, it should be annotated (A, (Action)),
meaning A does Action.

The Item root tree terms describe things with (actual or virtual) physical existence such as objects, sounds, or language.

Descriptive elements are organized in the Property rooted tree. These descriptive elements should always be grouped
with the elements they describe using parentheses.

Binary relations are in the Relation rooted tree. Like items from the Action sub-tree, these should be annotated using
(A, (Relation, B)).

3.5 3.5. Tag syntax

A HED tag is a term in the HED vocabulary identified by a path consisting of the individual node names from some
branch of the HED schema hierarchy separated by forward slashes (/). An important requirement of third generation
HED is that the node names in the HED schema must be unique. As a consequence, the user can specify as much of
the path to the root as desired. The full path version is referred to as long form and truncated versions as short form.
HED tools are available to map between shortened tags and long form as needed. Any intermediate form of the tag
path is also allowed as illustrated by this example:

Example: Equivalent forms for HED tag representing a triangle.

1. Item/Object/Geometric-object/2D-shape/Triangle

2. Object/Geometric-object/2D-shape/Triangle

3. Geometric-object/2D-shape/Triangle

4. 2D-shape/Triangle

5. Triangle

For values that are substituted for a placeholder (#) child, the tag must include the parent as illustrated in this example
for the Label tag. The values that replace these # placeholders may be schema node names, if the value and unit classes
associated with the # placeholder permit it.

3.4. 3.4. Vocabulary organization 17

HED specification v3.0.0, Release 3.0.0

Example: Equivalent forms for HED tag representing the label Image1.

1. Property/Informational-property/Label/Image1

2. Informational-property/Label/Image1

3. Label/Image1

A HED string is a comma-separated list of HED tags and/or HED tag groups. A HED tag group is a comma-separated
list of HED tags and/or tag groups enclosed in parentheses. Tag groups may include other tag groups. Parentheses
convey association, since HED strings are unordered lists. The terms in a HED string must be unique, thus, a HED
string forms a set.

Example: Nested HED tag group indicated press.

Short form:

((Human-agent, Experiment-participant), (Press, Mouse-button))

Long form:

((Agent/Human-agent,
Property/Agent-property/Agent-task-role/Experiment-participant),
(Action/Move/Move-body-part/Move-upper-extremity/Press,
Item/Object/Man-made-object/Device/IO-device/Input-device/Computer-mouse/Mouse-button))

The validation errors for HED tags and HED strings are summarized in Appendix B: HED errors.

HED # placeholders cannot have siblings. Thus, tags that have placeholder children cannot be extended even if they
inherit an extensionAllowed attribute from an ancestor. The parsers treat any child of these tags as a value rather
than a tag.

HED values can be strings or numeric values followed by a unit specification. If a unitClass is specified as an
attribute of the # node, then the units specified must be valid units for that unitClass. HED parsers assume that
units are separated from values by at least one blank.

18 Chapter 3. 3. The HED schema

CHAPTER

FOUR

4. BASIC ANNOTATION

This section illustrates the use of HED tags and discusses various tags that are used to document the structure and
organization of electrophysiological experiments. The simplest annotations treat each event as happening at a single
point in time. The annotation process for such events involves describing what happened during that event.

This chapter illustrates basic HED descriptions of four types of events that are often annotated using single event
markers: stimulus events, response events, experiment control events, and data features.

HED-3G now also allows more sophisticated models of events that unfold over time using multiple event markers.
Downstream analyses often look for neurological effects directly following (or preceding) event markers. The addition
of HED context, allows information about events that occur over extended periods of time to propagate to intermediate
time points. Chapter 5: Advanced annotation develops the HED concepts needed to capture these advanced models of
events as well as event and task inter-relationships.

4.1 4.1. Instantaneous events

This section describes HED annotation of events that are modeled as happening at an instant in time. Sometimes the
event marker corresponding to such an event is inserted in the data or held in an external event file containing the onset
time of some action, relative to the beginning of the data recording. We refer to these events as time-marked events.
The event marker may also point to the end/offset of some happening or to time between the onset and offset (for
example, the maximum velocity point in a participant arm movement or the maximum potential peak of an eye-blink
artifact).

A typical example of an experiment using time-marked event annotation is simple target detection. In this experiment
geometric shapes of different colors are presented on a computer screen at two-second intervals. After every visual
shape presentation, the subject is asked to press the left mouse button if the shape is a green triangle or the right
mouse button otherwise. After a block of 30 such presentation-response sequences (trials), the control software sounds
a buzzer to indicate that the subject can rest for 5 minutes before continuing to the next block of trials. After the
experiment is completed, the experiment runs an eyeblink-detection tool on the EEG data and inserts an event marker
at the amplitude maximum of each detected blink artifact.

4.2 4.2. Sensory presentations

The target detection experiment described above is an example of a stimulus-response paradigm: perceptually distinct
sensory stimuli are presented at precisely recorded times (typically with abrupt onsets) and ensuing and/or preceding
precisely-timed changes in the behavioral and physiological data streams are annotated or analyzed. Stimulus onsets
(typically) are annotated with the Sensory-event tag. Additional tags indicate task role. Separation of what an event
is (as designated by a tag from the Event subtree) from its task role (as indicated by other descriptive tags) is an
important design change that distinguishes HED-3G from earlier versions of HED and enables effective annotation in
more complex situations.

19

HED specification v3.0.0, Release 3.0.0

A stimulus event can be annotated at different levels of detail. When not needed, fine details can generally be ignored,
but once annotated can provide valuable information for later, possibly unanticipated analysis purposes. In a series
of examples, we will annotate successively more details about the experiment events. Each example shows both the
short form and long form. The elements in the long form that correspond to the short form are shown in bold-face. In
addition, the long form has a description, which is omitted from the short-form for readability.

The following example illustrates a very basic annotation of a stimulus event, indicating the stimulus is a green triangle
presented visually. The annotation indicates that this is a visual sensory event intended to be an experiment stimulus.
Sensory-event is in the Event rooted tree and indicates the general class that this event falls into.

Example: Version 1 of a visual stimulus annotation.

Short form:

Sensory-event, Experimental-stimulus, Visual-presentation, (Green, Triangle)

Long form:

Event/Sensory-event,
Property/task-property/Task-event-role/Experimental-stimulus,
Property/Sensory-property/Visual-presentation,
(Property/Sensory-property/Sensory-attribute/Visual-attribute/Color/CSS-color/Green-color/Green,
Item/Object/Geometric-object/2D-shape/Triangle),
Property/Informational-property/Description/An experimental stimulus consisting of
a green triangle is displayed on the center of the screen.

The example HED string above illustrates the most basic form of point event annotation. In general, the annotation
for each event should include at least one tag from the Event tree. If there are multiple sensory presentations in the
same event, a single Sensory-event tag covers the general category for all presentations in the event. The individual
presentations (which may include different modalities) are grouped with their descriptive tags, while the Sensory-event
tag applies overall. In this case there is only one, so the grouping is not necessary.

The Experimental-stimulus is a Task-property tag. Whether a particular sensory event is an experiment stimulus de-
pends on the particular task, hence Experimental-stimulus is a Task-property. Sensory events that are extraneous to the
task can also occur, so it is important to distinguish those that are related to the intent of the task.

The remaining portion of the annotation describes what the sensory presentation is. The Green and Triangle tags are
grouped to indicate specifically that a green triangle is presented. Visual-presentation is a Sensory-property tag from
the Property rooted tree. Which senses are impacted by the Sensory-event should always be indicated, even if it appears
to be obvious to the reader. The goal is to facilitate machine-actionable analysis.

HED has a number of qualitative relational tags designating spatial features such as Center-of, which should always be
included if possible. These qualitative terms provide clear search anchors for tools looking for general positional char-
acteristics. Hemispheric and vertical distinctions have particular neurological significance. More detailed size, shape,
and position information enhances the annotation. However, actual detailed information requires the specification of a
frame of reference, a topic deferred until later in this document.

The order of the tags does not matter. HED strings are unordered lists of HED tags and tag groups. Where the grouping
of associated tags needs to be indicated, most commonly in the case of tags with modifiers, the related tags should be
put in a tag group enclosed by parentheses (as above).

Notice that the long form version also includes a Description tag that gives a text description of the event. Users should
always include a Description tag in the annotation of each event type. The Description tag is omitted for readability in
the short form examples. As a matter of practice, however, users should start with a detailed text description of each
type of event before starting the annotation. This description can serve as a check on the consistency and completeness
of the annotation. Generally users annotate using the short form for HED tags and use tools to map the short form into
the long form during validation or analysis.

20 Chapter 4. 4. Basic annotation

HED specification v3.0.0, Release 3.0.0

4.3 4.3. Task role

In deciding what additional information should be included, the annotator should consider how to convey the nature
and intent of the experiment and the EEG responses that are likely to be elicited. The brief description suggests that
green triangles are something “looked for”, within the structure of the task that participants are asked to perform during
the experiment. The following annotation of the green triangle presentation includes information about the role this
stimulus appears in the task.

Example: Version 2 of a visual stimulus annotation.

Short form:

Sensory-event, Experimental-stimulus, Visual-presentation,
(Green, Triangle), (Intended-effect, Oddball), (Intended-effect, Target)

Long form:

Event/Sensory-event,
Property/Task-property/Task-event-role/Experimental-stimulus,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
(Property/Sensory-property/Sensory-attribute/Visual-attribute/Color/CSS-color/Green-color/Green,
Item/Object/Geometric-object/2D-shape/Triangle),
(Property/Task-property/Task-effect-evidence/Intended-effect,
Property/Task-property/Task-stimulus-role/Oddball),
(Property/Task-property/Task-effect-evidence/Intended-effect,
Property/Task-property/Task-stimulus-role/Target),
Property/Informational-property/Description/A green triangle target oddball is presented
in the center of the screen with probability 0.1.

The Intended-effect tag is a Task-effect-evidence tag that describes the effect expected to be elicited from the participant
experiencing the stimulus. This tag indicates, that based on the specification of the task, we can conclude that the subject
will be looking for the triangle (Target) and that its appearance is unusual (Oddball).

Three other tags in the Task-effect-evidence are Computational-evidence, External-evidence, and Behavioral-evidence.
In many experiments, a subject indicates that something occurs by performing an action such as pushing the left mouse
button for a green triangle and the right button otherwise. When the left-mouse button is pushed, one may conclude that
the participant has behaved as though the green triangle appears. If the button push is tagged with Behavioral-evidence,
automated tools can check whether the intended effect agrees with subject behavior. An example of External-evidence
is annotation by a speech therapist about whether the participant stuttered in a speech experiment. Computational-
evidence might be generated from BCI annotation.

HED-3G has more sophisticated methods of specifying the relationships of events and tasks. These require more
advanced tagging mechanisms that are discussed later in this document.

4.4 4.4. Agent actions

In many experiments, the participant is asked to press (or select and press) a finger button to indicate their perception
of or judgment concerning the stimulus. These types of events, as well as participant actions not related to the task, are
annotated as Agent-action events. Agent-action events can be annotated with varying levels of detail, as illustrated by
the next two examples.

Example: Version 1 of button press annotation.

Short form:

4.3. 4.3. Task role 21

HED specification v3.0.0, Release 3.0.0

Agent-action, (Participant-response, (Press, Mouse-button))

The Participant-response tag indicates that this event represents a task-related response to a stimulus. The Press tag is
from the Action subtree and is grouped with the Mouse-button to indicate the pressing of a button. In general, Action
elements can be considered verbs, while Items and Agents can be considered nouns. These elements form a natural
sentence structure: (subject, (verb, direct object)), with the subject and direct object being formed by noun elements.
Attribute elements are the adjectives, adverbs, and prepositions that modify and connect these elements.

Example: Version 2 of a button press annotation.

Short form:

Agent-action, Participant-response,
((Human-agent, Experiment-participant), (Press, Mouse-button)),
(Behavioral-evidence, Oddball), (Behavioral-evidence, Target)

Long form:

Event/Agent-action,
Property/Task-property/Task-event-role/Participant-response,
((Agent/Human-agent,
Property/Agent-property/Agent-task-role/Experiment-participant),
(Action/Move/Move-body-part/Move-upper-extremity/Press,
Item/Object/Man-made-object/Device/IO-Device/Input-device/Computer-mouse/Mouse-button)),
(Property/Task-property/Task-effect-evidence/Behavioral-evidence,
Property/Task-property/Task-stimulus-role/Oddball),
(Property/Task-property/Task-effect-evidence/Behavioral-evidence,
Property/Task-property/Task-stimulus-role/Target),
Property/Informational-property/Description/The subject pushes the left mouse button
to indicate the appearance of an oddball target using index finger on the left hand.

The Participant-response tag is modified by tags that indicate that the participant is reacting by responding as though
the stimulus were an oddball target. Specifically the Behavioral-evidence tag documents that the subject gave a response
indicating an oddball target. In other words, the participant pressed the left mouse button indicating an oddball target,
which may or may not match the stimulus that was presented.

Other details should be annotated, including whether the subject’s left, right, or dominant hand was used to press the
mouse button and whether the left mouse button or right mouse button was pressed. (This factor was indicated in the
Description, but not in the machine-actionable tags.)

4.5 4.5. Experimental control

Experiments may have experiment control events written into the event record, often automatically by the presentation
or control software. In the illustration provided above, a buzzer sounded by the control software indicates that the
subject should rest.

Example: Version 1 of a simple feedback event.

Short form:

Sensory-event, Instructional, Auditory-presentation,
(Buzz, (Intended-effect, Rest))

Long form:

22 Chapter 4. 4. Basic annotation

HED specification v3.0.0, Release 3.0.0

Event/Sensory-event,
Property/Task-property/Task-event-role/Instructional,
Property/Sensory-property/Sensory-presentation/Auditory-presentation,
(Item/Sound/Named-object-sound/Buzz,
(Property/Task-property/Task-effect-evidence/Intended-effect,
Action/Perform/Rest)),
Property/Informational-property/Description/A buzzer sounds indicating a rest period.

