
Learn You a gocc for Great Good
or

How to save the world by using compiler theory

2014-05-28

Contents

1 Introduction 2

2 Copyright 3

3 Definition of terms 3

4 Getting started 4

5 How to create and use a parser with gocc 4

6 First example 6
6.1 Step 1: generate code . 6
6.2 The example grammar . 7
6.3 The test program . 9
6.4 Step 2: running go test . 10

7 Commandline syntax 11

8 Example: parsing simple mail addresses 11

9 Handling LR(1) conflicts 14

10 Example: reduce/reduce conflict handling 14

11 Example: Shift/reduce conflict handling 16

12 Example: Using an AST 17

1

13 Example: Parser error recovery 18

14 Example: Using another lexer 20

15 gocc syntax 24

1 Introduction

gocc is a compiler kit which generates lexers, parsers and stand-alone DFAs from an EBNF
file.

gocc lexers are deterministic finite state automata (DFA), which recognise regular languages.

gocc parsers are pushdown automata (PDA), which recognise LR-1 languages. LR-1 is the set of
languages, which can be parsed deterministically. Some context free grammars (CFG) are outside
LR-1, because they produce ambiguous derivations. gocc recognises ambiguous grammars and can
automatically resolve LR-1 conflicts (see section 9).

gocc can also be used to generate stand-alone finite state automata for parsing simple regular
languages. See for example: see the mail address example (section 8).

gocc supports parser error recovery (see section 13).

gocc supports action expressions, embedded in the input grammar, for the specification of semantic
actions. For simple applications action expressions can be used to implement a syntax directed
translation directly within the grammar. See the example in section 6. For more complex appli-
cations the action routines can be used to build an abstract syntax tree (AST), which is further
processed by later stages of the application. See the example in section 12.

gocc has been successfully used to develop a query language compiler; a configuration / con-
trol language for a distributed system; parsers for protocol messages specified in ABNF [4] and
gographviz (https://github.com/awalterschulze/gographviz). In addition gocc1 was used to
generate the parser for gocc2, and gocc2 to generate the lexer and parser for gocc3.

gocc was designed to be easy to use and experience has shown that its users require very little
background knowledge of language and compiler theory to apply it to simple language applica-
tions, such as syntax directed translation. An appreciation of mathematical formalism is usually
enough and this guide is intended to provide sufficient information for such users, provided they
understand:

• The go language;

• How to use context free grammars;

• How to separate lexical, syntactic and semantic analysis.

More complex applications, such as compiled languages and advanced protocol message parsing
require more background, especially:

• The relationship between languages, grammars and automata;

• The relationship between regular and context free grammars;

2

https://github.com/awalterschulze/gographviz

• The equivalence of finite state automata with regular grammars; and of pushdown automata
with context free grammars;

• The meaning and limits of top down/predictive parsing, bottom up parsing and deterministic
parsing;

• The implications of language ambiguity as well as shift/reduce and reduce/reduce conflicts;

• The implications of grammars that generate languages outside the class of context free lan-
guages;

• Compiler design.

The author considers the Dragon Book [3] still the best reference for these topics. The reader is
also directed to [2] for a modern treatment of compiler design, as well as [1] for a comprehensive
treatment of the parsing techniques used in gocc.

gocc was conceived out of need in the year after Google released the Go language. At the time there
was no other parser generator available, which could generate parsers in the Go language. The
author set out to create a parser generator for the set of all deterministically parseable languages,
which implied the LR(1) technique. Although there are now alternatives to gocc available to Go
programmers we offer gocc to the community in the hope that someone may find it useful and as
a token of thanks to Google for the gift of Go .

2 Copyright

Copyright 2012 VAStech SA (PTY) LTD

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

3 Definition of terms

AST Abstract syntax tree
CFG Context Free Grammar
DFA Deterministic Finite State Automaton. gocc lexers are DFAs.
PDA Pushdown Automaton. gocc parsers are PDA’s, and can recognise all deterministi-

cally parseable (LR-1) languages.

3

4 Getting started

1. Download and install Go from http://golang.org.

2. Set your GOPATH environment variable. See http://golang.org/doc/code.html.

3. Install gocc :

(a) In your command line run: go get github.com/goccmack/gocc/ (go get will git
clone gocc into GOPATH/src/github.com/goccmack/gocc and run go install)

or

(b) Alternatively clone the repository: https://github.com/goccmack/gocc/archive/

master.zip. Followed by: go install github.com/goccmack/gocc.

Test your installation by running make test from $GOPATH/src/github.com/goccmack/gocc.

5 How to create and use a parser with gocc

Figure 1 shows the high-level design of a user application, which uses a parser generated with
gocc.

• The user creates a target grammar conforming to the gocc BNF standard (see section 15).

• gocc reads the target grammar and generates the components shown in heavy outline in fig 1,
i.e.: the lexer, parser, token and error packages.

• The user also creates a package called by the compiler to execute semantic actions for each
recognised production of the target grammar. The methods of the semantic package provided
by the user correspond to the method calls specified in the action expressions of the target
grammar.

• The user application initialises a lexer object with the input text. Then it calls the Parse(...)
method of the parser.

• Once created, the lexer and parser objects may be used repeatedly for successive inputs. For
each input the lexer must be initialised with the next input text and the parser’s Parse(...)
method called with a reference to the lexer.

