Foundations of
Collaborative, Real-Time
Feature Modeling

Elias Kuiter | FOSD Meeting 2019

e “\n?.'“ R G b 2
] 15 | & tava (2] Variant Management) [Resource &0 Team Synchronizing

%

Variant Projects 52 | 3p =

Quick Access B | FeaturelDE &% > TinyTX [ArduinoExample maste

| P i i P v
Tree | [Table| =3 Graph| @ Constraints © Feature Models| i) Family Models|

) Demo.vdm 2

4 1B Receiver <. o

K (®) Display on LCD
K (F) Serial Output of Sensor Dat:

T — » @ > Configs
R P Collaboration Outline 52 =B » @ Houses
4 GraphProductLine i g :‘u‘l:‘ut L
o
’ . b G script
12 Type b B) Hardware.ccfm
b © Search ») House.ccfm
4 Constraints b [B) Housexfm
Connected = Undirected A Search b) Libraries.ccfm
Cycle = Direction A DFS > [B) Networkxfm -
Shortest = Directed A Weighted) ’
[Drectea | |[wegntea | 1 T
Connected = Undirected A Search < Create Feature Above 1‘, io '“" LU RULBL R
Cycle = Direction A DFS ¢ Create Feature Below (Ins)
Shortest = Directed A Weighted 4 Create Constraint
Rename (F2)
¥ Delete (Del)
3 Delete including subfeatures

Mandatory (Double Click)

Abstract

Hidden

Set Layout »
Set Calculations »

Reverse Feature Order

< [I

Feature Diagram | Feature Order| Source |

Single-user Feature Modeling Tools

Our Proposal: Collaborative Feature Modeling

Why?

- current tools do not explicitly address collaboration
- VCS allow asynchronous collaboration

but: not real-time, divergence occurs
- imagine using a VCS for pair programming

— annoying merge conflicts

Potential Use Cases

engineers can share and discuss the feature model with domain experts
— feedback can be used in real time for evolution

domain knowledge is usually spread across many stakeholders
— synergy effects can help to solve tasks that are difficult for individuals

may complement version control systems
— use a VCS for long-term, and a real-time editor for short-term evolution

What do we need?
Requirements Analysis

Requirements for a Collaborative FM Editor

Concurrency

Requirements for a Collaborative FM Editor

site A

Concurrency

concurrent submission
of operations

Requirements for a Collaborative FM Editor

site B

0o

site C

Concurrency

Optimism

Requirements for a Collaborative FM Editor

Concurrency

Optimism

immediate execution
of operations

Requirements for a Collaborative FM Editor

Concurrency

Optimism

Intention
Preservation

Requirements for a Collaborative FM Editor

Concurrency

Optimism

do not reject, override
or mask operations

Intention
Preservation

Requirements for a Collaborative FM Editor

Concurrency

Optimism
Intention
Flexibility Preservation

Requirements for a Collaborative FM Editor

Concurrency

Optimism
allow for more FM flavors,
operations and
FM analyses
o Intention
Flexibility Preservation

Requirements for a Collaborative FM Editor

Concurrency

Correctness Optimism
o Intention
Flexibility Preservation

Requirements for a Collaborative FM Editor

Concurrency

Correctness Optimism
can show that the system
behaves as expected
o Intention
Flexibility Preservation

Requirements for a Collaborative FM Editor

Concurrency

Correctness Optimism

How?

o Intention
Flexibility Preservation

Requirements for a Collaborative FM Editor

\1}0% \}o&\
& & ¥ Qo &
A A & &
SR P N A
& L O & O D> D
Concurrency O) [® ® o o
Optimism © O ® ® ® o o
Intention Preservation @ O O O O D) ®
Flexibility @ O O O O O O
Correctness @ D) () ® O O L)

Comparison of Concurrency Control Techniques

RN = > D

Concurrency O [D) ® & ® [
Optimism © O ® ® o ®

Intention Preservation @ O O O O) ®
Flexibility @ O O O O [)