4.6 4.6. Data features

Another type of tagging documents computed data features and expert annotations that have been inserted post-hoc
into the experimental record as events. The Computed-feature and Observation tags designate whether the event came
from a computation or from manual evaluation. The following example illustrates a HED annotation from

Example: Annotation of an inserted computed feature.

Short form:

Data-feature, (Computed-feature, Label/Blinker_BlinkMax)

Long form:

Event/Data-feature,
(Property/Data-property/Data-source-type/Computed-feature,
Property/Informational-property/Label/Blinker_BlinkMax),
Property/Informational-property/Description/Event marking the maximum signal
deviation caused by blink inserted by the Blinker tool.

As shown by this example, the Computed-feature tag is grouped with a label of the form toolName_featureName. In
this example, the computed property is just a marker of where a feature was detected. If a value was computed at this
point, an additional Value tag would be included.

Clinical evaluations are observational features and many fields have standardized names for these features. Although the
HED standard itself does not specify these names, library schema representing terminology in clinical or application
subfields may provide the vocabulary. (See Chapter 7: Library schema for a discussion of library schema.) The
following example illustrates how annotation from a human expert can be annotated in HED.

Example: Annotator AJM identifies a K-complex in a sleep record.

Short form:

Data-feature, (Observation, Label/AnnotatorAJM_K-complex)

Long form:

Event/Data-feature,
(Property/Data-property/Data-source-type/Observation,
Property/Informational-property/Label/AnnotatorAJM_K-complex),
Property/Informational-property/Description/K-complex defined by AASM guide.

4.6. 4.6. Data features 23

HED specification v3.0.0, Release 3.0.0

4.7 4.7. What else?

Most event annotation focuses on basic identification and description of stimuli and the participant’s direct response
to that stimuli. However, for accurate comparisons across studies, much more information is required and should be
documented with HED tags rather than just with text descriptions. This is particularly true if this information is relevant
to the experimental intent, varied during the experiment, or likely to evoke a neural response.

The example of Section 4.1:Instantaneous events, the sensory presentation of a green triangle stimulus image models
the event as happening at a single point in time. More realistically, the green triangle might be displayed for an extended
period (during which other events might occur). Further, the disappearance of the triangle is likely to elicit a neural
response. Exactly how this information should be represented is discussed in Section 5.3: Temporal scope with the
introduction of temporal scope and its use with Onset and Offset.

Even for a standard setup, aspects such as the screen size, the distance and position of the participant relative to the
screen and the stimulus, as well as other details of the environment, should be documented as part of the overall
experiment context. These details allow analysis tools to compare and contrast studies or to translate visual stimuli into
visual field information. Event-context tags, which are introduced in Section 5.5: Event context, allow this information
to be propagated to recording events in a manner that is convenient for analysis.

HED also allows the embedding of annotations for the design of the experiment, documenting how and when condition
variables and other aspects of an experiment are changed.
Section 5.6: Experimental design describes HED mechanisms for annotating this information.

24 Chapter 4. 4. Basic annotation

CHAPTER

FIVE

5. ADVANCED ANNOTATION

5.1 5.1. HED definitions

HED-3G introduces the Definition tag to facilitate tag reuse and to allow implementation of concepts such as temporal
scope. The Definition tag allows researchers to create a name to represent a group of tags and then use the name
in place of these tags when annotating data. These short-cuts make tagging easier and reduce the chance of errors.
Often laboratories have a standard setup and event codes with particular meanings. Researchers can define names and
reuse them for multiple experiments. Another important role of definitions is to provide the structure for implementing
temporal scope as introduced in Section 5.3: Temporal Scope.

A HED definition is a tag group that includes one Definition tag whose required child value names. The definition
usually includes an optional tag-group specifying the actual definition information. The following summarizes the
syntax of definition.

Syntax summary for Definition

Short forms: (Definition/XXX, (tag-group))

(Definition/XXX/#, (tag-group))

Long forms: (Property/Organizational-property/Definition/XXX, (tag-group))

(Property/Organizational-property/Definition/XXX/#, (tag-group))

Notes:

1. XXX is the name of the definition and (tag-group) is the definition’s value.

2. If the XXX/# form is used, then the definition’s (tag-group) MUST contain a single # representing a value to be
substituted for when the definition is used.

3. The tag-group may be omitted if the only purpose of the definition is to define a label to anchor temporal scope.
(Chapter 5.3: Temporal Scope).

4. The tag-group is required if the # placeholder is used.

5. Neither the definition name XXX nor the value substituted for the # placeholder can be node names.

The following example defines the PlayMovie term.

Example: PlayMovie represents playing a movie on the screen.

Short form:

25

HED specification v3.0.0, Release 3.0.0

(Definition/PlayMovie, (Visual-presentation, Movie, Computer-screen))

Long form:

(Property/Organization-property/Definition/PlayMovie,
(Property/Sensory-property/Sensory-presentation/Visual-presentation,
Item/Object/Man-made-object/Media/Visualization/Movie,
Item/Object/Man-made-object/Device/IO-device/Output-device/Display-device/Computer-screen))

The placeholder form of the definition is used, for example, to annotate an experimental parameter whose value is
selected at random for each occurrence. The annotator can use a single definition name and just substitute the value for
each occurrence.

Example: Value definition to annotate the rate of visual presentation.

Short form:

(Definition/PresentationRate/#,
(Visual-presentation, Experimental-stimulus, Temporal-rate/# Hz))

Long form:

(Property/Organizational-property/Definition/PresentationRate/#,
(Property/Sensory-property/Sensory-presentation/Visual-presentation,
Property/Task-property/Task-event-role/Experimental-stimulus,
Data-property/Data-value/Spatiotemporal-value/Rate-of-change/Temporal-rate/#))

5.2 5.2. Using definitions

When a definition name such as PlayMovie or PresentationRate is used in an annotation, the name is prefixed by Def/
to indicate that the name represents a defined name. In other words, Def/PlayMovie is shorthand for (Visual, Movie,
Screen). The following summarizes Def/ syntax rules.

Syntax summary for Def

Short forms: Def/XXX

Def/XXX/#

Long forms: Property/Organizational-property/Def/XXX

Property/Organizational-property/Def/XXX/#

Notes:

1. XXX is the name of the definition.

2. If the XXX/# form is used, then the corresponding definition’s (tag-group) MUST contain a single # representing
a value to be substituted for when the definition is used.

The following example shows how a defined name is used in annotation.

Example: Use PresentationRate to annotate a presentation rate of 1.5 Hz.

26 Chapter 5. 5. Advanced annotation

HED specification v3.0.0, Release 3.0.0

Short form: Def/PresentationRate/1.5 Hz

Long form: Property/Organizational-property/Def/PresentationRate/1.5 Hz

During analysis, tools usually replace Def/PlayMovie with a fully expanded tag string. Tools must retain the association
of the expanded tag string with the definition name for identification during searching and substitution.

When a definition is expanded, the resulting tag string should include the definition name using the Def-expand tag.
In other words, the tools should expand the definition as (Def-expand/PlayMovie, Visual, Movie, Screen). The Def-
expand/PlayMovie is inserted in the definition tag group as part of the expansion to keep the association with the
original definition.

Usually definitions do not contain tags from the Event subtree. The standard practice is to use the elements of the
Event subtree as top-level tags to designate the general category of an event. This practice makes it easier for search
and analysis tools to filter events without extensive parsing. The annotator can use tags such as Experimental-stimulus
(Long form: Property/Task-property/Task-event-role/Experimental-stimulus) to explain the role of a particular sensory
presentation element in the experiment within the definition.

Definitions may appear anywhere in a HED event file or in auxiliary files associating metadata with HED tags such
as JSON sidecars in BIDS datasets. Multiple definitions can be defined or used in the same HED string annotation,
but definitions cannot be nested. Further, definitions must appear as top-level tag groups. Tools generally make a pass
through the event information to extract the definitions prior to other processing. The validation checks made by the
HED validator when assembling and processing definitions are summarized in Appendix B:.

In addition to syntax checks, which occur in early processing passes, HED validators check that names are defined
before they are used as definitions. Additional checks for temporal scope are discussed in Section 5.3: Temporal scope.

5.3 5.3. Temporal scope

Events are often modeled as instantaneous occurrences that occur at single points in time (i.e., time-marked or point
events). In reality, many events unfold over extended time periods. The interval between the initiation of an event and
its completion is called the temporal scope of the event. HED events are assumed to be point events unless they are
given an explicit temporal scope (i.e., they are “scoped” events).

Some events, such as the setup and initiation of the environmental controls for an experiment, may have a temporal
scope that spans the entire data recording. Other events, such as the playing of a movie clip or a participant performing
an action in response to a sensory presentation, may last for seconds or minutes. Temporal scope captures the effects
of these extended events in a machine-actionable manner. HED has two different mechanisms for expressing temporal
scope: Onset/Offset and Duration.

5.3.1 5.3.1. Onset and Offset

The most direct HED method of specifies scoped events by combining Onset and Offset tags with defined names. Using
this method, an event with temporal scope actually corresponds to two point events.

The initiation event is tagged by a (Def/XXX, Onset) where XXX is a defined name. The end of the event’s temporal
scope is marked either by a (Def/XXX, Offset) or by another (Def/XXX, Onset).

Event initiations identified by definitions with placeholders are handled similarly. Suppose the initiation event is tagged
by a (Def/XXX/YYY, Onset) where XXX is a defined name and YYY is the value substituted for the ‘#’ placeholder. The
end of this event’s temporal scope is marked either by (Def/XXX/YYY, Offset) or by another (Def/XXX/YYY, Onset). A
subsequent (Def/XXX/ZZZ, Onset) where YYY and ZZZ are different is treated as a completely distinct temporal event.

Table 5.3 summarizes Onset and Offset usage.

5.3. 5.3. Temporal scope 27

HED specification v3.0.0, Release 3.0.0

Syntax summary for Onset and Offset.

Short forms: (Def/XXX, Onset, (tag-group))

(Def/XXX/#, Onset, (tag-group))

(Def/XXX, Offset)

(Def/XXX/#, Offset)

Long forms: (Property/Organizational-property/Def/XXX,
Property/Data-property/Data-marker/Temporal-marker/Onset, (tag-group)

(Property/Organizational-property/Def/XXX/#,
Property/Data-property/Data-marker/Temporal-marker/Onset, (tag-group)

(Property/Organizational-property/Def/XXX, Property/Data-property/Data-marker/Temporal-marker/Offset)

(Property/Organizational-property/Def/XXX/#, Property/Data-property/Data-marker/Temporal-marker/Offset)

Notes:

1. XXX is the name of the definition.

2. The (tag-group) is optional.

3. The additional tag-group is only in effect for that particular scoped event and not for all XXX.

4. If the Def/XXX/# form is used, the # must be replaced by an actual value.

5. The entire definition identifier Def/XXX/#, including the value substituted for the #, is used as the anchor for
temporal scope.

For example, the PlayMovie definition of the previous section just defines the playing of a movie clip on the screen.
The (tag-group) might include tags identifying which clip is playing in this instance. This syntax allows one definition
name to be used to represent the playing of different clips.

Example: The playing of a Star Wars clip using PlayMovie.

Short form:

[event 1]
Sensory-event, (Def/PlayMovie, Onset, (Label/StarWars, (Media-clip, ID/3284)))

.... [The Star Wars movie clip is playing]

[event n]
Sensory-event, (Def/PlayMovie, Offset)

Long form:

[event 1]
Event/Sensory-event,
(Attribute/Informational/Def/PlayMovie,
Data-property/Data-marker/Temporal-marker/Onset,
(Attribute/Informational/Label/StarWars,
(Item/Object/Man-made-object/Media/Media-clip,
Properity/Informational-property/ID/3284)))

28 Chapter 5. 5. Advanced annotation

HED specification v3.0.0, Release 3.0.0

.... [The Star Wars movie clip is playing]

[event n]
Event/Sensory-event,
(Attribute/Informational/Def/PlayMovie,
Data-property/Data-marker/Temporal-marker/Offset)

The PlayMovie scoped event type can be reused to annotate the playing of other movie clips. However, scoped events
with the same defined name (e.g., PlayMovie) cannot be nested. The temporal scope of a PlayMovie event ends with a
PlayMovie offset or with the onset of another PlayMovie event.

In the previous example, the PlayMovie defined name “anchors” the temporal scope, and the appearance of another
Def/PlayMovie indicates the previous movie has ceased. The Label tag identifies the particular movie but does not
affect the Onset/Offset determination.

If you want to have interleaved movies playing, use definitions with placeholder values as shown in the next example.
The example assumes a definition Definition/MyPlayMovie/# exists.

Example: The interleaved playing of Star Wars and Forrest Gump.

Short form:

[event 1]
Sensory-event, (Def/MyPlayMovie/StarWars, Onset, (Media-clip, ID/3284))

.... [The Star Wars movie clip is playing]

[event n1] Sensory-event, (Def/MyPlayMovie/ForrestGump, Onset, (Media-clip, ID/5291))

.... [Both Star Wars and Forrest Gump are playing]

[event n2]
Sensory-event, (Def/MyPlayMovie/StarWars, Offset)

.... [Just Forrest Gump is playing]

[event n3]
Sensory-event, (Def/MyPlayMovie/ForrestGump, Offset)

Because tools need to have the definitions in hand when fully expanding during validation and analysis, tools must
gather applicable definitions before final processing. Library functions in Python, Matlab, and JavaScript are being
developed to support gathering of definitions and the expansion.