• The parser reads a stream of tokens (lexical elements) from the lexer (lexer) by repeatedly
calling the lexer interface method, lexer.Scan() .

type Scanner interface {

Scan() (tok *token.Token)

}

Each call to lexer.Scan returns a pointer to token.Token.

• The lexer reads a stream of input characters and recognizes the tokens specified in the target
grammar. After reaching the end of input it returns the end of input token to every call to
lexer.Scan() .

4

http://golang.org
http://golang.org/doc/code.html
https://github.com/goccmack/gocc/archive/master.zip
https://github.com/goccmack/gocc/archive/master.zip

source
text

lexer

parser

User's
App

[]byte

lexer.Scan() *token.Token

parser.Parse(*scanner.Scanner)(interface{}, error)

token

errors

gocc

target
grammar

generates

utils

Figure 1: High-level design

• Whenever the parser recognises the complete body of a production of the target grammar, it
calls the function specified in the action expression associated with that production alterna-
tive. The parsed symbols of the recognised production are passed as parameters to the action
expression (see section 15). The result of the action expression is placed on the parser’s stack
as an attribute of the recognised language symbol.

• When the parser recognises the complete start production of the grammar it calls its associ-
ated action expression. The result of the action expression is returned to the user application
as type interface{} together with a nil error value.

• If the parser encounters an error in the input it may perform automatic error recovery (see
section 13). If the error is recoverable the parser places all the parsed language symbols
associated with the error (completed productions as well as tokens) in a symbol of type
*errors.Error and places this symbol on the parser stack. The parser then discards input
tokens until it encounters an input token which may validly follow the recovered production
and parsing continues normally. When error recovery is specified the user application must
handle the error symbols which it may receive as attributes in calls to action expressions, or
which may be returned as a top-level result of the parse to the calling application.

• If the parser encounters an irrecoverable error it returns a non-nil error value together with
an indeterminate parse result.

5

6 First example

This example shows how action expressions in the BNF can be used to implement a syntax directed
translation scheme without the need for further user provided packages, such as AST.

The source code of the following example can be found at

$GOPATH/src/github.com/goccmack/gocc/example/calc

The grammar implements the simple desktop calculator described in [3]. The generated code is
both a parser and an interpreter for the calculator.

The following files are provided by the user:

> ls -R

calc.bnf calc_test.go

calc.bnf contains the grammar for this example.

calc test.go will be used to execute the generated code. It represents the user application.

6.1 Step 1: generate code

To generate code we run gocc from the directory containing calc.bnf with the following com-
mand:

> gocc calc.bnf

After running gocc we see that the directory structure now contains the following files:

> ls -R

LR1_sets.txt calc_test.go first.txt lexer_sets.txt token

calc.bnf errors lexer parser util

./errors:

errors.go

./lexer:

acttab.go lexer.go transitiontable.go

./parser:

action.go actiontable.go gototable.go parser.go productionstable.go

./token:

token.go

./util:

litconv.go rune.go

The generated files are:

6

LR1 sets.txt and first.txt Files containing information about the parser table generation pro-
cess. They are useful for debugging the parser.

lexer sets.txt File containing information about the lexer generation process. It us useful for
debugging the lexer.

errors/errors.go Declares type Error, which is used during automatic recovery from errors in
the input. See section 13 for more details.

lexer/ Contains the files generated for the lexer.

parser/ Contains the files generated for the parser. The interpreter code is embedded within
parser/productionstable.go.

token/token.go Contains the declaration of the tokens of the grammar.

util/litconv.go Contains functions to convert a token literal to a value, e.g.: int64 or rune.

util/rune.go Contains func() RuneToString, which is used by debug code in the lexer.

6.2 The example grammar

calc.bnf displays the main features of a gocc BNF file:

/* Lexical part */

_digit : ’0’-’9’ ;

int64 : ’1’-’9’ {_digit} ;

!whitespace : ’ ’ | ’\t’ | ’\n’ | ’\r’ ;

/* Syntax part */

<<

import(

"github.com/goccmack/gocc/example/calc/token"

"github.com/goccmack/gocc/example/calc/util"

)

>>

Calc : Expr;

Expr

: Expr "+" Term << $0.(int64) + $2.(int64), nil >>

| Term

;

Term

: Term "*" Factor << $0.(int64) * $2.(int64), nil >>

7

| Factor

;

Factor

: "(" Expr ")" << $1, nil >>

| int64 << util.IntValue($0.(*token.Token).Lit) >>

;

The BNF has two parts: a lexical and a syntax part. Both parts are optional – gocc can be used
to generate only a lexer or only a parser – but every BNF must have at least a lexical part or a
syntax part. This example has both and gocc will generate a lexer, a parser and all the support
they require to function.

It declares the imported package github.com/goccmack/gocc/example/calc/token (generated
by gocc), which will be used in the action expressions of some productions of the grammar.

The lexical part consists of:

1. A token definition, int64, which is used in the syntax part. Token identifiers always start
with a lower case letter in the range: ’a’-’z’. The token int64 must start with a digit
in the range, ’1’-’9’, followed by zero or more digits in the range, ’0’-’9’. It uses the
regular definition, _digit, to declare the range, ’0’-’9’. The curly braces around _digit

indicate that it may be repeated zero or more times.

A lexical pattern may also be enclosed in square brackets, e.g.: [’0’-’9’], to indicate
zero or one instances of it (in this case a decimal digit) may be present. See section 15 for
details.