Correctness @ () () ® O O

Comparison of Concurrency Control Techniques

site A site B

Multi-Version Multi-Display (MVMD)

site A site B

® update(O, fill, red)

Q0

update(Q, fill, blue)
¢ O

Multi-Version Multi-Display (MVMD)

site A site B

update(O, fill, red)

Q0

update(Q, fill, blue)

Multi-Version Multi-Display (MVMD)

site A

0 O

AW

update(O, fill, red)

update(Q, fill, blue)

site B

OO

Multi-Version Multi-Display (MVMD)

Applying MVMD to
Feature Modeling

Major Tasks

Feature Model Representation

How to represent feature models?

Conflict Detection

How to determine whether operations are in conflict?

Operation Model

What modeling operations are supported?

Conflict Resolution

How to proceed when a conflict has been detected?

10

Major Tasks

Feature Model Representation

How to represent feature models?

GraphLibrary
O O O
Edge Type Search Weighted Algorithm

T

l Directed H Undirected H BFS H DFS H Cycle H ShortestPath H MST H Transpose |
A\

11

Major Tasks

Feature Model Representation

How to represent feature models?

Operation Model

What modeling operations are supported?

GraphLibrary

O O O
Edge Type Search Weighted Algorithm

/N /-

| Directed H Undirected H BFS H DFS H Cycle H ShortestPath H MST H Transpose |
A\

We initially support these operations:

- create and remove feature (subtrees) and constraints
- set feature and constraint attributes (mandatory, ...)
- batch operations on multiple targets

11

Major Tasks

Feature Model Representation

How to represent feature models?

Conflict Detection

How to determine whether operations are in conflict?

Operation Model

What modeling operations are supported?

Conflict Resolution

How to proceed when a conflict has been detected?

12

Conflict Detection

We extend the MVMD approach with a set of
conflict detection rules specific to feature modeling.

If any rule applies, multiple versions are created.

13

| |

set feature name to FeatureX set feature name to FeatureY

14

(

| |

set feature name to FeatureX set feature name to FeatureY

Rule #1: No writes to the same feature attribute.

14

\
\
o

(
/
! O \

/ 8 | A \

ARV

5|

|

l_

move feature subtree A below B move feature subtree B below A

Result:

—o— —0—
D =)
\ |

Rule #2: May not introduce cycles.

16

e,

remove feature subtree A

set feature name to FeatureY

17

/
/
L_[l
remove feature subtree A set feature name to FeatureY

Rule #3: No writes to removed features.

17

VANAY

Zameaws

o

set A to alternative set B to mandatory

18

/

A

-

|

A

C =

| A |
T AT
L _8 JL

set A to alternative

set B to mandatory

Rule #4: No mandatory/optional writes to group children.

18

Conflict Detection Rules

- Rule #1: No writes to the same feature attribute.

- Rule #2: May not introduce cycles.

- Rule #3: No writes to removed features.

- Rule #4: No mandatory/optional writes to group children.

- extensible with semantic properties such as no dead features,
no redundant constraints etc.

19

Major Tasks

Feature Model Representation

How to represent feature models?

Conflict Detection

How to determine whether operations are in conflict?

Operation Model

What modeling operations are supported?

Conflict Resolution

How to proceed when a conflict has been detected?

20

|

edit FM

N\ 4

J no (.

A

conflict?]—yes{ synchronize J

|

compute
elected FM

Y

o]

resolution compute set
criterion? of voters

A |
no
\ 4

|

cast/receive
votes

Conflict Resolution Process

21

Concurrency

Correctness . Optimism
Collaborative
Feature
Modeling
o Intention
Flexibility Preservation

Discussion

- Would you use it?
- Ifyes,what for?
- If not, why?
- What do you value most
in editing software?
- Isthere any feature functionality
you would like toseein a
collaborative FM editor?

22