5.3.2 5.3.2. Duration

The Duration tag is an alternative method for specifying an event with temporal scope. The start of the temporal scope
is the event in which the Duration tag appears. The end of the temporal scope is implicit and may not coincide with an
actual event appearing in the recording. Instead, tools calculate when the scope ends in the data recording.

Duration tags do not need a defined label. Duration may be grouped with tags representing the additional information
associated with the temporal scope of that event. This grouping usually does not include tags from the Event rooted
tree.

Example: Use Duration for the playing of a 2-s movie clip of Star Wars.

5.3. 5.3. Temporal scope 29

HED specification v3.0.0, Release 3.0.0

Short form:

Sensory-event,
(Duration/2 s, Visual-presentation, (Movie, Label/StarWars), Computer-screen)

Long form:

Event/Sensory-event,
(Property/Data-value/Spatiotemporal-value/Temporal-value/Duration/2 s,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
(Item/Object/Man-made-object/Media/Visualization/Movie,
Property/Informational-property/Label/StarWars),
Item/Object/Man-made-object/Device/IO-device/Output-device/Display-device/Computer-screen,
Property/Informational-property/Description/Play a movie clip for 2 s.)

The Duration tag is convenient because its use does not require a Definition. The Duration tag has the same effect
on event context as the onset/offset mechanism explained in the previous sections. However, the ending time point of
events whose temporal scope is defined with Duration is not marked by an explicit event in the data recording. This
has distinct disadvantages for analysis if the offset is expected to elicit a neural response, which is the case for most
events involving visual or auditory presentations.

5.3.3 5.3.3. Temporal offsets with Delay

The Delay tag is grouped with a set of tags to indicate that the associated tag-group is actually an implicit event that
occurs at a time offset from the current event. A typical use case is when the user response time to a stimulus is
recorded as a delay time relative to the onset of the corresponding stimulus event. This strategy is convenient for some
time-locked analyses. HED tools could be developed to support the expansion of delayed events into actual events in
the event stream, provided delays were consistently provided as signed numerical values relative to the anchor onset.

In the following example, a trial consists of the presentation of a cross in the center of the screen. The participant
responds with a button press upon seeing the cross. The response time of the button push is recorded relative to the
stimulus presentation as part of the stimulus event.

Example: Use Delay for offset events.

Short form:

Sensory-event, Experimental-stimulus, Visual-presentation,
(Cross, (Center-of, Computer-screen)),
(Agent-action, Delay/2.83 ms, (Participant-response, (Press, Mouse-button)))

Long form:

Event/Sensory-event,
Property/Task-property/Task-event-role/Experimental-stimulus,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
(Item/Object/Geometric-object/2D-shape/Cross,
(Relation/Spatial-relation/Center-of,
Item/Object/Man-made-object/Device/IO-device/Output-device/Display-device/Computer-screen)),
(Event/Agent-action,
Property/Data-property/Data-value/Spatiotemporal-value/Temporal-value/Delay/2.83 ms,
(Property/Task-property/Task-event-role/Participant-response,
(Action/Move/Move-body-part/Move-upper-extremity/Press/,
Item/Object/Man-made-object/Device/IO-device/Input-device/Computer-mouse/Mouse-button))),
Property/Informational-property/Description/A cross is displayed
in the center of the screen and the participant responds by pushing a button.

30 Chapter 5. 5. Advanced annotation

HED specification v3.0.0, Release 3.0.0

Notice that the Agent-action tag from the Event subtree is included in the Delay tag-group. This allows tools to identify
this tag-group as representing a distinct event. For BIDS datasets, such response delays would be in value columns of
the _events.tsv event files. The HED annotation for the JSON sidecar corresponding to these files would contain a
#. At HED expansion time, tools replace the # with the column value (2.83) corresponding to each event.

5.4 5.4. Event streams

An event stream is a sequence of events in a data recording. The most obvious event stream is the sequence consisting
of all the events in the recording, but there are many other possible streams such as the stream consisting of all sensory
events or the stream consisting of all participant response events.

Event streams can be identified and tagged using the Event-stream tag, allowing annotators to more easily identify sub-
sets of events and interrelationships of events within those event sequences. An event having the tag Event-stream/XXX
is part of event stream XXX.

Example: Tag a face event as part of the Face-stream event stream.

Short form:

Sensory-event, Event-stream/Face-stream, Visual-presentation, (Image, Face)

Long form:

Event/Sensory-event,
Property/Organizational-property/Event-stream/Face-stream,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
(Item/Object/Man-made-object/Media/Visualization/Image,
Item/Biological-item/Anatomical-item/Body-part/Head/Face)

Using a tag to identify an event stream makes it easier for downstream tools to compute relationships among subsets
of events.

5.5 5.5. Event context

Event annotations generally focus on describing what happened at the instant an event was initiated. However, the
details of the setting in which the event occurs also influence neural responses. For the PlayMovie example of the
previous section, events that occur between the Onset and Offset pairs for PlayMovie should inherit the information
that a particular movie is playing without requiring the user to explicitly enter those tags for every intervening event.

The process of event context mapping should be deferred until analysis time because other events might be added to
the event file after the initial annotation of the recording. For example, a user might run a tool to mark blink or other
features as events prior to doing other analyses. HED uses the Event-context tag to accomplish the required context
mapping.

In normal usage, the Event-context tag is not used directly by annotators. Rather, tools insert the Event-context tag
at analysis time to handle the implicit context created by enduring or scoped events. However, annotators may use the
tag when an event has explicit context information that must be accounted for.

Syntax summary for Event-context.

Short form: (Event-context, other-tags)

5.4. 5.4. Event streams 31

HED specification v3.0.0, Release 3.0.0

Long form: (Property/Organizational-property/Event-context, other-tags)

Notes:

1. An event can have at most one Event-context.

2. HED-compliant analysis tools should insert the annotations describing each temporally scoped event into the
Event-context tag group of the events within its temporal scope during final assembly before analysis of the
event.

3. Other task-event relationships may be inserted as tags within the Event-context tag group either at annotation
time or analysis time.

5.6 5.6. Experimental design

Most experiments are conducted by varying certain aspects of the experiment and measuring the resulting responses
while carefully controlling other aspects. The intention of the experiment is annotated using the HED Condition-
variable, Control-variable, and Indicator-variable tags.

The Condition-variable tag is used to mark the independent variables of the experiment – those aspects of an experiment
that are explicitly varied in order to observe an effect or to control bias. Contrasts, a term that appears in the neuroscience
and statistical literature, are examples of experimental conditions, as are factors in experimental designs.

The Indicator-variable tag is used to mark quantities that are explicitly measured or calculated to evaluate the effect
of varying the experimental conditions. Indicator variables often fall into the Event/Data-feature category. Sometimes
the values of these data features are explicitly annotated as events. Researchers should provide a sufficiently detailed
description of how to compute these data features so that they can be reproduced.

The Control-variable tag represents an aspect of the experiment that is held constant throughout the experiment, often
to remove variability.

Researchers should use Condition-variable, Control-variable, and Indicator-variable tags to capture the experiment
intent and organization in as much detail as possible. Consistent and detailed description allows tools to extract the
experiment design from the data in a machine-actionable form. Good tagging processes suggest creating definitions
with understandable names to define these aspects of the dataset. This promotes easy searching and extraction for
analyses such as regression or other modeling of the experimental design.

To illustrate the use of condition-variables to document experiment design, consider an experiment in which one of the
conditions is the rate of presentation of images displayed on the screen. The experiment design compares responses
under slow and fast image presentation rate conditions. To avoid unfortunate resonances due to a poor choice of rates,
the “slow” and “fast” rate conditions each consist of three possible rates. Selection among the three eligible rates for
the given condition is done randomly.

In analysis, the researcher would typically combine the “slow presentation” trials into one group and the “fast presen-
tation” trials into another group even though the exact task condition varies within the group varies according This
type of grouping structure is very common in experiment design and can be captured by HED tags in a straightforward
manner by defining condition variables for each group and using the # to capture variability within the group.

Example: Condition variables for slow and fast visual presentation rates.

Short form:

(Definition/SlowPresentation/#,
(Condition-variable/Presentation, Visual-presentation, Computer-screen, Temporal-rate/#))

32 Chapter 5. 5. Advanced annotation

HED specification v3.0.0, Release 3.0.0

(Definition/FastPresentation/#,
(Condition-variable/Presentation, Visual-presentation, Computer-screen, Temporal-rate/#))

Long form:

(Property/Informational-property/Definition/SlowPresentation/#,
(Property/Organizational-property/Condition-variable/Presentation,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
Item/Object/Man-made-object/Device/IO-device/Output-device/Display-device/Computer-screen,
Property/Data-property/Data-value/Spatiotemporal-value/Rate-of-change/Temporal-rate/#))

(Property/Informational-property/Definition/FastPresentation/#,
(Property/Organizational-property/Condition-variable/Presentation,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
Item/Object/Man-made-object/Device/IO-device/Output-device/Display-device/Computer-screen,
Property/Data-property/Data-value/Spatiotemporal-value/Rate-of-change/Temporal-rate/#))

Organizational tags such as Condition-variable are often used in the tag-groups of temporally scoped events. The Onset
of such an event represents the start of the Condition-variable. The corresponding Offset marks the end of the period
during which this condition is in effect. This type of annotation makes it straightforward to extract the experimental
design from the events.

Example: Annotation using SlowPresentation condition.

Short form:

Sensory-event, (Def/SlowPresentation/1 Hz, Onset)

Long form:

Event/Sensory-event,
(Property/Organizational-property/Def/SlowPresentation/1 Hz,
Property/Data-property/Data-marker/Temporal-marker/Onset)

During analysis, the Def tags will be replaced with the actual definition’s tag group with an included Def-expand tag
giving the definition’s name. Note: expansion is done by tools at analysis time.

Example: Expanded form of the previous example.

Short form with expansion:

Sensory-event,
((Def-expand/SlowPresentation, Condition-variable/Presentation,
Visual-presentation, Computer-screen, Temporal-rate/1 Hz), Onset)

Long form with expansion:
Event/Sensory-event,*

((Property/Organizational/Def-expand/SlowPresentation,
Property/Organizational/Condition-variable/Presentation,
Property/Sensory-property/Sensory-presentation/Visual-presentation,
Item/Object/Man-made-object/Device/IO-device/Output-device/Display-device/Computer-screen,
Property/Data-property/Data-value/Spatiotemporal-value/Rate-of-change/Temporal-rate/1 Hz),
Property/Data-property/Data-marker/Temporal-marker/Onset)

Properly annotated condition variables and response variables can allow researchers to understand the details of the
experiment design and perform analyses such as ANOVA (ANalysis Of VAriance) or regression to extract the depen-

5.6. 5.6. Experimental design 33

HED specification v3.0.0, Release 3.0.0

dence of responses on the condition variables. The time-organization of an experiment can be annotated with the
Organizational tags Time-block and Task-trial and used for visualizations of experimental layout.

A typical experiment usually consists of a sequence of subject task-related activities interspersed with rest periods
and/or off-line activities such as filling in a survey. The Time-block tag is used to mark a contiguous portion of the
data recording during which some aspect of the experiment conditions is fixed. Time-block tags can be used to repre-
sent temporal organization in a manner similar to the way Condition-variable tags are used to represent factors in an
experiment design.

5.7 5.7. Specialized annotation

A significant problem with schema design is term accretion. Each type of experiment will have specific terms or
concepts that are important for the experiment’s purpose or design but are not widely applicable to other experiments.
Schema designers might be tempted to add terms specific to familiar experiments or for annotators to extend the schema
tree with terms specific to their experiments during annotation.

The Parameter tag and its children Parameter-label and Parameter-value are general-purpose tags designed to fill the
missing term gap. They can be used to tag important specific concepts in a way that can be used for automated tools
without triggering problems of accretion. For example, consider the problem of how to annotate repetition lag between
successive presentations of a particular face image. There are several ways to annotate, but annotating with Parameter
is a good compromise between clarity and machine-actionability.

Example: Annotate face repetition and interval using Parameter-value.

Short form:

(Parameter-label/Count-of-this-face, Parameter-value/2)
(Parameter-label/Face-count-since-this-face-last-shown, Parameter-value/15)

Annotate the number of times a face image has appeared and the interval since last time this face was shown using
more specific tags for the value Parameter-value:

Example: Annotate the number of times a face image has appeared.

Short form:

(Parameter-label/Count-of-this-face, Item-count/2),
(Parameter-label/Face-count-since-this-face-last-shown,Item-count-interval/15),

Long form:

(Property/Informational-property/Parameter/Parameter-label/Count-of-this-face,
Property/Data-property/Data-value/Quantitative-value/Item-count/2),
(Property/Informational-property/Parameter/Parameter-label/Face-count-since-this-face-last-shown
Property/Data-property/Data-value/Quantitative-value/Item-count-interval/15)

Using more specific tags as in the second version allows downstream tools to treat the value as numeric integers,
facilitating automated processing. The use of Parameter alerts downstream tools that this entity represents something
that annotators regard as important to compute or record for analysis. Summary tools can extract the experimental
parameters and their values, while statistical tools can look for dependencies on these variables. The parameter names
are designed to be self-documenting. Parameters are often used for derived values such as response times that are used
as indicator variables in the experiment. They are also sometimes used as part of control variable definitions.

34 Chapter 5. 5. Advanced annotation

CHAPTER

SIX

6. INFRASTRUCTURE

This section gives an overview of the HED infrastructure. Additional details and links to specific tools are available in
(Tools.md)[Tools.md].

6.1 6.1. Short and long forms

Tools that are third-generation HED-compliant must be able to handle both short-form and long-form versions of HED
strings. Analysis tools often need to transform all HED tags to long form before processing. To this end, mapping
functions are being developed in Python, Matlab, and JavaScript. These libraries also provide mapping from long form
to short form. As illustrated in the previous sections, the short form is much more readable and compact.