2. !whitespace declares an ignored token. The ’!’ before whitespace indicates that the token
is to be ignored. The generated lexer suppresses ignored tokens so that the parser never sees
them. They can be uses for white space and comments.

3. A regular definition, _digit. Regular definition identifiers always start with ’_’. Regular
definitions act like macros definitions in the BNF and allow tokens to be constructed from
pre-defined components. Regular definitions and token definitions may not be mutually or
self-recursive. That would lead to a context free grammar, which cannot be recognised by a
finite state automaton.

gocc supports c-style line and block comments. The calc BNF contains two block comments.

The syntax part consists of:

1. An optional file header section, which is textually included in the generated parser file,
parser/productionstable.go. The file header allows the user to specify imports, declara-
tions and functions, which are required by the action routines in the syntax part. In the calc
example the file header contains two import declarations.

2. The syntax start symbol, Calc, is the highest level syntax production of the BNF. The parser
will try to match the input source with a valid derivation of the start symbol. All syntax
production identifiers start with an upper case letter in the range, ’A’-’Z’.

3. Each alternative of a production may optionally have an action expression. E.g.:

8

Factor : int64 << util.IntValue($0.(*token.Token).Lit) >>

has an action expression, << util.IntValue($0.(*token.Token).Lit) >>, which contains
a call to the function, IntValue, in the generated file util/litconv.go. Attribute $0, associated
with the symbol int64 in the body of the production, is type asserted to *token.Token, of
which the field Lit is passed as parameter to the function. Action expressions must always
return a value of type, (interface{}, error). If the returned error parameter is nil,
the interface{} parameter is placed on the parser stack as the attribute of the recognised
production.

4. Each recognised term in a production has an associated attribute. For example: the produc-
tion alternative:

Term : Term "*" Factor << $0.(int64) * $2.(int64), nil >>

has three symbols in its body. Each has an associated attribute on the stack: Term, type
int64; "*", type *token.Token; and Factor, type int64. They may be referred to in the
action expression as $0, $1 and $2, respectively.

The action expression in this example means the following: return the product of $0 and $2,
both cast to type int64, together with nil.

When the parser has recognised the whole body of a production alternative, it calls the associated
action expression with the attributes of the recognised language symbols of that body. If the
action expression returns a non-nil error the parser stops and returns the error to the calling user
application. If the action expression returns a nil error the parser replaces the recognised language
symbols of the production on its stack with the attribute returned by the action expression.

If a recognised production alternative does not have a specific action expression, e.g.:

Calc : Expr;

the parser always pushes $0 on the stack as the attribute of the production.

The first alternative of Expr returns the sum of the attributes of Expr and Term after casting them
to int64. The second alternative returns the attribute of Term.

The first alternative of Term returns the product of Term and Factor after casting them to int64.
The second term returns the attribute of Factor.

The first alternative of Factor simply returns the attribute of the parenthesised Expr. The second
alternative returns the value of a numeric token.

In the second alternative of Factor we use a method on the input token, which returns (int64, error).
Therefore the types of all numbers are int64.

6.3 The test program

The root folder of the Calc example contains calc test.go , which has the following test pro-
gram. In addition to testing the code it shows how to initialise and use the generated lexer and
parser/interpreter.

9

package calc

import (

"github.com/goccmack/gocc/example/calc/lexer"

"github.com/goccmack/gocc/example/calc/parser"

"fmt"

"testing"

)

type TI struct {

src string

expect int64

}

var testData = []*TI{

{"1 + 1", 2},

{"1 * 1", 1},

{"1 + 2 * 3", 7},

}

func Test1(t *testing.T) {

p := parser.NewParser()

pass := true

for _, ts := range testData {

s := lexer.NewLexer([]byte(ts.src))

sum, err := p.Parse(s)

if err != nil {

pass = false

t.Log(err.Error())

}

if sum != ts.expect {

pass = false

t.Log(fmt.Sprintf("Error: %s = %d. Got %d\n", ts.src, sum, ts.expect))

}

}

if !pass {

t.Fail()

}

}

6.4 Step 2: running go test

From the root folder of the Calc example, execute the following command:

> go test -v .

which generates the following output:

10

> go test -v

warning: building out-of-date packages:

github.com/goccmack/gocc/example/calc/token

github.com/goccmack/gocc/example/calc/lexer

github.com/goccmack/gocc/example/calc/errors

github.com/goccmack/gocc/example/calc/parser

installing these packages with ’go test -i’ will speed future tests.

=== RUN Test1

--- PASS: Test1 (0.00 seconds)

PASS

ok github.com/goccmack/gocc/example/calc 0.017s

Congratulations! You have executed your first gocc-generated code.

7 Commandline syntax

usage: gocc flags bnf_file

bnf_file: contains the BNF grammar

Flags:

-a=false: automatically resolve LR(1) conflicts

-debug_lexer=false: enable debug logging in lexer

-debug_parser=false: enable debug logging in parser

-h=false: help

-no_lexer=false: do not generate a lexer

-o="/Users/marius/goprj/src/github.com/goccmack/gocc": output dir.

