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Our Proposal: Collaborative Feature Modeling



Why?

- current tools do not explicitly address collaboration
- VCS allow asynchronous collaboration

but: not real-time, divergence occurs
- imagine using a VCS for pair programming

— annoying merge conflicts




Potential Use Cases

engineers can share and discuss the feature model with domain experts
— feedback can be used in real time for evolution

domain knowledge is usually spread across many stakeholders
— synergy effects can help to solve tasks that are difficult for individuals

may complement version control systems
— use a VCS for long-term, and a real-time editor for short-term evolution



What do we need?
Requirements Analysis



Requirements for a Collaborative FM Editor



Concurrency

Requirements for a Collaborative FM Editor
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Optimism
allow for more FM flavors,
operations and
FM analyses
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Correctness Optimism
can show that the system
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Concurrency

Correctness Optimism

How?

o Intention
Flexibility Preservation
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Applying MVMD to
Feature Modeling



Major Tasks

Feature Model Representation

How to represent feature models?

Conflict Detection

How to determine whether operations are in conflict?

Operation Model

What modeling operations are supported?

Conflict Resolution

How to proceed when a conflict has been detected?
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Major Tasks

Feature Model Representation

How to represent feature models?

Operation Model

What modeling operations are supported?

GraphLibrary
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We initially support these operations:

- create and remove feature (subtrees) and constraints
- set feature and constraint attributes (mandatory, ...)
- batch operations on multiple targets
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Major Tasks

Feature Model Representation

How to represent feature models?

Conflict Detection

How to determine whether operations are in conflict?

Operation Model

What modeling operations are supported?

Conflict Resolution

How to proceed when a conflict has been detected?
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Conflict Detection

We extend the MVMD approach with a set of
conflict detection rules specific to feature modeling.

If any rule applies, multiple versions are created.
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set feature name to FeatureX set feature name to FeatureY
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set feature name to FeatureX set feature name to FeatureY

Rule #1: No writes to the same feature attribute.
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Rule #2: May not introduce cycles.
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remove feature subtree A

set feature name to FeatureY
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remove feature subtree A set feature name to FeatureY

Rule #3: No writes to removed features.
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Rule #4: No mandatory/optional writes to group children.
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Conflict Detection Rules

- Rule #1: No writes to the same feature attribute.

- Rule #2: May not introduce cycles.

- Rule #3: No writes to removed features.

- Rule #4: No mandatory/optional writes to group children.

- extensible with semantic properties such as no dead features,
no redundant constraints etc.
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Major Tasks

Feature Model Representation

How to represent feature models?

Conflict Detection

How to determine whether operations are in conflict?

Operation Model

What modeling operations are supported?

Conflict Resolution

How to proceed when a conflict has been detected?
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Concurrency

Correctness . Optimism
Collaborative
Feature
Modeling
o Intention
Flexibility Preservation

Discussion

- Would you use it?
- Ifyes,what for?
- If not, why?
- What do you value most
in editing software?
- Isthere any feature functionality
you would like toseein a
collaborative FM editor?
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