6.2 6.2. File formats

Dataset events are often represented using spreadsheets either in .tsv or Excel format. The rows of each spreadsheet
correspond to events, while the columns contain identifying information pertaining to the events. The first row of each
spreadsheet usually contains column names that document what each column represents. Usually one column contains
the time of the event. Other columns may contain categorical values, other values, or HED strings.

Categorical column values are chosen from a small, explicitly defined subset. Value columns may contain numeric
values or other types of values such as file names. HED tools assume that event files are spreadsheets, either in BIDS
(.tsv) format or Excel format.

The HED tools require that each column of an event file contains items of the same class (categorical or value) and
that value columns contain items of the same basic type. Files not satisfying these requirements may need additional
processing before being handled by HED tools.

6.2.1 6.2.1. BIDS event files

BIDS (Brain Imaging Data Structure) is a specification along with supporting tools for organizing and describing brain
imaging and behavioral data. BIDS event files satisfy the criteria of the previous section.

BIDS supports HED annotation of events. BIDS events appear in tab-separated value (_events.tsv) files in various
places in the dataset hierarchy. BIDS event files must have an onset column and a duration column. The following
shows an excerpt from a BIDS event file:

Example: Excerpt from a BIDS event file.

35

https://bids.neuroimaging.io/is

HED specification v3.0.0, Release 3.0.0

onset duration trial_type response_time stim_file
1.2 0.6 go 1.435 images/red_square.jpg
5.6 0.6 stop 1.739 images/blue_square.jpg

The trial_type column contains categorical values, while the response_time and stim_file columns contain
non-categorical values. In theory stim_file could be considered a categorical column if there were just a few possible
images, but this would not be common usage. BIDS allows an optional column named HED to contain HED strings
relevant for the event instance. The above example does not have this column.

Processing tools read these event files and create their own event representation. The Python version of HEDTools uses
the Pandas DataFrame for its low-level representations. For MATLAB programs, the dataset events are often held in
struct arrays.
In EEGLAB, for example, the events for an EEG data recording appear in the EEG.event structure array. The time of
the event is given in frames in the EEG.event.latency field for data that has not been epoched.

6.2.2 6.2.2. BIDS sidecars

BIDS also recommends data dictionaries in the form of JSON sidecars to document the meaning of the data in the event
files.HEDTools assume that dictionaries for event metadata are contained in BIDS-compatible sidecars.

BIDS allows the tagging of both categorical and non-categorical columns in these sidecars as explained in the HED
appendix of the BIDS specification. Internally, EEGLAB and CTAGGER use mapping objects that are stored in the
EEG structure. However, these mapping options can be written to or read from BIDS JSON sidecars.

Each event file spreadsheet column containing categorical values may also have a categorical dictionary that documents
the meaning of the data in that column. HED also provides for the HED tagging of non-categorical columns as explained
below. The following example shows the JSON sidecar format for annotating the same event file of the previous section.
The "HED" key for the "trial_type" column indexes the categorical dictionary associated with the trial_type
column in the event file.

Example: JSON sidecar for annotating the columns of an event file.

{
"trial_type": {

"LongName": "Event category",
"Description": "Indicator of type of action that is expected.",
"Levels": {

"go": "A red square is displayed to indicate starting",
"stop": "A blue square is displayed to indicate stopping."

},
"HED": {

"go": "Sensory-event, Visual-presentation, (Square, Red), (Computer-screen,␣
→˓Center-of), Description/A red square is displayed to indicate starting.",

"stop": "Sensory-event, Visual-presentation, (Square, Blue), (Computer-
→˓screen, Center-of), Description/A blue square is displayed to indicate stopping."

}
},
"response_time": {

"LongName": "Response time after stimulus",
"Description": "Time from stimulus until subject presses button.",
"Units": "ms",
"HED": "(Delay/# ms, Agent-action, Experiment-participant, Press, Mouse-button,␣

→˓Description/Time from stimulus until subject presses button)" (continues on next page)

36 Chapter 6. 6. Infrastructure

https://github.com/bids-standard/bids-specification/blob/master/src/99-appendices/03-hed.md
https://github.com/bids-standard/bids-specification/blob/master/src/99-appendices/03-hed.md

HED specification v3.0.0, Release 3.0.0

(continued from previous page)

},
"stim_file": {

"LongName": "Stimulus file name",
"Description": "Relative path of the stimulus image file",
"HED": "Pathname/#, Description/Relative path of the stimulus image file"

}
}

Non-categorical columns such as response_time and stim_file have a dictionary “HED” value consisting of a
HED string rather than another dictionary. This HED string must have a single # placeholder. The corresponding value
in the spreadsheet column replaces the # when the event annotation is assembled.

6.2.3 6.2.3. HED version in BIDS

The HED version is included as the value of the "HEDVersion" key in the dataset_description.json metadata
file located at the top level in a BIDS dataset. HEDTools retrieve the appropriate HED schema directly from GitHub
when needed. The following examples shows how a BIDS user specifies that HED version 8.0.0 is used for a dataset
called “A wonderful experiment”. BIDS locates the appropriate version of the schema on GitHub and downloads it
during the validation process. The following examples shows a simple dataset_description.json.

Example: BIDS dataset description using HED version 8.0.0.

{
"Name": "A wonderful experiment",
"BIDSVersion": "1.4.0",
"HEDVersion": "8.0.0"

}

6.3 6.3. Levels of validation

Validation of HED annotations is an essential step in using HED for large-scale, reproducible analysis. Third-generation
HED encourages a more detailed and useful documentation of events and provides mechanisms for mapping the in-
terrelationships of events and task intent. The additional annotation power also requires more extensive validation to
assure consistency across annotations. HED-validators are provided in both Python and JavaScript. There is also a
MATLAB wrapper for the Python validator functions.

There are five levels of validation: tag level, string level, dictionary level, event level, and data-recording level. Previous
generations of HED only required validation at the first four of these. Since third-generation HED can document
relationships across events, it also requires an additional level to validate cross-event relationships. Validation can also
be categorized as syntactic or semantic. Syntactic validation, which occurs mainly at the HED tag and HED string
levels, tests that the tags are properly formed, independently of the HED schema or purpose of the tags. Semantic
validation tests that the tags are used correctly and that they comply with the relevant schema. Syntactic validation is
usually done initially during the parsing of the HED strings into HED tags.

6.3. 6.3. Levels of validation 37

HED specification v3.0.0, Release 3.0.0

6.3.1 6.3.1. Tag validation

HED tag level validation checks each individual HED tag against its associated schema. The long-form tag must be in
the schema. HED tags that take a value (have a # child in the schema) must have values that only contain appropriate
characters. If the HED tag # has a unitClass attribute, the units must comply with those of the specified unitClass. If
the HED tag has additional nodes beyond the leaf node in the schema, the extensionAllowed attribute must be in effect
for the leaf node.

6.3.2 6.3.2. String validation

HED string level validation focuses on the proper formation of HED strings and tag-groups within the HED strings.
Syntactic HED string validation includes matching of parentheses and proper delimiting of HED tags by commas.
Semantic HED string validation includes verification that HED definitions have the proper form.

6.3.3 6.3.3. Sidecar validation

HED dictionary validation assumes that the dictionaries have been written in the JSON format of BIDS sidecars. The
validation is similar to HED string evaluation, but the error messages are keyed to dictionary location rather than
to line numbers in the event file or spreadsheet. The validator checks that there is exactly one # in the HED string
annotation associated with each non-categorical column. The # placeholder should correspond to a # in the HED
schema, indicating that the parent tag expects a value. If the placeholder is followed by a unit designator, the validator
checks that these units are consistent with the unit class of the corresponding # in the schema. The units are not
mandatory.

6.3.4 6.3.4. Event validation

Dataset formats such as BIDS (Brain Imaging Data Structure) allow users to provide HED tags in multiple places.
For example, if a study uses local codes to represent different types of events, the dataset specification often allows
users to use the local codes when listing the events and then provide some format of dictionary mapping local codes to
tags. During event level validation, all of these tags must be assembled into a HED string representing the full HED
annotation for that event.

Several tag attributes are validated at this stage. The expanded event-level HED string annotating an event must include
all tags with the required attribute and only one copy of each tag with the unique attribute.

6.3.5 6.3.5. Recording validation

The introduction of definitions and temporal scope has added additional complexity to validation. Instead of being able
to validate the HED string for each event individually, third generation HED validators must also check consistency
across all events in the data-recording. This validation requires multiple passes through of the assembled HED tags
associated with the data-recording.

Since Definition tags can appear anywhere in the event annotations for a data recording, an initial scan must be made
to assemble all definitions for a data recording and to make sure that the definition names are unique.

To validate temporal scope, the validator must assure that each Onset and Offset tag is associated with an appropriately
defined label. The validator must also check to make sure that Onset and Offset tags are properly matched within the
data recording.

38 Chapter 6. 6. Infrastructure

https://bids-specification.readthedocs.io/en/stable/99-appendices/03-hed.html

HED specification v3.0.0, Release 3.0.0

6.4 6.4. Analysis tools

Third-generation HED analysis tools also require some additional infrastructure. These tools should call the HED
libraries to fully expand the tags for a data recording before doing analysis. In addition to converting all HED tags
to their long form, the library tools can remove the definitions and replace def/ with the full tag expansion with any
defined labels.

Each event that is within the temporal scope of a scoped event, should have the scoped event information added to the
Event-context tag group of the intermediate event upon request. Delay tag expansions as insertions of actual events
should also be supported. Duration tag expansion in which offset events should be inserted should also be supported.
The HED tools should provide this expansion capability as well as a standardized representation of events in a data
recording to enable tools to use a standard API for accessing tag information.

6.5 6.5. BIDS support in HED

HED provides a JavaScript validator in the [hed-javascript](https://github. com/hed-standard/hed-javascript) reposi-
tory, which is available as an installable package via npm. The [BIDS validator](https://github. com/bids-standard/bids-
validator) incorporates calls to this package to validate HED tags in BIDS datasets.

The hedtools package includes input functions that use Pandas data frames to construct internal representations of
HED-annotated event files. Plans are underway to make this package available on the PyPI package index for easy
installation.

6.4. 6.4. Analysis tools 39

https://www.npmjs.com/
https://github.com/hed-standard/hed-python/tree/master/hedtools
https://pandas.pydata.org/
https://pypi.org/

HED specification v3.0.0, Release 3.0.0

40 Chapter 6. 6. Infrastructure

CHAPTER

SEVEN

7. LIBRARY SCHEMA

The variety and complexity of events in electrophysiological experiments makes full documentation challenging. As
more experiments move out of controlled laboratory environments and into less controlled virtual and real-world set-
tings, the terminology required to adequately describe events has the potential to grow exponentially.

In addition, experiments in any given subfield can contribute to pressure to add overly-specific terms and jargon to the
schema hierarchy—for example, adding musical terms to tag events in music-based experiments, video markup terms
for experiments involving movie viewing, traffic terms for experiments involving virtual driving, and so forth.

Clinical fields using neuroimaging also have their own specific vocabularies for describing data features of clinical
interest (e.g., seizure, sleep stage IV). Including these discipline-specific terms quickly makes the standard HED schema
unwieldy and less usable by the broader user community.

Third generation HED instead introduces the concept of the HED library schema. To use a programming analogy,
when programmers write a Python module, the resulting code does not become part of the Python language or core
library. Instead, the module becomes part of a library used in conjunction with core modules of the programming
language.

Similar to the design principles imposed on function names and subclass organization in software development, HED
library schemas must conform to some basic rules:

Rules for HED library schema design.

1. Library schema must be given a name containing only alphabetic chararacters. This name must appear in the
schema header line in the required format.

2. The library must use semantic versioning and follow the versioning update rules used by the HED standard
schema.

3. Every term must be unique within the library schema and must conform to the rules for HED schema terms.

4. Schema terms should be readily understood by most users. The terms should not be ambiguous and should be
meaningful in themselves without reference to their position in the schema hierarchy.

5. If possible, no schema sub-tree should have more than 7 direct subordinate sub-trees.

6. Terms that are used independently of one another should be in different sub-trees (orthogonality).

7. The schema should include the schema attributes, unit classes, unit modifiers, value classes, and schema proper-
ties present in the standard HED schema.

As in Python programming, we anticipate that many HED schema libraries may be defined and used, in addition to the
standard HED schema. Libraries allow individual research communities to annotate details of events in experiments
designed to answer questions of interest to particular research or clinical communities. Since it would be impossible
to avoid naming conflicts across schema libraries that may be built in parallel by different user communities, HED

41

HED specification v3.0.0, Release 3.0.0

supports schema library namespaces. Users will be able to add library tags qualified with namespace designators. All
HED schemas, including library schemas, adhere to semantic versioning.

In general, library schema developers should include the auxiliary schema classes from the standard HED schema:
the schema attributes, unit classes, unit modifiers, value classes, and schema properties. The HED tools support these
auxiliary classes but in general would not support special handling of added classes beyond basic verification.

If your schema requires schema classes that are not available in the standard HED schema and would like these classes
to be supported, please make a request using the HED specification issues forum.

Please do not duplicate tags in the Property/Informational-property and Relation subtrees, as many of these
tags have specialized uses and tool support. In particular, Definition, Def, Def-expand and Event-context should
NEVER be duplicated in a library schema.

7.1 7.1. Defining a schema

A HED library schema is defined in the same way as the standard HED schema except that it has an additional attribute
name-value pair, library="xxx" in the schema header. We will use as an illustration a library schema for driving.
Syntax details for a library schema are similar to those for the standard HED schema. (See Appendix A: Schema format
for more details).

Example: Driving library schema (MEDIAWIKI template).

HED library="driving" version="1.0.0"
!# start schema
[... contents of the HED driving schema ...]