-p="github.com/goccmack/gocc": package

-u=false: allow unreachable productions

-v=false: verbose

8 Example: parsing simple mail addresses

This example shows how gocc can be used to generate a stand-alone FSA to parse a regular
language. The goal is to parse simple mail address specifications like: mailbox@gmail.com or
"mail box"@gmail.com. The source code of the sample can be found at

$GOPATH/src/github.com/goccmack/gocc/example/mail

mail.bnf contains:

!whitespace : ’\t’ | ’\n’ | ’\r’ | ’ ’ ;

_atext : ’A’-’Z’ | ’a’-’z’ | ’0’-’9’

| ’!’ | ’#’ | ’$’ | ’%’ | ’&’ | ’\’’ | ’*’ | ’+’ | ’-’ | ’/’

11

| ’=’ | ’?’ | ’^’ | ’_’ | ’‘’ | ’{’ | ’|’ | ’}’ | ’~’

| ’\u0100’-’\U0010FFFF’

;

_atom : _atext {_atext} ;

_dotatom : _atom {’.’ _atom} ;

_quotedpair : ’\\’ . ;

_quotedstring : ’"’ (_quotedpair | .) {_quotedpair | .} ’"’ ;

addrspec : (_dotatom | _quotedstring) ’@’ _dotatom ;

The production

_quotedpair : \\ . ;

uses ’.’ to specify that any UTF-8 rune will be accepted after a ’\’ character in the input.

We generate code for the example by

gocc mail.bnf

which produces the following generated code:

> ls -R

lexer lexer_sets.txt mail.bnf parser_test.go token util

./lexer:

acttab.go lexer.go transitiontable.go

./token:

token.go

./util:

rune.go

Note that no parser had been generated, because the BNF does not include a syntax part. gocc
generates only a DFA/lexer for the lexical part, which is present in the BNF. This application uses
only a DFA to parse its input.

parser_test.go shows how the generated DFA could be repeatedly invoked to parse a stream of
email addresses:

package mail

import (

"github.com/goccmack/gocc/example/mail/lexer"

"github.com/goccmack/gocc/example/mail/token"

"testing"

)

12

var testData1 = map[string]bool{

"mymail@google.com": true,

"@google.com": false,

‘"quoted string"@mymail.com‘: true,

‘"unclosed quote@mymail.com‘: false,

}

Function Test1 proves that the DFA correctly recognises addresses according to the specifica-
tion.

func Test1(t *testing.T) {

for input, ok := range testData1 {

l := lexer.NewLexer([]byte(input))

tok := l.Scan()

switch {

case tok.Type == token.INVALID:

if ok {

t.Errorf("%s", input)

}

case tok.Type == token.TokMap.Type("addrspec"):

if !ok {

t.Errorf("%s", input)

}

default:

t.Fatalf("This must not happen")

}

}

}

Function Test2 shows how to invoke the lexer repeatedly to parse a stream of addresses.

var checkData2 = []string{

"addr1@gmail.com",

"addr2@gmail.com",

"addr3@gmail.com",

}

var testData2 = ‘

addr1@gmail.com

addr2@gmail.com

addr3@gmail.com

‘

func Test2(t *testing.T) {

l := lexer.NewLexer([]byte(testData2))

num := 0

for tok := l.Scan(); tok.Type == token.TokMap.Type("addrspec"); tok = l.Scan() {

13

if string(tok.Lit) != checkData2[num] {

t.Errorf("%s != %s", string(tok.Lit), checkData2[num])

}

num++

}

if num != len(checkData2) {

t.Fatalf("%d addresses parsed", num)

}

}

9 Handling LR(1) conflicts

If a target grammar is outside the class of LR(1) grammars it cannot be parsed deterministically
with one symbol lookahead. This condition manifests as LR(1) conflicts, of which there are two
types:

Shift/Reduce conflict: The parser has recognised a valid production body on the stack, and
can reduce it to the corresponding production.

However, the same symbols are also a valid prefix of the body of another, longer production.
The parser could continue to shift the input symbols and attempt to recognise the longer
production.

gocc uses the maximal-munch rule (see [2]) to resolve this conflict by always choosing shift
over reduce. The longest valid production will therefore always be recognised.

Reduce/Reduce conflict: The parser has recognised a valid sequence of symbols, which can be
reduced to more than one production.

gocc will always reduce the production that was declared first in the grammar.

10 Example: reduce/reduce conflict handling

The source code of the following example can be found at

$GOPATH/src/github.com/goccmack/gocc/example/rr

RR : A | B ;

B : a ;

A : a | A a ;

When we run gocc on $GOPATH/src/github.com/goccmack/gocc/example/rr/rr.bnf we dis-
cover a reduce/reduce conflict:

14

> gocc -v rr.bnf

-a = false

-debug_lexer = false

-debug_parser = false

-h = false

-no_lexer = false

-o = /home/src/github.com/goccmack/gocc/example/rr

-p = github.com/goccmack/gocc/example/rr

-u = false

-v = true

Error: 1 LR-1 conflicts

gocc does not generate code because the default for automatic LR(1) conflict resolution is off.

When run with -v, gocc generates a number of informational files, we can inspect the file LR1_conflicts.txt

1 LR-1 conflicts:

S4

symbol: $

Reduce(4:A : a << "A0 ", nil >>)

Reduce(3:B : a << "B ", nil >>)

From the output we see that gocc could reduce either of production B or A in state 4.and at this
point we turn to

We can use LR1_sets.txt to analyse the conflict. LR1_sets.txt contains the LR(1) sets, which
will be translated into the states of the parser. Each state contains a set of LR(1) items, which
specifies what the parser expects in that state.

An LR(1) item is a production alternative with the position of the parser marked by a •, and
the next symbol expected after this production body, in double angle brackets. Alternatives of a
production are in separate items. For example:

A : a• << $ >>

indicates that the compiler has recognised the production alternative, A : a and next expects to
see the end of input character, $.

Getting back to our R/R conflict, S4 in LR1_sets.txt represents state 4 and contains the following
items:

S4{
A : a• << $ >>
B : a• << $ >>
A : a• << a >>

}

We see that the bodies of all items in S4 are the same and that the parser has completely recognised
them. Two items reduce to production A and one to production B. This is the reduce/reduce
conflict: A vs B.

15

When gocc is run with the -a option it will automatically resolve this conflict by reducing produc-
tion B, because it is declared in rr.bnf before A:

> gocc -a rr.bnf

No errors are reported.

11 Example: Shift/reduce conflict handling

The source code of the following example can be found at

$GOPATH/src/github.com/goccmack/gocc/example/sr

It is the classic example of the dangling else in the C language:

Stmt :

if expr then Stmt

| if expr then Stmt else Stmt

;

When we run gocc on $GOPATH/src/github.com/goccmack/gocc/example/sr/sr.bnf we dis-
cover a shift/reduce conflict:

> gocc -v sr.bnf

[...]

Error: 1 LR-1 conflicts

Inspecting LR1_conflicts.txt we see:

1 LR-1 conflicts:

S13

symbol: else

Shift(14)

Reduce(1:Stmt : "if" id "then" Stmt << ast.NewIf(X[1], X[3]), nil >>)

The problem is in the last two items of state 13, where the next symbol is else and the parser
can both shift and reduce:

S13{
Stmt : if expr then Stmt• << $ >>
Stmt : if expr then Stmt • else Stmt << $ >>
Stmt : if expr then Stmt• << else >>
Stmt : if expr then Stmt • else Stmt << else >>

}

When automatic LR(1) conflict resolution is selected by the -a option, gocc resolves this conflict in
the same way as specified in the C language specification: by shifting and parsing the longest valid
production (maximal-munch). This means recognising the else-statement as part of the second
if.

16

12 Example: Using an AST

The following example illustrates the use of user-provided action expressions to produce a simple
abstract syntax tree (AST) for a list of simple statements.

The code for the example can be found at

$GOPATH/src/github.com/goccmack/gocc/example/astx

The grammar is in ast.bnf:

<< import "github.com/goccmack/gocc/example/astx/ast" >>

StmtList :

Stmt << ast.NewStmtList($0) >>

| StmtList Stmt << ast.AppendStmt($0, $1) >>

;

Stmt :

id << ast.NewStmt($0) >>

;

At the top of the grammar is a file header section containing an import statement for the user-
provided package, github.com/goccmack/gocc/example/astx/ast.

The production action expressions will use functions from the package, ast.

The start production, StmtList returns a tuple: (ast.StmtList, error), as we can see from the
code of functions NewStmtList and AppendStmt in

$GOPATH/src/github.com/goccmack/gocc/example/astx/ast.go:

package ast

import(

"github.com/goccmack/gocc/example/astx/token"

)

type (

StmtList []Stmt

Stmt string

)

func NewStmtList(stmt interface{}) (StmtList, error) {

return StmtList{stmt.(Stmt)}, nil

}

func AppendStmt(stmtList, stmt interface{}) (StmtList, error) {

return append(stmtList.(StmtList), stmt.(Stmt)), nil

}

17

func NewStmt(stmtList interface{}) (Stmt, error) {

return Stmt(stmtList.(*token.Token).Lit), nil

}

Note the following:

• The attributes of the language symbols in the production are passed to the action expressions
as parameters, referred to as $0, $1, ...

• The type of the parameters passed to the action expressions is interface{} and must be
type asserted by the called function to the expected type.

• The parser will return the result of a successful parse, a StmtList, to the calling application
as type interface{}. The calling application must type assert the returned value to the
expected type.

If we run

go test -v .

from the directory

$GOPATH/src/github.com/goccmack/gocc/example/astx/

we get the following output:

> go test -v .

=== RUN TestPass

input: a b c d e f

output: [a b c d e f]

--- PASS: TestPass (0.00s)

=== RUN TestFail

input: a b ; d e f

Parsing failed as expected:

Error in S3: INVALID(0,;), Pos(offset=4, line=1, column=5),

expected one of: $ id

--- PASS: TestFail (0.00s)

PASS

ok github.com/goccmack/gocc/example/astx 0.006s

The first test, TestPass, has a valid input string, "a b c d e f"; and parses successfully; and
returns the expected StmtList, [a b c d e f].

The input to the second test, TestFail, contains an invalid identifier, ;. The parser returns an
error, indicating that it encountered an invalid token when it expect a token of type id or the end
of input.

13 Example: Parser error recovery

Without error recovery a gocc parser terminates when it reaches the first error in the input.
Sometimes it is convenient to attempt to continue the parse and this can be achieved in gocc by

18

specifying in the grammar which productions can recover from errors in the input.

When the gocc reserved word, error, is the first symbol in a production alternative, it indicates
that that production can recover from input errors.