!# end schema
[... required sections specifying schema attribute definitions ...]

!# end hed

The required sections specifying the schema attributes are unit-class-specification, unit-modifier-specification, value-
class-specification, schema-attribute-specification, and property-specification.

Example: Driving library schema (XML template).

<?xml version="1.0" ?>
<HED library="driving" version="1.0.0">

[... contents of the HED_DRIVE schema ...]
</HED>

The schema XML file should be saved as HED_driving_1.0.0.xml to facilitate specification in tools.

42 Chapter 7. 7. Library schema

https://semver.org/
https://github.com/hed-standard/hed-specification/issues

HED specification v3.0.0, Release 3.0.0

7.2 7.2. Schema namespaces

As part of the HED annotation process, users must associate a standard HED schema with their datasets. Users may
also include tags from an arbitrary number of additional library schemas. For each library schema used to annotate
a data recording, the user must associate a local name with the appropriate library schema name and version. Each
library must be associated with a distinct local name within a recording annotations. The local names should be strictly
alphanumeric with no blanks or punctuation.

The user must pass information about the library schema and their associated local names to processing functions. HED
uses a standard method of identifying namespace elements by prefixing HED library schema tags with the associated
local names. Tags from different library schemas can be intermixed with those of the standard schema. Since the node
names within a library must be unique, annotators can use short form as well as fully expanded tag paths for library
schema tags as well as those from the standard HED schema.

Example: Driving library schema example tags.

dp:Action/Drive/Change-lanes
dp:Drive/Change-lanes
dp:Change-lanes

A colon (:) is used to separate the qualifying local name from the remainder of the tag. Notice that Action also appears
in the standard HED schema. Identical terms may be used in a library schema and the standard HED schema. Use
of the same term implies a similar purpose. Library schema developers should try not to reuse terms in the standard
schema unless the intention is to convey a close or identical relationship.

7.3 7.3. Attributes and classes

In addition to the specification of tags in the main part of a schema, a HED schema has sections that specify unit classes,
unit modifiers, value classes, schema attributes, and properties. The rules for the handling of these sections for a library
schema are as follows:

7.3.1 7.3.1. Required sections

The required sections of a library schema are: the schema-specification, the unit-class-specification, the unit-modifier-
specification, the value-class-specification section, the schema-attribute-specification section, and the property-
specification. The library schema must include all required schema sections even if the content of these sections is
empty.

7.3.2 7.3.2. Relation to standard HED schema

Any schema attribute, unit class, unit modifier, value class, or property used in the library schema must be specified in
the appropriate section of the library schema regardless of whether these appear in the standard HEd schema. Validators
check the library schema strictly on the basis of its own specification without reference to another schema.

7.2. 7.2. Schema namespaces 43

HED specification v3.0.0, Release 3.0.0

7.3.3 7.3.3. Schema properties

HED only supports the schema properties listed in Table B.2: boolProperty, unitClassProperty, unitModifierProperty,
unitProperty, and valueClassProperty.
If the library schema uses one of these in the library schema specification, then its specification must appear in the
property-specification section of the library schema.

7.3.4 7.3.4. Unit classes

The library schema may define unit classes and units as desired or include unit classes or units from the standard HED
schema. Similarly, library schema may define unit modifiers or reuse unit modifiers from the standard HED schema.
HED validation and basic analysis tools validate these based strictly on the schema specification and do not use any
outside information for these.

7.3.5 7.3.5. Value classes

The standard value classes (dateTimeClass[], nameClass, numericClass[], posixPath[], textClass[]) if used, should
have the same meaning as in the standard HED schema. The hard-coded behavior associated with the starred ([*]) value
classes will be the same. Library schema may define additional value classes and specify their allowed characters, but
no additional hard-coded behavior will be available in the standard toolset. This does not preclude special-purpose
tools from incorporating their own behavior.

7.3.6 7.3.6. Schema attributes

The standard schema attributes (allowedCharacter, defaultUnits, extensionAllowed, recommended, relatedTag, re-
quireChild, required, SIUnit, SIUnitModifier, SIUnitSymbolModifier, suggestedTag, tagGroup, takesValue, topLevelT-
agGroup, unique, unitClass, unitPrefix, unitSymbol, valueClass) should have the same meaning as in the standard HED
schema. The hard-coded behavior associated with the schema attributes will be the same. Library schema may define
additional schema attributes. They will be checked for syntax, but no additional hard-coded behavior will be available
in the standard toolset. This does not preclude special-purpose tools from incorporating their own behavior.

7.3.7 7.3.7. Syntax checking

Regardless of whether a specification is in the standard HED schema or not, HED tools can perform basic syntax
checking.

Basic syntax checking for library schema.

1. All attributes used in the schema proper must be defined in the schema attribute section of the schema.

2. Undefined attributes cause an error in schema validation.

3. Similar rules apply to unit classes, unit modifiers, value classes, and properties.

4. Actual handling of the semantics by HED tools only occurs for entities appearing in the standard HED schema.

44 Chapter 7. 7. Library schema

HED specification v3.0.0, Release 3.0.0

7.4 7.4. library schemas in BIDS

The most common use case (for 99.9% of the HED users) is to tag events using one of the standard HED schemas (prefer-
ably the latest one) available in the hedxml directory of the hed-specification repository of the hed-standard
organization on GitHub. The standard schemas are available at: https://github.com/hed-standard/hed-specification/
tree/master/hedxml.

This section explains the changes that are being proposed in BIDS to accommodate access to HED library schemas
in addition to the standard HED schemas. This section will be updated as the proposals progress though the
BIDS review process. The initial proposal only supports official standard schemas available at https://github.
com/hed-standard/hed-specification/tree/master/hedxml and official library schemas available at https://github.com/
hed-standard/hed-schema-library/tree/main/library_schemas.

Standard schemas are referenced by their version number (e.g., 8.0.0), while library schema are referenced by a
combination of library name and version number (e.g., score_0.0.1).

The major change proposed to the BIDS specification is to allow the value associated with the "HEDVersion" key in
the dataset_description.json file to be an array rather than a string expressing the HED version. This proposed
change will allow users more flexibility in specifying the standard HED schema and will accommodate an arbitrary
number of library schemas. The different cases are illustrated in the following examples.

The original BIDS specification just allows the standard HED schema, which is named using a version number.

Example: Using just the standard HED schema in BIDS.

{
"Name": "A wonderful experiment",
"BIDSVersion": "1.6.0",
"HEDVersion": "8.0.0"

}

The following example specifies that version 8.0.0 of the standard HED schema is to be used in addition to two library
schemas: the score library version 0.0.1 and the testlib library version 1.0.2.

Example: Proposed specification of library schema in BIDS.

{
"Name": "A wonderful experiment",
"BIDSVersion": "1.6.0",
"HEDVersion": ["8.0.0", "sc:score_0.0.1", "ts:testlib_1.0.2"]

}

Based on the above description tools will download:

1. The standard HED schema:
https://github.com/hed-standard/hed-specification/tree/master/hedxml/HED8.0.0.xml.

2. The HED score library schema version 0.0.1:
https://github.com/hed-standard/hed-schema-library/tree/main/library_schemas/score/hedxml/HED_score_0.
0.1.xml.

3. The HED testlib library schema version 1.0.2:
https://github.com/hed-standard/hed-schema-library/tree/main/library_schemas/testlib/hedxml/HED_testlib_1.0.2.xml.

7.4. 7.4. library schemas in BIDS 45

https://github.com/hed-standard/hed-specification/tree/master/hedxml
https://github.com/hed-standard/hed-specification/tree/master/hedxml
https://github.com/hed-standard/hed-specification/tree/master/hedxml
https://github.com/hed-standard/hed-specification/tree/master/hedxml
https://github.com/hed-standard/hed-schema-library/tree/main/library_schemas
https://github.com/hed-standard/hed-schema-library/tree/main/library_schemas
https://github.com/hed-standard/hed-specification/tree/master/hedxml/HED8.0.0.xml
https://github.com/hed-standard/hed-schema-library/tree/main/library_schemas/score/hedxml/HED_score_0.0.1.xml
https://github.com/hed-standard/hed-schema-library/tree/main/library_schemas/score/hedxml/HED_score_0.0.1.xml
https://github.com/hed-standard/hed-schema-library/blob/main/library_schemas/testlib/hedxml/HED_testlib_1.0.2.xml

HED specification v3.0.0, Release 3.0.0

A schema browser is available for each library. For example the schema browser for the score library schema is
available at https://www.hedtags.org/display_hed_score.html.

Given the HEDVersion specification from the previous example, annotators can use any combination of tags from the
three indicated schemas. In this example the standard HED schema version appears without a prefix in the version
specification, so tags from this schema may appear directly in the annotation.

The sc and ts are local names used to distinguish tags from the additional schema. Tags from the score library
schema are of the form sc:XXX where XXX is a tag from the score schema. Similarly, tags from the testlib library
schema are of the form ts:YYY where YYY is a tag from the testlib schema.

In the following sample annotation Data-feature is from the standard HED schema, while
Photomyogenic-response and Wicket-spikes are from the score library.

Example: An annotation using tags from two schemas.

Data-feature, sc:Photomyogenic-response, sc:Wicket-spikes

The array specification of the schema versions can have at most one version appearing without a colon prefix.

For some applications, the annotator will only want to use a particular library schema. The following example specifies
that only the score library will be used. No prefixes are required in this case.

Example: Use of only the score library schema for tagging.

{
"Name": "A wonderful experiment",
"BIDSVersion": "1.6.0",
"HEDVersion": "score_0.0.1"

}

46 Chapter 7. 7. Library schema

https://www.hedtags.org/display_hed_score.html

CHAPTER

EIGHT

A. SCHEMA FORMAT

HED schema developers generally do initial development of the schema using .mediawiki format. The tools to convert
schema between .mediawiki and .xml format are located in the hed.schema module of the hedtools project of the
hed-python repository located at
https://github.com/hed-standard/hed-python. All conversions are performed by converting the schema to a HedSchema
object. Then modules wiki2xml.py and xml2wiki.py provide top-level functions to perform these conversions. This
appendix presents the rules for standard HED schema and library schema in .mediawiki and .xml formats.

8.1 A.1. Mediawiki file format

The rules for creating a valid .mediawiki specification of a HED schema are given below. The format is line-oriented,
meaning that all information about an individual entity should be on a single line. Empty lines and lines containing
only blanks are ignored.

8.1.1 A.1.1. Overall file layout

Overall layout of a HED MEDIAWIKI schema file.

header-line
prologue

. . .
!# start schema
schema-specification
!# end schema
unit-class-specification
unit-modifier-specification
value-class-specification
schema-attribute-specification
property-specification
!# end hed
epilogue

47

https://github.com/hed-standard/hed-python/tree/master/hedtools
https://github.com/hed-standard/hed-python

HED specification v3.0.0, Release 3.0.0

8.1.2 A.1.2. The header-line

The first line of the .mediawiki file should be a header-line that starts with the keyword HED followed by a blank-
separated list of name-value pairs.

Table 1: Allowed HED schema header parameters
Name Level Description
library optional Name of library used in XML file names.

The value should only have alphabetic characters.
version required A valid semantic version number of the schema.
xmlns optional xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”.
xsi optional xsi:noNamespaceSchemaLocation points to XSD file.

The xsi attribute is required if xmlns:xsi is given. The library and version values are used to form the official
xml file name and appear as attributes in the <HED> root of the .xml file. The versions of the schema that use XSD
validation to verify the format (versions 8.0.0 and above) have xmlns:xsi and xsi:noNamespaceSchemaLocation
attributes.

Example: Version 8.0.0 of the HED MEDIAWIKI schema.

HED version="8.0.0"

The version line must be the first line of the .mediawiki file. The schema .mediawiki file is HED-schema-8.0.0.
mediawiki found in https://github.com/hed-standard/hed-specification/tree/master/hedwiki.

Example: Version 8.0.0 of the standard HED XML schema.

<HED version="8.0.0">

The file name in hedxml in hed-specification is HED8.0.0.xml.

Example: Version 1.0.2 of HED test library in MEDIAWIKI format.

HED library="test" version="1.0.2"

The resulting XML root is:

Example: Version 1.0.2 of HED test library schema in XML format.

<HED library="test" version="1.0.2">

The file name in hedxml in the HED schema library test is HED_test_1.0.2.xml.

Unknown header-line attributes are translated as attributes of the HED root node of the .xml version, but a warning is
used when the .mediawiki file is validated.

48 Chapter 8. A. Schema format

https://github.com/hed-standard/hed-specification/tree/master/hedwiki

HED specification v3.0.0, Release 3.0.0

8.1.3 A.1.3. Schema section

The beginning of the HED specification is marked by the start-line:

!# start schema

An arbitrary number of lines of informational text can be placed between the header-line and the start-line. Older
versions of HED have a CHANGE_LOG as well as information about the syntax and rules. New versions of HED
generate a separate change log file for released versions.

The end of the main HED-specification is marked by the end-line:

!# end schema

The section separator lines (!# start schema, !# end schema, !# end hed) must only appear once in the file and
must appear in that order within the file. A section separator is a line starting with !#.

The body of the HED specification consists of two types of lines: top-level node-specification specifications and other
node specifications. Each specification is a single line in the .mediawiki file. Empty lines or lines containing only
blanks are ignored. The basic format for a node-specification is:

node-name <nowiki>{attributes}[description]</nowiki>

Top-level node names are enclosed in triple single quotes (e.g., '''Event'''), while other node names have at least
one preceding asterisk (*) followed by a blank and then the name. The number of asterisks indicates the level of the
node in the subtree. HED-3G node names can only contain alphanumeric characters, hyphens, and under-bars. They
cannot contain blanks and must be unique. HED (2G) and earlier versions allow blanks. Everything after the node name
must be contained within <nowiki></nowiki> tags. Placeholder nodes have an empty node name, but are followed
by a # enclosed in <nowiki></nowiki> tags.