We modify the AST example to illustrate error recovery. See:

$GOPATH/src/github.com/goccmack/gocc/examples/errorrecovery/er.bnf:

<< import "github.com/goccmack/gocc/example/errorrecovery/ast" >>

StmtList :

Stmt << ast.NewStmtList($0) >>

| StmtList Stmt << ast.AppendStmt($0, $1) >>

;

Stmt :

id << ast.NewStmt($0) >>

| error

;

The production, Stmt, now has an alternative: | error

This indicates to gocc that input errors can be handles in production Stmt.

From the directory,

$GOPATH/src/github.com/goccmack/gocc/examples/errorrecovery/,

run go test as follows:

> go test -v .

warning: building out-of-date packages:

github.com/goccmack/gocc/example/errorrecovery/token

github.com/goccmack/gocc/example/errorrecovery/ast

github.com/goccmack/gocc/example/errorrecovery/errors

github.com/goccmack/gocc/example/errorrecovery/parser

github.com/goccmack/gocc/example/errorrecovery/lexer

installing these packages with ’go test -i .’ will speed future tests.

=== RUN TestFail

input: a b ; d e f

parser.firstRecoveryState: State 3

parser.firstRecoveryState: State 1, canRecover, true

output: [

a

error:

Err: nil

ErrorToken: ";"(-1)

ErrorPos: 1:5

ErrorSymbols: ["b"(1)]

ExpectedTokens: [error $ id]

19

d

e

f

]

--- PASS: TestFail (0.00 seconds)

PASS ok github.com/goccmack/gocc/example/errorrecovery 0.015s

The test case can be found in
$GOPATH/src/github.com/goccmack/gocc/examples/errorrecovery/er_test.go.
It calls the parser with input string, "a b ; d e f", which contains an invalid token, ;.

From the go test output we see that the parser successfully recovered from the input error and
returned a StmtList containing an error symbol between [a and d, e, f]. The id, b, was lost in
the error recovery. TBD: Explain exactly why the ’b’ was lost. The errored token was ; (invalid
token) when the parser expected one of error, $ (end of input) or id.

The parser returned an error value of nil, because it successfully recovered from the error.

Note:

1. When error recovery is allowed the user’s code must expect errors and handle the appropri-
ately in the code called by the production action expressions, as well as by the code handling
the results returned by the parser.

2. The parser will still return a non-nil error value if it encounters an irrecoverable error.

See $GOPATH/src/github.com/goccmack/gocc/examples/errorrecovery/errors/error.go for
the definition of errors.Error.

14 Example: Using another lexer

The generation of lexer code can be suppressed with the no_lexer option (see section 7). An
example, which uses a hand-written lexer, can be found at:

$GOPATH/src/github.com/goccmack/gocc/examples/nolexer/nolexer.bnf:

<<

import (

"fmt"

"github.com/goccmack/gocc/example/nolexer/token"

)

>>

Hello : Saying name << func () (Attrib, error) {

fmt.Println(string($1.(*token.Token).Lit));

return nil, nil} () >>

;

Saying : "hello" << func () (Attrib, error) {

20

fmt.Print("hello ");

return nil, nil} () >>

| "hiya" << func () (Attrib, error) {

fmt.Print("hiya ");

return nil, nil} () >>

;

This grammar contains no lexical productions. We generate code for it using

$GOPATH/src/github.com/goccmack/gocc/examples/nolexer/gen.sh:

gocc -no_lexer nolexer.bnf

After running gocc the directory structure contains the following files:

> ls -R

errors nolexer.bnf parser token

gen.sh nolexer_test.go scanner util

./errors:

errors.go

./parser:

action.go actiontable.go gototable.go parser.go productionstable.go

./scanner:

scanner.go

./token:

token.go

./util:

litconv.go rune.go

Note the absence of a lexer directory. Instead there is a hand-written scanner in

$GOPATH/src/github.com/goccmack/gocc/examples/nolexer/scanner/scanner.go

The scanner implements the interface:

89
90 type Scanner i n t e r f a c e {
91 Scan () (tok ∗ token . Token)

which is declared in the generated parser:

$GOPATH/src/github.com/goccmack/gocc/examples/nolexer/parser/parser.go.

The scanner must recognise the tokens required by the parser generated from the BNF. They are
declared in a TokenMap in

21

$GOPATH/src/github.com/goccmack/gocc/examples/nolexer/token/token.go:

59
60 var TokMap = TokenMap{
61 typeMap : [] s t r i n g {
62 ”INVALID” ,
63 ”$ ” ,
64 ”name” ,
65 ” h e l l o ” ,
66 ” hiya ” ,
67 } ,
68
69 idMap : map [s t r i n g] Type{
70 ”INVALID” : 0 ,
71 ”$ ” : 1 ,
72 ”name ” : 2 ,
73 ” h e l l o ” : 3 ,
74 ” hiya ” : 4 ,
75 } ,

$ is the EOF symbol used by the parser.

hello and hiya are string literals from the BNF.

name is literal other than hello and hiya.

Any lexeme not matching a valid terminal symbol of the grammar must be returned as INVALID.

$GOPATH/src/github.com/goccmack/gocc/examples/nolexer/scanner/scanner.go implements
a lexical analyser for this grammar as follows:

1 package scanner
2
3 import (
4 ” github . com/goccmack/ gocc /example/ no l exe r / token ”
5)
6
7 type Scanner s t r u c t {
8 s r c [] byte
9 pos i n t

10 }
11
12 func NewString (s s t r i n g) ∗Scanner {
13 re turn &Scanner { [] byte (s) , 0}
14 }
15
16 func isWhiteSpace (c byte) bool {
17 re turn c == ’ ’ | |
18 c == ’\ t ’ | |
19 c == ’\n ’ | |

22

20 c == ’\ r ’
21 }
22
23 func (S ∗Scanner) skipWhiteSpace () {
24 f o r S . pos < l en (S . s r c) && isWhiteSpace (S . s r c [S . pos]) {
25 S . pos++
26 }
27 }
28
29 func (S ∗Scanner) scanId () s t r i n g {
30 pos := S . pos
31 f o r S . pos < l en (S . s r c) && ! isWhiteSpace (S . s r c [S . pos]) {
32 S . pos++
33 }
34 S . pos++
35 return s t r i n g (S . s r c [pos : S . pos−1])
36 }
37
38 func (S ∗Scanner) Scan () (tok ∗ token . Token) {
39 S . skipWhiteSpace ()
40
41 i f S . pos >= len (S . s r c) {
42 re turn &token . Token{Type : token .EOF}
43 }
44
45 pos := S . pos
46
47 l i t := S . scanId ()
48 switch l i t {
49 case ” hiya ” :
50 re turn &token . Token{Type : token . TokMap . Type(” hiya ”) ,
51 L i t : [] byte (” hiya ”) ,
52 Pos : token . Pos{O f f s e t : pos}}
53 case ” h e l l o ” :
54 re turn &token . Token{Type : token . TokMap . Type(” h e l l o ”) ,
55 L i t : [] byte (” h e l l o ”) ,
56 Pos : token . Pos{O f f s e t : pos}}
57 d e f a u l t :
58 re turn &token . Token{Type : token . TokMap . Type(”name ”) ,
59 L i t : [] byte (l i t) ,
60 Pos : token . Pos{O f f s e t : pos}}
61 }
62 }

Examples of using the generated parser with the hand-written scanner are given in

$GOPATH/src/github.com/goccmack/gocc/examples/nolexer/nolexer_test.go

23

15 gocc syntax

A gocc source file contains UTF-8 encoded Unicode text.

c-style block and line comments are allowed in the source code. All comments are suppressed by
the lexer. In the following BNF !comment means that comment is a token, which is recognised
and suppressed by the lexer – it is not seen by the parser.

!comment : _lineComment | _blockComment ;

_lineComment : ’/’ ’/’ {.} ’\n’ ;

_blockComment : ’/’ ’*’ {. | ’*’} ’*’ ’/’ ;

gocc source code consists of a sequence of tokens separated by white space. The white space
characters are:

Character Unicode value go char literal
space 0x20 ’ ’

horizontal tab 0x09 ’\t’

newline 0x0a ’\n’

carriage return 0x0d ’\r’

White space is suppressed by the lexer.

!whitespace : ’ ’ | ’\t’ | ’\n’ | ’\r’ ;

A gocc source file must contain at least one of a lexical part or a syntax part.

Grammar

: LexicalPart SyntaxPart

| LexicalPart

| SyntaxPart

;

The lexical part is a sequence of lexical productions.

LexicalPart

: LexProductions

;

LexProductions

: LexProduction

| LexProductions LexProduction

;

Each lexical production is token definition or a regular definition or an ignored token definition. To-
ken identifiers start with a lower case character in the range ’a’-’z’, regular definition identifiers
start with ’_’ and ignored token identifiers start with ’!’.

24

Regular definitions are used as building blocks for other regular definitions, token definitions and
ignored token definitions. Regular definitions may not be mutually or self recursive.

Token definitions define the tokens that are recognised by the lexer and passed to the parser.

Ignored token definitions define tokens that are recognised by the lexer but suppressed so that the
parser never sees them. Comments and the white space separating tokens are examples of ignored
tokens.

LexProduction

: tokId ":" LexPattern ";" // token definition

| regDefId ":" LexPattern ";" // regular definition

| ignoredTokId ":" LexPattern ";" // ignored token defition

;

Token identifiers start with a lowercase letter in the range ’a’-’z’.

tokId : _tokId ;

_tokId : _lowcase {_id_char} ;

_lowcase : ’a’-’z’ ;

_id_char : _upcase | _lowcase | ’_’ | _digit ;

_upcase : ’A’-’Z’ ;

_digit : ’0’-’9’ ;

Regular definition identifiers start with ’_’.

regDefId : ’_’ {_id_char} ;

Ignored token identifiers start with ’!’

ignoredTokId : ’!’ _tokId ;

A lexical pattern is one or more alternatives, each consisting of a sequence of terms.

LexPattern

: LexAlt

| LexPattern "|" LexAlt

;

LexAlt

: LexTerm

| LexAlt LexTerm

;

A lexical term can be one of:

25

. Match any UTF-8 rune. This match is only applied after all more
specific terms have been matched.

char_lit A specific character literal, e.g.: ’a’.
char_lit "-" char_lit An inclusive range, e.g.: ’a’-’z’
regDefId the identifier of a regular definition production in the BNF
"[" LexPattern "]" An optional lexical pattern
"{" LexPattern "}" Zero or more instances of a lexical pattern
"(" LexPattern ")" A grouped lexical pattern, e.g.: (’a’ | ’b’)

LexTerm

: "."

| char_lit

| char_lit "-" char_lit

| regDefId

| "[" LexPattern "]"

| "{" LexPattern "}"

| "(" LexPattern ")"

;

Character literals are specified as a valid Unicode or byte value, enclosed in single quotes:

char_lit

: ’\’’ (_unicode_value | _byte_value) ’\’’

;

A Unicode character may be specified as a character literal (e.g.: ’a’), a Unicode value or an
escaped character.