Example: Different types of HED node specifications.

Top-level:

'''Property''' <nowiki>{extensionAllowed} [Subtree of properties.]</nowiki>

Normal-level:

***** Duration <nowiki>{requireChild} [Time extent of something.]</nowiki>

Placeholder-level:

****** <nowiki># {takesValue, unitClass=time,valueClass=numericClass}</nowiki>

The Duration tag of this example is at the fifth level below the root of its subtree. The tag: Property/Data-
property/Data-value/Spatiotemporal-value/Temporal-value/Duration is the long form. The placeholder in the example
is the node directly below Duration in the hierarchy.

8.1. A.1. Mediawiki file format 49

HED specification v3.0.0, Release 3.0.0

8.1.4 A.1.4. Other sections

After the line marking the end of the schema (!# end schema), the .mediawiki file contains the unit class specifi-
cations, unit modifier specifications, value class specification, the schema attribute specifications, and property speci-
fications. All of these sections are required starting with HED version 8.0.0 and must be given in this order.

Unit classes specify the kind of units are allowed to be used with a value that is provided for a # value. The unit class
specification section starts with '''Unit classes''' and lists the type of unit at the first level and the specific units
at the second level.

Example: Part of the HED unit class specification for time.

'''Unit classes'''
* time <nowiki>{defaultUnits=s}</nowiki>
** second <nowiki>{SIUnit}</nowiki>
** s <nowiki>{SIUnit, unitSymbol}</nowiki>

The unit classes can be modified by SI (International System Units) sub-multiples and super-multiples. All
unit modifiers are at level 1 of the .mediawiki file. Unit modifiers have either the SIUnitModifer or the
SIUnitSymbolModifer to indicate whether they are regular modifiers or symbol modifiers.

Example: Part of the HED unit modifier specification.

'''Unit modifiers'''
* deca <nowiki>{SIUnitModifier} [SI unit multiple for 10^1]</nowiki>
* da <nowiki>{SIUnitSymbolModifier} [SI unit multiple for 10^1]</nowiki>

Units that have the SIUnit attribute can be modified by any unit modifier that has the SIUnitModifier. So for
example, second and decasecond are valid time units as are seconds and decaseconds. Similarly, units that have
the SIUnit and unitSymbol modifiers can be modified with unit modifiers that have the SIUnitSymbolModifier
attribute.

Value attributes give rules about what kind of value is allowed to be substituted for # placeholder tags.

Example: Part of the HED value class specification.

'''Value classes'''
* posixPath <nowiki>{allowedCharacter=/,allowedCharacter=:}[Posix path specification.]</
→˓nowiki>

The schema attributes specify other characteristics about how particular tags may be used in annotation. These attributes
allow validators and other tools to process tag strings based on the HED schema specification, thus avoiding hard-coding
particular behavior.

Example: Part of the HED schema attribute specification.

'''Schema attributes'''
* allowedCharacter <nowiki>{valueClassProperty}[Attribute of value classes specifying a␣
→˓special character that is allowed in expressing the value of a placeholder.]</nowiki>
* defaultUnits <nowiki>{unitClassProperty}[Attribute of unit classes specifying the␣
→˓default units for a tag.]</nowiki> (continues on next page)

50 Chapter 8. A. Schema format

HED specification v3.0.0, Release 3.0.0

(continued from previous page)

Notice that in the above example, the schema attributes, themselves have attributes referred to as HED schema proper-
ties. These schema properties are listed in the Properties section of the schema.

Example: Part of the HED schema property specification.

'''Properties'''
* valueClassProperty <nowiki>[Attribute is meant to be applied to value classes.]</
→˓nowiki>

8.2 A.2. XML file format

The XML schema file format has a header, prologue, main schema, definitions, and epilogue sections. The general
layout is as follows:

XML layout of the HED schema.

<?xml version="1.0" ?>
<HED library="test" version="0.0.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
→˓" xsi:noNamespaceSchemaLocation="https://github.com/hed-standard/hed-specification/raw/
→˓master/hedxml/HED8.0.0-beta.3.xsd">
<prologue>unique optional text blob</prologue>
<schema>

... schema specification ...
</schema>
<unitClassDefinitions>
<unitClassDefinition> ... </unitClassDefinition>

...
<unitClassDefinition> ... </unitClassDefinition>

</unitClassDefinitions>
<unitModifierDefinitions>
<unitModifierDefinition> ... </unitModifierDefinition>

...
<unitModifierDefinition> ... </unitModifierDefinition>

</unitModifierDefinitions>

<valueClassDefinitions>
<valueClassDefinition> ... </valueClassDefinition>

...
<valueClassDefinition> ... </valueClassDefinition>

</valueClassDefinitions>

<schemaAttributeDefinitions>
<schemaAttributeDefinition> ... </schemaAttributeDefinition>

...
<schemaAttributeDefinition> ... </schemaAttributeDefinition>

</schemaAttributeDefinitions>
(continues on next page)

8.2. A.2. XML file format 51

HED specification v3.0.0, Release 3.0.0

(continued from previous page)

<propertyDefinitions>
<propertyDefinition> ... </propertyDefinition>

...
<propertyDefinition> ... </propertyDefinition>

</propertyDefinitions>

<epilogue>unique optional text blob</epilogue>
</HED>

The <prologue>xxx</prologue> and <epilogue>xxx</epilogue> elements are meant to be treated as opaque as
far as schema processing goes. In earlier versions of HED the prologue section contained a Change Log for the schema
as well as some basic documentation of syntax. The epilogue section contained additional metadata to be ignored
during processing. The following subsections give a more detailed description of the format of these sections.

8.2.1 A.2.1. The schema section

The schema section of the HED XML document consists of an arbitrary number of <node></node> elements enclosed
in a single <schema></schema> element.

Top-level XML layout of the HED schema.

<schema>
<node> ... </node>

...
<node> ... </node>

</schema>

A <node> element contains a required <name> child element, an optional <description> child element, and an
optional number of additional <attribute> child elements:

XML layout HED node element.

<node>
<name>xxx</name>
<description>yyy</description>
<attribute> ... </attribute>
<attribute> ... </attribute>
<attribute> ... </attribute>
<node> ... <node>

</node>

The <name> element text must conform to the rules for naming HED schema nodes. It corresponds to the node-name
in the mediawiki specification and must not be empty. A # value is used to represent value place-holder elements.

The <description> element has the text contained in the square brackets [] in the .mediawiki node specification.
If the .mediawiki specification is missing or has an empty [], the <description> element is omitted.

52 Chapter 8. A. Schema format

HED specification v3.0.0, Release 3.0.0

The optional <attribute> elements are derived from the attribute list contained in curly braces {} of the .mediawiki
specification. An <attribute> element has a single non-empty <name></name> child element whose text value
corresponds to the node-name of attribute in the corresponding .mediawiki file. If the attribute does not have the
boolProperty, then the <attribute> element should also have one or more child <value></value> elements
giving the value(s) of the attribute. Example: The requireChild attribute represents a boolean value. In the .
mediawiki representation this attribute appears as {requireChild} if present and is omitted if absent.

The requireChild attribute represents a boolean value.

Old xml if true:

<node requireChild="true"><name>xxx</name></node>

New xml if true:

<node>
<name>xxx</name>
<attribute>
<name>requireChild</name>

</attribute>
</node>

The suggestedTag attribute has a valid HED tag value. In the mediawiki representation this attribute is omitted if
absent and appears when present as shown in this example.

The suggestedTag attribute has a valid HED tag value.

{suggestedTag=Sweet,suggestedTag=Gustatory-attribute/Salty}

The suggestedTag attribute is meant to be used by tagging tools to suggest additional tags that a user might want to
include. Notice that the suggestedTag values are valid HED tags in any form (short, long, or intermediate).

The suggestedTag old format.

Old xml if present:

<node suggestedTag="Sweet,Gustatory-attribute/Salty">
<name>xxx</name>

</node>

New xml if present:

<node>
<name>xxx</name>
<attribute>
<name>suggestedTag</name>

<value>Sweet</value>
<value>Gustatory-attribute/Salty</value>

</attribute>
</node>

8.2. A.2. XML file format 53

HED specification v3.0.0, Release 3.0.0

8.2.2 A.2.2. Unit classes

The valid HED-3G unit classes are defined in the <unitClassDefinitions> section of the XML schema file, and
valid HED-3G unit modifiers are defined in the <unitModifierDefinitions> section. These sections follow a
format similar to the <node> element in the <schema> section:

XML layout of the unit class definitions.

<unitClassDefinitions>
<unitClassDefinition> ... </unitClassDefinition>

...
<unitClassDefinition> ... </unitClassDefinition>

</unitClassDefinitions>

The <unitClassDefinition> elements have a required <name>, an optional <description> and an arbitrary num-
ber of additional <attribute> child elements. These <attribute> elements describe properties of the unit class
rather than of individual unit types. In addition, <unitClassDefinition> elements may have an arbitrary number
of <unit> child elements.

XML layout of the unit class definitions.

<unitClassDefinition>
<name>time</name>
<description>Temporal values except date and time of day.</description>
<attribute>
<name>defaultUnits</name>
<value>s</value>

</attribute>
<unit>
<name>second</name>
<description>SI unit second.</description>
<attribute>
<name>SIUnit</name>

</attribute>
</unit>
<unit>
<name>s</name>
<description>SI unit second in abbreviated form.</description>
<attribute>
<name>SIUnit</name>

</attribute>
<attribute>
<name>unitSymbol</name>

</attribute>
</unit>

</unitClassDefinition>

54 Chapter 8. A. Schema format

HED specification v3.0.0, Release 3.0.0

8.2.3 A.2.3. Value classes

Value classes are defined in the <valueClassDefinitions> section of the XML schema file. These sections follow
a format similar to the <node> element in the <schema>:

XML layout of the unit class definitions.

<valueClassDefinitions>
<valueClassDefinition> ... </valueClassDefinition>

...
<valueClassDefinition> ... </valueClassDefinition>

</valueClassDefinitions>

8.2.4 A.2.4. Schema attributes

The <schemaAttributeDefinitions> section specifies the allowed attributes of the other elements including
the <node>, <unitClassDefinition>, <unitModifierDefinition>, and <valueClassDefinition> elements.
The specifications of individual attributes are given in <schemaAttributeDefinition> elements.

XML layout of the schema attribute definitions.

<schemaAttributeDefinitions>
<schemaAttributeDefinition> ...</schemaAttributeDefinition>

...
<schemaAttributeDefinition> ... </schemaAttributeDefinition>

</schemaAttributeDefinitions>

The individual <schemaAttributeDefinition> elements have the following format:

XML layout of the schema attribute definitions.

<schemaAttributeDefinition>
<name>allowedCharacter</name>
<description>An attribute of value classes indicating a special character that is␣

→˓allowed in expressing the value of that placeholder.</description>
<property>

<name>valueClassProperty</name>
</property>

</schemaAttributeDefinition>

8.2. A.2. XML file format 55

HED specification v3.0.0, Release 3.0.0

8.3 A.3. Schema sections

This section gives information about how the various auxiliary sections of the HED schema are used to specify the
behavior of the schema elements.

8.3.1 A.3.1. Schema properties

The property elements indicate where various schema attributes apply. Their meanings are hard-coded into the
schema processors. The following is a list of schema attribute properties.

Table 2: Summary of unit classes and units in HED 8.0.0 (* indicates unit
symbol).

Property Description
boolProperty Indicates schema attribute values are either true or false.
unitClassProperty Indicates schema attribute only applies to unit classes.
unitModifierProperty Indicates schema attribute only applies to unit modifiers.
valueClassProperty Indicates the schema attribute only applies to value classes.
textClass Alphanumeric characters, blank, +, -, :, ;, ., /, (,), ?, *, %, $, @, ^, _

Notes on rules for allowed characters in the HED schema.

1. Schema attributes with the boolProperty have a <name> node but no <value> node in the XML. Presence
indicates true.

2. Schema attributes with the boolProperty have both <name> and <value> nodes in the XML.

A given schema attribute can only apply to one type of element (node, unitClassDefinition,
unitModifierDefinition or unit). Attributes that don’t have one of unitClassProperty, unitClassProperty
or unitProperty are assumed to apply to node elements.

8.3.2 A.3.2. Schema attributes

As mentioned in the previous section schema attributes can only apply to one type of element in the schema as indicated
by their property values. Tools hardcode processing based on the schema attribute name. Only the schema attributes
listed in the following table can be handled by current HED tools.

56 Chapter 8. A. Schema format

HED specification v3.0.0, Release 3.0.0

Table 3: Schema attributes (* indicates attribute has a value).
Attribute Target Description
allowedCharacter* valueClass Specifies a character used in values of this class.
defaultUnits* unitClass Specifies units to use if placeholder value has no units.
extensionAllowed node A tag can have unlimited levels of child nodes added.
recommended node Event-level HED strings should include this tag.
relatedTag* node A HED tag closely related to this HED tag.
requireChild node A child of this node must be included in the HED tag.
required node Event-level HED string must include this tag.
SIUnit unit This unit represents an SI unit and can be modified.
SIUnitModifier unitModifier Modifier applies to base units.
SIUnitSymbolModifier unitModifier Modifier applies to unit symbols.
suggestedTag* node Tag could be included with this HED tag.
tagGroup node Tag can only appear inside a tag group.
takesValue node # Placeholder (#)should be replaced by a value.
topLevelTagGroup node Tag (or its descendants) can be in a top-level tag group.
unique node Tag or its descendants can only occur once in an event-level

HED string.
unitClass* node # Unit class this replacement value belongs to.
unitPrefix unit Unit is a prefix (e.g., $ in the currency units).
unitSymbol unit Tag is an abbreviation representing a unit.
valueClass* node # Type of value this is.