_unicode_value

: . // Any UTF-8 character literal

| _little_u_value

| _big_u_value

| _escaped_char

;

_byte_value

: _octal_byte_value

| _hex_byte_value

;

_little_u_value

: ’\\’ ’u’ _hex_digit _hex_digit _hex_digit _hex_digit

;

_big_u_value

: ’\\’ ’U’ _hex_digit _hex_digit _hex_digit _hex_digit

_hex_digit _hex_digit _hex_digit _hex_digit

;

26

_escaped_char

: ’\\’ (’a’ | ’b’ | ’f’ | ’n’ | ’r’ | ’t’ | ’v’ | ’\\’ | ’\’’ | ’"’)

;

_octal_byte_value

: ’\\’ _octal_digit _octal_digit _octal_digit

;

_hex_byte_value

: ’\\’ ’x’ _hex_digit _hex_digit

;

_octal_digit

: ’0’ - ’7’

;

_hex_digit

: ’0’ - ’9’

| ’A’ - ’F’

| ’a’ - ’f’

;

The syntax part may start with an optional file header, followed by a sequence of syntax produc-
tions. The file header is textually included in the generated parser file, productiontable.go, and
is used to declare imports, constants, types and functions required by the action expressions of the
productions.

SyntaxPart

: FileHeader SyntaxProdList

| SyntaxProdList

;

FileHeader

: g_sdt_lit

;

SyntaxProdList

: SyntaxProduction

| SyntaxProdList SyntaxProduction

;

Syntax productions define a context free language and may be mutually and self recursive. Left
recursion is preferable to right recursion in LR grammar productions, as this leads to less stack
activity during parsing. A syntax production starts with an identifier, followed by ":" and one or
more alternative bodies, which are separated by "|".

27

Syntax production identifiers start with an upper case character in the range ’A’-’Z’.

SyntaxProduction

: prodId ":" Alternatives ";"

;

prodId

: _upcase {_id_char}

;

Alternatives

: SyntaxBody

| Alternatives "|" SyntaxBody

;

A syntax body is a sequence of syntax symbols, optionally followed by an action literal. If a syntax
body starts with the keyword, error, it indicates that the parser may accept an error in the input
of the production and continue parsing if it is able to recover from the error.

A syntax body may also be empty, indicated by the reserved word, empty. This allows you to
write productions with optional elements, such as:

A : B "c";

B : "b" | empty;

This grammar will match strings, b c or c.

SyntaxBody

: Symbols

| Symbols g_sdt_lit

| "error"

| "error" Symbols

| "error" Symbols g_sdt_lit

| "empty"

;

Symbols

: Symbol

| Symbols Symbol

;

An action literal is any string of characters enclosed in "<<" ">>". The contents of the action
literal is invoke as an expression when the associated production body has been recognised by
the parser. The action expression must return a tuple of type (interface{}, error). If the
second parameter is not nil the parser terminates and returns the error to its caller. If the second
parameter is nil the parser associates first parameter with the recognise syntax production as its
attribute.

g_sdt_lit

28

: ’<’ ’<’ . {.} ’>’ ’>’

;

gocc recognises the following terminal syntax symbols:

prodId The identifier of a syntax production defined in the grammar.
tokId The identifier of lexical production defined in the grammar.
string_lit A string literal value, e.g.: "a string"

Symbol

: prodId

| tokId

| string_lit

;

A string literal can be any valid go raw string (e.g.: ‘a raw string‘) or interpreted string (e.g.:
"an interpreted string").

string_lit

: _raw_string

| _interpreted_string

;

_raw_string

: ’‘’ {.} ’‘’

;

_interpreted_string

: ’"’ { _unicode_value | _byte_value } ’"’

;

References

[1] Dick Grune and Ceriel J.H. Jacobs. Parsing Techniques. A Practical Guide. Second Edition.
Monographs in Computer Science, Springer, 2008

[2] Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J.H. Jacobs and Koen Langendoen.
Modern Compiler Design. Second Edition. Springer 2012

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman. Compilers. Principles,
Techniques, & Tools. Second Edition. Addison Wesley, 2007

[4] D. Crocker, Ed. Augmented BNF for Syntax Specifications: ABNF RFC 5234, January 2008

[5] The Go Language Specification http://golang.org/ref/spec

29

http://golang.org/ref/spec

	1 Introduction
	2 Copyright
	3 Definition of terms
	4 Getting started
	5 How to create and use a parser with gocc
	6 First example
	6.1 Step 1: generate code
	6.2 The example grammar
	6.3 The test program
	6.4 Step 2: running go test

	7 Commandline syntax
	8 Example: parsing simple mail addresses
	9 Handling LR(1) conflicts
	10 Example: reduce/reduce conflict handling
	11 Example: Shift/reduce conflict handling
	12 Example: Using an AST
	13 Example: Parser error recovery
	14 Example: Using another lexer
	15 gocc syntax