Normally the allowed characters are listed individually as values of the allowedCharacter attribute. However, the
word letters designates upper and lower case alphabetic characters are allowed. Further, the word blank indicates
a space is an allowed character, and the word digits indicates the digits 0-9 may be used in the value.

If placeholder (#) has a unitClass, but the replacement value for the placeholder does not have units, tools use the
value of defaultUnits if the unit class has them. For example, the timeUnits has the attribute defaultUnits=s
in HED 8.0.0. The tag Duration/3 is assumed to be equivalent to Duration/3 s because Duration has
defaultUnits of s.

The extensionAllowed tag indicates that descendents of this node may be extended by annotators. However, any tag
that has a placeholder (#) child cannot be extended, regardless of extensionAllowed since it single child is always
interpreted as a user-supplied value.

Tags with the ‘required’ or ‘unique’ attributes cannot appear in definitions.

In addition to the attributes listed above, some schema attributes have been deprecated and are no longer supported in
HED, although they are still present in earlier versions of the schema. The following table lists these.

Table 4: Schema attributes (* indicates attribute has a value).
Schema attribute Target Description
default node # Indicates a default value used if no value is provided.
position node Indicates where this tag should appear during display.
predicateType node Indicates the relationship of the node to its parent.

The default attribute was not implemented in existing tools. The attribute is not used in HED-3G. Only the
defaultUnits for the unit class will be implemented going forward.

The position attribute was used to assist annotation tools, which sought to display required and recommend tags
before others. The position attribute value is an integer and the order can start at 0 or 1. Required or recommended
tags without this attribute or with negative position will be shown after the others in canonical ordering. The tagging
strategy of HED-3G using decomposition and definitions. The position attribute is not used for HED-3G.

8.3. A.3. Schema sections 57

HED specification v3.0.0, Release 3.0.0

The predicateType attribute was introduced in HED-2G to facilitate mapping to OWL or RDF. It was needed be-
cause the HED-2G schema had a mixture of children that were properties and subclasses. The possible values of
predicateType were propertyOf, subclassOf, or passThrough to indicate which role each child node had with
respect to its parent. The schema vocabulary redesign of HED-3G eliminated this issue. The attribute is ignored by
tools.

8.3.3 A.3.3. Value classes

HED has very strict rules about what characters are allowed in various elements of the HED schema, HED tags and
the substitutions made for # placeholders. These rules are encoded in the schema using value classes. When a node
name or placeholder substitution is given a particular value class, that name or substituted value can only contain the
characters allowed for that value class.

The allowed characters for a value class are specified in the definition of each value class. The HED validator and other
HED tools may hardcode information about behavior of certain value classes (for example the numericClass value
class). HED does not allow commas or single quotes in any of its values.

Table 5: Rules for value classes.
Value class Allowed characters
dateTimeClass digits, T, :, -
nameClass alphabetic characters, -
numericClass digits, ., -, +, E, e
posixPath As yet unspecified
textClass Alphanumeric characters, blank, +, -, :, ;, ., /, (,), ?, *, %, $, @, ^, _

Notes on rules for allowed characters in the HED schema.

1. Commas are not allowed in any values.

2. Date-times should conform to ISO8601 date-time format YYYY-MM-DDThh:mm:ss.

3. Any variation on the full form of ISO8601 date-time is allowed.

4. The name class is for schema nodes and labels.

5. Values that have a value class of numericClass must be valid fixed point of floating point values.

6. Scientific notation is supported with the numericClass.

7. The text class is for descriptions, mainly for use with the Description/ tag.

8. The posix path class is yet unspecified and currently allows any characters besides commas.

8.3.4 A.3.4. HED unit classes

Unit classes allow annotators to express the units of values in a consistent way. The plurals of the various units are
not explicitly listed, but are allowed as HED tools uses standard pluralize functions to expand the list of allowed units.
However, Unit symbols represent abbreviated versions of units and cannot be pluralized.

Nodes with the SIUnit modifier may be prefixed with multiple or sub-multiple modifiers. If the SI unit does not also
have the unitSymbol attribute, then multiples and sub-multiples with the SIUnitModifier attribute are used for the
expansion. On the other hand, units with both SIUnit and SIUnitModifier attributes are expanded using multiples
and sub-multiples having the SIUnitSymbolModifier attribute.

Note that some units such as byte are designated as SI units, although they are not part of the standard.

58 Chapter 8. A. Schema format

HED specification v3.0.0, Release 3.0.0

Table 6: Unit classes and units in HED 8.0.0 (* indicates unit symbol).
Unit class Default units Units
accelerationUnits m-per-s^2 m-per-s^2*
angleUnits rad radian, rad*, degree
areaUnits m^2 metre^2, m^2*
currencyUnits $ dollar, $, point
frequencyUnits Hz hertz, Hz*
intensityUnits dB dB, candela, cd*
jerkUnits m-per-s^3 m-per-s^3*
memorySizeUnits B byte, B
physicalLength m metre, m*, inch, foot, mile
speedUnits m-per-s m-per-s*, mph, kph
timeUnits s second, s*, day, minute, hour
volumeUnits m^3 metre^3, m^3*
weightUnits g gram, g*, pound, lb

8.3.5 A.3.5. HED unit modifiers

The unit modifiers are can be applied to SI base units to indicate multiples or sub-multiples of the unit. Unit symbols
are modified by unit symbol modifiers, whereas non symbol SI units are modified by unit modifiers.

Table 7: Unit modifiers (* indicates unit symbol modifier).
Schema attribute Description
deca, da* SI unit multiple representing 10^1
hecto, h* SI unit multiple representing 10^2
kilo, k* SI unit multiple representing 10^3
mega, M* SI unit multiple representing 10^6
giga, G* SI unit multiple representing 10^9
tera, T* SI unit multiple representing 10^12
peta, P* SI unit multiple representing 10^15
exa, E* SI unit multiple representing 10^18
zetta, Z* SI unit multiple representing 10^21
yotta, Y* SI unit multiple representing 10^24
deci, d* SI unit submultiple representing 10^1
centi, c* SI unit submultiple representing 10^2
milli, m* SI unit submultiple representing 10^3
micro, u* SI unit submultiple representing 10^6
nano, n* SI unit submultiple representing 10^9
pico, p* SI unit submultiple representing 10^12
femto, f* SI unit submultiple representing 10^15
atto, a* SI unit submultiple representing 10^18
zepto, z* SI unit submultiple representing 10^21
yocto, y* SI unit submultiple representing 10^24

8.3. A.3. Schema sections 59

HED specification v3.0.0, Release 3.0.0

60 Chapter 8. A. Schema format

CHAPTER

NINE

B. HED ERRORS

This appendix summarizes the error codes used by HED validators and other tools.

HED tools for users (i.e., annotators and analysts) are mainly concerned with HED validation errors relating to in-
correctly annotated events.(See Chapter B.1: HED validation errors for a listing.) These tools assume that the HED
schema are error-free and that schema errors can only occur due to failure to locate or read a HED schema. (See Chapter
B.2: Schema validation errors for a listing.)

HED schema developers are mainly concerned with errors and inconsistencies in the schema itself. (See Chapter B.2:
Schema validation errors for a listing.)

9.1 B.1. HED validation errors

HED_CHARACTER_INVALID: HED string contains an invalid character. HED uses ANSI encoding and does
not support UTF-8.

Different parts of a HED string have different rules for acceptable characters as outlined in Chapter 3.3: Allowed
names and values.

HED_COMMA_MISSING: HED tag groups and tags must be separated with commas. Commas missing be-
tween two HED tags are generally detected as invalid HED tags, rather than as missing commas.

HED_DEF_EXPAND_INVALID: An expanded definition does not match the actual definition. A Def-expand
tag label may not correspond to a definition.

The tags within a Def-expand may not match the corresponding definition.

HED_DEF_UNMATCHED: A HED Def/ label cannot be matched to definition name. A Def tag label cannot be
correctly matched to a definition name because the definition is missing or defined multiple times.

HED_DEF_VALUE_INVALID: A Def/ label value is missing or has incorrect format or value. A Def/ tag value
is a schema node name.

A Def/ tag value does not meet the requirements associated with the placeholder in its definition tag group.

A Def/ tag has a value, but its corresponding Definition does not have a placeholder.

A Def/ tag does not have a value, but its corresponding Definition has a value.

HED_DEFINITION_INVALID: The Definition syntax is incorrect or nested. A definition name is invalid or al-
ready appears as a schema node.

A definition’s enclosing tag group contains another Definition/ tag.

A definition contains Def/ or Def-expand/ tags.

A definition that includes a placeholder (#) does not have exactly two # characters: one after the definition name
and one in the definition tag-group body.

61

HED specification v3.0.0, Release 3.0.0

A definition has placeholders (#) in incorrect positions.

HED_LIBRARY_UNMATCHED: A tag starting with name: does not have an associated library. A tag that
starts with name: is interpreted as a library schema nickname name, but no corresponding library schema has
been defined.

HED_NODE_NAME_EMPTY: An empty tag was detected in a HED string. A tag has extra slashes at beginning,
end, or within a tag (implying empty node names).

A HED string starts or ends with a slash.

A HED tag contains consecutive slashes (as this implies a missing term name within a HED tag).

HED_ONSET_OFFSET_ERROR: An Onset or Offset tag is used incorrectly. An Onset or Offset tag appears
without being grouped with a defined name (using a Def-expand/ tag group or a Def/).

An Offset tag appears before an Onset tag with the same name (or name/value).

An Offset tag of a given name appears after a previous Offset tag without the appearance of an intervening Onset
of the same name.

An Onset tag group either lacks an internal tag group or has more than one internal tag group. Note: if the Onset
tag group’s definition is in expanded form, the Def-expand will be an additional internal tag group.

HED_PARENTHESES_MISMATCH: A HED string has unmatched open and closed parentheses. A HED
string does not have the same number of open and closed parentheses.

Open and closed parentheses are not correctly nested.

HED_PLACEHOLDER_INVALID: A # is missing or appears in a place that it should not. A JSON sidecar has
a placeholder (#) in the HED dictionary for a categorical column.

A JSON sidecar does not have exactly one placeholder (#) in each HED string representing a value column.

A placeholder (#) is used but its parent in the schema does not have a placeholder child.

HED_REQUIRED_TAG_MISSING: An event-level annotation missing a required tag. An assembled event
string does not contain all tags that have the required schema attribute.

HED_SIDECAR_KEY_MISSING: (WARNING) A categorical value is missing HED tags in sidecar. The
events file column has a HED dictionary in the JSON sidecar but the categorical value does not have a key in
the sidecar dictionary.

HED_STYLE_WARNING: (WARNING) An extension or label does not follow HED naming conventions. A
tag name does not start with a capital letter with the remainder lower case.

HED_TAG_EMPTY: Extra commas or empty parentheses indicate empty tags. A HED string has multiple con-
secutive commas (ignoring white space).

A HED string begins or ends with a comma (which implies an empty HED tag).

A tag group is empty (i.e., empty parentheses are not allowed).

HED_TAG_EXTENDED: (WARNING) HED tag represents an extension from the schema. This tag represents
an extension of the HED schema. (Often such tags are really spelling errors and not meant to extend the schema.)

HED_TAG_GROUP_ERROR: A tag does not have its required tag group behavior. A tag has tagGroup or
topLevelTagGroup attribute but is not in an appropriate tag group.

A tag with the topLevelTagGroup attribute appears in same tag group as other tags with the
topLevelTagGroup attribute.

HED_TAG_INVALID: The tag is not valid in this schema. The tag has incorrect format for compliance with this
schema.

The tag is used as a tag extension or placeholder value while appearing elsewhere in the schema.

62 Chapter 9. B. HED errors

HED specification v3.0.0, Release 3.0.0

The tag value is a schema node name.

HED_TAG_NOT_UNIQUE: A HED tag appears multiple times. A HED tag with unique attribute appears more
than once in an event-level HED string.

HED_TAG_REPEATED: HED tags cannot be repeated in the same tag group or level. HED strings are not or-
dered, so (B, C) is equivalent to (B, C).

(A, (A, B)) is not a duplicate.

(A, (B, C), A) and (A, (B, C), (C, B)) are duplicates.

HED_TAG_REQUIRES_CHILD: A HED tag requires an additional ending node. The tag has the requireChild
schema attribute but does not have a child.

HED_TILDES_UNSUPPORTED: The tilde notation is no longer supported. The tilde syntax is no longer sup-
ported for any version of HED. Annotators should replace the syntax (A ~ B ~ C) with (A, (B, C)).

The tilde (~) is considered an invalid character in all versions of the schema.

HED_UNITS_DEFAULT_USED: (WARNING) A HED tag value is missing units. If the corresponding unit class
has default units, those are assumed.

HED_UNITS_INVALID: HED tag value has incorrect or invalid units. A HED tag has a value with units that are
invalid or not of the correct unit class for the tag.

A typical mistake is to use unit modifiers with units that are not SI units.

HED_VALUE_INVALID: The value substituted for a placeholder (#) is not valid. A tag value is incompatible
with the specified value class.

A tag value with no value class is assumed to be a label and may contain invalid characters.

HED_VERSION_DEPRECATED: (WARNING) The HED version is deprecated. It is strongly recommended
that a current version be used as these deprecated versions may not be supported in the future.

Deprecated versions can be found in https://github.com/hed-standard/hed-specification/tree/master/hedxml/
deprecated.

HED_VERSION_WARNING: (WARNING) The HED version number or HED schema was not provided or was
invalid, so the latest version is used.

9.2 B.2. Schema validation errors

This section is organized by the type of schema format that results in the error. Errors that might be detected regard-
less of the schema format start with HED_SCHEMA. Errors that are specific to the .mediawiki format start with
HED_WIKI. Errors that occur in the construction of the XML version or that are detected by XML validators when
the planned XSD validation is implemented start with HED_XML.

9.2.1 B.2.2. General validation schema errors

HED_SCHEMA_ATTRIBUTE_INVALID: An attribute not defined in the appropriate schema section. The
unitClass attribute must be defined in the unitClassDefinitions section of the schema.

A unitClass attribute has an invalid suffix because it is not a plural or unit modifier.

A valueClass attribute must be defined in the valueClassDefinitions section of the schema.

An schema attribute is not defined in the schemaAttributeDefinitions section.

9.2. B.2. Schema validation errors 63

https://github.com/hed-standard/hed-specification/tree/master/hedxml/deprecated
https://github.com/hed-standard/hed-specification/tree/master/hedxml/deprecated

HED specification v3.0.0, Release 3.0.0

HED_SCHEMA_CHARACTER_INVALID: The specification contains an invalid character.

HED_SCHEMA_DUPLICATE_NODE: A schema node name appears in the schema more than once.

HED_SCHEMA_HEADER_INVALID: The schema header is invalid. The head has invalid characters or format.

The header has unrecognized attributes.

HED_SCHEMA_NODE_NAME_INVALID: Schema node name is empty or contains invalid characters.

HED_SCHEMA_REQUIRED_SECTION_MISSING: A required schema section is missing. The required sec-
tions (corresponding to the schema, unit classes, unit modifiers, value classes, schema attributes, and properties)
are not in the correct order.

Required schema sections may be empty, but still be given.

HED_SCHEMA_VERSION_INVALID: The schema version in the HED line or element is invalid. A HED ver-
sion specification does not have the correct syntax for the schema file format.

A HED schema version does not comply with semantic versioning.

9.2.2 B.2.3. Format-specific schema errors.

HED_WIKI_DELIMITERS_INVALID: Delimiters used in the wiki are invalid. Schema line content after node
name is not enclosed with <nowiki></nowiki> delimiters.

A line has unmatched or multiple <nowiki></nowiki>, [], or { } delimiters.

HED_WIKI_LINE_START_INVALID: Start of body line not ''' or *.

HED_WIKI_SEPARATOR_INVALID: Required wiki section separator is missing or misplaced. A required
schema separator is missing. (The required separators are: !# start schema, !# end schema, and !# end
hed.)

HED_XML_SYNTAX_INVALID: XML syntax or does not comply with specified XSD.

9.2.3 B.3. Schema loading errors

Schema loading errors can occur because the file is inaccessible or is not proper XML. Schema loading errors are
handled in different ways by the Python and JavaScript tools.

Python tools generally raise a HedFileError exception when a failure to load the schema occurs. The calling programs
are responsible for deciding how to handle such a failure.

JavaScript tools in contrast are mainly used for validation in HED validation BIDS and are mainly called by the BIDS
validator. Usually BIDS datasets provide a HED version number to designate the version of HED to be used, and the
HED JavaScript validator is responsible for locating and loading schema.

BIDS validator users do not always have unrestricted access to the Internet during the validation process. The HED
JavaScript tools have a fallback of the loading of the specified schema fails. The validator loads an internal copy of the
most recent version of the HED schema and loads it. However, it also reports a HED_SCHEMA_LOAD_FAILED
issue to alert the user that the schema used for validation may not be the one designated in the dataset. However,
validation will continue with the fallback schema.

If the fallback schema stored with the HED validator fails to load, the HED_SCHEMA_LOAD_FAILED issue will
also be reported and no additional HED validation will occur.

64 Chapter 9. B. HED errors

https://bids.neuroimaging.io/

CHAPTER

TEN

HED RESOURCES

10.1 HED publications

Explanation of the history, development, and motivation for third generation HED:

Robbins, K., Truong, D., Jones, A., Callanan, I., & Makeig, S. (2021).
Building FAIR functionality: Annotating events in time series data using Hierarchical Event Descriptors
(HED).
Neuroinformatics Special Issue Building the NeuroCommons. Neuroinformatics
https://doi.org/10.1007/s12021-021-09537-4.
https://link.springer.com/article/10.1007/s12021-021-09537-4.

Detailed case study in using HED-3G for tagging:

Robbins, K., Truong, D., Appelhoff, S., Delorme, A., & Makeig, S. (2021, May 7).
Capturing the nature of events and event context using Hierarchical Event Descriptors (HED).
NeuroImage Special Issue Practice in MEEG. NeuroImage 245 (2021) 118766.
https://www.sciencedirect.com/science/article/pii/S1053811921010387.

10.2 HED schema viewers

The HED schema is usually developed in .mediawiki format and converted to XML for use by tools. However,
researchers wishing to tag datasets will find both of these views hard to read. For this reason, we provide links to three
versions of the schema. The expandable HTML viewer is easier to navigate. Annotators can also use CTAGGER,
which includes a schema viewer and tagging hints.

65

https://link.springer.com/article/10.1007/s12021-021-09537-4
https://www.sciencedirect.com/science/article/pii/S1053811921010387

HED specification v3.0.0, Release 3.0.0

Table 1: HED web-based schema vocabulary viewers.
Viewer Link
standard HED schema
Expandable HTML https://www.hedtags.org/display_hed.html
Expandable prerelease HTML https://www.hedtags.org/display_hed_prelease.html
Mediawiki https://github.com/hed-standard/hed-specification/blob/master/hedwiki/HED8.

0.0.mediawiki
XML https://github.com/hed-standard/hed-specification/blob/master/hedxml/HED8.

0.0.xml
Score library schemas
Expandable HTML https://www.hedtags.org/display_hed_score.html
Expandable prelease HTML https://www.hedtags.org/display_hed_score_prerelease.html
Mediawiki https://github.com/hed-standard/hed-schema-library/blob/main/library_

schemas/score/hedwiki/HED_score_0.0.1.mediawiki
XML https://github.com/hed-standard/hed-schema-library/blob/main/library_

schemas/score/hedxml/HED_score_0.0.1.xml

10.3 HED websites

The following is a summary of the HED-related websites:

Description Site
HED organization website https://www.hedtags.org
HED specification https://hed-specification.readthedocs.io/en/latest/index.html
HED examples and tutorials https://hed-examples.readthedocs.io/en/latest/index.html
CTAGGER executable jar https://github.com/hed-standard/hed-java/raw/master/ctagger.jar
Repositories
HED organization https://github.com/hed-standard
HED specification https://github.com/hed-standard/hed-specification
HED examples and datasets https://github.com/hed-standard/hed-examples
HED Python tools https://github.com/hed-standard/hed-python
HED Javascript code https://github.com/hed-standard/hed-javascript
HED Matlab code and
EEGLAB support

https://github.com/hed-standard/hed-matlab

HED web deployment https://github.com/hed-standard/hed-web
HED-2G support https://github.com/hed-standard/hed2-python
CTAGGER resources https://github.com/hed-standard/CTagger
Online tools
HED tools https://hedtools.ucsd.edu/hed
HED-2G support https://hedtools.ucsd.edu/hed2

66 Chapter 10. HED resources

https://www.hedtags.org/display_hed.html
https://www.hedtags.org/display_hed_prelease.html
https://github.com/hed-standard/hed-specification/blob/master/hedwiki/HED8.0.0.mediawiki
https://github.com/hed-standard/hed-specification/blob/master/hedwiki/HED8.0.0.mediawiki
https://github.com/hed-standard/hed-specification/blob/master/hedxml/HED8.0.0.xml
https://github.com/hed-standard/hed-specification/blob/master/hedxml/HED8.0.0.xml
https://www.hedtags.org/display_hed_score.html
https://www.hedtags.org/display_hed_score_prerelease.html
https://github.com/hed-standard/hed-schema-library/blob/main/library_schemas/score/hedwiki/HED_score_0.0.1.mediawiki
https://github.com/hed-standard/hed-schema-library/blob/main/library_schemas/score/hedwiki/HED_score_0.0.1.mediawiki
https://github.com/hed-standard/hed-schema-library/blob/main/library_schemas/score/hedxml/HED_score_0.0.1.xml
https://github.com/hed-standard/hed-schema-library/blob/main/library_schemas/score/hedxml/HED_score_0.0.1.xml
https://www.hedtags.org
https://hed-specification.readthedocs.io/en/latest/index.html
https://hed-examples.readthedocs.io/en/latest/index.html
https://github.com/hed-standard/hed-java/raw/master/ctagger.jar
https://github.com/hed-standard
https://github.com/hed-standard/hed-specification
https://github.com/hed-standard/hed-examples
https://github.com/hed-standard/hed-python
https://github.com/hed-standard/hed-javacript
https://github.com/hed-standard/hed-matlab
https://github.com/hed-standard/hed-web
https://github.com/hed-standard/hed2-python
https://github.com/hed-standard/CTagger
https://hedtools.ucsd.edu/hed
https://hedtools.ucsd.edu/hed2

HED specification v3.0.0, Release 3.0.0

10.4 HED working documents

Mapping of HED terms and their descriptions to known ontologies is:

HED-3G Working Document on Ontology mapping https://drive.google.com/file/d/
13y17OwwNBlHdhB7hguSmOBdxn0Uk4hsI/view?usp=sharing

Two other working documents hold portions of the HED-3G specification that are under development and will not be
finalized for Release 1:

HED-3G Working Document on Spatial Annotation https://docs.google.com/document/d/
1jpSASpWQwOKtan15iQeiYHVewvEeefcBUn1xipNH5-8/view?usp=sharing

HED-3G Working Document on Task Annotation https://docs.google.com/document/d/1eGRI_
gkYutmwmAl524ezwkX7VwikrLTQa9t8PocQMlU/view?usp=sharing

10.4. HED working documents 67

https://drive.google.com/file/d/13y17OwwNBlHdhB7hguSmOBdxn0Uk4hsI/view?usp=sharing
https://drive.google.com/file/d/13y17OwwNBlHdhB7hguSmOBdxn0Uk4hsI/view?usp=sharing
https://docs.google.com/document/d/1jpSASpWQwOKtan15iQeiYHVewvEeefcBUn1xipNH5-8/view?usp=sharing
https://docs.google.com/document/d/1jpSASpWQwOKtan15iQeiYHVewvEeefcBUn1xipNH5-8/view?usp=sharing
https://docs.google.com/document/d/1eGRI_gkYutmwmAl524ezwkX7VwikrLTQa9t8PocQMlU/view?usp=sharing
https://docs.google.com/document/d/1eGRI_gkYutmwmAl524ezwkX7VwikrLTQa9t8PocQMlU/view?usp=sharing

	1. Introduction to HED
	1.1. Scope of HED
	1.2. Brief history of HED
	1.2. Goals of HED
	1.3. HED design principles
	1.4. Specification organization

	2. HED terminology
	Agent [*]
	Condition-variable [*]
	Control-variable [*]
	Dataset
	Event [*]
	Event-context [*]
	Event marker
	Event-stream [*]
	Experiment-participant [*]
	Experimental-trial [*]
	HED schema [*]
	HED string
	HED tag
	Indicator-variable [*]
	Parameter [*]
	Recording [*]
	Tag-group
	Task [*]
	Temporal scope
	Time-block [*]

	3. The HED schema
	3.1. Mediawiki schema format
	3.2. XML schema format
	3.2.1 The <node> element
	3.2.2 Unit classes and modifiers
	3.2.3 Value classes
	3.2.4 Schema attributes
	3.2.5 Schema properties

	3.3. Allowed names and values
	3.3.1 Rules for the HED schema
	3.3.2 Rules for HED tags
	3.3.3 Placeholders in HED tags

	3.4. Vocabulary organization
	3.5. Tag syntax

	4. Basic annotation
	4.1. Instantaneous events
	4.2. Sensory presentations
	4.3. Task role
	4.4. Agent actions
	4.5. Experimental control
	4.6. Data features
	4.7. What else?

	5. Advanced annotation
	5.1. HED definitions
	5.2. Using definitions
	5.3. Temporal scope
	5.3.1. Onset and Offset
	5.3.2. Duration
	5.3.3. Temporal offsets with Delay

	5.4. Event streams
	5.5. Event context
	5.6. Experimental design
	5.7. Specialized annotation

	6. Infrastructure
	6.1. Short and long forms
	6.2. File formats
	6.2.1. BIDS event files
	6.2.2. BIDS sidecars
	6.2.3. HED version in BIDS

	6.3. Levels of validation
	6.3.1. Tag validation
	6.3.2. String validation
	6.3.3. Sidecar validation
	6.3.4. Event validation
	6.3.5. Recording validation

	6.4. Analysis tools
	6.5. BIDS support in HED

	7. Library schema
	7.1. Defining a schema
	7.2. Schema namespaces
	7.3. Attributes and classes
	7.3.1. Required sections
	7.3.2. Relation to standard HED schema
	7.3.3. Schema properties
	7.3.4. Unit classes
	7.3.5. Value classes
	7.3.6. Schema attributes
	7.3.7. Syntax checking

	7.4. library schemas in BIDS

	A. Schema format
	A.1. Mediawiki file format
	A.1.1. Overall file layout
	A.1.2. The header-line
	A.1.3. Schema section
	A.1.4. Other sections

	A.2. XML file format
	A.2.1. The schema section
	A.2.2. Unit classes
	A.2.3. Value classes
	A.2.4. Schema attributes

	A.3. Schema sections
	A.3.1. Schema properties
	A.3.2. Schema attributes
	A.3.3. Value classes
	A.3.4. HED unit classes
	A.3.5. HED unit modifiers

	B. HED errors
	B.1. HED validation errors
	B.2. Schema validation errors
	B.2.2. General validation schema errors
	B.2.3. Format-specific schema errors.
	B.3. Schema loading errors

	HED resources
	HED publications
	HED schema viewers
	HED websites
	HED working documents

